tools uapi asm: Update asm-generic/unistd.h copy
[linux/fpc-iii.git] / arch / x86 / mm / numa.c
blob1308f5408bf74881f89c5b323a465e23ac83177f
1 /* Common code for 32 and 64-bit NUMA */
2 #include <linux/acpi.h>
3 #include <linux/kernel.h>
4 #include <linux/mm.h>
5 #include <linux/string.h>
6 #include <linux/init.h>
7 #include <linux/memblock.h>
8 #include <linux/mmzone.h>
9 #include <linux/ctype.h>
10 #include <linux/nodemask.h>
11 #include <linux/sched.h>
12 #include <linux/topology.h>
14 #include <asm/e820/api.h>
15 #include <asm/proto.h>
16 #include <asm/dma.h>
17 #include <asm/amd_nb.h>
19 #include "numa_internal.h"
21 int numa_off;
22 nodemask_t numa_nodes_parsed __initdata;
24 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
25 EXPORT_SYMBOL(node_data);
27 static struct numa_meminfo numa_meminfo
28 #ifndef CONFIG_MEMORY_HOTPLUG
29 __initdata
30 #endif
33 static int numa_distance_cnt;
34 static u8 *numa_distance;
36 static __init int numa_setup(char *opt)
38 if (!opt)
39 return -EINVAL;
40 if (!strncmp(opt, "off", 3))
41 numa_off = 1;
42 #ifdef CONFIG_NUMA_EMU
43 if (!strncmp(opt, "fake=", 5))
44 numa_emu_cmdline(opt + 5);
45 #endif
46 #ifdef CONFIG_ACPI_NUMA
47 if (!strncmp(opt, "noacpi", 6))
48 acpi_numa = -1;
49 #endif
50 return 0;
52 early_param("numa", numa_setup);
55 * apicid, cpu, node mappings
57 s16 __apicid_to_node[MAX_LOCAL_APIC] = {
58 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
61 int numa_cpu_node(int cpu)
63 int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
65 if (apicid != BAD_APICID)
66 return __apicid_to_node[apicid];
67 return NUMA_NO_NODE;
70 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
71 EXPORT_SYMBOL(node_to_cpumask_map);
74 * Map cpu index to node index
76 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
77 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
79 void numa_set_node(int cpu, int node)
81 int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
83 /* early setting, no percpu area yet */
84 if (cpu_to_node_map) {
85 cpu_to_node_map[cpu] = node;
86 return;
89 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
90 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
91 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
92 dump_stack();
93 return;
95 #endif
96 per_cpu(x86_cpu_to_node_map, cpu) = node;
98 set_cpu_numa_node(cpu, node);
101 void numa_clear_node(int cpu)
103 numa_set_node(cpu, NUMA_NO_NODE);
107 * Allocate node_to_cpumask_map based on number of available nodes
108 * Requires node_possible_map to be valid.
110 * Note: cpumask_of_node() is not valid until after this is done.
111 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
113 void __init setup_node_to_cpumask_map(void)
115 unsigned int node;
117 /* setup nr_node_ids if not done yet */
118 if (nr_node_ids == MAX_NUMNODES)
119 setup_nr_node_ids();
121 /* allocate the map */
122 for (node = 0; node < nr_node_ids; node++)
123 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
125 /* cpumask_of_node() will now work */
126 pr_debug("Node to cpumask map for %d nodes\n", nr_node_ids);
129 static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
130 struct numa_meminfo *mi)
132 /* ignore zero length blks */
133 if (start == end)
134 return 0;
136 /* whine about and ignore invalid blks */
137 if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
138 pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
139 nid, start, end - 1);
140 return 0;
143 if (mi->nr_blks >= NR_NODE_MEMBLKS) {
144 pr_err("too many memblk ranges\n");
145 return -EINVAL;
148 mi->blk[mi->nr_blks].start = start;
149 mi->blk[mi->nr_blks].end = end;
150 mi->blk[mi->nr_blks].nid = nid;
151 mi->nr_blks++;
152 return 0;
156 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
157 * @idx: Index of memblk to remove
158 * @mi: numa_meminfo to remove memblk from
160 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
161 * decrementing @mi->nr_blks.
