i2c: mxs: use MXS_DMA_CTRL_WAIT4END instead of DMA_CTRL_ACK
[linux/fpc-iii.git] / mm / mempolicy.c
blob787c5fc91b217bcb509aba995034f5e96be05cf9
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
106 #include "internal.h"
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
115 /* Highest zone. An specific allocation for a zone below that is not
116 policied. */
117 enum zone_type policy_zone = 0;
120 * run-time system-wide default policy => local allocation
122 static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
130 struct mempolicy *get_task_policy(struct task_struct *p)
132 struct mempolicy *pol = p->mempolicy;
133 int node;
135 if (pol)
136 return pol;
138 node = numa_node_id();
139 if (node != NUMA_NO_NODE) {
140 pol = &preferred_node_policy[node];
141 /* preferred_node_policy is not initialised early in boot */
142 if (pol->mode)
143 return pol;
146 return &default_policy;
149 static const struct mempolicy_operations {
150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152 } mpol_ops[MPOL_MAX];
154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
156 return pol->flags & MPOL_MODE_FLAGS;
159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 const nodemask_t *rel)
162 nodemask_t tmp;
163 nodes_fold(tmp, *orig, nodes_weight(*rel));
164 nodes_onto(*ret, tmp, *rel);
167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
169 if (nodes_empty(*nodes))
170 return -EINVAL;
171 pol->v.nodes = *nodes;
172 return 0;
175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
177 if (!nodes)
178 pol->flags |= MPOL_F_LOCAL; /* local allocation */
179 else if (nodes_empty(*nodes))
180 return -EINVAL; /* no allowed nodes */
181 else
182 pol->v.preferred_node = first_node(*nodes);
183 return 0;
186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
188 if (nodes_empty(*nodes))
189 return -EINVAL;
190 pol->v.nodes = *nodes;
191 return 0;
195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196 * any, for the new policy. mpol_new() has already validated the nodes
197 * parameter with respect to the policy mode and flags. But, we need to
198 * handle an empty nodemask with MPOL_PREFERRED here.
200 * Must be called holding task's alloc_lock to protect task's mems_allowed
201 * and mempolicy. May also be called holding the mmap_semaphore for write.
203 static int mpol_set_nodemask(struct mempolicy *pol,
204 const nodemask_t *nodes, struct nodemask_scratch *nsc)
206 int ret;
208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 if (pol == NULL)
210 return 0;
211 /* Check N_MEMORY */
212 nodes_and(nsc->mask1,
213 cpuset_current_mems_allowed, node_states[N_MEMORY]);
215 VM_BUG_ON(!nodes);
216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 nodes = NULL; /* explicit local allocation */
218 else {
219 if (pol->flags & MPOL_F_RELATIVE_NODES)
220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 else
222 nodes_and(nsc->mask2, *nodes, nsc->mask1);
224 if (mpol_store_user_nodemask(pol))
225 pol->w.user_nodemask = *nodes;
226 else
227 pol->w.cpuset_mems_allowed =
228 cpuset_current_mems_allowed;
231 if (nodes)
232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 else
234 ret = mpol_ops[pol->mode].create(pol, NULL);
235 return ret;
239 * This function just creates a new policy, does some check and simple
240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 nodemask_t *nodes)
245 struct mempolicy *policy;
247 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
250 if (mode == MPOL_DEFAULT) {
251 if (nodes && !nodes_empty(*nodes))
252 return ERR_PTR(-EINVAL);
253 return NULL;
255 VM_BUG_ON(!nodes);
258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 * All other modes require a valid pointer to a non-empty nodemask.
262 if (mode == MPOL_PREFERRED) {
263 if (nodes_empty(*nodes)) {
264 if (((flags & MPOL_F_STATIC_NODES) ||
265 (flags & MPOL_F_RELATIVE_NODES)))
266 return ERR_PTR(-EINVAL);
268 } else if (mode == MPOL_LOCAL) {
269 if (!nodes_empty(*nodes) ||
270 (flags & MPOL_F_STATIC_NODES) ||
271 (flags & MPOL_F_RELATIVE_NODES))
272 return ERR_PTR(-EINVAL);
273 mode = MPOL_PREFERRED;
274 } else if (nodes_empty(*nodes))
275 return ERR_PTR(-EINVAL);
276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 if (!policy)
278 return ERR_PTR(-ENOMEM);
279 atomic_set(&policy->refcnt, 1);
280 policy->mode = mode;
281 policy->flags = flags;
283 return policy;
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy *p)
289 if (!atomic_dec_and_test(&p->refcnt))
290 return;
291 kmem_cache_free(policy_cache, p);
294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
300 nodemask_t tmp;
302 if (pol->flags & MPOL_F_STATIC_NODES)
303 nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 else {
307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 *nodes);
309 pol->w.cpuset_mems_allowed = *nodes;
312 if (nodes_empty(tmp))
313 tmp = *nodes;
315 pol->v.nodes = tmp;
318 static void mpol_rebind_preferred(struct mempolicy *pol,
319 const nodemask_t *nodes)
321 nodemask_t tmp;
323 if (pol->flags & MPOL_F_STATIC_NODES) {
324 int node = first_node(pol->w.user_nodemask);
326 if (node_isset(node, *nodes)) {
327 pol->v.preferred_node = node;
328 pol->flags &= ~MPOL_F_LOCAL;
329 } else
330 pol->flags |= MPOL_F_LOCAL;
331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 pol->v.preferred_node = first_node(tmp);
334 } else if (!(pol->flags & MPOL_F_LOCAL)) {
335 pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 pol->w.cpuset_mems_allowed,
337 *nodes);
338 pol->w.cpuset_mems_allowed = *nodes;
343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
346 * policies are protected by task->mems_allowed_seq to prevent a premature
347 * OOM/allocation failure due to parallel nodemask modification.
349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
351 if (!pol)
352 return;
353 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 return;
357 mpol_ops[pol->mode].rebind(pol, newmask);
361 * Wrapper for mpol_rebind_policy() that just requires task
362 * pointer, and updates task mempolicy.
364 * Called with task's alloc_lock held.
367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
369 mpol_rebind_policy(tsk->mempolicy, new);
373 * Rebind each vma in mm to new nodemask.
375 * Call holding a reference to mm. Takes mm->mmap_sem during call.
378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
380 struct vm_area_struct *vma;
382 down_write(&mm->mmap_sem);
383 for (vma = mm->mmap; vma; vma = vma->vm_next)
384 mpol_rebind_policy(vma->vm_policy, new);
385 up_write(&mm->mmap_sem);
388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 [MPOL_DEFAULT] = {
390 .rebind = mpol_rebind_default,
392 [MPOL_INTERLEAVE] = {
393 .create = mpol_new_interleave,
394 .rebind = mpol_rebind_nodemask,
396 [MPOL_PREFERRED] = {
397 .create = mpol_new_preferred,
398 .rebind = mpol_rebind_preferred,
400 [MPOL_BIND] = {
401 .create = mpol_new_bind,
402 .rebind = mpol_rebind_nodemask,
406 static int migrate_page_add(struct page *page, struct list_head *pagelist,
407 unsigned long flags);
409 struct queue_pages {
410 struct list_head *pagelist;
411 unsigned long flags;
412 nodemask_t *nmask;
413 struct vm_area_struct *prev;
417 * Check if the page's nid is in qp->nmask.
419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420 * in the invert of qp->nmask.
422 static inline bool queue_pages_required(struct page *page,
423 struct queue_pages *qp)
425 int nid = page_to_nid(page);
426 unsigned long flags = qp->flags;
428 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
432 * queue_pages_pmd() has four possible return values:
433 * 0 - pages are placed on the right node or queued successfully.
434 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
435 * specified.
436 * 2 - THP was split.
437 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
438 * existing page was already on a node that does not follow the
439 * policy.
441 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
442 unsigned long end, struct mm_walk *walk)
444 int ret = 0;
445 struct page *page;
446 struct queue_pages *qp = walk->private;
447 unsigned long flags;
449 if (unlikely(is_pmd_migration_entry(*pmd))) {
450 ret = -EIO;
451 goto unlock;
453 page = pmd_page(*pmd);
454 if (is_huge_zero_page(page)) {
455 spin_unlock(ptl);
456 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
457 ret = 2;
458 goto out;
460 if (!queue_pages_required(page, qp))
461 goto unlock;
463 flags = qp->flags;
464 /* go to thp migration */
465 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
466 if (!vma_migratable(walk->vma) ||
467 migrate_page_add(page, qp->pagelist, flags)) {
468 ret = 1;
469 goto unlock;
471 } else
472 ret = -EIO;
473 unlock:
474 spin_unlock(ptl);
475 out:
476 return ret;
480 * Scan through pages checking if pages follow certain conditions,
481 * and move them to the pagelist if they do.
483 * queue_pages_pte_range() has three possible return values:
484 * 0 - pages are placed on the right node or queued successfully.
485 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
486 * specified.
487 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
488 * on a node that does not follow the policy.
