2 * Copyright (C) 2010 Red Hat, Inc.
3 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #include <linux/module.h>
15 #include <linux/compiler.h>
17 #include <linux/iomap.h>
18 #include <linux/uaccess.h>
19 #include <linux/gfp.h>
20 #include <linux/migrate.h>
22 #include <linux/mm_inline.h>
23 #include <linux/swap.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/backing-dev.h>
29 #include <linux/buffer_head.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/dax.h>
32 #include <linux/sched/signal.h>
37 * Execute a iomap write on a segment of the mapping that spans a
38 * contiguous range of pages that have identical block mapping state.
40 * This avoids the need to map pages individually, do individual allocations
41 * for each page and most importantly avoid the need for filesystem specific
42 * locking per page. Instead, all the operations are amortised over the entire
43 * range of pages. It is assumed that the filesystems will lock whatever
44 * resources they require in the iomap_begin call, and release them in the
48 iomap_apply(struct inode
*inode
, loff_t pos
, loff_t length
, unsigned flags
,
49 const struct iomap_ops
*ops
, void *data
, iomap_actor_t actor
)
51 struct iomap iomap
= { 0 };
52 loff_t written
= 0, ret
;
55 * Need to map a range from start position for length bytes. This can
56 * span multiple pages - it is only guaranteed to return a range of a
57 * single type of pages (e.g. all into a hole, all mapped or all
58 * unwritten). Failure at this point has nothing to undo.
60 * If allocation is required for this range, reserve the space now so
61 * that the allocation is guaranteed to succeed later on. Once we copy
62 * the data into the page cache pages, then we cannot fail otherwise we
63 * expose transient stale data. If the reserve fails, we can safely
64 * back out at this point as there is nothing to undo.
66 ret
= ops
->iomap_begin(inode
, pos
, length
, flags
, &iomap
);
69 if (WARN_ON(iomap
.offset
> pos
))
71 if (WARN_ON(iomap
.length
== 0))
75 * Cut down the length to the one actually provided by the filesystem,
76 * as it might not be able to give us the whole size that we requested.
78 if (iomap
.offset
+ iomap
.length
< pos
+ length
)
79 length
= iomap
.offset
+ iomap
.length
- pos
;
82 * Now that we have guaranteed that the space allocation will succeed.
83 * we can do the copy-in page by page without having to worry about
84 * failures exposing transient data.
86 written
= actor(inode
, pos
, length
, data
, &iomap
);
89 * Now the data has been copied, commit the range we've copied. This
90 * should not fail unless the filesystem has had a fatal error.
93 ret
= ops
->iomap_end(inode
, pos
, length
,
94 written
> 0 ? written
: 0,
98 return written
? written
: ret
;
102 iomap_sector(struct iomap
*iomap
, loff_t pos
)
104 return (iomap
->addr
+ pos
- iomap
->offset
) >> SECTOR_SHIFT
;
107 static struct iomap_page
*
108 iomap_page_create(struct inode
*inode
, struct page
*page
)
110 struct iomap_page
*iop
= to_iomap_page(page
);
112 if (iop
|| i_blocksize(inode
) == PAGE_SIZE
)
115 iop
= kmalloc(sizeof(*iop
), GFP_NOFS
| __GFP_NOFAIL
);
116 atomic_set(&iop
->read_count
, 0);
117 atomic_set(&iop
->write_count
, 0);
118 bitmap_zero(iop
->uptodate
, PAGE_SIZE
/ SECTOR_SIZE
);
121 * migrate_page_move_mapping() assumes that pages with private data have
122 * their count elevated by 1.
125 set_page_private(page
, (unsigned long)iop
);
126 SetPagePrivate(page
);
131 iomap_page_release(struct page
*page
)
133 struct iomap_page
*iop
= to_iomap_page(page
);
137 WARN_ON_ONCE(atomic_read(&iop
->read_count
));
138 WARN_ON_ONCE(atomic_read(&iop
->write_count
));
139 ClearPagePrivate(page
);
140 set_page_private(page
, 0);
146 * Calculate the range inside the page that we actually need to read.
149 iomap_adjust_read_range(struct inode
*inode
, struct iomap_page
*iop
,
150 loff_t
*pos
, loff_t length
, unsigned *offp
, unsigned *lenp
)
152 loff_t orig_pos
= *pos
;
153 loff_t isize
= i_size_read(inode
);
154 unsigned block_bits
= inode
->i_blkbits
;
155 unsigned block_size
= (1 << block_bits
);
156 unsigned poff
= offset_in_page(*pos
);
157 unsigned plen
= min_t(loff_t
, PAGE_SIZE
- poff
, length
);
158 unsigned first
= poff
>> block_bits
;
159 unsigned last
= (poff
+ plen
- 1) >> block_bits
;
162 * If the block size is smaller than the page size we need to check the
163 * per-block uptodate status and adjust the offset and length if needed
164 * to avoid reading in already uptodate ranges.
169 /* move forward for each leading block marked uptodate */
170 for (i
= first
; i
<= last
; i
++) {
171 if (!test_bit(i
, iop
->uptodate
))
179 /* truncate len if we find any trailing uptodate block(s) */
180 for ( ; i
<= last
; i
++) {
181 if (test_bit(i
, iop
->uptodate
)) {
182 plen
-= (last
- i
+ 1) * block_size
;
190 * If the extent spans the block that contains the i_size we need to
191 * handle both halves separately so that we properly zero data in the
192 * page cache for blocks that are entirely outside of i_size.
194 if (orig_pos
<= isize
&& orig_pos
+ length
> isize
) {
195 unsigned end
= offset_in_page(isize
- 1) >> block_bits
;
197 if (first
<= end
&& last
> end
)
198 plen
-= (last
- end
) * block_size
;
206 iomap_set_range_uptodate(struct page
*page
, unsigned off
, unsigned len
)
208 struct iomap_page
*iop
= to_iomap_page(page
);
209 struct inode
*inode
= page
->mapping
->host
;
210 unsigned first
= off
>> inode
->i_blkbits
;
211 unsigned last
= (off
+ len
- 1) >> inode
->i_blkbits
;
213 bool uptodate
= true;
216 for (i
= 0; i
< PAGE_SIZE
/ i_blocksize(inode
); i
++) {
217 if (i
>= first
&& i
<= last
)
218 set_bit(i
, iop
->uptodate
);
219 else if (!test_bit(i
, iop
->uptodate
))
224 if (uptodate
&& !PageError(page
))
225 SetPageUptodate(page
);
229 iomap_read_finish(struct iomap_page
*iop
, struct page
*page
)
231 if (!iop
|| atomic_dec_and_test(&iop
->read_count
))
236 iomap_read_page_end_io(struct bio_vec
*bvec
, int error
)
238 struct page
*page
= bvec
->bv_page
;
239 struct iomap_page
*iop
= to_iomap_page(page
);
241 if (unlikely(error
)) {
242 ClearPageUptodate(page
);
245 iomap_set_range_uptodate(page
, bvec
->bv_offset
, bvec
->bv_len
);
248 iomap_read_finish(iop
, page
);
252 iomap_read_inline_data(struct inode
*inode
, struct page
*page
,
255 size_t size
= i_size_read(inode
);
258 if (PageUptodate(page
))
262 BUG_ON(size
> PAGE_SIZE
- offset_in_page(iomap
->inline_data
));
264 addr
= kmap_atomic(page
);
265 memcpy(addr
, iomap
->inline_data
, size
);
266 memset(addr
+ size
, 0, PAGE_SIZE
- size
);
268 SetPageUptodate(page
);
272 iomap_read_end_io(struct bio
*bio
)
274 int error
= blk_status_to_errno(bio
->bi_status
);
275 struct bio_vec
*bvec
;
278 bio_for_each_segment_all(bvec
, bio
, i
)
279 iomap_read_page_end_io(bvec
, error
);
283 struct iomap_readpage_ctx
{
284 struct page
*cur_page
;
285 bool cur_page_in_bio
;
288 struct list_head
*pages
;
292 iomap_readpage_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
295 struct iomap_readpage_ctx
*ctx
= data
;
296 struct page
*page
= ctx
->cur_page
;
297 struct iomap_page
*iop
= iomap_page_create(inode
, page
);
298 bool is_contig
= false;
299 loff_t orig_pos
= pos
;
303 if (iomap
->type
== IOMAP_INLINE
) {
305 iomap_read_inline_data(inode
, page
, iomap
);
309 /* zero post-eof blocks as the page may be mapped */
310 iomap_adjust_read_range(inode
, iop
, &pos
, length
, &poff
, &plen
);
314 if (iomap
->type
!= IOMAP_MAPPED
|| pos
>= i_size_read(inode
)) {
315 zero_user(page
, poff
, plen
);
316 iomap_set_range_uptodate(page
, poff
, plen
);
320 ctx
->cur_page_in_bio
= true;
323 * Try to merge into a previous segment if we can.
