1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
27 #include "print-tree.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
44 #include "space-info.h"
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
53 static const struct extent_io_ops btree_extent_io_ops
;
54 static void end_workqueue_fn(struct btrfs_work
*work
);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
57 struct btrfs_fs_info
*fs_info
);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
60 struct extent_io_tree
*dirty_pages
,
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
63 struct extent_io_tree
*pinned_extents
);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
);
65 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
);
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
70 * by writes to insert metadata for new file extents after IO is complete.
72 struct btrfs_end_io_wq
{
76 struct btrfs_fs_info
*info
;
78 enum btrfs_wq_endio_type metadata
;
79 struct btrfs_work work
;
82 static struct kmem_cache
*btrfs_end_io_wq_cache
;
84 int __init
btrfs_end_io_wq_init(void)
86 btrfs_end_io_wq_cache
= kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq
),
91 if (!btrfs_end_io_wq_cache
)
96 void __cold
btrfs_end_io_wq_exit(void)
98 kmem_cache_destroy(btrfs_end_io_wq_cache
);
101 static void btrfs_free_csum_hash(struct btrfs_fs_info
*fs_info
)
103 if (fs_info
->csum_shash
)
104 crypto_free_shash(fs_info
->csum_shash
);
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
112 struct async_submit_bio
{
115 extent_submit_bio_start_t
*submit_bio_start
;
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
122 struct btrfs_work work
;
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
134 * by btrfs_root->root_key.objectid. This ensures that all special purpose
135 * roots have separate keysets.
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
154 static struct btrfs_lockdep_keyset
{
155 u64 id
; /* root objectid */
156 const char *name_stem
; /* lock name stem */
157 char names
[BTRFS_MAX_LEVEL
+ 1][20];
158 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
159 } btrfs_lockdep_keysets
[] = {
160 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
161 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
162 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
163 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
164 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
165 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
166 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, .name_stem
= "quota" },
167 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
168 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
169 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
170 { .id
= BTRFS_UUID_TREE_OBJECTID
, .name_stem
= "uuid" },
171 { .id
= BTRFS_FREE_SPACE_TREE_OBJECTID
, .name_stem
= "free-space" },
172 { .id
= 0, .name_stem
= "tree" },
175 void __init
btrfs_init_lockdep(void)
179 /* initialize lockdep class names */
180 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
181 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
183 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
184 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
185 "btrfs-%s-%02d", ks
->name_stem
, j
);
189 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
192 struct btrfs_lockdep_keyset
*ks
;
194 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
198 if (ks
->id
== objectid
)
201 lockdep_set_class_and_name(&eb
->lock
,
202 &ks
->keys
[level
], ks
->names
[level
]);
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
211 struct extent_map
*btree_get_extent(struct btrfs_inode
*inode
,
212 struct page
*page
, size_t pg_offset
,
215 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
216 struct extent_map
*em
;
219 read_lock(&em_tree
->lock
);
220 em
= lookup_extent_mapping(em_tree
, start
, len
);
222 read_unlock(&em_tree
->lock
);
225 read_unlock(&em_tree
->lock
);
227 em
= alloc_extent_map();
229 em
= ERR_PTR(-ENOMEM
);
234 em
->block_len
= (u64
)-1;
237 write_lock(&em_tree
->lock
);
238 ret
= add_extent_mapping(em_tree
, em
, 0);
239 if (ret
== -EEXIST
) {
241 em
= lookup_extent_mapping(em_tree
, start
, len
);
248 write_unlock(&em_tree
->lock
);
255 * Compute the csum of a btree block and store the result to provided buffer.
257 static void csum_tree_block(struct extent_buffer
*buf
, u8
*result
)
259 struct btrfs_fs_info
*fs_info
= buf
->fs_info
;
260 const int num_pages
= fs_info
->nodesize
>> PAGE_SHIFT
;
261 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
265 shash
->tfm
= fs_info
->csum_shash
;
266 crypto_shash_init(shash
);
267 kaddr
= page_address(buf
->pages
[0]);
268 crypto_shash_update(shash
, kaddr
+ BTRFS_CSUM_SIZE
,
269 PAGE_SIZE
- BTRFS_CSUM_SIZE
);
271 for (i
= 1; i
< num_pages
; i
++) {
272 kaddr
= page_address(buf
->pages
[i
]);
273 crypto_shash_update(shash
, kaddr
, PAGE_SIZE
);
275 memset(result
, 0, BTRFS_CSUM_SIZE
);
276 crypto_shash_final(shash
, result
);
280 * we can't consider a given block up to date unless the transid of the
281 * block matches the transid in the parent node's pointer. This is how we
282 * detect blocks that either didn't get written at all or got written
283 * in the wrong place.
