tools uapi asm: Update asm-generic/unistd.h copy
[linux/fpc-iii.git] / fs / dax.c
blob48132eca3761de2b4cdf7c6c75ab8efda8cf7a26
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
41 static inline unsigned int pe_order(enum page_entry_size pe_size)
43 if (pe_size == PE_SIZE_PTE)
44 return PAGE_SHIFT - PAGE_SHIFT;
45 if (pe_size == PE_SIZE_PMD)
46 return PMD_SHIFT - PAGE_SHIFT;
47 if (pe_size == PE_SIZE_PUD)
48 return PUD_SHIFT - PAGE_SHIFT;
49 return ~0;
52 /* We choose 4096 entries - same as per-zone page wait tables */
53 #define DAX_WAIT_TABLE_BITS 12
54 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
56 /* The 'colour' (ie low bits) within a PMD of a page offset. */
57 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
58 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
60 /* The order of a PMD entry */
61 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
63 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
65 static int __init init_dax_wait_table(void)
67 int i;
69 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
70 init_waitqueue_head(wait_table + i);
71 return 0;
73 fs_initcall(init_dax_wait_table);
76 * DAX pagecache entries use XArray value entries so they can't be mistaken
77 * for pages. We use one bit for locking, one bit for the entry size (PMD)
78 * and two more to tell us if the entry is a zero page or an empty entry that
79 * is just used for locking. In total four special bits.
81 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
82 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
83 * block allocation.
85 #define DAX_SHIFT (4)
86 #define DAX_LOCKED (1UL << 0)
87 #define DAX_PMD (1UL << 1)
88 #define DAX_ZERO_PAGE (1UL << 2)
89 #define DAX_EMPTY (1UL << 3)
91 static unsigned long dax_to_pfn(void *entry)
93 return xa_to_value(entry) >> DAX_SHIFT;
96 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
98 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
101 static bool dax_is_locked(void *entry)
103 return xa_to_value(entry) & DAX_LOCKED;
106 static unsigned int dax_entry_order(void *entry)
108 if (xa_to_value(entry) & DAX_PMD)
109 return PMD_ORDER;
110 return 0;
113 static unsigned long dax_is_pmd_entry(void *entry)
115 return xa_to_value(entry) & DAX_PMD;
118 static bool dax_is_pte_entry(void *entry)
120 return !(xa_to_value(entry) & DAX_PMD);
123 static int dax_is_zero_entry(void *entry)
125 return xa_to_value(entry) & DAX_ZERO_PAGE;
128 static int dax_is_empty_entry(void *entry)
130 return xa_to_value(entry) & DAX_EMPTY;
134 * DAX page cache entry locking
136 struct exceptional_entry_key {
137 struct xarray *xa;
138 pgoff_t entry_start;
141 struct wait_exceptional_entry_queue {
142 wait_queue_entry_t wait;
143 struct exceptional_entry_key key;
146 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
147 void *entry, struct exceptional_entry_key *key)
149 unsigned long hash;
150 unsigned long index = xas->xa_index;
153 * If 'entry' is a PMD, align the 'index' that we use for the wait
154 * queue to the start of that PMD. This ensures that all offsets in
155 * the range covered by the PMD map to the same bit lock.
157 if (dax_is_pmd_entry(entry))
158 index &= ~PG_PMD_COLOUR;
159 key->xa = xas->xa;
160 key->entry_start = index;
162 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
163 return wait_table + hash;
166 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
167 unsigned int mode, int sync, void *keyp)
169 struct exceptional_entry_key *key = keyp;
170 struct wait_exceptional_entry_queue *ewait =
171 container_of(wait, struct wait_exceptional_entry_queue, wait);
173 if (key->xa != ewait->key.xa ||
174 key->entry_start != ewait->key.entry_start)
175 return 0;
176 return autoremove_wake_function(wait, mode, sync, NULL);
180 * @entry may no longer be the entry at the index in the mapping.
181 * The important information it's conveying is whether the entry at
182 * this index used to be a PMD entry.
184 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
186 struct exceptional_entry_key key;
187 wait_queue_head_t *wq;
189 wq = dax_entry_waitqueue(xas, entry, &key);
192 * Checking for locked entry and prepare_to_wait_exclusive() happens
193 * under the i_pages lock, ditto for entry handling in our callers.
194 * So at this point all tasks that could have seen our entry locked
195 * must be in the waitqueue and the following check will see them.
197 if (waitqueue_active(wq))
198 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
202 * Look up entry in page cache, wait for it to become unlocked if it
203 * is a DAX entry and return it. The caller must subsequently call
204 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
205 * if it did.
207 * Must be called with the i_pages lock held.
209 static void *get_unlocked_entry(struct xa_state *xas)
211 void *entry;
212 struct wait_exceptional_entry_queue ewait;
213 wait_queue_head_t *wq;
215 init_wait(&ewait.wait);
216 ewait.wait.func = wake_exceptional_entry_func;
218 for (;;) {
219 entry = xas_find_conflict(xas);
220 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
221 !dax_is_locked(entry))
222 return entry;
224 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
225 prepare_to_wait_exclusive(wq, &ewait.wait,
226 TASK_UNINTERRUPTIBLE);
227 xas_unlock_irq(xas);
228 xas_reset(xas);
229 schedule();
230 finish_wait(wq, &ewait.wait);
231 xas_lock_irq(xas);
236 * The only thing keeping the address space around is the i_pages lock
237 * (it's cycled in clear_inode() after removing the entries from i_pages)
238 * After we call xas_unlock_irq(), we cannot touch xas->xa.
