tools uapi asm: Update asm-generic/unistd.h copy
[linux/fpc-iii.git] / fs / f2fs / node.c
blobd338740d0fdac9cd9f6b7c2549eb55c1da4e8656
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
31 * Check whether the given nid is within node id range.
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_msg(sbi->sb, KERN_WARNING,
38 "%s: out-of-range nid=%x, run fsck to fix.",
39 __func__, nid);
40 return -EINVAL;
42 return 0;
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
47 struct f2fs_nm_info *nm_i = NM_I(sbi);
48 struct sysinfo val;
49 unsigned long avail_ram;
50 unsigned long mem_size = 0;
51 bool res = false;
53 si_meminfo(&val);
55 /* only uses low memory */
56 avail_ram = val.totalram - val.totalhigh;
59 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
61 if (type == FREE_NIDS) {
62 mem_size = (nm_i->nid_cnt[FREE_NID] *
63 sizeof(struct free_nid)) >> PAGE_SHIFT;
64 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
65 } else if (type == NAT_ENTRIES) {
66 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
67 PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 if (excess_cached_nats(sbi))
70 res = false;
71 } else if (type == DIRTY_DENTS) {
72 if (sbi->sb->s_bdi->wb.dirty_exceeded)
73 return false;
74 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
75 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
76 } else if (type == INO_ENTRIES) {
77 int i;
79 for (i = 0; i < MAX_INO_ENTRY; i++)
80 mem_size += sbi->im[i].ino_num *
81 sizeof(struct ino_entry);
82 mem_size >>= PAGE_SHIFT;
83 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
84 } else if (type == EXTENT_CACHE) {
85 mem_size = (atomic_read(&sbi->total_ext_tree) *
86 sizeof(struct extent_tree) +
87 atomic_read(&sbi->total_ext_node) *
88 sizeof(struct extent_node)) >> PAGE_SHIFT;
89 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
90 } else if (type == INMEM_PAGES) {
91 /* it allows 20% / total_ram for inmemory pages */
92 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
93 res = mem_size < (val.totalram / 5);
94 } else {
95 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
96 return true;
98 return res;
101 static void clear_node_page_dirty(struct page *page)
103 if (PageDirty(page)) {
104 f2fs_clear_page_cache_dirty_tag(page);
105 clear_page_dirty_for_io(page);
106 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
108 ClearPageUptodate(page);
111 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
113 return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
116 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
118 struct page *src_page;
119 struct page *dst_page;
120 pgoff_t dst_off;
121 void *src_addr;
122 void *dst_addr;
123 struct f2fs_nm_info *nm_i = NM_I(sbi);
125 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
127 /* get current nat block page with lock */
128 src_page = get_current_nat_page(sbi, nid);
129 if (IS_ERR(src_page))
130 return src_page;
131 dst_page = f2fs_grab_meta_page(sbi, dst_off);
132 f2fs_bug_on(sbi, PageDirty(src_page));
134 src_addr = page_address(src_page);
135 dst_addr = page_address(dst_page);
136 memcpy(dst_addr, src_addr, PAGE_SIZE);
137 set_page_dirty(dst_page);
138 f2fs_put_page(src_page, 1);
140 set_to_next_nat(nm_i, nid);
142 return dst_page;
145 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
147 struct nat_entry *new;
149 if (no_fail)
150 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
151 else
152 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
153 if (new) {
154 nat_set_nid(new, nid);
155 nat_reset_flag(new);
157 return new;
160 static void __free_nat_entry(struct nat_entry *e)
162 kmem_cache_free(nat_entry_slab, e);
165 /* must be locked by nat_tree_lock */
166 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
167 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
169 if (no_fail)
170 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
171 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
172 return NULL;
174 if (raw_ne)
175 node_info_from_raw_nat(&ne->ni, raw_ne);
177 spin_lock(&nm_i->nat_list_lock);
178 list_add_tail(&ne->list, &nm_i->nat_entries);
179 spin_unlock(&nm_i->nat_list_lock);
181 nm_i->nat_cnt++;
182 return ne;
185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
187 struct nat_entry *ne;
189 ne = radix_tree_lookup(&nm_i->nat_root, n);
191 /* for recent accessed nat entry, move it to tail of lru list */
192 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193 spin_lock(&nm_i->nat_list_lock);
194 if (!list_empty(&ne->list))
195 list_move_tail(&ne->list, &nm_i->nat_entries);
196 spin_unlock(&nm_i->nat_list_lock);
199 return ne;
202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203 nid_t start, unsigned int nr, struct nat_entry **ep)
205 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
210 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211 nm_i->nat_cnt--;
212 __free_nat_entry(e);
215 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
216 struct nat_entry *ne)
218 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
219 struct nat_entry_set *head;
221 head = radix_tree_lookup(&nm_i->nat_set_root, set);
222 if (!head) {
223 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
225 INIT_LIST_HEAD(&head->entry_list);
226 INIT_LIST_HEAD(&head->set_list);
227 head->set = set;
228 head->entry_cnt = 0;
229 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
231 return head;
234 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
235 struct nat_entry *ne)
237 struct nat_entry_set *head;
238 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
240 if (!new_ne)
241 head = __grab_nat_entry_set(nm_i, ne);
244 * update entry_cnt in below condition:
245 * 1. update NEW_ADDR to valid block address;
246 * 2. update old block address to new one;
248 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
249 !get_nat_flag(ne, IS_DIRTY)))
250 head->entry_cnt++;
252 set_nat_flag(ne, IS_PREALLOC, new_ne);
254 if (get_nat_flag(ne, IS_DIRTY))
255 goto refresh_list;
257 nm_i->dirty_nat_cnt++;
258 set_nat_flag(ne, IS_DIRTY, true);
259 refresh_list:
260 spin_lock(&nm_i->nat_list_lock);
261 if (new_ne)
262 list_del_init(&ne->list);
263 else
264 list_move_tail(&ne->list, &head->entry_list);
265 spin_unlock(&nm_i->nat_list_lock);
268 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
269 struct nat_entry_set *set, struct nat_entry *ne)
271 spin_lock(&nm_i->nat_list_lock);
272 list_move_tail(&ne->list, &nm_i->nat_entries);
273 spin_unlock(&nm_i->nat_list_lock);
275 set_nat_flag(ne, IS_DIRTY, false);
276 set->entry_cnt--;
277 nm_i->dirty_nat_cnt--;
280 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
281 nid_t start, unsigned int nr, struct nat_entry_set **ep)
283 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
284 start, nr);
287 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
289 return NODE_MAPPING(sbi) == page->mapping &&
290 IS_DNODE(page) && is_cold_node(page);
293 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
295 spin_lock_init(&sbi->fsync_node_lock);
296 INIT_LIST_HEAD(&sbi->fsync_node_list);
297 sbi->fsync_seg_id = 0;
298 sbi->fsync_node_num = 0;
301 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
302 struct page *page)
304 struct fsync_node_entry *fn;
305 unsigned long flags;
306 unsigned int seq_id;
308 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
310 get_page(page);
311 fn->page = page;
312 INIT_LIST_HEAD(&fn->list);
314 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
315 list_add_tail(&fn->list, &sbi->fsync_node_list);
316 fn->seq_id = sbi->fsync_seg_id++;
317 seq_id = fn->seq_id;
318 sbi->fsync_node_num++;
319 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
321 return seq_id;
324 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
326 struct fsync_node_entry *fn;
327 unsigned long flags;
329 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
330 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
331 if (fn->page == page) {
332 list_del(&fn->list);
333 sbi->fsync_node_num--;
334 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
335 kmem_cache_free(fsync_node_entry_slab, fn);
336 put_page(page);
337 return;
340 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
341 f2fs_bug_on(sbi, 1);
344 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
346 unsigned long flags;
348 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
349 sbi->fsync_seg_id = 0;
350 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
353 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
355 struct f2fs_nm_info *nm_i = NM_I(sbi);
356 struct nat_entry *e;
357 bool need = false;
359 down_read(&nm_i->nat_tree_lock);
360 e = __lookup_nat_cache(nm_i, nid);
361 if (e) {
362 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
363 !get_nat_flag(e, HAS_FSYNCED_INODE))
364 need = true;
366 up_read(&nm_i->nat_tree_lock);
367 return need;
370 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
372 struct f2fs_nm_info *nm_i = NM_I(sbi);
373 struct nat_entry *e;
374 bool is_cp = true;
376 down_read(&nm_i->nat_tree_lock);
377 e = __lookup_nat_cache(nm_i, nid);
378 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
379 is_cp = false;
380 up_read(&nm_i->nat_tree_lock);
381 return is_cp;
384 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
386 struct f2fs_nm_info *nm_i = NM_I(sbi);
387 struct nat_entry *e;
388 bool need_update = true;
390 down_read(&nm_i->nat_tree_lock);
391 e = __lookup_nat_cache(nm_i, ino);
392 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
393 (get_nat_flag(e, IS_CHECKPOINTED) ||
394 get_nat_flag(e, HAS_FSYNCED_INODE)))
395 need_update = false;
396 up_read(&nm_i->nat_tree_lock);
397 return need_update;
400 /* must be locked by nat_tree_lock */
401 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
402 struct f2fs_nat_entry *ne)
404 struct f2fs_nm_info *nm_i = NM_I(sbi);
405 struct nat_entry *new, *e;
407 new = __alloc_nat_entry(nid, false);
408 if (!new)
409 return;
411 down_write(&nm_i->nat_tree_lock);
412 e = __lookup_nat_cache(nm_i, nid);
413 if (!e)
414 e = __init_nat_entry(nm_i, new, ne, false);
415 else
416 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
417 nat_get_blkaddr(e) !=
418 le32_to_cpu(ne->block_addr) ||
419 nat_get_version(e) != ne->version);
420 up_write(&nm_i->nat_tree_lock);
421 if (e != new)
422 __free_nat_entry(new);
425 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
426 block_t new_blkaddr, bool fsync_done)
428 struct f2fs_nm_info *nm_i = NM_I(sbi);
429 struct nat_entry *e;
430 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
432 down_write(&nm_i->nat_tree_lock);
433 e = __lookup_nat_cache(nm_i, ni->nid);
434 if (!e) {
435 e = __init_nat_entry(nm_i, new, NULL, true);
436 copy_node_info(&e->ni, ni);
437 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
438 } else if (new_blkaddr == NEW_ADDR) {
440 * when nid is reallocated,
441 * previous nat entry can be remained in nat cache.
442 * So, reinitialize it with new information.