490 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
491 unsigned long end, struct mm_walk *walk)
493 struct vm_area_struct *vma = walk->vma;
494 struct page *page;
495 struct queue_pages *qp = walk->private;
496 unsigned long flags = qp->flags;
497 int ret;
498 bool has_unmovable = false;
499 pte_t *pte;
500 spinlock_t *ptl;
502 ptl = pmd_trans_huge_lock(pmd, vma);
503 if (ptl) {
504 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
505 if (ret != 2)
506 return ret;
508 /* THP was split, fall through to pte walk */
510 if (pmd_trans_unstable(pmd))
511 return 0;
513 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
514 for (; addr != end; pte++, addr += PAGE_SIZE) {
515 if (!pte_present(*pte))
516 continue;
517 page = vm_normal_page(vma, addr, *pte);
518 if (!page)
519 continue;
521 * vm_normal_page() filters out zero pages, but there might
522 * still be PageReserved pages to skip, perhaps in a VDSO.
524 if (PageReserved(page))
525 continue;
526 if (!queue_pages_required(page, qp))
527 continue;
528 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
529 /* MPOL_MF_STRICT must be specified if we get here */
530 if (!vma_migratable(vma)) {
531 has_unmovable = true;
532 break;
536 * Do not abort immediately since there may be
537 * temporary off LRU pages in the range. Still
538 * need migrate other LRU pages.
540 if (migrate_page_add(page, qp->pagelist, flags))
541 has_unmovable = true;
542 } else
543 break;
545 pte_unmap_unlock(pte - 1, ptl);
546 cond_resched();
548 if (has_unmovable)
549 return 1;
551 return addr != end ? -EIO : 0;
554 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
555 unsigned long addr, unsigned long end,
556 struct mm_walk *walk)
558 #ifdef CONFIG_HUGETLB_PAGE
559 struct queue_pages *qp = walk->private;
560 unsigned long flags = qp->flags;
561 struct page *page;
562 spinlock_t *ptl;
563 pte_t entry;
565 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
566 entry = huge_ptep_get(pte);
567 if (!pte_present(entry))
568 goto unlock;
569 page = pte_page(entry);
570 if (!queue_pages_required(page, qp))
571 goto unlock;
572 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
573 if (flags & (MPOL_MF_MOVE_ALL) ||
574 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
575 isolate_huge_page(page, qp->pagelist);
576 unlock:
577 spin_unlock(ptl);
578 #else
579 BUG();
580 #endif
581 return 0;
584 #ifdef CONFIG_NUMA_BALANCING
586 * This is used to mark a range of virtual addresses to be inaccessible.
587 * These are later cleared by a NUMA hinting fault. Depending on these
588 * faults, pages may be migrated for better NUMA placement.
590 * This is assuming that NUMA faults are handled using PROT_NONE. If
591 * an architecture makes a different choice, it will need further
592 * changes to the core.
594 unsigned long change_prot_numa(struct vm_area_struct *vma,
595 unsigned long addr, unsigned long end)
597 int nr_updated;
599 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
600 if (nr_updated)
601 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
603 return nr_updated;
605 #else
606 static unsigned long change_prot_numa(struct vm_area_struct *vma,
607 unsigned long addr, unsigned long end)
609 return 0;
611 #endif /* CONFIG_NUMA_BALANCING */
613 static int queue_pages_test_walk(unsigned long start, unsigned long end,
614 struct mm_walk *walk)
616 struct vm_area_struct *vma = walk->vma;
617 struct queue_pages *qp = walk->private;
618 unsigned long endvma = vma->vm_end;
619 unsigned long flags = qp->flags;
622 * Need check MPOL_MF_STRICT to return -EIO if possible
623 * regardless of vma_migratable
625 if (!vma_migratable(vma) &&
626 !(flags & MPOL_MF_STRICT))
627 return 1;
629 if (endvma > end)
630 endvma = end;
631 if (vma->vm_start > start)
632 start = vma->vm_start;
634 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
635 if (!vma->vm_next && vma->vm_end < end)
636 return -EFAULT;
637 if (qp->prev && qp->prev->vm_end < vma->vm_start)
638 return -EFAULT;
641 qp->prev = vma;
643 if (flags & MPOL_MF_LAZY) {
644 /* Similar to task_numa_work, skip inaccessible VMAs */
645 if (!is_vm_hugetlb_page(vma) &&
646 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
647 !(vma->vm_flags & VM_MIXEDMAP))
648 change_prot_numa(vma, start, endvma);
649 return 1;
652 /* queue pages from current vma */
653 if (flags & MPOL_MF_VALID)
654 return 0;
655 return 1;
658 static const struct mm_walk_ops queue_pages_walk_ops = {
659 .hugetlb_entry = queue_pages_hugetlb,
660 .pmd_entry = queue_pages_pte_range,
661 .test_walk = queue_pages_test_walk,
665 * Walk through page tables and collect pages to be migrated.
667 * If pages found in a given range are on a set of nodes (determined by
668 * @nodes and @flags,) it's isolated and queued to the pagelist which is
669 * passed via @private.
671 * queue_pages_range() has three possible return values:
672 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
673 * specified.
674 * 0 - queue pages successfully or no misplaced page.
675 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
676 * memory range specified by nodemask and maxnode points outside
677 * your accessible address space (-EFAULT)
679 static int
680 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
681 nodemask_t *nodes, unsigned long flags,
682 struct list_head *pagelist)
684 struct queue_pages qp = {
685 .pagelist = pagelist,
686 .flags = flags,
687 .nmask = nodes,
688 .prev = NULL,
691 return walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
695 * Apply policy to a single VMA
696 * This must be called with the mmap_sem held for writing.
698 static int vma_replace_policy(struct vm_area_struct *vma,
699 struct mempolicy *pol)
701 int err;
702 struct mempolicy *old;
703 struct mempolicy *new;
705 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
706 vma->vm_start, vma->vm_end, vma->vm_pgoff,
707 vma->vm_ops, vma->vm_file,
708 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
710 new = mpol_dup(pol);
711 if (IS_ERR(new))
712 return PTR_ERR(new);
714 if (vma->vm_ops && vma->vm_ops->set_policy) {
715 err = vma->vm_ops->set_policy(vma, new);
716 if (err)
717 goto err_out;
720 old = vma->vm_policy;
721 vma->vm_policy = new; /* protected by mmap_sem */
722 mpol_put(old);
724 return 0;
725 err_out:
726 mpol_put(new);
727 return err;
730 /* Step 2: apply policy to a range and do splits. */
731 static int mbind_range(struct mm_struct *mm, unsigned long start,
732 unsigned long end, struct mempolicy *new_pol)
734 struct vm_area_struct *next;
735 struct vm_area_struct *prev;
736 struct vm_area_struct *vma;
737 int err = 0;
738 pgoff_t pgoff;
739 unsigned long vmstart;
740 unsigned long vmend;
742 vma = find_vma(mm, start);
743 if (!vma || vma->vm_start > start)
744 return -EFAULT;
746 prev = vma->vm_prev;
747 if (start > vma->vm_start)
748 prev = vma;
750 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
751 next = vma->vm_next;
752 vmstart = max(start, vma->vm_start);
753 vmend = min(end, vma->vm_end);
755 if (mpol_equal(vma_policy(vma), new_pol))
756 continue;
758 pgoff = vma->vm_pgoff +
759 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
760 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
761 vma->anon_vma, vma->vm_file, pgoff,
762 new_pol, vma->vm_userfaultfd_ctx);
763 if (prev) {
764 vma = prev;
765 next = vma->vm_next;
766 if (mpol_equal(vma_policy(vma), new_pol))
767 continue;
768 /* vma_merge() joined vma && vma->next, case 8 */
769 goto replace;
771 if (vma->vm_start != vmstart) {
772 err = split_vma(vma->vm_mm, vma, vmstart, 1);
773 if (err)
774 goto out;
776 if (vma->vm_end != vmend) {
777 err = split_vma(vma->vm_mm, vma, vmend, 0);
778 if (err)
779 goto out;
781 replace:
782 err = vma_replace_policy(vma, new_pol);
783 if (err)
784 goto out;
787 out:
788 return err;
791 /* Set the process memory policy */
792 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
793 nodemask_t *nodes)
795 struct mempolicy *new, *old;
796 NODEMASK_SCRATCH(scratch);
797 int ret;
799 if (!scratch)
800 return -ENOMEM;
802 new = mpol_new(mode, flags, nodes);
803 if (IS_ERR(new)) {
804 ret = PTR_ERR(new);
805 goto out;
808 task_lock(current);
809 ret = mpol_set_nodemask(new, nodes, scratch);
810 if (ret) {
811 task_unlock(current);
812 mpol_put(new);
813 goto out;
815 old = current->mempolicy;
816 current->mempolicy = new;
817 if (new && new->mode == MPOL_INTERLEAVE)
818 current->il_prev = MAX_NUMNODES-1;
819 task_unlock(current);
820 mpol_put(old);
821 ret = 0;
822 out:
823 NODEMASK_SCRATCH_FREE(scratch);
824 return ret;
828 * Return nodemask for policy for get_mempolicy() query
830 * Called with task's alloc_lock held
832 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
834 nodes_clear(*nodes);
835 if (p == &default_policy)
836 return;
838 switch (p->mode) {
839 case MPOL_BIND:
840 /* Fall through */
841 case MPOL_INTERLEAVE:
842 *nodes = p->v.nodes;
843 break;
844 case MPOL_PREFERRED:
845 if (!(p->flags & MPOL_F_LOCAL))
846 node_set(p->v.preferred_node, *nodes);
847 /* else return empty node mask for local allocation */
848 break;
849 default:
850 BUG();
854 static int lookup_node(struct mm_struct *mm, unsigned long addr)
856 struct page *p;
857 int err;
859 int locked = 1;
860 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
861 if (err >= 0) {
862 err = page_to_nid(p);
863 put_page(p);
865 if (locked)
866 up_read(&mm->mmap_sem);
867 return err;
870 /* Retrieve NUMA policy */
871 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
872 unsigned long addr, unsigned long flags)
874 int err;
875 struct mm_struct *mm = current->mm;
876 struct vm_area_struct *vma = NULL;
877 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
879 if (flags &
880 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
881 return -EINVAL;
883 if (flags & MPOL_F_MEMS_ALLOWED) {
884 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
885 return -EINVAL;
886 *policy = 0; /* just so it's initialized */
887 task_lock(current);
888 *nmask = cpuset_current_mems_allowed;
889 task_unlock(current);
890 return 0;
893 if (flags & MPOL_F_ADDR) {
895 * Do NOT fall back to task policy if the
896 * vma/shared policy at addr is NULL. We
897 * want to return MPOL_DEFAULT in this case.