163 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
165 mi->nr_blks--;
166 memmove(&mi->blk[idx], &mi->blk[idx + 1],
167 (mi->nr_blks - idx) * sizeof(mi->blk[0]));
171 * numa_add_memblk - Add one numa_memblk to numa_meminfo
172 * @nid: NUMA node ID of the new memblk
173 * @start: Start address of the new memblk
174 * @end: End address of the new memblk
176 * Add a new memblk to the default numa_meminfo.
178 * RETURNS:
179 * 0 on success, -errno on failure.
181 int __init numa_add_memblk(int nid, u64 start, u64 end)
183 return numa_add_memblk_to(nid, start, end, &numa_meminfo);
186 /* Allocate NODE_DATA for a node on the local memory */
187 static void __init alloc_node_data(int nid)
189 const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
190 u64 nd_pa;
191 void *nd;
192 int tnid;
195 * Allocate node data. Try node-local memory and then any node.
196 * Never allocate in DMA zone.
198 nd_pa = memblock_phys_alloc_nid(nd_size, SMP_CACHE_BYTES, nid);
199 if (!nd_pa) {
200 nd_pa = __memblock_alloc_base(nd_size, SMP_CACHE_BYTES,
201 MEMBLOCK_ALLOC_ACCESSIBLE);
202 if (!nd_pa) {
203 pr_err("Cannot find %zu bytes in any node (initial node: %d)\n",
204 nd_size, nid);
205 return;
208 nd = __va(nd_pa);
210 /* report and initialize */
211 printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
212 nd_pa, nd_pa + nd_size - 1);
213 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
214 if (tnid != nid)
215 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid);
217 node_data[nid] = nd;
218 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
220 node_set_online(nid);
224 * numa_cleanup_meminfo - Cleanup a numa_meminfo
225 * @mi: numa_meminfo to clean up
227 * Sanitize @mi by merging and removing unnecessary memblks. Also check for
228 * conflicts and clear unused memblks.
230 * RETURNS:
231 * 0 on success, -errno on failure.
233 int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
235 const u64 low = 0;
236 const u64 high = PFN_PHYS(max_pfn);
237 int i, j, k;
239 /* first, trim all entries */
240 for (i = 0; i < mi->nr_blks; i++) {
241 struct numa_memblk *bi = &mi->blk[i];
243 /* make sure all blocks are inside the limits */
244 bi->start = max(bi->start, low);
245 bi->end = min(bi->end, high);
247 /* and there's no empty or non-exist block */
248 if (bi->start >= bi->end ||
249 !memblock_overlaps_region(&memblock.memory,
250 bi->start, bi->end - bi->start))
251 numa_remove_memblk_from(i--, mi);
254 /* merge neighboring / overlapping entries */
255 for (i = 0; i < mi->nr_blks; i++) {
256 struct numa_memblk *bi = &mi->blk[i];
258 for (j = i + 1; j < mi->nr_blks; j++) {
259 struct numa_memblk *bj = &mi->blk[j];
260 u64 start, end;
263 * See whether there are overlapping blocks. Whine
264 * about but allow overlaps of the same nid. They
265 * will be merged below.
267 if (bi->end > bj->start && bi->start < bj->end) {
268 if (bi->nid != bj->nid) {
269 pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
270 bi->nid, bi->start, bi->end - 1,
271 bj->nid, bj->start, bj->end - 1);
272 return -EINVAL;
274 pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
275 bi->nid, bi->start, bi->end - 1,
276 bj->start, bj->end - 1);
280 * Join together blocks on the same node, holes
281 * between which don't overlap with memory on other
282 * nodes.
284 if (bi->nid != bj->nid)
285 continue;
286 start = min(bi->start, bj->start);
287 end = max(bi->end, bj->end);
288 for (k = 0; k < mi->nr_blks; k++) {
289 struct numa_memblk *bk = &mi->blk[k];
291 if (bi->nid == bk->nid)
292 continue;
293 if (start < bk->end && end > bk->start)
294 break;
296 if (k < mi->nr_blks)
297 continue;
298 printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
299 bi->nid, bi->start, bi->end - 1, bj->start,
300 bj->end - 1, start, end - 1);
301 bi->start = start;
302 bi->end = end;
303 numa_remove_memblk_from(j--, mi);
307 /* clear unused ones */
308 for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
309 mi->blk[i].start = mi->blk[i].end = 0;
310 mi->blk[i].nid = NUMA_NO_NODE;
313 return 0;
317 * Set nodes, which have memory in @mi, in *@nodemask.
