2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
25 #include "xfs_buf_item.h"
29 #include "xfs_dmapi.h"
30 #include "xfs_mount.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_btree.h"
41 #include "xfs_ialloc.h"
43 #include "xfs_error.h"
44 #include "xfs_trace.h"
47 kmem_zone_t
*xfs_ili_zone
; /* inode log item zone */
50 * This returns the number of iovecs needed to log the given inode item.
52 * We need one iovec for the inode log format structure, one for the
53 * inode core, and possibly one for the inode data/extents/b-tree root
54 * and one for the inode attribute data/extents/b-tree root.
58 xfs_inode_log_item_t
*iip
)
67 * Only log the data/extents/b-tree root if there is something
70 iip
->ili_format
.ilf_fields
|= XFS_ILOG_CORE
;
72 switch (ip
->i_d
.di_format
) {
73 case XFS_DINODE_FMT_EXTENTS
:
74 iip
->ili_format
.ilf_fields
&=
75 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
76 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
77 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
) &&
78 (ip
->i_d
.di_nextents
> 0) &&
79 (ip
->i_df
.if_bytes
> 0)) {
80 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
83 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DEXT
;
87 case XFS_DINODE_FMT_BTREE
:
88 ASSERT(ip
->i_df
.if_ext_max
==
89 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
));
90 iip
->ili_format
.ilf_fields
&=
91 ~(XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
92 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
93 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DBROOT
) &&
94 (ip
->i_df
.if_broot_bytes
> 0)) {
95 ASSERT(ip
->i_df
.if_broot
!= NULL
);
98 ASSERT(!(iip
->ili_format
.ilf_fields
&
100 #ifdef XFS_TRANS_DEBUG
101 if (iip
->ili_root_size
> 0) {
102 ASSERT(iip
->ili_root_size
==
103 ip
->i_df
.if_broot_bytes
);
104 ASSERT(memcmp(iip
->ili_orig_root
,
106 iip
->ili_root_size
) == 0);
108 ASSERT(ip
->i_df
.if_broot_bytes
== 0);
111 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DBROOT
;
115 case XFS_DINODE_FMT_LOCAL
:
116 iip
->ili_format
.ilf_fields
&=
117 ~(XFS_ILOG_DEXT
| XFS_ILOG_DBROOT
|
118 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
119 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DDATA
) &&
120 (ip
->i_df
.if_bytes
> 0)) {
121 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
122 ASSERT(ip
->i_d
.di_size
> 0);
125 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DDATA
;
129 case XFS_DINODE_FMT_DEV
:
130 iip
->ili_format
.ilf_fields
&=
131 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
132 XFS_ILOG_DEXT
| XFS_ILOG_UUID
);
135 case XFS_DINODE_FMT_UUID
:
136 iip
->ili_format
.ilf_fields
&=
137 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
138 XFS_ILOG_DEXT
| XFS_ILOG_DEV
);
147 * If there are no attributes associated with this file,
148 * then there cannot be anything more to log.
149 * Clear all attribute-related log flags.
151 if (!XFS_IFORK_Q(ip
)) {
152 iip
->ili_format
.ilf_fields
&=
153 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
);
158 * Log any necessary attribute data.
160 switch (ip
->i_d
.di_aformat
) {
161 case XFS_DINODE_FMT_EXTENTS
:
162 iip
->ili_format
.ilf_fields
&=
163 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
);
164 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
) &&
165 (ip
->i_d
.di_anextents
> 0) &&
166 (ip
->i_afp
->if_bytes
> 0)) {
167 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
170 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_AEXT
;
174 case XFS_DINODE_FMT_BTREE
:
175 iip
->ili_format
.ilf_fields
&=
176 ~(XFS_ILOG_ADATA
| XFS_ILOG_AEXT
);
177 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_ABROOT
) &&
178 (ip
->i_afp
->if_broot_bytes
> 0)) {
179 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
182 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_ABROOT
;
186 case XFS_DINODE_FMT_LOCAL
:
187 iip
->ili_format
.ilf_fields
&=
188 ~(XFS_ILOG_AEXT
| XFS_ILOG_ABROOT
);
189 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_ADATA
) &&
190 (ip
->i_afp
->if_bytes
> 0)) {
191 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
194 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_ADATA
;
207 * This is called to fill in the vector of log iovecs for the
208 * given inode log item. It fills the first item with an inode
209 * log format structure, the second with the on-disk inode structure,
210 * and a possible third and/or fourth with the inode data/extents/b-tree
211 * root and inode attributes data/extents/b-tree root.
