1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3 * vim: noexpandtab sw=8 ts=8 sts=0:
7 * File open, close, extend, truncate
9 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
12 #include <linux/capability.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/highmem.h>
17 #include <linux/pagemap.h>
18 #include <linux/uio.h>
19 #include <linux/sched.h>
20 #include <linux/splice.h>
21 #include <linux/mount.h>
22 #include <linux/writeback.h>
23 #include <linux/falloc.h>
24 #include <linux/quotaops.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
28 #include <cluster/masklog.h>
36 #include "extent_map.h"
49 #include "refcounttree.h"
50 #include "ocfs2_trace.h"
52 #include "buffer_head_io.h"
54 static int ocfs2_init_file_private(struct inode
*inode
, struct file
*file
)
56 struct ocfs2_file_private
*fp
;
58 fp
= kzalloc(sizeof(struct ocfs2_file_private
), GFP_KERNEL
);
63 mutex_init(&fp
->fp_mutex
);
64 ocfs2_file_lock_res_init(&fp
->fp_flock
, fp
);
65 file
->private_data
= fp
;
70 static void ocfs2_free_file_private(struct inode
*inode
, struct file
*file
)
72 struct ocfs2_file_private
*fp
= file
->private_data
;
73 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
76 ocfs2_simple_drop_lockres(osb
, &fp
->fp_flock
);
77 ocfs2_lock_res_free(&fp
->fp_flock
);
79 file
->private_data
= NULL
;
83 static int ocfs2_file_open(struct inode
*inode
, struct file
*file
)
86 int mode
= file
->f_flags
;
87 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
89 trace_ocfs2_file_open(inode
, file
, file
->f_path
.dentry
,
90 (unsigned long long)oi
->ip_blkno
,
91 file
->f_path
.dentry
->d_name
.len
,
92 file
->f_path
.dentry
->d_name
.name
, mode
);
94 if (file
->f_mode
& FMODE_WRITE
) {
95 status
= dquot_initialize(inode
);
100 spin_lock(&oi
->ip_lock
);
102 /* Check that the inode hasn't been wiped from disk by another
103 * node. If it hasn't then we're safe as long as we hold the
104 * spin lock until our increment of open count. */
105 if (oi
->ip_flags
& OCFS2_INODE_DELETED
) {
106 spin_unlock(&oi
->ip_lock
);
113 oi
->ip_flags
|= OCFS2_INODE_OPEN_DIRECT
;
116 spin_unlock(&oi
->ip_lock
);
118 status
= ocfs2_init_file_private(inode
, file
);
121 * We want to set open count back if we're failing the
124 spin_lock(&oi
->ip_lock
);
126 spin_unlock(&oi
->ip_lock
);
129 file
->f_mode
|= FMODE_NOWAIT
;
135 static int ocfs2_file_release(struct inode
*inode
, struct file
*file
)
137 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
139 spin_lock(&oi
->ip_lock
);
140 if (!--oi
->ip_open_count
)
141 oi
->ip_flags
&= ~OCFS2_INODE_OPEN_DIRECT
;
143 trace_ocfs2_file_release(inode
, file
, file
->f_path
.dentry
,
145 file
->f_path
.dentry
->d_name
.len
,
146 file
->f_path
.dentry
->d_name
.name
,
148 spin_unlock(&oi
->ip_lock
);
150 ocfs2_free_file_private(inode
, file
);
155 static int ocfs2_dir_open(struct inode
*inode
, struct file
*file
)
157 return ocfs2_init_file_private(inode
, file
);
160 static int ocfs2_dir_release(struct inode
*inode
, struct file
*file
)
162 ocfs2_free_file_private(inode
, file
);
166 static int ocfs2_sync_file(struct file
*file
, loff_t start
, loff_t end
,
170 struct inode
*inode
= file
->f_mapping
->host
;
171 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
172 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
173 journal_t
*journal
= osb
->journal
->j_journal
;
176 bool needs_barrier
= false;
178 trace_ocfs2_sync_file(inode
, file
, file
->f_path
.dentry
,
180 file
->f_path
.dentry
->d_name
.len
,
181 file
->f_path
.dentry
->d_name
.name
,
182 (unsigned long long)datasync
);
184 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
187 err
= file_write_and_wait_range(file
, start
, end
);
191 commit_tid
= datasync
? oi
->i_datasync_tid
: oi
->i_sync_tid
;
192 if (journal
->j_flags
& JBD2_BARRIER
&&
193 !jbd2_trans_will_send_data_barrier(journal
, commit_tid
))
194 needs_barrier
= true;
195 err
= jbd2_complete_transaction(journal
, commit_tid
);
197 ret
= blkdev_issue_flush(inode
->i_sb
->s_bdev
, GFP_KERNEL
, NULL
);
205 return (err
< 0) ? -EIO
: 0;
208 int ocfs2_should_update_atime(struct inode
*inode
,
209 struct vfsmount
*vfsmnt
)
211 struct timespec64 now
;
212 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
214 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
217 if ((inode
->i_flags
& S_NOATIME
) ||
218 ((inode
->i_sb
->s_flags
& SB_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
222 * We can be called with no vfsmnt structure - NFSD will
225 * Note that our action here is different than touch_atime() -
226 * if we can't tell whether this is a noatime mount, then we
227 * don't know whether to trust the value of s_atime_quantum.
232 if ((vfsmnt
->mnt_flags
& MNT_NOATIME
) ||
233 ((vfsmnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
236 if (vfsmnt
->mnt_flags
& MNT_RELATIME
) {
237 if ((timespec64_compare(&inode
->i_atime
, &inode
->i_mtime
) <= 0) ||
238 (timespec64_compare(&inode
->i_atime
, &inode
->i_ctime
) <= 0))
244 now
= current_time(inode
);
245 if ((now
.tv_sec
- inode
->i_atime
.tv_sec
<= osb
->s_atime_quantum
))
251 int ocfs2_update_inode_atime(struct inode
*inode
,
252 struct buffer_head
*bh
)
255 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
257 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*) bh
->b_data
;
259 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
260 if (IS_ERR(handle
)) {
261 ret
= PTR_ERR(handle
);
266 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
267 OCFS2_JOURNAL_ACCESS_WRITE
);
274 * Don't use ocfs2_mark_inode_dirty() here as we don't always
275 * have i_mutex to guard against concurrent changes to other
278 inode
->i_atime
= current_time(inode
);
279 di
->i_atime
= cpu_to_le64(inode
->i_atime
.tv_sec
);
280 di
->i_atime_nsec
= cpu_to_le32(inode
->i_atime
.tv_nsec
);
281 ocfs2_update_inode_fsync_trans(handle
, inode
, 0);
282 ocfs2_journal_dirty(handle
, bh
);
285 ocfs2_commit_trans(osb
, handle
);
290 int ocfs2_set_inode_size(handle_t
*handle
,
292 struct buffer_head
*fe_bh
,
297 i_size_write(inode
, new_i_size
);
298 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
299 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
301 status
= ocfs2_mark_inode_dirty(handle
, inode
, fe_bh
);
311 int ocfs2_simple_size_update(struct inode
*inode
,
312 struct buffer_head
*di_bh
,
316 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
317 handle_t
*handle
= NULL
;
319 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
320 if (IS_ERR(handle
)) {
321 ret
= PTR_ERR(handle
);
326 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
,
331 ocfs2_update_inode_fsync_trans(handle
, inode
, 0);
332 ocfs2_commit_trans(osb
, handle
);
337 static int ocfs2_cow_file_pos(struct inode
*inode
,
338 struct buffer_head
*fe_bh
,
342 u32 phys
, cpos
= offset
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
343 unsigned int num_clusters
= 0;
344 unsigned int ext_flags
= 0;
347 * If the new offset is aligned to the range of the cluster, there is
348 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
351 if ((offset
& (OCFS2_SB(inode
->i_sb
)->s_clustersize
- 1)) == 0)
354 status
= ocfs2_get_clusters(inode
, cpos
, &phys
,
355 &num_clusters
, &ext_flags
);
361 if (!(ext_flags
& OCFS2_EXT_REFCOUNTED
))
364 return ocfs2_refcount_cow(inode
, fe_bh
, cpos
, 1, cpos
+1);
370 static int ocfs2_orphan_for_truncate(struct ocfs2_super
*osb
,
372 struct buffer_head
*fe_bh
,
377 struct ocfs2_dinode
*di
;
381 * We need to CoW the cluster contains the offset if it is reflinked
382 * since we will call ocfs2_zero_range_for_truncate later which will
383 * write "0" from offset to the end of the cluster.