444 copy_node_info(&e->ni, ni);
445 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
447 /* let's free early to reduce memory consumption */
448 if (e != new)
449 __free_nat_entry(new);
451 /* sanity check */
452 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
453 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
454 new_blkaddr == NULL_ADDR);
455 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
456 new_blkaddr == NEW_ADDR);
457 f2fs_bug_on(sbi, is_valid_data_blkaddr(sbi, nat_get_blkaddr(e)) &&
458 new_blkaddr == NEW_ADDR);
460 /* increment version no as node is removed */
461 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
462 unsigned char version = nat_get_version(e);
463 nat_set_version(e, inc_node_version(version));
466 /* change address */
467 nat_set_blkaddr(e, new_blkaddr);
468 if (!is_valid_data_blkaddr(sbi, new_blkaddr))
469 set_nat_flag(e, IS_CHECKPOINTED, false);
470 __set_nat_cache_dirty(nm_i, e);
472 /* update fsync_mark if its inode nat entry is still alive */
473 if (ni->nid != ni->ino)
474 e = __lookup_nat_cache(nm_i, ni->ino);
475 if (e) {
476 if (fsync_done && ni->nid == ni->ino)
477 set_nat_flag(e, HAS_FSYNCED_INODE, true);
478 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
480 up_write(&nm_i->nat_tree_lock);
483 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
485 struct f2fs_nm_info *nm_i = NM_I(sbi);
486 int nr = nr_shrink;
488 if (!down_write_trylock(&nm_i->nat_tree_lock))
489 return 0;
491 spin_lock(&nm_i->nat_list_lock);
492 while (nr_shrink) {
493 struct nat_entry *ne;
495 if (list_empty(&nm_i->nat_entries))
496 break;
498 ne = list_first_entry(&nm_i->nat_entries,
499 struct nat_entry, list);
500 list_del(&ne->list);
501 spin_unlock(&nm_i->nat_list_lock);
503 __del_from_nat_cache(nm_i, ne);
504 nr_shrink--;
506 spin_lock(&nm_i->nat_list_lock);
508 spin_unlock(&nm_i->nat_list_lock);
510 up_write(&nm_i->nat_tree_lock);
511 return nr - nr_shrink;
515 * This function always returns success
517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518 struct node_info *ni)
520 struct f2fs_nm_info *nm_i = NM_I(sbi);
521 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522 struct f2fs_journal *journal = curseg->journal;
523 nid_t start_nid = START_NID(nid);
524 struct f2fs_nat_block *nat_blk;
525 struct page *page = NULL;
526 struct f2fs_nat_entry ne;
527 struct nat_entry *e;
528 pgoff_t index;
529 int i;
531 ni->nid = nid;
533 /* Check nat cache */
534 down_read(&nm_i->nat_tree_lock);
535 e = __lookup_nat_cache(nm_i, nid);
536 if (e) {
537 ni->ino = nat_get_ino(e);
538 ni->blk_addr = nat_get_blkaddr(e);
539 ni->version = nat_get_version(e);
540 up_read(&nm_i->nat_tree_lock);
541 return 0;
544 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
546 /* Check current segment summary */
547 down_read(&curseg->journal_rwsem);
548 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
549 if (i >= 0) {
550 ne = nat_in_journal(journal, i);
551 node_info_from_raw_nat(ni, &ne);
553 up_read(&curseg->journal_rwsem);
554 if (i >= 0) {
555 up_read(&nm_i->nat_tree_lock);
556 goto cache;
559 /* Fill node_info from nat page */
560 index = current_nat_addr(sbi, nid);
561 up_read(&nm_i->nat_tree_lock);
563 page = f2fs_get_meta_page(sbi, index);
564 if (IS_ERR(page))
565 return PTR_ERR(page);
567 nat_blk = (struct f2fs_nat_block *)page_address(page);
568 ne = nat_blk->entries[nid - start_nid];
569 node_info_from_raw_nat(ni, &ne);
570 f2fs_put_page(page, 1);
571 cache:
572 /* cache nat entry */
573 cache_nat_entry(sbi, nid, &ne);
574 return 0;
578 * readahead MAX_RA_NODE number of node pages.
580 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
582 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
583 struct blk_plug plug;
584 int i, end;
585 nid_t nid;
587 blk_start_plug(&plug);
589 /* Then, try readahead for siblings of the desired node */
590 end = start + n;
591 end = min(end, NIDS_PER_BLOCK);
592 for (i = start; i < end; i++) {
593 nid = get_nid(parent, i, false);
594 f2fs_ra_node_page(sbi, nid);
597 blk_finish_plug(&plug);
600 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
602 const long direct_index = ADDRS_PER_INODE(dn->inode);
603 const long direct_blks = ADDRS_PER_BLOCK;
604 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
605 unsigned int skipped_unit = ADDRS_PER_BLOCK;
606 int cur_level = dn->cur_level;
607 int max_level = dn->max_level;
608 pgoff_t base = 0;
610 if (!dn->max_level)
611 return pgofs + 1;
613 while (max_level-- > cur_level)
614 skipped_unit *= NIDS_PER_BLOCK;
616 switch (dn->max_level) {
617 case 3:
618 base += 2 * indirect_blks;
619 case 2:
620 base += 2 * direct_blks;
621 case 1:
622 base += direct_index;
623 break;
624 default:
625 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
628 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
632 * The maximum depth is four.
633 * Offset[0] will have raw inode offset.
635 static int get_node_path(struct inode *inode, long block,
636 int offset[4], unsigned int noffset[4])
638 const long direct_index = ADDRS_PER_INODE(inode);
639 const long direct_blks = ADDRS_PER_BLOCK;
640 const long dptrs_per_blk = NIDS_PER_BLOCK;
641 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
642 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
643 int n = 0;
644 int level = 0;
646 noffset[0] = 0;
648 if (block < direct_index) {
649 offset[n] = block;
650 goto got;
652 block -= direct_index;
653 if (block < direct_blks) {
654 offset[n++] = NODE_DIR1_BLOCK;
655 noffset[n] = 1;
656 offset[n] = block;
657 level = 1;
658 goto got;
660 block -= direct_blks;
661 if (block < direct_blks) {
662 offset[n++] = NODE_DIR2_BLOCK;
663 noffset[n] = 2;
664 offset[n] = block;
665 level = 1;
666 goto got;
668 block -= direct_blks;
669 if (block < indirect_blks) {
670 offset[n++] = NODE_IND1_BLOCK;
671 noffset[n] = 3;
672 offset[n++] = block / direct_blks;
673 noffset[n] = 4 + offset[n - 1];
674 offset[n] = block % direct_blks;
675 level = 2;
676 goto got;
678 block -= indirect_blks;
679 if (block < indirect_blks) {
680 offset[n++] = NODE_IND2_BLOCK;
681 noffset[n] = 4 + dptrs_per_blk;
682 offset[n++] = block / direct_blks;
683 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
684 offset[n] = block % direct_blks;
685 level = 2;
686 goto got;
688 block -= indirect_blks;
689 if (block < dindirect_blks) {
690 offset[n++] = NODE_DIND_BLOCK;
691 noffset[n] = 5 + (dptrs_per_blk * 2);
692 offset[n++] = block / indirect_blks;
693 noffset[n] = 6 + (dptrs_per_blk * 2) +
694 offset[n - 1] * (dptrs_per_blk + 1);
695 offset[n++] = (block / direct_blks) % dptrs_per_blk;
696 noffset[n] = 7 + (dptrs_per_blk * 2) +
697 offset[n - 2] * (dptrs_per_blk + 1) +
698 offset[n - 1];
699 offset[n] = block % direct_blks;
700 level = 3;
701 goto got;
702 } else {
703 return -E2BIG;
705 got:
706 return level;
710 * Caller should call f2fs_put_dnode(dn).
711 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
712 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
713 * In the case of RDONLY_NODE, we don't need to care about mutex.