325 sector
= iomap_sector(iomap
, pos
);
326 if (ctx
->bio
&& bio_end_sector(ctx
->bio
) == sector
) {
327 if (__bio_try_merge_page(ctx
->bio
, page
, plen
, poff
))
333 * If we start a new segment we need to increase the read count, and we
334 * need to do so before submitting any previous full bio to make sure
335 * that we don't prematurely unlock the page.
338 atomic_inc(&iop
->read_count
);
340 if (!ctx
->bio
|| !is_contig
|| bio_full(ctx
->bio
)) {
341 gfp_t gfp
= mapping_gfp_constraint(page
->mapping
, GFP_KERNEL
);
342 int nr_vecs
= (length
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
345 submit_bio(ctx
->bio
);
347 if (ctx
->is_readahead
) /* same as readahead_gfp_mask */
348 gfp
|= __GFP_NORETRY
| __GFP_NOWARN
;
349 ctx
->bio
= bio_alloc(gfp
, min(BIO_MAX_PAGES
, nr_vecs
));
350 ctx
->bio
->bi_opf
= REQ_OP_READ
;
351 if (ctx
->is_readahead
)
352 ctx
->bio
->bi_opf
|= REQ_RAHEAD
;
353 ctx
->bio
->bi_iter
.bi_sector
= sector
;
354 bio_set_dev(ctx
->bio
, iomap
->bdev
);
355 ctx
->bio
->bi_end_io
= iomap_read_end_io
;
358 __bio_add_page(ctx
->bio
, page
, plen
, poff
);
361 * Move the caller beyond our range so that it keeps making progress.
362 * For that we have to include any leading non-uptodate ranges, but
363 * we can skip trailing ones as they will be handled in the next
366 return pos
- orig_pos
+ plen
;
370 iomap_readpage(struct page
*page
, const struct iomap_ops
*ops
)
372 struct iomap_readpage_ctx ctx
= { .cur_page
= page
};
373 struct inode
*inode
= page
->mapping
->host
;
377 for (poff
= 0; poff
< PAGE_SIZE
; poff
+= ret
) {
378 ret
= iomap_apply(inode
, page_offset(page
) + poff
,
379 PAGE_SIZE
- poff
, 0, ops
, &ctx
,
380 iomap_readpage_actor
);
382 WARN_ON_ONCE(ret
== 0);
390 WARN_ON_ONCE(!ctx
.cur_page_in_bio
);
392 WARN_ON_ONCE(ctx
.cur_page_in_bio
);
397 * Just like mpage_readpages and block_read_full_page we always
398 * return 0 and just mark the page as PageError on errors. This
399 * should be cleaned up all through the stack eventually.
403 EXPORT_SYMBOL_GPL(iomap_readpage
);
406 iomap_next_page(struct inode
*inode
, struct list_head
*pages
, loff_t pos
,
407 loff_t length
, loff_t
*done
)
409 while (!list_empty(pages
)) {
410 struct page
*page
= lru_to_page(pages
);
412 if (page_offset(page
) >= (u64
)pos
+ length
)
415 list_del(&page
->lru
);
416 if (!add_to_page_cache_lru(page
, inode
->i_mapping
, page
->index
,
421 * If we already have a page in the page cache at index we are
422 * done. Upper layers don't care if it is uptodate after the
423 * readpages call itself as every page gets checked again once
434 iomap_readpages_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
435 void *data
, struct iomap
*iomap
)
437 struct iomap_readpage_ctx
*ctx
= data
;
440 for (done
= 0; done
< length
; done
+= ret
) {
441 if (ctx
->cur_page
&& offset_in_page(pos
+ done
) == 0) {
442 if (!ctx
->cur_page_in_bio
)
443 unlock_page(ctx
->cur_page
);
444 put_page(ctx
->cur_page
);
445 ctx
->cur_page
= NULL
;
447 if (!ctx
->cur_page
) {
448 ctx
->cur_page
= iomap_next_page(inode
, ctx
->pages
,
452 ctx
->cur_page_in_bio
= false;
454 ret
= iomap_readpage_actor(inode
, pos
+ done
, length
- done
,
462 iomap_readpages(struct address_space
*mapping
, struct list_head
*pages
,
463 unsigned nr_pages
, const struct iomap_ops
*ops
)
465 struct iomap_readpage_ctx ctx
= {
467 .is_readahead
= true,
469 loff_t pos
= page_offset(list_entry(pages
->prev
, struct page
, lru
));
470 loff_t last
= page_offset(list_entry(pages
->next
, struct page
, lru
));
471 loff_t length
= last
- pos
+ PAGE_SIZE
, ret
= 0;
474 ret
= iomap_apply(mapping
->host
, pos
, length
, 0, ops
,
475 &ctx
, iomap_readpages_actor
);
477 WARN_ON_ONCE(ret
== 0);
488 if (!ctx
.cur_page_in_bio
)
489 unlock_page(ctx
.cur_page
);
490 put_page(ctx
.cur_page
);
494 * Check that we didn't lose a page due to the arcance calling
497 WARN_ON_ONCE(!ret
&& !list_empty(ctx
.pages
));
500 EXPORT_SYMBOL_GPL(iomap_readpages
);
503 iomap_is_partially_uptodate(struct page
*page
, unsigned long from
,
506 struct iomap_page
*iop
= to_iomap_page(page
);
507 struct inode
*inode
= page
->mapping
->host
;
508 unsigned first
= from
>> inode
->i_blkbits
;
509 unsigned last
= (from
+ count
- 1) >> inode
->i_blkbits
;
513 for (i
= first
; i
<= last
; i
++)
514 if (!test_bit(i
, iop
->uptodate
))
521 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate
);
524 iomap_releasepage(struct page
*page
, gfp_t gfp_mask
)
527 * mm accommodates an old ext3 case where clean pages might not have had
528 * the dirty bit cleared. Thus, it can send actual dirty pages to
529 * ->releasepage() via shrink_active_list(), skip those here.
531 if (PageDirty(page
) || PageWriteback(page
))
533 iomap_page_release(page
);
536 EXPORT_SYMBOL_GPL(iomap_releasepage
);
539 iomap_invalidatepage(struct page
*page
, unsigned int offset
, unsigned int len
)
542 * If we are invalidating the entire page, clear the dirty state from it
543 * and release it to avoid unnecessary buildup of the LRU.