214 xfs_inode_item_format(
215 xfs_inode_log_item_t
*iip
,
216 xfs_log_iovec_t
*log_vector
)
219 xfs_log_iovec_t
*vecp
;
222 xfs_bmbt_rec_t
*ext_buffer
;
229 vecp
->i_addr
= (xfs_caddr_t
)&iip
->ili_format
;
230 vecp
->i_len
= sizeof(xfs_inode_log_format_t
);
231 vecp
->i_type
= XLOG_REG_TYPE_IFORMAT
;
236 * Make sure the linux inode is dirty. We do this before
237 * clearing i_update_core as the VFS will call back into
238 * XFS here and set i_update_core, so we need to dirty the
239 * inode first so that the ordering of i_update_core and
240 * unlogged modifications still works as described below.
242 xfs_mark_inode_dirty_sync(ip
);
245 * Clear i_update_core if the timestamps (or any other
246 * non-transactional modification) need flushing/logging
247 * and we're about to log them with the rest of the core.
249 * This is the same logic as xfs_iflush() but this code can't
250 * run at the same time as xfs_iflush because we're in commit
251 * processing here and so we have the inode lock held in
252 * exclusive mode. Although it doesn't really matter
253 * for the timestamps if both routines were to grab the
254 * timestamps or not. That would be ok.
256 * We clear i_update_core before copying out the data.
257 * This is for coordination with our timestamp updates
258 * that don't hold the inode lock. They will always
259 * update the timestamps BEFORE setting i_update_core,
260 * so if we clear i_update_core after they set it we
261 * are guaranteed to see their updates to the timestamps
262 * either here. Likewise, if they set it after we clear it
263 * here, we'll see it either on the next commit of this
264 * inode or the next time the inode gets flushed via
265 * xfs_iflush(). This depends on strongly ordered memory
266 * semantics, but we have that. We use the SYNCHRONIZE
267 * macro to make sure that the compiler does not reorder
268 * the i_update_core access below the data copy below.
270 if (ip
->i_update_core
) {
271 ip
->i_update_core
= 0;
276 * Make sure to get the latest timestamps from the Linux inode.
278 xfs_synchronize_times(ip
);
280 vecp
->i_addr
= (xfs_caddr_t
)&ip
->i_d
;
281 vecp
->i_len
= sizeof(struct xfs_icdinode
);
282 vecp
->i_type
= XLOG_REG_TYPE_ICORE
;
285 iip
->ili_format
.ilf_fields
|= XFS_ILOG_CORE
;
288 * If this is really an old format inode, then we need to
289 * log it as such. This means that we have to copy the link
290 * count from the new field to the old. We don't have to worry
291 * about the new fields, because nothing trusts them as long as
292 * the old inode version number is there. If the superblock already
293 * has a new version number, then we don't bother converting back.
296 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
297 if (ip
->i_d
.di_version
== 1) {
298 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
302 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
303 ip
->i_d
.di_onlink
= ip
->i_d
.di_nlink
;
306 * The superblock version has already been bumped,
307 * so just make the conversion to the new inode
310 ip
->i_d
.di_version
= 2;
311 ip
->i_d
.di_onlink
= 0;
312 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
316 switch (ip
->i_d
.di_format
) {
317 case XFS_DINODE_FMT_EXTENTS
:
318 ASSERT(!(iip
->ili_format
.ilf_fields
&
319 (XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
320 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
321 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
) {
322 ASSERT(ip
->i_df
.if_bytes
> 0);
323 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
324 ASSERT(ip
->i_d
.di_nextents
> 0);
325 ASSERT(iip
->ili_extents_buf
== NULL
);
326 nrecs
= ip
->i_df
.if_bytes
/
327 (uint
)sizeof(xfs_bmbt_rec_t
);
329 #ifdef XFS_NATIVE_HOST
330 if (nrecs
== ip
->i_d
.di_nextents
) {
332 * There are no delayed allocation
333 * extents, so just point to the
334 * real extents array.