319 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
320 const struct numa_meminfo *mi)
322 int i;
324 for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
325 if (mi->blk[i].start != mi->blk[i].end &&
326 mi->blk[i].nid != NUMA_NO_NODE)
327 node_set(mi->blk[i].nid, *nodemask);
331 * numa_reset_distance - Reset NUMA distance table
333 * The current table is freed. The next numa_set_distance() call will
334 * create a new one.
336 void __init numa_reset_distance(void)
338 size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
340 /* numa_distance could be 1LU marking allocation failure, test cnt */
341 if (numa_distance_cnt)
342 memblock_free(__pa(numa_distance), size);
343 numa_distance_cnt = 0;
344 numa_distance = NULL; /* enable table creation */
347 static int __init numa_alloc_distance(void)
349 nodemask_t nodes_parsed;
350 size_t size;
351 int i, j, cnt = 0;
352 u64 phys;
354 /* size the new table and allocate it */
355 nodes_parsed = numa_nodes_parsed;
356 numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
358 for_each_node_mask(i, nodes_parsed)
359 cnt = i;
360 cnt++;
361 size = cnt * cnt * sizeof(numa_distance[0]);
363 phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
364 size, PAGE_SIZE);
365 if (!phys) {
366 pr_warn("Warning: can't allocate distance table!\n");
367 /* don't retry until explicitly reset */
368 numa_distance = (void *)1LU;
369 return -ENOMEM;
371 memblock_reserve(phys, size);
373 numa_distance = __va(phys);
374 numa_distance_cnt = cnt;
376 /* fill with the default distances */
377 for (i = 0; i < cnt; i++)
378 for (j = 0; j < cnt; j++)
379 numa_distance[i * cnt + j] = i == j ?
380 LOCAL_DISTANCE : REMOTE_DISTANCE;
381 printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
383 return 0;
387 * numa_set_distance - Set NUMA distance from one NUMA to another
388 * @from: the 'from' node to set distance
389 * @to: the 'to' node to set distance
390 * @distance: NUMA distance
392 * Set the distance from node @from to @to to @distance. If distance table
393 * doesn't exist, one which is large enough to accommodate all the currently
394 * known nodes will be created.
396 * If such table cannot be allocated, a warning is printed and further
397 * calls are ignored until the distance table is reset with
398 * numa_reset_distance().
400 * If @from or @to is higher than the highest known node or lower than zero
401 * at the time of table creation or @distance doesn't make sense, the call
402 * is ignored.
403 * This is to allow simplification of specific NUMA config implementations.
405 void __init numa_set_distance(int from, int to, int distance)
407 if (!numa_distance && numa_alloc_distance() < 0)
408 return;
410 if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
411 from < 0 || to < 0) {
412 pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
413 from, to, distance);
414 return;
417 if ((u8)distance != distance ||
418 (from == to && distance != LOCAL_DISTANCE)) {
419 pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
420 from, to, distance);
421 return;
424 numa_distance[from * numa_distance_cnt + to] = distance;
427 int __node_distance(int from, int to)
429 if (from >= numa_distance_cnt || to >= numa_distance_cnt)
430 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
431 return numa_distance[from * numa_distance_cnt + to];
433 EXPORT_SYMBOL(__node_distance);
436 * Sanity check to catch more bad NUMA configurations (they are amazingly
437 * common). Make sure the nodes cover all memory.
439 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
441 u64 numaram, e820ram;
442 int i;
444 numaram = 0;
445 for (i = 0; i < mi->nr_blks; i++) {
446 u64 s = mi->blk[i].start >> PAGE_SHIFT;
447 u64 e = mi->blk[i].end >> PAGE_SHIFT;
448 numaram += e - s;
449 numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
450 if ((s64)numaram < 0)
451 numaram = 0;
454 e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
456 /* We seem to lose 3 pages somewhere. Allow 1M of slack. */
457 if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
458 printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
459 (numaram << PAGE_SHIFT) >> 20,
460 (e820ram << PAGE_SHIFT) >> 20);
461 return false;
463 return true;
467 * Mark all currently memblock-reserved physical memory (which covers the
468 * kernel's own memory ranges) as hot-unswappable.