545 if (offset
== 0 && len
== PAGE_SIZE
) {
546 WARN_ON_ONCE(PageWriteback(page
));
547 cancel_dirty_page(page
);
548 iomap_page_release(page
);
551 EXPORT_SYMBOL_GPL(iomap_invalidatepage
);
553 #ifdef CONFIG_MIGRATION
555 iomap_migrate_page(struct address_space
*mapping
, struct page
*newpage
,
556 struct page
*page
, enum migrate_mode mode
)
560 ret
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
561 if (ret
!= MIGRATEPAGE_SUCCESS
)
564 if (page_has_private(page
)) {
565 ClearPagePrivate(page
);
566 set_page_private(newpage
, page_private(page
));
567 set_page_private(page
, 0);
568 SetPagePrivate(newpage
);
571 if (mode
!= MIGRATE_SYNC_NO_COPY
)
572 migrate_page_copy(newpage
, page
);
574 migrate_page_states(newpage
, page
);
575 return MIGRATEPAGE_SUCCESS
;
577 EXPORT_SYMBOL_GPL(iomap_migrate_page
);
578 #endif /* CONFIG_MIGRATION */
581 iomap_write_failed(struct inode
*inode
, loff_t pos
, unsigned len
)
583 loff_t i_size
= i_size_read(inode
);
586 * Only truncate newly allocated pages beyoned EOF, even if the
587 * write started inside the existing inode size.
589 if (pos
+ len
> i_size
)
590 truncate_pagecache_range(inode
, max(pos
, i_size
), pos
+ len
);
594 iomap_read_page_sync(struct inode
*inode
, loff_t block_start
, struct page
*page
,
595 unsigned poff
, unsigned plen
, unsigned from
, unsigned to
,
601 if (iomap
->type
!= IOMAP_MAPPED
|| block_start
>= i_size_read(inode
)) {
602 zero_user_segments(page
, poff
, from
, to
, poff
+ plen
);
603 iomap_set_range_uptodate(page
, poff
, plen
);
607 bio_init(&bio
, &bvec
, 1);
608 bio
.bi_opf
= REQ_OP_READ
;
609 bio
.bi_iter
.bi_sector
= iomap_sector(iomap
, block_start
);
610 bio_set_dev(&bio
, iomap
->bdev
);
611 __bio_add_page(&bio
, page
, plen
, poff
);
612 return submit_bio_wait(&bio
);
616 __iomap_write_begin(struct inode
*inode
, loff_t pos
, unsigned len
,
617 struct page
*page
, struct iomap
*iomap
)
619 struct iomap_page
*iop
= iomap_page_create(inode
, page
);
620 loff_t block_size
= i_blocksize(inode
);
621 loff_t block_start
= pos
& ~(block_size
- 1);
622 loff_t block_end
= (pos
+ len
+ block_size
- 1) & ~(block_size
- 1);
623 unsigned from
= offset_in_page(pos
), to
= from
+ len
, poff
, plen
;
626 if (PageUptodate(page
))
630 iomap_adjust_read_range(inode
, iop
, &block_start
,
631 block_end
- block_start
, &poff
, &plen
);
635 if ((from
> poff
&& from
< poff
+ plen
) ||
636 (to
> poff
&& to
< poff
+ plen
)) {
637 status
= iomap_read_page_sync(inode
, block_start
, page
,
638 poff
, plen
, from
, to
, iomap
);
643 } while ((block_start
+= plen
) < block_end
);
649 iomap_write_begin(struct inode
*inode
, loff_t pos
, unsigned len
, unsigned flags
,
650 struct page
**pagep
, struct iomap
*iomap
)
652 pgoff_t index
= pos
>> PAGE_SHIFT
;
656 BUG_ON(pos
+ len
> iomap
->offset
+ iomap
->length
);
658 if (fatal_signal_pending(current
))
661 page
= grab_cache_page_write_begin(inode
->i_mapping
, index
, flags
);
665 if (iomap
->type
== IOMAP_INLINE
)
666 iomap_read_inline_data(inode
, page
, iomap
);
667 else if (iomap
->flags
& IOMAP_F_BUFFER_HEAD
)
668 status
= __block_write_begin_int(page
, pos
, len
, NULL
, iomap
);
670 status
= __iomap_write_begin(inode
, pos
, len
, page
, iomap
);
671 if (unlikely(status
)) {
676 iomap_write_failed(inode
, pos
, len
);
684 iomap_set_page_dirty(struct page
*page
)
686 struct address_space
*mapping
= page_mapping(page
);
689 if (unlikely(!mapping
))
690 return !TestSetPageDirty(page
);
693 * Lock out page->mem_cgroup migration to keep PageDirty
694 * synchronized with per-memcg dirty page counters.
696 lock_page_memcg(page
);
697 newly_dirty
= !TestSetPageDirty(page
);
699 __set_page_dirty(page
, mapping
, 0);
700 unlock_page_memcg(page
);
703 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
706 EXPORT_SYMBOL_GPL(iomap_set_page_dirty
);
709 __iomap_write_end(struct inode
*inode
, loff_t pos
, unsigned len
,
710 unsigned copied
, struct page
*page
, struct iomap
*iomap
)
712 flush_dcache_page(page
);
715 * The blocks that were entirely written will now be uptodate, so we
716 * don't have to worry about a readpage reading them and overwriting a
717 * partial write. However if we have encountered a short write and only
718 * partially written into a block, it will not be marked uptodate, so a
719 * readpage might come in and destroy our partial write.
721 * Do the simplest thing, and just treat any short write to a non
722 * uptodate page as a zero-length write, and force the caller to redo
725 if (unlikely(copied
< len
&& !PageUptodate(page
))) {
728 iomap_set_range_uptodate(page
, offset_in_page(pos
), len
);
729 iomap_set_page_dirty(page
);
731 return __generic_write_end(inode
, pos
, copied
, page
);
735 iomap_write_end_inline(struct inode
*inode
, struct page
*page
,
736 struct iomap
*iomap
, loff_t pos
, unsigned copied
)
740 WARN_ON_ONCE(!PageUptodate(page
));
741 BUG_ON(pos
+ copied
> PAGE_SIZE
- offset_in_page(iomap
->inline_data
));
743 addr
= kmap_atomic(page
);
744 memcpy(iomap
->inline_data
+ pos
, addr
+ pos
, copied
);
747 mark_inode_dirty(inode
);
748 __generic_write_end(inode
, pos
, copied
, page
);
753 iomap_write_end(struct inode
*inode
, loff_t pos
, unsigned len
,
754 unsigned copied
, struct page
*page
, struct iomap
*iomap
)
758 if (iomap
->type
== IOMAP_INLINE
) {
759 ret
= iomap_write_end_inline(inode
, page
, iomap
, pos
, copied
);
760 } else if (iomap
->flags
& IOMAP_F_BUFFER_HEAD
) {
761 ret
= generic_write_end(NULL
, inode
->i_mapping
, pos
, len
,
764 ret
= __iomap_write_end(inode
, pos
, len
, copied
, page
, iomap
);
767 if (iomap
->page_done
)
768 iomap
->page_done(inode
, pos
, copied
, page
, iomap
);
771 iomap_write_failed(inode
, pos
, len
);
776 iomap_write_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
779 struct iov_iter
*i
= data
;
782 unsigned int flags
= AOP_FLAG_NOFS
;
786 unsigned long offset
; /* Offset into pagecache page */
787 unsigned long bytes
; /* Bytes to write to page */
788 size_t copied
; /* Bytes copied from user */
790 offset
= offset_in_page(pos
);
791 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
798 * Bring in the user page that we will copy from _first_.
799 * Otherwise there's a nasty deadlock on copying from the
800 * same page as we're writing to, without it being marked
803 * Not only is this an optimisation, but it is also required
804 * to check that the address is actually valid, when atomic
805 * usercopies are used, below.
