1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
21 #include <trace/events/f2fs.h>
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
25 static struct kmem_cache
*nat_entry_slab
;
26 static struct kmem_cache
*free_nid_slab
;
27 static struct kmem_cache
*nat_entry_set_slab
;
28 static struct kmem_cache
*fsync_node_entry_slab
;
31 * Check whether the given nid is within node id range.
33 int f2fs_check_nid_range(struct f2fs_sb_info
*sbi
, nid_t nid
)
35 if (unlikely(nid
< F2FS_ROOT_INO(sbi
) || nid
>= NM_I(sbi
)->max_nid
)) {
36 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
37 f2fs_msg(sbi
->sb
, KERN_WARNING
,
38 "%s: out-of-range nid=%x, run fsck to fix.",
45 bool f2fs_available_free_memory(struct f2fs_sb_info
*sbi
, int type
)
47 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
49 unsigned long avail_ram
;
50 unsigned long mem_size
= 0;
55 /* only uses low memory */
56 avail_ram
= val
.totalram
- val
.totalhigh
;
59 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
61 if (type
== FREE_NIDS
) {
62 mem_size
= (nm_i
->nid_cnt
[FREE_NID
] *
63 sizeof(struct free_nid
)) >> PAGE_SHIFT
;
64 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
65 } else if (type
== NAT_ENTRIES
) {
66 mem_size
= (nm_i
->nat_cnt
* sizeof(struct nat_entry
)) >>
68 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
69 if (excess_cached_nats(sbi
))
71 } else if (type
== DIRTY_DENTS
) {
72 if (sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
74 mem_size
= get_pages(sbi
, F2FS_DIRTY_DENTS
);
75 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
76 } else if (type
== INO_ENTRIES
) {
79 for (i
= 0; i
< MAX_INO_ENTRY
; i
++)
80 mem_size
+= sbi
->im
[i
].ino_num
*
81 sizeof(struct ino_entry
);
82 mem_size
>>= PAGE_SHIFT
;
83 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
84 } else if (type
== EXTENT_CACHE
) {
85 mem_size
= (atomic_read(&sbi
->total_ext_tree
) *
86 sizeof(struct extent_tree
) +
87 atomic_read(&sbi
->total_ext_node
) *
88 sizeof(struct extent_node
)) >> PAGE_SHIFT
;
89 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
90 } else if (type
== INMEM_PAGES
) {
91 /* it allows 20% / total_ram for inmemory pages */
92 mem_size
= get_pages(sbi
, F2FS_INMEM_PAGES
);
93 res
= mem_size
< (val
.totalram
/ 5);
95 if (!sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
101 static void clear_node_page_dirty(struct page
*page
)
103 if (PageDirty(page
)) {
104 f2fs_clear_page_cache_dirty_tag(page
);
105 clear_page_dirty_for_io(page
);
106 dec_page_count(F2FS_P_SB(page
), F2FS_DIRTY_NODES
);
108 ClearPageUptodate(page
);
111 static struct page
*get_current_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
113 return f2fs_get_meta_page_nofail(sbi
, current_nat_addr(sbi
, nid
));
116 static struct page
*get_next_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
118 struct page
*src_page
;
119 struct page
*dst_page
;
123 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
125 dst_off
= next_nat_addr(sbi
, current_nat_addr(sbi
, nid
));
127 /* get current nat block page with lock */
128 src_page
= get_current_nat_page(sbi
, nid
);
129 if (IS_ERR(src_page
))
131 dst_page
= f2fs_grab_meta_page(sbi
, dst_off
);
132 f2fs_bug_on(sbi
, PageDirty(src_page
));
134 src_addr
= page_address(src_page
);
135 dst_addr
= page_address(dst_page
);
136 memcpy(dst_addr
, src_addr
, PAGE_SIZE
);
137 set_page_dirty(dst_page
);
138 f2fs_put_page(src_page
, 1);
140 set_to_next_nat(nm_i
, nid
);
145 static struct nat_entry
*__alloc_nat_entry(nid_t nid
, bool no_fail
)
147 struct nat_entry
*new;
150 new = f2fs_kmem_cache_alloc(nat_entry_slab
, GFP_F2FS_ZERO
);
152 new = kmem_cache_alloc(nat_entry_slab
, GFP_F2FS_ZERO
);
154 nat_set_nid(new, nid
);
160 static void __free_nat_entry(struct nat_entry
*e
)
162 kmem_cache_free(nat_entry_slab
, e
);
165 /* must be locked by nat_tree_lock */
166 static struct nat_entry
*__init_nat_entry(struct f2fs_nm_info
*nm_i
,
167 struct nat_entry
*ne
, struct f2fs_nat_entry
*raw_ne
, bool no_fail
)
170 f2fs_radix_tree_insert(&nm_i
->nat_root
, nat_get_nid(ne
), ne
);
171 else if (radix_tree_insert(&nm_i
->nat_root
, nat_get_nid(ne
), ne
))
175 node_info_from_raw_nat(&ne
->ni
, raw_ne
);
177 spin_lock(&nm_i
->nat_list_lock
);
178 list_add_tail(&ne
->list
, &nm_i
->nat_entries
);
179 spin_unlock(&nm_i
->nat_list_lock
);
185 static struct nat_entry
*__lookup_nat_cache(struct f2fs_nm_info
*nm_i
, nid_t n
)
187 struct nat_entry
*ne
;
189 ne
= radix_tree_lookup(&nm_i
->nat_root
, n
);
191 /* for recent accessed nat entry, move it to tail of lru list */
192 if (ne
&& !get_nat_flag(ne
, IS_DIRTY
)) {
193 spin_lock(&nm_i
->nat_list_lock
);
194 if (!list_empty(&ne
->list
))
195 list_move_tail(&ne
->list
, &nm_i
->nat_entries
);
196 spin_unlock(&nm_i
->nat_list_lock
);
202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info
*nm_i
,
203 nid_t start
, unsigned int nr
, struct nat_entry
**ep
)
205 return radix_tree_gang_lookup(&nm_i
->nat_root
, (void **)ep
, start
, nr
);
208 static void __del_from_nat_cache(struct f2fs_nm_info
*nm_i
, struct nat_entry
*e
)
210 radix_tree_delete(&nm_i
->nat_root
, nat_get_nid(e
));
215 static struct nat_entry_set
*__grab_nat_entry_set(struct f2fs_nm_info
*nm_i
,
216 struct nat_entry
*ne
)
218 nid_t set
= NAT_BLOCK_OFFSET(ne
->ni
.nid
);
219 struct nat_entry_set
*head
;
221 head
= radix_tree_lookup(&nm_i
->nat_set_root
, set
);
223 head
= f2fs_kmem_cache_alloc(nat_entry_set_slab
, GFP_NOFS
);
225 INIT_LIST_HEAD(&head
->entry_list
);
226 INIT_LIST_HEAD(&head
->set_list
);
229 f2fs_radix_tree_insert(&nm_i
->nat_set_root
, set
, head
);
234 static void __set_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
235 struct nat_entry
*ne
)
237 struct nat_entry_set
*head
;
238 bool new_ne
= nat_get_blkaddr(ne
) == NEW_ADDR
;
241 head
= __grab_nat_entry_set(nm_i
, ne
);
244 * update entry_cnt in below condition:
245 * 1. update NEW_ADDR to valid block address;
246 * 2. update old block address to new one;
248 if (!new_ne
&& (get_nat_flag(ne
, IS_PREALLOC
) ||
249 !get_nat_flag(ne
, IS_DIRTY
)))
252 set_nat_flag(ne
, IS_PREALLOC
, new_ne
);
254 if (get_nat_flag(ne
, IS_DIRTY
))
257 nm_i
->dirty_nat_cnt
++;
258 set_nat_flag(ne
, IS_DIRTY
, true);
260 spin_lock(&nm_i
->nat_list_lock
);
262 list_del_init(&ne
->list
);
264 list_move_tail(&ne
->list
, &head
->entry_list
);
265 spin_unlock(&nm_i
->nat_list_lock
);
268 static void __clear_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
269 struct nat_entry_set
*set
, struct nat_entry
*ne
)
271 spin_lock(&nm_i
->nat_list_lock
);
272 list_move_tail(&ne
->list
, &nm_i
->nat_entries
);
273 spin_unlock(&nm_i
->nat_list_lock
);
275 set_nat_flag(ne
, IS_DIRTY
, false);
277 nm_i
->dirty_nat_cnt
--;
280 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info
*nm_i
,
281 nid_t start
, unsigned int nr
, struct nat_entry_set
**ep
)
283 return radix_tree_gang_lookup(&nm_i
->nat_set_root
, (void **)ep
,
287 bool f2fs_in_warm_node_list(struct f2fs_sb_info
*sbi
, struct page
*page
)
289 return NODE_MAPPING(sbi
) == page
->mapping
&&
290 IS_DNODE(page
) && is_cold_node(page
);
293 void f2fs_init_fsync_node_info(struct f2fs_sb_info
*sbi
)
295 spin_lock_init(&sbi
->fsync_node_lock
);
296 INIT_LIST_HEAD(&sbi
->fsync_node_list
);
297 sbi
->fsync_seg_id
= 0;
298 sbi
->fsync_node_num
= 0;
301 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info
*sbi
,
304 struct fsync_node_entry
*fn
;
308 fn
= f2fs_kmem_cache_alloc(fsync_node_entry_slab
, GFP_NOFS
);
312 INIT_LIST_HEAD(&fn
->list
);
314 spin_lock_irqsave(&sbi
->fsync_node_lock
, flags
);
315 list_add_tail(&fn
->list
, &sbi
->fsync_node_list
);
316 fn
->seq_id
= sbi
->fsync_seg_id
++;
318 sbi
->fsync_node_num
++;
319 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
324 void f2fs_del_fsync_node_entry(struct f2fs_sb_info
*sbi
, struct page
*page
)
326 struct fsync_node_entry
*fn
;
329 spin_lock_irqsave(&sbi
->fsync_node_lock
, flags
);
330 list_for_each_entry(fn
, &sbi
->fsync_node_list
, list
) {
331 if (fn
->page
== page
) {
333 sbi
->fsync_node_num
--;
334 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
335 kmem_cache_free(fsync_node_entry_slab
, fn
);
340 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
344 void f2fs_reset_fsync_node_info(struct f2fs_sb_info
*sbi
)
348 spin_lock_irqsave(&sbi
->fsync_node_lock
, flags
);
349 sbi
->fsync_seg_id
= 0;
350 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
353 int f2fs_need_dentry_mark(struct f2fs_sb_info
*sbi
, nid_t nid
)
355 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
359 down_read(&nm_i
->nat_tree_lock
);
360 e
= __lookup_nat_cache(nm_i
, nid
);
362 if (!get_nat_flag(e
, IS_CHECKPOINTED
) &&
363 !get_nat_flag(e
, HAS_FSYNCED_INODE
))
366 up_read(&nm_i
->nat_tree_lock
);
370 bool f2fs_is_checkpointed_node(struct f2fs_sb_info
*sbi
, nid_t nid
)
372 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
376 down_read(&nm_i
->nat_tree_lock
);
377 e
= __lookup_nat_cache(nm_i
, nid
);
378 if (e
&& !get_nat_flag(e
, IS_CHECKPOINTED
))
380 up_read(&nm_i
->nat_tree_lock
);
384 bool f2fs_need_inode_block_update(struct f2fs_sb_info
*sbi
, nid_t ino
)
386 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
388 bool need_update
= true;
390 down_read(&nm_i
->nat_tree_lock
);
391 e
= __lookup_nat_cache(nm_i
, ino
);
392 if (e
&& get_nat_flag(e
, HAS_LAST_FSYNC
) &&
393 (get_nat_flag(e
, IS_CHECKPOINTED
) ||
394 get_nat_flag(e
, HAS_FSYNCED_INODE
)))
396 up_read(&nm_i
->nat_tree_lock
);
400 /* must be locked by nat_tree_lock */
401 static void cache_nat_entry(struct f2fs_sb_info
*sbi
, nid_t nid
,
402 struct f2fs_nat_entry
*ne
)
404 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
405 struct nat_entry
*new, *e
;
407 new = __alloc_nat_entry(nid
, false);
411 down_write(&nm_i
->nat_tree_lock
);
412 e
= __lookup_nat_cache(nm_i
, nid
);
414 e
= __init_nat_entry(nm_i
, new, ne
, false);
416 f2fs_bug_on(sbi
, nat_get_ino(e
) != le32_to_cpu(ne
->ino
) ||
417 nat_get_blkaddr(e
) !=
418 le32_to_cpu(ne
->block_addr
) ||
419 nat_get_version(e
) != ne
->version
);
420 up_write(&nm_i
->nat_tree_lock
);
422 __free_nat_entry(new);
425 static void set_node_addr(struct f2fs_sb_info
*sbi
, struct node_info
*ni
,
426 block_t new_blkaddr
, bool fsync_done
)
428 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
430 struct nat_entry
*new = __alloc_nat_entry(ni
->nid
, true);
432 down_write(&nm_i
->nat_tree_lock
);
433 e
= __lookup_nat_cache(nm_i
, ni
->nid
);
435 e
= __init_nat_entry(nm_i
, new, NULL
, true);
436 copy_node_info(&e
->ni
, ni
);
437 f2fs_bug_on(sbi
, ni
->blk_addr
== NEW_ADDR
);
438 } else if (new_blkaddr
== NEW_ADDR
) {
440 * when nid is reallocated,
441 * previous nat entry can be remained in nat cache.