240 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
242 struct wait_exceptional_entry_queue ewait;
243 wait_queue_head_t *wq;
245 init_wait(&ewait.wait);
246 ewait.wait.func = wake_exceptional_entry_func;
248 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
249 prepare_to_wait_exclusive(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
250 xas_unlock_irq(xas);
251 schedule();
252 finish_wait(wq, &ewait.wait);
255 * Entry lock waits are exclusive. Wake up the next waiter since
256 * we aren't sure we will acquire the entry lock and thus wake
257 * the next waiter up on unlock.
259 if (waitqueue_active(wq))
260 __wake_up(wq, TASK_NORMAL, 1, &ewait.key);
263 static void put_unlocked_entry(struct xa_state *xas, void *entry)
265 /* If we were the only waiter woken, wake the next one */
266 if (entry)
267 dax_wake_entry(xas, entry, false);
271 * We used the xa_state to get the entry, but then we locked the entry and
272 * dropped the xa_lock, so we know the xa_state is stale and must be reset
273 * before use.
275 static void dax_unlock_entry(struct xa_state *xas, void *entry)
277 void *old;
279 BUG_ON(dax_is_locked(entry));
280 xas_reset(xas);
281 xas_lock_irq(xas);
282 old = xas_store(xas, entry);
283 xas_unlock_irq(xas);
284 BUG_ON(!dax_is_locked(old));
285 dax_wake_entry(xas, entry, false);
289 * Return: The entry stored at this location before it was locked.
291 static void *dax_lock_entry(struct xa_state *xas, void *entry)
293 unsigned long v = xa_to_value(entry);
294 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
297 static unsigned long dax_entry_size(void *entry)
299 if (dax_is_zero_entry(entry))
300 return 0;
301 else if (dax_is_empty_entry(entry))
302 return 0;
303 else if (dax_is_pmd_entry(entry))
304 return PMD_SIZE;
305 else
306 return PAGE_SIZE;
309 static unsigned long dax_end_pfn(void *entry)
311 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
315 * Iterate through all mapped pfns represented by an entry, i.e. skip
316 * 'empty' and 'zero' entries.
318 #define for_each_mapped_pfn(entry, pfn) \
319 for (pfn = dax_to_pfn(entry); \
320 pfn < dax_end_pfn(entry); pfn++)
323 * TODO: for reflink+dax we need a way to associate a single page with
324 * multiple address_space instances at different linear_page_index()
325 * offsets.
327 static void dax_associate_entry(void *entry, struct address_space *mapping,
328 struct vm_area_struct *vma, unsigned long address)
330 unsigned long size = dax_entry_size(entry), pfn, index;
331 int i = 0;
333 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
334 return;
336 index = linear_page_index(vma, address & ~(size - 1));
337 for_each_mapped_pfn(entry, pfn) {
338 struct page *page = pfn_to_page(pfn);
340 WARN_ON_ONCE(page->mapping);
341 page->mapping = mapping;
342 page->index = index + i++;
346 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
347 bool trunc)
349 unsigned long pfn;
351 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
352 return;
354 for_each_mapped_pfn(entry, pfn) {
355 struct page *page = pfn_to_page(pfn);
357 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
358 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
359 page->mapping = NULL;
360 page->index = 0;
364 static struct page *dax_busy_page(void *entry)
366 unsigned long pfn;
368 for_each_mapped_pfn(entry, pfn) {
369 struct page *page = pfn_to_page(pfn);
371 if (page_ref_count(page) > 1)
372 return page;
374 return NULL;
378 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
379 * @page: The page whose entry we want to lock
381 * Context: Process context.
382 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
383 * not be locked.
385 dax_entry_t dax_lock_page(struct page *page)
387 XA_STATE(xas, NULL, 0);
388 void *entry;
390 /* Ensure page->mapping isn't freed while we look at it */
391 rcu_read_lock();
392 for (;;) {
393 struct address_space *mapping = READ_ONCE(page->mapping);
395 entry = NULL;
396 if (!mapping || !dax_mapping(mapping))
397 break;
400 * In the device-dax case there's no need to lock, a
401 * struct dev_pagemap pin is sufficient to keep the
402 * inode alive, and we assume we have dev_pagemap pin
403 * otherwise we would not have a valid pfn_to_page()
404 * translation.
406 entry = (void *)~0UL;
407 if (S_ISCHR(mapping->host->i_mode))
408 break;
410 xas.xa = &mapping->i_pages;
411 xas_lock_irq(&xas);
412 if (mapping != page->mapping) {
413 xas_unlock_irq(&xas);
414 continue;
416 xas_set(&xas, page->index);
417 entry = xas_load(&xas);
418 if (dax_is_locked(entry)) {
419 rcu_read_unlock();
420 wait_entry_unlocked(&xas, entry);
421 rcu_read_lock();
422 continue;
424 dax_lock_entry(&xas, entry);
425 xas_unlock_irq(&xas);
426 break;
428 rcu_read_unlock();
429 return (dax_entry_t)entry;
432 void dax_unlock_page(struct page *page, dax_entry_t cookie)
434 struct address_space *mapping = page->mapping;
435 XA_STATE(xas, &mapping->i_pages, page->index);
437 if (S_ISCHR(mapping->host->i_mode))
438 return;
440 dax_unlock_entry(&xas, (void *)cookie);
444 * Find page cache entry at given index. If it is a DAX entry, return it
445 * with the entry locked. If the page cache doesn't contain an entry at
446 * that index, add a locked empty entry.
448 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
449 * either return that locked entry or will return VM_FAULT_FALLBACK.
450 * This will happen if there are any PTE entries within the PMD range
451 * that we are requesting.
453 * We always favor PTE entries over PMD entries. There isn't a flow where we
454 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
455 * insertion will fail if it finds any PTE entries already in the tree, and a
456 * PTE insertion will cause an existing PMD entry to be unmapped and
457 * downgraded to PTE entries. This happens for both PMD zero pages as
458 * well as PMD empty entries.