807 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
812 status
= iomap_write_begin(inode
, pos
, bytes
, flags
, &page
,
814 if (unlikely(status
))
817 if (mapping_writably_mapped(inode
->i_mapping
))
818 flush_dcache_page(page
);
820 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
822 flush_dcache_page(page
);
824 status
= iomap_write_end(inode
, pos
, bytes
, copied
, page
,
826 if (unlikely(status
< 0))
832 iov_iter_advance(i
, copied
);
833 if (unlikely(copied
== 0)) {
835 * If we were unable to copy any data at all, we must
836 * fall back to a single segment length write.
838 * If we didn't fallback here, we could livelock
839 * because not all segments in the iov can be copied at
840 * once without a pagefault.
842 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
843 iov_iter_single_seg_count(i
));
850 balance_dirty_pages_ratelimited(inode
->i_mapping
);
851 } while (iov_iter_count(i
) && length
);
853 return written
? written
: status
;
857 iomap_file_buffered_write(struct kiocb
*iocb
, struct iov_iter
*iter
,
858 const struct iomap_ops
*ops
)
860 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
861 loff_t pos
= iocb
->ki_pos
, ret
= 0, written
= 0;
863 while (iov_iter_count(iter
)) {
864 ret
= iomap_apply(inode
, pos
, iov_iter_count(iter
),
865 IOMAP_WRITE
, ops
, iter
, iomap_write_actor
);
872 return written
? written
: ret
;
874 EXPORT_SYMBOL_GPL(iomap_file_buffered_write
);
877 __iomap_read_page(struct inode
*inode
, loff_t offset
)
879 struct address_space
*mapping
= inode
->i_mapping
;
882 page
= read_mapping_page(mapping
, offset
>> PAGE_SHIFT
, NULL
);
885 if (!PageUptodate(page
)) {
887 return ERR_PTR(-EIO
);
893 iomap_dirty_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
900 struct page
*page
, *rpage
;
901 unsigned long offset
; /* Offset into pagecache page */
902 unsigned long bytes
; /* Bytes to write to page */
904 offset
= offset_in_page(pos
);
905 bytes
= min_t(loff_t
, PAGE_SIZE
- offset
, length
);
907 rpage
= __iomap_read_page(inode
, pos
);
909 return PTR_ERR(rpage
);
911 status
= iomap_write_begin(inode
, pos
, bytes
,
912 AOP_FLAG_NOFS
, &page
, iomap
);
914 if (unlikely(status
))
917 WARN_ON_ONCE(!PageUptodate(page
));
919 status
= iomap_write_end(inode
, pos
, bytes
, bytes
, page
, iomap
);
920 if (unlikely(status
<= 0)) {
921 if (WARN_ON_ONCE(status
== 0))
932 balance_dirty_pages_ratelimited(inode
->i_mapping
);
939 iomap_file_dirty(struct inode
*inode
, loff_t pos
, loff_t len
,
940 const struct iomap_ops
*ops
)
945 ret
= iomap_apply(inode
, pos
, len
, IOMAP_WRITE
, ops
, NULL
,
955 EXPORT_SYMBOL_GPL(iomap_file_dirty
);
957 static int iomap_zero(struct inode
*inode
, loff_t pos
, unsigned offset
,
958 unsigned bytes
, struct iomap
*iomap
)
963 status
= iomap_write_begin(inode
, pos
, bytes
, AOP_FLAG_NOFS
, &page
,
968 zero_user(page
, offset
, bytes
);
969 mark_page_accessed(page
);
971 return iomap_write_end(inode
, pos
, bytes
, bytes
, page
, iomap
);
974 static int iomap_dax_zero(loff_t pos
, unsigned offset
, unsigned bytes
,
977 return __dax_zero_page_range(iomap
->bdev
, iomap
->dax_dev
,
978 iomap_sector(iomap
, pos
& PAGE_MASK
), offset
, bytes
);
982 iomap_zero_range_actor(struct inode
*inode
, loff_t pos
, loff_t count
,
983 void *data
, struct iomap
*iomap
)
985 bool *did_zero
= data
;
989 /* already zeroed? we're done. */
990 if (iomap
->type
== IOMAP_HOLE
|| iomap
->type
== IOMAP_UNWRITTEN
)
994 unsigned offset
, bytes
;
996 offset
= offset_in_page(pos
);
997 bytes
= min_t(loff_t
, PAGE_SIZE
- offset
, count
);
1000 status
= iomap_dax_zero(pos
, offset
, bytes
, iomap
);
1002 status
= iomap_zero(inode
, pos
, offset
, bytes
, iomap
);
1011 } while (count
> 0);
1017 iomap_zero_range(struct inode
*inode
, loff_t pos
, loff_t len
, bool *did_zero
,
1018 const struct iomap_ops
*ops
)
1023 ret
= iomap_apply(inode
, pos
, len
, IOMAP_ZERO
,
1024 ops
, did_zero
, iomap_zero_range_actor
);
1034 EXPORT_SYMBOL_GPL(iomap_zero_range
);
1037 iomap_truncate_page(struct inode
*inode
, loff_t pos
, bool *did_zero
,
1038 const struct iomap_ops
*ops
)
1040 unsigned int blocksize
= i_blocksize(inode
);
1041 unsigned int off
= pos
& (blocksize
- 1);
1043 /* Block boundary? Nothing to do */
1046 return iomap_zero_range(inode
, pos
, blocksize
- off
, did_zero
, ops
);
1048 EXPORT_SYMBOL_GPL(iomap_truncate_page
);
1051 iomap_page_mkwrite_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
1052 void *data
, struct iomap
*iomap
)
1054 struct page
*page
= data
;
1057 if (iomap
->flags
& IOMAP_F_BUFFER_HEAD
) {
1058 ret
= __block_write_begin_int(page
, pos
, length
, NULL
, iomap
);
1061 block_commit_write(page
, 0, length
);
1063 WARN_ON_ONCE(!PageUptodate(page
));
1064 iomap_page_create(inode
, page
);
1065 set_page_dirty(page
);
1071 vm_fault_t
iomap_page_mkwrite(struct vm_fault
*vmf
, const struct iomap_ops
*ops
)
1073 struct page
*page
= vmf
->page
;
1074 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
1075 unsigned long length
;
1076 loff_t offset
, size
;
1080 size
= i_size_read(inode
);
1081 if ((page
->mapping
!= inode
->i_mapping
) ||
1082 (page_offset(page
) > size
)) {
1083 /* We overload EFAULT to mean page got truncated */
1088 /* page is wholly or partially inside EOF */
1089 if (((page
->index
+ 1) << PAGE_SHIFT
) > size
)
1090 length
= offset_in_page(size
);
1094 offset
= page_offset(page
);
1095 while (length
> 0) {
1096 ret
= iomap_apply(inode
, offset
, length
,
1097 IOMAP_WRITE
| IOMAP_FAULT
, ops
, page
,
1098 iomap_page_mkwrite_actor
);
1099 if (unlikely(ret
<= 0))
1105 wait_for_stable_page(page
);
1106 return VM_FAULT_LOCKED
;
1109 return block_page_mkwrite_return(ret
);
1111 EXPORT_SYMBOL_GPL(iomap_page_mkwrite
);
1114 struct fiemap_extent_info
*fi
;
1118 static int iomap_to_fiemap(struct fiemap_extent_info
*fi
,
1119 struct iomap
*iomap
, u32 flags
)
1121 switch (iomap
->type
) {
1125 case IOMAP_DELALLOC
:
1126 flags
|= FIEMAP_EXTENT_DELALLOC
| FIEMAP_EXTENT_UNKNOWN
;
1130 case IOMAP_UNWRITTEN
:
1131 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
1134 flags
|= FIEMAP_EXTENT_DATA_INLINE
;
1138 if (iomap
->flags
& IOMAP_F_MERGED
)
1139 flags
|= FIEMAP_EXTENT_MERGED
;
1140 if (iomap
->flags
& IOMAP_F_SHARED
)
1141 flags
|= FIEMAP_EXTENT_SHARED
;
1143 return fiemap_fill_next_extent(fi
, iomap
->offset
,
1144 iomap
->addr
!= IOMAP_NULL_ADDR
? iomap
->addr
: 0,
1145 iomap
->length
, flags
);
1149 iomap_fiemap_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
1150 struct iomap
*iomap
)
1152 struct fiemap_ctx
*ctx
= data
;
1153 loff_t ret
= length
;
1155 if (iomap
->type
== IOMAP_HOLE
)
1158 ret
= iomap_to_fiemap(ctx
->fi
, &ctx
->prev
, 0);
1161 case 0: /* success */
1163 case 1: /* extent array full */
1170 int iomap_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fi
,
1171 loff_t start
, loff_t len
, const struct iomap_ops
*ops
)
1173 struct fiemap_ctx ctx
;
1176 memset(&ctx
, 0, sizeof(ctx
));
1178 ctx
.prev
.type
= IOMAP_HOLE
;
1180 ret
= fiemap_check_flags(fi
, FIEMAP_FLAG_SYNC
);
1184 if (fi
->fi_flags
& FIEMAP_FLAG_SYNC
) {
1185 ret
= filemap_write_and_wait(inode
->i_mapping
);
1191 ret
= iomap_apply(inode
, start
, len
, IOMAP_REPORT
, ops
, &ctx
,
1192 iomap_fiemap_actor
);
1193 /* inode with no (attribute) mapping will give ENOENT */
1205 if (ctx
.prev
.type
!= IOMAP_HOLE
) {
1206 ret
= iomap_to_fiemap(fi
, &ctx
.prev
, FIEMAP_EXTENT_LAST
);
1213 EXPORT_SYMBOL_GPL(iomap_fiemap
);
1216 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
1217 * Returns true if found and updates @lastoff to the offset in file.
