1 /* bbc_envctrl.c: UltraSPARC-III environment control driver.
3 * Copyright (C) 2001, 2008 David S. Miller (davem@davemloft.net)
6 #include <linux/kthread.h>
7 #include <linux/delay.h>
8 #include <linux/kmod.h>
9 #include <linux/reboot.h>
11 #include <linux/slab.h>
12 #include <linux/of_device.h>
13 #include <asm/oplib.h>
20 /* WARNING: Making changes to this driver is very dangerous.
21 * If you misprogram the sensor chips they can
22 * cut the power on you instantly.
25 /* Two temperature sensors exist in the SunBLADE-1000 enclosure.
26 * Both are implemented using max1617 i2c devices. Each max1617
27 * monitors 2 temperatures, one for one of the cpu dies and the other
28 * for the ambient temperature.
30 * The max1617 is capable of being programmed with power-off
31 * temperature values, one low limit and one high limit. These
32 * can be controlled independently for the cpu or ambient temperature.
33 * If a limit is violated, the power is simply shut off. The frequency
34 * with which the max1617 does temperature sampling can be controlled
37 * Three fans exist inside the machine, all three are controlled with
38 * an i2c digital to analog converter. There is a fan directed at the
39 * two processor slots, another for the rest of the enclosure, and the
40 * third is for the power supply. The first two fans may be speed
41 * controlled by changing the voltage fed to them. The third fan may
42 * only be completely off or on. The third fan is meant to only be
43 * disabled/enabled when entering/exiting the lowest power-saving
44 * mode of the machine.
46 * An environmental control kernel thread periodically monitors all
47 * temperature sensors. Based upon the samples it will adjust the
48 * fan speeds to try and keep the system within a certain temperature
49 * range (the goal being to make the fans as quiet as possible without
50 * allowing the system to get too hot).
52 * If the temperature begins to rise/fall outside of the acceptable
53 * operating range, a periodic warning will be sent to the kernel log.
54 * The fans will be put on full blast to attempt to deal with this
55 * situation. After exceeding the acceptable operating range by a
56 * certain threshold, the kernel thread will shut down the system.
57 * Here, the thread is attempting to shut the machine down cleanly
58 * before the hardware based power-off event is triggered.
61 /* These settings are in Celsius. We use these defaults only
62 * if we cannot interrogate the cpu-fru SEEPROM.
65 s8 high_pwroff
, high_shutdown
, high_warn
;
66 s8 low_warn
, low_shutdown
, low_pwroff
;
69 static struct temp_limits cpu_temp_limits
[2] = {
70 { 100, 85, 80, 5, -5, -10 },
71 { 100, 85, 80, 5, -5, -10 },
74 static struct temp_limits amb_temp_limits
[2] = {
75 { 65, 55, 40, 5, -5, -10 },
76 { 65, 55, 40, 5, -5, -10 },
79 static LIST_HEAD(all_temps
);
80 static LIST_HEAD(all_fans
);
82 #define CPU_FAN_REG 0xf0
83 #define SYS_FAN_REG 0xf2
84 #define PSUPPLY_FAN_REG 0xf4
86 #define FAN_SPEED_MIN 0x0c
87 #define FAN_SPEED_MAX 0x3f
89 #define PSUPPLY_FAN_ON 0x1f
90 #define PSUPPLY_FAN_OFF 0x00
92 static void set_fan_speeds(struct bbc_fan_control
*fp
)
94 /* Put temperatures into range so we don't mis-program
97 if (fp
->cpu_fan_speed
< FAN_SPEED_MIN
)
98 fp
->cpu_fan_speed
= FAN_SPEED_MIN
;
99 if (fp
->cpu_fan_speed
> FAN_SPEED_MAX
)
100 fp
->cpu_fan_speed
= FAN_SPEED_MAX
;
101 if (fp
->system_fan_speed
< FAN_SPEED_MIN
)
102 fp
->system_fan_speed
= FAN_SPEED_MIN
;
103 if (fp
->system_fan_speed
> FAN_SPEED_MAX
)
104 fp
->system_fan_speed
= FAN_SPEED_MAX
;
106 printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
108 fp
->cpu_fan_speed
, fp
->system_fan_speed
);
111 bbc_i2c_writeb(fp
->client
, fp
->cpu_fan_speed
, CPU_FAN_REG
);
112 bbc_i2c_writeb(fp
->client
, fp
->system_fan_speed
, SYS_FAN_REG
);
113 bbc_i2c_writeb(fp
->client
,
114 (fp
->psupply_fan_on
?