442 * So, reinitialize it with new information.
444 copy_node_info(&e
->ni
, ni
);
445 f2fs_bug_on(sbi
, ni
->blk_addr
!= NULL_ADDR
);
447 /* let's free early to reduce memory consumption */
449 __free_nat_entry(new);
452 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) != ni
->blk_addr
);
453 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NULL_ADDR
&&
454 new_blkaddr
== NULL_ADDR
);
455 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NEW_ADDR
&&
456 new_blkaddr
== NEW_ADDR
);
457 f2fs_bug_on(sbi
, is_valid_data_blkaddr(sbi
, nat_get_blkaddr(e
)) &&
458 new_blkaddr
== NEW_ADDR
);
460 /* increment version no as node is removed */
461 if (nat_get_blkaddr(e
) != NEW_ADDR
&& new_blkaddr
== NULL_ADDR
) {
462 unsigned char version
= nat_get_version(e
);
463 nat_set_version(e
, inc_node_version(version
));
467 nat_set_blkaddr(e
, new_blkaddr
);
468 if (!is_valid_data_blkaddr(sbi
, new_blkaddr
))
469 set_nat_flag(e
, IS_CHECKPOINTED
, false);
470 __set_nat_cache_dirty(nm_i
, e
);
472 /* update fsync_mark if its inode nat entry is still alive */
473 if (ni
->nid
!= ni
->ino
)
474 e
= __lookup_nat_cache(nm_i
, ni
->ino
);
476 if (fsync_done
&& ni
->nid
== ni
->ino
)
477 set_nat_flag(e
, HAS_FSYNCED_INODE
, true);
478 set_nat_flag(e
, HAS_LAST_FSYNC
, fsync_done
);
480 up_write(&nm_i
->nat_tree_lock
);
483 int f2fs_try_to_free_nats(struct f2fs_sb_info
*sbi
, int nr_shrink
)
485 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
488 if (!down_write_trylock(&nm_i
->nat_tree_lock
))
491 spin_lock(&nm_i
->nat_list_lock
);
493 struct nat_entry
*ne
;
495 if (list_empty(&nm_i
->nat_entries
))
498 ne
= list_first_entry(&nm_i
->nat_entries
,
499 struct nat_entry
, list
);
501 spin_unlock(&nm_i
->nat_list_lock
);
503 __del_from_nat_cache(nm_i
, ne
);
506 spin_lock(&nm_i
->nat_list_lock
);
508 spin_unlock(&nm_i
->nat_list_lock
);
510 up_write(&nm_i
->nat_tree_lock
);
511 return nr
- nr_shrink
;
515 * This function always returns success
517 int f2fs_get_node_info(struct f2fs_sb_info
*sbi
, nid_t nid
,
518 struct node_info
*ni
)
520 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
521 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
522 struct f2fs_journal
*journal
= curseg
->journal
;
523 nid_t start_nid
= START_NID(nid
);
524 struct f2fs_nat_block
*nat_blk
;
525 struct page
*page
= NULL
;
526 struct f2fs_nat_entry ne
;
533 /* Check nat cache */
534 down_read(&nm_i
->nat_tree_lock
);
535 e
= __lookup_nat_cache(nm_i
, nid
);
537 ni
->ino
= nat_get_ino(e
);
538 ni
->blk_addr
= nat_get_blkaddr(e
);
539 ni
->version
= nat_get_version(e
);
540 up_read(&nm_i
->nat_tree_lock
);
544 memset(&ne
, 0, sizeof(struct f2fs_nat_entry
));
546 /* Check current segment summary */
547 down_read(&curseg
->journal_rwsem
);
548 i
= f2fs_lookup_journal_in_cursum(journal
, NAT_JOURNAL
, nid
, 0);
550 ne
= nat_in_journal(journal
, i
);
551 node_info_from_raw_nat(ni
, &ne
);
553 up_read(&curseg
->journal_rwsem
);
555 up_read(&nm_i
->nat_tree_lock
);
559 /* Fill node_info from nat page */
560 index
= current_nat_addr(sbi
, nid
);
561 up_read(&nm_i
->nat_tree_lock
);
563 page
= f2fs_get_meta_page(sbi
, index
);
565 return PTR_ERR(page
);
567 nat_blk
= (struct f2fs_nat_block
*)page_address(page
);
568 ne
= nat_blk
->entries
[nid
- start_nid
];
569 node_info_from_raw_nat(ni
, &ne
);
570 f2fs_put_page(page
, 1);
572 /* cache nat entry */
573 cache_nat_entry(sbi
, nid
, &ne
);
578 * readahead MAX_RA_NODE number of node pages.
580 static void f2fs_ra_node_pages(struct page
*parent
, int start
, int n
)
582 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
583 struct blk_plug plug
;
587 blk_start_plug(&plug
);
589 /* Then, try readahead for siblings of the desired node */
591 end
= min(end
, NIDS_PER_BLOCK
);
592 for (i
= start
; i
< end
; i
++) {
593 nid
= get_nid(parent
, i
, false);
594 f2fs_ra_node_page(sbi
, nid
);
597 blk_finish_plug(&plug
);
600 pgoff_t
f2fs_get_next_page_offset(struct dnode_of_data
*dn
, pgoff_t pgofs
)
602 const long direct_index
= ADDRS_PER_INODE(dn
->inode
);
603 const long direct_blks
= ADDRS_PER_BLOCK
;
604 const long indirect_blks
= ADDRS_PER_BLOCK
* NIDS_PER_BLOCK
;
605 unsigned int skipped_unit
= ADDRS_PER_BLOCK
;
606 int cur_level
= dn
->cur_level
;
607 int max_level
= dn
->max_level
;
613 while (max_level
-- > cur_level
)
614 skipped_unit
*= NIDS_PER_BLOCK
;
616 switch (dn
->max_level
) {
618 base
+= 2 * indirect_blks
;
620 base
+= 2 * direct_blks
;
622 base
+= direct_index
;
625 f2fs_bug_on(F2FS_I_SB(dn
->inode
), 1);
628 return ((pgofs
- base
) / skipped_unit
+ 1) * skipped_unit
+ base
;
632 * The maximum depth is four.
633 * Offset[0] will have raw inode offset.
635 static int get_node_path(struct inode
*inode
, long block
,
636 int offset
[4], unsigned int noffset
[4])
638 const long direct_index
= ADDRS_PER_INODE(inode
);
639 const long direct_blks
= ADDRS_PER_BLOCK
;
640 const long dptrs_per_blk
= NIDS_PER_BLOCK
;
641 const long indirect_blks
= ADDRS_PER_BLOCK
* NIDS_PER_BLOCK
;
642 const long dindirect_blks
= indirect_blks
* NIDS_PER_BLOCK
;
648 if (block
< direct_index
) {
652 block
-= direct_index
;
653 if (block
< direct_blks
) {
654 offset
[n
++] = NODE_DIR1_BLOCK
;
660 block
-= direct_blks
;
661 if (block
< direct_blks
) {
662 offset
[n
++] = NODE_DIR2_BLOCK
;
668 block
-= direct_blks
;
669 if (block
< indirect_blks
) {
670 offset
[n
++] = NODE_IND1_BLOCK
;
672 offset
[n
++] = block
/ direct_blks
;
673 noffset
[n
] = 4 + offset
[n
- 1];
674 offset
[n
] = block
% direct_blks
;
678 block
-= indirect_blks
;
679 if (block
< indirect_blks
) {
680 offset
[n
++] = NODE_IND2_BLOCK
;
681 noffset
[n
] = 4 + dptrs_per_blk
;
682 offset
[n
++] = block
/ direct_blks
;
683 noffset
[n
] = 5 + dptrs_per_blk
+ offset
[n
- 1];
684 offset
[n
] = block
% direct_blks
;
688 block
-= indirect_blks
;
689 if (block
< dindirect_blks
) {
690 offset
[n
++] = NODE_DIND_BLOCK
;
691 noffset
[n
] = 5 + (dptrs_per_blk
* 2);
692 offset
[n
++] = block
/ indirect_blks
;
693 noffset
[n
] = 6 + (dptrs_per_blk
* 2) +
694 offset
[n
- 1] * (dptrs_per_blk
+ 1);
695 offset
[n
++] = (block
/ direct_blks
) % dptrs_per_blk
;
696 noffset
[n
] = 7 + (dptrs_per_blk
* 2) +
697 offset
[n
- 2] * (dptrs_per_blk
+ 1) +
699 offset
[n
] = block
% direct_blks
;
710 * Caller should call f2fs_put_dnode(dn).
711 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
712 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
713 * In the case of RDONLY_NODE, we don't need to care about mutex.