1220 page_seek_hole_data(struct inode
*inode
, struct page
*page
, loff_t
*lastoff
,
1223 const struct address_space_operations
*ops
= inode
->i_mapping
->a_ops
;
1224 unsigned int bsize
= i_blocksize(inode
), off
;
1225 bool seek_data
= whence
== SEEK_DATA
;
1226 loff_t poff
= page_offset(page
);
1228 if (WARN_ON_ONCE(*lastoff
>= poff
+ PAGE_SIZE
))
1231 if (*lastoff
< poff
) {
1233 * Last offset smaller than the start of the page means we found
1236 if (whence
== SEEK_HOLE
)
1242 * Just check the page unless we can and should check block ranges:
1244 if (bsize
== PAGE_SIZE
|| !ops
->is_partially_uptodate
)
1245 return PageUptodate(page
) == seek_data
;
1248 if (unlikely(page
->mapping
!= inode
->i_mapping
))
1249 goto out_unlock_not_found
;
1251 for (off
= 0; off
< PAGE_SIZE
; off
+= bsize
) {
1252 if (offset_in_page(*lastoff
) >= off
+ bsize
)
1254 if (ops
->is_partially_uptodate(page
, off
, bsize
) == seek_data
) {
1258 *lastoff
= poff
+ off
+ bsize
;
1261 out_unlock_not_found
:
1267 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
1269 * Within unwritten extents, the page cache determines which parts are holes
1270 * and which are data: uptodate buffer heads count as data; everything else
1273 * Returns the resulting offset on successs, and -ENOENT otherwise.
1276 page_cache_seek_hole_data(struct inode
*inode
, loff_t offset
, loff_t length
,
1279 pgoff_t index
= offset
>> PAGE_SHIFT
;
1280 pgoff_t end
= DIV_ROUND_UP(offset
+ length
, PAGE_SIZE
);
1281 loff_t lastoff
= offset
;
1282 struct pagevec pvec
;
1287 pagevec_init(&pvec
);
1290 unsigned nr_pages
, i
;
1292 nr_pages
= pagevec_lookup_range(&pvec
, inode
->i_mapping
, &index
,
1297 for (i
= 0; i
< nr_pages
; i
++) {
1298 struct page
*page
= pvec
.pages
[i
];
1300 if (page_seek_hole_data(inode
, page
, &lastoff
, whence
))
1302 lastoff
= page_offset(page
) + PAGE_SIZE
;
1304 pagevec_release(&pvec
);
1305 } while (index
< end
);
1307 /* When no page at lastoff and we are not done, we found a hole. */
1308 if (whence
!= SEEK_HOLE
)
1312 if (lastoff
< offset
+ length
)
1317 pagevec_release(&pvec
);
1323 iomap_seek_hole_actor(struct inode
*inode
, loff_t offset
, loff_t length
,
1324 void *data
, struct iomap
*iomap
)
1326 switch (iomap
->type
) {
1327 case IOMAP_UNWRITTEN
:
1328 offset
= page_cache_seek_hole_data(inode
, offset
, length
,
1334 *(loff_t
*)data
= offset
;
1342 iomap_seek_hole(struct inode
*inode
, loff_t offset
, const struct iomap_ops
*ops
)
1344 loff_t size
= i_size_read(inode
);
1345 loff_t length
= size
- offset
;
1348 /* Nothing to be found before or beyond the end of the file. */
1349 if (offset
< 0 || offset
>= size
)
1352 while (length
> 0) {
1353 ret
= iomap_apply(inode
, offset
, length
, IOMAP_REPORT
, ops
,
1354 &offset
, iomap_seek_hole_actor
);
1366 EXPORT_SYMBOL_GPL(iomap_seek_hole
);
1369 iomap_seek_data_actor(struct inode
*inode
, loff_t offset
, loff_t length
,
1370 void *data
, struct iomap
*iomap
)
1372 switch (iomap
->type
) {
1375 case IOMAP_UNWRITTEN
:
1376 offset
= page_cache_seek_hole_data(inode
, offset
, length
,
1382 *(loff_t
*)data
= offset
;
1388 iomap_seek_data(struct inode
*inode
, loff_t offset
, const struct iomap_ops
*ops
)
1390 loff_t size
= i_size_read(inode
);
1391 loff_t length
= size
- offset
;
1394 /* Nothing to be found before or beyond the end of the file. */
1395 if (offset
< 0 || offset
>= size
)
1398 while (length
> 0) {
1399 ret
= iomap_apply(inode
, offset
, length
, IOMAP_REPORT
, ops
,
1400 &offset
, iomap_seek_data_actor
);
1414 EXPORT_SYMBOL_GPL(iomap_seek_data
);
1417 * Private flags for iomap_dio, must not overlap with the public ones in
1420 #define IOMAP_DIO_WRITE_FUA (1 << 28)
1421 #define IOMAP_DIO_NEED_SYNC (1 << 29)
1422 #define IOMAP_DIO_WRITE (1 << 30)
1423 #define IOMAP_DIO_DIRTY (1 << 31)
1427 iomap_dio_end_io_t
*end_io
;
1433 bool wait_for_completion
;
1436 /* used during submission and for synchronous completion: */
1438 struct iov_iter
*iter
;
1439 struct task_struct
*waiter
;
1440 struct request_queue
*last_queue
;
1444 /* used for aio completion: */
1446 struct work_struct work
;
1451 static ssize_t
iomap_dio_complete(struct iomap_dio
*dio
)
1453 struct kiocb
*iocb
= dio
->iocb
;
1454 struct inode
*inode
= file_inode(iocb
->ki_filp
);
1455 loff_t offset
= iocb
->ki_pos
;
1459 ret
= dio
->end_io(iocb
,
1460 dio
->error
? dio
->error
: dio
->size
,
1468 /* check for short read */
1469 if (offset
+ ret
> dio
->i_size
&&
1470 !(dio
->flags
& IOMAP_DIO_WRITE
))
1471 ret
= dio
->i_size
- offset
;
1472 iocb
->ki_pos
+= ret
;
1476 * Try again to invalidate clean pages which might have been cached by
1477 * non-direct readahead, or faulted in by get_user_pages() if the source
1478 * of the write was an mmap'ed region of the file we're writing. Either
1479 * one is a pretty crazy thing to do, so we don't support it 100%. If
1480 * this invalidation fails, tough, the write still worked...