337 (char *)(ip
->i_df
.if_u1
.if_extents
);
338 vecp
->i_len
= ip
->i_df
.if_bytes
;
339 vecp
->i_type
= XLOG_REG_TYPE_IEXT
;
344 * There are delayed allocation extents
345 * in the inode, or we need to convert
346 * the extents to on disk format.
347 * Use xfs_iextents_copy()
348 * to copy only the real extents into
349 * a separate buffer. We'll free the
350 * buffer in the unlock routine.
352 ext_buffer
= kmem_alloc(ip
->i_df
.if_bytes
,
354 iip
->ili_extents_buf
= ext_buffer
;
355 vecp
->i_addr
= (xfs_caddr_t
)ext_buffer
;
356 vecp
->i_len
= xfs_iextents_copy(ip
, ext_buffer
,
358 vecp
->i_type
= XLOG_REG_TYPE_IEXT
;
360 ASSERT(vecp
->i_len
<= ip
->i_df
.if_bytes
);
361 iip
->ili_format
.ilf_dsize
= vecp
->i_len
;
367 case XFS_DINODE_FMT_BTREE
:
368 ASSERT(!(iip
->ili_format
.ilf_fields
&
369 (XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
370 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
371 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DBROOT
) {
372 ASSERT(ip
->i_df
.if_broot_bytes
> 0);
373 ASSERT(ip
->i_df
.if_broot
!= NULL
);
374 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_df
.if_broot
;
375 vecp
->i_len
= ip
->i_df
.if_broot_bytes
;
376 vecp
->i_type
= XLOG_REG_TYPE_IBROOT
;
379 iip
->ili_format
.ilf_dsize
= ip
->i_df
.if_broot_bytes
;
383 case XFS_DINODE_FMT_LOCAL
:
384 ASSERT(!(iip
->ili_format
.ilf_fields
&
385 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
386 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
387 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DDATA
) {
388 ASSERT(ip
->i_df
.if_bytes
> 0);
389 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
390 ASSERT(ip
->i_d
.di_size
> 0);
392 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_df
.if_u1
.if_data
;
394 * Round i_bytes up to a word boundary.
395 * The underlying memory is guaranteed to
396 * to be there by xfs_idata_realloc().
398 data_bytes
= roundup(ip
->i_df
.if_bytes
, 4);
399 ASSERT((ip
->i_df
.if_real_bytes
== 0) ||
400 (ip
->i_df
.if_real_bytes
== data_bytes
));
401 vecp
->i_len
= (int)data_bytes
;
402 vecp
->i_type
= XLOG_REG_TYPE_ILOCAL
;
405 iip
->ili_format
.ilf_dsize
= (unsigned)data_bytes
;
409 case XFS_DINODE_FMT_DEV
:
410 ASSERT(!(iip
->ili_format
.ilf_fields
&
411 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
412 XFS_ILOG_DDATA
| XFS_ILOG_UUID
)));
413 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
414 iip
->ili_format
.ilf_u
.ilfu_rdev
=
415 ip
->i_df
.if_u2
.if_rdev
;
419 case XFS_DINODE_FMT_UUID
:
420 ASSERT(!(iip
->ili_format
.ilf_fields
&
421 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
422 XFS_ILOG_DDATA
| XFS_ILOG_DEV
)));
423 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
424 iip
->ili_format
.ilf_u
.ilfu_uuid
=
425 ip
->i_df
.if_u2
.if_uuid
;
435 * If there are no attributes associated with the file,
437 * Assert that no attribute-related log flags are set.