285 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
286 struct extent_buffer
*eb
, u64 parent_transid
,
289 struct extent_state
*cached_state
= NULL
;
291 bool need_lock
= (current
->journal_info
== BTRFS_SEND_TRANS_STUB
);
293 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
300 btrfs_tree_read_lock(eb
);
301 btrfs_set_lock_blocking_read(eb
);
304 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
306 if (extent_buffer_uptodate(eb
) &&
307 btrfs_header_generation(eb
) == parent_transid
) {
311 btrfs_err_rl(eb
->fs_info
,
312 "parent transid verify failed on %llu wanted %llu found %llu",
314 parent_transid
, btrfs_header_generation(eb
));
318 * Things reading via commit roots that don't have normal protection,
319 * like send, can have a really old block in cache that may point at a
320 * block that has been freed and re-allocated. So don't clear uptodate
321 * if we find an eb that is under IO (dirty/writeback) because we could
322 * end up reading in the stale data and then writing it back out and
323 * making everybody very sad.
325 if (!extent_buffer_under_io(eb
))
326 clear_extent_buffer_uptodate(eb
);
328 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
331 btrfs_tree_read_unlock_blocking(eb
);
335 static bool btrfs_supported_super_csum(u16 csum_type
)
338 case BTRFS_CSUM_TYPE_CRC32
:
339 case BTRFS_CSUM_TYPE_XXHASH
:
340 case BTRFS_CSUM_TYPE_SHA256
:
341 case BTRFS_CSUM_TYPE_BLAKE2
:
349 * Return 0 if the superblock checksum type matches the checksum value of that
350 * algorithm. Pass the raw disk superblock data.
352 static int btrfs_check_super_csum(struct btrfs_fs_info
*fs_info
,
355 struct btrfs_super_block
*disk_sb
=
356 (struct btrfs_super_block
*)raw_disk_sb
;
357 char result
[BTRFS_CSUM_SIZE
];
358 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
360 shash
->tfm
= fs_info
->csum_shash
;
363 * The super_block structure does not span the whole
364 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
365 * filled with zeros and is included in the checksum.
367 crypto_shash_digest(shash
, raw_disk_sb
+ BTRFS_CSUM_SIZE
,
368 BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
, result
);
370 if (memcmp(disk_sb
->csum
, result
, btrfs_super_csum_size(disk_sb
)))
376 int btrfs_verify_level_key(struct extent_buffer
*eb
, int level
,
377 struct btrfs_key
*first_key
, u64 parent_transid
)
379 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
381 struct btrfs_key found_key
;
384 found_level
= btrfs_header_level(eb
);
385 if (found_level
!= level
) {
386 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG
),
387 KERN_ERR
"BTRFS: tree level check failed\n");
389 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
390 eb
->start
, level
, found_level
);
398 * For live tree block (new tree blocks in current transaction),
399 * we need proper lock context to avoid race, which is impossible here.
400 * So we only checks tree blocks which is read from disk, whose
401 * generation <= fs_info->last_trans_committed.
403 if (btrfs_header_generation(eb
) > fs_info
->last_trans_committed
)
406 /* We have @first_key, so this @eb must have at least one item */
407 if (btrfs_header_nritems(eb
) == 0) {
409 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
411 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG
));
416 btrfs_node_key_to_cpu(eb
, &found_key
, 0);
418 btrfs_item_key_to_cpu(eb
, &found_key
, 0);
419 ret
= btrfs_comp_cpu_keys(first_key
, &found_key
);
422 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG
),
423 KERN_ERR
"BTRFS: tree first key check failed\n");
425 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
426 eb
->start
, parent_transid
, first_key
->objectid
,
427 first_key
->type
, first_key
->offset
,
428 found_key
.objectid
, found_key
.type
,
435 * helper to read a given tree block, doing retries as required when
436 * the checksums don't match and we have alternate mirrors to try.