1482 * And this page cache invalidation has to be after dio->end_io(), as
1483 * some filesystems convert unwritten extents to real allocations in
1484 * end_io() when necessary, otherwise a racing buffer read would cache
1485 * zeros from unwritten extents.
1488 (dio
->flags
& IOMAP_DIO_WRITE
) && inode
->i_mapping
->nrpages
) {
1490 err
= invalidate_inode_pages2_range(inode
->i_mapping
,
1491 offset
>> PAGE_SHIFT
,
1492 (offset
+ dio
->size
- 1) >> PAGE_SHIFT
);
1494 dio_warn_stale_pagecache(iocb
->ki_filp
);
1498 * If this is a DSYNC write, make sure we push it to stable storage now
1499 * that we've written data.
1501 if (ret
> 0 && (dio
->flags
& IOMAP_DIO_NEED_SYNC
))
1502 ret
= generic_write_sync(iocb
, ret
);
1504 inode_dio_end(file_inode(iocb
->ki_filp
));
1510 static void iomap_dio_complete_work(struct work_struct
*work
)
1512 struct iomap_dio
*dio
= container_of(work
, struct iomap_dio
, aio
.work
);
1513 struct kiocb
*iocb
= dio
->iocb
;
1515 iocb
->ki_complete(iocb
, iomap_dio_complete(dio
), 0);
1519 * Set an error in the dio if none is set yet. We have to use cmpxchg
1520 * as the submission context and the completion context(s) can race to
1523 static inline void iomap_dio_set_error(struct iomap_dio
*dio
, int ret
)
1525 cmpxchg(&dio
->error
, 0, ret
);
1528 static void iomap_dio_bio_end_io(struct bio
*bio
)
1530 struct iomap_dio
*dio
= bio
->bi_private
;
1531 bool should_dirty
= (dio
->flags
& IOMAP_DIO_DIRTY
);
1534 iomap_dio_set_error(dio
, blk_status_to_errno(bio
->bi_status
));
1536 if (atomic_dec_and_test(&dio
->ref
)) {
1537 if (dio
->wait_for_completion
) {
1538 struct task_struct
*waiter
= dio
->submit
.waiter
;
1539 WRITE_ONCE(dio
->submit
.waiter
, NULL
);
1540 wake_up_process(waiter
);
1541 } else if (dio
->flags
& IOMAP_DIO_WRITE
) {
1542 struct inode
*inode
= file_inode(dio
->iocb
->ki_filp
);
1544 INIT_WORK(&dio
->aio
.work
, iomap_dio_complete_work
);
1545 queue_work(inode
->i_sb
->s_dio_done_wq
, &dio
->aio
.work
);
1547 iomap_dio_complete_work(&dio
->aio
.work
);
1552 bio_check_pages_dirty(bio
);
1554 struct bio_vec
*bvec
;
1557 bio_for_each_segment_all(bvec
, bio
, i
)
1558 put_page(bvec
->bv_page
);
1564 iomap_dio_zero(struct iomap_dio
*dio
, struct iomap
*iomap
, loff_t pos
,
1567 struct page
*page
= ZERO_PAGE(0);
1570 bio
= bio_alloc(GFP_KERNEL
, 1);
1571 bio_set_dev(bio
, iomap
->bdev
);
1572 bio
->bi_iter
.bi_sector
= iomap_sector(iomap
, pos
);
1573 bio
->bi_private
= dio
;
1574 bio
->bi_end_io
= iomap_dio_bio_end_io
;
1577 __bio_add_page(bio
, page
, len
, 0);
1578 bio_set_op_attrs(bio
, REQ_OP_WRITE
, REQ_SYNC
| REQ_IDLE
);
1580 atomic_inc(&dio
->ref
);
1581 return submit_bio(bio
);
1585 iomap_dio_bio_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
1586 struct iomap_dio
*dio
, struct iomap
*iomap
)
1588 unsigned int blkbits
= blksize_bits(bdev_logical_block_size(iomap
->bdev
));
1589 unsigned int fs_block_size
= i_blocksize(inode
), pad
;
1590 unsigned int align
= iov_iter_alignment(dio
->submit
.iter
);
1591 struct iov_iter iter
;
1593 bool need_zeroout
= false;
1594 bool use_fua
= false;
1595 int nr_pages
, ret
= 0;
1598 if ((pos
| length
| align
) & ((1 << blkbits
) - 1))
1601 if (iomap
->type
== IOMAP_UNWRITTEN
) {
1602 dio
->flags
|= IOMAP_DIO_UNWRITTEN
;
1603 need_zeroout
= true;
1606 if (iomap
->flags
& IOMAP_F_SHARED
)
1607 dio
->flags
|= IOMAP_DIO_COW
;
1609 if (iomap
->flags
& IOMAP_F_NEW
) {
1610 need_zeroout
= true;
1611 } else if (iomap
->type
== IOMAP_MAPPED
) {
1613 * Use a FUA write if we need datasync semantics, this is a pure
1614 * data IO that doesn't require any metadata updates (including
1615 * after IO completion such as unwritten extent conversion) and
1616 * the underlying device supports FUA. This allows us to avoid
1617 * cache flushes on IO completion.
1619 if (!(iomap
->flags
& (IOMAP_F_SHARED
|IOMAP_F_DIRTY
)) &&
1620 (dio
->flags
& IOMAP_DIO_WRITE_FUA
) &&
1621 blk_queue_fua(bdev_get_queue(iomap
->bdev
)))
1626 * Operate on a partial iter trimmed to the extent we were called for.
1627 * We'll update the iter in the dio once we're done with this extent.
1629 iter
= *dio
->submit
.iter
;
1630 iov_iter_truncate(&iter
, length
);
1632 nr_pages
= iov_iter_npages(&iter
, BIO_MAX_PAGES
);
1637 /* zero out from the start of the block to the write offset */
1638 pad
= pos
& (fs_block_size
- 1);
1640 iomap_dio_zero(dio
, iomap
, pos
- pad
, pad
);
1646 iov_iter_revert(dio
->submit
.iter
, copied
);
1650 bio
= bio_alloc(GFP_KERNEL
, nr_pages
);
1651 bio_set_dev(bio
, iomap
->bdev
);
1652 bio
->bi_iter
.bi_sector
= iomap_sector(iomap
, pos
);
1653 bio
->bi_write_hint
= dio
->iocb
->ki_hint
;
1654 bio
->bi_ioprio
= dio
->iocb
->ki_ioprio
;
1655 bio
->bi_private
= dio
;
1656 bio
->bi_end_io
= iomap_dio_bio_end_io
;
1658 ret
= bio_iov_iter_get_pages(bio
, &iter
);
1659 if (unlikely(ret
)) {
1661 * We have to stop part way through an IO. We must fall
1662 * through to the sub-block tail zeroing here, otherwise
1663 * this short IO may expose stale data in the tail of
1664 * the block we haven't written data to.