439 if (!XFS_IFORK_Q(ip
)) {
440 ASSERT(nvecs
== iip
->ili_item
.li_desc
->lid_size
);
441 iip
->ili_format
.ilf_size
= nvecs
;
442 ASSERT(!(iip
->ili_format
.ilf_fields
&
443 (XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
)));
447 switch (ip
->i_d
.di_aformat
) {
448 case XFS_DINODE_FMT_EXTENTS
:
449 ASSERT(!(iip
->ili_format
.ilf_fields
&
450 (XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
)));
451 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
) {
452 ASSERT(ip
->i_afp
->if_bytes
> 0);
453 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
454 ASSERT(ip
->i_d
.di_anextents
> 0);
456 nrecs
= ip
->i_afp
->if_bytes
/
457 (uint
)sizeof(xfs_bmbt_rec_t
);
460 ASSERT(nrecs
== ip
->i_d
.di_anextents
);
461 #ifdef XFS_NATIVE_HOST
463 * There are not delayed allocation extents
464 * for attributes, so just point at the array.
466 vecp
->i_addr
= (char *)(ip
->i_afp
->if_u1
.if_extents
);
467 vecp
->i_len
= ip
->i_afp
->if_bytes
;
469 ASSERT(iip
->ili_aextents_buf
== NULL
);
471 * Need to endian flip before logging
473 ext_buffer
= kmem_alloc(ip
->i_afp
->if_bytes
,
475 iip
->ili_aextents_buf
= ext_buffer
;
476 vecp
->i_addr
= (xfs_caddr_t
)ext_buffer
;
477 vecp
->i_len
= xfs_iextents_copy(ip
, ext_buffer
,
480 vecp
->i_type
= XLOG_REG_TYPE_IATTR_EXT
;
481 iip
->ili_format
.ilf_asize
= vecp
->i_len
;
487 case XFS_DINODE_FMT_BTREE
:
488 ASSERT(!(iip
->ili_format
.ilf_fields
&
489 (XFS_ILOG_ADATA
| XFS_ILOG_AEXT
)));
490 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_ABROOT
) {
491 ASSERT(ip
->i_afp
->if_broot_bytes
> 0);
492 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
493 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_afp
->if_broot
;
494 vecp
->i_len
= ip
->i_afp
->if_broot_bytes
;
495 vecp
->i_type
= XLOG_REG_TYPE_IATTR_BROOT
;
498 iip
->ili_format
.ilf_asize
= ip
->i_afp
->if_broot_bytes
;
502 case XFS_DINODE_FMT_LOCAL
:
503 ASSERT(!(iip
->ili_format
.ilf_fields
&
504 (XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
)));
505 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_ADATA
) {
506 ASSERT(ip
->i_afp
->if_bytes
> 0);
507 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
509 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_afp
->if_u1
.if_data
;
511 * Round i_bytes up to a word boundary.
512 * The underlying memory is guaranteed to
513 * to be there by xfs_idata_realloc().
515 data_bytes
= roundup(ip
->i_afp
->if_bytes
, 4);
516 ASSERT((ip
->i_afp
->if_real_bytes
== 0) ||
517 (ip
->i_afp
->if_real_bytes
== data_bytes
));
518 vecp
->i_len
= (int)data_bytes
;
519 vecp
->i_type
= XLOG_REG_TYPE_IATTR_LOCAL
;
522 iip
->ili_format
.ilf_asize
= (unsigned)data_bytes
;
531 ASSERT(nvecs
== iip
->ili_item
.li_desc
->lid_size
);
532 iip
->ili_format
.ilf_size
= nvecs
;
537 * This is called to pin the inode associated with the inode log
538 * item in memory so it cannot be written out.
542 xfs_inode_log_item_t
*iip
)
544 ASSERT(xfs_isilocked(iip
->ili_inode
, XFS_ILOCK_EXCL
));
546 trace_xfs_inode_pin(iip
->ili_inode
, _RET_IP_
);
547 atomic_inc(&iip
->ili_inode
->i_pincount
);
552 * This is called to unpin the inode associated with the inode log
553 * item which was previously pinned with a call to xfs_inode_item_pin().