115 PSUPPLY_FAN_ON
: PSUPPLY_FAN_OFF
),
119 static void get_current_temps(struct bbc_cpu_temperature
*tp
)
121 tp
->prev_amb_temp
= tp
->curr_amb_temp
;
122 bbc_i2c_readb(tp
->client
,
123 (unsigned char *) &tp
->curr_amb_temp
,
125 tp
->prev_cpu_temp
= tp
->curr_cpu_temp
;
126 bbc_i2c_readb(tp
->client
,
127 (unsigned char *) &tp
->curr_cpu_temp
,
130 printk("temp%d: cpu(%d C) amb(%d C)\n",
132 (int) tp
->curr_cpu_temp
, (int) tp
->curr_amb_temp
);
137 static void do_envctrl_shutdown(struct bbc_cpu_temperature
*tp
)
139 static int shutting_down
= 0;
143 if (shutting_down
!= 0)
146 if (tp
->curr_amb_temp
>= amb_temp_limits
[tp
->index
].high_shutdown
||
147 tp
->curr_amb_temp
< amb_temp_limits
[tp
->index
].low_shutdown
) {
149 val
= tp
->curr_amb_temp
;
150 } else if (tp
->curr_cpu_temp
>= cpu_temp_limits
[tp
->index
].high_shutdown
||
151 tp
->curr_cpu_temp
< cpu_temp_limits
[tp
->index
].low_shutdown
) {
153 val
= tp
->curr_cpu_temp
;
156 printk(KERN_CRIT
"temp%d: Outside of safe %s "
157 "operating temperature, %d C.\n",
158 tp
->index
, type
, val
);
160 printk(KERN_CRIT
"kenvctrld: Shutting down the system now.\n");
163 orderly_poweroff(true);
166 #define WARN_INTERVAL (30 * HZ)
168 static void analyze_ambient_temp(struct bbc_cpu_temperature
*tp
, unsigned long *last_warn
, int tick
)
172 if (time_after(jiffies
, (*last_warn
+ WARN_INTERVAL
))) {
173 if (tp
->curr_amb_temp
>=
174 amb_temp_limits
[tp
->index
].high_warn
) {
175 printk(KERN_WARNING
"temp%d: "
176 "Above safe ambient operating temperature, %d C.\n",
177 tp
->index
, (int) tp
->curr_amb_temp
);
179 } else if (tp
->curr_amb_temp
<
180 amb_temp_limits
[tp
->index
].low_warn
) {
181 printk(KERN_WARNING
"temp%d: "
182 "Below safe ambient operating temperature, %d C.\n",
183 tp
->index
, (int) tp
->curr_amb_temp
);
187 *last_warn
= jiffies
;
188 } else if (tp
->curr_amb_temp
>= amb_temp_limits
[tp
->index
].high_warn
||
189 tp
->curr_amb_temp
< amb_temp_limits
[tp
->index
].low_warn
)
192 /* Now check the shutdown limits. */
193 if (tp
->curr_amb_temp
>= amb_temp_limits
[tp
->index
].high_shutdown
||
194 tp
->curr_amb_temp
< amb_temp_limits
[tp
->index
].low_shutdown
) {
195 do_envctrl_shutdown(tp
);
200 tp
->fan_todo
[FAN_AMBIENT
] = FAN_FULLBLAST
;
201 } else if ((tick
& (8 - 1)) == 0) {
202 s8 amb_goal_hi
= amb_temp_limits
[tp
->index
].high_warn
- 10;
205 amb_goal_lo
= amb_goal_hi
- 3;
207 /* We do not try to avoid 'too cold' events. Basically we
208 * only try to deal with over-heating and fan noise reduction.