1670 n
= bio
->bi_iter
.bi_size
;
1671 if (dio
->flags
& IOMAP_DIO_WRITE
) {
1672 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_IDLE
;
1674 bio
->bi_opf
|= REQ_FUA
;
1676 dio
->flags
&= ~IOMAP_DIO_WRITE_FUA
;
1677 task_io_account_write(n
);
1679 bio
->bi_opf
= REQ_OP_READ
;
1680 if (dio
->flags
& IOMAP_DIO_DIRTY
)
1681 bio_set_pages_dirty(bio
);
1684 iov_iter_advance(dio
->submit
.iter
, n
);
1690 nr_pages
= iov_iter_npages(&iter
, BIO_MAX_PAGES
);
1692 atomic_inc(&dio
->ref
);
1694 dio
->submit
.last_queue
= bdev_get_queue(iomap
->bdev
);
1695 dio
->submit
.cookie
= submit_bio(bio
);
1699 * We need to zeroout the tail of a sub-block write if the extent type
1700 * requires zeroing or the write extends beyond EOF. If we don't zero
1701 * the block tail in the latter case, we can expose stale data via mmap
1702 * reads of the EOF block.
1706 ((dio
->flags
& IOMAP_DIO_WRITE
) && pos
>= i_size_read(inode
))) {
1707 /* zero out from the end of the write to the end of the block */
1708 pad
= pos
& (fs_block_size
- 1);
1710 iomap_dio_zero(dio
, iomap
, pos
, fs_block_size
- pad
);
1712 return copied
? copied
: ret
;
1716 iomap_dio_hole_actor(loff_t length
, struct iomap_dio
*dio
)
1718 length
= iov_iter_zero(length
, dio
->submit
.iter
);
1719 dio
->size
+= length
;
1724 iomap_dio_inline_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
1725 struct iomap_dio
*dio
, struct iomap
*iomap
)
1727 struct iov_iter
*iter
= dio
->submit
.iter
;
1730 BUG_ON(pos
+ length
> PAGE_SIZE
- offset_in_page(iomap
->inline_data
));
1732 if (dio
->flags
& IOMAP_DIO_WRITE
) {
1733 loff_t size
= inode
->i_size
;
1736 memset(iomap
->inline_data
+ size
, 0, pos
- size
);
1737 copied
= copy_from_iter(iomap
->inline_data
+ pos
, length
, iter
);
1739 if (pos
+ copied
> size
)
1740 i_size_write(inode
, pos
+ copied
);
1741 mark_inode_dirty(inode
);
1744 copied
= copy_to_iter(iomap
->inline_data
+ pos
, length
, iter
);
1746 dio
->size
+= copied
;
1751 iomap_dio_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
1752 void *data
, struct iomap
*iomap
)
1754 struct iomap_dio
*dio
= data
;
1756 switch (iomap
->type
) {
1758 if (WARN_ON_ONCE(dio
->flags
& IOMAP_DIO_WRITE
))
1760 return iomap_dio_hole_actor(length
, dio
);
1761 case IOMAP_UNWRITTEN
:
1762 if (!(dio
->flags
& IOMAP_DIO_WRITE
))
1763 return iomap_dio_hole_actor(length
, dio
);
1764 return iomap_dio_bio_actor(inode
, pos
, length
, dio
, iomap
);
1766 return iomap_dio_bio_actor(inode
, pos
, length
, dio
, iomap
);
1768 return iomap_dio_inline_actor(inode
, pos
, length
, dio
, iomap
);
1776 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
1777 * is being issued as AIO or not. This allows us to optimise pure data writes
1778 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
1779 * REQ_FLUSH post write. This is slightly tricky because a single request here
1780 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
1781 * may be pure data writes. In that case, we still need to do a full data sync
1785 iomap_dio_rw(struct kiocb
*iocb
, struct iov_iter
*iter
,
1786 const struct iomap_ops
*ops
, iomap_dio_end_io_t end_io
)
1788 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
1789 struct inode
*inode
= file_inode(iocb
->ki_filp
);
1790 size_t count
= iov_iter_count(iter
);
1791 loff_t pos
= iocb
->ki_pos
, start
= pos
;
1792 loff_t end
= iocb
->ki_pos
+ count
- 1, ret
= 0;
1793 unsigned int flags
= IOMAP_DIRECT
;
1794 struct blk_plug plug
;
1795 struct iomap_dio
*dio
;
1797 lockdep_assert_held(&inode
->i_rwsem
);
1802 dio
= kmalloc(sizeof(*dio
), GFP_KERNEL
);
1807 atomic_set(&dio
->ref
, 1);
1809 dio
->i_size
= i_size_read(inode
);
1810 dio
->end_io
= end_io
;
1813 dio
->wait_for_completion
= is_sync_kiocb(iocb
);
1815 dio
->submit
.iter
= iter
;
1816 dio
->submit
.waiter
= current
;
1817 dio
->submit
.cookie
= BLK_QC_T_NONE
;
1818 dio
->submit
.last_queue
= NULL
;
1820 if (iov_iter_rw(iter
) == READ
) {
1821 if (pos
>= dio
->i_size
)
1824 if (iter_is_iovec(iter
) && iov_iter_rw(iter
) == READ
)
1825 dio
->flags
|= IOMAP_DIO_DIRTY
;
1827 flags
|= IOMAP_WRITE
;
1828 dio
->flags
|= IOMAP_DIO_WRITE
;
1830 /* for data sync or sync, we need sync completion processing */
1831 if (iocb
->ki_flags
& IOCB_DSYNC
)
1832 dio
->flags
|= IOMAP_DIO_NEED_SYNC
;
1835 * For datasync only writes, we optimistically try using FUA for
1836 * this IO. Any non-FUA write that occurs will clear this flag,
1837 * hence we know before completion whether a cache flush is
1840 if ((iocb
->ki_flags
& (IOCB_DSYNC
| IOCB_SYNC
)) == IOCB_DSYNC
)
1841 dio
->flags
|= IOMAP_DIO_WRITE_FUA
;
1844 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
1845 if (filemap_range_has_page(mapping
, start
, end
)) {
1849 flags
|= IOMAP_NOWAIT
;
1852 ret
= filemap_write_and_wait_range(mapping
, start
, end
);
1857 * Try to invalidate cache pages for the range we're direct
1858 * writing. If this invalidation fails, tough, the write will
1859 * still work, but racing two incompatible write paths is a
1860 * pretty crazy thing to do, so we don't support it 100%.
1862 ret
= invalidate_inode_pages2_range(mapping
,
1863 start
>> PAGE_SHIFT
, end
>> PAGE_SHIFT
);
1865 dio_warn_stale_pagecache(iocb
->ki_filp
);
1868 if (iov_iter_rw(iter
) == WRITE
&& !dio
->wait_for_completion
&&
1869 !inode
->i_sb
->s_dio_done_wq
) {
1870 ret
= sb_init_dio_done_wq(inode
->i_sb
);
1875 inode_dio_begin(inode
);
1877 blk_start_plug(&plug
);
1879 ret
= iomap_apply(inode
, pos
, count
, flags
, ops
, dio
,
1882 /* magic error code to fall back to buffered I/O */
1883 if (ret
== -ENOTBLK
) {
1884 dio
->wait_for_completion
= true;
1891 if (iov_iter_rw(iter
) == READ
&& pos
>= dio
->i_size
)
1893 } while ((count
= iov_iter_count(iter
)) > 0);
1894 blk_finish_plug(&plug
);
1897 iomap_dio_set_error(dio
, ret
);
1900 * If all the writes we issued were FUA, we don't need to flush the
1901 * cache on IO completion. Clear the sync flag for this case.