715 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
717 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
718 struct page *npage[4];
719 struct page *parent = NULL;
720 int offset[4];
721 unsigned int noffset[4];
722 nid_t nids[4];
723 int level, i = 0;
724 int err = 0;
726 level = get_node_path(dn->inode, index, offset, noffset);
727 if (level < 0)
728 return level;
730 nids[0] = dn->inode->i_ino;
731 npage[0] = dn->inode_page;
733 if (!npage[0]) {
734 npage[0] = f2fs_get_node_page(sbi, nids[0]);
735 if (IS_ERR(npage[0]))
736 return PTR_ERR(npage[0]);
739 /* if inline_data is set, should not report any block indices */
740 if (f2fs_has_inline_data(dn->inode) && index) {
741 err = -ENOENT;
742 f2fs_put_page(npage[0], 1);
743 goto release_out;
746 parent = npage[0];
747 if (level != 0)
748 nids[1] = get_nid(parent, offset[0], true);
749 dn->inode_page = npage[0];
750 dn->inode_page_locked = true;
752 /* get indirect or direct nodes */
753 for (i = 1; i <= level; i++) {
754 bool done = false;
756 if (!nids[i] && mode == ALLOC_NODE) {
757 /* alloc new node */
758 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
759 err = -ENOSPC;
760 goto release_pages;
763 dn->nid = nids[i];
764 npage[i] = f2fs_new_node_page(dn, noffset[i]);
765 if (IS_ERR(npage[i])) {
766 f2fs_alloc_nid_failed(sbi, nids[i]);
767 err = PTR_ERR(npage[i]);
768 goto release_pages;
771 set_nid(parent, offset[i - 1], nids[i], i == 1);
772 f2fs_alloc_nid_done(sbi, nids[i]);
773 done = true;
774 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
775 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
776 if (IS_ERR(npage[i])) {
777 err = PTR_ERR(npage[i]);
778 goto release_pages;
780 done = true;
782 if (i == 1) {
783 dn->inode_page_locked = false;
784 unlock_page(parent);
785 } else {
786 f2fs_put_page(parent, 1);
789 if (!done) {
790 npage[i] = f2fs_get_node_page(sbi, nids[i]);
791 if (IS_ERR(npage[i])) {
792 err = PTR_ERR(npage[i]);
793 f2fs_put_page(npage[0], 0);
794 goto release_out;
797 if (i < level) {
798 parent = npage[i];
799 nids[i + 1] = get_nid(parent, offset[i], false);
802 dn->nid = nids[level];
803 dn->ofs_in_node = offset[level];
804 dn->node_page = npage[level];
805 dn->data_blkaddr = datablock_addr(dn->inode,
806 dn->node_page, dn->ofs_in_node);
807 return 0;
809 release_pages:
810 f2fs_put_page(parent, 1);
811 if (i > 1)
812 f2fs_put_page(npage[0], 0);
813 release_out:
814 dn->inode_page = NULL;
815 dn->node_page = NULL;
816 if (err == -ENOENT) {
817 dn->cur_level = i;
818 dn->max_level = level;
819 dn->ofs_in_node = offset[level];
821 return err;
824 static int truncate_node(struct dnode_of_data *dn)
826 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
827 struct node_info ni;
828 int err;
830 err = f2fs_get_node_info(sbi, dn->nid, &ni);
831 if (err)
832 return err;
834 /* Deallocate node address */
835 f2fs_invalidate_blocks(sbi, ni.blk_addr);
836 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
837 set_node_addr(sbi, &ni, NULL_ADDR, false);
839 if (dn->nid == dn->inode->i_ino) {
840 f2fs_remove_orphan_inode(sbi, dn->nid);
841 dec_valid_inode_count(sbi);
842 f2fs_inode_synced(dn->inode);
845 clear_node_page_dirty(dn->node_page);
846 set_sbi_flag(sbi, SBI_IS_DIRTY);
848 f2fs_put_page(dn->node_page, 1);
850 invalidate_mapping_pages(NODE_MAPPING(sbi),
851 dn->node_page->index, dn->node_page->index);
853 dn->node_page = NULL;
854 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
856 return 0;
859 static int truncate_dnode(struct dnode_of_data *dn)
861 struct page *page;
862 int err;
864 if (dn->nid == 0)
865 return 1;
867 /* get direct node */
868 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
869 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
870 return 1;
871 else if (IS_ERR(page))
872 return PTR_ERR(page);
874 /* Make dnode_of_data for parameter */
875 dn->node_page = page;
876 dn->ofs_in_node = 0;
877 f2fs_truncate_data_blocks(dn);
878 err = truncate_node(dn);
879 if (err)
880 return err;
882 return 1;
885 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
886 int ofs, int depth)
888 struct dnode_of_data rdn = *dn;
889 struct page *page;
890 struct f2fs_node *rn;
891 nid_t child_nid;
892 unsigned int child_nofs;
893 int freed = 0;
894 int i, ret;
896 if (dn->nid == 0)
897 return NIDS_PER_BLOCK + 1;
899 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
901 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
902 if (IS_ERR(page)) {
903 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
904 return PTR_ERR(page);
907 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
909 rn = F2FS_NODE(page);
910 if (depth < 3) {
911 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
912 child_nid = le32_to_cpu(rn->in.nid[i]);
913 if (child_nid == 0)
914 continue;
915 rdn.nid = child_nid;
916 ret = truncate_dnode(&rdn);
917 if (ret < 0)
918 goto out_err;
919 if (set_nid(page, i, 0, false))
920 dn->node_changed = true;
922 } else {
923 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
924 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
925 child_nid = le32_to_cpu(rn->in.nid[i]);
926 if (child_nid == 0) {
927 child_nofs += NIDS_PER_BLOCK + 1;
928 continue;
930 rdn.nid = child_nid;
931 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
932 if (ret == (NIDS_PER_BLOCK + 1)) {
933 if (set_nid(page, i, 0, false))
934 dn->node_changed = true;
935 child_nofs += ret;
936 } else if (ret < 0 && ret != -ENOENT) {
937 goto out_err;
940 freed = child_nofs;
943 if (!ofs) {
944 /* remove current indirect node */
945 dn->node_page = page;
946 ret = truncate_node(dn);
947 if (ret)
948 goto out_err;
949 freed++;
950 } else {
951 f2fs_put_page(page, 1);
953 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
954 return freed;
956 out_err:
957 f2fs_put_page(page, 1);
958 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
959 return ret;
962 static int truncate_partial_nodes(struct dnode_of_data *dn,
963 struct f2fs_inode *ri, int *offset, int depth)
965 struct page *pages[2];
966 nid_t nid[3];
967 nid_t child_nid;
968 int err = 0;
969 int i;
970 int idx = depth - 2;
972 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
973 if (!nid[0])
974 return 0;
976 /* get indirect nodes in the path */
977 for (i = 0; i < idx + 1; i++) {
978 /* reference count'll be increased */
979 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
980 if (IS_ERR(pages[i])) {
981 err = PTR_ERR(pages[i]);
982 idx = i - 1;
983 goto fail;
985 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
988 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
990 /* free direct nodes linked to a partial indirect node */
991 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
992 child_nid = get_nid(pages[idx], i, false);
993 if (!child_nid)
994 continue;
995 dn->nid = child_nid;
996 err = truncate_dnode(dn);
997 if (err < 0)
998 goto fail;
999 if (set_nid(pages[idx], i, 0, false))
1000 dn->node_changed = true;
1003 if (offset[idx + 1] == 0) {
1004 dn->node_page = pages[idx];
1005 dn->nid = nid[idx];
1006 err = truncate_node(dn);
1007 if (err)
1008 goto fail;
1009 } else {
1010 f2fs_put_page(pages[idx], 1);
1012 offset[idx]++;
1013 offset[idx + 1] = 0;
1014 idx--;
1015 fail:
1016 for (i = idx; i >= 0; i--)
1017 f2fs_put_page(pages[i], 1);
1019 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1021 return err;
1025 * All the block addresses of data and nodes should be nullified.
1027 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1029 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1030 int err = 0, cont = 1;
1031 int level, offset[4], noffset[4];
1032 unsigned int nofs = 0;
1033 struct f2fs_inode *ri;
1034 struct dnode_of_data dn;
1035 struct page *page;
1037 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1039 level = get_node_path(inode, from, offset, noffset);
1040 if (level < 0)
1041 return level;
1043 page = f2fs_get_node_page(sbi, inode->i_ino);
1044 if (IS_ERR(page)) {
1045 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1046 return PTR_ERR(page);
1049 set_new_dnode(&dn, inode, page, NULL, 0);
1050 unlock_page(page);
1052 ri = F2FS_INODE(page);
1053 switch (level) {
1054 case 0:
1055 case 1:
1056 nofs = noffset[1];
1057 break;
1058 case 2:
1059 nofs = noffset[1];
1060 if (!offset[level - 1])
1061 goto skip_partial;
1062 err = truncate_partial_nodes(&dn, ri, offset, level);
1063 if (err < 0 && err != -ENOENT)
1064 goto fail;
1065 nofs += 1 + NIDS_PER_BLOCK;
1066 break;
1067 case 3:
1068 nofs = 5 + 2 * NIDS_PER_BLOCK;
1069 if (!offset[level - 1])
1070 goto skip_partial;
1071 err = truncate_partial_nodes(&dn, ri, offset, level);
1072 if (err < 0 && err != -ENOENT)
1073 goto fail;
1074 break;
1075 default:
1076 BUG();
1079 skip_partial:
1080 while (cont) {
1081 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1082 switch (offset[0]) {
1083 case NODE_DIR1_BLOCK:
1084 case NODE_DIR2_BLOCK:
1085 err = truncate_dnode(&dn);
1086 break;
1088 case NODE_IND1_BLOCK:
1089 case NODE_IND2_BLOCK:
1090 err = truncate_nodes(&dn, nofs, offset[1], 2);
1091 break;
1093 case NODE_DIND_BLOCK:
1094 err = truncate_nodes(&dn, nofs, offset[1], 3);
1095 cont = 0;
1096 break;
1098 default:
1099 BUG();
1101 if (err < 0 && err != -ENOENT)
1102 goto fail;
1103 if (offset[1] == 0 &&
1104 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1105 lock_page(page);
1106 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1107 f2fs_wait_on_page_writeback(page, NODE, true);
1108 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1109 set_page_dirty(page);
1110 unlock_page(page);
1112 offset[1] = 0;
1113 offset[0]++;
1114 nofs += err;
1116 fail:
1117 f2fs_put_page(page, 0);
1118 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1119 return err > 0 ? 0 : err;
1122 /* caller must lock inode page */
1123 int f2fs_truncate_xattr_node(struct inode *inode)
1125 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1126 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1127 struct dnode_of_data dn;
1128 struct page *npage;
1129 int err;
1131 if (!nid)
1132 return 0;
1134 npage = f2fs_get_node_page(sbi, nid);
1135 if (IS_ERR(npage))
1136 return PTR_ERR(npage);
1138 set_new_dnode(&dn, inode, NULL, npage, nid);
1139 err = truncate_node(&dn);
1140 if (err) {
1141 f2fs_put_page(npage, 1);
1142 return err;
1145 f2fs_i_xnid_write(inode, 0);
1147 return 0;
1151 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1152 * f2fs_unlock_op().
1154 int f2fs_remove_inode_page(struct inode *inode)
1156 struct dnode_of_data dn;
1157 int err;
1159 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1160 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1161 if (err)
1162 return err;
1164 err = f2fs_truncate_xattr_node(inode);
1165 if (err) {
1166 f2fs_put_dnode(&dn);
1167 return err;
1170 /* remove potential inline_data blocks */
1171 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1172 S_ISLNK(inode->i_mode))
1173 f2fs_truncate_data_blocks_range(&dn, 1);
1175 /* 0 is possible, after f2fs_new_inode() has failed */
1176 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1177 f2fs_put_dnode(&dn);
1178 return -EIO;
1180 f2fs_bug_on(F2FS_I_SB(inode),
1181 inode->i_blocks != 0 && inode->i_blocks != 8);
1183 /* will put inode & node pages */
1184 err = truncate_node(&dn);
1185 if (err) {
1186 f2fs_put_dnode(&dn);
1187 return err;
1189 return 0;
1192 struct page *f2fs_new_inode_page(struct inode *inode)
1194 struct dnode_of_data dn;
1196 /* allocate inode page for new inode */
1197 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1199 /* caller should f2fs_put_page(page, 1); */
1200 return f2fs_new_node_page(&dn, 0);
1203 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1205 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1206 struct node_info new_ni;
1207 struct page *page;
1208 int err;
1210 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1211 return ERR_PTR(-EPERM);
1213 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1214 if (!page)
1215 return ERR_PTR(-ENOMEM);
1217 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1218 goto fail;
1220 #ifdef CONFIG_F2FS_CHECK_FS
1221 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1222 if (err) {
1223 dec_valid_node_count(sbi, dn->inode, !ofs);
1224 goto fail;
1226 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1227 #endif
1228 new_ni.nid = dn->nid;
1229 new_ni.ino = dn->inode->i_ino;
1230 new_ni.blk_addr = NULL_ADDR;
1231 new_ni.flag = 0;
1232 new_ni.version = 0;
1233 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1235 f2fs_wait_on_page_writeback(page, NODE, true);
1236 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1237 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1238 if (!PageUptodate(page))
1239 SetPageUptodate(page);
1240 if (set_page_dirty(page))
1241 dn->node_changed = true;
1243 if (f2fs_has_xattr_block(ofs))
1244 f2fs_i_xnid_write(dn->inode, dn->nid);
1246 if (ofs == 0)
1247 inc_valid_inode_count(sbi);
1248 return page;
1250 fail:
1251 clear_node_page_dirty(page);
1252 f2fs_put_page(page, 1);
1253 return ERR_PTR(err);
1257 * Caller should do after getting the following values.