555 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
559 xfs_inode_item_unpin(
560 xfs_inode_log_item_t
*iip
)
562 struct xfs_inode
*ip
= iip
->ili_inode
;
564 trace_xfs_inode_unpin(ip
, _RET_IP_
);
565 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
566 if (atomic_dec_and_test(&ip
->i_pincount
))
567 wake_up(&ip
->i_ipin_wait
);
572 xfs_inode_item_unpin_remove(
573 xfs_inode_log_item_t
*iip
,
576 xfs_inode_item_unpin(iip
);
580 * This is called to attempt to lock the inode associated with this
581 * inode log item, in preparation for the push routine which does the actual
582 * iflush. Don't sleep on the inode lock or the flush lock.
584 * If the flush lock is already held, indicating that the inode has
585 * been or is in the process of being flushed, then (ideally) we'd like to
586 * see if the inode's buffer is still incore, and if so give it a nudge.
587 * We delay doing so until the pushbuf routine, though, to avoid holding
588 * the AIL lock across a call to the blackhole which is the buffer cache.
589 * Also we don't want to sleep in any device strategy routines, which can happen
590 * if we do the subsequent bawrite in here.
593 xfs_inode_item_trylock(
594 xfs_inode_log_item_t
*iip
)
596 register xfs_inode_t
*ip
;
600 if (xfs_ipincount(ip
) > 0) {
601 return XFS_ITEM_PINNED
;
604 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
)) {
605 return XFS_ITEM_LOCKED
;
608 if (!xfs_iflock_nowait(ip
)) {
610 * inode has already been flushed to the backing buffer,
611 * leave it locked in shared mode, pushbuf routine will
614 return XFS_ITEM_PUSHBUF
;
617 /* Stale items should force out the iclog */
618 if (ip
->i_flags
& XFS_ISTALE
) {
621 * we hold the AIL lock - notify the unlock routine of this
622 * so it doesn't try to get the lock again.
624 xfs_iunlock(ip
, XFS_ILOCK_SHARED
|XFS_IUNLOCK_NONOTIFY
);
625 return XFS_ITEM_PINNED
;
629 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
630 ASSERT(iip
->ili_format
.ilf_fields
!= 0);
631 ASSERT(iip
->ili_logged
== 0);
632 ASSERT(iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
);
635 return XFS_ITEM_SUCCESS
;
639 * Unlock the inode associated with the inode log item.
640 * Clear the fields of the inode and inode log item that
641 * are specific to the current transaction. If the
642 * hold flags is set, do not unlock the inode.
645 xfs_inode_item_unlock(
646 xfs_inode_log_item_t
*iip
)
654 ASSERT(iip
->ili_inode
->i_itemp
!= NULL
);
655 ASSERT(xfs_isilocked(iip
->ili_inode
, XFS_ILOCK_EXCL
));
656 ASSERT((!(iip
->ili_inode
->i_itemp
->ili_flags
&
657 XFS_ILI_IOLOCKED_EXCL
)) ||
658 xfs_isilocked(iip
->ili_inode
, XFS_IOLOCK_EXCL
));
659 ASSERT((!(iip
->ili_inode
->i_itemp
->ili_flags
&
660 XFS_ILI_IOLOCKED_SHARED
)) ||
661 xfs_isilocked(iip
->ili_inode
, XFS_IOLOCK_SHARED
));
663 * Clear the transaction pointer in the inode.
669 * If the inode needed a separate buffer with which to log
670 * its extents, then free it now.