385 status
= ocfs2_cow_file_pos(inode
, fe_bh
, new_i_size
);
391 /* TODO: This needs to actually orphan the inode in this
394 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
395 if (IS_ERR(handle
)) {
396 status
= PTR_ERR(handle
);
401 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), fe_bh
,
402 OCFS2_JOURNAL_ACCESS_WRITE
);
409 * Do this before setting i_size.
411 cluster_bytes
= ocfs2_align_bytes_to_clusters(inode
->i_sb
, new_i_size
);
412 status
= ocfs2_zero_range_for_truncate(inode
, handle
, new_i_size
,
419 i_size_write(inode
, new_i_size
);
420 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
422 di
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
423 di
->i_size
= cpu_to_le64(new_i_size
);
424 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
425 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
426 ocfs2_update_inode_fsync_trans(handle
, inode
, 0);
428 ocfs2_journal_dirty(handle
, fe_bh
);
431 ocfs2_commit_trans(osb
, handle
);
436 int ocfs2_truncate_file(struct inode
*inode
,
437 struct buffer_head
*di_bh
,
441 struct ocfs2_dinode
*fe
= NULL
;
442 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
444 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
445 * already validated it */
446 fe
= (struct ocfs2_dinode
*) di_bh
->b_data
;
448 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
449 (unsigned long long)le64_to_cpu(fe
->i_size
),
450 (unsigned long long)new_i_size
);
452 mlog_bug_on_msg(le64_to_cpu(fe
->i_size
) != i_size_read(inode
),
453 "Inode %llu, inode i_size = %lld != di "
454 "i_size = %llu, i_flags = 0x%x\n",
455 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
457 (unsigned long long)le64_to_cpu(fe
->i_size
),
458 le32_to_cpu(fe
->i_flags
));
460 if (new_i_size
> le64_to_cpu(fe
->i_size
)) {
461 trace_ocfs2_truncate_file_error(
462 (unsigned long long)le64_to_cpu(fe
->i_size
),
463 (unsigned long long)new_i_size
);
469 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
471 ocfs2_resv_discard(&osb
->osb_la_resmap
,
472 &OCFS2_I(inode
)->ip_la_data_resv
);
475 * The inode lock forced other nodes to sync and drop their
476 * pages, which (correctly) happens even if we have a truncate
477 * without allocation change - ocfs2 cluster sizes can be much
478 * greater than page size, so we have to truncate them
481 unmap_mapping_range(inode
->i_mapping
, new_i_size
+ PAGE_SIZE
- 1, 0, 1);
482 truncate_inode_pages(inode
->i_mapping
, new_i_size
);
484 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
485 status
= ocfs2_truncate_inline(inode
, di_bh
, new_i_size
,
486 i_size_read(inode
), 1);
490 goto bail_unlock_sem
;
493 /* alright, we're going to need to do a full blown alloc size
494 * change. Orphan the inode so that recovery can complete the
495 * truncate if necessary. This does the task of marking
497 status
= ocfs2_orphan_for_truncate(osb
, inode
, di_bh
, new_i_size
);
500 goto bail_unlock_sem
;
503 status
= ocfs2_commit_truncate(osb
, inode
, di_bh
);
506 goto bail_unlock_sem
;
509 /* TODO: orphan dir cleanup here. */
511 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
514 if (!status
&& OCFS2_I(inode
)->ip_clusters
== 0)
515 status
= ocfs2_try_remove_refcount_tree(inode
, di_bh
);
521 * extend file allocation only here.
522 * we'll update all the disk stuff, and oip->alloc_size
524 * expect stuff to be locked, a transaction started and enough data /
525 * metadata reservations in the contexts.
527 * Will return -EAGAIN, and a reason if a restart is needed.
528 * If passed in, *reason will always be set, even in error.
530 int ocfs2_add_inode_data(struct ocfs2_super
*osb
,
535 struct buffer_head
*fe_bh
,
537 struct ocfs2_alloc_context
*data_ac
,
538 struct ocfs2_alloc_context
*meta_ac
,
539 enum ocfs2_alloc_restarted
*reason_ret
)
542 struct ocfs2_extent_tree et
;
544 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), fe_bh
);
545 ret
= ocfs2_add_clusters_in_btree(handle
, &et
, logical_offset
,
546 clusters_to_add
, mark_unwritten
,
547 data_ac
, meta_ac
, reason_ret
);
552 static int ocfs2_extend_allocation(struct inode
*inode
, u32 logical_start
,
553 u32 clusters_to_add
, int mark_unwritten
)
556 int restart_func
= 0;
559 struct buffer_head
*bh
= NULL
;
560 struct ocfs2_dinode
*fe
= NULL
;
561 handle_t
*handle
= NULL
;
562 struct ocfs2_alloc_context
*data_ac
= NULL
;
563 struct ocfs2_alloc_context
*meta_ac
= NULL
;
564 enum ocfs2_alloc_restarted why
= RESTART_NONE
;
565 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
566 struct ocfs2_extent_tree et
;
570 * Unwritten extent only exists for file systems which
573 BUG_ON(mark_unwritten
&& !ocfs2_sparse_alloc(osb
));
575 status
= ocfs2_read_inode_block(inode
, &bh
);
580 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
583 BUG_ON(le32_to_cpu(fe
->i_clusters
) != OCFS2_I(inode
)->ip_clusters
);
585 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), bh
);
586 status
= ocfs2_lock_allocators(inode
, &et
, clusters_to_add
, 0,
593 credits
= ocfs2_calc_extend_credits(osb
->sb
, &fe
->id2
.i_list
);
594 handle
= ocfs2_start_trans(osb
, credits
);
595 if (IS_ERR(handle
)) {
596 status
= PTR_ERR(handle
);
602 restarted_transaction
:
603 trace_ocfs2_extend_allocation(
604 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
605 (unsigned long long)i_size_read(inode
),
606 le32_to_cpu(fe
->i_clusters
), clusters_to_add
,
609 status
= dquot_alloc_space_nodirty(inode
,
610 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
615 /* reserve a write to the file entry early on - that we if we
616 * run out of credits in the allocation path, we can still
618 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
619 OCFS2_JOURNAL_ACCESS_WRITE
);
625 prev_clusters
= OCFS2_I(inode
)->ip_clusters
;
627 status
= ocfs2_add_inode_data(osb
,
637 if ((status
< 0) && (status
!= -EAGAIN
)) {
638 if (status
!= -ENOSPC
)
642 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
643 ocfs2_journal_dirty(handle
, bh
);
645 spin_lock(&OCFS2_I(inode
)->ip_lock
);
646 clusters_to_add
-= (OCFS2_I(inode
)->ip_clusters
- prev_clusters
);
647 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
648 /* Release unused quota reservation */
649 dquot_free_space(inode
,
650 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
653 if (why
!= RESTART_NONE
&& clusters_to_add
) {
654 if (why
== RESTART_META
) {
658 BUG_ON(why
!= RESTART_TRANS
);
660 status
= ocfs2_allocate_extend_trans(handle
, 1);
662 /* handle still has to be committed at
668 goto restarted_transaction
;
672 trace_ocfs2_extend_allocation_end(OCFS2_I(inode
)->ip_blkno
,
673 le32_to_cpu(fe
->i_clusters
),
674 (unsigned long long)le64_to_cpu(fe
->i_size
),
675 OCFS2_I(inode
)->ip_clusters
,
676 (unsigned long long)i_size_read(inode
));
679 if (status
< 0 && did_quota
)
680 dquot_free_space(inode
,
681 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
683 ocfs2_commit_trans(osb
, handle
);
687 ocfs2_free_alloc_context(data_ac
);
691 ocfs2_free_alloc_context(meta_ac
);
694 if ((!status
) && restart_func
) {
705 * While a write will already be ordering the data, a truncate will not.
706 * Thus, we need to explicitly order the zeroed pages.