210 if (tp
->avg_amb_temp
< amb_goal_hi
) {
211 if (tp
->avg_amb_temp
>= amb_goal_lo
)
212 tp
->fan_todo
[FAN_AMBIENT
] = FAN_SAME
;
214 tp
->fan_todo
[FAN_AMBIENT
] = FAN_SLOWER
;
216 tp
->fan_todo
[FAN_AMBIENT
] = FAN_FASTER
;
219 tp
->fan_todo
[FAN_AMBIENT
] = FAN_SAME
;
223 static void analyze_cpu_temp(struct bbc_cpu_temperature
*tp
, unsigned long *last_warn
, int tick
)
227 if (time_after(jiffies
, (*last_warn
+ WARN_INTERVAL
))) {
228 if (tp
->curr_cpu_temp
>=
229 cpu_temp_limits
[tp
->index
].high_warn
) {
230 printk(KERN_WARNING
"temp%d: "
231 "Above safe CPU operating temperature, %d C.\n",
232 tp
->index
, (int) tp
->curr_cpu_temp
);
234 } else if (tp
->curr_cpu_temp
<
235 cpu_temp_limits
[tp
->index
].low_warn
) {
236 printk(KERN_WARNING
"temp%d: "
237 "Below safe CPU operating temperature, %d C.\n",
238 tp
->index
, (int) tp
->curr_cpu_temp
);
242 *last_warn
= jiffies
;
243 } else if (tp
->curr_cpu_temp
>= cpu_temp_limits
[tp
->index
].high_warn
||
244 tp
->curr_cpu_temp
< cpu_temp_limits
[tp
->index
].low_warn
)
247 /* Now check the shutdown limits. */
248 if (tp
->curr_cpu_temp
>= cpu_temp_limits
[tp
->index
].high_shutdown
||
249 tp
->curr_cpu_temp
< cpu_temp_limits
[tp
->index
].low_shutdown
) {
250 do_envctrl_shutdown(tp
);
255 tp
->fan_todo
[FAN_CPU
] = FAN_FULLBLAST
;
256 } else if ((tick
& (8 - 1)) == 0) {
257 s8 cpu_goal_hi
= cpu_temp_limits
[tp
->index
].high_warn
- 10;
260 cpu_goal_lo
= cpu_goal_hi
- 3;
262 /* We do not try to avoid 'too cold' events. Basically we
263 * only try to deal with over-heating and fan noise reduction.
265 if (tp
->avg_cpu_temp
< cpu_goal_hi
) {
266 if (tp
->avg_cpu_temp
>= cpu_goal_lo
)
267 tp
->fan_todo
[FAN_CPU
] = FAN_SAME
;
269 tp
->fan_todo
[FAN_CPU
] = FAN_SLOWER
;
271 tp
->fan_todo
[FAN_CPU
] = FAN_FASTER
;
274 tp
->fan_todo
[FAN_CPU
] = FAN_SAME
;
278 static void analyze_temps(struct bbc_cpu_temperature
*tp
, unsigned long *last_warn
)
280 tp
->avg_amb_temp
= (s8
)((int)((int)tp
->avg_amb_temp
+ (int)tp
->curr_amb_temp
) / 2);
281 tp
->avg_cpu_temp
= (s8
)((int)((int)tp
->avg_cpu_temp
+ (int)tp
->curr_cpu_temp
) / 2);
283 analyze_ambient_temp(tp
, last_warn
, tp
->sample_tick
);
284 analyze_cpu_temp(tp
, last_warn
, tp
->sample_tick
);
289 static enum fan_action
prioritize_fan_action(int which_fan
)
291 struct bbc_cpu_temperature
*tp
;
292 enum fan_action decision
= FAN_STATE_MAX
;
294 /* Basically, prioritize what the temperature sensors
295 * recommend we do, and perform that action on all the
298 list_for_each_entry(tp
, &all_temps
, glob_list
) {
299 if (tp
->fan_todo
[which_fan
] == FAN_FULLBLAST
) {
300 decision
= FAN_FULLBLAST
;
303 if (tp
->fan_todo
[which_fan
] == FAN_SAME
&&
304 decision
!= FAN_FASTER
)
306 else if (tp
->fan_todo
[which_fan
] == FAN_FASTER
)
307 decision
= FAN_FASTER
;
308 else if (decision
!= FAN_FASTER
&&
309 decision
!= FAN_SAME
&&
310 tp
->fan_todo
[which_fan
] == FAN_SLOWER
)
311 decision
= FAN_SLOWER
;
313 if (decision
== FAN_STATE_MAX
)