460 * The exception to this downgrade path is for PMD entries that have
461 * real storage backing them. We will leave these real PMD entries in
462 * the tree, and PTE writes will simply dirty the entire PMD entry.
464 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
465 * persistent memory the benefit is doubtful. We can add that later if we can
466 * show it helps.
468 * On error, this function does not return an ERR_PTR. Instead it returns
469 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
470 * overlap with xarray value entries.
472 static void *grab_mapping_entry(struct xa_state *xas,
473 struct address_space *mapping, unsigned long size_flag)
475 unsigned long index = xas->xa_index;
476 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
477 void *entry;
479 retry:
480 xas_lock_irq(xas);
481 entry = get_unlocked_entry(xas);
483 if (entry) {
484 if (!xa_is_value(entry)) {
485 xas_set_err(xas, EIO);
486 goto out_unlock;
489 if (size_flag & DAX_PMD) {
490 if (dax_is_pte_entry(entry)) {
491 put_unlocked_entry(xas, entry);
492 goto fallback;
494 } else { /* trying to grab a PTE entry */
495 if (dax_is_pmd_entry(entry) &&
496 (dax_is_zero_entry(entry) ||
497 dax_is_empty_entry(entry))) {
498 pmd_downgrade = true;
503 if (pmd_downgrade) {
505 * Make sure 'entry' remains valid while we drop
506 * the i_pages lock.
508 dax_lock_entry(xas, entry);
511 * Besides huge zero pages the only other thing that gets
512 * downgraded are empty entries which don't need to be
513 * unmapped.
515 if (dax_is_zero_entry(entry)) {
516 xas_unlock_irq(xas);
517 unmap_mapping_pages(mapping,
518 xas->xa_index & ~PG_PMD_COLOUR,
519 PG_PMD_NR, false);
520 xas_reset(xas);
521 xas_lock_irq(xas);
524 dax_disassociate_entry(entry, mapping, false);
525 xas_store(xas, NULL); /* undo the PMD join */
526 dax_wake_entry(xas, entry, true);
527 mapping->nrexceptional--;
528 entry = NULL;
529 xas_set(xas, index);
532 if (entry) {
533 dax_lock_entry(xas, entry);
534 } else {
535 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
536 dax_lock_entry(xas, entry);
537 if (xas_error(xas))
538 goto out_unlock;
539 mapping->nrexceptional++;
542 out_unlock:
543 xas_unlock_irq(xas);
544 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
545 goto retry;
546 if (xas->xa_node == XA_ERROR(-ENOMEM))
547 return xa_mk_internal(VM_FAULT_OOM);
548 if (xas_error(xas))
549 return xa_mk_internal(VM_FAULT_SIGBUS);
550 return entry;
551 fallback:
552 xas_unlock_irq(xas);
553 return xa_mk_internal(VM_FAULT_FALLBACK);
557 * dax_layout_busy_page - find first pinned page in @mapping
558 * @mapping: address space to scan for a page with ref count > 1
560 * DAX requires ZONE_DEVICE mapped pages. These pages are never
561 * 'onlined' to the page allocator so they are considered idle when
562 * page->count == 1. A filesystem uses this interface to determine if
563 * any page in the mapping is busy, i.e. for DMA, or other
564 * get_user_pages() usages.
566 * It is expected that the filesystem is holding locks to block the
567 * establishment of new mappings in this address_space. I.e. it expects
568 * to be able to run unmap_mapping_range() and subsequently not race
569 * mapping_mapped() becoming true.
571 struct page *dax_layout_busy_page(struct address_space *mapping)
573 XA_STATE(xas, &mapping->i_pages, 0);
574 void *entry;
575 unsigned int scanned = 0;
576 struct page *page = NULL;
579 * In the 'limited' case get_user_pages() for dax is disabled.
581 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
582 return NULL;
584 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
585 return NULL;
588 * If we race get_user_pages_fast() here either we'll see the
589 * elevated page count in the iteration and wait, or
590 * get_user_pages_fast() will see that the page it took a reference
591 * against is no longer mapped in the page tables and bail to the
592 * get_user_pages() slow path. The slow path is protected by
593 * pte_lock() and pmd_lock(). New references are not taken without
594 * holding those locks, and unmap_mapping_range() will not zero the
595 * pte or pmd without holding the respective lock, so we are
596 * guaranteed to either see new references or prevent new
597 * references from being established.
599 unmap_mapping_range(mapping, 0, 0, 1);
601 xas_lock_irq(&xas);
602 xas_for_each(&xas, entry, ULONG_MAX) {
603 if (WARN_ON_ONCE(!xa_is_value(entry)))
604 continue;
605 if (unlikely(dax_is_locked(entry)))
606 entry = get_unlocked_entry(&xas);
607 if (entry)
608 page = dax_busy_page(entry);
609 put_unlocked_entry(&xas, entry);
610 if (page)
611 break;
612 if (++scanned % XA_CHECK_SCHED)
613 continue;
615 xas_pause(&xas);
616 xas_unlock_irq(&xas);
617 cond_resched();
618 xas_lock_irq(&xas);
620 xas_unlock_irq(&xas);
621 return page;
623 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
625 static int __dax_invalidate_entry(struct address_space *mapping,
626 pgoff_t index, bool trunc)
628 XA_STATE(xas, &mapping->i_pages, index);
629 int ret = 0;
630 void *entry;
632 xas_lock_irq(&xas);
633 entry = get_unlocked_entry(&xas);
634 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
635 goto out;
636 if (!trunc &&
637 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
638 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
639 goto out;
640 dax_disassociate_entry(entry, mapping, trunc);
641 xas_store(&xas, NULL);
642 mapping->nrexceptional--;
643 ret = 1;
644 out:
645 put_unlocked_entry(&xas, entry);
646 xas_unlock_irq(&xas);
647 return ret;
651 * Delete DAX entry at @index from @mapping. Wait for it
652 * to be unlocked before deleting it.