899 down_read(&mm->mmap_sem);
900 vma = find_vma_intersection(mm, addr, addr+1);
901 if (!vma) {
902 up_read(&mm->mmap_sem);
903 return -EFAULT;
905 if (vma->vm_ops && vma->vm_ops->get_policy)
906 pol = vma->vm_ops->get_policy(vma, addr);
907 else
908 pol = vma->vm_policy;
909 } else if (addr)
910 return -EINVAL;
912 if (!pol)
913 pol = &default_policy; /* indicates default behavior */
915 if (flags & MPOL_F_NODE) {
916 if (flags & MPOL_F_ADDR) {
918 * Take a refcount on the mpol, lookup_node()
919 * wil drop the mmap_sem, so after calling
920 * lookup_node() only "pol" remains valid, "vma"
921 * is stale.
923 pol_refcount = pol;
924 vma = NULL;
925 mpol_get(pol);
926 err = lookup_node(mm, addr);
927 if (err < 0)
928 goto out;
929 *policy = err;
930 } else if (pol == current->mempolicy &&
931 pol->mode == MPOL_INTERLEAVE) {
932 *policy = next_node_in(current->il_prev, pol->v.nodes);
933 } else {
934 err = -EINVAL;
935 goto out;
937 } else {
938 *policy = pol == &default_policy ? MPOL_DEFAULT :
939 pol->mode;
941 * Internal mempolicy flags must be masked off before exposing
942 * the policy to userspace.
944 *policy |= (pol->flags & MPOL_MODE_FLAGS);
947 err = 0;
948 if (nmask) {
949 if (mpol_store_user_nodemask(pol)) {
950 *nmask = pol->w.user_nodemask;
951 } else {
952 task_lock(current);
953 get_policy_nodemask(pol, nmask);
954 task_unlock(current);
958 out:
959 mpol_cond_put(pol);
960 if (vma)
961 up_read(&mm->mmap_sem);
962 if (pol_refcount)
963 mpol_put(pol_refcount);
964 return err;
967 #ifdef CONFIG_MIGRATION
969 * page migration, thp tail pages can be passed.
971 static int migrate_page_add(struct page *page, struct list_head *pagelist,
972 unsigned long flags)
974 struct page *head = compound_head(page);
976 * Avoid migrating a page that is shared with others.
978 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
979 if (!isolate_lru_page(head)) {
980 list_add_tail(&head->lru, pagelist);
981 mod_node_page_state(page_pgdat(head),
982 NR_ISOLATED_ANON + page_is_file_cache(head),
983 hpage_nr_pages(head));
984 } else if (flags & MPOL_MF_STRICT) {
986 * Non-movable page may reach here. And, there may be
987 * temporary off LRU pages or non-LRU movable pages.
988 * Treat them as unmovable pages since they can't be
989 * isolated, so they can't be moved at the moment. It
990 * should return -EIO for this case too.
992 return -EIO;
996 return 0;
999 /* page allocation callback for NUMA node migration */
1000 struct page *alloc_new_node_page(struct page *page, unsigned long node)
1002 if (PageHuge(page))
1003 return alloc_huge_page_node(page_hstate(compound_head(page)),
1004 node);
1005 else if (PageTransHuge(page)) {
1006 struct page *thp;
1008 thp = alloc_pages_node(node,
1009 (GFP_TRANSHUGE | __GFP_THISNODE),
1010 HPAGE_PMD_ORDER);
1011 if (!thp)
1012 return NULL;
1013 prep_transhuge_page(thp);
1014 return thp;
1015 } else
1016 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
1017 __GFP_THISNODE, 0);
1021 * Migrate pages from one node to a target node.
1022 * Returns error or the number of pages not migrated.
1024 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1025 int flags)
1027 nodemask_t nmask;
1028 LIST_HEAD(pagelist);
1029 int err = 0;
1031 nodes_clear(nmask);
1032 node_set(source, nmask);
1035 * This does not "check" the range but isolates all pages that
1036 * need migration. Between passing in the full user address
1037 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1039 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1040 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1041 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1043 if (!list_empty(&pagelist)) {
1044 err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
1045 MIGRATE_SYNC, MR_SYSCALL);
1046 if (err)
1047 putback_movable_pages(&pagelist);
1050 return err;
1054 * Move pages between the two nodesets so as to preserve the physical
1055 * layout as much as possible.
1057 * Returns the number of page that could not be moved.
1059 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1060 const nodemask_t *to, int flags)
1062 int busy = 0;
1063 int err;
1064 nodemask_t tmp;
1066 err = migrate_prep();
1067 if (err)
1068 return err;
1070 down_read(&mm->mmap_sem);
1073 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1074 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1075 * bit in 'tmp', and return that <source, dest> pair for migration.
1076 * The pair of nodemasks 'to' and 'from' define the map.
1078 * If no pair of bits is found that way, fallback to picking some
1079 * pair of 'source' and 'dest' bits that are not the same. If the
1080 * 'source' and 'dest' bits are the same, this represents a node
1081 * that will be migrating to itself, so no pages need move.
1083 * If no bits are left in 'tmp', or if all remaining bits left
1084 * in 'tmp' correspond to the same bit in 'to', return false
1085 * (nothing left to migrate).
1087 * This lets us pick a pair of nodes to migrate between, such that
1088 * if possible the dest node is not already occupied by some other
1089 * source node, minimizing the risk of overloading the memory on a
1090 * node that would happen if we migrated incoming memory to a node
1091 * before migrating outgoing memory source that same node.
1093 * A single scan of tmp is sufficient. As we go, we remember the
1094 * most recent <s, d> pair that moved (s != d). If we find a pair
1095 * that not only moved, but what's better, moved to an empty slot
1096 * (d is not set in tmp), then we break out then, with that pair.
1097 * Otherwise when we finish scanning from_tmp, we at least have the
1098 * most recent <s, d> pair that moved. If we get all the way through
1099 * the scan of tmp without finding any node that moved, much less
1100 * moved to an empty node, then there is nothing left worth migrating.
1103 tmp = *from;
1104 while (!nodes_empty(tmp)) {
1105 int s,d;
1106 int source = NUMA_NO_NODE;
1107 int dest = 0;
1109 for_each_node_mask(s, tmp) {
1112 * do_migrate_pages() tries to maintain the relative
1113 * node relationship of the pages established between
1114 * threads and memory areas.
1116 * However if the number of source nodes is not equal to
1117 * the number of destination nodes we can not preserve
1118 * this node relative relationship. In that case, skip
1119 * copying memory from a node that is in the destination
1120 * mask.
1122 * Example: [2,3,4] -> [3,4,5] moves everything.
1123 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1126 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1127 (node_isset(s, *to)))
1128 continue;
1130 d = node_remap(s, *from, *to);
1131 if (s == d)
1132 continue;
1134 source = s; /* Node moved. Memorize */
1135 dest = d;
1137 /* dest not in remaining from nodes? */
1138 if (!node_isset(dest, tmp))
1139 break;
1141 if (source == NUMA_NO_NODE)
1142 break;
1144 node_clear(source, tmp);
1145 err = migrate_to_node(mm, source, dest, flags);
1146 if (err > 0)
1147 busy += err;
1148 if (err < 0)
1149 break;
1151 up_read(&mm->mmap_sem);
1152 if (err < 0)
1153 return err;
1154 return busy;
1159 * Allocate a new page for page migration based on vma policy.
1160 * Start by assuming the page is mapped by the same vma as contains @start.
1161 * Search forward from there, if not. N.B., this assumes that the
1162 * list of pages handed to migrate_pages()--which is how we get here--
1163 * is in virtual address order.