319 static int maybe_new_ambient_fan_speed(struct bbc_fan_control
*fp
)
321 enum fan_action decision
= prioritize_fan_action(FAN_AMBIENT
);
324 if (decision
== FAN_SAME
)
328 if (decision
== FAN_FULLBLAST
) {
329 if (fp
->system_fan_speed
>= FAN_SPEED_MAX
)
332 fp
->system_fan_speed
= FAN_SPEED_MAX
;
334 if (decision
== FAN_FASTER
) {
335 if (fp
->system_fan_speed
>= FAN_SPEED_MAX
)
338 fp
->system_fan_speed
+= 2;
340 int orig_speed
= fp
->system_fan_speed
;
342 if (orig_speed
<= FAN_SPEED_MIN
||
343 orig_speed
<= (fp
->cpu_fan_speed
- 3))
346 fp
->system_fan_speed
-= 1;
353 static int maybe_new_cpu_fan_speed(struct bbc_fan_control
*fp
)
355 enum fan_action decision
= prioritize_fan_action(FAN_CPU
);
358 if (decision
== FAN_SAME
)
362 if (decision
== FAN_FULLBLAST
) {
363 if (fp
->cpu_fan_speed
>= FAN_SPEED_MAX
)
366 fp
->cpu_fan_speed
= FAN_SPEED_MAX
;
368 if (decision
== FAN_FASTER
) {
369 if (fp
->cpu_fan_speed
>= FAN_SPEED_MAX
)
372 fp
->cpu_fan_speed
+= 2;
373 if (fp
->system_fan_speed
<
374 (fp
->cpu_fan_speed
- 3))
375 fp
->system_fan_speed
=
376 fp
->cpu_fan_speed
- 3;
379 if (fp
->cpu_fan_speed
<= FAN_SPEED_MIN
)
382 fp
->cpu_fan_speed
-= 1;
389 static void maybe_new_fan_speeds(struct bbc_fan_control
*fp
)
393 new = maybe_new_ambient_fan_speed(fp
);
394 new |= maybe_new_cpu_fan_speed(fp
);
400 static void fans_full_blast(void)
402 struct bbc_fan_control
*fp
;
404 /* Since we will not be monitoring things anymore, put
405 * the fans on full blast.
407 list_for_each_entry(fp
, &all_fans
, glob_list
) {
408 fp
->cpu_fan_speed
= FAN_SPEED_MAX
;
409 fp
->system_fan_speed
= FAN_SPEED_MAX
;
410 fp
->psupply_fan_on
= 1;
415 #define POLL_INTERVAL (5 * 1000)
416 static unsigned long last_warning_jiffies
;
417 static struct task_struct
*kenvctrld_task
;
419 static int kenvctrld(void *__unused
)
421 printk(KERN_INFO
"bbc_envctrl: kenvctrld starting...\n");
422 last_warning_jiffies
= jiffies
- WARN_INTERVAL
;
424 struct bbc_cpu_temperature
*tp
;
425 struct bbc_fan_control
*fp
;
427 msleep_interruptible(POLL_INTERVAL
);
428 if (kthread_should_stop())
431 list_for_each_entry(tp
, &all_temps
, glob_list
) {
432 get_current_temps(tp
);
433 analyze_temps(tp
, &last_warning_jiffies
);
435 list_for_each_entry(fp
, &all_fans
, glob_list
)
436 maybe_new_fan_speeds(fp
);
438 printk(KERN_INFO
"bbc_envctrl: kenvctrld exiting...\n");
445 static void attach_one_temp(struct bbc_i2c_bus
*bp
, struct platform_device
*op
,
448 struct bbc_cpu_temperature
*tp
;
450 tp
= kzalloc(sizeof(*tp
), GFP_KERNEL
);
454 INIT_LIST_HEAD(&tp
->bp_list
);
455 INIT_LIST_HEAD(&tp
->glob_list
);
457 tp
->client
= bbc_i2c_attach(bp
, op
);
464 tp
->index
= temp_idx
;
466 list_add(&tp
->glob_list
, &all_temps
);
467 list_add(&tp
->bp_list
, &bp
->temps
);
469 /* Tell it to convert once every 5 seconds, clear all cfg
472 bbc_i2c_writeb(tp
->client
, 0x00, MAX1617_WR_CFG_BYTE
);
473 bbc_i2c_writeb(tp
->client
, 0x02, MAX1617_WR_CVRATE_BYTE
);
475 /* Program the hard temperature limits into the chip. */