654 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
656 int ret = __dax_invalidate_entry(mapping, index, true);
659 * This gets called from truncate / punch_hole path. As such, the caller
660 * must hold locks protecting against concurrent modifications of the
661 * page cache (usually fs-private i_mmap_sem for writing). Since the
662 * caller has seen a DAX entry for this index, we better find it
663 * at that index as well...
665 WARN_ON_ONCE(!ret);
666 return ret;
670 * Invalidate DAX entry if it is clean.
672 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
673 pgoff_t index)
675 return __dax_invalidate_entry(mapping, index, false);
678 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
679 sector_t sector, size_t size, struct page *to,
680 unsigned long vaddr)
682 void *vto, *kaddr;
683 pgoff_t pgoff;
684 long rc;
685 int id;
687 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
688 if (rc)
689 return rc;
691 id = dax_read_lock();
692 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
693 if (rc < 0) {
694 dax_read_unlock(id);
695 return rc;
697 vto = kmap_atomic(to);
698 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
699 kunmap_atomic(vto);
700 dax_read_unlock(id);
701 return 0;
705 * By this point grab_mapping_entry() has ensured that we have a locked entry
706 * of the appropriate size so we don't have to worry about downgrading PMDs to
707 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
708 * already in the tree, we will skip the insertion and just dirty the PMD as
709 * appropriate.
711 static void *dax_insert_entry(struct xa_state *xas,
712 struct address_space *mapping, struct vm_fault *vmf,
713 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
715 void *new_entry = dax_make_entry(pfn, flags);
717 if (dirty)
718 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
720 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
721 unsigned long index = xas->xa_index;
722 /* we are replacing a zero page with block mapping */
723 if (dax_is_pmd_entry(entry))
724 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
725 PG_PMD_NR, false);
726 else /* pte entry */
727 unmap_mapping_pages(mapping, index, 1, false);
730 xas_reset(xas);
731 xas_lock_irq(xas);
732 if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
733 dax_disassociate_entry(entry, mapping, false);
734 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
737 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
739 * Only swap our new entry into the page cache if the current
740 * entry is a zero page or an empty entry. If a normal PTE or
741 * PMD entry is already in the cache, we leave it alone. This
742 * means that if we are trying to insert a PTE and the
743 * existing entry is a PMD, we will just leave the PMD in the
744 * tree and dirty it if necessary.
746 void *old = dax_lock_entry(xas, new_entry);
747 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
748 DAX_LOCKED));
749 entry = new_entry;
750 } else {
751 xas_load(xas); /* Walk the xa_state */
754 if (dirty)
755 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
757 xas_unlock_irq(xas);
758 return entry;
761 static inline
762 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
764 unsigned long address;
766 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
767 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
768 return address;
771 /* Walk all mappings of a given index of a file and writeprotect them */
772 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
773 unsigned long pfn)
775 struct vm_area_struct *vma;
776 pte_t pte, *ptep = NULL;
777 pmd_t *pmdp = NULL;
778 spinlock_t *ptl;
780 i_mmap_lock_read(mapping);
781 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
782 unsigned long address, start, end;
784 cond_resched();
786 if (!(vma->vm_flags & VM_SHARED))
787 continue;
789 address = pgoff_address(index, vma);
792 * Note because we provide start/end to follow_pte_pmd it will
793 * call mmu_notifier_invalidate_range_start() on our behalf
794 * before taking any lock.
796 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
797 continue;
800 * No need to call mmu_notifier_invalidate_range() as we are
801 * downgrading page table protection not changing it to point
802 * to a new page.
804 * See Documentation/vm/mmu_notifier.rst
806 if (pmdp) {
807 #ifdef CONFIG_FS_DAX_PMD
808 pmd_t pmd;
810 if (pfn != pmd_pfn(*pmdp))
811 goto unlock_pmd;
812 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
813 goto unlock_pmd;
815 flush_cache_page(vma, address, pfn);
816 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
817 pmd = pmd_wrprotect(pmd);
818 pmd = pmd_mkclean(pmd);
819 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
820 unlock_pmd:
821 #endif
822 spin_unlock(ptl);
823 } else {
824 if (pfn != pte_pfn(*ptep))
825 goto unlock_pte;
826 if (!pte_dirty(*ptep) && !pte_write(*ptep))
827 goto unlock_pte;
829 flush_cache_page(vma, address, pfn);
830 pte = ptep_clear_flush(vma, address, ptep);
831 pte = pte_wrprotect(pte);
832 pte = pte_mkclean(pte);
833 set_pte_at(vma->vm_mm, address, ptep, pte);
834 unlock_pte:
835 pte_unmap_unlock(ptep, ptl);
838 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
840 i_mmap_unlock_read(mapping);
843 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
844 struct address_space *mapping, void *entry)
846 unsigned long pfn;
847 long ret = 0;
848 size_t size;
851 * A page got tagged dirty in DAX mapping? Something is seriously
852 * wrong.
854 if (WARN_ON(!xa_is_value(entry)))
855 return -EIO;
857 if (unlikely(dax_is_locked(entry))) {
858 void *old_entry = entry;
860 entry = get_unlocked_entry(xas);
862 /* Entry got punched out / reallocated? */
863 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
864 goto put_unlocked;
866 * Entry got reallocated elsewhere? No need to writeback.
867 * We have to compare pfns as we must not bail out due to
868 * difference in lockbit or entry type.