1903 if (dio
->flags
& IOMAP_DIO_WRITE_FUA
)
1904 dio
->flags
&= ~IOMAP_DIO_NEED_SYNC
;
1906 if (!atomic_dec_and_test(&dio
->ref
)) {
1907 if (!dio
->wait_for_completion
)
1908 return -EIOCBQUEUED
;
1911 set_current_state(TASK_UNINTERRUPTIBLE
);
1912 if (!READ_ONCE(dio
->submit
.waiter
))
1915 if (!(iocb
->ki_flags
& IOCB_HIPRI
) ||
1916 !dio
->submit
.last_queue
||
1917 !blk_poll(dio
->submit
.last_queue
,
1918 dio
->submit
.cookie
))
1921 __set_current_state(TASK_RUNNING
);
1924 ret
= iomap_dio_complete(dio
);
1932 EXPORT_SYMBOL_GPL(iomap_dio_rw
);
1934 /* Swapfile activation */
1937 struct iomap_swapfile_info
{
1938 struct iomap iomap
; /* accumulated iomap */
1939 struct swap_info_struct
*sis
;
1940 uint64_t lowest_ppage
; /* lowest physical addr seen (pages) */
1941 uint64_t highest_ppage
; /* highest physical addr seen (pages) */
1942 unsigned long nr_pages
; /* number of pages collected */
1943 int nr_extents
; /* extent count */
1947 * Collect physical extents for this swap file. Physical extents reported to
1948 * the swap code must be trimmed to align to a page boundary. The logical
1949 * offset within the file is irrelevant since the swapfile code maps logical
1950 * page numbers of the swap device to the physical page-aligned extents.
1952 static int iomap_swapfile_add_extent(struct iomap_swapfile_info
*isi
)
1954 struct iomap
*iomap
= &isi
->iomap
;
1955 unsigned long nr_pages
;
1956 uint64_t first_ppage
;
1957 uint64_t first_ppage_reported
;
1958 uint64_t next_ppage
;
1962 * Round the start up and the end down so that the physical
1963 * extent aligns to a page boundary.
1965 first_ppage
= ALIGN(iomap
->addr
, PAGE_SIZE
) >> PAGE_SHIFT
;
1966 next_ppage
= ALIGN_DOWN(iomap
->addr
+ iomap
->length
, PAGE_SIZE
) >>
1969 /* Skip too-short physical extents. */
1970 if (first_ppage
>= next_ppage
)
1972 nr_pages
= next_ppage
- first_ppage
;
1975 * Calculate how much swap space we're adding; the first page contains
1976 * the swap header and doesn't count. The mm still wants that first
1977 * page fed to add_swap_extent, however.
1979 first_ppage_reported
= first_ppage
;
1980 if (iomap
->offset
== 0)
1981 first_ppage_reported
++;
1982 if (isi
->lowest_ppage
> first_ppage_reported
)
1983 isi
->lowest_ppage
= first_ppage_reported
;
1984 if (isi
->highest_ppage
< (next_ppage
- 1))
1985 isi
->highest_ppage
= next_ppage
- 1;
1987 /* Add extent, set up for the next call. */
1988 error
= add_swap_extent(isi
->sis
, isi
->nr_pages
, nr_pages
, first_ppage
);
1991 isi
->nr_extents
+= error
;
1992 isi
->nr_pages
+= nr_pages
;
1997 * Accumulate iomaps for this swap file. We have to accumulate iomaps because
1998 * swap only cares about contiguous page-aligned physical extents and makes no
1999 * distinction between written and unwritten extents.
2001 static loff_t
iomap_swapfile_activate_actor(struct inode
*inode
, loff_t pos
,
2002 loff_t count
, void *data
, struct iomap
*iomap
)
2004 struct iomap_swapfile_info
*isi
= data
;
2007 switch (iomap
->type
) {
2009 case IOMAP_UNWRITTEN
:
2010 /* Only real or unwritten extents. */
2013 /* No inline data. */
2014 pr_err("swapon: file is inline\n");
2017 pr_err("swapon: file has unallocated extents\n");
2021 /* No uncommitted metadata or shared blocks. */
2022 if (iomap
->flags
& IOMAP_F_DIRTY
) {
2023 pr_err("swapon: file is not committed\n");
2026 if (iomap
->flags
& IOMAP_F_SHARED
) {
2027 pr_err("swapon: file has shared extents\n");
2031 /* Only one bdev per swap file. */
2032 if (iomap
->bdev
!= isi
->sis
->bdev
) {
2033 pr_err("swapon: file is on multiple devices\n");
2037 if (isi
->iomap
.length
== 0) {
2038 /* No accumulated extent, so just store it. */
2039 memcpy(&isi
->iomap
, iomap
, sizeof(isi
->iomap
));
2040 } else if (isi
->iomap
.addr
+ isi
->iomap
.length
== iomap
->addr
) {
2041 /* Append this to the accumulated extent. */
2042 isi
->iomap
.length
+= iomap
->length
;
2044 /* Otherwise, add the retained iomap and store this one. */
2045 error
= iomap_swapfile_add_extent(isi
);
2048 memcpy(&isi
->iomap
, iomap
, sizeof(isi
->iomap
));
2054 * Iterate a swap file's iomaps to construct physical extents that can be
2055 * passed to the swapfile subsystem.
2057 int iomap_swapfile_activate(struct swap_info_struct
*sis
,
2058 struct file
*swap_file
, sector_t
*pagespan
,
2059 const struct iomap_ops
*ops
)
2061 struct iomap_swapfile_info isi
= {
2063 .lowest_ppage
= (sector_t
)-1ULL,
2065 struct address_space
*mapping
= swap_file
->f_mapping
;
2066 struct inode
*inode
= mapping
->host
;
2068 loff_t len
= ALIGN_DOWN(i_size_read(inode
), PAGE_SIZE
);
2072 * Persist all file mapping metadata so that we won't have any
2073 * IOMAP_F_DIRTY iomaps.
2075 ret
= vfs_fsync(swap_file
, 1);
2080 ret
= iomap_apply(inode
, pos
, len
, IOMAP_REPORT
,
2081 ops
, &isi
, iomap_swapfile_activate_actor
);
2089 if (isi
.iomap
.length
) {
2090 ret
= iomap_swapfile_add_extent(&isi
);
2095 *pagespan
= 1 + isi
.highest_ppage
- isi
.lowest_ppage
;
2096 sis
->max
= isi
.nr_pages
;
2097 sis
->pages
= isi
.nr_pages
- 1;
2098 sis
->highest_bit
= isi
.nr_pages
- 1;
2099 return isi
.nr_extents
;
2101 EXPORT_SYMBOL_GPL(iomap_swapfile_activate
);
2102 #endif /* CONFIG_SWAP */
2105 iomap_bmap_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
2106 void *data
, struct iomap
*iomap
)
2108 sector_t
*bno
= data
, addr
;
2110 if (iomap
->type
== IOMAP_MAPPED
) {
2111 addr
= (pos
- iomap
->offset
+ iomap
->addr
) >> inode
->i_blkbits
;
2113 WARN(1, "would truncate bmap result\n");
2120 /* legacy ->bmap interface. 0 is the error return (!) */
2122 iomap_bmap(struct address_space
*mapping
, sector_t bno
,
2123 const struct iomap_ops
*ops
)
2125 struct inode
*inode
= mapping
->host
;
2126 loff_t pos
= bno
<< inode
->i_blkbits
;
2127 unsigned blocksize
= i_blocksize(inode
);
2129 if (filemap_write_and_wait(mapping
))
2133 iomap_apply(inode
, pos
, blocksize
, 0, ops
, &bno
, iomap_bmap_actor
);
2136 EXPORT_SYMBOL_GPL(iomap_bmap
);