672 if (iip
->ili_extents_buf
!= NULL
) {
673 ASSERT(ip
->i_d
.di_format
== XFS_DINODE_FMT_EXTENTS
);
674 ASSERT(ip
->i_d
.di_nextents
> 0);
675 ASSERT(iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
);
676 ASSERT(ip
->i_df
.if_bytes
> 0);
677 kmem_free(iip
->ili_extents_buf
);
678 iip
->ili_extents_buf
= NULL
;
680 if (iip
->ili_aextents_buf
!= NULL
) {
681 ASSERT(ip
->i_d
.di_aformat
== XFS_DINODE_FMT_EXTENTS
);
682 ASSERT(ip
->i_d
.di_anextents
> 0);
683 ASSERT(iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
);
684 ASSERT(ip
->i_afp
->if_bytes
> 0);
685 kmem_free(iip
->ili_aextents_buf
);
686 iip
->ili_aextents_buf
= NULL
;
690 * Figure out if we should unlock the inode or not.
692 hold
= iip
->ili_flags
& XFS_ILI_HOLD
;
695 * Before clearing out the flags, remember whether we
696 * are holding the inode's IO lock.
698 iolocked
= iip
->ili_flags
& XFS_ILI_IOLOCKED_ANY
;
701 * Clear out the fields of the inode log item particular
702 * to the current transaction.
707 * Unlock the inode if XFS_ILI_HOLD was not set.
710 lock_flags
= XFS_ILOCK_EXCL
;
711 if (iolocked
& XFS_ILI_IOLOCKED_EXCL
) {
712 lock_flags
|= XFS_IOLOCK_EXCL
;
713 } else if (iolocked
& XFS_ILI_IOLOCKED_SHARED
) {
714 lock_flags
|= XFS_IOLOCK_SHARED
;
716 xfs_iput(iip
->ili_inode
, lock_flags
);
721 * This is called to find out where the oldest active copy of the
722 * inode log item in the on disk log resides now that the last log
723 * write of it completed at the given lsn. Since we always re-log
724 * all dirty data in an inode, the latest copy in the on disk log
725 * is the only one that matters. Therefore, simply return the
730 xfs_inode_item_committed(
731 xfs_inode_log_item_t
*iip
,
738 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
739 * failed to get the inode flush lock but did get the inode locked SHARED.
740 * Here we're trying to see if the inode buffer is incore, and if so whether it's
741 * marked delayed write. If that's the case, we'll promote it and that will
742 * allow the caller to write the buffer by triggering the xfsbufd to run.
745 xfs_inode_item_pushbuf(
746 xfs_inode_log_item_t
*iip
)
753 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_SHARED
));
756 * If a flush is not in progress anymore, chances are that the
757 * inode was taken off the AIL. So, just get out.
759 if (completion_done(&ip
->i_flush
) ||
760 ((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0)) {
761 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
766 bp
= xfs_incore(mp
->m_ddev_targp
, iip
->ili_format
.ilf_blkno
,
767 iip
->ili_format
.ilf_len
, XBF_TRYLOCK
);
769 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
772 if (XFS_BUF_ISDELAYWRITE(bp
))
773 xfs_buf_delwri_promote(bp
);
780 * This is called to asynchronously write the inode associated with this
781 * inode log item out to disk. The inode will already have been locked by
782 * a successful call to xfs_inode_item_trylock().
786 xfs_inode_log_item_t
*iip
)
792 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_SHARED
));
793 ASSERT(!completion_done(&ip
->i_flush
));
795 * Since we were able to lock the inode's flush lock and
796 * we found it on the AIL, the inode must be dirty. This
797 * is because the inode is removed from the AIL while still
798 * holding the flush lock in xfs_iflush_done(). Thus, if
799 * we found it in the AIL and were able to obtain the flush
800 * lock without sleeping, then there must not have been
801 * anyone in the process of flushing the inode.
803 ASSERT(XFS_FORCED_SHUTDOWN(ip
->i_mount
) ||
804 iip
->ili_format
.ilf_fields
!= 0);
807 * Push the inode to it's backing buffer. This will not remove the
808 * inode from the AIL - a further push will be required to trigger a
809 * buffer push. However, this allows all the dirty inodes to be pushed
810 * to the buffer before it is pushed to disk. THe buffer IO completion
811 * will pull th einode from the AIL, mark it clean and unlock the flush
814 (void) xfs_iflush(ip
, 0);
815 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
821 * XXX rcc - this one really has to do something. Probably needs
822 * to stamp in a new field in the incore inode.