870 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
871 goto put_unlocked;
872 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
873 dax_is_zero_entry(entry))) {
874 ret = -EIO;
875 goto put_unlocked;
878 /* Another fsync thread may have already done this entry */
879 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
880 goto put_unlocked;
883 /* Lock the entry to serialize with page faults */
884 dax_lock_entry(xas, entry);
887 * We can clear the tag now but we have to be careful so that concurrent
888 * dax_writeback_one() calls for the same index cannot finish before we
889 * actually flush the caches. This is achieved as the calls will look
890 * at the entry only under the i_pages lock and once they do that
891 * they will see the entry locked and wait for it to unlock.
893 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
894 xas_unlock_irq(xas);
897 * Even if dax_writeback_mapping_range() was given a wbc->range_start
898 * in the middle of a PMD, the 'index' we are given will be aligned to
899 * the start index of the PMD, as will the pfn we pull from 'entry'.
900 * This allows us to flush for PMD_SIZE and not have to worry about
901 * partial PMD writebacks.
903 pfn = dax_to_pfn(entry);
904 size = PAGE_SIZE << dax_entry_order(entry);
906 dax_entry_mkclean(mapping, xas->xa_index, pfn);
907 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
909 * After we have flushed the cache, we can clear the dirty tag. There
910 * cannot be new dirty data in the pfn after the flush has completed as
911 * the pfn mappings are writeprotected and fault waits for mapping
912 * entry lock.
914 xas_reset(xas);
915 xas_lock_irq(xas);
916 xas_store(xas, entry);
917 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
918 dax_wake_entry(xas, entry, false);
920 trace_dax_writeback_one(mapping->host, xas->xa_index,
921 size >> PAGE_SHIFT);
922 return ret;
924 put_unlocked:
925 put_unlocked_entry(xas, entry);
926 return ret;
930 * Flush the mapping to the persistent domain within the byte range of [start,
931 * end]. This is required by data integrity operations to ensure file data is
932 * on persistent storage prior to completion of the operation.
934 int dax_writeback_mapping_range(struct address_space *mapping,
935 struct block_device *bdev, struct writeback_control *wbc)
937 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
938 struct inode *inode = mapping->host;
939 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
940 struct dax_device *dax_dev;
941 void *entry;
942 int ret = 0;
943 unsigned int scanned = 0;
945 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
946 return -EIO;
948 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
949 return 0;
951 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
952 if (!dax_dev)
953 return -EIO;
955 trace_dax_writeback_range(inode, xas.xa_index, end_index);
957 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
959 xas_lock_irq(&xas);
960 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
961 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
962 if (ret < 0) {
963 mapping_set_error(mapping, ret);
964 break;
966 if (++scanned % XA_CHECK_SCHED)
967 continue;
969 xas_pause(&xas);
970 xas_unlock_irq(&xas);
971 cond_resched();
972 xas_lock_irq(&xas);
974 xas_unlock_irq(&xas);
975 put_dax(dax_dev);
976 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
977 return ret;
979 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
981 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
983 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
986 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
987 pfn_t *pfnp)
989 const sector_t sector = dax_iomap_sector(iomap, pos);
990 pgoff_t pgoff;
991 int id, rc;
992 long length;
994 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
995 if (rc)
996 return rc;
997 id = dax_read_lock();
998 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
999 NULL, pfnp);
1000 if (length < 0) {
1001 rc = length;
1002 goto out;
1004 rc = -EINVAL;
1005 if (PFN_PHYS(length) < size)
1006 goto out;
1007 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1008 goto out;
1009 /* For larger pages we need devmap */
1010 if (length > 1 && !pfn_t_devmap(*pfnp))
1011 goto out;
1012 rc = 0;
1013 out:
1014 dax_read_unlock(id);
1015 return rc;
1019 * The user has performed a load from a hole in the file. Allocating a new
1020 * page in the file would cause excessive storage usage for workloads with
1021 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1022 * If this page is ever written to we will re-fault and change the mapping to
1023 * point to real DAX storage instead.
1025 static vm_fault_t dax_load_hole(struct xa_state *xas,
1026 struct address_space *mapping, void **entry,
1027 struct vm_fault *vmf)
1029 struct inode *inode = mapping->host;
1030 unsigned long vaddr = vmf->address;
1031 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1032 vm_fault_t ret;
1034 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1035 DAX_ZERO_PAGE, false);
1037 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1038 trace_dax_load_hole(inode, vmf, ret);
1039 return ret;
1042 static bool dax_range_is_aligned(struct block_device *bdev,
1043 unsigned int offset, unsigned int length)
1045 unsigned short sector_size = bdev_logical_block_size(bdev);
1047 if (!IS_ALIGNED(offset, sector_size))
1048 return false;
1049 if (!IS_ALIGNED(length, sector_size))
1050 return false;
1052 return true;
1055 int __dax_zero_page_range(struct block_device *bdev,
1056 struct dax_device *dax_dev, sector_t sector,
1057 unsigned int offset, unsigned int size)
1059 if (dax_range_is_aligned(bdev, offset, size)) {
1060 sector_t start_sector = sector + (offset >> 9);
1062 return blkdev_issue_zeroout(bdev, start_sector,
1063 size >> 9, GFP_NOFS, 0);
1064 } else {
1065 pgoff_t pgoff;
1066 long rc, id;
1067 void *kaddr;
1069 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1070 if (rc)
1071 return rc;
1073 id = dax_read_lock();
1074 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1075 if (rc < 0) {
1076 dax_read_unlock(id);
1077 return rc;
1079 memset(kaddr + offset, 0, size);
1080 dax_flush(dax_dev, kaddr + offset, size);
1081 dax_read_unlock(id);
1083 return 0;
1085 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1087 static loff_t
1088 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1089 struct iomap *iomap)
1091 struct block_device *bdev = iomap->bdev;
1092 struct dax_device *dax_dev = iomap->dax_dev;
1093 struct iov_iter *iter = data;
1094 loff_t end = pos + length, done = 0;
1095 ssize_t ret = 0;
1096 size_t xfer;
1097 int id;
1099 if (iov_iter_rw(iter) == READ) {
1100 end = min(end, i_size_read(inode));
1101 if (pos >= end)
1102 return 0;
1104 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1105 return iov_iter_zero(min(length, end - pos), iter);
1108 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1109 return -EIO;
1112 * Write can allocate block for an area which has a hole page mapped
1113 * into page tables. We have to tear down these mappings so that data
1114 * written by write(2) is visible in mmap.