438 * @parent_transid: expected transid, skip check if 0
439 * @level: expected level, mandatory check
440 * @first_key: expected key of first slot, skip check if NULL
442 static int btree_read_extent_buffer_pages(struct extent_buffer
*eb
,
443 u64 parent_transid
, int level
,
444 struct btrfs_key
*first_key
)
446 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
447 struct extent_io_tree
*io_tree
;
452 int failed_mirror
= 0;
454 io_tree
= &BTRFS_I(fs_info
->btree_inode
)->io_tree
;
456 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
457 ret
= read_extent_buffer_pages(eb
, WAIT_COMPLETE
, mirror_num
);
459 if (verify_parent_transid(io_tree
, eb
,
462 else if (btrfs_verify_level_key(eb
, level
,
463 first_key
, parent_transid
))
469 num_copies
= btrfs_num_copies(fs_info
,
474 if (!failed_mirror
) {
476 failed_mirror
= eb
->read_mirror
;
480 if (mirror_num
== failed_mirror
)
483 if (mirror_num
> num_copies
)
487 if (failed
&& !ret
&& failed_mirror
)
488 btrfs_repair_eb_io_failure(eb
, failed_mirror
);
494 * checksum a dirty tree block before IO. This has extra checks to make sure
495 * we only fill in the checksum field in the first page of a multi-page block
498 static int csum_dirty_buffer(struct btrfs_fs_info
*fs_info
, struct page
*page
)
500 u64 start
= page_offset(page
);
502 u8 result
[BTRFS_CSUM_SIZE
];
503 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
504 struct extent_buffer
*eb
;
507 eb
= (struct extent_buffer
*)page
->private;
508 if (page
!= eb
->pages
[0])
511 found_start
= btrfs_header_bytenr(eb
);
513 * Please do not consolidate these warnings into a single if.
514 * It is useful to know what went wrong.
516 if (WARN_ON(found_start
!= start
))
518 if (WARN_ON(!PageUptodate(page
)))
521 ASSERT(memcmp_extent_buffer(eb
, fs_info
->fs_devices
->metadata_uuid
,
522 offsetof(struct btrfs_header
, fsid
),
523 BTRFS_FSID_SIZE
) == 0);
525 csum_tree_block(eb
, result
);
527 if (btrfs_header_level(eb
))
528 ret
= btrfs_check_node(eb
);
530 ret
= btrfs_check_leaf_full(eb
);
533 btrfs_print_tree(eb
, 0);
535 "block=%llu write time tree block corruption detected",
537 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG
));
540 write_extent_buffer(eb
, result
, 0, csum_size
);
545 static int check_tree_block_fsid(struct extent_buffer
*eb
)
547 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
548 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
549 u8 fsid
[BTRFS_FSID_SIZE
];
552 read_extent_buffer(eb
, fsid
, offsetof(struct btrfs_header
, fsid
),
558 * Checking the incompat flag is only valid for the current
559 * fs. For seed devices it's forbidden to have their uuid
560 * changed so reading ->fsid in this case is fine
562 if (fs_devices
== fs_info
->fs_devices
&&
563 btrfs_fs_incompat(fs_info
, METADATA_UUID
))
564 metadata_uuid
= fs_devices
->metadata_uuid
;
566 metadata_uuid
= fs_devices
->fsid
;
568 if (!memcmp(fsid
, metadata_uuid
, BTRFS_FSID_SIZE
)) {
572 fs_devices
= fs_devices
->seed
;
577 static int btree_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
578 u64 phy_offset
, struct page
*page
,
579 u64 start
, u64 end
, int mirror
)
583 struct extent_buffer
*eb
;
584 struct btrfs_fs_info
*fs_info
;
587 u8 result
[BTRFS_CSUM_SIZE
];
593 eb
= (struct extent_buffer
*)page
->private;
594 fs_info
= eb
->fs_info
;
595 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
597 /* the pending IO might have been the only thing that kept this buffer
598 * in memory. Make sure we have a ref for all this other checks
600 atomic_inc(&eb
->refs
);
602 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
606 eb
->read_mirror
= mirror
;
607 if (test_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
)) {
612 found_start
= btrfs_header_bytenr(eb
);
613 if (found_start
!= eb
->start
) {
614 btrfs_err_rl(fs_info
, "bad tree block start, want %llu have %llu",
615 eb
->start
, found_start
);
619 if (check_tree_block_fsid(eb
)) {
620 btrfs_err_rl(fs_info