1258 * 0: f2fs_put_page(page, 0)
1259 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1261 static int read_node_page(struct page *page, int op_flags)
1263 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1264 struct node_info ni;
1265 struct f2fs_io_info fio = {
1266 .sbi = sbi,
1267 .type = NODE,
1268 .op = REQ_OP_READ,
1269 .op_flags = op_flags,
1270 .page = page,
1271 .encrypted_page = NULL,
1273 int err;
1275 if (PageUptodate(page)) {
1276 #ifdef CONFIG_F2FS_CHECK_FS
1277 f2fs_bug_on(sbi, !f2fs_inode_chksum_verify(sbi, page));
1278 #endif
1279 return LOCKED_PAGE;
1282 err = f2fs_get_node_info(sbi, page->index, &ni);
1283 if (err)
1284 return err;
1286 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1287 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1288 ClearPageUptodate(page);
1289 return -ENOENT;
1292 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1293 return f2fs_submit_page_bio(&fio);
1297 * Readahead a node page
1299 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1301 struct page *apage;
1302 int err;
1304 if (!nid)
1305 return;
1306 if (f2fs_check_nid_range(sbi, nid))
1307 return;
1309 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1310 if (apage)
1311 return;
1313 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1314 if (!apage)
1315 return;
1317 err = read_node_page(apage, REQ_RAHEAD);
1318 f2fs_put_page(apage, err ? 1 : 0);
1321 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1322 struct page *parent, int start)
1324 struct page *page;
1325 int err;
1327 if (!nid)
1328 return ERR_PTR(-ENOENT);
1329 if (f2fs_check_nid_range(sbi, nid))
1330 return ERR_PTR(-EINVAL);
1331 repeat:
1332 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1333 if (!page)
1334 return ERR_PTR(-ENOMEM);
1336 err = read_node_page(page, 0);
1337 if (err < 0) {
1338 f2fs_put_page(page, 1);
1339 return ERR_PTR(err);
1340 } else if (err == LOCKED_PAGE) {
1341 err = 0;
1342 goto page_hit;
1345 if (parent)
1346 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1348 lock_page(page);
1350 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1351 f2fs_put_page(page, 1);
1352 goto repeat;
1355 if (unlikely(!PageUptodate(page))) {
1356 err = -EIO;
1357 goto out_err;
1360 if (!f2fs_inode_chksum_verify(sbi, page)) {
1361 err = -EBADMSG;
1362 goto out_err;
1364 page_hit:
1365 if(unlikely(nid != nid_of_node(page))) {
1366 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1367 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1368 nid, nid_of_node(page), ino_of_node(page),
1369 ofs_of_node(page), cpver_of_node(page),
1370 next_blkaddr_of_node(page));
1371 err = -EINVAL;
1372 out_err:
1373 ClearPageUptodate(page);
1374 f2fs_put_page(page, 1);
1375 return ERR_PTR(err);
1377 return page;
1380 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1382 return __get_node_page(sbi, nid, NULL, 0);
1385 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1387 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1388 nid_t nid = get_nid(parent, start, false);
1390 return __get_node_page(sbi, nid, parent, start);
1393 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1395 struct inode *inode;
1396 struct page *page;
1397 int ret;
1399 /* should flush inline_data before evict_inode */
1400 inode = ilookup(sbi->sb, ino);
1401 if (!inode)
1402 return;
1404 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1405 FGP_LOCK|FGP_NOWAIT, 0);
1406 if (!page)
1407 goto iput_out;
1409 if (!PageUptodate(page))
1410 goto page_out;
1412 if (!PageDirty(page))
1413 goto page_out;
1415 if (!clear_page_dirty_for_io(page))
1416 goto page_out;
1418 ret = f2fs_write_inline_data(inode, page);
1419 inode_dec_dirty_pages(inode);
1420 f2fs_remove_dirty_inode(inode);
1421 if (ret)
1422 set_page_dirty(page);
1423 page_out:
1424 f2fs_put_page(page, 1);
1425 iput_out:
1426 iput(inode);
1429 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1431 pgoff_t index;
1432 struct pagevec pvec;
1433 struct page *last_page = NULL;
1434 int nr_pages;
1436 pagevec_init(&pvec);
1437 index = 0;
1439 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1440 PAGECACHE_TAG_DIRTY))) {
1441 int i;
1443 for (i = 0; i < nr_pages; i++) {
1444 struct page *page = pvec.pages[i];
1446 if (unlikely(f2fs_cp_error(sbi))) {
1447 f2fs_put_page(last_page, 0);
1448 pagevec_release(&pvec);
1449 return ERR_PTR(-EIO);
1452 if (!IS_DNODE(page) || !is_cold_node(page))
1453 continue;
1454 if (ino_of_node(page) != ino)
1455 continue;
1457 lock_page(page);
1459 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1460 continue_unlock:
1461 unlock_page(page);
1462 continue;
1464 if (ino_of_node(page) != ino)
1465 goto continue_unlock;
1467 if (!PageDirty(page)) {
1468 /* someone wrote it for us */
1469 goto continue_unlock;
1472 if (last_page)
1473 f2fs_put_page(last_page, 0);
1475 get_page(page);
1476 last_page = page;
1477 unlock_page(page);
1479 pagevec_release(&pvec);
1480 cond_resched();
1482 return last_page;
1485 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1486 struct writeback_control *wbc, bool do_balance,
1487 enum iostat_type io_type, unsigned int *seq_id)
1489 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1490 nid_t nid;
1491 struct node_info ni;
1492 struct f2fs_io_info fio = {
1493 .sbi = sbi,
1494 .ino = ino_of_node(page),
1495 .type = NODE,
1496 .op = REQ_OP_WRITE,
1497 .op_flags = wbc_to_write_flags(wbc),
1498 .page = page,
1499 .encrypted_page = NULL,
1500 .submitted = false,
1501 .io_type = io_type,
1502 .io_wbc = wbc,
1504 unsigned int seq;
1506 trace_f2fs_writepage(page, NODE);
1508 if (unlikely(f2fs_cp_error(sbi)))
1509 goto redirty_out;
1511 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1512 goto redirty_out;
1514 if (wbc->sync_mode == WB_SYNC_NONE &&
1515 IS_DNODE(page) && is_cold_node(page))
1516 goto redirty_out;
1518 /* get old block addr of this node page */
1519 nid = nid_of_node(page);
1520 f2fs_bug_on(sbi, page->index != nid);
1522 if (f2fs_get_node_info(sbi, nid, &ni))
1523 goto redirty_out;
1525 if (wbc->for_reclaim) {
1526 if (!down_read_trylock(&sbi->node_write))
1527 goto redirty_out;
1528 } else {
1529 down_read(&sbi->node_write);
1532 /* This page is already truncated */
1533 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1534 ClearPageUptodate(page);
1535 dec_page_count(sbi, F2FS_DIRTY_NODES);
1536 up_read(&sbi->node_write);
1537 unlock_page(page);
1538 return 0;
1541 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1542 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC)) {
1543 up_read(&sbi->node_write);
1544 goto redirty_out;
1547 if (atomic && !test_opt(sbi, NOBARRIER))
1548 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1550 set_page_writeback(page);
1551 ClearPageError(page);
1553 if (f2fs_in_warm_node_list(sbi, page)) {
1554 seq = f2fs_add_fsync_node_entry(sbi, page);
1555 if (seq_id)
1556 *seq_id = seq;
1559 fio.old_blkaddr = ni.blk_addr;
1560 f2fs_do_write_node_page(nid, &fio);
1561 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1562 dec_page_count(sbi, F2FS_DIRTY_NODES);
1563 up_read(&sbi->node_write);
1565 if (wbc->for_reclaim) {
1566 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1567 submitted = NULL;
1570 unlock_page(page);
1572 if (unlikely(f2fs_cp_error(sbi))) {
1573 f2fs_submit_merged_write(sbi, NODE);
1574 submitted = NULL;
1576 if (submitted)
1577 *submitted = fio.submitted;
1579 if (do_balance)
1580 f2fs_balance_fs(sbi, false);
1581 return 0;
1583 redirty_out:
1584 redirty_page_for_writepage(wbc, page);
1585 return AOP_WRITEPAGE_ACTIVATE;
1588 int f2fs_move_node_page(struct page *node_page, int gc_type)
1590 int err = 0;
1592 if (gc_type == FG_GC) {
1593 struct writeback_control wbc = {
1594 .sync_mode = WB_SYNC_ALL,
1595 .nr_to_write = 1,
1596 .for_reclaim = 0,
1599 set_page_dirty(node_page);
1600 f2fs_wait_on_page_writeback(node_page, NODE, true);
1602 f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1603 if (!clear_page_dirty_for_io(node_page)) {
1604 err = -EAGAIN;
1605 goto out_page;
1608 if (__write_node_page(node_page, false, NULL,
1609 &wbc, false, FS_GC_NODE_IO, NULL)) {
1610 err = -EAGAIN;
1611 unlock_page(node_page);
1613 goto release_page;
1614 } else {
1615 /* set page dirty and write it */
1616 if (!PageWriteback(node_page))
1617 set_page_dirty(node_page);
1619 out_page:
1620 unlock_page(node_page);
1621 release_page:
1622 f2fs_put_page(node_page, 0);
1623 return err;
1626 static int f2fs_write_node_page(struct page *page,
1627 struct writeback_control *wbc)
1629 return __write_node_page(page, false, NULL, wbc, false,
1630 FS_NODE_IO, NULL);
1633 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1634 struct writeback_control *wbc, bool atomic,
1635 unsigned int *seq_id)
1637 pgoff_t index;
1638 struct pagevec pvec;
1639 int ret = 0;
1640 struct page *last_page = NULL;
1641 bool marked = false;
1642 nid_t ino = inode->i_ino;
1643 int nr_pages;
1644 int nwritten = 0;
1646 if (atomic) {
1647 last_page = last_fsync_dnode(sbi, ino);
1648 if (IS_ERR_OR_NULL(last_page))