715 int f2fs_get_dnode_of_data(struct dnode_of_data
*dn
, pgoff_t index
, int mode
)
717 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
718 struct page
*npage
[4];
719 struct page
*parent
= NULL
;
721 unsigned int noffset
[4];
726 level
= get_node_path(dn
->inode
, index
, offset
, noffset
);
730 nids
[0] = dn
->inode
->i_ino
;
731 npage
[0] = dn
->inode_page
;
734 npage
[0] = f2fs_get_node_page(sbi
, nids
[0]);
735 if (IS_ERR(npage
[0]))
736 return PTR_ERR(npage
[0]);
739 /* if inline_data is set, should not report any block indices */
740 if (f2fs_has_inline_data(dn
->inode
) && index
) {
742 f2fs_put_page(npage
[0], 1);
748 nids
[1] = get_nid(parent
, offset
[0], true);
749 dn
->inode_page
= npage
[0];
750 dn
->inode_page_locked
= true;
752 /* get indirect or direct nodes */
753 for (i
= 1; i
<= level
; i
++) {
756 if (!nids
[i
] && mode
== ALLOC_NODE
) {
758 if (!f2fs_alloc_nid(sbi
, &(nids
[i
]))) {
764 npage
[i
] = f2fs_new_node_page(dn
, noffset
[i
]);
765 if (IS_ERR(npage
[i
])) {
766 f2fs_alloc_nid_failed(sbi
, nids
[i
]);
767 err
= PTR_ERR(npage
[i
]);
771 set_nid(parent
, offset
[i
- 1], nids
[i
], i
== 1);
772 f2fs_alloc_nid_done(sbi
, nids
[i
]);
774 } else if (mode
== LOOKUP_NODE_RA
&& i
== level
&& level
> 1) {
775 npage
[i
] = f2fs_get_node_page_ra(parent
, offset
[i
- 1]);
776 if (IS_ERR(npage
[i
])) {
777 err
= PTR_ERR(npage
[i
]);
783 dn
->inode_page_locked
= false;
786 f2fs_put_page(parent
, 1);
790 npage
[i
] = f2fs_get_node_page(sbi
, nids
[i
]);
791 if (IS_ERR(npage
[i
])) {
792 err
= PTR_ERR(npage
[i
]);
793 f2fs_put_page(npage
[0], 0);
799 nids
[i
+ 1] = get_nid(parent
, offset
[i
], false);
802 dn
->nid
= nids
[level
];
803 dn
->ofs_in_node
= offset
[level
];
804 dn
->node_page
= npage
[level
];
805 dn
->data_blkaddr
= datablock_addr(dn
->inode
,
806 dn
->node_page
, dn
->ofs_in_node
);
810 f2fs_put_page(parent
, 1);
812 f2fs_put_page(npage
[0], 0);
814 dn
->inode_page
= NULL
;
815 dn
->node_page
= NULL
;
816 if (err
== -ENOENT
) {
818 dn
->max_level
= level
;
819 dn
->ofs_in_node
= offset
[level
];
824 static int truncate_node(struct dnode_of_data
*dn
)
826 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
830 err
= f2fs_get_node_info(sbi
, dn
->nid
, &ni
);
834 /* Deallocate node address */
835 f2fs_invalidate_blocks(sbi
, ni
.blk_addr
);
836 dec_valid_node_count(sbi
, dn
->inode
, dn
->nid
== dn
->inode
->i_ino
);
837 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
839 if (dn
->nid
== dn
->inode
->i_ino
) {
840 f2fs_remove_orphan_inode(sbi
, dn
->nid
);
841 dec_valid_inode_count(sbi
);
842 f2fs_inode_synced(dn
->inode
);
845 clear_node_page_dirty(dn
->node_page
);
846 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
848 f2fs_put_page(dn
->node_page
, 1);
850 invalidate_mapping_pages(NODE_MAPPING(sbi
),
851 dn
->node_page
->index
, dn
->node_page
->index
);
853 dn
->node_page
= NULL
;
854 trace_f2fs_truncate_node(dn
->inode
, dn
->nid
, ni
.blk_addr
);
859 static int truncate_dnode(struct dnode_of_data
*dn
)
867 /* get direct node */
868 page
= f2fs_get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
869 if (IS_ERR(page
) && PTR_ERR(page
) == -ENOENT
)
871 else if (IS_ERR(page
))
872 return PTR_ERR(page
);
874 /* Make dnode_of_data for parameter */
875 dn
->node_page
= page
;
877 f2fs_truncate_data_blocks(dn
);
878 err
= truncate_node(dn
);
885 static int truncate_nodes(struct dnode_of_data
*dn
, unsigned int nofs
,
888 struct dnode_of_data rdn
= *dn
;
890 struct f2fs_node
*rn
;
892 unsigned int child_nofs
;
897 return NIDS_PER_BLOCK
+ 1;
899 trace_f2fs_truncate_nodes_enter(dn
->inode
, dn
->nid
, dn
->data_blkaddr
);
901 page
= f2fs_get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
903 trace_f2fs_truncate_nodes_exit(dn
->inode
, PTR_ERR(page
));
904 return PTR_ERR(page
);
907 f2fs_ra_node_pages(page
, ofs
, NIDS_PER_BLOCK
);
909 rn
= F2FS_NODE(page
);
911 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++, freed
++) {
912 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
916 ret
= truncate_dnode(&rdn
);
919 if (set_nid(page
, i
, 0, false))
920 dn
->node_changed
= true;
923 child_nofs
= nofs
+ ofs
* (NIDS_PER_BLOCK
+ 1) + 1;
924 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++) {
925 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
926 if (child_nid
== 0) {
927 child_nofs
+= NIDS_PER_BLOCK
+ 1;
931 ret
= truncate_nodes(&rdn
, child_nofs
, 0, depth
- 1);
932 if (ret
== (NIDS_PER_BLOCK
+ 1)) {
933 if (set_nid(page
, i
, 0, false))
934 dn
->node_changed
= true;
936 } else if (ret
< 0 && ret
!= -ENOENT
) {
944 /* remove current indirect node */
945 dn
->node_page
= page
;
946 ret
= truncate_node(dn
);
951 f2fs_put_page(page
, 1);
953 trace_f2fs_truncate_nodes_exit(dn
->inode
, freed
);
957 f2fs_put_page(page
, 1);
958 trace_f2fs_truncate_nodes_exit(dn
->inode
, ret
);
962 static int truncate_partial_nodes(struct dnode_of_data
*dn
,
963 struct f2fs_inode
*ri
, int *offset
, int depth
)
965 struct page
*pages
[2];
972 nid
[0] = le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
976 /* get indirect nodes in the path */
977 for (i
= 0; i
< idx
+ 1; i
++) {
978 /* reference count'll be increased */
979 pages
[i
] = f2fs_get_node_page(F2FS_I_SB(dn
->inode
), nid
[i
]);
980 if (IS_ERR(pages
[i
])) {
981 err
= PTR_ERR(pages
[i
]);
985 nid
[i
+ 1] = get_nid(pages
[i
], offset
[i
+ 1], false);
988 f2fs_ra_node_pages(pages
[idx
], offset
[idx
+ 1], NIDS_PER_BLOCK
);
990 /* free direct nodes linked to a partial indirect node */
991 for (i
= offset
[idx
+ 1]; i
< NIDS_PER_BLOCK
; i
++) {
992 child_nid
= get_nid(pages
[idx
], i
, false);
996 err
= truncate_dnode(dn
);
999 if (set_nid(pages
[idx
], i
, 0, false))
1000 dn
->node_changed
= true;
1003 if (offset
[idx
+ 1] == 0) {
1004 dn
->node_page
= pages
[idx
];
1006 err
= truncate_node(dn
);
1010 f2fs_put_page(pages
[idx
], 1);
1013 offset
[idx
+ 1] = 0;
1016 for (i
= idx
; i
>= 0; i
--)
1017 f2fs_put_page(pages
[i
], 1);
1019 trace_f2fs_truncate_partial_nodes(dn
->inode
, nid
, depth
, err
);
1025 * All the block addresses of data and nodes should be nullified.
1027 int f2fs_truncate_inode_blocks(struct inode
*inode
, pgoff_t from
)
1029 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1030 int err
= 0, cont
= 1;
1031 int level
, offset
[4], noffset
[4];
1032 unsigned int nofs
= 0;
1033 struct f2fs_inode
*ri
;
1034 struct dnode_of_data dn
;
1037 trace_f2fs_truncate_inode_blocks_enter(inode
, from
);
1039 level
= get_node_path(inode
, from
, offset
, noffset
);
1043 page
= f2fs_get_node_page(sbi
, inode
->i_ino
);
1045 trace_f2fs_truncate_inode_blocks_exit(inode
, PTR_ERR(page
));
1046 return PTR_ERR(page
);
1049 set_new_dnode(&dn
, inode
, page
, NULL
, 0);
1052 ri
= F2FS_INODE(page
);
1060 if (!offset
[level
- 1])
1062 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
1063 if (err
< 0 && err
!= -ENOENT
)
1065 nofs
+= 1 + NIDS_PER_BLOCK
;
1068 nofs
= 5 + 2 * NIDS_PER_BLOCK
;
1069 if (!offset
[level
- 1])
1071 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
1072 if (err
< 0 && err
!= -ENOENT
)
1081 dn
.nid
= le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
1082 switch (offset
[0]) {
1083 case NODE_DIR1_BLOCK
:
1084 case NODE_DIR2_BLOCK
:
1085 err
= truncate_dnode(&dn
);
1088 case NODE_IND1_BLOCK
:
1089 case NODE_IND2_BLOCK
:
1090 err
= truncate_nodes(&dn
, nofs
, offset
[1], 2);
1093 case NODE_DIND_BLOCK
:
1094 err
= truncate_nodes(&dn
, nofs
, offset
[1], 3);
1101 if (err
< 0 && err
!= -ENOENT
)
1103 if (offset
[1] == 0 &&
1104 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]) {
1106 BUG_ON(page
->mapping
!= NODE_MAPPING(sbi
));
1107 f2fs_wait_on_page_writeback(page
, NODE
, true);
1108 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
] = 0;
1109 set_page_dirty(page
);
1117 f2fs_put_page(page
, 0);
1118 trace_f2fs_truncate_inode_blocks_exit(inode
, err
);
1119 return err
> 0 ? 0 : err
;
1122 /* caller must lock inode page */
1123 int f2fs_truncate_xattr_node(struct inode
*inode
)
1125 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1126 nid_t nid
= F2FS_I(inode
)->i_xattr_nid
;
1127 struct dnode_of_data dn
;
1134 npage
= f2fs_get_node_page(sbi
, nid
);
1136 return PTR_ERR(npage
);
1138 set_new_dnode(&dn
, inode
, NULL
, npage
, nid
);
1139 err
= truncate_node(&dn
);
1141 f2fs_put_page(npage
, 1);
1145 f2fs_i_xnid_write(inode
, 0);
1151 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1154 int f2fs_remove_inode_page(struct inode
*inode
)
1156 struct dnode_of_data dn
;
1159 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
1160 err
= f2fs_get_dnode_of_data(&dn
, 0, LOOKUP_NODE
);
1164 err
= f2fs_truncate_xattr_node(inode
);
1166 f2fs_put_dnode(&dn
);
1170 /* remove potential inline_data blocks */
1171 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
1172 S_ISLNK(inode
->i_mode
))
1173 f2fs_truncate_data_blocks_range(&dn
, 1);
1175 /* 0 is possible, after f2fs_new_inode() has failed */
1176 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode
)))) {
1177 f2fs_put_dnode(&dn
);
1180 f2fs_bug_on(F2FS_I_SB(inode
),
1181 inode
->i_blocks
!= 0 && inode
->i_blocks
!= 8);
1183 /* will put inode & node pages */
1184 err
= truncate_node(&dn
);
1186 f2fs_put_dnode(&dn
);
1192 struct page
*f2fs_new_inode_page(struct inode
*inode
)
1194 struct dnode_of_data dn
;
1196 /* allocate inode page for new inode */
1197 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
1199 /* caller should f2fs_put_page(page, 1); */
1200 return f2fs_new_node_page(&dn
, 0);
1203 struct page
*f2fs_new_node_page(struct dnode_of_data
*dn
, unsigned int ofs
)
1205 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
1206 struct node_info new_ni
;
1210 if (unlikely(is_inode_flag_set(dn
->inode
, FI_NO_ALLOC
)))
1211 return ERR_PTR(-EPERM
);
1213 page
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), dn
->nid
, false);
1215 return ERR_PTR(-ENOMEM
);
1217 if (unlikely((err
= inc_valid_node_count(sbi
, dn
->inode
, !ofs
))))
1220 #ifdef CONFIG_F2FS_CHECK_FS
1221 err
= f2fs_get_node_info(sbi
, dn
->nid
, &new_ni
);
1223 dec_valid_node_count(sbi
, dn
->inode
, !ofs
);
1226 f2fs_bug_on(sbi
, new_ni
.blk_addr
!= NULL_ADDR
);
1228 new_ni
.nid
= dn
->nid
;
1229 new_ni
.ino
= dn
->inode
->i_ino
;
1230 new_ni
.blk_addr
= NULL_ADDR
;
1233 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
1235 f2fs_wait_on_page_writeback(page
, NODE
, true);
1236 fill_node_footer(page
, dn
->nid
, dn
->inode
->i_ino
, ofs
, true);
1237 set_cold_node(page
, S_ISDIR(dn
->inode
->i_mode
));
1238 if (!PageUptodate(page
))
1239 SetPageUptodate(page
);
1240 if (set_page_dirty(page
))
1241 dn
->node_changed
= true;
1243 if (f2fs_has_xattr_block(ofs
))
1244 f2fs_i_xnid_write(dn
->inode
, dn
->nid
);
1247 inc_valid_inode_count(sbi
);
1251 clear_node_page_dirty(page
);
1252 f2fs_put_page(page
, 1);
1253 return ERR_PTR(err
);
1257 * Caller should do after getting the following values.