, "bad fsid on block %llu",
625 found_level
= btrfs_header_level(eb
);
626 if (found_level
>= BTRFS_MAX_LEVEL
) {
627 btrfs_err(fs_info
, "bad tree block level %d on %llu",
628 (int)btrfs_header_level(eb
), eb
->start
);
633 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
636 csum_tree_block(eb
, result
);
638 if (memcmp_extent_buffer(eb
, result
, 0, csum_size
)) {
642 memcpy(&found
, result
, csum_size
);
644 read_extent_buffer(eb
, &val
, 0, csum_size
);
645 btrfs_warn_rl(fs_info
,
646 "%s checksum verify failed on %llu wanted %x found %x level %d",
647 fs_info
->sb
->s_id
, eb
->start
,
648 val
, found
, btrfs_header_level(eb
));
654 * If this is a leaf block and it is corrupt, set the corrupt bit so
655 * that we don't try and read the other copies of this block, just
658 if (found_level
== 0 && btrfs_check_leaf_full(eb
)) {
659 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
663 if (found_level
> 0 && btrfs_check_node(eb
))
667 set_extent_buffer_uptodate(eb
);
670 "block=%llu read time tree block corruption detected",
674 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
675 btree_readahead_hook(eb
, ret
);
679 * our io error hook is going to dec the io pages
680 * again, we have to make sure it has something
683 atomic_inc(&eb
->io_pages
);
684 clear_extent_buffer_uptodate(eb
);
686 free_extent_buffer(eb
);
691 static void end_workqueue_bio(struct bio
*bio
)
693 struct btrfs_end_io_wq
*end_io_wq
= bio
->bi_private
;
694 struct btrfs_fs_info
*fs_info
;
695 struct btrfs_workqueue
*wq
;
697 fs_info
= end_io_wq
->info
;
698 end_io_wq
->status
= bio
->bi_status
;
700 if (bio_op(bio
) == REQ_OP_WRITE
) {
701 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
)
702 wq
= fs_info
->endio_meta_write_workers
;
703 else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
)
704 wq
= fs_info
->endio_freespace_worker
;
705 else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
)
706 wq
= fs_info
->endio_raid56_workers
;
708 wq
= fs_info
->endio_write_workers
;
710 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
)
711 wq
= fs_info
->endio_raid56_workers
;
712 else if (end_io_wq
->metadata
)
713 wq
= fs_info
->endio_meta_workers
;
715 wq
= fs_info
->endio_workers
;
718 btrfs_init_work(&end_io_wq
->work
, end_workqueue_fn
, NULL
, NULL
);
719 btrfs_queue_work(wq
, &end_io_wq
->work
);
722 blk_status_t
btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
723 enum btrfs_wq_endio_type metadata
)
725 struct btrfs_end_io_wq
*end_io_wq
;
727 end_io_wq
= kmem_cache_alloc(btrfs_end_io_wq_cache
, GFP_NOFS
);
729 return BLK_STS_RESOURCE
;
731 end_io_wq
->private = bio
->bi_private
;
732 end_io_wq
->end_io
= bio
->bi_end_io
;
733 end_io_wq
->info
= info
;
734 end_io_wq
->status
= 0;
735 end_io_wq
->bio
= bio
;
736 end_io_wq
->metadata
= metadata
;
738 bio
->bi_private
= end_io_wq
;
739 bio
->bi_end_io
= end_workqueue_bio
;
743 static void run_one_async_start(struct btrfs_work
*work
)
745 struct async_submit_bio
*async
;
748 async
= container_of(work
, struct async_submit_bio
, work
);
749 ret
= async
->submit_bio_start(async
->private_data
, async
->bio
,
756 * In order to insert checksums into the metadata in large chunks, we wait
757 * until bio submission time. All the pages in the bio are checksummed and
758 * sums are attached onto the ordered extent record.
760 * At IO completion time the csums attached on the ordered extent record are
761 * inserted into the tree.
763 static void run_one_async_done(struct btrfs_work
*work
)
765 struct async_submit_bio
*async
;
769 async
= container_of(work
, struct async_submit_bio
, work
);
770 inode
= async
->private_data
;
772 /* If an error occurred we just want to clean up the bio and move on */
774 async
->bio
->bi_status
= async
->status
;
775 bio_endio(async
->bio
);
780 * All of the bios that pass through here are from async helpers.
781 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
782 * This changes nothing when cgroups aren't in use.