1165 static struct page *new_page(struct page *page, unsigned long start)
1167 struct vm_area_struct *vma;
1168 unsigned long uninitialized_var(address);
1170 vma = find_vma(current->mm, start);
1171 while (vma) {
1172 address = page_address_in_vma(page, vma);
1173 if (address != -EFAULT)
1174 break;
1175 vma = vma->vm_next;
1178 if (PageHuge(page)) {
1179 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1180 vma, address);
1181 } else if (PageTransHuge(page)) {
1182 struct page *thp;
1184 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1185 HPAGE_PMD_ORDER);
1186 if (!thp)
1187 return NULL;
1188 prep_transhuge_page(thp);
1189 return thp;
1192 * if !vma, alloc_page_vma() will use task or system default policy
1194 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1195 vma, address);
1197 #else
1199 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1200 unsigned long flags)
1202 return -EIO;
1205 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1206 const nodemask_t *to, int flags)
1208 return -ENOSYS;
1211 static struct page *new_page(struct page *page, unsigned long start)
1213 return NULL;
1215 #endif
1217 static long do_mbind(unsigned long start, unsigned long len,
1218 unsigned short mode, unsigned short mode_flags,
1219 nodemask_t *nmask, unsigned long flags)
1221 struct mm_struct *mm = current->mm;
1222 struct mempolicy *new;
1223 unsigned long end;
1224 int err;
1225 int ret;
1226 LIST_HEAD(pagelist);
1228 if (flags & ~(unsigned long)MPOL_MF_VALID)
1229 return -EINVAL;
1230 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1231 return -EPERM;
1233 if (start & ~PAGE_MASK)
1234 return -EINVAL;
1236 if (mode == MPOL_DEFAULT)
1237 flags &= ~MPOL_MF_STRICT;
1239 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1240 end = start + len;
1242 if (end < start)
1243 return -EINVAL;
1244 if (end == start)
1245 return 0;
1247 new = mpol_new(mode, mode_flags, nmask);
1248 if (IS_ERR(new))
1249 return PTR_ERR(new);
1251 if (flags & MPOL_MF_LAZY)
1252 new->flags |= MPOL_F_MOF;
1255 * If we are using the default policy then operation
1256 * on discontinuous address spaces is okay after all
1258 if (!new)
1259 flags |= MPOL_MF_DISCONTIG_OK;
1261 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1262 start, start + len, mode, mode_flags,
1263 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1265 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1267 err = migrate_prep();
1268 if (err)
1269 goto mpol_out;
1272 NODEMASK_SCRATCH(scratch);
1273 if (scratch) {
1274 down_write(&mm->mmap_sem);
1275 task_lock(current);
1276 err = mpol_set_nodemask(new, nmask, scratch);
1277 task_unlock(current);
1278 if (err)
1279 up_write(&mm->mmap_sem);
1280 } else
1281 err = -ENOMEM;
1282 NODEMASK_SCRATCH_FREE(scratch);
1284 if (err)
1285 goto mpol_out;
1287 ret = queue_pages_range(mm, start, end, nmask,
1288 flags | MPOL_MF_INVERT, &pagelist);
1290 if (ret < 0) {
1291 err = ret;
1292 goto up_out;
1295 err = mbind_range(mm, start, end, new);
1297 if (!err) {
1298 int nr_failed = 0;
1300 if (!list_empty(&pagelist)) {
1301 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1302 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1303 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1304 if (nr_failed)
1305 putback_movable_pages(&pagelist);
1308 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1309 err = -EIO;
1310 } else {
1311 up_out:
1312 if (!list_empty(&pagelist))
1313 putback_movable_pages(&pagelist);
1316 up_write(&mm->mmap_sem);
1317 mpol_out:
1318 mpol_put(new);
1319 return err;
1323 * User space interface with variable sized bitmaps for nodelists.
1326 /* Copy a node mask from user space. */
1327 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1328 unsigned long maxnode)
1330 unsigned long k;
1331 unsigned long t;
1332 unsigned long nlongs;
1333 unsigned long endmask;
1335 --maxnode;
1336 nodes_clear(*nodes);
1337 if (maxnode == 0 || !nmask)
1338 return 0;
1339 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1340 return -EINVAL;
1342 nlongs = BITS_TO_LONGS(maxnode);
1343 if ((maxnode % BITS_PER_LONG) == 0)
1344 endmask = ~0UL;
1345 else
1346 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1349 * When the user specified more nodes than supported just check
1350 * if the non supported part is all zero.
1352 * If maxnode have more longs than MAX_NUMNODES, check
1353 * the bits in that area first. And then go through to
1354 * check the rest bits which equal or bigger than MAX_NUMNODES.
1355 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1357 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1358 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1359 if (get_user(t, nmask + k))
1360 return -EFAULT;
1361 if (k == nlongs - 1) {
1362 if (t & endmask)
1363 return -EINVAL;
1364 } else if (t)
1365 return -EINVAL;
1367 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1368 endmask = ~0UL;
1371 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1372 unsigned long valid_mask = endmask;
1374 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1375 if (get_user(t, nmask + nlongs - 1))
1376 return -EFAULT;
1377 if (t & valid_mask)
1378 return -EINVAL;
1381 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1382 return -EFAULT;
1383 nodes_addr(*nodes)[nlongs-1] &= endmask;
1384 return 0;
1387 /* Copy a kernel node mask to user space */
1388 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1389 nodemask_t *nodes)
1391 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1392 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1394 if (copy > nbytes) {
1395 if (copy > PAGE_SIZE)
1396 return -EINVAL;
1397 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1398 return -EFAULT;
1399 copy = nbytes;
1401 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1404 static long kernel_mbind(unsigned long start, unsigned long len,
1405 unsigned long mode, const unsigned long __user *nmask,
1406 unsigned long maxnode, unsigned int flags)
1408 nodemask_t nodes;
1409 int err;
1410 unsigned short mode_flags;
1412 start = untagged_addr(start);
1413 mode_flags = mode & MPOL_MODE_FLAGS;
1414 mode &= ~MPOL_MODE_FLAGS;
1415 if (mode >= MPOL_MAX)
1416 return -EINVAL;
1417 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1418 (mode_flags & MPOL_F_RELATIVE_NODES))
1419 return -EINVAL;
1420 err = get_nodes(&nodes, nmask, maxnode);
1421 if (err)
1422 return err;
1423 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1426 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1427 unsigned long, mode, const unsigned long __user *, nmask,
1428 unsigned long, maxnode, unsigned int, flags)
1430 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1433 /* Set the process memory policy */
1434 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1435 unsigned long maxnode)
1437 int err;
1438 nodemask_t nodes;
1439 unsigned short flags;
1441 flags = mode & MPOL_MODE_FLAGS;
1442 mode &= ~MPOL_MODE_FLAGS;
1443 if ((unsigned int)mode >= MPOL_MAX)
1444 return -EINVAL;
1445 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1446 return -EINVAL;
1447 err = get_nodes(&nodes, nmask, maxnode);
1448 if (err)
1449 return err;
1450 return do_set_mempolicy(mode, flags, &nodes);
1453 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1454 unsigned long, maxnode)
1456 return kernel_set_mempolicy(mode, nmask, maxnode);
1459 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1460 const unsigned long __user *old_nodes,
1461 const unsigned long __user *new_nodes)
1463 struct mm_struct *mm = NULL;
1464 struct task_struct *task;
1465 nodemask_t task_nodes;
1466 int err;
1467 nodemask_t *old;
1468 nodemask_t *new;
1469 NODEMASK_SCRATCH(scratch);
1471 if (!scratch)
1472 return -ENOMEM;
1474 old = &scratch->mask1;
1475 new = &scratch->mask2;
1477 err = get_nodes(old, old_nodes, maxnode);
1478 if (err)
1479 goto out;
1481 err = get_nodes(new, new_nodes, maxnode);
1482 if (err)
1483 goto out;
1485 /* Find the mm_struct */
1486 rcu_read_lock();
1487 task = pid ? find_task_by_vpid(pid) : current;
1488 if (!task) {
1489 rcu_read_unlock();
1490 err = -ESRCH;
1491 goto out;
1493 get_task_struct(task);
1495 err = -EINVAL;
1498 * Check if this process has the right to modify the specified process.
1499 * Use the regular "ptrace_may_access()" checks.
