2 * drivers/sbus/char/jsflash.c
4 * Copyright (C) 1991, 1992 Linus Torvalds (drivers/char/mem.c)
5 * Copyright (C) 1997 Eddie C. Dost (drivers/sbus/char/flash.c)
6 * Copyright (C) 1997-2000 Pavel Machek <pavel@ucw.cz> (drivers/block/nbd.c)
7 * Copyright (C) 1999-2000 Pete Zaitcev
9 * This driver is used to program OS into a Flash SIMM on
10 * Krups and Espresso platforms.
12 * TODO: do not allow erase/programming if file systems are mounted.
13 * TODO: Erase/program both banks of a 8MB SIMM.
15 * It is anticipated that programming an OS Flash will be a routine
16 * procedure. In the same time it is exceedingly dangerous because
17 * a user can program its OBP flash with OS image and effectively
20 * This driver uses an interface different from Eddie's flash.c
21 * as a silly safeguard.
23 * XXX The flash.c manipulates page caching characteristics in a certain
24 * dubious way; also it assumes that remap_pfn_range() can remap
25 * PCI bus locations, which may be false. ioremap() must be used
26 * instead. We should discuss this.
29 #include <linux/module.h>
30 #include <linux/mutex.h>
31 #include <linux/types.h>
32 #include <linux/errno.h>
33 #include <linux/miscdevice.h>
34 #include <linux/fcntl.h>
35 #include <linux/poll.h>
36 #include <linux/init.h>
37 #include <linux/string.h>
38 #include <linux/genhd.h>
39 #include <linux/blkdev.h>
40 #include <asm/uaccess.h>
41 #include <asm/pgtable.h>
44 #include <asm/oplib.h>
46 #include <asm/jsflash.h> /* ioctl arguments. <linux/> ?? */
47 #define JSFIDSZ (sizeof(struct jsflash_ident_arg))
48 #define JSFPRGSZ (sizeof(struct jsflash_program_arg))
51 * Our device numbers have no business in system headers.
52 * The only thing a user knows is the device name /dev/jsflash.
54 * Block devices are laid out like this:
55 * minor+0 - Bootstrap, for 8MB SIMM 0x20400000[0x800000]
56 * minor+1 - Filesystem to mount, normally 0x20400400[0x7ffc00]
57 * minor+2 - Whole flash area for any case... 0x20000000[0x01000000]
58 * Total 3 minors per flash device.
60 * It is easier to have static size vectors, so we define
61 * a total minor range JSF_MAX, which must cover all minors.
63 /* character device */
64 #define JSF_MINOR 178 /* 178 is registered with hpa */
66 #define JSF_MAX 3 /* 3 minors wasted total so far. */
67 #define JSF_NPART 3 /* 3 minors per flash device */
68 #define JSF_PART_BITS 2 /* 2 bits of minors to cover JSF_NPART */
69 #define JSF_PART_MASK 0x3 /* 2 bits mask */
71 static DEFINE_MUTEX(jsf_mutex
);
75 * We could ioremap(), but it's easier this way.
77 static unsigned int jsf_inl(unsigned long addr
)
81 __asm__
__volatile__("lda [%1] %2, %0\n\t" :
83 "r" (addr
), "i" (ASI_M_BYPASS
));
87 static void jsf_outl(unsigned long addr
, __u32 data
)
90 __asm__
__volatile__("sta %0, [%1] %2\n\t" : :
91 "r" (data
), "r" (addr
), "i" (ASI_M_BYPASS
) :
107 unsigned long busy
; /* In use? */
108 struct jsflash_ident_arg id
;
109 /* int mbase; */ /* Minor base, typically zero */
110 struct jsfd_part dv
[JSF_NPART
];
114 * We do not map normal memory or obio as a safety precaution.
115 * But offsets are real, for ease of userland programming.
117 #define JSF_BASE_TOP 0x30000000
118 #define JSF_BASE_ALL 0x20000000
120 #define JSF_BASE_JK 0x20400000
124 static struct gendisk
*jsfd_disk
[JSF_MAX
];
127 * Let's pretend we may have several of these...