784 async
->bio
->bi_opf
|= REQ_CGROUP_PUNT
;
785 ret
= btrfs_map_bio(btrfs_sb(inode
->i_sb
), async
->bio
, async
->mirror_num
);
787 async
->bio
->bi_status
= ret
;
788 bio_endio(async
->bio
);
792 static void run_one_async_free(struct btrfs_work
*work
)
794 struct async_submit_bio
*async
;
796 async
= container_of(work
, struct async_submit_bio
, work
);
800 blk_status_t
btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
801 int mirror_num
, unsigned long bio_flags
,
802 u64 bio_offset
, void *private_data
,
803 extent_submit_bio_start_t
*submit_bio_start
)
805 struct async_submit_bio
*async
;
807 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
809 return BLK_STS_RESOURCE
;
811 async
->private_data
= private_data
;
813 async
->mirror_num
= mirror_num
;
814 async
->submit_bio_start
= submit_bio_start
;
816 btrfs_init_work(&async
->work
, run_one_async_start
, run_one_async_done
,
819 async
->bio_offset
= bio_offset
;
823 if (op_is_sync(bio
->bi_opf
))
824 btrfs_set_work_high_priority(&async
->work
);
826 btrfs_queue_work(fs_info
->workers
, &async
->work
);
830 static blk_status_t
btree_csum_one_bio(struct bio
*bio
)
832 struct bio_vec
*bvec
;
833 struct btrfs_root
*root
;
835 struct bvec_iter_all iter_all
;
837 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
838 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
839 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
840 ret
= csum_dirty_buffer(root
->fs_info
, bvec
->bv_page
);
845 return errno_to_blk_status(ret
);
848 static blk_status_t
btree_submit_bio_start(void *private_data
, struct bio
*bio
,
852 * when we're called for a write, we're already in the async
853 * submission context. Just jump into btrfs_map_bio
855 return btree_csum_one_bio(bio
);
858 static int check_async_write(struct btrfs_fs_info
*fs_info
,
859 struct btrfs_inode
*bi
)
861 if (atomic_read(&bi
->sync_writers
))
863 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST
, &fs_info
->flags
))
868 static blk_status_t
btree_submit_bio_hook(struct inode
*inode
, struct bio
*bio
,
870 unsigned long bio_flags
)
872 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
873 int async
= check_async_write(fs_info
, BTRFS_I(inode
));
876 if (bio_op(bio
) != REQ_OP_WRITE
) {
878 * called for a read, do the setup so that checksum validation
879 * can happen in the async kernel threads
881 ret
= btrfs_bio_wq_end_io(fs_info
, bio
,
882 BTRFS_WQ_ENDIO_METADATA
);
885 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
);
887 ret
= btree_csum_one_bio(bio
);
890 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
);
893 * kthread helpers are used to submit writes so that
894 * checksumming can happen in parallel across all CPUs
896 ret
= btrfs_wq_submit_bio(fs_info
, bio
, mirror_num
, 0,
897 0, inode
, btree_submit_bio_start
);
905 bio
->bi_status
= ret
;
910 #ifdef CONFIG_MIGRATION
911 static int btree_migratepage(struct address_space
*mapping
,
912 struct page
*newpage
, struct page
*page
,
913 enum migrate_mode mode
)
916 * we can't safely write a btree page from here,
917 * we haven't done the locking hook
922 * Buffers may be managed in a filesystem specific way.
923 * We must have no buffers or drop them.
925 if (page_has_private(page
) &&
926 !try_to_release_page(page
, GFP_KERNEL
))
928 return migrate_page(mapping
, newpage
, page
, mode
);
933 static int btree_writepages(struct address_space
*mapping
,
934 struct writeback_control
*wbc
)
936 struct btrfs_fs_info
*fs_info
;
939 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
941 if (wbc
->for_kupdate
)
944 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
945 /* this is a bit racy, but that's ok */
946 ret
= __percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
947 BTRFS_DIRTY_METADATA_THRESH
,
948 fs_info
->dirty_metadata_batch
);
952 return btree_write_cache_pages(mapping
, wbc
);
955 static int btree_readpage(struct file
*file
, struct page
*page
)
957 return extent_read_full_page(page
, btree_get_extent
, 0);
960 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
962 if (PageWriteback(page
) || PageDirty(page
))
965 return try_release_extent_buffer(page
);
968 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
971 struct extent_io_tree
*tree
;
972 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
973 extent_invalidatepage(tree