1116 if (iomap->flags & IOMAP_F_NEW) {
1117 invalidate_inode_pages2_range(inode->i_mapping,
1118 pos >> PAGE_SHIFT,
1119 (end - 1) >> PAGE_SHIFT);
1122 id = dax_read_lock();
1123 while (pos < end) {
1124 unsigned offset = pos & (PAGE_SIZE - 1);
1125 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1126 const sector_t sector = dax_iomap_sector(iomap, pos);
1127 ssize_t map_len;
1128 pgoff_t pgoff;
1129 void *kaddr;
1131 if (fatal_signal_pending(current)) {
1132 ret = -EINTR;
1133 break;
1136 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1137 if (ret)
1138 break;
1140 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1141 &kaddr, NULL);
1142 if (map_len < 0) {
1143 ret = map_len;
1144 break;
1147 map_len = PFN_PHYS(map_len);
1148 kaddr += offset;
1149 map_len -= offset;
1150 if (map_len > end - pos)
1151 map_len = end - pos;
1154 * The userspace address for the memory copy has already been
1155 * validated via access_ok() in either vfs_read() or
1156 * vfs_write(), depending on which operation we are doing.
1158 if (iov_iter_rw(iter) == WRITE)
1159 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1160 map_len, iter);
1161 else
1162 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1163 map_len, iter);
1165 pos += xfer;
1166 length -= xfer;
1167 done += xfer;
1169 if (xfer == 0)
1170 ret = -EFAULT;
1171 if (xfer < map_len)
1172 break;
1174 dax_read_unlock(id);
1176 return done ? done : ret;
1180 * dax_iomap_rw - Perform I/O to a DAX file
1181 * @iocb: The control block for this I/O
1182 * @iter: The addresses to do I/O from or to
1183 * @ops: iomap ops passed from the file system
1185 * This function performs read and write operations to directly mapped
1186 * persistent memory. The callers needs to take care of read/write exclusion
1187 * and evicting any page cache pages in the region under I/O.
1189 ssize_t
1190 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1191 const struct iomap_ops *ops)
1193 struct address_space *mapping = iocb->ki_filp->f_mapping;
1194 struct inode *inode = mapping->host;
1195 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1196 unsigned flags = 0;
1198 if (iov_iter_rw(iter) == WRITE) {
1199 lockdep_assert_held_exclusive(&inode->i_rwsem);
1200 flags |= IOMAP_WRITE;
1201 } else {
1202 lockdep_assert_held(&inode->i_rwsem);
1205 while (iov_iter_count(iter)) {
1206 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1207 iter, dax_iomap_actor);
1208 if (ret <= 0)
1209 break;
1210 pos += ret;
1211 done += ret;
1214 iocb->ki_pos += done;
1215 return done ? done : ret;
1217 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1219 static vm_fault_t dax_fault_return(int error)
1221 if (error == 0)
1222 return VM_FAULT_NOPAGE;
1223 if (error == -ENOMEM)
1224 return VM_FAULT_OOM;
1225 return VM_FAULT_SIGBUS;
1229 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1230 * flushed on write-faults (non-cow), but not read-faults.
1232 static bool dax_fault_is_synchronous(unsigned long flags,
1233 struct vm_area_struct *vma, struct iomap *iomap)
1235 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1236 && (iomap->flags & IOMAP_F_DIRTY);
1239 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1240 int *iomap_errp, const struct iomap_ops *ops)
1242 struct vm_area_struct *vma = vmf->vma;
1243 struct address_space *mapping = vma->vm_file->f_mapping;
1244 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1245 struct inode *inode = mapping->host;
1246 unsigned long vaddr = vmf->address;
1247 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1248 struct iomap iomap = { 0 };
1249 unsigned flags = IOMAP_FAULT;
1250 int error, major = 0;
1251 bool write = vmf->flags & FAULT_FLAG_WRITE;
1252 bool sync;
1253 vm_fault_t ret = 0;
1254 void *entry;
1255 pfn_t pfn;
1257 trace_dax_pte_fault(inode, vmf, ret);
1259 * Check whether offset isn't beyond end of file now. Caller is supposed
1260 * to hold locks serializing us with truncate / punch hole so this is
1261 * a reliable test.
1263 if (pos >= i_size_read(inode)) {
1264 ret = VM_FAULT_SIGBUS;
1265 goto out;
1268 if (write && !vmf->cow_page)
1269 flags |= IOMAP_WRITE;
1271 entry = grab_mapping_entry(&xas, mapping, 0);
1272 if (xa_is_internal(entry)) {
1273 ret = xa_to_internal(entry);
1274 goto out;
1278 * It is possible, particularly with mixed reads & writes to private
1279 * mappings, that we have raced with a PMD fault that overlaps with
1280 * the PTE we need to set up. If so just return and the fault will be
1281 * retried.
1283 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1284 ret = VM_FAULT_NOPAGE;
1285 goto unlock_entry;
1289 * Note that we don't bother to use iomap_apply here: DAX required
1290 * the file system block size to be equal the page size, which means
1291 * that we never have to deal with more than a single extent here.