708 static handle_t
*ocfs2_zero_start_ordered_transaction(struct inode
*inode
,
709 struct buffer_head
*di_bh
,
713 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
714 handle_t
*handle
= NULL
;
717 if (!ocfs2_should_order_data(inode
))
720 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
721 if (IS_ERR(handle
)) {
727 ret
= ocfs2_jbd2_inode_add_write(handle
, inode
, start_byte
, length
);
733 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
734 OCFS2_JOURNAL_ACCESS_WRITE
);
737 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
742 ocfs2_commit_trans(osb
, handle
);
743 handle
= ERR_PTR(ret
);
748 /* Some parts of this taken from generic_cont_expand, which turned out
749 * to be too fragile to do exactly what we need without us having to
750 * worry about recursive locking in ->write_begin() and ->write_end(). */
751 static int ocfs2_write_zero_page(struct inode
*inode
, u64 abs_from
,
752 u64 abs_to
, struct buffer_head
*di_bh
)
754 struct address_space
*mapping
= inode
->i_mapping
;
756 unsigned long index
= abs_from
>> PAGE_SHIFT
;
759 unsigned zero_from
, zero_to
, block_start
, block_end
;
760 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
762 BUG_ON(abs_from
>= abs_to
);
763 BUG_ON(abs_to
> (((u64
)index
+ 1) << PAGE_SHIFT
));
764 BUG_ON(abs_from
& (inode
->i_blkbits
- 1));
766 handle
= ocfs2_zero_start_ordered_transaction(inode
, di_bh
,
769 if (IS_ERR(handle
)) {
770 ret
= PTR_ERR(handle
);
774 page
= find_or_create_page(mapping
, index
, GFP_NOFS
);
778 goto out_commit_trans
;
781 /* Get the offsets within the page that we want to zero */
782 zero_from
= abs_from
& (PAGE_SIZE
- 1);
783 zero_to
= abs_to
& (PAGE_SIZE
- 1);
787 trace_ocfs2_write_zero_page(
788 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
789 (unsigned long long)abs_from
,
790 (unsigned long long)abs_to
,
791 index
, zero_from
, zero_to
);
793 /* We know that zero_from is block aligned */
794 for (block_start
= zero_from
; block_start
< zero_to
;
795 block_start
= block_end
) {
796 block_end
= block_start
+ i_blocksize(inode
);
799 * block_start is block-aligned. Bump it by one to force
800 * __block_write_begin and block_commit_write to zero the
803 ret
= __block_write_begin(page
, block_start
+ 1, 0,
811 /* must not update i_size! */
812 ret
= block_commit_write(page
, block_start
+ 1,
821 * fs-writeback will release the dirty pages without page lock
822 * whose offset are over inode size, the release happens at
823 * block_write_full_page().
825 i_size_write(inode
, abs_to
);
826 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
827 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
828 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
829 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
830 di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
831 di
->i_mtime_nsec
= di
->i_ctime_nsec
;
833 ocfs2_journal_dirty(handle
, di_bh
);
834 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
842 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
848 * Find the next range to zero. We do this in terms of bytes because
849 * that's what ocfs2_zero_extend() wants, and it is dealing with the
850 * pagecache. We may return multiple extents.
852 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
853 * needs to be zeroed. range_start and range_end return the next zeroing
854 * range. A subsequent call should pass the previous range_end as its
855 * zero_start. If range_end is 0, there's nothing to do.
857 * Unwritten extents are skipped over. Refcounted extents are CoWd.
859 static int ocfs2_zero_extend_get_range(struct inode
*inode
,
860 struct buffer_head
*di_bh
,
861 u64 zero_start
, u64 zero_end
,
862 u64
*range_start
, u64
*range_end
)
864 int rc
= 0, needs_cow
= 0;
865 u32 p_cpos
, zero_clusters
= 0;
867 zero_start
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
868 u32 last_cpos
= ocfs2_clusters_for_bytes(inode
->i_sb
, zero_end
);
869 unsigned int num_clusters
= 0;
870 unsigned int ext_flags
= 0;
872 while (zero_cpos
< last_cpos
) {
873 rc
= ocfs2_get_clusters(inode
, zero_cpos
, &p_cpos
,
874 &num_clusters
, &ext_flags
);
880 if (p_cpos
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
)) {
881 zero_clusters
= num_clusters
;
882 if (ext_flags
& OCFS2_EXT_REFCOUNTED
)
887 zero_cpos
+= num_clusters
;
889 if (!zero_clusters
) {
894 while ((zero_cpos
+ zero_clusters
) < last_cpos
) {
895 rc
= ocfs2_get_clusters(inode
, zero_cpos
+ zero_clusters
,
896 &p_cpos
, &num_clusters
,
903 if (!p_cpos
|| (ext_flags
& OCFS2_EXT_UNWRITTEN
))
905 if (ext_flags
& OCFS2_EXT_REFCOUNTED
)
907 zero_clusters
+= num_clusters
;
909 if ((zero_cpos
+ zero_clusters
) > last_cpos
)
910 zero_clusters
= last_cpos
- zero_cpos
;
913 rc
= ocfs2_refcount_cow(inode
, di_bh
, zero_cpos
,
914 zero_clusters
, UINT_MAX
);
921 *range_start
= ocfs2_clusters_to_bytes(inode
->i_sb
, zero_cpos
);
922 *range_end
= ocfs2_clusters_to_bytes(inode
->i_sb
,
923 zero_cpos
+ zero_clusters
);
930 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
931 * has made sure that the entire range needs zeroing.
933 static int ocfs2_zero_extend_range(struct inode
*inode
, u64 range_start
,
934 u64 range_end
, struct buffer_head
*di_bh
)
938 u64 zero_pos
= range_start
;
940 trace_ocfs2_zero_extend_range(
941 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
942 (unsigned long long)range_start
,
943 (unsigned long long)range_end
);
944 BUG_ON(range_start
>= range_end
);
946 while (zero_pos
< range_end
) {
947 next_pos
= (zero_pos
& PAGE_MASK
) + PAGE_SIZE
;
948 if (next_pos
> range_end
)
949 next_pos
= range_end
;
950 rc
= ocfs2_write_zero_page(inode
, zero_pos
, next_pos
, di_bh
);
958 * Very large extends have the potential to lock up
959 * the cpu for extended periods of time.
967 int ocfs2_zero_extend(struct inode
*inode
, struct buffer_head
*di_bh
,
971 u64 zero_start
, range_start
= 0, range_end
= 0;
972 struct super_block
*sb
= inode
->i_sb
;
974 zero_start
= ocfs2_align_bytes_to_blocks(sb
, i_size_read(inode
));
975 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
976 (unsigned long long)zero_start
,
977 (unsigned long long)i_size_read(inode
));
978 while (zero_start
< zero_to_size
) {
979 ret
= ocfs2_zero_extend_get_range(inode
, di_bh
, zero_start
,
990 if (range_start
< zero_start
)
991 range_start
= zero_start
;
992 if (range_end
> zero_to_size
)
993 range_end
= zero_to_size
;
995 ret
= ocfs2_zero_extend_range(inode
, range_start
,
1001 zero_start
= range_end
;
1007 int ocfs2_extend_no_holes(struct inode
*inode
, struct buffer_head
*di_bh
,
1008 u64 new_i_size
, u64 zero_to
)
1011 u32 clusters_to_add
;
1012 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1015 * Only quota files call this without a bh, and they can't be
1018 BUG_ON(!di_bh
&& ocfs2_is_refcount_inode(inode
));
1019 BUG_ON(!di_bh
&& !(oi
->ip_flags
& OCFS2_INODE_SYSTEM_FILE
));
1021 clusters_to_add
= ocfs2_clusters_for_bytes(inode
->i_sb
, new_i_size
);
1022 if (clusters_to_add
< oi
->ip_clusters
)
1023 clusters_to_add
= 0;
1025 clusters_to_add
-= oi
->ip_clusters
;
1027 if (clusters_to_add
) {
1028 ret
= ocfs2_extend_allocation(inode
, oi
->ip_clusters
,
1029 clusters_to_add
, 0);
1037 * Call this even if we don't add any clusters to the tree. We
1038 * still need to zero the area between the old i_size and the
1041 ret
= ocfs2_zero_extend(inode
, di_bh
, zero_to
);
1049 static int ocfs2_extend_file(struct inode
*inode
,
1050 struct buffer_head
*di_bh
,
1054 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1058 /* setattr sometimes calls us like this. */
1059 if (new_i_size
== 0)
1062 if (i_size_read(inode
) == new_i_size
)
1064 BUG_ON(new_i_size
< i_size_read(inode
));
1067 * The alloc sem blocks people in read/write from reading our
1068 * allocation until we're done changing it. We depend on
1069 * i_mutex to block other extend/truncate calls while we're
1070 * here. We even have to hold it for sparse files because there
1071 * might be some tail zeroing.