, page
, offset
);
974 btree_releasepage(page
, GFP_NOFS
);
975 if (PagePrivate(page
)) {
976 btrfs_warn(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
977 "page private not zero on page %llu",
978 (unsigned long long)page_offset(page
));
979 detach_page_private(page
);
983 static int btree_set_page_dirty(struct page
*page
)
986 struct extent_buffer
*eb
;
988 BUG_ON(!PagePrivate(page
));
989 eb
= (struct extent_buffer
*)page
->private;
991 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
992 BUG_ON(!atomic_read(&eb
->refs
));
993 btrfs_assert_tree_locked(eb
);
995 return __set_page_dirty_nobuffers(page
);
998 static const struct address_space_operations btree_aops
= {
999 .readpage
= btree_readpage
,
1000 .writepages
= btree_writepages
,
1001 .releasepage
= btree_releasepage
,
1002 .invalidatepage
= btree_invalidatepage
,
1003 #ifdef CONFIG_MIGRATION
1004 .migratepage
= btree_migratepage
,
1006 .set_page_dirty
= btree_set_page_dirty
,
1009 void readahead_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
1011 struct extent_buffer
*buf
= NULL
;
1014 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1018 ret
= read_extent_buffer_pages(buf
, WAIT_NONE
, 0);
1020 free_extent_buffer_stale(buf
);
1022 free_extent_buffer(buf
);
1025 struct extent_buffer
*btrfs_find_create_tree_block(
1026 struct btrfs_fs_info
*fs_info
,
1029 if (btrfs_is_testing(fs_info
))
1030 return alloc_test_extent_buffer(fs_info
, bytenr
);
1031 return alloc_extent_buffer(fs_info
, bytenr
);
1035 * Read tree block at logical address @bytenr and do variant basic but critical
1038 * @parent_transid: expected transid of this tree block, skip check if 0
1039 * @level: expected level, mandatory check
1040 * @first_key: expected key in slot 0, skip check if NULL
1042 struct extent_buffer
*read_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1043 u64 parent_transid
, int level
,
1044 struct btrfs_key
*first_key
)
1046 struct extent_buffer
*buf
= NULL
;
1049 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1053 ret
= btree_read_extent_buffer_pages(buf
, parent_transid
,
1056 free_extent_buffer_stale(buf
);
1057 return ERR_PTR(ret
);
1063 void btrfs_clean_tree_block(struct extent_buffer
*buf
)
1065 struct btrfs_fs_info
*fs_info
= buf
->fs_info
;
1066 if (btrfs_header_generation(buf
) ==
1067 fs_info
->running_transaction
->transid
) {
1068 btrfs_assert_tree_locked(buf
);
1070 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1071 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
1073 fs_info
->dirty_metadata_batch
);
1074 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1075 btrfs_set_lock_blocking_write(buf
);
1076 clear_extent_buffer_dirty(buf
);
1081 static void __setup_root(struct btrfs_root
*root
, struct btrfs_fs_info
*fs_info
,
1084 bool dummy
= test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO
, &fs_info
->fs_state
);
1085 root
->fs_info
= fs_info
;
1087 root
->commit_root
= NULL
;
1089 root
->orphan_cleanup_state
= 0;
1091 root
->last_trans
= 0;
1092 root
->highest_objectid
= 0;
1093 root
->nr_delalloc_inodes
= 0;
1094 root
->nr_ordered_extents
= 0;
1095 root
->inode_tree
= RB_ROOT
;
1096 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1097 root
->block_rsv
= NULL
;
1099 INIT_LIST_HEAD(&root
->dirty_list
);
1100 INIT_LIST_HEAD(&root
->root_list
);
1101 INIT_LIST_HEAD(&root
->delalloc_inodes
);
1102 INIT_LIST_HEAD(&root
->delalloc_root
);
1103 INIT_LIST_HEAD(&root
->ordered_extents
);
1104 INIT_LIST_HEAD(&root
->ordered_root
);
1105 INIT_LIST_HEAD(&root
->reloc_dirty_list
);
1106 INIT_LIST_HEAD(&root
->logged_list
[0]);
1107 INIT_LIST_HEAD(&root
->logged_list
[1]);
1108 spin_lock_init(&root
->inode_lock
);
1109 spin_lock_init(&root
->delalloc_lock
);
1110 spin_lock_init(&root
->ordered_extent_lock
);
1111 spin_lock_init(&root
->accounting_lock
);
1112 spin_lock_init(&root
->log_extents_lock
[0]);
1113 spin_lock_init(&root
->log_extents_lock
[1]);
1114 spin_lock_init(&root
->qgroup_meta_rsv_lock
);
1115 mutex_init(&root
->objectid_mutex
);
1116 mutex_init(&root
->log_mutex
);
1117 mutex_init(&root
->ordered_extent_mutex
);
1118 mutex_init(&root
->delalloc_mutex
);
1119 init_waitqueue_head(&root
->qgroup_flush_wait
);
1120 init_waitqueue_head(&root
->log_writer_wait
);
1121 init_waitqueue_head(&root
->log_commit_wait
[0]);
1122 init_waitqueue_head(&root