1501 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1502 rcu_read_unlock();
1503 err = -EPERM;
1504 goto out_put;
1506 rcu_read_unlock();
1508 task_nodes = cpuset_mems_allowed(task);
1509 /* Is the user allowed to access the target nodes? */
1510 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1511 err = -EPERM;
1512 goto out_put;
1515 task_nodes = cpuset_mems_allowed(current);
1516 nodes_and(*new, *new, task_nodes);
1517 if (nodes_empty(*new))
1518 goto out_put;
1520 err = security_task_movememory(task);
1521 if (err)
1522 goto out_put;
1524 mm = get_task_mm(task);
1525 put_task_struct(task);
1527 if (!mm) {
1528 err = -EINVAL;
1529 goto out;
1532 err = do_migrate_pages(mm, old, new,
1533 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1535 mmput(mm);
1536 out:
1537 NODEMASK_SCRATCH_FREE(scratch);
1539 return err;
1541 out_put:
1542 put_task_struct(task);
1543 goto out;
1547 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1548 const unsigned long __user *, old_nodes,
1549 const unsigned long __user *, new_nodes)
1551 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1555 /* Retrieve NUMA policy */
1556 static int kernel_get_mempolicy(int __user *policy,
1557 unsigned long __user *nmask,
1558 unsigned long maxnode,
1559 unsigned long addr,
1560 unsigned long flags)
1562 int err;
1563 int uninitialized_var(pval);
1564 nodemask_t nodes;
1566 addr = untagged_addr(addr);
1568 if (nmask != NULL && maxnode < nr_node_ids)
1569 return -EINVAL;
1571 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1573 if (err)
1574 return err;
1576 if (policy && put_user(pval, policy))
1577 return -EFAULT;
1579 if (nmask)
1580 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1582 return err;
1585 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1586 unsigned long __user *, nmask, unsigned long, maxnode,
1587 unsigned long, addr, unsigned long, flags)
1589 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1592 #ifdef CONFIG_COMPAT
1594 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1595 compat_ulong_t __user *, nmask,
1596 compat_ulong_t, maxnode,
1597 compat_ulong_t, addr, compat_ulong_t, flags)
1599 long err;
1600 unsigned long __user *nm = NULL;
1601 unsigned long nr_bits, alloc_size;
1602 DECLARE_BITMAP(bm, MAX_NUMNODES);
1604 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1605 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1607 if (nmask)
1608 nm = compat_alloc_user_space(alloc_size);
1610 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1612 if (!err && nmask) {
1613 unsigned long copy_size;
1614 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1615 err = copy_from_user(bm, nm, copy_size);
1616 /* ensure entire bitmap is zeroed */
1617 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1618 err |= compat_put_bitmap(nmask, bm, nr_bits);
1621 return err;
1624 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1625 compat_ulong_t, maxnode)
1627 unsigned long __user *nm = NULL;
1628 unsigned long nr_bits, alloc_size;
1629 DECLARE_BITMAP(bm, MAX_NUMNODES);
1631 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1632 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1634 if (nmask) {
1635 if (compat_get_bitmap(bm, nmask, nr_bits))
1636 return -EFAULT;
1637 nm = compat_alloc_user_space(alloc_size);
1638 if (copy_to_user(nm, bm, alloc_size))
1639 return -EFAULT;
1642 return kernel_set_mempolicy(mode, nm, nr_bits+1);
1645 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1646 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1647 compat_ulong_t, maxnode, compat_ulong_t, flags)
1649 unsigned long __user *nm = NULL;
1650 unsigned long nr_bits, alloc_size;
1651 nodemask_t bm;
1653 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1654 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1656 if (nmask) {
1657 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1658 return -EFAULT;
1659 nm = compat_alloc_user_space(alloc_size);
1660 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1661 return -EFAULT;
1664 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1667 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1668 compat_ulong_t, maxnode,
1669 const compat_ulong_t __user *, old_nodes,
1670 const compat_ulong_t __user *, new_nodes)
1672 unsigned long __user *old = NULL;
1673 unsigned long __user *new = NULL;
1674 nodemask_t tmp_mask;
1675 unsigned long nr_bits;
1676 unsigned long size;
1678 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1679 size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1680 if (old_nodes) {
1681 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1682 return -EFAULT;
1683 old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1684 if (new_nodes)
1685 new = old + size / sizeof(unsigned long);
1686 if (copy_to_user(old, nodes_addr(tmp_mask), size))
1687 return -EFAULT;
1689 if (new_nodes) {
1690 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1691 return -EFAULT;
1692 if (new == NULL)
1693 new = compat_alloc_user_space(size);
1694 if (copy_to_user(new, nodes_addr(tmp_mask), size))
1695 return -EFAULT;
1697 return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1700 #endif /* CONFIG_COMPAT */
1702 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1703 unsigned long addr)
1705 struct mempolicy *pol = NULL;
1707 if (vma) {
1708 if (vma->vm_ops && vma->vm_ops->get_policy) {
1709 pol = vma->vm_ops->get_policy(vma, addr);
1710 } else if (vma->vm_policy) {
1711 pol = vma->vm_policy;
1714 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1715 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1716 * count on these policies which will be dropped by
1717 * mpol_cond_put() later
1719 if (mpol_needs_cond_ref(pol))
1720 mpol_get(pol);
1724 return pol;
1728 * get_vma_policy(@vma, @addr)
1729 * @vma: virtual memory area whose policy is sought
1730 * @addr: address in @vma for shared policy lookup
1732 * Returns effective policy for a VMA at specified address.
1733 * Falls back to current->mempolicy or system default policy, as necessary.
1734 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1735 * count--added by the get_policy() vm_op, as appropriate--to protect against
1736 * freeing by another task. It is the caller's responsibility to free the
1737 * extra reference for shared policies.
1739 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1740 unsigned long addr)
1742 struct mempolicy *pol = __get_vma_policy(vma, addr);
1744 if (!pol)
1745 pol = get_task_policy(current);
1747 return pol;
1750 bool vma_policy_mof(struct vm_area_struct *vma)
1752 struct mempolicy *pol;
1754 if (vma->vm_ops && vma->vm_ops->get_policy) {
1755 bool ret = false;
1757 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1758 if (pol && (pol->flags & MPOL_F_MOF))
1759 ret = true;
1760 mpol_cond_put(pol);
1762 return ret;
1765 pol = vma->vm_policy;
1766 if (!pol)
1767 pol = get_task_policy(current);
1769 return pol->flags & MPOL_F_MOF;
1772 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1774 enum zone_type dynamic_policy_zone = policy_zone;
1776 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1779 * if policy->v.nodes has movable memory only,
1780 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1782 * policy->v.nodes is intersect with node_states[N_MEMORY].
1783 * so if the following test faile, it implies
1784 * policy->v.nodes has movable memory only.
1786 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1787 dynamic_policy_zone = ZONE_MOVABLE;
1789 return zone >= dynamic_policy_zone;
1793 * Return a nodemask representing a mempolicy for filtering nodes for
1794 * page allocation
1796 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1798 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1799 if (unlikely(policy->mode == MPOL_BIND) &&
1800 apply_policy_zone(policy, gfp_zone(gfp)) &&
1801 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1802 return &policy->v.nodes;
1804 return NULL;
1807 /* Return the node id preferred by the given mempolicy, or the given id */
1808 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1809 int nd)
1811 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1812 nd = policy->v.preferred_node;
1813 else {
1815 * __GFP_THISNODE shouldn't even be used with the bind policy
1816 * because we might easily break the expectation to stay on the
1817 * requested node and not break the policy.
1819 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1822 return nd;
1825 /* Do dynamic interleaving for a process */
1826 static unsigned interleave_nodes(struct mempolicy *policy)
1828 unsigned next;
1829 struct task_struct *me = current;
1831 next = next_node_in(me->il_prev, policy->v.nodes);
1832 if (next < MAX_NUMNODES)
1833 me->il_prev = next;
1834 return next;
1838 * Depending on the memory policy provide a node from which to allocate the
1839 * next slab entry.
1841 unsigned int mempolicy_slab_node(void)
1843 struct mempolicy *policy;
1844 int node = numa_mem_id();
1846 if (in_interrupt())
1847 return node;
1849 policy = current->mempolicy;
1850 if (!policy || policy->flags & MPOL_F_LOCAL)
1851 return node;
1853 switch (policy->mode) {
1854 case MPOL_PREFERRED:
1856 * handled MPOL_F_LOCAL above
1858 return policy->v.preferred_node;
1860 case MPOL_INTERLEAVE:
1861 return interleave_nodes(policy);
1863 case MPOL_BIND: {
1864 struct zoneref *z;
1867 * Follow bind policy behavior and start allocation at the
1868 * first node.
1870 struct zonelist *zonelist;
1871 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1872 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1873 z = first_zones_zonelist(zonelist, highest_zoneidx,
1874 &policy->v.nodes);
1875 return z->zone ? zone_to_nid(z->zone) : node;
1878 default:
1879 BUG();
1884 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1885 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1886 * number of present nodes.
1888 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1890 unsigned nnodes = nodes_weight(pol->v.nodes);
1891 unsigned target;
1892 int i;
1893 int nid;
1895 if (!nnodes)
1896 return numa_node_id();
1897 target = (unsigned int)n % nnodes;
1898 nid = first_node(pol->v.nodes);
1899 for (i = 0; i < target; i++)
1900 nid = next_node(nid, pol->v.nodes);
1901 return nid;
1904 /* Determine a node number for interleave */
1905 static inline unsigned interleave_nid(struct mempolicy *pol,
1906 struct vm_area_struct *vma, unsigned long addr, int shift)
1908 if (vma) {
1909 unsigned long off;
1912 * for small pages, there is no difference between
1913 * shift and PAGE_SHIFT, so the bit-shift is safe.
1914 * for huge pages, since vm_pgoff is in units of small
1915 * pages, we need to shift off the always 0 bits to get
1916 * a useful offset.
1918 BUG_ON(shift < PAGE_SHIFT);
1919 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1920 off += (addr - vma->vm_start) >> shift;
1921 return offset_il_node(pol, off);
1922 } else
1923 return interleave_nodes(pol);
1926 #ifdef CONFIG_HUGETLBFS
1928 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1929 * @vma: virtual memory area whose policy is sought
1930 * @addr: address in @vma for shared policy lookup and interleave policy
1931 * @gfp_flags: for requested zone
1932 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1933 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1935 * Returns a nid suitable for a huge page allocation and a pointer
1936 * to the struct mempolicy for conditional unref after allocation.
1937 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1938 * @nodemask for filtering the zonelist.