470 static void __init numa_clear_kernel_node_hotplug(void)
472 nodemask_t reserved_nodemask = NODE_MASK_NONE;
473 struct memblock_region *mb_region;
474 int i;
477 * We have to do some preprocessing of memblock regions, to
478 * make them suitable for reservation.
480 * At this time, all memory regions reserved by memblock are
481 * used by the kernel, but those regions are not split up
482 * along node boundaries yet, and don't necessarily have their
483 * node ID set yet either.
485 * So iterate over all memory known to the x86 architecture,
486 * and use those ranges to set the nid in memblock.reserved.
487 * This will split up the memblock regions along node
488 * boundaries and will set the node IDs as well.
490 for (i = 0; i < numa_meminfo.nr_blks; i++) {
491 struct numa_memblk *mb = numa_meminfo.blk + i;
492 int ret;
494 ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
495 WARN_ON_ONCE(ret);
499 * Now go over all reserved memblock regions, to construct a
500 * node mask of all kernel reserved memory areas.
502 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
503 * numa_meminfo might not include all memblock.reserved
504 * memory ranges, because quirks such as trim_snb_memory()
505 * reserve specific pages for Sandy Bridge graphics. ]
507 for_each_memblock(reserved, mb_region) {
508 if (mb_region->nid != MAX_NUMNODES)
509 node_set(mb_region->nid, reserved_nodemask);
513 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
514 * belonging to the reserved node mask.
516 * Note that this will include memory regions that reside
517 * on nodes that contain kernel memory - entire nodes
518 * become hot-unpluggable:
520 for (i = 0; i < numa_meminfo.nr_blks; i++) {
521 struct numa_memblk *mb = numa_meminfo.blk + i;
523 if (!node_isset(mb->nid, reserved_nodemask))
524 continue;
526 memblock_clear_hotplug(mb->start, mb->end - mb->start);
530 static int __init numa_register_memblks(struct numa_meminfo *mi)
532 unsigned long uninitialized_var(pfn_align);
533 int i, nid;
535 /* Account for nodes with cpus and no memory */
536 node_possible_map = numa_nodes_parsed;
537 numa_nodemask_from_meminfo(&node_possible_map, mi);
538 if (WARN_ON(nodes_empty(node_possible_map)))
539 return -EINVAL;
541 for (i = 0; i < mi->nr_blks; i++) {
542 struct numa_memblk *mb = &mi->blk[i];
543 memblock_set_node(mb->start, mb->end - mb->start,
544 &memblock.memory, mb->nid);
548 * At very early time, the kernel have to use some memory such as
549 * loading the kernel image. We cannot prevent this anyway. So any
550 * node the kernel resides in should be un-hotpluggable.
552 * And when we come here, alloc node data won't fail.
554 numa_clear_kernel_node_hotplug();
557 * If sections array is gonna be used for pfn -> nid mapping, check
558 * whether its granularity is fine enough.
560 #ifdef NODE_NOT_IN_PAGE_FLAGS
561 pfn_align = node_map_pfn_alignment();
562 if (pfn_align && pfn_align < PAGES_PER_SECTION) {
563 printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
564 PFN_PHYS(pfn_align) >> 20,
565 PFN_PHYS(PAGES_PER_SECTION) >> 20);
566 return -EINVAL;
568 #endif
569 if (!numa_meminfo_cover_memory(mi))
570 return -EINVAL;
572 /* Finally register nodes. */
573 for_each_node_mask(nid, node_possible_map) {
574 u64 start = PFN_PHYS(max_pfn);
575 u64 end = 0;
577 for (i = 0; i < mi->nr_blks; i++) {
578 if (nid != mi->blk[i].nid)
579 continue;
580 start = min(mi->blk[i].start, start);
581 end = max(mi->blk[i].end, end);
584 if (start >= end)
585 continue;
588 * Don't confuse VM with a node that doesn't have the
589 * minimum amount of memory:
591 if (end && (end - start) < NODE_MIN_SIZE)
592 continue;
594 alloc_node_data(nid);
597 /* Dump memblock with node info and return. */
598 memblock_dump_all();
599 return 0;
603 * There are unfortunately some poorly designed mainboards around that
604 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
605 * mapping. To avoid this fill in the mapping for all possible CPUs,
606 * as the number of CPUs is not known yet. We round robin the existing
607 * nodes.