->log_commit_wait
[1]);
1123 INIT_LIST_HEAD(&root
->log_ctxs
[0]);
1124 INIT_LIST_HEAD(&root
->log_ctxs
[1]);
1125 atomic_set(&root
->log_commit
[0], 0);
1126 atomic_set(&root
->log_commit
[1], 0);
1127 atomic_set(&root
->log_writers
, 0);
1128 atomic_set(&root
->log_batch
, 0);
1129 refcount_set(&root
->refs
, 1);
1130 atomic_set(&root
->snapshot_force_cow
, 0);
1131 atomic_set(&root
->nr_swapfiles
, 0);
1132 root
->log_transid
= 0;
1133 root
->log_transid_committed
= -1;
1134 root
->last_log_commit
= 0;
1136 extent_io_tree_init(fs_info
, &root
->dirty_log_pages
,
1137 IO_TREE_ROOT_DIRTY_LOG_PAGES
, NULL
);
1138 extent_io_tree_init(fs_info
, &root
->log_csum_range
,
1139 IO_TREE_LOG_CSUM_RANGE
, NULL
);
1142 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1143 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1144 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1145 root
->root_key
.objectid
= objectid
;
1148 spin_lock_init(&root
->root_item_lock
);
1149 btrfs_qgroup_init_swapped_blocks(&root
->swapped_blocks
);
1150 #ifdef CONFIG_BTRFS_DEBUG
1151 INIT_LIST_HEAD(&root
->leak_list
);
1152 spin_lock(&fs_info
->fs_roots_radix_lock
);
1153 list_add_tail(&root
->leak_list
, &fs_info
->allocated_roots
);
1154 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1158 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
,
1159 u64 objectid
, gfp_t flags
)
1161 struct btrfs_root
*root
= kzalloc(sizeof(*root
), flags
);
1163 __setup_root(root
, fs_info
, objectid
);
1167 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1168 /* Should only be used by the testing infrastructure */
1169 struct btrfs_root
*btrfs_alloc_dummy_root(struct btrfs_fs_info
*fs_info
)
1171 struct btrfs_root
*root
;
1174 return ERR_PTR(-EINVAL
);
1176 root
= btrfs_alloc_root(fs_info
, BTRFS_ROOT_TREE_OBJECTID
, GFP_KERNEL
);
1178 return ERR_PTR(-ENOMEM
);
1180 /* We don't use the stripesize in selftest, set it as sectorsize */
1181 root
->alloc_bytenr
= 0;
1187 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1190 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1191 struct extent_buffer
*leaf
;
1192 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1193 struct btrfs_root
*root
;
1194 struct btrfs_key key
;
1195 unsigned int nofs_flag
;
1199 * We're holding a transaction handle, so use a NOFS memory allocation
1200 * context to avoid deadlock if reclaim happens.
1202 nofs_flag
= memalloc_nofs_save();
1203 root
= btrfs_alloc_root(fs_info
, objectid
, GFP_KERNEL
);
1204 memalloc_nofs_restore(nofs_flag
);
1206 return ERR_PTR(-ENOMEM
);
1208 root
->root_key
.objectid
= objectid
;
1209 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1210 root
->root_key
.offset
= 0;
1212 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
1214 ret
= PTR_ERR(leaf
);
1220 btrfs_mark_buffer_dirty(leaf
);
1222 root
->commit_root
= btrfs_root_node(root
);
1223 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
1225 root
->root_item
.flags
= 0;
1226 root
->root_item
.byte_limit
= 0;
1227 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1228 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1229 btrfs_set_root_level(&root
->root_item
, 0);
1230 btrfs_set_root_refs(&root
->root_item
, 1);
1231 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1232 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1233 btrfs_set_root_dirid(&root
->root_item
, 0);
1234 if (is_fstree(objectid
))
1235 generate_random_guid(root
->root_item
.uuid
);
1237 export_guid(root
->root_item
.uuid
, &guid_null
);
1238 root
->root_item
.drop_level
= 0;
1240 key
.objectid
= objectid
;
1241 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1243 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1247 btrfs_tree_unlock(leaf
);
1253 btrfs_tree_unlock(leaf
);
1254 btrfs_put_root(root
);
1256 return ERR_PTR(ret
);
1259 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1260 struct btrfs_fs_info
*fs_info
)
1262 struct btrfs_root
*root
;
1263 struct extent_buffer
*leaf
;
1265 root
= btrfs_alloc_root(fs_info
, BTRFS_TREE_LOG_OBJECTID
, GFP_NOFS
);
1267 return ERR_PTR(-ENOMEM
);
1269 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1270 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1271 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1274 * DON'T set SHAREABLE bit for log trees.