1940 * Must be protected by read_mems_allowed_begin()
1942 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1943 struct mempolicy **mpol, nodemask_t **nodemask)
1945 int nid;
1947 *mpol = get_vma_policy(vma, addr);
1948 *nodemask = NULL; /* assume !MPOL_BIND */
1950 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1951 nid = interleave_nid(*mpol, vma, addr,
1952 huge_page_shift(hstate_vma(vma)));
1953 } else {
1954 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1955 if ((*mpol)->mode == MPOL_BIND)
1956 *nodemask = &(*mpol)->v.nodes;
1958 return nid;
1962 * init_nodemask_of_mempolicy
1964 * If the current task's mempolicy is "default" [NULL], return 'false'
1965 * to indicate default policy. Otherwise, extract the policy nodemask
1966 * for 'bind' or 'interleave' policy into the argument nodemask, or
1967 * initialize the argument nodemask to contain the single node for
1968 * 'preferred' or 'local' policy and return 'true' to indicate presence
1969 * of non-default mempolicy.
1971 * We don't bother with reference counting the mempolicy [mpol_get/put]
1972 * because the current task is examining it's own mempolicy and a task's
1973 * mempolicy is only ever changed by the task itself.
1975 * N.B., it is the caller's responsibility to free a returned nodemask.
1977 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1979 struct mempolicy *mempolicy;
1980 int nid;
1982 if (!(mask && current->mempolicy))
1983 return false;
1985 task_lock(current);
1986 mempolicy = current->mempolicy;
1987 switch (mempolicy->mode) {
1988 case MPOL_PREFERRED:
1989 if (mempolicy->flags & MPOL_F_LOCAL)
1990 nid = numa_node_id();
1991 else
1992 nid = mempolicy->v.preferred_node;
1993 init_nodemask_of_node(mask, nid);
1994 break;
1996 case MPOL_BIND:
1997 /* Fall through */
1998 case MPOL_INTERLEAVE:
1999 *mask = mempolicy->v.nodes;
2000 break;
2002 default:
2003 BUG();
2005 task_unlock(current);
2007 return true;
2009 #endif
2012 * mempolicy_nodemask_intersects
2014 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2015 * policy. Otherwise, check for intersection between mask and the policy
2016 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
2017 * policy, always return true since it may allocate elsewhere on fallback.
2019 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2021 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2022 const nodemask_t *mask)
2024 struct mempolicy *mempolicy;
2025 bool ret = true;
2027 if (!mask)
2028 return ret;
2029 task_lock(tsk);
2030 mempolicy = tsk->mempolicy;
2031 if (!mempolicy)
2032 goto out;
2034 switch (mempolicy->mode) {
2035 case MPOL_PREFERRED:
2037 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2038 * allocate from, they may fallback to other nodes when oom.
2039 * Thus, it's possible for tsk to have allocated memory from
2040 * nodes in mask.
2042 break;
2043 case MPOL_BIND:
2044 case MPOL_INTERLEAVE:
2045 ret = nodes_intersects(mempolicy->v.nodes, *mask);
2046 break;
2047 default:
2048 BUG();
2050 out:
2051 task_unlock(tsk);
2052 return ret;
2055 /* Allocate a page in interleaved policy.
2056 Own path because it needs to do special accounting. */
2057 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2058 unsigned nid)
2060 struct page *page;
2062 page = __alloc_pages(gfp, order, nid);
2063 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2064 if (!static_branch_likely(&vm_numa_stat_key))
2065 return page;
2066 if (page && page_to_nid(page) == nid) {
2067 preempt_disable();
2068 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2069 preempt_enable();
2071 return page;
2075 * alloc_pages_vma - Allocate a page for a VMA.
2077 * @gfp:
2078 * %GFP_USER user allocation.
2079 * %GFP_KERNEL kernel allocations,
2080 * %GFP_HIGHMEM highmem/user allocations,
2081 * %GFP_FS allocation should not call back into a file system.
2082 * %GFP_ATOMIC don't sleep.
2084 * @order:Order of the GFP allocation.
2085 * @vma: Pointer to VMA or NULL if not available.
2086 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2087 * @node: Which node to prefer for allocation (modulo policy).
2088 * @hugepage: for hugepages try only the preferred node if possible
2090 * This function allocates a page from the kernel page pool and applies
2091 * a NUMA policy associated with the VMA or the current process.
2092 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2093 * mm_struct of the VMA to prevent it from going away. Should be used for
2094 * all allocations for pages that will be mapped into user space. Returns
2095 * NULL when no page can be allocated.
2097 struct page *
2098 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2099 unsigned long addr, int node, bool hugepage)
2101 struct mempolicy *pol;
2102 struct page *page;
2103 int preferred_nid;
2104 nodemask_t *nmask;
2106 pol = get_vma_policy(vma, addr);
2108 if (pol->mode == MPOL_INTERLEAVE) {
2109 unsigned nid;
2111 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2112 mpol_cond_put(pol);
2113 page = alloc_page_interleave(gfp, order, nid);
2114 goto out;
2117 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2118 int hpage_node = node;
2121 * For hugepage allocation and non-interleave policy which
2122 * allows the current node (or other explicitly preferred
2123 * node) we only try to allocate from the current/preferred
2124 * node and don't fall back to other nodes, as the cost of
2125 * remote accesses would likely offset THP benefits.
2127 * If the policy is interleave, or does not allow the current
2128 * node in its nodemask, we allocate the standard way.
2130 if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2131 hpage_node = pol->v.preferred_node;
2133 nmask = policy_nodemask(gfp, pol);
2134 if (!nmask || node_isset(hpage_node, *nmask)) {
2135 mpol_cond_put(pol);
2136 page = __alloc_pages_node(hpage_node,
2137 gfp | __GFP_THISNODE, order);
2140 * If hugepage allocations are configured to always
2141 * synchronous compact or the vma has been madvised
2142 * to prefer hugepage backing, retry allowing remote
2143 * memory as well.
2145 if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2146 page = __alloc_pages_node(hpage_node,
2147 gfp | __GFP_NORETRY, order);
2149 goto out;
2153 nmask = policy_nodemask(gfp, pol);
2154 preferred_nid = policy_node(gfp, pol, node);
2155 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2156 mpol_cond_put(pol);
2157 out:
2158 return page;
2160 EXPORT_SYMBOL(alloc_pages_vma);
2163 * alloc_pages_current - Allocate pages.
2165 * @gfp:
2166 * %GFP_USER user allocation,
2167 * %GFP_KERNEL kernel allocation,
2168 * %GFP_HIGHMEM highmem allocation,
2169 * %GFP_FS don't call back into a file system.
2170 * %GFP_ATOMIC don't sleep.
2171 * @order: Power of two of allocation size in pages. 0 is a single page.
2173 * Allocate a page from the kernel page pool. When not in
2174 * interrupt context and apply the current process NUMA policy.
2175 * Returns NULL when no page can be allocated.
2177 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2179 struct mempolicy *pol = &default_policy;
2180 struct page *page;
2182 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2183 pol = get_task_policy(current);
2186 * No reference counting needed for current->mempolicy
2187 * nor system default_policy
2189 if (pol->mode == MPOL_INTERLEAVE)
2190 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2191 else
2192 page = __alloc_pages_nodemask(gfp, order,
2193 policy_node(gfp, pol, numa_node_id()),
2194 policy_nodemask(gfp, pol));
2196 return page;
2198 EXPORT_SYMBOL(alloc_pages_current);
2200 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2202 struct mempolicy *pol = mpol_dup(vma_policy(src));
2204 if (IS_ERR(pol))
2205 return PTR_ERR(pol);
2206 dst->vm_policy = pol;
2207 return 0;
2211 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2212 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2213 * with the mems_allowed returned by cpuset_mems_allowed(). This
2214 * keeps mempolicies cpuset relative after its cpuset moves. See
2215 * further kernel/cpuset.c update_nodemask().
2217 * current's mempolicy may be rebinded by the other task(the task that changes
2218 * cpuset's mems), so we needn't do rebind work for current task.
2221 /* Slow path of a mempolicy duplicate */
2222 struct mempolicy *__mpol_dup(struct mempolicy *old)
2224 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2226 if (!new)
2227 return ERR_PTR(-ENOMEM);
2229 /* task's mempolicy is protected by alloc_lock */
2230 if (old == current->mempolicy) {
2231 task_lock(current);
2232 *new = *old;
2233 task_unlock(current);
2234 } else
2235 *new = *old;
2237 if (current_cpuset_is_being_rebound()) {
2238 nodemask_t mems = cpuset_mems_allowed(current);
2239 mpol_rebind_policy(new, &mems);
2241 atomic_set(&new->refcnt, 1);
2242 return new;
2245 /* Slow path of a mempolicy comparison */
2246 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2248 if (!a || !b)
2249 return false;
2250 if (a->mode != b->mode)
2251 return false;
2252 if (a->flags != b->flags)
2253 return false;
2254 if (mpol_store_user_nodemask(a))
2255 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2256 return false;
2258 switch (a->mode) {
2259 case MPOL_BIND:
2260 /* Fall through */
2261 case MPOL_INTERLEAVE:
2262 return !!nodes_equal(a->v.nodes, b->v.nodes);
2263 case MPOL_PREFERRED:
2264 /* a's ->flags is the same as b's */
2265 if (a->flags & MPOL_F_LOCAL)
2266 return true;
2267 return a->v.preferred_node == b->v.preferred_node;
2268 default:
2269 BUG();
2270 return false;
2275 * Shared memory backing store policy support.
2277 * Remember policies even when nobody has shared memory mapped.
2278 * The policies are kept in Red-Black tree linked from the inode.