609 static void __init numa_init_array(void)
611 int rr, i;
613 rr = first_node(node_online_map);
614 for (i = 0; i < nr_cpu_ids; i++) {
615 if (early_cpu_to_node(i) != NUMA_NO_NODE)
616 continue;
617 numa_set_node(i, rr);
618 rr = next_node_in(rr, node_online_map);
622 static int __init numa_init(int (*init_func)(void))
624 int i;
625 int ret;
627 for (i = 0; i < MAX_LOCAL_APIC; i++)
628 set_apicid_to_node(i, NUMA_NO_NODE);
630 nodes_clear(numa_nodes_parsed);
631 nodes_clear(node_possible_map);
632 nodes_clear(node_online_map);
633 memset(&numa_meminfo, 0, sizeof(numa_meminfo));
634 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
635 MAX_NUMNODES));
636 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
637 MAX_NUMNODES));
638 /* In case that parsing SRAT failed. */
639 WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
640 numa_reset_distance();
642 ret = init_func();
643 if (ret < 0)
644 return ret;
647 * We reset memblock back to the top-down direction
648 * here because if we configured ACPI_NUMA, we have
649 * parsed SRAT in init_func(). It is ok to have the
650 * reset here even if we did't configure ACPI_NUMA
651 * or acpi numa init fails and fallbacks to dummy
652 * numa init.
654 memblock_set_bottom_up(false);
656 ret = numa_cleanup_meminfo(&numa_meminfo);
657 if (ret < 0)
658 return ret;
660 numa_emulation(&numa_meminfo, numa_distance_cnt);
662 ret = numa_register_memblks(&numa_meminfo);
663 if (ret < 0)
664 return ret;
666 for (i = 0; i < nr_cpu_ids; i++) {
667 int nid = early_cpu_to_node(i);
669 if (nid == NUMA_NO_NODE)
670 continue;
671 if (!node_online(nid))
672 numa_clear_node(i);
674 numa_init_array();
676 return 0;
680 * dummy_numa_init - Fallback dummy NUMA init
682 * Used if there's no underlying NUMA architecture, NUMA initialization
683 * fails, or NUMA is disabled on the command line.
685 * Must online at least one node and add memory blocks that cover all
686 * allowed memory. This function must not fail.
688 static int __init dummy_numa_init(void)
690 printk(KERN_INFO "%s\n",
691 numa_off ? "NUMA turned off" : "No NUMA configuration found");
692 printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
693 0LLU, PFN_PHYS(max_pfn) - 1);
695 node_set(0, numa_nodes_parsed);
696 numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
698 return 0;
702 * x86_numa_init - Initialize NUMA
704 * Try each configured NUMA initialization method until one succeeds. The
705 * last fallback is dummy single node config encomapssing whole memory and
706 * never fails.
708 void __init x86_numa_init(void)
710 if (!numa_off) {
711 #ifdef CONFIG_ACPI_NUMA
712 if (!numa_init(x86_acpi_numa_init))
713 return;
714 #endif
715 #ifdef CONFIG_AMD_NUMA
716 if (!numa_init(amd_numa_init))
717 return;
718 #endif
721 numa_init(dummy_numa_init);
724 static void __init init_memory_less_node(int nid)
726 unsigned long zones_size[MAX_NR_ZONES] = {0};
727 unsigned long zholes_size[MAX_NR_ZONES] = {0};
729 /* Allocate and initialize node data. Memory-less node is now online.*/
730 alloc_node_data(nid);
731 free_area_init_node(nid, zones_size, 0, zholes_size);
734 * All zonelists will be built later in start_kernel() after per cpu
735 * areas are initialized.
740 * Setup early cpu_to_node.