1073 down_write(&oi
->ip_alloc_sem
);
1075 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1077 * We can optimize small extends by keeping the inodes
1080 if (ocfs2_size_fits_inline_data(di_bh
, new_i_size
)) {
1081 up_write(&oi
->ip_alloc_sem
);
1082 goto out_update_size
;
1085 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
1087 up_write(&oi
->ip_alloc_sem
);
1093 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
1094 ret
= ocfs2_zero_extend(inode
, di_bh
, new_i_size
);
1096 ret
= ocfs2_extend_no_holes(inode
, di_bh
, new_i_size
,
1099 up_write(&oi
->ip_alloc_sem
);
1107 ret
= ocfs2_simple_size_update(inode
, di_bh
, new_i_size
);
1115 int ocfs2_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1117 int status
= 0, size_change
;
1118 int inode_locked
= 0;
1119 struct inode
*inode
= d_inode(dentry
);
1120 struct super_block
*sb
= inode
->i_sb
;
1121 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
1122 struct buffer_head
*bh
= NULL
;
1123 handle_t
*handle
= NULL
;
1124 struct dquot
*transfer_to
[MAXQUOTAS
] = { };
1127 struct ocfs2_lock_holder oh
;
1129 trace_ocfs2_setattr(inode
, dentry
,
1130 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1131 dentry
->d_name
.len
, dentry
->d_name
.name
,
1132 attr
->ia_valid
, attr
->ia_mode
,
1133 from_kuid(&init_user_ns
, attr
->ia_uid
),
1134 from_kgid(&init_user_ns
, attr
->ia_gid
));
1136 /* ensuring we don't even attempt to truncate a symlink */
1137 if (S_ISLNK(inode
->i_mode
))
1138 attr
->ia_valid
&= ~ATTR_SIZE
;
1140 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1141 | ATTR_GID | ATTR_UID | ATTR_MODE)
1142 if (!(attr
->ia_valid
& OCFS2_VALID_ATTRS
))
1145 status
= setattr_prepare(dentry
, attr
);
1149 if (is_quota_modification(inode
, attr
)) {
1150 status
= dquot_initialize(inode
);
1154 size_change
= S_ISREG(inode
->i_mode
) && attr
->ia_valid
& ATTR_SIZE
;
1157 * Here we should wait dio to finish before inode lock
1158 * to avoid a deadlock between ocfs2_setattr() and
1159 * ocfs2_dio_end_io_write()
1161 inode_dio_wait(inode
);
1163 status
= ocfs2_rw_lock(inode
, 1);
1170 had_lock
= ocfs2_inode_lock_tracker(inode
, &bh
, 1, &oh
);
1173 goto bail_unlock_rw
;
1174 } else if (had_lock
) {
1176 * As far as we know, ocfs2_setattr() could only be the first
1177 * VFS entry point in the call chain of recursive cluster
1185 * ocfs2_iop_get_acl()
1187 * But, we're not 100% sure if it's always true, because the
1188 * ordering of the VFS entry points in the call chain is out
1189 * of our control. So, we'd better dump the stack here to
1190 * catch the other cases of recursive locking.
1192 mlog(ML_ERROR
, "Another case of recursive locking:\n");
1198 status
= inode_newsize_ok(inode
, attr
->ia_size
);
1202 if (i_size_read(inode
) >= attr
->ia_size
) {
1203 if (ocfs2_should_order_data(inode
)) {
1204 status
= ocfs2_begin_ordered_truncate(inode
,
1209 status
= ocfs2_truncate_file(inode
, bh
, attr
->ia_size
);
1211 status
= ocfs2_extend_file(inode
, bh
, attr
->ia_size
);
1213 if (status
!= -ENOSPC
)
1220 if ((attr
->ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
1221 (attr
->ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
1223 * Gather pointers to quota structures so that allocation /
1224 * freeing of quota structures happens here and not inside
1225 * dquot_transfer() where we have problems with lock ordering
1227 if (attr
->ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)
1228 && OCFS2_HAS_RO_COMPAT_FEATURE(sb
,
1229 OCFS2_FEATURE_RO_COMPAT_USRQUOTA
)) {
1230 transfer_to
[USRQUOTA
] = dqget(sb
, make_kqid_uid(attr
->ia_uid
));
1231 if (IS_ERR(transfer_to
[USRQUOTA
])) {
1232 status
= PTR_ERR(transfer_to
[USRQUOTA
]);
1233 transfer_to
[USRQUOTA
] = NULL
;
1237 if (attr
->ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
)
1238 && OCFS2_HAS_RO_COMPAT_FEATURE(sb
,
1239 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA
)) {
1240 transfer_to
[GRPQUOTA
] = dqget(sb
, make_kqid_gid(attr
->ia_gid
));
1241 if (IS_ERR(transfer_to
[GRPQUOTA
])) {
1242 status
= PTR_ERR(transfer_to
[GRPQUOTA
]);
1243 transfer_to
[GRPQUOTA
] = NULL
;
1247 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
+
1248 2 * ocfs2_quota_trans_credits(sb
));
1249 if (IS_ERR(handle
)) {
1250 status
= PTR_ERR(handle
);
1254 status
= __dquot_transfer(inode
, transfer_to
);
1258 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1259 if (IS_ERR(handle
)) {
1260 status
= PTR_ERR(handle
);
1266 setattr_copy(inode
, attr
);
1267 mark_inode_dirty(inode
);
1269 status
= ocfs2_mark_inode_dirty(handle
, inode
, bh
);
1274 ocfs2_commit_trans(osb
, handle
);
1276 if (status
&& inode_locked
) {
1277 ocfs2_inode_unlock_tracker(inode
, 1, &oh
, had_lock
);
1282 ocfs2_rw_unlock(inode
, 1);
1285 /* Release quota pointers in case we acquired them */
1286 for (qtype
= 0; qtype
< OCFS2_MAXQUOTAS
; qtype
++)
1287 dqput(transfer_to
[qtype
]);
1289 if (!status
&& attr
->ia_valid
& ATTR_MODE
) {
1290 status
= ocfs2_acl_chmod(inode
, bh
);
1295 ocfs2_inode_unlock_tracker(inode
, 1, &oh
, had_lock
);
1301 int ocfs2_getattr(const struct path
*path
, struct kstat
*stat
,
1302 u32 request_mask
, unsigned int flags
)
1304 struct inode
*inode
= d_inode(path
->dentry
);
1305 struct super_block
*sb
= path
->dentry
->d_sb
;
1306 struct ocfs2_super
*osb
= sb
->s_fs_info
;
1309 err
= ocfs2_inode_revalidate(path
->dentry
);
1316 generic_fillattr(inode
, stat
);
1318 * If there is inline data in the inode, the inode will normally not
1319 * have data blocks allocated (it may have an external xattr block).
1320 * Report at least one sector for such files, so tools like tar, rsync,
1321 * others don't incorrectly think the file is completely sparse.
1323 if (unlikely(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
1324 stat
->blocks
+= (stat
->size
+ 511)>>9;
1326 /* We set the blksize from the cluster size for performance */
1327 stat
->blksize
= osb
->s_clustersize
;
1333 int ocfs2_permission(struct inode
*inode
, int mask
)
1336 struct ocfs2_lock_holder oh
;
1338 if (mask
& MAY_NOT_BLOCK
)
1341 had_lock
= ocfs2_inode_lock_tracker(inode
, NULL
, 0, &oh
);
1345 } else if (had_lock
) {
1346 /* See comments in ocfs2_setattr() for details.
1347 * The call chain of this case could be:
1350 * inode_permission()
1351 * ocfs2_permission()
1352 * ocfs2_iop_get_acl()
1354 mlog(ML_ERROR
, "Another case of recursive locking:\n");
1358 ret
= generic_permission(inode
, mask
);
1360 ocfs2_inode_unlock_tracker(inode
, 0, &oh
, had_lock
);
1365 static int __ocfs2_write_remove_suid(struct inode
*inode
,
1366 struct buffer_head
*bh
)
1370 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1371 struct ocfs2_dinode
*di
;
1373 trace_ocfs2_write_remove_suid(
1374 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1377 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1378 if (IS_ERR(handle
)) {
1379 ret
= PTR_ERR(handle
);
1384 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
1385 OCFS2_JOURNAL_ACCESS_WRITE
);
1391 inode
->i_mode
&= ~S_ISUID
;
1392 if ((inode
->i_mode
& S_ISGID
) && (inode
->i_mode
& S_IXGRP
))
1393 inode
->i_mode
&= ~S_ISGID
;
1395 di
= (struct ocfs2_dinode
*) bh
->b_data
;
1396 di
->i_mode
= cpu_to_le16(inode
->i_mode
);
1397 ocfs2_update_inode_fsync_trans(handle
, inode
, 0);
1399 ocfs2_journal_dirty(handle
, bh
);
1402 ocfs2_commit_trans(osb
, handle
);
1407 static int ocfs2_write_remove_suid(struct inode
*inode
)
1410 struct buffer_head
*bh
= NULL
;
1412 ret
= ocfs2_read_inode_block(inode
, &bh
);
1418 ret
= __ocfs2_write_remove_suid(inode
, bh
);
1425 * Allocate enough extents to cover the region starting at byte offset
1426 * start for len bytes. Existing extents are skipped, any extents
1427 * added are marked as "unwritten".