1258 * 0: f2fs_put_page(page, 0)
1259 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1261 static int read_node_page(struct page
*page
, int op_flags
)
1263 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1264 struct node_info ni
;
1265 struct f2fs_io_info fio
= {
1269 .op_flags
= op_flags
,
1271 .encrypted_page
= NULL
,
1275 if (PageUptodate(page
)) {
1276 #ifdef CONFIG_F2FS_CHECK_FS
1277 f2fs_bug_on(sbi
, !f2fs_inode_chksum_verify(sbi
, page
));
1282 err
= f2fs_get_node_info(sbi
, page
->index
, &ni
);
1286 if (unlikely(ni
.blk_addr
== NULL_ADDR
) ||
1287 is_sbi_flag_set(sbi
, SBI_IS_SHUTDOWN
)) {
1288 ClearPageUptodate(page
);
1292 fio
.new_blkaddr
= fio
.old_blkaddr
= ni
.blk_addr
;
1293 return f2fs_submit_page_bio(&fio
);
1297 * Readahead a node page
1299 void f2fs_ra_node_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
1306 if (f2fs_check_nid_range(sbi
, nid
))
1309 apage
= xa_load(&NODE_MAPPING(sbi
)->i_pages
, nid
);
1313 apage
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), nid
, false);
1317 err
= read_node_page(apage
, REQ_RAHEAD
);
1318 f2fs_put_page(apage
, err
? 1 : 0);
1321 static struct page
*__get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
,
1322 struct page
*parent
, int start
)
1328 return ERR_PTR(-ENOENT
);
1329 if (f2fs_check_nid_range(sbi
, nid
))
1330 return ERR_PTR(-EINVAL
);
1332 page
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), nid
, false);
1334 return ERR_PTR(-ENOMEM
);
1336 err
= read_node_page(page
, 0);
1338 f2fs_put_page(page
, 1);
1339 return ERR_PTR(err
);
1340 } else if (err
== LOCKED_PAGE
) {
1346 f2fs_ra_node_pages(parent
, start
+ 1, MAX_RA_NODE
);
1350 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1351 f2fs_put_page(page
, 1);
1355 if (unlikely(!PageUptodate(page
))) {
1360 if (!f2fs_inode_chksum_verify(sbi
, page
)) {
1365 if(unlikely(nid
!= nid_of_node(page
))) {
1366 f2fs_msg(sbi
->sb
, KERN_WARNING
, "inconsistent node block, "
1367 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1368 nid
, nid_of_node(page
), ino_of_node(page
),
1369 ofs_of_node(page
), cpver_of_node(page
),
1370 next_blkaddr_of_node(page
));
1373 ClearPageUptodate(page
);
1374 f2fs_put_page(page
, 1);
1375 return ERR_PTR(err
);
1380 struct page
*f2fs_get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
)
1382 return __get_node_page(sbi
, nid
, NULL
, 0);
1385 struct page
*f2fs_get_node_page_ra(struct page
*parent
, int start
)
1387 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
1388 nid_t nid
= get_nid(parent
, start
, false);
1390 return __get_node_page(sbi
, nid
, parent
, start
);
1393 static void flush_inline_data(struct f2fs_sb_info
*sbi
, nid_t ino
)
1395 struct inode
*inode
;
1399 /* should flush inline_data before evict_inode */
1400 inode
= ilookup(sbi
->sb
, ino
);
1404 page
= f2fs_pagecache_get_page(inode
->i_mapping
, 0,
1405 FGP_LOCK
|FGP_NOWAIT
, 0);
1409 if (!PageUptodate(page
))
1412 if (!PageDirty(page
))
1415 if (!clear_page_dirty_for_io(page
))
1418 ret
= f2fs_write_inline_data(inode
, page
);
1419 inode_dec_dirty_pages(inode
);
1420 f2fs_remove_dirty_inode(inode
);
1422 set_page_dirty(page
);
1424 f2fs_put_page(page
, 1);
1429 static struct page
*last_fsync_dnode(struct f2fs_sb_info
*sbi
, nid_t ino
)
1432 struct pagevec pvec
;
1433 struct page
*last_page
= NULL
;
1436 pagevec_init(&pvec
);
1439 while ((nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1440 PAGECACHE_TAG_DIRTY
))) {
1443 for (i
= 0; i
< nr_pages
; i
++) {
1444 struct page
*page
= pvec
.pages
[i
];
1446 if (unlikely(f2fs_cp_error(sbi
))) {
1447 f2fs_put_page(last_page
, 0);
1448 pagevec_release(&pvec
);
1449 return ERR_PTR(-EIO
);
1452 if (!IS_DNODE(page
) || !is_cold_node(page
))
1454 if (ino_of_node(page
) != ino
)
1459 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1464 if (ino_of_node(page
) != ino
)
1465 goto continue_unlock
;
1467 if (!PageDirty(page
)) {
1468 /* someone wrote it for us */
1469 goto continue_unlock
;
1473 f2fs_put_page(last_page
, 0);
1479 pagevec_release(&pvec
);
1485 static int __write_node_page(struct page
*page
, bool atomic
, bool *submitted
,
1486 struct writeback_control
*wbc
, bool do_balance
,
1487 enum iostat_type io_type
, unsigned int *seq_id
)
1489 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1491 struct node_info ni
;
1492 struct f2fs_io_info fio
= {
1494 .ino
= ino_of_node(page
),
1497 .op_flags
= wbc_to_write_flags(wbc
),
1499 .encrypted_page
= NULL
,
1506 trace_f2fs_writepage(page
, NODE
);
1508 if (unlikely(f2fs_cp_error(sbi
)))
1511 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1514 if (wbc
->sync_mode
== WB_SYNC_NONE
&&
1515 IS_DNODE(page
) && is_cold_node(page
))
1518 /* get old block addr of this node page */
1519 nid
= nid_of_node(page
);
1520 f2fs_bug_on(sbi
, page
->index
!= nid
);
1522 if (f2fs_get_node_info(sbi
, nid
, &ni
))
1525 if (wbc
->for_reclaim
) {
1526 if (!down_read_trylock(&sbi
->node_write
))
1529 down_read(&sbi
->node_write
);
1532 /* This page is already truncated */
1533 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1534 ClearPageUptodate(page
);
1535 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1536 up_read(&sbi
->node_write
);
1541 if (__is_valid_data_blkaddr(ni
.blk_addr
) &&
1542 !f2fs_is_valid_blkaddr(sbi
, ni
.blk_addr
, DATA_GENERIC
)) {
1543 up_read(&sbi
->node_write
);
1547 if (atomic
&& !test_opt(sbi
, NOBARRIER
))
1548 fio
.op_flags
|= REQ_PREFLUSH
| REQ_FUA
;
1550 set_page_writeback(page
);
1551 ClearPageError(page
);
1553 if (f2fs_in_warm_node_list(sbi
, page
)) {
1554 seq
= f2fs_add_fsync_node_entry(sbi
, page
);
1559 fio
.old_blkaddr
= ni
.blk_addr
;
1560 f2fs_do_write_node_page(nid
, &fio
);
1561 set_node_addr(sbi
, &ni
, fio
.new_blkaddr
, is_fsync_dnode(page
));
1562 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1563 up_read(&sbi
->node_write
);
1565 if (wbc
->for_reclaim
) {
1566 f2fs_submit_merged_write_cond(sbi
, NULL
, page
, 0, NODE
);
1572 if (unlikely(f2fs_cp_error(sbi
))) {
1573 f2fs_submit_merged_write(sbi
, NODE
);
1577 *submitted
= fio
.submitted
;
1580 f2fs_balance_fs(sbi
, false);
1584 redirty_page_for_writepage(wbc
, page
);
1585 return AOP_WRITEPAGE_ACTIVATE
;
1588 int f2fs_move_node_page(struct page
*node_page
, int gc_type
)
1592 if (gc_type
== FG_GC
) {
1593 struct writeback_control wbc
= {
1594 .sync_mode
= WB_SYNC_ALL
,
1599 set_page_dirty(node_page
);
1600 f2fs_wait_on_page_writeback(node_page
, NODE
, true);
1602 f2fs_bug_on(F2FS_P_SB(node_page
), PageWriteback(node_page
));
1603 if (!clear_page_dirty_for_io(node_page
)) {
1608 if (__write_node_page(node_page
, false, NULL
,
1609 &wbc
, false, FS_GC_NODE_IO
, NULL
)) {
1611 unlock_page(node_page
);
1615 /* set page dirty and write it */
1616 if (!PageWriteback(node_page
))
1617 set_page_dirty(node_page
);
1620 unlock_page(node_page
);
1622 f2fs_put_page(node_page
, 0);
1626 static int f2fs_write_node_page(struct page
*page
,
1627 struct writeback_control
*wbc
)
1629 return __write_node_page(page
, false, NULL
, wbc
, false,
1633 int f2fs_fsync_node_pages(struct f2fs_sb_info
*sbi
, struct inode
*inode
,
1634 struct writeback_control
*wbc
, bool atomic
,
1635 unsigned int *seq_id
)
1638 struct pagevec pvec
;
1640 struct page
*last_page
= NULL
;
1641 bool marked
= false;
1642 nid_t ino
= inode
->i_ino
;
1647 last_page
= last_fsync_dnode(sbi
, ino
);
1648 if (IS_ERR_OR_NULL(last_page
))
1649 return PTR_ERR_OR_ZERO(last_page
);
1652 pagevec_init(&pvec
);
1655 while ((nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1656 PAGECACHE_TAG_DIRTY
))) {
1659 for (i
= 0; i
< nr_pages
; i
++) {
1660 struct page
*page
= pvec
.pages
[i
];
1661 bool submitted
= false;
1663 if (unlikely(f2fs_cp_error(sbi
))) {
1664 f2fs_put_page(last_page
, 0);
1665 pagevec_release(&pvec
);
1670 if (!IS_DNODE(page
) || !is_cold_node(page
))
1672 if (ino_of_node(page
) != ino
)
1677 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1682 if (ino_of_node(page
) != ino
)
1683 goto continue_unlock
;
1685 if (!PageDirty(page
) && page
!= last_page
) {
1686 /* someone wrote it for us */
1687 goto continue_unlock
;
1690 f2fs_wait_on_page_writeback(page
, NODE
, true);
1691 BUG_ON(PageWriteback(page
));
1693 set_fsync_mark(page
, 0);
1694 set_dentry_mark(page
, 0);
1696 if (!atomic
|| page
== last_page
) {
1697 set_fsync_mark(page
, 1);
1698 if (IS_INODE(page
)) {
1699 if (is_inode_flag_set(inode
,
1701 f2fs_update_inode(inode
, page
);
1702 set_dentry_mark(page
,
1703 f2fs_need_dentry_mark(sbi
, ino
));
1705 /* may be written by other thread */
1706 if (!PageDirty(page
))
1707 set_page_dirty(page
);