1293 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1294 if (iomap_errp)
1295 *iomap_errp = error;
1296 if (error) {
1297 ret = dax_fault_return(error);
1298 goto unlock_entry;
1300 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1301 error = -EIO; /* fs corruption? */
1302 goto error_finish_iomap;
1305 if (vmf->cow_page) {
1306 sector_t sector = dax_iomap_sector(&iomap, pos);
1308 switch (iomap.type) {
1309 case IOMAP_HOLE:
1310 case IOMAP_UNWRITTEN:
1311 clear_user_highpage(vmf->cow_page, vaddr);
1312 break;
1313 case IOMAP_MAPPED:
1314 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1315 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1316 break;
1317 default:
1318 WARN_ON_ONCE(1);
1319 error = -EIO;
1320 break;
1323 if (error)
1324 goto error_finish_iomap;
1326 __SetPageUptodate(vmf->cow_page);
1327 ret = finish_fault(vmf);
1328 if (!ret)
1329 ret = VM_FAULT_DONE_COW;
1330 goto finish_iomap;
1333 sync = dax_fault_is_synchronous(flags, vma, &iomap);
1335 switch (iomap.type) {
1336 case IOMAP_MAPPED:
1337 if (iomap.flags & IOMAP_F_NEW) {
1338 count_vm_event(PGMAJFAULT);
1339 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1340 major = VM_FAULT_MAJOR;
1342 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1343 if (error < 0)
1344 goto error_finish_iomap;
1346 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1347 0, write && !sync);
1350 * If we are doing synchronous page fault and inode needs fsync,
1351 * we can insert PTE into page tables only after that happens.
1352 * Skip insertion for now and return the pfn so that caller can
1353 * insert it after fsync is done.
1355 if (sync) {
1356 if (WARN_ON_ONCE(!pfnp)) {
1357 error = -EIO;
1358 goto error_finish_iomap;
1360 *pfnp = pfn;
1361 ret = VM_FAULT_NEEDDSYNC | major;
1362 goto finish_iomap;
1364 trace_dax_insert_mapping(inode, vmf, entry);
1365 if (write)
1366 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1367 else
1368 ret = vmf_insert_mixed(vma, vaddr, pfn);
1370 goto finish_iomap;
1371 case IOMAP_UNWRITTEN:
1372 case IOMAP_HOLE:
1373 if (!write) {
1374 ret = dax_load_hole(&xas, mapping, &entry, vmf);
1375 goto finish_iomap;
1377 /*FALLTHRU*/
1378 default:
1379 WARN_ON_ONCE(1);
1380 error = -EIO;
1381 break;
1384 error_finish_iomap:
1385 ret = dax_fault_return(error);
1386 finish_iomap:
1387 if (ops->iomap_end) {
1388 int copied = PAGE_SIZE;
1390 if (ret & VM_FAULT_ERROR)
1391 copied = 0;
1393 * The fault is done by now and there's no way back (other
1394 * thread may be already happily using PTE we have installed).
1395 * Just ignore error from ->iomap_end since we cannot do much
1396 * with it.
1398 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1400 unlock_entry:
1401 dax_unlock_entry(&xas, entry);
1402 out:
1403 trace_dax_pte_fault_done(inode, vmf, ret);
1404 return ret | major;
1407 #ifdef CONFIG_FS_DAX_PMD
1408 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1409 struct iomap *iomap, void **entry)
1411 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1412 unsigned long pmd_addr = vmf->address & PMD_MASK;
1413 struct inode *inode = mapping->host;
1414 struct page *zero_page;
1415 spinlock_t *ptl;
1416 pmd_t pmd_entry;
1417 pfn_t pfn;
1419 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1421 if (unlikely(!zero_page))
1422 goto fallback;
1424 pfn = page_to_pfn_t(zero_page);
1425 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1426 DAX_PMD | DAX_ZERO_PAGE, false);
1428 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1429 if (!pmd_none(*(vmf->pmd))) {
1430 spin_unlock(ptl);
1431 goto fallback;
1434 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1435 pmd_entry = pmd_mkhuge(pmd_entry);
1436 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1437 spin_unlock(ptl);
1438 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1439 return VM_FAULT_NOPAGE;
1441 fallback:
1442 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1443 return VM_FAULT_FALLBACK;
1446 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1447 const struct iomap_ops *ops)
1449 struct vm_area_struct *vma = vmf->vma;
1450 struct address_space *mapping = vma->vm_file->f_mapping;
1451 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1452 unsigned long pmd_addr = vmf->address & PMD_MASK;
1453 bool write = vmf->flags & FAULT_FLAG_WRITE;
1454 bool sync;
1455 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1456 struct inode *inode = mapping->host;
1457 vm_fault_t result = VM_FAULT_FALLBACK;
1458 struct iomap iomap = { 0 };
1459 pgoff_t max_pgoff;
1460 void *entry;
1461 loff_t pos;
1462 int error;
1463 pfn_t pfn;
1466 * Check whether offset isn't beyond end of file now. Caller is
1467 * supposed to hold locks serializing us with truncate / punch hole so
1468 * this is a reliable test.
1470 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1472 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1475 * Make sure that the faulting address's PMD offset (color) matches
1476 * the PMD offset from the start of the file. This is necessary so
1477 * that a PMD range in the page table overlaps exactly with a PMD
1478 * range in the page cache.
1480 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1481 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1482 goto fallback;
1484 /* Fall back to PTEs if we're going to COW */
1485 if (write && !(vma->vm_flags & VM_SHARED))
1486 goto fallback;
1488 /* If the PMD would extend outside the VMA */
1489 if (pmd_addr < vma->vm_start)
1490 goto fallback;
1491 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1492 goto fallback;
1494 if (xas.xa_index >= max_pgoff) {
1495 result = VM_FAULT_SIGBUS;
1496 goto out;
1499 /* If the PMD would extend beyond the file size */
1500 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1501 goto fallback;
1504 * grab_mapping_entry() will make sure we get an empty PMD entry,
1505 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1506 * entry is already in the array, for instance), it will return
1507 * VM_FAULT_FALLBACK.