1429 static int ocfs2_allocate_unwritten_extents(struct inode
*inode
,
1433 u32 cpos
, phys_cpos
, clusters
, alloc_size
;
1434 u64 end
= start
+ len
;
1435 struct buffer_head
*di_bh
= NULL
;
1437 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1438 ret
= ocfs2_read_inode_block(inode
, &di_bh
);
1445 * Nothing to do if the requested reservation range
1446 * fits within the inode.
1448 if (ocfs2_size_fits_inline_data(di_bh
, end
))
1451 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
1459 * We consider both start and len to be inclusive.
1461 cpos
= start
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
1462 clusters
= ocfs2_clusters_for_bytes(inode
->i_sb
, start
+ len
);
1466 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
,
1474 * Hole or existing extent len can be arbitrary, so
1475 * cap it to our own allocation request.
1477 if (alloc_size
> clusters
)
1478 alloc_size
= clusters
;
1482 * We already have an allocation at this
1483 * region so we can safely skip it.
1488 ret
= ocfs2_extend_allocation(inode
, cpos
, alloc_size
, 1);
1497 clusters
-= alloc_size
;
1508 * Truncate a byte range, avoiding pages within partial clusters. This
1509 * preserves those pages for the zeroing code to write to.
1511 static void ocfs2_truncate_cluster_pages(struct inode
*inode
, u64 byte_start
,
1514 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1516 struct address_space
*mapping
= inode
->i_mapping
;
1518 start
= (loff_t
)ocfs2_align_bytes_to_clusters(inode
->i_sb
, byte_start
);
1519 end
= byte_start
+ byte_len
;
1520 end
= end
& ~(osb
->s_clustersize
- 1);
1523 unmap_mapping_range(mapping
, start
, end
- start
, 0);
1524 truncate_inode_pages_range(mapping
, start
, end
- 1);
1528 static int ocfs2_zero_partial_clusters(struct inode
*inode
,
1533 u64 end
= start
+ len
;
1534 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1535 unsigned int csize
= osb
->s_clustersize
;
1539 * The "start" and "end" values are NOT necessarily part of
1540 * the range whose allocation is being deleted. Rather, this
1541 * is what the user passed in with the request. We must zero
1542 * partial clusters here. There's no need to worry about
1543 * physical allocation - the zeroing code knows to skip holes.
1545 trace_ocfs2_zero_partial_clusters(
1546 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1547 (unsigned long long)start
, (unsigned long long)end
);
1550 * If both edges are on a cluster boundary then there's no
1551 * zeroing required as the region is part of the allocation to
1554 if ((start
& (csize
- 1)) == 0 && (end
& (csize
- 1)) == 0)
1557 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1558 if (IS_ERR(handle
)) {
1559 ret
= PTR_ERR(handle
);
1565 * If start is on a cluster boundary and end is somewhere in another
1566 * cluster, we have not COWed the cluster starting at start, unless
1567 * end is also within the same cluster. So, in this case, we skip this
1568 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1571 if ((start
& (csize
- 1)) != 0) {
1573 * We want to get the byte offset of the end of the 1st
1576 tmpend
= (u64
)osb
->s_clustersize
+
1577 (start
& ~(osb
->s_clustersize
- 1));
1581 trace_ocfs2_zero_partial_clusters_range1(
1582 (unsigned long long)start
,
1583 (unsigned long long)tmpend
);
1585 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
,
1593 * This may make start and end equal, but the zeroing
1594 * code will skip any work in that case so there's no
1595 * need to catch it up here.
1597 start
= end
& ~(osb
->s_clustersize
- 1);
1599 trace_ocfs2_zero_partial_clusters_range2(
1600 (unsigned long long)start
, (unsigned long long)end
);
1602 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, end
);
1606 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
1608 ocfs2_commit_trans(osb
, handle
);
1613 static int ocfs2_find_rec(struct ocfs2_extent_list
*el
, u32 pos
)
1616 struct ocfs2_extent_rec
*rec
= NULL
;
1618 for (i
= le16_to_cpu(el
->l_next_free_rec
) - 1; i
>= 0; i
--) {
1620 rec
= &el
->l_recs
[i
];
1622 if (le32_to_cpu(rec
->e_cpos
) < pos
)
1630 * Helper to calculate the punching pos and length in one run, we handle the
1631 * following three cases in order:
1633 * - remove the entire record
1634 * - remove a partial record
1635 * - no record needs to be removed (hole-punching completed)
1637 static void ocfs2_calc_trunc_pos(struct inode
*inode
,
1638 struct ocfs2_extent_list
*el
,
1639 struct ocfs2_extent_rec
*rec
,
1640 u32 trunc_start
, u32
*trunc_cpos
,
1641 u32
*trunc_len
, u32
*trunc_end
,
1642 u64
*blkno
, int *done
)
1647 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
1649 if (le32_to_cpu(rec
->e_cpos
) >= trunc_start
) {
1651 * remove an entire extent record.
1653 *trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
1655 * Skip holes if any.
1657 if (range
< *trunc_end
)
1659 *trunc_len
= *trunc_end
- le32_to_cpu(rec
->e_cpos
);
1660 *blkno
= le64_to_cpu(rec
->e_blkno
);
1661 *trunc_end
= le32_to_cpu(rec
->e_cpos
);
1662 } else if (range
> trunc_start
) {
1664 * remove a partial extent record, which means we're
1665 * removing the last extent record.
1667 *trunc_cpos
= trunc_start
;
1671 if (range
< *trunc_end
)
1673 *trunc_len
= *trunc_end
- trunc_start
;
1674 coff
= trunc_start
- le32_to_cpu(rec
->e_cpos
);
1675 *blkno
= le64_to_cpu(rec
->e_blkno
) +
1676 ocfs2_clusters_to_blocks(inode
->i_sb
, coff
);
1677 *trunc_end
= trunc_start
;
1680 * It may have two following possibilities:
1682 * - last record has been removed
1683 * - trunc_start was within a hole
1685 * both two cases mean the completion of hole punching.
1693 int ocfs2_remove_inode_range(struct inode
*inode
,
1694 struct buffer_head
*di_bh
, u64 byte_start
,
1697 int ret
= 0, flags
= 0, done
= 0, i
;
1698 u32 trunc_start
, trunc_len
, trunc_end
, trunc_cpos
, phys_cpos
;
1700 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1701 struct ocfs2_cached_dealloc_ctxt dealloc
;
1702 struct address_space
*mapping
= inode
->i_mapping
;
1703 struct ocfs2_extent_tree et
;
1704 struct ocfs2_path
*path
= NULL
;
1705 struct ocfs2_extent_list
*el
= NULL
;
1706 struct ocfs2_extent_rec
*rec
= NULL
;
1707 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1708 u64 blkno
, refcount_loc
= le64_to_cpu(di
->i_refcount_loc
);
1710 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
1711 ocfs2_init_dealloc_ctxt(&dealloc
);
1713 trace_ocfs2_remove_inode_range(
1714 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1715 (unsigned long long)byte_start
,
1716 (unsigned long long)byte_len
);
1721 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1722 ret
= ocfs2_truncate_inline(inode
, di_bh
, byte_start
,
1723 byte_start
+ byte_len
, 0);
1729 * There's no need to get fancy with the page cache
1730 * truncate of an inline-data inode. We're talking
1731 * about less than a page here, which will be cached
1732 * in the dinode buffer anyway.
1734 unmap_mapping_range(mapping
, 0, 0, 0);
1735 truncate_inode_pages(mapping
, 0);
1740 * For reflinks, we may need to CoW 2 clusters which might be
1741 * partially zero'd later, if hole's start and end offset were
1742 * within one cluster(means is not exactly aligned to clustersize).