1710 if (!clear_page_dirty_for_io(page
))
1711 goto continue_unlock
;
1713 ret
= __write_node_page(page
, atomic
&&
1715 &submitted
, wbc
, true,
1716 FS_NODE_IO
, seq_id
);
1719 f2fs_put_page(last_page
, 0);
1721 } else if (submitted
) {
1725 if (page
== last_page
) {
1726 f2fs_put_page(page
, 0);
1731 pagevec_release(&pvec
);
1737 if (!ret
&& atomic
&& !marked
) {
1738 f2fs_msg(sbi
->sb
, KERN_DEBUG
,
1739 "Retry to write fsync mark: ino=%u, idx=%lx",
1740 ino
, last_page
->index
);
1741 lock_page(last_page
);
1742 f2fs_wait_on_page_writeback(last_page
, NODE
, true);
1743 set_page_dirty(last_page
);
1744 unlock_page(last_page
);
1749 f2fs_submit_merged_write_cond(sbi
, NULL
, NULL
, ino
, NODE
);
1750 return ret
? -EIO
: 0;
1753 int f2fs_sync_node_pages(struct f2fs_sb_info
*sbi
,
1754 struct writeback_control
*wbc
,
1755 bool do_balance
, enum iostat_type io_type
)
1758 struct pagevec pvec
;
1762 int nr_pages
, done
= 0;
1764 pagevec_init(&pvec
);
1769 while (!done
&& (nr_pages
= pagevec_lookup_tag(&pvec
,
1770 NODE_MAPPING(sbi
), &index
, PAGECACHE_TAG_DIRTY
))) {
1773 for (i
= 0; i
< nr_pages
; i
++) {
1774 struct page
*page
= pvec
.pages
[i
];
1775 bool submitted
= false;
1777 /* give a priority to WB_SYNC threads */
1778 if (atomic_read(&sbi
->wb_sync_req
[NODE
]) &&
1779 wbc
->sync_mode
== WB_SYNC_NONE
) {
1785 * flushing sequence with step:
1790 if (step
== 0 && IS_DNODE(page
))
1792 if (step
== 1 && (!IS_DNODE(page
) ||
1793 is_cold_node(page
)))
1795 if (step
== 2 && (!IS_DNODE(page
) ||
1796 !is_cold_node(page
)))
1799 if (wbc
->sync_mode
== WB_SYNC_ALL
)
1801 else if (!trylock_page(page
))
1804 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1810 if (!PageDirty(page
)) {
1811 /* someone wrote it for us */
1812 goto continue_unlock
;
1815 /* flush inline_data */
1816 if (is_inline_node(page
)) {
1817 clear_inline_node(page
);
1819 flush_inline_data(sbi
, ino_of_node(page
));
1823 f2fs_wait_on_page_writeback(page
, NODE
, true);
1825 BUG_ON(PageWriteback(page
));
1826 if (!clear_page_dirty_for_io(page
))
1827 goto continue_unlock
;
1829 set_fsync_mark(page
, 0);
1830 set_dentry_mark(page
, 0);
1832 ret
= __write_node_page(page
, false, &submitted
,
1833 wbc
, do_balance
, io_type
, NULL
);
1839 if (--wbc
->nr_to_write
== 0)
1842 pagevec_release(&pvec
);
1845 if (wbc
->nr_to_write
== 0) {
1852 if (wbc
->sync_mode
== WB_SYNC_NONE
&& step
== 1)
1859 f2fs_submit_merged_write(sbi
, NODE
);
1861 if (unlikely(f2fs_cp_error(sbi
)))
1866 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info
*sbi
,
1867 unsigned int seq_id
)
1869 struct fsync_node_entry
*fn
;
1871 struct list_head
*head
= &sbi
->fsync_node_list
;
1872 unsigned long flags
;
1873 unsigned int cur_seq_id
= 0;
1876 while (seq_id
&& cur_seq_id
< seq_id
) {
1877 spin_lock_irqsave(&sbi
->fsync_node_lock
, flags
);
1878 if (list_empty(head
)) {
1879 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
1882 fn
= list_first_entry(head
, struct fsync_node_entry
, list
);
1883 if (fn
->seq_id
> seq_id
) {
1884 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
1887 cur_seq_id
= fn
->seq_id
;
1890 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
1892 f2fs_wait_on_page_writeback(page
, NODE
, true);
1893 if (TestClearPageError(page
))
1902 ret2
= filemap_check_errors(NODE_MAPPING(sbi
));
1909 static int f2fs_write_node_pages(struct address_space
*mapping
,
1910 struct writeback_control
*wbc
)
1912 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
1913 struct blk_plug plug
;
1916 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1919 /* balancing f2fs's metadata in background */
1920 f2fs_balance_fs_bg(sbi
);
1922 /* collect a number of dirty node pages and write together */
1923 if (get_pages(sbi
, F2FS_DIRTY_NODES
) < nr_pages_to_skip(sbi
, NODE
))
1926 if (wbc
->sync_mode
== WB_SYNC_ALL
)
1927 atomic_inc(&sbi
->wb_sync_req
[NODE
]);
1928 else if (atomic_read(&sbi
->wb_sync_req
[NODE
]))
1931 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
1933 diff
= nr_pages_to_write(sbi
, NODE
, wbc
);
1934 blk_start_plug(&plug
);
1935 f2fs_sync_node_pages(sbi
, wbc
, true, FS_NODE_IO
);
1936 blk_finish_plug(&plug
);
1937 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- diff
);
1939 if (wbc
->sync_mode
== WB_SYNC_ALL
)
1940 atomic_dec(&sbi
->wb_sync_req
[NODE
]);
1944 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_NODES
);
1945 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
1949 static int f2fs_set_node_page_dirty(struct page
*page
)
1951 trace_f2fs_set_page_dirty(page
, NODE
);
1953 if (!PageUptodate(page
))
1954 SetPageUptodate(page
);
1955 #ifdef CONFIG_F2FS_CHECK_FS
1957 f2fs_inode_chksum_set(F2FS_P_SB(page
), page
);
1959 if (!PageDirty(page
)) {
1960 __set_page_dirty_nobuffers(page
);
1961 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_NODES
);
1962 SetPagePrivate(page
);
1963 f2fs_trace_pid(page
);
1970 * Structure of the f2fs node operations
1972 const struct address_space_operations f2fs_node_aops
= {
1973 .writepage
= f2fs_write_node_page
,
1974 .writepages
= f2fs_write_node_pages
,
1975 .set_page_dirty
= f2fs_set_node_page_dirty
,
1976 .invalidatepage
= f2fs_invalidate_page
,
1977 .releasepage
= f2fs_release_page
,
1978 #ifdef CONFIG_MIGRATION
1979 .migratepage
= f2fs_migrate_page
,
1983 static struct free_nid
*__lookup_free_nid_list(struct f2fs_nm_info
*nm_i
,
1986 return radix_tree_lookup(&nm_i
->free_nid_root
, n
);
1989 static int __insert_free_nid(struct f2fs_sb_info
*sbi
,
1990 struct free_nid
*i
, enum nid_state state
)
1992 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1994 int err
= radix_tree_insert(&nm_i
->free_nid_root
, i
->nid
, i
);
1998 f2fs_bug_on(sbi
, state
!= i
->state
);
1999 nm_i
->nid_cnt
[state
]++;
2000 if (state
== FREE_NID
)
2001 list_add_tail(&i
->list
, &nm_i
->free_nid_list
);
2005 static void __remove_free_nid(struct f2fs_sb_info
*sbi
,
2006 struct free_nid
*i
, enum nid_state state
)
2008 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2010 f2fs_bug_on(sbi
, state
!= i
->state
);
2011 nm_i
->nid_cnt
[state
]--;
2012 if (state
== FREE_NID
)
2014 radix_tree_delete(&nm_i
->free_nid_root
, i
->nid
);
2017 static void __move_free_nid(struct f2fs_sb_info
*sbi
, struct free_nid
*i
,
2018 enum nid_state org_state
, enum nid_state dst_state
)
2020 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2022 f2fs_bug_on(sbi
, org_state
!= i
->state
);
2023 i
->state
= dst_state
;
2024 nm_i
->nid_cnt
[org_state
]--;
2025 nm_i
->nid_cnt
[dst_state
]++;
2027 switch (dst_state
) {
2032 list_add_tail(&i
->list
, &nm_i
->free_nid_list
);
2039 static void update_free_nid_bitmap(struct f2fs_sb_info
*sbi
, nid_t nid
,
2040 bool set
, bool build
)
2042 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2043 unsigned int nat_ofs
= NAT_BLOCK_OFFSET(nid
);
2044 unsigned int nid_ofs
= nid
- START_NID(nid
);
2046 if (!test_bit_le(nat_ofs
, nm_i
->nat_block_bitmap
))
2050 if (test_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]))
2052 __set_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]);
2053 nm_i
->free_nid_count
[nat_ofs
]++;
2055 if (!test_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]))
2057 __clear_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]);
2059 nm_i
->free_nid_count
[nat_ofs
]--;
2063 /* return if the nid is recognized as free */
2064 static bool add_free_nid(struct f2fs_sb_info
*sbi
,
2065 nid_t nid
, bool build
, bool update
)
2067 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2068 struct free_nid
*i
, *e
;
2069 struct nat_entry
*ne
;
2073 /* 0 nid should not be used */
2074 if (unlikely(nid
== 0))
2077 i
= f2fs_kmem_cache_alloc(free_nid_slab
, GFP_NOFS
);
2079 i
->state
= FREE_NID
;
2081 radix_tree_preload(GFP_NOFS
| __GFP_NOFAIL
);
2083 spin_lock(&nm_i
->nid_list_lock
);
2091 * - __insert_nid_to_list(PREALLOC_NID)
2092 * - f2fs_balance_fs_bg
2093 * - f2fs_build_free_nids
2094 * - __f2fs_build_free_nids
2097 * - __lookup_nat_cache
2099 * - f2fs_init_inode_metadata
2100 * - f2fs_new_inode_page
2101 * - f2fs_new_node_page
2103 * - f2fs_alloc_nid_done
2104 * - __remove_nid_from_list(PREALLOC_NID)
2105 * - __insert_nid_to_list(FREE_NID)
2107 ne
= __lookup_nat_cache(nm_i
, nid
);
2108 if (ne
&& (!get_nat_flag(ne
, IS_CHECKPOINTED
) ||
2109 nat_get_blkaddr(ne
) != NULL_ADDR
))
2112 e
= __lookup_free_nid_list(nm_i
, nid
);
2114 if (e
->state
== FREE_NID
)
2120 err
= __insert_free_nid(sbi
, i
, FREE_NID
);
2123 update_free_nid_bitmap(sbi
, nid
, ret
, build
);
2125 nm_i
->available_nids
++;
2127 spin_unlock(&nm_i
->nid_list_lock
);
2128 radix_tree_preload_end();
2131 kmem_cache_free(free_nid_slab