129 static struct jsflash jsf0
;
132 * Wait for AMD to finish its embedded algorithm.
133 * We use the Toggle bit DQ6 (0x40) because it does not
134 * depend on the data value as /DATA bit DQ7 does.
136 * XXX Do we need any timeout here? So far it never hanged, beware broken hw.
138 static void jsf_wait(unsigned long p
) {
144 if ((x1
& 0x40404040) == (x2
& 0x40404040)) return;
149 * Programming will only work if Flash is clean,
150 * we leave it to the programmer application.
152 * AMD must be programmed one byte at a time;
153 * thus, Simple Tech SIMM must be written 4 bytes at a time.
155 * Write waits for the chip to become ready after the write
156 * was finished. This is done so that application would read
157 * consistent data after the write is done.
159 static void jsf_write4(unsigned long fa
, u32 data
) {
161 jsf_outl(fa
, 0xAAAAAAAA); /* Unlock 1 Write 1 */
162 jsf_outl(fa
, 0x55555555); /* Unlock 1 Write 2 */
163 jsf_outl(fa
, 0xA0A0A0A0); /* Byte Program */
171 static void jsfd_read(char *buf
, unsigned long p
, size_t togo
) {
186 static void jsfd_do_request(struct request_queue
*q
)
190 req
= blk_fetch_request(q
);
192 struct jsfd_part
*jdp
= req
->rq_disk
->private_data
;
193 unsigned long offset
= blk_rq_pos(req
) << 9;
194 size_t len
= blk_rq_cur_bytes(req
);
197 if ((offset
+ len
) > jdp
->dsize
)
200 if (rq_data_dir(req
) != READ
) {
201 printk(KERN_ERR
"jsfd: write\n");
205 if ((jdp
->dbase
& 0xff000000) != 0x20000000) {
206 printk(KERN_ERR
"jsfd: bad base %x\n", (int)jdp
->dbase
);
210 jsfd_read(bio_data(req
->bio
), jdp
->dbase
+ offset
, len
);
213 if (!__blk_end_request_cur(req
, err
))
214 req
= blk_fetch_request(q
);
219 * The memory devices use the full 32/64 bits of the offset, and so we cannot
220 * check against negative addresses: they are ok. The return value is weird,
221 * though, in that case (0).
223 * also note that seeking relative to the "end of file" isn't supported:
224 * it has no meaning, so it returns -EINVAL.
226 static loff_t
jsf_lseek(struct file
* file
, loff_t offset
, int orig
)
230 mutex_lock(&jsf_mutex
);
233 file
->f_pos
= offset
;
237 file
->f_pos
+= offset
;
243 mutex_unlock(&jsf_mutex
);
248 * OS SIMM Cannot be read in other size but a 32bits word.
250 static ssize_t
jsf_read(struct file
* file
, char __user
* buf
,
251 size_t togo
, loff_t
*ppos
)
253 unsigned long p
= *ppos
;
254 char __user
*tmp
= buf
;
261 if (p
< JSF_BASE_ALL
|| p
>= JSF_BASE_TOP
) {
265 if ((p
+ togo
) < p
/* wrap */
266 || (p
+ togo
) >= JSF_BASE_TOP
) {
267 togo
= JSF_BASE_TOP
- p
;
270 if (p
< JSF_BASE_ALL
&& togo
!= 0) {
271 #if 0 /* __bzero XXX */
272 size_t x
= JSF_BASE_ALL
- p
;
273 if (x
> togo
) x
= togo
;
280 * Implementation of clear_user() calls __bzero
281 * without regard to modversions,
282 * so we cannot build a module.
291 if (copy_to_user(tmp
, b
.s
, 4))
298 * XXX Small togo may remain if 1 byte is ordered.
299 * It would be nice if we did a word size read and unpacked it.