1649 return PTR_ERR_OR_ZERO(last_page);
1651 retry:
1652 pagevec_init(&pvec);
1653 index = 0;
1655 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1656 PAGECACHE_TAG_DIRTY))) {
1657 int i;
1659 for (i = 0; i < nr_pages; i++) {
1660 struct page *page = pvec.pages[i];
1661 bool submitted = false;
1663 if (unlikely(f2fs_cp_error(sbi))) {
1664 f2fs_put_page(last_page, 0);
1665 pagevec_release(&pvec);
1666 ret = -EIO;
1667 goto out;
1670 if (!IS_DNODE(page) || !is_cold_node(page))
1671 continue;
1672 if (ino_of_node(page) != ino)
1673 continue;
1675 lock_page(page);
1677 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1678 continue_unlock:
1679 unlock_page(page);
1680 continue;
1682 if (ino_of_node(page) != ino)
1683 goto continue_unlock;
1685 if (!PageDirty(page) && page != last_page) {
1686 /* someone wrote it for us */
1687 goto continue_unlock;
1690 f2fs_wait_on_page_writeback(page, NODE, true);
1691 BUG_ON(PageWriteback(page));
1693 set_fsync_mark(page, 0);
1694 set_dentry_mark(page, 0);
1696 if (!atomic || page == last_page) {
1697 set_fsync_mark(page, 1);
1698 if (IS_INODE(page)) {
1699 if (is_inode_flag_set(inode,
1700 FI_DIRTY_INODE))
1701 f2fs_update_inode(inode, page);
1702 set_dentry_mark(page,
1703 f2fs_need_dentry_mark(sbi, ino));
1705 /* may be written by other thread */
1706 if (!PageDirty(page))
1707 set_page_dirty(page);
1710 if (!clear_page_dirty_for_io(page))
1711 goto continue_unlock;
1713 ret = __write_node_page(page, atomic &&
1714 page == last_page,
1715 &submitted, wbc, true,
1716 FS_NODE_IO, seq_id);
1717 if (ret) {
1718 unlock_page(page);
1719 f2fs_put_page(last_page, 0);
1720 break;
1721 } else if (submitted) {
1722 nwritten++;
1725 if (page == last_page) {
1726 f2fs_put_page(page, 0);
1727 marked = true;
1728 break;
1731 pagevec_release(&pvec);
1732 cond_resched();
1734 if (ret || marked)
1735 break;
1737 if (!ret && atomic && !marked) {
1738 f2fs_msg(sbi->sb, KERN_DEBUG,
1739 "Retry to write fsync mark: ino=%u, idx=%lx",
1740 ino, last_page->index);
1741 lock_page(last_page);
1742 f2fs_wait_on_page_writeback(last_page, NODE, true);
1743 set_page_dirty(last_page);
1744 unlock_page(last_page);
1745 goto retry;
1747 out:
1748 if (nwritten)
1749 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1750 return ret ? -EIO: 0;
1753 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1754 struct writeback_control *wbc,
1755 bool do_balance, enum iostat_type io_type)
1757 pgoff_t index;
1758 struct pagevec pvec;
1759 int step = 0;
1760 int nwritten = 0;
1761 int ret = 0;
1762 int nr_pages, done = 0;
1764 pagevec_init(&pvec);
1766 next_step:
1767 index = 0;
1769 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1770 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1771 int i;
1773 for (i = 0; i < nr_pages; i++) {
1774 struct page *page = pvec.pages[i];
1775 bool submitted = false;
1777 /* give a priority to WB_SYNC threads */
1778 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1779 wbc->sync_mode == WB_SYNC_NONE) {
1780 done = 1;
1781 break;
1785 * flushing sequence with step:
1786 * 0. indirect nodes
1787 * 1. dentry dnodes
1788 * 2. file dnodes
1790 if (step == 0 && IS_DNODE(page))
1791 continue;
1792 if (step == 1 && (!IS_DNODE(page) ||
1793 is_cold_node(page)))
1794 continue;
1795 if (step == 2 && (!IS_DNODE(page) ||
1796 !is_cold_node(page)))
1797 continue;
1798 lock_node:
1799 if (wbc->sync_mode == WB_SYNC_ALL)
1800 lock_page(page);
1801 else if (!trylock_page(page))
1802 continue;
1804 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1805 continue_unlock:
1806 unlock_page(page);
1807 continue;
1810 if (!PageDirty(page)) {
1811 /* someone wrote it for us */
1812 goto continue_unlock;
1815 /* flush inline_data */
1816 if (is_inline_node(page)) {
1817 clear_inline_node(page);
1818 unlock_page(page);
1819 flush_inline_data(sbi, ino_of_node(page));
1820 goto lock_node;
1823 f2fs_wait_on_page_writeback(page, NODE, true);
1825 BUG_ON(PageWriteback(page));
1826 if (!clear_page_dirty_for_io(page))
1827 goto continue_unlock;
1829 set_fsync_mark(page, 0);
1830 set_dentry_mark(page, 0);
1832 ret = __write_node_page(page, false, &submitted,
1833 wbc, do_balance, io_type, NULL);
1834 if (ret)
1835 unlock_page(page);
1836 else if (submitted)
1837 nwritten++;
1839 if (--wbc->nr_to_write == 0)
1840 break;
1842 pagevec_release(&pvec);
1843 cond_resched();
1845 if (wbc->nr_to_write == 0) {
1846 step = 2;
1847 break;
1851 if (step < 2) {
1852 if (wbc->sync_mode == WB_SYNC_NONE && step == 1)
1853 goto out;
1854 step++;
1855 goto next_step;
1857 out:
1858 if (nwritten)
1859 f2fs_submit_merged_write(sbi, NODE);
1861 if (unlikely(f2fs_cp_error(sbi)))
1862 return -EIO;
1863 return ret;
1866 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1867 unsigned int seq_id)
1869 struct fsync_node_entry *fn;
1870 struct page *page;
1871 struct list_head *head = &sbi->fsync_node_list;
1872 unsigned long flags;
1873 unsigned int cur_seq_id = 0;
1874 int ret2, ret = 0;
1876 while (seq_id && cur_seq_id < seq_id) {
1877 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1878 if (list_empty(head)) {
1879 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1880 break;
1882 fn = list_first_entry(head, struct fsync_node_entry, list);
1883 if (fn->seq_id > seq_id) {
1884 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1885 break;
1887 cur_seq_id = fn->seq_id;
1888 page = fn->page;
1889 get_page(page);
1890 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1892 f2fs_wait_on_page_writeback(page, NODE, true);
1893 if (TestClearPageError(page))
1894 ret = -EIO;
1896 put_page(page);
1898 if (ret)
1899 break;
1902 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1903 if (!ret)
1904 ret = ret2;
1906 return ret;
1909 static int f2fs_write_node_pages(struct address_space *mapping,
1910 struct writeback_control *wbc)
1912 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1913 struct blk_plug plug;
1914 long diff;
1916 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1917 goto skip_write;
1919 /* balancing f2fs's metadata in background */
1920 f2fs_balance_fs_bg(sbi);
1922 /* collect a number of dirty node pages and write together */
1923 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1924 goto skip_write;
1926 if (wbc->sync_mode == WB_SYNC_ALL)
1927 atomic_inc(&sbi->wb_sync_req[NODE]);
1928 else if (atomic_read(&sbi->wb_sync_req[NODE]))
1929 goto skip_write;
1931 trace_f2fs_writepages(mapping->host, wbc, NODE);
1933 diff = nr_pages_to_write(sbi, NODE, wbc);
1934 blk_start_plug(&plug);
1935 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1936 blk_finish_plug(&plug);
1937 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1939 if (wbc->sync_mode == WB_SYNC_ALL)
1940 atomic_dec(&sbi->wb_sync_req[NODE]);
1941 return 0;
1943 skip_write:
1944 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1945 trace_f2fs_writepages(mapping->host, wbc, NODE);
1946 return 0;
1949 static int f2fs_set_node_page_dirty(struct page *page)
1951 trace_f2fs_set_page_dirty(page, NODE);
1953 if (!PageUptodate(page))
1954 SetPageUptodate(page);
1955 #ifdef CONFIG_F2FS_CHECK_FS
1956 if (IS_INODE(page))
1957 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
1958 #endif
1959 if (!PageDirty(page)) {
1960 __set_page_dirty_nobuffers(page);
1961 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1962 SetPagePrivate(page);
1963 f2fs_trace_pid(page);
1964 return 1;
1966 return 0;
1970 * Structure of the f2fs node operations
1972 const struct address_space_operations f2fs_node_aops = {
1973 .writepage = f2fs_write_node_page,
1974 .writepages = f2fs_write_node_pages,
1975 .set_page_dirty = f2fs_set_node_page_dirty,
1976 .invalidatepage = f2fs_invalidate_page,
1977 .releasepage = f2fs_release_page,
1978 #ifdef CONFIG_MIGRATION
1979 .migratepage = f2fs_migrate_page,
1980 #endif
1983 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1984 nid_t n)
1986 return radix_tree_lookup(&nm_i->free_nid_root, n);
1989 static int __insert_free_nid(struct f2fs_sb_info *sbi,
1990 struct free_nid *i, enum nid_state state)
1992 struct f2fs_nm_info *nm_i = NM_I(sbi);
1994 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1995 if (err)
1996 return err;
1998 f2fs_bug_on(sbi, state != i->state);
1999 nm_i->nid_cnt[state]++;
2000 if (state == FREE_NID)
2001 list_add_tail(&i->list, &nm_i->free_nid_list);
2002 return 0;
2005 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2006 struct free_nid *i, enum nid_state state)
2008 struct f2fs_nm_info *nm_i = NM_I(sbi);
2010 f2fs_bug_on(sbi, state != i->state);
2011 nm_i->nid_cnt[state]--;
2012 if (state == FREE_NID)
2013 list_del(&i->list);
2014 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2017 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2018 enum nid_state org_state, enum nid_state dst_state)
2020 struct f2fs_nm_info *nm_i = NM_I(sbi);
2022 f2fs_bug_on(sbi, org_state != i->state);
2023 i->state = dst_state;
2024 nm_i->nid_cnt[org_state]--;
2025 nm_i->nid_cnt[dst_state]++;
2027 switch (dst_state) {
2028 case PREALLOC_NID:
2029 list_del(&i->list);
2030 break;
2031 case FREE_NID:
2032 list_add_tail(&i->list, &nm_i->free_nid_list);
2033 break;
2034 default:
2035 BUG_ON(1);
2039 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2040 bool set, bool build)
2042 struct f2fs_nm_info *nm_i = NM_I(sbi);
2043 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2044 unsigned int nid_ofs = nid - START_NID(nid);
2046 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2047 return;
2049 if (set) {
2050 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2051 return;
2052 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2053 nm_i->free_nid_count[nat_ofs]++;
2054 } else {
2055 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2056 return;
2057 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2058 if (!build)
2059 nm_i->free_nid_count[nat_ofs]--;
2063 /* return if the nid is recognized as free */
2064 static bool add_free_nid(struct f2fs_sb_info *sbi,
2065 nid_t nid, bool build, bool update)
2067 struct f2fs_nm_info *nm_i = NM_I(sbi);
2068 struct free_nid *i, *e;
2069 struct nat_entry *ne;
2070 int err = -EINVAL;
2071 bool ret = false;
2073 /* 0 nid should not be used */
2074 if (unlikely(nid == 0))
2075 return false;
2077 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2078 i->nid = nid;
2079 i->state = FREE_NID;
2081 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2083 spin_lock(&nm_i->nid_list_lock);
2085 if (build) {
2087 * Thread A Thread B
2088 * - f2fs_create
2089 * - f2fs_new_inode
2090 * - f2fs_alloc_nid
2091 * - __insert_nid_to_list(PREALLOC_NID)
2092 * - f2fs_balance_fs_bg
2093 * - f2fs_build_free_nids
2094 * - __f2fs_build_free_nids
2095 * - scan_nat_page
2096 * - add_free_nid
2097 * - __lookup_nat_cache
2098 * - f2fs_add_link
2099 * - f2fs_init_inode_metadata
2100 * - f2fs_new_inode_page
2101 * - f2fs_new_node_page
2102 * - set_node_addr
2103 * - f2fs_alloc_nid_done
2104 * - __remove_nid_from_list(PREALLOC_NID)
2105 * - __insert_nid_to_list(FREE_NID)
2107 ne = __lookup_nat_cache(nm_i, nid);
2108 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2109 nat_get_blkaddr(ne) != NULL_ADDR))
2110 goto err_out;
2112 e = __lookup_free_nid_list(nm_i, nid);
2113 if (e) {
2114 if (e->state == FREE_NID)
2115 ret = true;
2116 goto err_out;
2119 ret = true;
2120 err = __insert_free_nid(sbi, i, FREE_NID);
2121 err_out:
2122 if (update) {
2123 update_free_nid_bitmap(sbi, nid, ret, build);
2124 if (!build)
2125 nm_i->available_nids++;
2127 spin_unlock(&nm_i->nid_list_lock);
2128 radix_tree_preload_end();
2130 if (err)
2131 kmem_cache_free(free_nid_slab, i);
2132 return ret;
2135 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2137 struct f2fs_nm_info *nm_i = NM_I(sbi);
2138 struct free_nid *i;
2139 bool need_free = false;
2141 spin_lock(&nm_i->nid_list_lock);
2142 i = __lookup_free_nid_list(nm_i, nid);
2143 if (i && i->state == FREE_NID) {
2144 __remove_free_nid(sbi, i, FREE_NID);
2145 need_free = true;
2147 spin_unlock(&nm_i->nid_list_lock);
2149 if (need_free)
2150 kmem_cache_free(free_nid_slab, i);
2153 static int scan_nat_page(struct f2fs_sb_info *sbi,
2154 struct page *nat_page, nid_t start_nid)
2156 struct f2fs_nm_info *nm_i = NM_I(sbi);
2157 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2158 block_t blk_addr;
2159 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2160 int i;
2162 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2164 i = start_nid % NAT_ENTRY_PER_BLOCK;
2166 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2167 if (unlikely(start_nid >= nm_i->max_nid))
2168 break;
2170 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2172 if (blk_addr == NEW_ADDR)
2173 return -EINVAL;
2175 if (blk_addr == NULL_ADDR) {
2176 add_free_nid(sbi, start_nid, true, true);
2177 } else {
2178 spin_lock(&NM_I(sbi)->nid_list_lock);
2179 update_free_nid_bitmap(sbi, start_nid, false, true);
2180 spin_unlock(&NM_I(sbi)->nid_list_lock);
2184 return 0;
2187 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2189 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2190 struct f2fs_journal *journal = curseg->journal;
2191 int i;
2193 down_read(&curseg->journal_rwsem);
2194 for (i = 0; i < nats_in_cursum(journal); i++) {
2195 block_t addr;
2196 nid_t nid;
2198 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2199 nid = le32_to_cpu(nid_in_journal(journal, i));
2200 if (addr == NULL_ADDR)
2201 add_free_nid(sbi, nid, true, false);
2202 else
2203 remove_free_nid(sbi, nid);
2205 up_read(&curseg->journal_rwsem);
2208 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2210 struct f2fs_nm_info *nm_i = NM_I(sbi);
2211 unsigned int i, idx;
2212 nid_t nid;
2214 down_read(&nm_i->nat_tree_lock);
2216 for (i = 0; i < nm_i->nat_blocks; i++) {
2217 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2218 continue;
2219 if (!nm_i->free_nid_count[i])
2220 continue;
2221 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2222 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2223 NAT_ENTRY_PER_BLOCK, idx);
2224 if (idx >= NAT_ENTRY_PER_BLOCK)
2225 break;
2227 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2228 add_free_nid(sbi, nid, true, false);
2230 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2231 goto out;
2234 out:
2235 scan_curseg_cache(sbi);
2237 up_read(&nm_i->nat_tree_lock);
2240 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2241 bool sync, bool mount)
2243 struct f2fs_nm_info *nm_i = NM_I(sbi);
2244 int i = 0, ret;
2245 nid_t nid = nm_i->next_scan_nid;
2247 if (unlikely(nid >= nm_i->max_nid))
2248 nid = 0;
2250 /* Enough entries */
2251 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2252 return 0;
2254 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2255 return 0;
2257 if (!mount) {
2258 /* try to find free nids in free_nid_bitmap */
2259 scan_free_nid_bits(sbi);
2261 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2262 return 0;
2265 /* readahead nat pages to be scanned */
2266 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2267 META_NAT, true);
2269 down_read(&nm_i->nat_tree_lock);
2271 while (1) {
2272 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2273 nm_i->nat_block_bitmap)) {
2274 struct page *page = get_current_nat_page(sbi, nid);
2276 if (IS_ERR(page)) {
2277 ret = PTR_ERR(page);
2278 } else {
2279 ret = scan_nat_page(sbi, page, nid);
2280 f2fs_put_page(page, 1);
2283 if (ret) {
2284 up_read(&nm_i->nat_tree_lock);
2285 f2fs_bug_on(sbi, !mount);
2286 f2fs_msg(sbi->sb, KERN_ERR,
2287 "NAT is corrupt, run fsck to fix it");
2288 return ret;
2292 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2293 if (unlikely(nid >= nm_i->max_nid))
2294 nid = 0;
2296 if (++i >= FREE_NID_PAGES)
2297 break;
2300 /* go to the next free nat pages to find free nids abundantly */
2301 nm_i->next_scan_nid = nid;
2303 /* find free nids from current sum_pages */
2304 scan_curseg_cache(sbi);
2306 up_read(&nm_i->nat_tree_lock);
2308 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2309 nm_i->ra_nid_pages, META_NAT, false);
2311 return 0;
2314 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2316 int ret;
2318 mutex_lock(&NM_I(sbi)->build_lock);
2319 ret = __f2fs_build_free_nids(sbi, sync, mount);
2320 mutex_unlock(&NM_I(sbi)->build_lock);
2322 return ret;
2326 * If this function returns success, caller can obtain a new nid
2327 * from second parameter of this function.
2328 * The returned nid could be used ino as well as nid when inode is created.
2330 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2332 struct f2fs_nm_info *nm_i = NM_I(sbi);
2333 struct free_nid *i = NULL;
2334 retry:
2335 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2336 f2fs_show_injection_info(FAULT_ALLOC_NID);
2337 return false;
2340 spin_lock(&nm_i->nid_list_lock);
2342 if (unlikely(nm_i->available_nids == 0)) {
2343 spin_unlock(&nm_i->nid_list_lock);
2344 return false;
2347 /* We should not use stale free nids created by f2fs_build_free_nids */
2348 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2349 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2350 i = list_first_entry(&nm_i->free_nid_list,
2351 struct free_nid, list);
2352 *nid = i->nid;
2354 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2355 nm_i->available_nids--;
2357 update_free_nid_bitmap(sbi, *nid, false, false);
2359 spin_unlock(&nm_i->nid_list_lock);
2360 return true;
2362 spin_unlock(&nm_i->nid_list_lock);
2364 /* Let's scan nat pages and its caches to get free nids */
2365 if (!f2fs_build_free_nids(sbi, true, false))
2366 goto retry;
2367 return false;
2371 * f2fs_alloc_nid() should be called prior to this function.
2373 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2375 struct f2fs_nm_info *nm_i = NM_I(sbi);
2376 struct free_nid *i;
2378 spin_lock(&nm_i->nid_list_lock);
2379 i = __lookup_free_nid_list(nm_i, nid);
2380 f2fs_bug_on(sbi, !i);
2381 __remove_free_nid(sbi, i, PREALLOC_NID);
2382 spin_unlock(&nm_i->nid_list_lock);
2384 kmem_cache_free(free_nid_slab, i);
2388 * f2fs_alloc_nid() should be called prior to this function.