, i
);
2135 static void remove_free_nid(struct f2fs_sb_info
*sbi
, nid_t nid
)
2137 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2139 bool need_free
= false;
2141 spin_lock(&nm_i
->nid_list_lock
);
2142 i
= __lookup_free_nid_list(nm_i
, nid
);
2143 if (i
&& i
->state
== FREE_NID
) {
2144 __remove_free_nid(sbi
, i
, FREE_NID
);
2147 spin_unlock(&nm_i
->nid_list_lock
);
2150 kmem_cache_free(free_nid_slab
, i
);
2153 static int scan_nat_page(struct f2fs_sb_info
*sbi
,
2154 struct page
*nat_page
, nid_t start_nid
)
2156 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2157 struct f2fs_nat_block
*nat_blk
= page_address(nat_page
);
2159 unsigned int nat_ofs
= NAT_BLOCK_OFFSET(start_nid
);
2162 __set_bit_le(nat_ofs
, nm_i
->nat_block_bitmap
);
2164 i
= start_nid
% NAT_ENTRY_PER_BLOCK
;
2166 for (; i
< NAT_ENTRY_PER_BLOCK
; i
++, start_nid
++) {
2167 if (unlikely(start_nid
>= nm_i
->max_nid
))
2170 blk_addr
= le32_to_cpu(nat_blk
->entries
[i
].block_addr
);
2172 if (blk_addr
== NEW_ADDR
)
2175 if (blk_addr
== NULL_ADDR
) {
2176 add_free_nid(sbi
, start_nid
, true, true);
2178 spin_lock(&NM_I(sbi
)->nid_list_lock
);
2179 update_free_nid_bitmap(sbi
, start_nid
, false, true);
2180 spin_unlock(&NM_I(sbi
)->nid_list_lock
);
2187 static void scan_curseg_cache(struct f2fs_sb_info
*sbi
)
2189 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2190 struct f2fs_journal
*journal
= curseg
->journal
;
2193 down_read(&curseg
->journal_rwsem
);
2194 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
2198 addr
= le32_to_cpu(nat_in_journal(journal
, i
).block_addr
);
2199 nid
= le32_to_cpu(nid_in_journal(journal
, i
));
2200 if (addr
== NULL_ADDR
)
2201 add_free_nid(sbi
, nid
, true, false);
2203 remove_free_nid(sbi
, nid
);
2205 up_read(&curseg
->journal_rwsem
);
2208 static void scan_free_nid_bits(struct f2fs_sb_info
*sbi
)
2210 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2211 unsigned int i
, idx
;
2214 down_read(&nm_i
->nat_tree_lock
);
2216 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
2217 if (!test_bit_le(i
, nm_i
->nat_block_bitmap
))
2219 if (!nm_i
->free_nid_count
[i
])
2221 for (idx
= 0; idx
< NAT_ENTRY_PER_BLOCK
; idx
++) {
2222 idx
= find_next_bit_le(nm_i
->free_nid_bitmap
[i
],
2223 NAT_ENTRY_PER_BLOCK
, idx
);
2224 if (idx
>= NAT_ENTRY_PER_BLOCK
)
2227 nid
= i
* NAT_ENTRY_PER_BLOCK
+ idx
;
2228 add_free_nid(sbi
, nid
, true, false);
2230 if (nm_i
->nid_cnt
[FREE_NID
] >= MAX_FREE_NIDS
)
2235 scan_curseg_cache(sbi
);
2237 up_read(&nm_i
->nat_tree_lock
);
2240 static int __f2fs_build_free_nids(struct f2fs_sb_info
*sbi
,
2241 bool sync
, bool mount
)
2243 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2245 nid_t nid
= nm_i
->next_scan_nid
;
2247 if (unlikely(nid
>= nm_i
->max_nid
))
2250 /* Enough entries */
2251 if (nm_i
->nid_cnt
[FREE_NID
] >= NAT_ENTRY_PER_BLOCK
)
2254 if (!sync
&& !f2fs_available_free_memory(sbi
, FREE_NIDS
))
2258 /* try to find free nids in free_nid_bitmap */
2259 scan_free_nid_bits(sbi
);
2261 if (nm_i
->nid_cnt
[FREE_NID
] >= NAT_ENTRY_PER_BLOCK
)
2265 /* readahead nat pages to be scanned */
2266 f2fs_ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nid
), FREE_NID_PAGES
,
2269 down_read(&nm_i
->nat_tree_lock
);
2272 if (!test_bit_le(NAT_BLOCK_OFFSET(nid
),
2273 nm_i
->nat_block_bitmap
)) {
2274 struct page
*page
= get_current_nat_page(sbi
, nid
);
2277 ret
= PTR_ERR(page
);
2279 ret
= scan_nat_page(sbi
, page
, nid
);
2280 f2fs_put_page(page
, 1);
2284 up_read(&nm_i
->nat_tree_lock
);
2285 f2fs_bug_on(sbi
, !mount
);
2286 f2fs_msg(sbi
->sb
, KERN_ERR
,
2287 "NAT is corrupt, run fsck to fix it");
2292 nid
+= (NAT_ENTRY_PER_BLOCK
- (nid
% NAT_ENTRY_PER_BLOCK
));
2293 if (unlikely(nid
>= nm_i
->max_nid
))
2296 if (++i
>= FREE_NID_PAGES
)
2300 /* go to the next free nat pages to find free nids abundantly */
2301 nm_i
->next_scan_nid
= nid
;
2303 /* find free nids from current sum_pages */
2304 scan_curseg_cache(sbi
);
2306 up_read(&nm_i
->nat_tree_lock
);
2308 f2fs_ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nm_i
->next_scan_nid
),
2309 nm_i
->ra_nid_pages
, META_NAT
, false);
2314 int f2fs_build_free_nids(struct f2fs_sb_info
*sbi
, bool sync
, bool mount
)
2318 mutex_lock(&NM_I(sbi
)->build_lock
);
2319 ret
= __f2fs_build_free_nids(sbi
, sync
, mount
);
2320 mutex_unlock(&NM_I(sbi
)->build_lock
);
2326 * If this function returns success, caller can obtain a new nid
2327 * from second parameter of this function.
2328 * The returned nid could be used ino as well as nid when inode is created.
2330 bool f2fs_alloc_nid(struct f2fs_sb_info
*sbi
, nid_t
*nid
)
2332 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2333 struct free_nid
*i
= NULL
;
2335 if (time_to_inject(sbi
, FAULT_ALLOC_NID
)) {
2336 f2fs_show_injection_info(FAULT_ALLOC_NID
);
2340 spin_lock(&nm_i
->nid_list_lock
);
2342 if (unlikely(nm_i
->available_nids
== 0)) {
2343 spin_unlock(&nm_i
->nid_list_lock
);
2347 /* We should not use stale free nids created by f2fs_build_free_nids */
2348 if (nm_i
->nid_cnt
[FREE_NID
] && !on_f2fs_build_free_nids(nm_i
)) {
2349 f2fs_bug_on(sbi
, list_empty(&nm_i
->free_nid_list
));
2350 i
= list_first_entry(&nm_i
->free_nid_list
,
2351 struct free_nid
, list
);
2354 __move_free_nid(sbi
, i
, FREE_NID
, PREALLOC_NID
);
2355 nm_i
->available_nids
--;
2357 update_free_nid_bitmap(sbi
, *nid
, false, false);
2359 spin_unlock(&nm_i
->nid_list_lock
);
2362 spin_unlock(&nm_i
->nid_list_lock
);
2364 /* Let's scan nat pages and its caches to get free nids */
2365 if (!f2fs_build_free_nids(sbi
, true, false))
2371 * f2fs_alloc_nid() should be called prior to this function.
2373 void f2fs_alloc_nid_done(struct f2fs_sb_info
*sbi
, nid_t nid
)
2375 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2378 spin_lock(&nm_i
->nid_list_lock
);
2379 i
= __lookup_free_nid_list(nm_i
, nid
);
2380 f2fs_bug_on(sbi
, !i
);
2381 __remove_free_nid(sbi
, i
, PREALLOC_NID
);
2382 spin_unlock(&nm_i
->nid_list_lock
);
2384 kmem_cache_free(free_nid_slab
, i
);
2388 * f2fs_alloc_nid() should be called prior to this function.
2390 void f2fs_alloc_nid_failed(struct f2fs_sb_info
*sbi
, nid_t nid
)
2392 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2394 bool need_free
= false;
2399 spin_lock(&nm_i
->nid_list_lock
);
2400 i
= __lookup_free_nid_list(nm_i
, nid
);
2401 f2fs_bug_on(sbi
, !i
);
2403 if (!f2fs_available_free_memory(sbi
, FREE_NIDS
)) {
2404 __remove_free_nid(sbi
, i
, PREALLOC_NID
);
2407 __move_free_nid(sbi
, i
, PREALLOC_NID
, FREE_NID
);
2410 nm_i
->available_nids
++;
2412 update_free_nid_bitmap(sbi
, nid
, true, false);
2414 spin_unlock(&nm_i
->nid_list_lock
);
2417 kmem_cache_free(free_nid_slab
, i
);
2420 int f2fs_try_to_free_nids(struct f2fs_sb_info
*sbi
, int nr_shrink
)
2422 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2423 struct free_nid
*i
, *next
;
2426 if (nm_i
->nid_cnt
[FREE_NID
] <= MAX_FREE_NIDS
)
2429 if (!mutex_trylock(&nm_i
->build_lock
))
2432 spin_lock(&nm_i
->nid_list_lock
);
2433 list_for_each_entry_safe(i
, next
, &nm_i
->free_nid_list
, list
) {
2434 if (nr_shrink
<= 0 ||
2435 nm_i
->nid_cnt
[FREE_NID
] <= MAX_FREE_NIDS
)
2438 __remove_free_nid(sbi
, i
, FREE_NID
);
2439 kmem_cache_free(free_nid_slab
, i
);
2442 spin_unlock(&nm_i
->nid_list_lock
);
2443 mutex_unlock(&nm_i
->build_lock
);
2445 return nr
- nr_shrink
;
2448 void f2fs_recover_inline_xattr(struct inode
*inode
, struct page
*page
)
2450 void *src_addr
, *dst_addr
;
2453 struct f2fs_inode
*ri
;
2455 ipage
= f2fs_get_node_page(F2FS_I_SB(inode
), inode
->i_ino
);
2456 f2fs_bug_on(F2FS_I_SB(inode
), IS_ERR(ipage
));
2458 ri
= F2FS_INODE(page
);
2459 if (ri
->i_inline
& F2FS_INLINE_XATTR
) {
2460 set_inode_flag(inode
, FI_INLINE_XATTR
);
2462 clear_inode_flag(inode
, FI_INLINE_XATTR
);
2466 dst_addr
= inline_xattr_addr(inode
, ipage
);
2467 src_addr
= inline_xattr_addr(inode
, page
);
2468 inline_size
= inline_xattr_size(inode
);
2470 f2fs_wait_on_page_writeback(ipage
, NODE
, true);
2471 memcpy(dst_addr
, src_addr
, inline_size
);
2473 f2fs_update_inode(inode
, ipage
);
2474 f2fs_put_page(ipage
, 1);
2477 int f2fs_recover_xattr_data(struct inode
*inode
, struct page
*page
)
2479 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2480 nid_t prev_xnid
= F2FS_I(inode
)->i_xattr_nid
;
2482 struct dnode_of_data dn
;
2483 struct node_info ni
;
2490 /* 1: invalidate the previous xattr nid */
2491 err
= f2fs_get_node_info(sbi
, prev_xnid
, &ni
);
2495 f2fs_invalidate_blocks(sbi
, ni
.blk_addr
);
2496 dec_valid_node_count(sbi
, inode
, false);
2497 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