306 static ssize_t
jsf_write(struct file
* file
, const char __user
* buf
,
307 size_t count
, loff_t
*ppos
)
314 static int jsf_ioctl_erase(unsigned long arg
)
318 /* p = jsf0.base; hits wrong bank */
321 jsf_outl(p
, 0xAAAAAAAA); /* Unlock 1 Write 1 */
322 jsf_outl(p
, 0x55555555); /* Unlock 1 Write 2 */
323 jsf_outl(p
, 0x80808080); /* Erase setup */
324 jsf_outl(p
, 0xAAAAAAAA); /* Unlock 2 Write 1 */
325 jsf_outl(p
, 0x55555555); /* Unlock 2 Write 2 */
326 jsf_outl(p
, 0x10101010); /* Chip erase */
330 * This code is ok, except that counter based timeout
331 * has no place in this world. Let's just drop timeouts...
336 for (i
= 0; i
< 1000000; i
++) {
338 if ((x
& 0x80808080) == 0x80808080) break;
340 if ((x
& 0x80808080) != 0x80808080) {
341 printk("jsf0: erase timeout with 0x%08x\n", x
);
343 printk("jsf0: erase done with 0x%08x\n", x
);
354 * Program a block of flash.
355 * Very simple because we can do it byte by byte anyway.
357 static int jsf_ioctl_program(void __user
*arg
)
359 struct jsflash_program_arg abuf
;
368 if (copy_from_user(&abuf
, arg
, JSFPRGSZ
))
372 if ((togo
& 3) || (p
& 3)) return -EINVAL
;
374 uptr
= (char __user
*) (unsigned long) abuf
.data
;
377 if (copy_from_user(&b
.s
[0], uptr
, 4))
387 static long jsf_ioctl(struct file
*f
, unsigned int cmd
, unsigned long arg
)
389 mutex_lock(&jsf_mutex
);
391 void __user
*argp
= (void __user
*)arg
;
393 if (!capable(CAP_SYS_ADMIN
)) {
394 mutex_unlock(&jsf_mutex
);
399 if (copy_to_user(argp
, &jsf0
.id
, JSFIDSZ
)) {
400 mutex_unlock(&jsf_mutex
);
405 error
= jsf_ioctl_erase(arg
);
407 case JSFLASH_PROGRAM
:
408 error
= jsf_ioctl_program(argp
);
412 mutex_unlock(&jsf_mutex
);
416 static int jsf_mmap(struct file
* file
, struct vm_area_struct
* vma
)
421 static int jsf_open(struct inode
* inode
, struct file
* filp
)
423 mutex_lock(&jsf_mutex
);
424 if (jsf0
.base
== 0) {
425 mutex_unlock(&jsf_mutex
);
428 if (test_and_set_bit(0, (void *)&jsf0
.busy
) != 0) {
429 mutex_unlock(&jsf_mutex
);
433 mutex_unlock(&jsf_mutex
);
434 return 0; /* XXX What security? */
437 static int jsf_release(struct inode
*inode
, struct file
*file
)
443 static const struct file_operations jsf_fops
= {
444 .owner
= THIS_MODULE
,
448 .unlocked_ioctl
= jsf_ioctl
,
451 .release
= jsf_release
,
454 static struct miscdevice jsf_dev
= { JSF_MINOR
, "jsflash", &jsf_fops
};
456 static const struct block_device_operations jsfd_fops
= {
457 .owner
= THIS_MODULE
,
460 static int jsflash_init(void)
466 struct linux_prom_registers reg0
;
468 node
= prom_getchild(prom_root_node
);
469 node
= prom_searchsiblings(node
, "flash-memory");
470 if (node
!= 0 && (s32
)node
!= -1) {
471 if (prom_getproperty(node
, "reg",
472 (char *)®0
, sizeof(reg0
)) == -1) {
473 printk("jsflash: no \"reg\" property\n");
476 if (reg0
.which_io
!= 0) {
477 printk("jsflash: bus number nonzero: 0x%x:%x\n",
478 reg0
.which_io
, reg0
.phys_addr
);
482 * Flash may be somewhere else, for instance on Ebus.
483 * So, don't do the following check for IIep flash space.