1509 entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1510 if (xa_is_internal(entry)) {
1511 result = xa_to_internal(entry);
1512 goto fallback;
1516 * It is possible, particularly with mixed reads & writes to private
1517 * mappings, that we have raced with a PTE fault that overlaps with
1518 * the PMD we need to set up. If so just return and the fault will be
1519 * retried.
1521 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1522 !pmd_devmap(*vmf->pmd)) {
1523 result = 0;
1524 goto unlock_entry;
1528 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1529 * setting up a mapping, so really we're using iomap_begin() as a way
1530 * to look up our filesystem block.
1532 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1533 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1534 if (error)
1535 goto unlock_entry;
1537 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1538 goto finish_iomap;
1540 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1542 switch (iomap.type) {
1543 case IOMAP_MAPPED:
1544 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1545 if (error < 0)
1546 goto finish_iomap;
1548 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1549 DAX_PMD, write && !sync);
1552 * If we are doing synchronous page fault and inode needs fsync,
1553 * we can insert PMD into page tables only after that happens.
1554 * Skip insertion for now and return the pfn so that caller can
1555 * insert it after fsync is done.
1557 if (sync) {
1558 if (WARN_ON_ONCE(!pfnp))
1559 goto finish_iomap;
1560 *pfnp = pfn;
1561 result = VM_FAULT_NEEDDSYNC;
1562 goto finish_iomap;
1565 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1566 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1567 write);
1568 break;
1569 case IOMAP_UNWRITTEN:
1570 case IOMAP_HOLE:
1571 if (WARN_ON_ONCE(write))
1572 break;
1573 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1574 break;
1575 default:
1576 WARN_ON_ONCE(1);
1577 break;
1580 finish_iomap:
1581 if (ops->iomap_end) {
1582 int copied = PMD_SIZE;
1584 if (result == VM_FAULT_FALLBACK)
1585 copied = 0;
1587 * The fault is done by now and there's no way back (other
1588 * thread may be already happily using PMD we have installed).
1589 * Just ignore error from ->iomap_end since we cannot do much
1590 * with it.
1592 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1593 &iomap);
1595 unlock_entry:
1596 dax_unlock_entry(&xas, entry);
1597 fallback:
1598 if (result == VM_FAULT_FALLBACK) {
1599 split_huge_pmd(vma, vmf->pmd, vmf->address);
1600 count_vm_event(THP_FAULT_FALLBACK);
1602 out:
1603 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1604 return result;
1606 #else
1607 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1608 const struct iomap_ops *ops)
1610 return VM_FAULT_FALLBACK;
1612 #endif /* CONFIG_FS_DAX_PMD */
1615 * dax_iomap_fault - handle a page fault on a DAX file
1616 * @vmf: The description of the fault
1617 * @pe_size: Size of the page to fault in
1618 * @pfnp: PFN to insert for synchronous faults if fsync is required
1619 * @iomap_errp: Storage for detailed error code in case of error
1620 * @ops: Iomap ops passed from the file system
1622 * When a page fault occurs, filesystems may call this helper in
1623 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1624 * has done all the necessary locking for page fault to proceed
1625 * successfully.
1627 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1628 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1630 switch (pe_size) {
1631 case PE_SIZE_PTE:
1632 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1633 case PE_SIZE_PMD:
1634 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1635 default:
1636 return VM_FAULT_FALLBACK;
1639 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1642 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1643 * @vmf: The description of the fault
1644 * @pfn: PFN to insert
1645 * @order: Order of entry to insert.
1647 * This function inserts a writeable PTE or PMD entry into the page tables
1648 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1650 static vm_fault_t
1651 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1653 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1654 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1655 void *entry;
1656 vm_fault_t ret;
1658 xas_lock_irq(&xas);
1659 entry = get_unlocked_entry(&xas);
1660 /* Did we race with someone splitting entry or so? */
1661 if (!entry ||
1662 (order == 0 && !dax_is_pte_entry(entry)) ||
1663 (order == PMD_ORDER && !dax_is_pmd_entry(entry))) {
1664 put_unlocked_entry(&xas, entry);
1665 xas_unlock_irq(&xas);
1666 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1667 VM_FAULT_NOPAGE);
1668 return VM_FAULT_NOPAGE;
1670 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1671 dax_lock_entry(&xas, entry);
1672 xas_unlock_irq(&xas);
1673 if (order == 0)
1674 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1675 #ifdef CONFIG_FS_DAX_PMD
1676 else if (order == PMD_ORDER)
1677 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1678 pfn, true);
1679 #endif
1680 else
1681 ret = VM_FAULT_FALLBACK;
1682 dax_unlock_entry(&xas, entry);
1683 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1684 return ret;
1688 * dax_finish_sync_fault - finish synchronous page fault
1689 * @vmf: The description of the fault
1690 * @pe_size: Size of entry to be inserted
1691 * @pfn: PFN to insert
1693 * This function ensures that the file range touched by the page fault is
1694 * stored persistently on the media and handles inserting of appropriate page
1695 * table entry.
1697 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1698 enum page_entry_size pe_size, pfn_t pfn)
1700 int err;
1701 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1702 unsigned int order = pe_order(pe_size);
1703 size_t len = PAGE_SIZE << order;
1705 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1706 if (err)
1707 return VM_FAULT_SIGBUS;
1708 return dax_insert_pfn_mkwrite(vmf, pfn, order);
1710 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);