2500 /* 2: update xattr nid in inode */
2501 if (!f2fs_alloc_nid(sbi
, &new_xnid
))
2504 set_new_dnode(&dn
, inode
, NULL
, NULL
, new_xnid
);
2505 xpage
= f2fs_new_node_page(&dn
, XATTR_NODE_OFFSET
);
2506 if (IS_ERR(xpage
)) {
2507 f2fs_alloc_nid_failed(sbi
, new_xnid
);
2508 return PTR_ERR(xpage
);
2511 f2fs_alloc_nid_done(sbi
, new_xnid
);
2512 f2fs_update_inode_page(inode
);
2514 /* 3: update and set xattr node page dirty */
2515 memcpy(F2FS_NODE(xpage
), F2FS_NODE(page
), VALID_XATTR_BLOCK_SIZE
);
2517 set_page_dirty(xpage
);
2518 f2fs_put_page(xpage
, 1);
2523 int f2fs_recover_inode_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
2525 struct f2fs_inode
*src
, *dst
;
2526 nid_t ino
= ino_of_node(page
);
2527 struct node_info old_ni
, new_ni
;
2531 err
= f2fs_get_node_info(sbi
, ino
, &old_ni
);
2535 if (unlikely(old_ni
.blk_addr
!= NULL_ADDR
))
2538 ipage
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), ino
, false);
2540 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
2544 /* Should not use this inode from free nid list */
2545 remove_free_nid(sbi
, ino
);
2547 if (!PageUptodate(ipage
))
2548 SetPageUptodate(ipage
);
2549 fill_node_footer(ipage
, ino
, ino
, 0, true);
2550 set_cold_node(ipage
, false);
2552 src
= F2FS_INODE(page
);
2553 dst
= F2FS_INODE(ipage
);
2555 memcpy(dst
, src
, (unsigned long)&src
->i_ext
- (unsigned long)src
);
2557 dst
->i_blocks
= cpu_to_le64(1);
2558 dst
->i_links
= cpu_to_le32(1);
2559 dst
->i_xattr_nid
= 0;
2560 dst
->i_inline
= src
->i_inline
& (F2FS_INLINE_XATTR
| F2FS_EXTRA_ATTR
);
2561 if (dst
->i_inline
& F2FS_EXTRA_ATTR
) {
2562 dst
->i_extra_isize
= src
->i_extra_isize
;
2564 if (f2fs_sb_has_flexible_inline_xattr(sbi
->sb
) &&
2565 F2FS_FITS_IN_INODE(src
, le16_to_cpu(src
->i_extra_isize
),
2566 i_inline_xattr_size
))
2567 dst
->i_inline_xattr_size
= src
->i_inline_xattr_size
;
2569 if (f2fs_sb_has_project_quota(sbi
->sb
) &&
2570 F2FS_FITS_IN_INODE(src
, le16_to_cpu(src
->i_extra_isize
),
2572 dst
->i_projid
= src
->i_projid
;
2574 if (f2fs_sb_has_inode_crtime(sbi
->sb
) &&
2575 F2FS_FITS_IN_INODE(src
, le16_to_cpu(src
->i_extra_isize
),
2577 dst
->i_crtime
= src
->i_crtime
;
2578 dst
->i_crtime_nsec
= src
->i_crtime_nsec
;
2585 if (unlikely(inc_valid_node_count(sbi
, NULL
, true)))
2587 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
2588 inc_valid_inode_count(sbi
);
2589 set_page_dirty(ipage
);
2590 f2fs_put_page(ipage
, 1);
2594 int f2fs_restore_node_summary(struct f2fs_sb_info
*sbi
,
2595 unsigned int segno
, struct f2fs_summary_block
*sum
)
2597 struct f2fs_node
*rn
;
2598 struct f2fs_summary
*sum_entry
;
2600 int i
, idx
, last_offset
, nrpages
;
2602 /* scan the node segment */
2603 last_offset
= sbi
->blocks_per_seg
;
2604 addr
= START_BLOCK(sbi
, segno
);
2605 sum_entry
= &sum
->entries
[0];
2607 for (i
= 0; i
< last_offset
; i
+= nrpages
, addr
+= nrpages
) {
2608 nrpages
= min(last_offset
- i
, BIO_MAX_PAGES
);
2610 /* readahead node pages */
2611 f2fs_ra_meta_pages(sbi
, addr
, nrpages
, META_POR
, true);
2613 for (idx
= addr
; idx
< addr
+ nrpages
; idx
++) {
2614 struct page
*page
= f2fs_get_tmp_page(sbi
, idx
);
2617 return PTR_ERR(page
);
2619 rn
= F2FS_NODE(page
);
2620 sum_entry
->nid
= rn
->footer
.nid
;
2621 sum_entry
->version
= 0;
2622 sum_entry
->ofs_in_node
= 0;
2624 f2fs_put_page(page
, 1);
2627 invalidate_mapping_pages(META_MAPPING(sbi
), addr
,
2633 static void remove_nats_in_journal(struct f2fs_sb_info
*sbi
)
2635 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2636 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2637 struct f2fs_journal
*journal
= curseg
->journal
;
2640 down_write(&curseg
->journal_rwsem
);
2641 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
2642 struct nat_entry
*ne
;
2643 struct f2fs_nat_entry raw_ne
;
2644 nid_t nid
= le32_to_cpu(nid_in_journal(journal
, i
));
2646 raw_ne
= nat_in_journal(journal
, i
);
2648 ne
= __lookup_nat_cache(nm_i
, nid
);
2650 ne
= __alloc_nat_entry(nid
, true);
2651 __init_nat_entry(nm_i
, ne
, &raw_ne
, true);
2655 * if a free nat in journal has not been used after last
2656 * checkpoint, we should remove it from available nids,
2657 * since later we will add it again.
2659 if (!get_nat_flag(ne
, IS_DIRTY
) &&
2660 le32_to_cpu(raw_ne
.block_addr
) == NULL_ADDR
) {
2661 spin_lock(&nm_i
->nid_list_lock
);
2662 nm_i
->available_nids
--;
2663 spin_unlock(&nm_i
->nid_list_lock
);
2666 __set_nat_cache_dirty(nm_i
, ne
);
2668 update_nats_in_cursum(journal
, -i
);
2669 up_write(&curseg
->journal_rwsem
);
2672 static void __adjust_nat_entry_set(struct nat_entry_set
*nes
,
2673 struct list_head
*head
, int max
)
2675 struct nat_entry_set
*cur
;
2677 if (nes
->entry_cnt
>= max
)
2680 list_for_each_entry(cur
, head
, set_list
) {
2681 if (cur
->entry_cnt
>= nes
->entry_cnt
) {
2682 list_add(&nes
->set_list
, cur
->set_list
.prev
);
2687 list_add_tail(&nes
->set_list
, head
);
2690 static void __update_nat_bits(struct f2fs_sb_info
*sbi
, nid_t start_nid
,
2693 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2694 unsigned int nat_index
= start_nid
/ NAT_ENTRY_PER_BLOCK
;
2695 struct f2fs_nat_block
*nat_blk
= page_address(page
);
2699 if (!enabled_nat_bits(sbi
, NULL
))
2702 if (nat_index
== 0) {
2706 for (; i
< NAT_ENTRY_PER_BLOCK
; i
++) {
2707 if (nat_blk
->entries
[i
].block_addr
!= NULL_ADDR
)
2711 __set_bit_le(nat_index
, nm_i
->empty_nat_bits
);
2712 __clear_bit_le(nat_index
, nm_i
->full_nat_bits
);
2716 __clear_bit_le(nat_index
, nm_i
->empty_nat_bits
);
2717 if (valid
== NAT_ENTRY_PER_BLOCK
)
2718 __set_bit_le(nat_index
, nm_i
->full_nat_bits
);
2720 __clear_bit_le(nat_index
, nm_i
->full_nat_bits
);
2723 static int __flush_nat_entry_set(struct f2fs_sb_info
*sbi
,
2724 struct nat_entry_set
*set
, struct cp_control
*cpc
)
2726 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2727 struct f2fs_journal
*journal
= curseg
->journal
;
2728 nid_t start_nid
= set
->set
* NAT_ENTRY_PER_BLOCK
;
2729 bool to_journal
= true;
2730 struct f2fs_nat_block
*nat_blk
;
2731 struct nat_entry
*ne
, *cur
;
2732 struct page
*page
= NULL
;
2735 * there are two steps to flush nat entries:
2736 * #1, flush nat entries to journal in current hot data summary block.
2737 * #2, flush nat entries to nat page.
2739 if (enabled_nat_bits(sbi
, cpc
) ||
2740 !__has_cursum_space(journal
, set
->entry_cnt
, NAT_JOURNAL
))
2744 down_write(&curseg
->journal_rwsem
);
2746 page
= get_next_nat_page(sbi
, start_nid
);
2748 return PTR_ERR(page
);
2750 nat_blk
= page_address(page
);
2751 f2fs_bug_on(sbi
, !nat_blk
);
2754 /* flush dirty nats in nat entry set */
2755 list_for_each_entry_safe(ne
, cur
, &set
->entry_list
, list
) {
2756 struct f2fs_nat_entry
*raw_ne
;
2757 nid_t nid
= nat_get_nid(ne
);
2760 f2fs_bug_on(sbi
, nat_get_blkaddr(ne
) == NEW_ADDR
);
2763 offset
= f2fs_lookup_journal_in_cursum(journal
,
2764 NAT_JOURNAL
, nid
, 1);
2765 f2fs_bug_on(sbi
, offset
< 0);
2766 raw_ne
= &nat_in_journal(journal
, offset
);
2767 nid_in_journal(journal
, offset
) = cpu_to_le32(nid
);
2769 raw_ne
= &nat_blk
->entries
[nid
- start_nid
];
2771 raw_nat_from_node_info(raw_ne
, &ne
->ni
);
2773 __clear_nat_cache_dirty(NM_I(sbi
), set
, ne
);
2774 if (nat_get_blkaddr(ne
) == NULL_ADDR
) {
2775 add_free_nid(sbi
, nid
, false, true);
2777 spin_lock(&NM_I(sbi
)->nid_list_lock
);
2778 update_free_nid_bitmap(sbi
, nid
, false, false);
2779 spin_unlock(&NM_I(sbi
)->nid_list_lock
);
2784 up_write(&curseg
->journal_rwsem
);
2786 __update_nat_bits(sbi
, start_nid
, page
);
2787 f2fs_put_page(page
, 1);
2790 /* Allow dirty nats by node block allocation in write_begin */
2791 if (!set
->entry_cnt
) {
2792 radix_tree_delete(&NM_I(sbi
)->nat_set_root
, set
->set
);
2793 kmem_cache_free(nat_entry_set_slab
, set
);
2799 * This function is called during the checkpointing process.
2801 int f2fs_flush_nat_entries(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
2803 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2804 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2805 struct f2fs_journal
*journal
= curseg
->journal
;
2806 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
2807 struct nat_entry_set
*set
, *tmp
;
2813 /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2814 if (enabled_nat_bits(sbi
, cpc
)) {
2815 down_write(&nm_i
->nat_tree_lock
);
2816 remove_nats_in_journal(sbi
);
2817 up_write(&nm_i
->nat_tree_lock
);
2820 if (!nm_i
->dirty_nat_cnt
)
2823 down_write(&nm_i
->nat_tree_lock
);
2826 * if there are no enough space in journal to store dirty nat
2827 * entries, remove all entries from journal and merge them
2828 * into nat entry set.