2279 * They are protected by the sp->lock rwlock, which should be held
2280 * for any accesses to the tree.
2284 * lookup first element intersecting start-end. Caller holds sp->lock for
2285 * reading or for writing
2287 static struct sp_node *
2288 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2290 struct rb_node *n = sp->root.rb_node;
2292 while (n) {
2293 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2295 if (start >= p->end)
2296 n = n->rb_right;
2297 else if (end <= p->start)
2298 n = n->rb_left;
2299 else
2300 break;
2302 if (!n)
2303 return NULL;
2304 for (;;) {
2305 struct sp_node *w = NULL;
2306 struct rb_node *prev = rb_prev(n);
2307 if (!prev)
2308 break;
2309 w = rb_entry(prev, struct sp_node, nd);
2310 if (w->end <= start)
2311 break;
2312 n = prev;
2314 return rb_entry(n, struct sp_node, nd);
2318 * Insert a new shared policy into the list. Caller holds sp->lock for
2319 * writing.
2321 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2323 struct rb_node **p = &sp->root.rb_node;
2324 struct rb_node *parent = NULL;
2325 struct sp_node *nd;
2327 while (*p) {
2328 parent = *p;
2329 nd = rb_entry(parent, struct sp_node, nd);
2330 if (new->start < nd->start)
2331 p = &(*p)->rb_left;
2332 else if (new->end > nd->end)
2333 p = &(*p)->rb_right;
2334 else
2335 BUG();
2337 rb_link_node(&new->nd, parent, p);
2338 rb_insert_color(&new->nd, &sp->root);
2339 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2340 new->policy ? new->policy->mode : 0);
2343 /* Find shared policy intersecting idx */
2344 struct mempolicy *
2345 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2347 struct mempolicy *pol = NULL;
2348 struct sp_node *sn;
2350 if (!sp->root.rb_node)
2351 return NULL;
2352 read_lock(&sp->lock);
2353 sn = sp_lookup(sp, idx, idx+1);
2354 if (sn) {
2355 mpol_get(sn->policy);
2356 pol = sn->policy;
2358 read_unlock(&sp->lock);
2359 return pol;
2362 static void sp_free(struct sp_node *n)
2364 mpol_put(n->policy);
2365 kmem_cache_free(sn_cache, n);
2369 * mpol_misplaced - check whether current page node is valid in policy
2371 * @page: page to be checked
2372 * @vma: vm area where page mapped
2373 * @addr: virtual address where page mapped
2375 * Lookup current policy node id for vma,addr and "compare to" page's
2376 * node id.
2378 * Returns:
2379 * -1 - not misplaced, page is in the right node
2380 * node - node id where the page should be
2382 * Policy determination "mimics" alloc_page_vma().
2383 * Called from fault path where we know the vma and faulting address.
2385 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2387 struct mempolicy *pol;
2388 struct zoneref *z;
2389 int curnid = page_to_nid(page);
2390 unsigned long pgoff;
2391 int thiscpu = raw_smp_processor_id();
2392 int thisnid = cpu_to_node(thiscpu);
2393 int polnid = NUMA_NO_NODE;
2394 int ret = -1;
2396 pol = get_vma_policy(vma, addr);
2397 if (!(pol->flags & MPOL_F_MOF))
2398 goto out;
2400 switch (pol->mode) {
2401 case MPOL_INTERLEAVE:
2402 pgoff = vma->vm_pgoff;
2403 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2404 polnid = offset_il_node(pol, pgoff);
2405 break;
2407 case MPOL_PREFERRED:
2408 if (pol->flags & MPOL_F_LOCAL)
2409 polnid = numa_node_id();
2410 else
2411 polnid = pol->v.preferred_node;
2412 break;
2414 case MPOL_BIND:
2417 * allows binding to multiple nodes.
2418 * use current page if in policy nodemask,
2419 * else select nearest allowed node, if any.
2420 * If no allowed nodes, use current [!misplaced].
2422 if (node_isset(curnid, pol->v.nodes))
2423 goto out;
2424 z = first_zones_zonelist(
2425 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2426 gfp_zone(GFP_HIGHUSER),
2427 &pol->v.nodes);
2428 polnid = zone_to_nid(z->zone);
2429 break;
2431 default:
2432 BUG();
2435 /* Migrate the page towards the node whose CPU is referencing it */
2436 if (pol->flags & MPOL_F_MORON) {
2437 polnid = thisnid;
2439 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2440 goto out;
2443 if (curnid != polnid)
2444 ret = polnid;
2445 out:
2446 mpol_cond_put(pol);
2448 return ret;
2452 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2453 * dropped after task->mempolicy is set to NULL so that any allocation done as
2454 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2455 * policy.
2457 void mpol_put_task_policy(struct task_struct *task)
2459 struct mempolicy *pol;
2461 task_lock(task);
2462 pol = task->mempolicy;
2463 task->mempolicy = NULL;
2464 task_unlock(task);
2465 mpol_put(pol);
2468 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2470 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2471 rb_erase(&n->nd, &sp->root);
2472 sp_free(n);
2475 static void sp_node_init(struct sp_node *node, unsigned long start,
2476 unsigned long end, struct mempolicy *pol)
2478 node->start = start;
2479 node->end = end;
2480 node->policy = pol;
2483 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2484 struct mempolicy *pol)
2486 struct sp_node *n;
2487 struct mempolicy *newpol;
2489 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2490 if (!n)
2491 return NULL;
2493 newpol = mpol_dup(pol);
2494 if (IS_ERR(newpol)) {
2495 kmem_cache_free(sn_cache, n);
2496 return NULL;
2498 newpol->flags |= MPOL_F_SHARED;
2499 sp_node_init(n, start, end, newpol);
2501 return n;
2504 /* Replace a policy range. */
2505 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2506 unsigned long end, struct sp_node *new)
2508 struct sp_node *n;
2509 struct sp_node *n_new = NULL;
2510 struct mempolicy *mpol_new = NULL;
2511 int ret = 0;
2513 restart:
2514 write_lock(&sp->lock);
2515 n = sp_lookup(sp, start, end);
2516 /* Take care of old policies in the same range. */
2517 while (n && n->start < end) {
2518 struct rb_node *next = rb_next(&n->nd);
2519 if (n->start >= start) {
2520 if (n->end <= end)
2521 sp_delete(sp, n);
2522 else
2523 n->start = end;
2524 } else {
2525 /* Old policy spanning whole new range. */
2526 if (n->end > end) {
2527 if (!n_new)
2528 goto alloc_new;
2530 *mpol_new = *n->policy;
2531 atomic_set(&mpol_new->refcnt, 1);
2532 sp_node_init(n_new, end, n->end, mpol_new);
2533 n->end = start;
2534 sp_insert(sp, n_new);
2535 n_new = NULL;
2536 mpol_new = NULL;
2537 break;
2538 } else
2539 n->end = start;
2541 if (!next)
2542 break;
2543 n = rb_entry(next, struct sp_node, nd);
2545 if (new)
2546 sp_insert(sp, new);
2547 write_unlock(&sp->lock);
2548 ret = 0;
2550 err_out:
2551 if (mpol_new)
2552 mpol_put(mpol_new);
2553 if (n_new)
2554 kmem_cache_free(sn_cache, n_new);
2556 return ret;
2558 alloc_new:
2559 write_unlock(&sp->lock);
2560 ret = -ENOMEM;
2561 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2562 if (!n_new)
2563 goto err_out;
2564 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2565 if (!mpol_new)
2566 goto err_out;
2567 goto restart;
2571 * mpol_shared_policy_init - initialize shared policy for inode
2572 * @sp: pointer to inode shared policy
2573 * @mpol: struct mempolicy to install
2575 * Install non-NULL @mpol in inode's shared policy rb-tree.
2576 * On entry, the current task has a reference on a non-NULL @mpol.
2577 * This must be released on exit.
2578 * This is called at get_inode() calls and we can use GFP_KERNEL.