476 bbc_i2c_writeb(tp
->client
, amb_temp_limits
[tp
->index
].high_pwroff
,
477 MAX1617_WR_AMB_HIGHLIM
);
478 bbc_i2c_writeb(tp
->client
, amb_temp_limits
[tp
->index
].low_pwroff
,
479 MAX1617_WR_AMB_LOWLIM
);
480 bbc_i2c_writeb(tp
->client
, cpu_temp_limits
[tp
->index
].high_pwroff
,
481 MAX1617_WR_CPU_HIGHLIM
);
482 bbc_i2c_writeb(tp
->client
, cpu_temp_limits
[tp
->index
].low_pwroff
,
483 MAX1617_WR_CPU_LOWLIM
);
485 get_current_temps(tp
);
486 tp
->prev_cpu_temp
= tp
->avg_cpu_temp
= tp
->curr_cpu_temp
;
487 tp
->prev_amb_temp
= tp
->avg_amb_temp
= tp
->curr_amb_temp
;
489 tp
->fan_todo
[FAN_AMBIENT
] = FAN_SAME
;
490 tp
->fan_todo
[FAN_CPU
] = FAN_SAME
;
493 static void attach_one_fan(struct bbc_i2c_bus
*bp
, struct platform_device
*op
,
496 struct bbc_fan_control
*fp
;
498 fp
= kzalloc(sizeof(*fp
), GFP_KERNEL
);
502 INIT_LIST_HEAD(&fp
->bp_list
);
503 INIT_LIST_HEAD(&fp
->glob_list
);
505 fp
->client
= bbc_i2c_attach(bp
, op
);
513 list_add(&fp
->glob_list
, &all_fans
);
514 list_add(&fp
->bp_list
, &bp
->fans
);
516 /* The i2c device controlling the fans is write-only.
517 * So the only way to keep track of the current power
518 * level fed to the fans is via software. Choose half
519 * power for cpu/system and 'on' fo the powersupply fan
522 fp
->psupply_fan_on
= 1;
523 fp
->cpu_fan_speed
= (FAN_SPEED_MAX
- FAN_SPEED_MIN
) / 2;
524 fp
->cpu_fan_speed
+= FAN_SPEED_MIN
;
525 fp
->system_fan_speed
= (FAN_SPEED_MAX
- FAN_SPEED_MIN
) / 2;
526 fp
->system_fan_speed
+= FAN_SPEED_MIN
;
531 static void destroy_one_temp(struct bbc_cpu_temperature
*tp
)
533 bbc_i2c_detach(tp
->client
);
537 static void destroy_all_temps(struct bbc_i2c_bus
*bp
)
539 struct bbc_cpu_temperature
*tp
, *tpos
;
541 list_for_each_entry_safe(tp
, tpos
, &bp
->temps
, bp_list
) {
542 list_del(&tp
->bp_list
);
543 list_del(&tp
->glob_list
);
544 destroy_one_temp(tp
);
548 static void destroy_one_fan(struct bbc_fan_control
*fp
)
550 bbc_i2c_detach(fp
->client
);
554 static void destroy_all_fans(struct bbc_i2c_bus
*bp
)
556 struct bbc_fan_control
*fp
, *fpos
;
558 list_for_each_entry_safe(fp
, fpos
, &bp
->fans
, bp_list
) {
559 list_del(&fp
->bp_list
);
560 list_del(&fp
->glob_list
);
565 int bbc_envctrl_init(struct bbc_i2c_bus
*bp
)
567 struct platform_device
*op
;
572 while ((op
= bbc_i2c_getdev(bp
, devidx
++)) != NULL
) {
573 if (!strcmp(op
->dev
.of_node
->name
, "temperature"))
574 attach_one_temp(bp
, op
, temp_index
++);
575 if (!strcmp(op
->dev
.of_node
->name
, "fan-control"))
576 attach_one_fan(bp
, op
, fan_index
++);
578 if (temp_index
!= 0 && fan_index
!= 0) {
579 kenvctrld_task
= kthread_run(kenvctrld
, NULL
, "kenvctrld");
580 if (IS_ERR(kenvctrld_task
)) {
581 int err
= PTR_ERR(kenvctrld_task
);
583 kenvctrld_task
= NULL
;
584 destroy_all_temps(bp
);
585 destroy_all_fans(bp
);
593 void bbc_envctrl_cleanup(struct bbc_i2c_bus
*bp
)
596 kthread_stop(kenvctrld_task
);
598 destroy_all_temps(bp
);
599 destroy_all_fans(bp
);