1745 if (ocfs2_is_refcount_inode(inode
)) {
1746 ret
= ocfs2_cow_file_pos(inode
, di_bh
, byte_start
);
1752 ret
= ocfs2_cow_file_pos(inode
, di_bh
, byte_start
+ byte_len
);
1759 trunc_start
= ocfs2_clusters_for_bytes(osb
->sb
, byte_start
);
1760 trunc_end
= (byte_start
+ byte_len
) >> osb
->s_clustersize_bits
;
1761 cluster_in_el
= trunc_end
;
1763 ret
= ocfs2_zero_partial_clusters(inode
, byte_start
, byte_len
);
1769 path
= ocfs2_new_path_from_et(&et
);
1776 while (trunc_end
> trunc_start
) {
1778 ret
= ocfs2_find_path(INODE_CACHE(inode
), path
,
1785 el
= path_leaf_el(path
);
1787 i
= ocfs2_find_rec(el
, trunc_end
);
1789 * Need to go to previous extent block.
1792 if (path
->p_tree_depth
== 0)
1795 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
,
1804 * We've reached the leftmost extent block,
1805 * it's safe to leave.
1807 if (cluster_in_el
== 0)
1811 * The 'pos' searched for previous extent block is
1812 * always one cluster less than actual trunc_end.
1814 trunc_end
= cluster_in_el
+ 1;
1816 ocfs2_reinit_path(path
, 1);
1821 rec
= &el
->l_recs
[i
];
1823 ocfs2_calc_trunc_pos(inode
, el
, rec
, trunc_start
, &trunc_cpos
,
1824 &trunc_len
, &trunc_end
, &blkno
, &done
);
1828 flags
= rec
->e_flags
;
1829 phys_cpos
= ocfs2_blocks_to_clusters(inode
->i_sb
, blkno
);
1831 ret
= ocfs2_remove_btree_range(inode
, &et
, trunc_cpos
,
1832 phys_cpos
, trunc_len
, flags
,
1833 &dealloc
, refcount_loc
, false);
1839 cluster_in_el
= trunc_end
;
1841 ocfs2_reinit_path(path
, 1);
1844 ocfs2_truncate_cluster_pages(inode
, byte_start
, byte_len
);
1847 ocfs2_free_path(path
);
1848 ocfs2_schedule_truncate_log_flush(osb
, 1);
1849 ocfs2_run_deallocs(osb
, &dealloc
);
1855 * Parts of this function taken from xfs_change_file_space()
1857 static int __ocfs2_change_file_space(struct file
*file
, struct inode
*inode
,
1858 loff_t f_pos
, unsigned int cmd
,
1859 struct ocfs2_space_resv
*sr
,
1865 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1866 struct buffer_head
*di_bh
= NULL
;
1868 unsigned long long max_off
= inode
->i_sb
->s_maxbytes
;
1870 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
1876 * This prevents concurrent writes on other nodes
1878 ret
= ocfs2_rw_lock(inode
, 1);
1884 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1890 if (inode
->i_flags
& (S_IMMUTABLE
|S_APPEND
)) {
1892 goto out_inode_unlock
;
1895 switch (sr
->l_whence
) {
1896 case 0: /*SEEK_SET*/
1898 case 1: /*SEEK_CUR*/
1899 sr
->l_start
+= f_pos
;
1901 case 2: /*SEEK_END*/
1902 sr
->l_start
+= i_size_read(inode
);
1906 goto out_inode_unlock
;
1910 llen
= sr
->l_len
> 0 ? sr
->l_len
- 1 : sr
->l_len
;
1913 || sr
->l_start
> max_off
1914 || (sr
->l_start
+ llen
) < 0
1915 || (sr
->l_start
+ llen
) > max_off
) {
1917 goto out_inode_unlock
;
1919 size
= sr
->l_start
+ sr
->l_len
;
1921 if (cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
||
1922 cmd
== OCFS2_IOC_UNRESVSP
|| cmd
== OCFS2_IOC_UNRESVSP64
) {
1923 if (sr
->l_len
<= 0) {
1925 goto out_inode_unlock
;
1929 if (file
&& should_remove_suid(file
->f_path
.dentry
)) {
1930 ret
= __ocfs2_write_remove_suid(inode
, di_bh
);
1933 goto out_inode_unlock
;
1937 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1939 case OCFS2_IOC_RESVSP
:
1940 case OCFS2_IOC_RESVSP64
:
1942 * This takes unsigned offsets, but the signed ones we
1943 * pass have been checked against overflow above.
1945 ret
= ocfs2_allocate_unwritten_extents(inode
, sr
->l_start
,
1948 case OCFS2_IOC_UNRESVSP
:
1949 case OCFS2_IOC_UNRESVSP64
:
1950 ret
= ocfs2_remove_inode_range(inode
, di_bh
, sr
->l_start
,
1956 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1959 goto out_inode_unlock
;
1963 * We update c/mtime for these changes
1965 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1966 if (IS_ERR(handle
)) {
1967 ret
= PTR_ERR(handle
);
1969 goto out_inode_unlock
;
1972 if (change_size
&& i_size_read(inode
) < size
)
1973 i_size_write(inode
, size
);
1975 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
1976 ret
= ocfs2_mark_inode_dirty(handle
, inode
, di_bh
);
1980 if (file
&& (file
->f_flags
& O_SYNC
))
1983 ocfs2_commit_trans(osb
, handle
);
1987 ocfs2_inode_unlock(inode
, 1);
1989 ocfs2_rw_unlock(inode
, 1);
1992 inode_unlock(inode
);
1996 int ocfs2_change_file_space(struct file
*file
, unsigned int cmd
,
1997 struct ocfs2_space_resv
*sr
)
1999 struct inode
*inode
= file_inode(file
);
2000 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2003 if ((cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) &&
2004 !ocfs2_writes_unwritten_extents(osb
))
2006 else if ((cmd
== OCFS2_IOC_UNRESVSP
|| cmd
== OCFS2_IOC_UNRESVSP64
) &&
2007 !ocfs2_sparse_alloc(osb
))
2010 if (!S_ISREG(inode
->i_mode
))
2013 if (!(file
->f_mode
& FMODE_WRITE
))
2016 ret
= mnt_want_write_file(file
);
2019 ret
= __ocfs2_change_file_space(file
, inode
, file
->f_pos
, cmd
, sr
, 0);
2020 mnt_drop_write_file(file
);
2024 static long ocfs2_fallocate(struct file
*file
, int mode
, loff_t offset
,
2027 struct inode
*inode
= file_inode(file
);
2028 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2029 struct ocfs2_space_resv sr
;
2030 int change_size
= 1;
2031 int cmd
= OCFS2_IOC_RESVSP64
;
2033 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2035 if (!ocfs2_writes_unwritten_extents(osb
))
2038 if (mode
& FALLOC_FL_KEEP_SIZE
)
2041 if (mode
& FALLOC_FL_PUNCH_HOLE
)
2042 cmd
= OCFS2_IOC_UNRESVSP64
;
2045 sr
.l_start
= (s64
)offset
;
2046 sr
.l_len
= (s64
)len
;
2048 return __ocfs2_change_file_space(NULL
, inode
, offset
, cmd
, &sr
,
2052 int ocfs2_check_range_for_refcount(struct inode
*inode
, loff_t pos
,
2056 unsigned int extent_flags
;
2057 u32 cpos
, clusters
, extent_len
, phys_cpos
;
2058 struct super_block
*sb
= inode
->i_sb
;
2060 if (!ocfs2_refcount_tree(OCFS2_SB(inode
->i_sb
)) ||
2061 !ocfs2_is_refcount_inode(inode
) ||
2062 OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
2065 cpos
= pos
>> OCFS2_SB(sb
)->s_clustersize_bits
;
2066 clusters
= ocfs2_clusters_for_bytes(sb
, pos
+ count
) - cpos
;
2069 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
, &extent_len
,
2076 if (phys_cpos
&& (extent_flags
& OCFS2_EXT_REFCOUNTED
)) {
2081 if (extent_len
> clusters
)
2082 extent_len
= clusters
;
2084 clusters
-= extent_len
;
2091 static int ocfs2_is_io_unaligned(struct inode
*inode
, size_t count
, loff_t pos
)
2093 int blockmask
= inode
->i_sb
->s_blocksize
- 1;
2094 loff_t final_size
= pos
+ count
;
2096 if ((pos
& blockmask
) || (final_size
& blockmask
))
2101 static int ocfs2_inode_lock_for_extent_tree(struct inode
*inode
,
2102 struct buffer_head
**di_bh
,
2111 ret
= ocfs2_inode_lock(inode
, NULL
, meta_level
);
2113 ret
= ocfs2_try_inode_lock(inode
,
2114 overwrite_io
? NULL
: di_bh
, meta_level
);
2120 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
2122 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
2125 ret
= down_write_trylock(&OCFS2_I(inode
)->ip_alloc_sem
);
2127 ret
= down_read_trylock(&OCFS2_I(inode
)->ip_alloc_sem
);
2139 ocfs2_inode_unlock(inode
, meta_level
);
2144 static void ocfs2_inode_unlock_for_extent_tree(struct inode
*inode
,
2145 struct buffer_head
**di_bh
,
2150 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
2152 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
2157 if (meta_level
>= 0)
2158 ocfs2_inode_unlock(inode
, meta_level
);
2161 static int ocfs2_prepare_inode_for_write(struct file
*file
,
2162 loff_t pos
, size_t count
, int wait
)
2164 int ret
= 0, meta_level
= 0, overwrite_io
= 0;
2166 struct dentry
*dentry
= file
->f_path
.dentry
;
2167 struct inode
*inode
= d_inode(dentry
);
2168 struct buffer_head
*di_bh
= NULL
;
2173 * We start with a read level meta lock and only jump to an ex
2174 * if we need to make modifications here.