2830 if (enabled_nat_bits(sbi
, cpc
) ||
2831 !__has_cursum_space(journal
, nm_i
->dirty_nat_cnt
, NAT_JOURNAL
))
2832 remove_nats_in_journal(sbi
);
2834 while ((found
= __gang_lookup_nat_set(nm_i
,
2835 set_idx
, SETVEC_SIZE
, setvec
))) {
2837 set_idx
= setvec
[found
- 1]->set
+ 1;
2838 for (idx
= 0; idx
< found
; idx
++)
2839 __adjust_nat_entry_set(setvec
[idx
], &sets
,
2840 MAX_NAT_JENTRIES(journal
));
2843 /* flush dirty nats in nat entry set */
2844 list_for_each_entry_safe(set
, tmp
, &sets
, set_list
) {
2845 err
= __flush_nat_entry_set(sbi
, set
, cpc
);
2850 up_write(&nm_i
->nat_tree_lock
);
2851 /* Allow dirty nats by node block allocation in write_begin */
2856 static int __get_nat_bitmaps(struct f2fs_sb_info
*sbi
)
2858 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2859 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2860 unsigned int nat_bits_bytes
= nm_i
->nat_blocks
/ BITS_PER_BYTE
;
2862 __u64 cp_ver
= cur_cp_version(ckpt
);
2863 block_t nat_bits_addr
;
2865 if (!enabled_nat_bits(sbi
, NULL
))
2868 nm_i
->nat_bits_blocks
= F2FS_BLK_ALIGN((nat_bits_bytes
<< 1) + 8);
2869 nm_i
->nat_bits
= f2fs_kzalloc(sbi
,
2870 nm_i
->nat_bits_blocks
<< F2FS_BLKSIZE_BITS
, GFP_KERNEL
);
2871 if (!nm_i
->nat_bits
)
2874 nat_bits_addr
= __start_cp_addr(sbi
) + sbi
->blocks_per_seg
-
2875 nm_i
->nat_bits_blocks
;
2876 for (i
= 0; i
< nm_i
->nat_bits_blocks
; i
++) {
2879 page
= f2fs_get_meta_page(sbi
, nat_bits_addr
++);
2881 return PTR_ERR(page
);
2883 memcpy(nm_i
->nat_bits
+ (i
<< F2FS_BLKSIZE_BITS
),
2884 page_address(page
), F2FS_BLKSIZE
);
2885 f2fs_put_page(page
, 1);
2888 cp_ver
|= (cur_cp_crc(ckpt
) << 32);
2889 if (cpu_to_le64(cp_ver
) != *(__le64
*)nm_i
->nat_bits
) {
2890 disable_nat_bits(sbi
, true);
2894 nm_i
->full_nat_bits
= nm_i
->nat_bits
+ 8;
2895 nm_i
->empty_nat_bits
= nm_i
->full_nat_bits
+ nat_bits_bytes
;
2897 f2fs_msg(sbi
->sb
, KERN_NOTICE
, "Found nat_bits in checkpoint");
2901 static inline void load_free_nid_bitmap(struct f2fs_sb_info
*sbi
)
2903 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2905 nid_t nid
, last_nid
;
2907 if (!enabled_nat_bits(sbi
, NULL
))
2910 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
2911 i
= find_next_bit_le(nm_i
->empty_nat_bits
, nm_i
->nat_blocks
, i
);
2912 if (i
>= nm_i
->nat_blocks
)
2915 __set_bit_le(i
, nm_i
->nat_block_bitmap
);
2917 nid
= i
* NAT_ENTRY_PER_BLOCK
;
2918 last_nid
= nid
+ NAT_ENTRY_PER_BLOCK
;
2920 spin_lock(&NM_I(sbi
)->nid_list_lock
);
2921 for (; nid
< last_nid
; nid
++)
2922 update_free_nid_bitmap(sbi
, nid
, true, true);
2923 spin_unlock(&NM_I(sbi
)->nid_list_lock
);
2926 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
2927 i
= find_next_bit_le(nm_i
->full_nat_bits
, nm_i
->nat_blocks
, i
);
2928 if (i
>= nm_i
->nat_blocks
)
2931 __set_bit_le(i
, nm_i
->nat_block_bitmap
);
2935 static int init_node_manager(struct f2fs_sb_info
*sbi
)
2937 struct f2fs_super_block
*sb_raw
= F2FS_RAW_SUPER(sbi
);
2938 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2939 unsigned char *version_bitmap
;
2940 unsigned int nat_segs
;
2943 nm_i
->nat_blkaddr
= le32_to_cpu(sb_raw
->nat_blkaddr
);
2945 /* segment_count_nat includes pair segment so divide to 2. */
2946 nat_segs
= le32_to_cpu(sb_raw
->segment_count_nat
) >> 1;
2947 nm_i
->nat_blocks
= nat_segs
<< le32_to_cpu(sb_raw
->log_blocks_per_seg
);
2948 nm_i
->max_nid
= NAT_ENTRY_PER_BLOCK
* nm_i
->nat_blocks
;
2950 /* not used nids: 0, node, meta, (and root counted as valid node) */
2951 nm_i
->available_nids
= nm_i
->max_nid
- sbi
->total_valid_node_count
-
2952 sbi
->nquota_files
- F2FS_RESERVED_NODE_NUM
;
2953 nm_i
->nid_cnt
[FREE_NID
] = 0;
2954 nm_i
->nid_cnt
[PREALLOC_NID
] = 0;
2956 nm_i
->ram_thresh
= DEF_RAM_THRESHOLD
;
2957 nm_i
->ra_nid_pages
= DEF_RA_NID_PAGES
;
2958 nm_i
->dirty_nats_ratio
= DEF_DIRTY_NAT_RATIO_THRESHOLD
;
2960 INIT_RADIX_TREE(&nm_i
->free_nid_root
, GFP_ATOMIC
);
2961 INIT_LIST_HEAD(&nm_i
->free_nid_list
);
2962 INIT_RADIX_TREE(&nm_i
->nat_root
, GFP_NOIO
);
2963 INIT_RADIX_TREE(&nm_i
->nat_set_root
, GFP_NOIO
);
2964 INIT_LIST_HEAD(&nm_i
->nat_entries
);
2965 spin_lock_init(&nm_i
->nat_list_lock
);
2967 mutex_init(&nm_i
->build_lock
);
2968 spin_lock_init(&nm_i
->nid_list_lock
);
2969 init_rwsem(&nm_i
->nat_tree_lock
);
2971 nm_i
->next_scan_nid
= le32_to_cpu(sbi
->ckpt
->next_free_nid
);
2972 nm_i
->bitmap_size
= __bitmap_size(sbi
, NAT_BITMAP
);
2973 version_bitmap
= __bitmap_ptr(sbi
, NAT_BITMAP
);
2974 if (!version_bitmap
)
2977 nm_i
->nat_bitmap
= kmemdup(version_bitmap
, nm_i
->bitmap_size
,
2979 if (!nm_i
->nat_bitmap
)
2982 err
= __get_nat_bitmaps(sbi
);
2986 #ifdef CONFIG_F2FS_CHECK_FS
2987 nm_i
->nat_bitmap_mir
= kmemdup(version_bitmap
, nm_i
->bitmap_size
,
2989 if (!nm_i
->nat_bitmap_mir
)
2996 static int init_free_nid_cache(struct f2fs_sb_info
*sbi
)
2998 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
3001 nm_i
->free_nid_bitmap
=
3002 f2fs_kzalloc(sbi
, array_size(sizeof(unsigned char *),
3005 if (!nm_i
->free_nid_bitmap
)
3008 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
3009 nm_i
->free_nid_bitmap
[i
] = f2fs_kvzalloc(sbi
,
3010 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK
), GFP_KERNEL
);
3011 if (!nm_i
->free_nid_bitmap
[i
])
3015 nm_i
->nat_block_bitmap
= f2fs_kvzalloc(sbi
, nm_i
->nat_blocks
/ 8,
3017 if (!nm_i
->nat_block_bitmap
)
3020 nm_i
->free_nid_count
=
3021 f2fs_kvzalloc(sbi
, array_size(sizeof(unsigned short),
3024 if (!nm_i
->free_nid_count
)
3029 int f2fs_build_node_manager(struct f2fs_sb_info
*sbi
)
3033 sbi
->nm_info
= f2fs_kzalloc(sbi
, sizeof(struct f2fs_nm_info
),
3038 err
= init_node_manager(sbi
);
3042 err
= init_free_nid_cache(sbi
);
3046 /* load free nid status from nat_bits table */
3047 load_free_nid_bitmap(sbi
);
3049 return f2fs_build_free_nids(sbi
, true, true);
3052 void f2fs_destroy_node_manager(struct f2fs_sb_info
*sbi
)
3054 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
3055 struct free_nid
*i
, *next_i
;
3056 struct nat_entry
*natvec
[NATVEC_SIZE
];
3057 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
3064 /* destroy free nid list */
3065 spin_lock(&nm_i
->nid_list_lock
);
3066 list_for_each_entry_safe(i
, next_i
, &nm_i
->free_nid_list
, list
) {
3067 __remove_free_nid(sbi
, i
, FREE_NID
);
3068 spin_unlock(&nm_i
->nid_list_lock
);
3069 kmem_cache_free(free_nid_slab
, i
);
3070 spin_lock(&nm_i
->nid_list_lock
);
3072 f2fs_bug_on(sbi
, nm_i
->nid_cnt
[FREE_NID
]);
3073 f2fs_bug_on(sbi
, nm_i
->nid_cnt
[PREALLOC_NID
]);
3074 f2fs_bug_on(sbi
, !list_empty(&nm_i
->free_nid_list
));
3075 spin_unlock(&nm_i
->nid_list_lock
);
3077 /* destroy nat cache */
3078 down_write(&nm_i
->nat_tree_lock
);
3079 while ((found
= __gang_lookup_nat_cache(nm_i
,
3080 nid
, NATVEC_SIZE
, natvec
))) {
3083 nid
= nat_get_nid(natvec
[found
- 1]) + 1;
3084 for (idx
= 0; idx
< found
; idx
++) {
3085 spin_lock(&nm_i
->nat_list_lock
);
3086 list_del(&natvec
[idx
]->list
);
3087 spin_unlock(&nm_i
->nat_list_lock
);
3089 __del_from_nat_cache(nm_i
, natvec
[idx
]);
3092 f2fs_bug_on(sbi
, nm_i
->nat_cnt
);
3094 /* destroy nat set cache */
3096 while ((found
= __gang_lookup_nat_set(nm_i
,
3097 nid
, SETVEC_SIZE
, setvec
))) {
3100 nid
= setvec
[found
- 1]->set
+ 1;
3101 for (idx
= 0; idx
< found
; idx
++) {
3102 /* entry_cnt is not zero, when cp_error was occurred */
3103 f2fs_bug_on(sbi
, !list_empty(&setvec
[idx
]->entry_list
));
3104 radix_tree_delete(&nm_i
->nat_set_root
, setvec
[idx
]->set
);
3105 kmem_cache_free(nat_entry_set_slab
, setvec
[idx
]);
3108 up_write(&nm_i
->nat_tree_lock
);
3110 kvfree(nm_i
->nat_block_bitmap
);
3111 if (nm_i
->free_nid_bitmap
) {
3114 for (i
= 0; i
< nm_i
->nat_blocks
; i
++)
3115 kvfree(nm_i
->free_nid_bitmap
[i
]);
3116 kfree(nm_i
->free_nid_bitmap
);
3118 kvfree(nm_i
->free_nid_count
);
3120 kfree(nm_i
->nat_bitmap
);
3121 kfree(nm_i
->nat_bits
);
3122 #ifdef CONFIG_F2FS_CHECK_FS
3123 kfree(nm_i
->nat_bitmap_mir
);
3125 sbi
->nm_info
= NULL
;
3129 int __init
f2fs_create_node_manager_caches(void)
3131 nat_entry_slab
= f2fs_kmem_cache_create("nat_entry",
3132 sizeof(struct nat_entry
));
3133 if (!nat_entry_slab
)
3136 free_nid_slab
= f2fs_kmem_cache_create("free_nid",
3137 sizeof(struct free_nid
));
3139 goto destroy_nat_entry
;
3141 nat_entry_set_slab
= f2fs_kmem_cache_create("nat_entry_set",
3142 sizeof(struct nat_entry_set
));
3143 if (!nat_entry_set_slab
)
3144 goto destroy_free_nid
;
3146 fsync_node_entry_slab
= f2fs_kmem_cache_create("fsync_node_entry",
3147 sizeof(struct fsync_node_entry
));
3148 if (!fsync_node_entry_slab
)
3149 goto destroy_nat_entry_set
;
3152 destroy_nat_entry_set
:
3153 kmem_cache_destroy(nat_entry_set_slab
);
3155 kmem_cache_destroy(free_nid_slab
);
3157 kmem_cache_destroy(nat_entry_slab
);
3162 void f2fs_destroy_node_manager_caches(void)
3164 kmem_cache_destroy(fsync_node_entry_slab
);
3165 kmem_cache_destroy(nat_entry_set_slab
);
3166 kmem_cache_destroy(free_nid_slab
);
3167 kmem_cache_destroy(nat_entry_slab
);