2580 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2582 int ret;
2584 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2585 rwlock_init(&sp->lock);
2587 if (mpol) {
2588 struct vm_area_struct pvma;
2589 struct mempolicy *new;
2590 NODEMASK_SCRATCH(scratch);
2592 if (!scratch)
2593 goto put_mpol;
2594 /* contextualize the tmpfs mount point mempolicy */
2595 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2596 if (IS_ERR(new))
2597 goto free_scratch; /* no valid nodemask intersection */
2599 task_lock(current);
2600 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2601 task_unlock(current);
2602 if (ret)
2603 goto put_new;
2605 /* Create pseudo-vma that contains just the policy */
2606 vma_init(&pvma, NULL);
2607 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2608 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2610 put_new:
2611 mpol_put(new); /* drop initial ref */
2612 free_scratch:
2613 NODEMASK_SCRATCH_FREE(scratch);
2614 put_mpol:
2615 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2619 int mpol_set_shared_policy(struct shared_policy *info,
2620 struct vm_area_struct *vma, struct mempolicy *npol)
2622 int err;
2623 struct sp_node *new = NULL;
2624 unsigned long sz = vma_pages(vma);
2626 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2627 vma->vm_pgoff,
2628 sz, npol ? npol->mode : -1,
2629 npol ? npol->flags : -1,
2630 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2632 if (npol) {
2633 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2634 if (!new)
2635 return -ENOMEM;
2637 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2638 if (err && new)
2639 sp_free(new);
2640 return err;
2643 /* Free a backing policy store on inode delete. */
2644 void mpol_free_shared_policy(struct shared_policy *p)
2646 struct sp_node *n;
2647 struct rb_node *next;
2649 if (!p->root.rb_node)
2650 return;
2651 write_lock(&p->lock);
2652 next = rb_first(&p->root);
2653 while (next) {
2654 n = rb_entry(next, struct sp_node, nd);
2655 next = rb_next(&n->nd);
2656 sp_delete(p, n);
2658 write_unlock(&p->lock);
2661 #ifdef CONFIG_NUMA_BALANCING
2662 static int __initdata numabalancing_override;
2664 static void __init check_numabalancing_enable(void)
2666 bool numabalancing_default = false;
2668 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2669 numabalancing_default = true;
2671 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2672 if (numabalancing_override)
2673 set_numabalancing_state(numabalancing_override == 1);
2675 if (num_online_nodes() > 1 && !numabalancing_override) {
2676 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2677 numabalancing_default ? "Enabling" : "Disabling");
2678 set_numabalancing_state(numabalancing_default);
2682 static int __init setup_numabalancing(char *str)
2684 int ret = 0;
2685 if (!str)
2686 goto out;
2688 if (!strcmp(str, "enable")) {
2689 numabalancing_override = 1;
2690 ret = 1;
2691 } else if (!strcmp(str, "disable")) {
2692 numabalancing_override = -1;
2693 ret = 1;
2695 out:
2696 if (!ret)
2697 pr_warn("Unable to parse numa_balancing=\n");
2699 return ret;
2701 __setup("numa_balancing=", setup_numabalancing);
2702 #else
2703 static inline void __init check_numabalancing_enable(void)
2706 #endif /* CONFIG_NUMA_BALANCING */
2708 /* assumes fs == KERNEL_DS */
2709 void __init numa_policy_init(void)
2711 nodemask_t interleave_nodes;
2712 unsigned long largest = 0;
2713 int nid, prefer = 0;
2715 policy_cache = kmem_cache_create("numa_policy",
2716 sizeof(struct mempolicy),
2717 0, SLAB_PANIC, NULL);
2719 sn_cache = kmem_cache_create("shared_policy_node",
2720 sizeof(struct sp_node),
2721 0, SLAB_PANIC, NULL);
2723 for_each_node(nid) {
2724 preferred_node_policy[nid] = (struct mempolicy) {
2725 .refcnt = ATOMIC_INIT(1),
2726 .mode = MPOL_PREFERRED,
2727 .flags = MPOL_F_MOF | MPOL_F_MORON,
2728 .v = { .preferred_node = nid, },
2733 * Set interleaving policy for system init. Interleaving is only
2734 * enabled across suitably sized nodes (default is >= 16MB), or
2735 * fall back to the largest node if they're all smaller.
2737 nodes_clear(interleave_nodes);
2738 for_each_node_state(nid, N_MEMORY) {
2739 unsigned long total_pages = node_present_pages(nid);
2741 /* Preserve the largest node */
2742 if (largest < total_pages) {
2743 largest = total_pages;
2744 prefer = nid;
2747 /* Interleave this node? */
2748 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2749 node_set(nid, interleave_nodes);
2752 /* All too small, use the largest */
2753 if (unlikely(nodes_empty(interleave_nodes)))
2754 node_set(prefer, interleave_nodes);
2756 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2757 pr_err("%s: interleaving failed\n", __func__);
2759 check_numabalancing_enable();
2762 /* Reset policy of current process to default */
2763 void numa_default_policy(void)
2765 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2769 * Parse and format mempolicy from/to strings
2773 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2775 static const char * const policy_modes[] =
2777 [MPOL_DEFAULT] = "default",
2778 [MPOL_PREFERRED] = "prefer",
2779 [MPOL_BIND] = "bind",
2780 [MPOL_INTERLEAVE] = "interleave",
2781 [MPOL_LOCAL] = "local",
2785 #ifdef CONFIG_TMPFS
2787 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2788 * @str: string containing mempolicy to parse
2789 * @mpol: pointer to struct mempolicy pointer, returned on success.
2791 * Format of input:
2792 * <mode>[=<flags>][:<nodelist>]
2794 * On success, returns 0, else 1
2796 int mpol_parse_str(char *str, struct mempolicy **mpol)
2798 struct mempolicy *new = NULL;
2799 unsigned short mode_flags;
2800 nodemask_t nodes;
2801 char *nodelist = strchr(str, ':');
2802 char *flags = strchr(str, '=');
2803 int err = 1, mode;
2805 if (flags)
2806 *flags++ = '\0'; /* terminate mode string */
2808 if (nodelist) {
2809 /* NUL-terminate mode or flags string */
2810 *nodelist++ = '\0';
2811 if (nodelist_parse(nodelist, nodes))
2812 goto out;
2813 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2814 goto out;
2815 } else
2816 nodes_clear(nodes);
2818 mode = match_string(policy_modes, MPOL_MAX, str);
2819 if (mode < 0)
2820 goto out;
2822 switch (mode) {
2823 case MPOL_PREFERRED:
2825 * Insist on a nodelist of one node only, although later
2826 * we use first_node(nodes) to grab a single node, so here
2827 * nodelist (or nodes) cannot be empty.
2829 if (nodelist) {
2830 char *rest = nodelist;
2831 while (isdigit(*rest))
2832 rest++;
2833 if (*rest)
2834 goto out;
2835 if (nodes_empty(nodes))
2836 goto out;
2838 break;
2839 case MPOL_INTERLEAVE:
2841 * Default to online nodes with memory if no nodelist
2843 if (!nodelist)
2844 nodes = node_states[N_MEMORY];
2845 break;
2846 case MPOL_LOCAL:
2848 * Don't allow a nodelist; mpol_new() checks flags
2850 if (nodelist)
2851 goto out;
2852 mode = MPOL_PREFERRED;
2853 break;
2854 case MPOL_DEFAULT:
2856 * Insist on a empty nodelist
2858 if (!nodelist)
2859 err = 0;
2860 goto out;
2861 case MPOL_BIND:
2863 * Insist on a nodelist
2865 if (!nodelist)
2866 goto out;
2869 mode_flags = 0;
2870 if (flags) {
2872 * Currently, we only support two mutually exclusive
2873 * mode flags.
2875 if (!strcmp(flags, "static"))
2876 mode_flags |= MPOL_F_STATIC_NODES;
2877 else if (!strcmp(flags, "relative"))
2878 mode_flags |= MPOL_F_RELATIVE_NODES;
2879 else
2880 goto out;
2883 new = mpol_new(mode, mode_flags, &nodes);
2884 if (IS_ERR(new))
2885 goto out;
2888 * Save nodes for mpol_to_str() to show the tmpfs mount options
2889 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2891 if (mode != MPOL_PREFERRED)
2892 new->v.nodes = nodes;
2893 else if (nodelist)
2894 new->v.preferred_node = first_node(nodes);
2895 else
2896 new->flags |= MPOL_F_LOCAL;
2899 * Save nodes for contextualization: this will be used to "clone"
2900 * the mempolicy in a specific context [cpuset] at a later time.
2902 new->w.user_nodemask = nodes;
2904 err = 0;
2906 out:
2907 /* Restore string for error message */
2908 if (nodelist)
2909 *--nodelist = ':';
2910 if (flags)
2911 *--flags = '=';
2912 if (!err)
2913 *mpol = new;
2914 return err;
2916 #endif /* CONFIG_TMPFS */
2919 * mpol_to_str - format a mempolicy structure for printing
2920 * @buffer: to contain formatted mempolicy string
2921 * @maxlen: length of @buffer
2922 * @pol: pointer to mempolicy to be formatted
2924 * Convert @pol into a string. If @buffer is too short, truncate the string.
2925 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2926 * longest flag, "relative", and to display at least a few node ids.
2928 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2930 char *p = buffer;
2931 nodemask_t nodes = NODE_MASK_NONE;
2932 unsigned short mode = MPOL_DEFAULT;
2933 unsigned short flags = 0;
2935 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2936 mode = pol->mode;
2937 flags = pol->flags;
2940 switch (mode) {
2941 case MPOL_DEFAULT:
2942 break;
2943 case MPOL_PREFERRED:
2944 if (flags & MPOL_F_LOCAL)
2945 mode = MPOL_LOCAL;
2946 else
2947 node_set(pol->v.preferred_node, nodes);
2948 break;
2949 case MPOL_BIND:
2950 case MPOL_INTERLEAVE:
2951 nodes = pol->v.nodes;
2952 break;
2953 default:
2954 WARN_ON_ONCE(1);
2955 snprintf(p, maxlen, "unknown");
2956 return;
2959 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2961 if (flags & MPOL_MODE_FLAGS) {
2962 p += snprintf(p, buffer + maxlen - p, "=");
2965 * Currently, the only defined flags are mutually exclusive
2967 if (flags & MPOL_F_STATIC_NODES)
2968 p += snprintf(p, buffer + maxlen - p, "static");
2969 else if (flags & MPOL_F_RELATIVE_NODES)
2970 p += snprintf(p, buffer + maxlen - p, "relative");
2973 if (!nodes_empty(nodes))
2974 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2975 nodemask_pr_args(&nodes));