826 xfs_inode_item_committing(
827 xfs_inode_log_item_t
*iip
,
830 iip
->ili_last_lsn
= lsn
;
835 * This is the ops vector shared by all buf log items.
837 static struct xfs_item_ops xfs_inode_item_ops
= {
838 .iop_size
= (uint(*)(xfs_log_item_t
*))xfs_inode_item_size
,
839 .iop_format
= (void(*)(xfs_log_item_t
*, xfs_log_iovec_t
*))
840 xfs_inode_item_format
,
841 .iop_pin
= (void(*)(xfs_log_item_t
*))xfs_inode_item_pin
,
842 .iop_unpin
= (void(*)(xfs_log_item_t
*))xfs_inode_item_unpin
,
843 .iop_unpin_remove
= (void(*)(xfs_log_item_t
*, xfs_trans_t
*))
844 xfs_inode_item_unpin_remove
,
845 .iop_trylock
= (uint(*)(xfs_log_item_t
*))xfs_inode_item_trylock
,
846 .iop_unlock
= (void(*)(xfs_log_item_t
*))xfs_inode_item_unlock
,
847 .iop_committed
= (xfs_lsn_t(*)(xfs_log_item_t
*, xfs_lsn_t
))
848 xfs_inode_item_committed
,
849 .iop_push
= (void(*)(xfs_log_item_t
*))xfs_inode_item_push
,
850 .iop_pushbuf
= (void(*)(xfs_log_item_t
*))xfs_inode_item_pushbuf
,
851 .iop_committing
= (void(*)(xfs_log_item_t
*, xfs_lsn_t
))
852 xfs_inode_item_committing
857 * Initialize the inode log item for a newly allocated (in-core) inode.
864 xfs_inode_log_item_t
*iip
;
866 ASSERT(ip
->i_itemp
== NULL
);
867 iip
= ip
->i_itemp
= kmem_zone_zalloc(xfs_ili_zone
, KM_SLEEP
);
870 xfs_log_item_init(mp
, &iip
->ili_item
, XFS_LI_INODE
,
871 &xfs_inode_item_ops
);
872 iip
->ili_format
.ilf_type
= XFS_LI_INODE
;
873 iip
->ili_format
.ilf_ino
= ip
->i_ino
;
874 iip
->ili_format
.ilf_blkno
= ip
->i_imap
.im_blkno
;
875 iip
->ili_format
.ilf_len
= ip
->i_imap
.im_len
;
876 iip
->ili_format
.ilf_boffset
= ip
->i_imap
.im_boffset
;
880 * Free the inode log item and any memory hanging off of it.
883 xfs_inode_item_destroy(
886 #ifdef XFS_TRANS_DEBUG
887 if (ip
->i_itemp
->ili_root_size
!= 0) {
888 kmem_free(ip
->i_itemp
->ili_orig_root
);
891 kmem_zone_free(xfs_ili_zone
, ip
->i_itemp
);
896 * This is the inode flushing I/O completion routine. It is called
897 * from interrupt level when the buffer containing the inode is
898 * flushed to disk. It is responsible for removing the inode item
899 * from the AIL if it has not been re-logged, and unlocking the inode's
906 xfs_inode_log_item_t
*iip
)
908 xfs_inode_t
*ip
= iip
->ili_inode
;
909 struct xfs_ail
*ailp
= iip
->ili_item
.li_ailp
;
912 * We only want to pull the item from the AIL if it is
913 * actually there and its location in the log has not
914 * changed since we started the flush. Thus, we only bother
915 * if the ili_logged flag is set and the inode's lsn has not
916 * changed. First we check the lsn outside
917 * the lock since it's cheaper, and then we recheck while
918 * holding the lock before removing the inode from the AIL.