486 if ((reg0
.phys_addr
>> 24) != 0x20) {
487 printk("jsflash: suspicious address: 0x%x:%x\n",
488 reg0
.which_io
, reg0
.phys_addr
);
492 if ((int)reg0
.reg_size
<= 0) {
493 printk("jsflash: bad size 0x%x\n", (int)reg0
.reg_size
);
497 /* XXX Remove this code once PROLL ID12 got widespread */
498 printk("jsflash: no /flash-memory node, use PROLL >= 12\n");
499 prom_getproperty(prom_root_node
, "banner-name", banner
, 128);
500 if (strcmp (banner
, "JavaStation-NC") != 0 &&
501 strcmp (banner
, "JavaStation-E") != 0) {
505 reg0
.phys_addr
= 0x20400000;
506 reg0
.reg_size
= 0x00800000;
509 /* Let us be really paranoid for modifications to probing code. */
510 if (sparc_cpu_model
!= sun4m
) {
511 /* We must be on sun4m because we use MMU Bypass ASI. */
515 if (jsf0
.base
== 0) {
518 jsf
->base
= reg0
.phys_addr
;
519 jsf
->size
= reg0
.reg_size
;
521 /* XXX Redo the userland interface. */
522 jsf
->id
.off
= JSF_BASE_ALL
;
523 jsf
->id
.size
= 0x01000000; /* 16M - all segments */
524 strcpy(jsf
->id
.name
, "Krups_all");
526 jsf
->dv
[0].dbase
= jsf
->base
;
527 jsf
->dv
[0].dsize
= jsf
->size
;
528 jsf
->dv
[1].dbase
= jsf
->base
+ 1024;
529 jsf
->dv
[1].dsize
= jsf
->size
- 1024;
530 jsf
->dv
[2].dbase
= JSF_BASE_ALL
;
531 jsf
->dv
[2].dsize
= 0x01000000;
533 printk("Espresso Flash @0x%lx [%d MB]\n", jsf
->base
,
534 (int) (jsf
->size
/ (1024*1024)));
537 if ((rc
= misc_register(&jsf_dev
)) != 0) {
538 printk(KERN_ERR
"jsf: unable to get misc minor %d\n",
547 static struct request_queue
*jsf_queue
;
549 static int jsfd_init(void)
551 static DEFINE_SPINLOCK(lock
);
553 struct jsfd_part
*jdp
;
561 for (i
= 0; i
< JSF_MAX
; i
++) {
562 struct gendisk
*disk
= alloc_disk(1);
568 if (register_blkdev(JSFD_MAJOR
, "jsfd")) {
573 jsf_queue
= blk_init_queue(jsfd_do_request
, &lock
);
576 unregister_blkdev(JSFD_MAJOR
, "jsfd");
580 for (i
= 0; i
< JSF_MAX
; i
++) {
581 struct gendisk
*disk
= jsfd_disk
[i
];
582 if ((i
& JSF_PART_MASK
) >= JSF_NPART
) continue;
583 jsf
= &jsf0
; /* actually, &jsfv[i >> JSF_PART_BITS] */
584 jdp
= &jsf
->dv
[i
&JSF_PART_MASK
];
586 disk
->major
= JSFD_MAJOR
;
587 disk
->first_minor
= i
;
588 sprintf(disk
->disk_name
, "jsfd%d", i
);
589 disk
->fops
= &jsfd_fops
;
590 set_capacity(disk
, jdp
->dsize
>> 9);
591 disk
->private_data
= jdp
;
592 disk
->queue
= jsf_queue
;
594 set_disk_ro(disk
, 1);
599 put_disk(jsfd_disk
[i
]);
603 MODULE_LICENSE("GPL");
605 static int __init
jsflash_init_module(void) {
608 if ((rc
= jsflash_init()) == 0) {
615 static void __exit
jsflash_cleanup_module(void)
619 for (i
= 0; i
< JSF_MAX
; i
++) {
620 if ((i
& JSF_PART_MASK
) >= JSF_NPART
) continue;
621 del_gendisk(jsfd_disk
[i
]);
622 put_disk(jsfd_disk
[i
]);
625 printk("jsf0: cleaning busy unit\n");
629 misc_deregister(&jsf_dev
);
630 unregister_blkdev(JSFD_MAJOR
, "jsfd");
631 blk_cleanup_queue(jsf_queue
);
634 module_init(jsflash_init_module
);
635 module_exit(jsflash_cleanup_module
);