2177 ret
= ocfs2_inode_lock_for_extent_tree(inode
,
2190 * Check if IO will overwrite allocated blocks in case
2191 * IOCB_NOWAIT flag is set.
2193 if (!wait
&& !overwrite_io
) {
2196 ret
= ocfs2_overwrite_io(inode
, di_bh
, pos
, count
);
2204 /* Clear suid / sgid if necessary. We do this here
2205 * instead of later in the write path because
2206 * remove_suid() calls ->setattr without any hint that
2207 * we may have already done our cluster locking. Since
2208 * ocfs2_setattr() *must* take cluster locks to
2209 * proceed, this will lead us to recursively lock the
2210 * inode. There's also the dinode i_size state which
2211 * can be lost via setattr during extending writes (we
2212 * set inode->i_size at the end of a write. */
2213 if (should_remove_suid(dentry
)) {
2214 if (meta_level
== 0) {
2215 ocfs2_inode_unlock_for_extent_tree(inode
,
2223 ret
= ocfs2_write_remove_suid(inode
);
2230 ret
= ocfs2_check_range_for_refcount(inode
, pos
, count
);
2232 ocfs2_inode_unlock_for_extent_tree(inode
,
2236 ret
= ocfs2_inode_lock_for_extent_tree(inode
,
2249 cpos
= pos
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
2251 ocfs2_clusters_for_bytes(inode
->i_sb
, pos
+ count
) - cpos
;
2252 ret
= ocfs2_refcount_cow(inode
, di_bh
, cpos
, clusters
, UINT_MAX
);
2265 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode
)->ip_blkno
,
2268 ocfs2_inode_unlock_for_extent_tree(inode
,
2277 static ssize_t
ocfs2_file_write_iter(struct kiocb
*iocb
,
2278 struct iov_iter
*from
)
2281 ssize_t written
= 0;
2283 size_t count
= iov_iter_count(from
);
2284 struct file
*file
= iocb
->ki_filp
;
2285 struct inode
*inode
= file_inode(file
);
2286 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2287 int full_coherency
= !(osb
->s_mount_opt
&
2288 OCFS2_MOUNT_COHERENCY_BUFFERED
);
2289 void *saved_ki_complete
= NULL
;
2290 int append_write
= ((iocb
->ki_pos
+ count
) >=
2291 i_size_read(inode
) ? 1 : 0);
2292 int direct_io
= iocb
->ki_flags
& IOCB_DIRECT
? 1 : 0;
2293 int nowait
= iocb
->ki_flags
& IOCB_NOWAIT
? 1 : 0;
2295 trace_ocfs2_file_write_iter(inode
, file
, file
->f_path
.dentry
,
2296 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2297 file
->f_path
.dentry
->d_name
.len
,
2298 file
->f_path
.dentry
->d_name
.name
,
2299 (unsigned int)from
->nr_segs
); /* GRRRRR */
2301 if (!direct_io
&& nowait
)
2308 if (!inode_trylock(inode
))
2314 * Concurrent O_DIRECT writes are allowed with
2315 * mount_option "coherency=buffered".
2316 * For append write, we must take rw EX.
2318 rw_level
= (!direct_io
|| full_coherency
|| append_write
);
2321 ret
= ocfs2_try_rw_lock(inode
, rw_level
);
2323 ret
= ocfs2_rw_lock(inode
, rw_level
);
2331 * O_DIRECT writes with "coherency=full" need to take EX cluster
2332 * inode_lock to guarantee coherency.
2334 if (direct_io
&& full_coherency
) {
2336 * We need to take and drop the inode lock to force
2337 * other nodes to drop their caches. Buffered I/O
2338 * already does this in write_begin().
2341 ret
= ocfs2_try_inode_lock(inode
, NULL
, 1);
2343 ret
= ocfs2_inode_lock(inode
, NULL
, 1);
2350 ocfs2_inode_unlock(inode
, 1);
2353 ret
= generic_write_checks(iocb
, from
);
2361 ret
= ocfs2_prepare_inode_for_write(file
, iocb
->ki_pos
, count
, !nowait
);
2368 if (direct_io
&& !is_sync_kiocb(iocb
) &&
2369 ocfs2_is_io_unaligned(inode
, count
, iocb
->ki_pos
)) {
2371 * Make it a sync io if it's an unaligned aio.
2373 saved_ki_complete
= xchg(&iocb
->ki_complete
, NULL
);
2376 /* communicate with ocfs2_dio_end_io */
2377 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2379 written
= __generic_file_write_iter(iocb
, from
);
2380 /* buffered aio wouldn't have proper lock coverage today */
2381 BUG_ON(written
== -EIOCBQUEUED
&& !direct_io
);
2384 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2385 * function pointer which is called when o_direct io completes so that
2386 * it can unlock our rw lock.
2387 * Unfortunately there are error cases which call end_io and others
2388 * that don't. so we don't have to unlock the rw_lock if either an
2389 * async dio is going to do it in the future or an end_io after an
2390 * error has already done it.
2392 if ((written
== -EIOCBQUEUED
) || (!ocfs2_iocb_is_rw_locked(iocb
))) {
2396 if (unlikely(written
<= 0))
2399 if (((file
->f_flags
& O_DSYNC
) && !direct_io
) ||
2401 ret
= filemap_fdatawrite_range(file
->f_mapping
,
2402 iocb
->ki_pos
- written
,
2408 ret
= jbd2_journal_force_commit(osb
->journal
->j_journal
);
2414 ret
= filemap_fdatawait_range(file
->f_mapping
,
2415 iocb
->ki_pos
- written
,
2420 if (saved_ki_complete
)
2421 xchg(&iocb
->ki_complete
, saved_ki_complete
);
2424 ocfs2_rw_unlock(inode
, rw_level
);
2427 inode_unlock(inode
);
2434 static ssize_t
ocfs2_file_read_iter(struct kiocb
*iocb
,
2435 struct iov_iter
*to
)
2437 int ret
= 0, rw_level
= -1, lock_level
= 0;
2438 struct file
*filp
= iocb
->ki_filp
;
2439 struct inode
*inode
= file_inode(filp
);
2440 int direct_io
= iocb
->ki_flags
& IOCB_DIRECT
? 1 : 0;
2441 int nowait
= iocb
->ki_flags
& IOCB_NOWAIT
? 1 : 0;
2443 trace_ocfs2_file_read_iter(inode
, filp
, filp
->f_path
.dentry
,
2444 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2445 filp
->f_path
.dentry
->d_name
.len
,
2446 filp
->f_path
.dentry
->d_name
.name
,
2447 to
->nr_segs
); /* GRRRRR */
2456 if (!direct_io
&& nowait
)
2460 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2461 * need locks to protect pending reads from racing with truncate.
2465 ret
= ocfs2_try_rw_lock(inode
, 0);
2467 ret
= ocfs2_rw_lock(inode
, 0);
2475 /* communicate with ocfs2_dio_end_io */
2476 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2480 * We're fine letting folks race truncates and extending
2481 * writes with read across the cluster, just like they can
2482 * locally. Hence no rw_lock during read.