920 if (iip
->ili_logged
&&
921 (iip
->ili_item
.li_lsn
== iip
->ili_flush_lsn
)) {
922 spin_lock(&ailp
->xa_lock
);
923 if (iip
->ili_item
.li_lsn
== iip
->ili_flush_lsn
) {
924 /* xfs_trans_ail_delete() drops the AIL lock. */
925 xfs_trans_ail_delete(ailp
, (xfs_log_item_t
*)iip
);
927 spin_unlock(&ailp
->xa_lock
);
934 * Clear the ili_last_fields bits now that we know that the
935 * data corresponding to them is safely on disk.
937 iip
->ili_last_fields
= 0;
940 * Release the inode's flush lock since we're done with it.
948 * This is the inode flushing abort routine. It is called
949 * from xfs_iflush when the filesystem is shutting down to clean
950 * up the inode state.
951 * It is responsible for removing the inode item
952 * from the AIL if it has not been re-logged, and unlocking the inode's
959 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
965 struct xfs_ail
*ailp
= iip
->ili_item
.li_ailp
;
966 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
967 spin_lock(&ailp
->xa_lock
);
968 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
969 /* xfs_trans_ail_delete() drops the AIL lock. */
970 xfs_trans_ail_delete(ailp
, (xfs_log_item_t
*)iip
);
972 spin_unlock(&ailp
->xa_lock
);
976 * Clear the ili_last_fields bits now that we know that the
977 * data corresponding to them is safely on disk.
979 iip
->ili_last_fields
= 0;
981 * Clear the inode logging fields so no more flushes are
984 iip
->ili_format
.ilf_fields
= 0;
987 * Release the inode's flush lock since we're done with it.
995 xfs_inode_log_item_t
*iip
)
997 xfs_iflush_abort(iip
->ili_inode
);
1001 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1002 * (which can have different field alignments) to the native version
1005 xfs_inode_item_format_convert(
1006 xfs_log_iovec_t
*buf
,
1007 xfs_inode_log_format_t
*in_f
)
1009 if (buf
->i_len
== sizeof(xfs_inode_log_format_32_t
)) {
1010 xfs_inode_log_format_32_t
*in_f32
;
1012 in_f32
= (xfs_inode_log_format_32_t
*)buf
->i_addr
;
1013 in_f
->ilf_type
= in_f32
->ilf_type
;
1014 in_f
->ilf_size
= in_f32
->ilf_size
;
1015 in_f
->ilf_fields
= in_f32
->ilf_fields
;
1016 in_f
->ilf_asize
= in_f32
->ilf_asize
;
1017 in_f
->ilf_dsize
= in_f32
->ilf_dsize
;
1018 in_f
->ilf_ino
= in_f32
->ilf_ino
;
1019 /* copy biggest field of ilf_u */
1020 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
1021 in_f32
->ilf_u
.ilfu_uuid
.__u_bits
,
1023 in_f
->ilf_blkno
= in_f32
->ilf_blkno
;
1024 in_f
->ilf_len
= in_f32
->ilf_len
;
1025 in_f
->ilf_boffset
= in_f32
->ilf_boffset
;
1027 } else if (buf
->i_len
== sizeof(xfs_inode_log_format_64_t
)){
1028 xfs_inode_log_format_64_t
*in_f64
;
1030 in_f64
= (xfs_inode_log_format_64_t
*)buf
->i_addr
;
1031 in_f
->ilf_type
= in_f64
->ilf_type
;
1032 in_f
->ilf_size
= in_f64
->ilf_size
;
1033 in_f
->ilf_fields
= in_f64
->ilf_fields
;
1034 in_f
->ilf_asize
= in_f64
->ilf_asize
;
1035 in_f
->ilf_dsize
= in_f64
->ilf_dsize
;
1036 in_f
->ilf_ino
= in_f64
->ilf_ino
;
1037 /* copy biggest field of ilf_u */
1038 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
1039 in_f64
->ilf_u
.ilfu_uuid
.__u_bits
,
1041 in_f
->ilf_blkno
= in_f64
->ilf_blkno
;
1042 in_f
->ilf_len
= in_f64
->ilf_len
;
1043 in_f
->ilf_boffset
= in_f64
->ilf_boffset
;
1046 return EFSCORRUPTED
;