2390 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2392 struct f2fs_nm_info *nm_i = NM_I(sbi);
2393 struct free_nid *i;
2394 bool need_free = false;
2396 if (!nid)
2397 return;
2399 spin_lock(&nm_i->nid_list_lock);
2400 i = __lookup_free_nid_list(nm_i, nid);
2401 f2fs_bug_on(sbi, !i);
2403 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2404 __remove_free_nid(sbi, i, PREALLOC_NID);
2405 need_free = true;
2406 } else {
2407 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2410 nm_i->available_nids++;
2412 update_free_nid_bitmap(sbi, nid, true, false);
2414 spin_unlock(&nm_i->nid_list_lock);
2416 if (need_free)
2417 kmem_cache_free(free_nid_slab, i);
2420 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2422 struct f2fs_nm_info *nm_i = NM_I(sbi);
2423 struct free_nid *i, *next;
2424 int nr = nr_shrink;
2426 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2427 return 0;
2429 if (!mutex_trylock(&nm_i->build_lock))
2430 return 0;
2432 spin_lock(&nm_i->nid_list_lock);
2433 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2434 if (nr_shrink <= 0 ||
2435 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2436 break;
2438 __remove_free_nid(sbi, i, FREE_NID);
2439 kmem_cache_free(free_nid_slab, i);
2440 nr_shrink--;
2442 spin_unlock(&nm_i->nid_list_lock);
2443 mutex_unlock(&nm_i->build_lock);
2445 return nr - nr_shrink;
2448 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2450 void *src_addr, *dst_addr;
2451 size_t inline_size;
2452 struct page *ipage;
2453 struct f2fs_inode *ri;
2455 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2456 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2458 ri = F2FS_INODE(page);
2459 if (ri->i_inline & F2FS_INLINE_XATTR) {
2460 set_inode_flag(inode, FI_INLINE_XATTR);
2461 } else {
2462 clear_inode_flag(inode, FI_INLINE_XATTR);
2463 goto update_inode;
2466 dst_addr = inline_xattr_addr(inode, ipage);
2467 src_addr = inline_xattr_addr(inode, page);
2468 inline_size = inline_xattr_size(inode);
2470 f2fs_wait_on_page_writeback(ipage, NODE, true);
2471 memcpy(dst_addr, src_addr, inline_size);
2472 update_inode:
2473 f2fs_update_inode(inode, ipage);
2474 f2fs_put_page(ipage, 1);
2477 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2479 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2480 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2481 nid_t new_xnid;
2482 struct dnode_of_data dn;
2483 struct node_info ni;
2484 struct page *xpage;
2485 int err;
2487 if (!prev_xnid)
2488 goto recover_xnid;
2490 /* 1: invalidate the previous xattr nid */
2491 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2492 if (err)
2493 return err;
2495 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2496 dec_valid_node_count(sbi, inode, false);
2497 set_node_addr(sbi, &ni, NULL_ADDR, false);
2499 recover_xnid:
2500 /* 2: update xattr nid in inode */
2501 if (!f2fs_alloc_nid(sbi, &new_xnid))
2502 return -ENOSPC;
2504 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2505 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2506 if (IS_ERR(xpage)) {
2507 f2fs_alloc_nid_failed(sbi, new_xnid);
2508 return PTR_ERR(xpage);
2511 f2fs_alloc_nid_done(sbi, new_xnid);
2512 f2fs_update_inode_page(inode);
2514 /* 3: update and set xattr node page dirty */
2515 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2517 set_page_dirty(xpage);
2518 f2fs_put_page(xpage, 1);
2520 return 0;
2523 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2525 struct f2fs_inode *src, *dst;
2526 nid_t ino = ino_of_node(page);
2527 struct node_info old_ni, new_ni;
2528 struct page *ipage;
2529 int err;
2531 err = f2fs_get_node_info(sbi, ino, &old_ni);
2532 if (err)
2533 return err;
2535 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2536 return -EINVAL;
2537 retry:
2538 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2539 if (!ipage) {
2540 congestion_wait(BLK_RW_ASYNC, HZ/50);
2541 goto retry;
2544 /* Should not use this inode from free nid list */
2545 remove_free_nid(sbi, ino);
2547 if (!PageUptodate(ipage))
2548 SetPageUptodate(ipage);
2549 fill_node_footer(ipage, ino, ino, 0, true);
2550 set_cold_node(ipage, false);
2552 src = F2FS_INODE(page);
2553 dst = F2FS_INODE(ipage);
2555 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2556 dst->i_size = 0;
2557 dst->i_blocks = cpu_to_le64(1);
2558 dst->i_links = cpu_to_le32(1);
2559 dst->i_xattr_nid = 0;
2560 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2561 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2562 dst->i_extra_isize = src->i_extra_isize;
2564 if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2565 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2566 i_inline_xattr_size))
2567 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2569 if (f2fs_sb_has_project_quota(sbi->sb) &&
2570 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2571 i_projid))
2572 dst->i_projid = src->i_projid;
2574 if (f2fs_sb_has_inode_crtime(sbi->sb) &&
2575 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2576 i_crtime_nsec)) {
2577 dst->i_crtime = src->i_crtime;
2578 dst->i_crtime_nsec = src->i_crtime_nsec;
2582 new_ni = old_ni;
2583 new_ni.ino = ino;
2585 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2586 WARN_ON(1);
2587 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2588 inc_valid_inode_count(sbi);
2589 set_page_dirty(ipage);
2590 f2fs_put_page(ipage, 1);
2591 return 0;
2594 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2595 unsigned int segno, struct f2fs_summary_block *sum)
2597 struct f2fs_node *rn;
2598 struct f2fs_summary *sum_entry;
2599 block_t addr;
2600 int i, idx, last_offset, nrpages;
2602 /* scan the node segment */
2603 last_offset = sbi->blocks_per_seg;
2604 addr = START_BLOCK(sbi, segno);
2605 sum_entry = &sum->entries[0];
2607 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2608 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2610 /* readahead node pages */
2611 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2613 for (idx = addr; idx < addr + nrpages; idx++) {
2614 struct page *page = f2fs_get_tmp_page(sbi, idx);
2616 if (IS_ERR(page))
2617 return PTR_ERR(page);
2619 rn = F2FS_NODE(page);
2620 sum_entry->nid = rn->footer.nid;
2621 sum_entry->version = 0;
2622 sum_entry->ofs_in_node = 0;
2623 sum_entry++;
2624 f2fs_put_page(page, 1);
2627 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2628 addr + nrpages);
2630 return 0;
2633 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2635 struct f2fs_nm_info *nm_i = NM_I(sbi);
2636 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2637 struct f2fs_journal *journal = curseg->journal;
2638 int i;
2640 down_write(&curseg->journal_rwsem);
2641 for (i = 0; i < nats_in_cursum(journal); i++) {
2642 struct nat_entry *ne;
2643 struct f2fs_nat_entry raw_ne;
2644 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2646 raw_ne = nat_in_journal(journal, i);
2648 ne = __lookup_nat_cache(nm_i, nid);
2649 if (!ne) {
2650 ne = __alloc_nat_entry(nid, true);
2651 __init_nat_entry(nm_i, ne, &raw_ne, true);
2655 * if a free nat in journal has not been used after last
2656 * checkpoint, we should remove it from available nids,
2657 * since later we will add it again.
2659 if (!get_nat_flag(ne, IS_DIRTY) &&
2660 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2661 spin_lock(&nm_i->nid_list_lock);
2662 nm_i->available_nids--;
2663 spin_unlock(&nm_i->nid_list_lock);
2666 __set_nat_cache_dirty(nm_i, ne);
2668 update_nats_in_cursum(journal, -i);
2669 up_write(&curseg->journal_rwsem);
2672 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2673 struct list_head *head, int max)
2675 struct nat_entry_set *cur;
2677 if (nes->entry_cnt >= max)
2678 goto add_out;
2680 list_for_each_entry(cur, head, set_list) {
2681 if (cur->entry_cnt >= nes->entry_cnt) {
2682 list_add(&nes->set_list, cur->set_list.prev);
2683 return;
2686 add_out:
2687 list_add_tail(&nes->set_list, head);
2690 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2691 struct page *page)
2693 struct f2fs_nm_info *nm_i = NM_I(sbi);
2694 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2695 struct f2fs_nat_block *nat_blk = page_address(page);
2696 int valid = 0;
2697 int i = 0;
2699 if (!enabled_nat_bits(sbi, NULL))
2700 return;
2702 if (nat_index == 0) {
2703 valid = 1;
2704 i = 1;
2706 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2707 if (nat_blk->entries[i].block_addr != NULL_ADDR)
2708 valid++;
2710 if (valid == 0) {
2711 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2712 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2713 return;
2716 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2717 if (valid == NAT_ENTRY_PER_BLOCK)
2718 __set_bit_le(nat_index, nm_i->full_nat_bits);
2719 else
2720 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2723 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2724 struct nat_entry_set *set, struct cp_control *cpc)
2726 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2727 struct f2fs_journal *journal = curseg->journal;
2728 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2729 bool to_journal = true;
2730 struct f2fs_nat_block *nat_blk;
2731 struct nat_entry *ne, *cur;
2732 struct page *page = NULL;
2735 * there are two steps to flush nat entries:
2736 * #1, flush nat entries to journal in current hot data summary block.
2737 * #2, flush nat entries to nat page.
2739 if (enabled_nat_bits(sbi, cpc) ||
2740 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2741 to_journal = false;
2743 if (to_journal) {
2744 down_write(&curseg->journal_rwsem);
2745 } else {
2746 page = get_next_nat_page(sbi, start_nid);
2747 if (IS_ERR(page))
2748 return PTR_ERR(page);
2750 nat_blk = page_address(page);
2751 f2fs_bug_on(sbi, !nat_blk);
2754 /* flush dirty nats in nat entry set */
2755 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2756 struct f2fs_nat_entry *raw_ne;
2757 nid_t nid = nat_get_nid(ne);
2758 int offset;
2760 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2762 if (to_journal) {
2763 offset = f2fs_lookup_journal_in_cursum(journal,
2764 NAT_JOURNAL, nid, 1);
2765 f2fs_bug_on(sbi, offset < 0);
2766 raw_ne = &nat_in_journal(journal, offset);
2767 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2768 } else {
2769 raw_ne = &nat_blk->entries[nid - start_nid];
2771 raw_nat_from_node_info(raw_ne, &ne->ni);
2772 nat_reset_flag(ne);
2773 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2774 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2775 add_free_nid(sbi, nid, false, true);
2776 } else {
2777 spin_lock(&NM_I(sbi)->nid_list_lock);
2778 update_free_nid_bitmap(sbi, nid, false, false);
2779 spin_unlock(&NM_I(sbi)->nid_list_lock);
2783 if (to_journal) {
2784 up_write(&curseg->journal_rwsem);
2785 } else {
2786 __update_nat_bits(sbi, start_nid, page);
2787 f2fs_put_page(page, 1);
2790 /* Allow dirty nats by node block allocation in write_begin */
2791 if (!set->entry_cnt) {
2792 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2793 kmem_cache_free(nat_entry_set_slab, set);
2795 return 0;
2799 * This function is called during the checkpointing process.