2484 * Take and drop the meta data lock to update inode fields
2485 * like i_size. This allows the checks down below
2486 * generic_file_read_iter() a chance of actually working.
2488 ret
= ocfs2_inode_lock_atime(inode
, filp
->f_path
.mnt
, &lock_level
,
2495 ocfs2_inode_unlock(inode
, lock_level
);
2497 ret
= generic_file_read_iter(iocb
, to
);
2498 trace_generic_file_read_iter_ret(ret
);
2500 /* buffered aio wouldn't have proper lock coverage today */
2501 BUG_ON(ret
== -EIOCBQUEUED
&& !direct_io
);
2503 /* see ocfs2_file_write_iter */
2504 if (ret
== -EIOCBQUEUED
|| !ocfs2_iocb_is_rw_locked(iocb
)) {
2510 ocfs2_rw_unlock(inode
, rw_level
);
2515 /* Refer generic_file_llseek_unlocked() */
2516 static loff_t
ocfs2_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2518 struct inode
*inode
= file
->f_mapping
->host
;
2527 /* SEEK_END requires the OCFS2 inode lock for the file
2528 * because it references the file's size.
2530 ret
= ocfs2_inode_lock(inode
, NULL
, 0);
2535 offset
+= i_size_read(inode
);
2536 ocfs2_inode_unlock(inode
, 0);
2540 offset
= file
->f_pos
;
2543 offset
+= file
->f_pos
;
2547 ret
= ocfs2_seek_data_hole_offset(file
, &offset
, whence
);
2556 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
2559 inode_unlock(inode
);
2565 static loff_t
ocfs2_remap_file_range(struct file
*file_in
, loff_t pos_in
,
2566 struct file
*file_out
, loff_t pos_out
,
2567 loff_t len
, unsigned int remap_flags
)
2569 struct inode
*inode_in
= file_inode(file_in
);
2570 struct inode
*inode_out
= file_inode(file_out
);
2571 struct ocfs2_super
*osb
= OCFS2_SB(inode_in
->i_sb
);
2572 struct buffer_head
*in_bh
= NULL
, *out_bh
= NULL
;
2573 bool same_inode
= (inode_in
== inode_out
);
2574 loff_t remapped
= 0;
2577 if (remap_flags
& ~(REMAP_FILE_DEDUP
| REMAP_FILE_ADVISORY
))
2579 if (!ocfs2_refcount_tree(osb
))
2581 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
2584 /* Lock both files against IO */
2585 ret
= ocfs2_reflink_inodes_lock(inode_in
, &in_bh
, inode_out
, &out_bh
);
2589 /* Check file eligibility and prepare for block sharing. */
2591 if ((OCFS2_I(inode_in
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
) ||
2592 (OCFS2_I(inode_out
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
))
2595 ret
= generic_remap_file_range_prep(file_in
, pos_in
, file_out
, pos_out
,
2597 if (ret
< 0 || len
== 0)
2600 /* Lock out changes to the allocation maps and remap. */
2601 down_write(&OCFS2_I(inode_in
)->ip_alloc_sem
);
2603 down_write_nested(&OCFS2_I(inode_out
)->ip_alloc_sem
,
2604 SINGLE_DEPTH_NESTING
);
2606 /* Zap any page cache for the destination file's range. */
2607 truncate_inode_pages_range(&inode_out
->i_data
,
2608 round_down(pos_out
, PAGE_SIZE
),
2609 round_up(pos_out
+ len
, PAGE_SIZE
) - 1);
2611 remapped
= ocfs2_reflink_remap_blocks(inode_in
, in_bh
, pos_in
,
2612 inode_out
, out_bh
, pos_out
, len
);
2613 up_write(&OCFS2_I(inode_in
)->ip_alloc_sem
);
2615 up_write(&OCFS2_I(inode_out
)->ip_alloc_sem
);
2623 * Empty the extent map so that we may get the right extent
2624 * record from the disk.
2626 ocfs2_extent_map_trunc(inode_in
, 0);
2627 ocfs2_extent_map_trunc(inode_out
, 0);
2629 ret
= ocfs2_reflink_update_dest(inode_out
, out_bh
, pos_out
+ len
);
2636 ocfs2_reflink_inodes_unlock(inode_in
, in_bh
, inode_out
, out_bh
);
2637 return remapped
> 0 ? remapped
: ret
;
2640 const struct inode_operations ocfs2_file_iops
= {
2641 .setattr
= ocfs2_setattr
,
2642 .getattr
= ocfs2_getattr
,
2643 .permission
= ocfs2_permission
,
2644 .listxattr
= ocfs2_listxattr
,
2645 .fiemap
= ocfs2_fiemap
,
2646 .get_acl
= ocfs2_iop_get_acl
,
2647 .set_acl
= ocfs2_iop_set_acl
,
2650 const struct inode_operations ocfs2_special_file_iops
= {
2651 .setattr
= ocfs2_setattr
,
2652 .getattr
= ocfs2_getattr
,
2653 .permission
= ocfs2_permission
,
2654 .get_acl
= ocfs2_iop_get_acl
,
2655 .set_acl
= ocfs2_iop_set_acl
,
2659 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2660 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2662 const struct file_operations ocfs2_fops
= {
2663 .llseek
= ocfs2_file_llseek
,
2665 .fsync
= ocfs2_sync_file
,
2666 .release
= ocfs2_file_release
,
2667 .open
= ocfs2_file_open
,
2668 .read_iter
= ocfs2_file_read_iter
,
2669 .write_iter
= ocfs2_file_write_iter
,
2670 .unlocked_ioctl
= ocfs2_ioctl
,
2671 #ifdef CONFIG_COMPAT
2672 .compat_ioctl
= ocfs2_compat_ioctl
,
2675 .flock
= ocfs2_flock
,
2676 .splice_read
= generic_file_splice_read
,
2677 .splice_write
= iter_file_splice_write
,
2678 .fallocate
= ocfs2_fallocate
,
2679 .remap_file_range
= ocfs2_remap_file_range
,
2682 const struct file_operations ocfs2_dops
= {
2683 .llseek
= generic_file_llseek
,
2684 .read
= generic_read_dir
,
2685 .iterate
= ocfs2_readdir
,
2686 .fsync
= ocfs2_sync_file
,
2687 .release
= ocfs2_dir_release
,
2688 .open
= ocfs2_dir_open
,
2689 .unlocked_ioctl
= ocfs2_ioctl
,
2690 #ifdef CONFIG_COMPAT
2691 .compat_ioctl
= ocfs2_compat_ioctl
,
2694 .flock
= ocfs2_flock
,
2698 * POSIX-lockless variants of our file_operations.
2700 * These will be used if the underlying cluster stack does not support
2701 * posix file locking, if the user passes the "localflocks" mount
2702 * option, or if we have a local-only fs.
2704 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2705 * so we still want it in the case of no stack support for
2706 * plocks. Internally, it will do the right thing when asked to ignore
2709 const struct file_operations ocfs2_fops_no_plocks
= {
2710 .llseek
= ocfs2_file_llseek
,
2712 .fsync
= ocfs2_sync_file
,
2713 .release
= ocfs2_file_release
,
2714 .open
= ocfs2_file_open
,
2715 .read_iter
= ocfs2_file_read_iter
,
2716 .write_iter
= ocfs2_file_write_iter
,
2717 .unlocked_ioctl
= ocfs2_ioctl
,
2718 #ifdef CONFIG_COMPAT
2719 .compat_ioctl
= ocfs2_compat_ioctl
,
2721 .flock
= ocfs2_flock
,
2722 .splice_read
= generic_file_splice_read
,
2723 .splice_write
= iter_file_splice_write
,
2724 .fallocate
= ocfs2_fallocate
,
2725 .remap_file_range
= ocfs2_remap_file_range
,
2728 const struct file_operations ocfs2_dops_no_plocks
= {
2729 .llseek
= generic_file_llseek
,
2730 .read
= generic_read_dir
,
2731 .iterate
= ocfs2_readdir
,
2732 .fsync
= ocfs2_sync_file
,
2733 .release
= ocfs2_dir_release
,
2734 .open
= ocfs2_dir_open
,
2735 .unlocked_ioctl
= ocfs2_ioctl
,
2736 #ifdef CONFIG_COMPAT
2737 .compat_ioctl
= ocfs2_compat_ioctl
,
2739 .flock
= ocfs2_flock
,