742 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
743 * and apicid_to_node[] tables have valid entries for a CPU.
744 * This means we skip cpu_to_node[] initialisation for NUMA
745 * emulation and faking node case (when running a kernel compiled
746 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
747 * is already initialized in a round robin manner at numa_init_array,
748 * prior to this call, and this initialization is good enough
749 * for the fake NUMA cases.
751 * Called before the per_cpu areas are setup.
753 void __init init_cpu_to_node(void)
755 int cpu;
756 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
758 BUG_ON(cpu_to_apicid == NULL);
760 for_each_possible_cpu(cpu) {
761 int node = numa_cpu_node(cpu);
763 if (node == NUMA_NO_NODE)
764 continue;
766 if (!node_online(node))
767 init_memory_less_node(node);
769 numa_set_node(cpu, node);
773 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
775 # ifndef CONFIG_NUMA_EMU
776 void numa_add_cpu(int cpu)
778 cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
781 void numa_remove_cpu(int cpu)
783 cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
785 # endif /* !CONFIG_NUMA_EMU */
787 #else /* !CONFIG_DEBUG_PER_CPU_MAPS */
789 int __cpu_to_node(int cpu)
791 if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
792 printk(KERN_WARNING
793 "cpu_to_node(%d): usage too early!\n", cpu);
794 dump_stack();
795 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
797 return per_cpu(x86_cpu_to_node_map, cpu);
799 EXPORT_SYMBOL(__cpu_to_node);
802 * Same function as cpu_to_node() but used if called before the
803 * per_cpu areas are setup.
805 int early_cpu_to_node(int cpu)
807 if (early_per_cpu_ptr(x86_cpu_to_node_map))
808 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
810 if (!cpu_possible(cpu)) {
811 printk(KERN_WARNING
812 "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
813 dump_stack();
814 return NUMA_NO_NODE;
816 return per_cpu(x86_cpu_to_node_map, cpu);
819 void debug_cpumask_set_cpu(int cpu, int node, bool enable)
821 struct cpumask *mask;
823 if (node == NUMA_NO_NODE) {
824 /* early_cpu_to_node() already emits a warning and trace */
825 return;
827 mask = node_to_cpumask_map[node];
828 if (!mask) {
829 pr_err("node_to_cpumask_map[%i] NULL\n", node);
830 dump_stack();
831 return;
834 if (enable)
835 cpumask_set_cpu(cpu, mask);
836 else
837 cpumask_clear_cpu(cpu, mask);
839 printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
840 enable ? "numa_add_cpu" : "numa_remove_cpu",
841 cpu, node, cpumask_pr_args(mask));
842 return;
845 # ifndef CONFIG_NUMA_EMU
846 static void numa_set_cpumask(int cpu, bool enable)
848 debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
851 void numa_add_cpu(int cpu)
853 numa_set_cpumask(cpu, true);
856 void numa_remove_cpu(int cpu)
858 numa_set_cpumask(cpu, false);
860 # endif /* !CONFIG_NUMA_EMU */
863 * Returns a pointer to the bitmask of CPUs on Node 'node'.
865 const struct cpumask *cpumask_of_node(int node)
867 if (node >= nr_node_ids) {
868 printk(KERN_WARNING
869 "cpumask_of_node(%d): node > nr_node_ids(%d)\n",
870 node, nr_node_ids);
871 dump_stack();
872 return cpu_none_mask;
874 if (node_to_cpumask_map[node] == NULL) {
875 printk(KERN_WARNING
876 "cpumask_of_node(%d): no node_to_cpumask_map!\n",
877 node);
878 dump_stack();
879 return cpu_online_mask;
881 return node_to_cpumask_map[node];
883 EXPORT_SYMBOL(cpumask_of_node);
885 #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */
887 #ifdef CONFIG_MEMORY_HOTPLUG
888 int memory_add_physaddr_to_nid(u64 start)
890 struct numa_meminfo *mi = &numa_meminfo;
891 int nid = mi->blk[0].nid;
892 int i;
894 for (i = 0; i < mi->nr_blks; i++)
895 if (mi->blk[i].start <= start && mi->blk[i].end > start)
896 nid = mi->blk[i].nid;
897 return nid;
899 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
900 #endif