2801 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2803 struct f2fs_nm_info *nm_i = NM_I(sbi);
2804 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2805 struct f2fs_journal *journal = curseg->journal;
2806 struct nat_entry_set *setvec[SETVEC_SIZE];
2807 struct nat_entry_set *set, *tmp;
2808 unsigned int found;
2809 nid_t set_idx = 0;
2810 LIST_HEAD(sets);
2811 int err = 0;
2813 /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2814 if (enabled_nat_bits(sbi, cpc)) {
2815 down_write(&nm_i->nat_tree_lock);
2816 remove_nats_in_journal(sbi);
2817 up_write(&nm_i->nat_tree_lock);
2820 if (!nm_i->dirty_nat_cnt)
2821 return 0;
2823 down_write(&nm_i->nat_tree_lock);
2826 * if there are no enough space in journal to store dirty nat
2827 * entries, remove all entries from journal and merge them
2828 * into nat entry set.
2830 if (enabled_nat_bits(sbi, cpc) ||
2831 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2832 remove_nats_in_journal(sbi);
2834 while ((found = __gang_lookup_nat_set(nm_i,
2835 set_idx, SETVEC_SIZE, setvec))) {
2836 unsigned idx;
2837 set_idx = setvec[found - 1]->set + 1;
2838 for (idx = 0; idx < found; idx++)
2839 __adjust_nat_entry_set(setvec[idx], &sets,
2840 MAX_NAT_JENTRIES(journal));
2843 /* flush dirty nats in nat entry set */
2844 list_for_each_entry_safe(set, tmp, &sets, set_list) {
2845 err = __flush_nat_entry_set(sbi, set, cpc);
2846 if (err)
2847 break;
2850 up_write(&nm_i->nat_tree_lock);
2851 /* Allow dirty nats by node block allocation in write_begin */
2853 return err;
2856 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2858 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2859 struct f2fs_nm_info *nm_i = NM_I(sbi);
2860 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2861 unsigned int i;
2862 __u64 cp_ver = cur_cp_version(ckpt);
2863 block_t nat_bits_addr;
2865 if (!enabled_nat_bits(sbi, NULL))
2866 return 0;
2868 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2869 nm_i->nat_bits = f2fs_kzalloc(sbi,
2870 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2871 if (!nm_i->nat_bits)
2872 return -ENOMEM;
2874 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2875 nm_i->nat_bits_blocks;
2876 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2877 struct page *page;
2879 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2880 if (IS_ERR(page))
2881 return PTR_ERR(page);
2883 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2884 page_address(page), F2FS_BLKSIZE);
2885 f2fs_put_page(page, 1);
2888 cp_ver |= (cur_cp_crc(ckpt) << 32);
2889 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2890 disable_nat_bits(sbi, true);
2891 return 0;
2894 nm_i->full_nat_bits = nm_i->nat_bits + 8;
2895 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2897 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2898 return 0;
2901 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2903 struct f2fs_nm_info *nm_i = NM_I(sbi);
2904 unsigned int i = 0;
2905 nid_t nid, last_nid;
2907 if (!enabled_nat_bits(sbi, NULL))
2908 return;
2910 for (i = 0; i < nm_i->nat_blocks; i++) {
2911 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2912 if (i >= nm_i->nat_blocks)
2913 break;
2915 __set_bit_le(i, nm_i->nat_block_bitmap);
2917 nid = i * NAT_ENTRY_PER_BLOCK;
2918 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2920 spin_lock(&NM_I(sbi)->nid_list_lock);
2921 for (; nid < last_nid; nid++)
2922 update_free_nid_bitmap(sbi, nid, true, true);
2923 spin_unlock(&NM_I(sbi)->nid_list_lock);
2926 for (i = 0; i < nm_i->nat_blocks; i++) {
2927 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2928 if (i >= nm_i->nat_blocks)
2929 break;
2931 __set_bit_le(i, nm_i->nat_block_bitmap);
2935 static int init_node_manager(struct f2fs_sb_info *sbi)
2937 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2938 struct f2fs_nm_info *nm_i = NM_I(sbi);
2939 unsigned char *version_bitmap;
2940 unsigned int nat_segs;
2941 int err;
2943 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2945 /* segment_count_nat includes pair segment so divide to 2. */
2946 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2947 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2948 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2950 /* not used nids: 0, node, meta, (and root counted as valid node) */
2951 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2952 sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2953 nm_i->nid_cnt[FREE_NID] = 0;
2954 nm_i->nid_cnt[PREALLOC_NID] = 0;
2955 nm_i->nat_cnt = 0;
2956 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2957 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2958 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2960 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2961 INIT_LIST_HEAD(&nm_i->free_nid_list);
2962 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2963 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2964 INIT_LIST_HEAD(&nm_i->nat_entries);
2965 spin_lock_init(&nm_i->nat_list_lock);
2967 mutex_init(&nm_i->build_lock);
2968 spin_lock_init(&nm_i->nid_list_lock);
2969 init_rwsem(&nm_i->nat_tree_lock);
2971 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2972 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2973 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2974 if (!version_bitmap)
2975 return -EFAULT;
2977 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2978 GFP_KERNEL);
2979 if (!nm_i->nat_bitmap)
2980 return -ENOMEM;
2982 err = __get_nat_bitmaps(sbi);
2983 if (err)
2984 return err;
2986 #ifdef CONFIG_F2FS_CHECK_FS
2987 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2988 GFP_KERNEL);
2989 if (!nm_i->nat_bitmap_mir)
2990 return -ENOMEM;
2991 #endif
2993 return 0;
2996 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2998 struct f2fs_nm_info *nm_i = NM_I(sbi);
2999 int i;
3001 nm_i->free_nid_bitmap =
3002 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3003 nm_i->nat_blocks),
3004 GFP_KERNEL);
3005 if (!nm_i->free_nid_bitmap)
3006 return -ENOMEM;
3008 for (i = 0; i < nm_i->nat_blocks; i++) {
3009 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3010 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3011 if (!nm_i->free_nid_bitmap[i])
3012 return -ENOMEM;
3015 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3016 GFP_KERNEL);
3017 if (!nm_i->nat_block_bitmap)
3018 return -ENOMEM;
3020 nm_i->free_nid_count =
3021 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3022 nm_i->nat_blocks),
3023 GFP_KERNEL);
3024 if (!nm_i->free_nid_count)
3025 return -ENOMEM;
3026 return 0;
3029 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3031 int err;
3033 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3034 GFP_KERNEL);
3035 if (!sbi->nm_info)
3036 return -ENOMEM;
3038 err = init_node_manager(sbi);
3039 if (err)
3040 return err;
3042 err = init_free_nid_cache(sbi);
3043 if (err)
3044 return err;
3046 /* load free nid status from nat_bits table */
3047 load_free_nid_bitmap(sbi);
3049 return f2fs_build_free_nids(sbi, true, true);
3052 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3054 struct f2fs_nm_info *nm_i = NM_I(sbi);
3055 struct free_nid *i, *next_i;
3056 struct nat_entry *natvec[NATVEC_SIZE];
3057 struct nat_entry_set *setvec[SETVEC_SIZE];
3058 nid_t nid = 0;
3059 unsigned int found;
3061 if (!nm_i)
3062 return;
3064 /* destroy free nid list */
3065 spin_lock(&nm_i->nid_list_lock);
3066 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3067 __remove_free_nid(sbi, i, FREE_NID);
3068 spin_unlock(&nm_i->nid_list_lock);
3069 kmem_cache_free(free_nid_slab, i);
3070 spin_lock(&nm_i->nid_list_lock);
3072 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3073 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3074 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3075 spin_unlock(&nm_i->nid_list_lock);
3077 /* destroy nat cache */
3078 down_write(&nm_i->nat_tree_lock);
3079 while ((found = __gang_lookup_nat_cache(nm_i,
3080 nid, NATVEC_SIZE, natvec))) {
3081 unsigned idx;
3083 nid = nat_get_nid(natvec[found - 1]) + 1;
3084 for (idx = 0; idx < found; idx++) {
3085 spin_lock(&nm_i->nat_list_lock);
3086 list_del(&natvec[idx]->list);
3087 spin_unlock(&nm_i->nat_list_lock);
3089 __del_from_nat_cache(nm_i, natvec[idx]);
3092 f2fs_bug_on(sbi, nm_i->nat_cnt);
3094 /* destroy nat set cache */
3095 nid = 0;
3096 while ((found = __gang_lookup_nat_set(nm_i,
3097 nid, SETVEC_SIZE, setvec))) {
3098 unsigned idx;
3100 nid = setvec[found - 1]->set + 1;
3101 for (idx = 0; idx < found; idx++) {
3102 /* entry_cnt is not zero, when cp_error was occurred */
3103 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3104 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3105 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3108 up_write(&nm_i->nat_tree_lock);
3110 kvfree(nm_i->nat_block_bitmap);
3111 if (nm_i->free_nid_bitmap) {
3112 int i;
3114 for (i = 0; i < nm_i->nat_blocks; i++)
3115 kvfree(nm_i->free_nid_bitmap[i]);
3116 kfree(nm_i->free_nid_bitmap);
3118 kvfree(nm_i->free_nid_count);
3120 kfree(nm_i->nat_bitmap);
3121 kfree(nm_i->nat_bits);
3122 #ifdef CONFIG_F2FS_CHECK_FS
3123 kfree(nm_i->nat_bitmap_mir);
3124 #endif
3125 sbi->nm_info = NULL;
3126 kfree(nm_i);
3129 int __init f2fs_create_node_manager_caches(void)
3131 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3132 sizeof(struct nat_entry));
3133 if (!nat_entry_slab)
3134 goto fail;
3136 free_nid_slab = f2fs_kmem_cache_create("free_nid",
3137 sizeof(struct free_nid));
3138 if (!free_nid_slab)
3139 goto destroy_nat_entry;
3141 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3142 sizeof(struct nat_entry_set));
3143 if (!nat_entry_set_slab)
3144 goto destroy_free_nid;
3146 fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3147 sizeof(struct fsync_node_entry));
3148 if (!fsync_node_entry_slab)
3149 goto destroy_nat_entry_set;
3150 return 0;
3152 destroy_nat_entry_set:
3153 kmem_cache_destroy(nat_entry_set_slab);
3154 destroy_free_nid:
3155 kmem_cache_destroy(free_nid_slab);
3156 destroy_nat_entry:
3157 kmem_cache_destroy(nat_entry_slab);
3158 fail:
3159 return -ENOMEM;
3162 void f2fs_destroy_node_manager_caches(void)
3164 kmem_cache_destroy(fsync_node_entry_slab);
3165 kmem_cache_destroy(nat_entry_set_slab);
3166 kmem_cache_destroy(free_nid_slab);
3167 kmem_cache_destroy(nat_entry_slab);