1276 * Log trees are not exposed to user space thus can't be snapshotted,
1277 * and they go away before a real commit is actually done.
1279 * They do store pointers to file data extents, and those reference
1280 * counts still get updated (along with back refs to the log tree).
1283 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, BTRFS_TREE_LOG_OBJECTID
,
1286 btrfs_put_root(root
);
1287 return ERR_CAST(leaf
);
1292 btrfs_mark_buffer_dirty(root
->node
);
1293 btrfs_tree_unlock(root
->node
);
1297 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1298 struct btrfs_fs_info
*fs_info
)
1300 struct btrfs_root
*log_root
;
1302 log_root
= alloc_log_tree(trans
, fs_info
);
1303 if (IS_ERR(log_root
))
1304 return PTR_ERR(log_root
);
1305 WARN_ON(fs_info
->log_root_tree
);
1306 fs_info
->log_root_tree
= log_root
;
1310 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1311 struct btrfs_root
*root
)
1313 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1314 struct btrfs_root
*log_root
;
1315 struct btrfs_inode_item
*inode_item
;
1317 log_root
= alloc_log_tree(trans
, fs_info
);
1318 if (IS_ERR(log_root
))
1319 return PTR_ERR(log_root
);
1321 log_root
->last_trans
= trans
->transid
;
1322 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1324 inode_item
= &log_root
->root_item
.inode
;
1325 btrfs_set_stack_inode_generation(inode_item
, 1);
1326 btrfs_set_stack_inode_size(inode_item
, 3);
1327 btrfs_set_stack_inode_nlink(inode_item
, 1);
1328 btrfs_set_stack_inode_nbytes(inode_item
,
1330 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
1332 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1334 WARN_ON(root
->log_root
);
1335 root
->log_root
= log_root
;
1336 root
->log_transid
= 0;
1337 root
->log_transid_committed
= -1;
1338 root
->last_log_commit
= 0;
1342 struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1343 struct btrfs_key
*key
)
1345 struct btrfs_root
*root
;
1346 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1347 struct btrfs_path
*path
;
1352 path
= btrfs_alloc_path();
1354 return ERR_PTR(-ENOMEM
);
1356 root
= btrfs_alloc_root(fs_info
, key
->objectid
, GFP_NOFS
);
1362 ret
= btrfs_find_root(tree_root
, key
, path
,
1363 &root
->root_item
, &root
->root_key
);
1370 generation
= btrfs_root_generation(&root
->root_item
);
1371 level
= btrfs_root_level(&root
->root_item
);
1372 root
->node
= read_tree_block(fs_info
,
1373 btrfs_root_bytenr(&root
->root_item
),
1374 generation
, level
, NULL
);
1375 if (IS_ERR(root
->node
)) {
1376 ret
= PTR_ERR(root
->node
);
1379 } else if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1383 root
->commit_root
= btrfs_root_node(root
);
1385 btrfs_free_path(path
);
1389 btrfs_put_root(root
);
1391 root
= ERR_PTR(ret
);
1396 * Initialize subvolume root in-memory structure
1398 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1400 static int btrfs_init_fs_root(struct btrfs_root
*root
, dev_t anon_dev
)
1403 unsigned int nofs_flag
;
1405 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1406 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1408 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1414 * We might be called under a transaction (e.g. indirect backref
1415 * resolution) which could deadlock if it triggers memory reclaim
1417 nofs_flag
= memalloc_nofs_save();
1418 ret
= btrfs_drew_lock_init(&root
->snapshot_lock
);
1419 memalloc_nofs_restore(nofs_flag
);
1423 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
&&
1424 root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1425 set_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
);
1426 btrfs_check_and_init_root_item(&root
->root_item
);
1429 btrfs_init_free_ino_ctl(root
);
1430 spin_lock_init(&root
->ino_cache_lock
);
1431 init_waitqueue_head(&root
->ino_cache_wait
);
1434 * Don't assign anonymous block device to roots that are not exposed to
1435 * userspace, the id pool is limited to 1M
1437 if (is_fstree(root
->root_key
.objectid
) &&
1438 btrfs_root_refs(&root
->root_item
) > 0) {
1440 ret
= get_anon_bdev(&root
->anon_dev
);
1444 root
->anon_dev
= anon_dev
;
1448 mutex_lock(&root
->objectid_mutex
);
1449 ret
= btrfs_find_highest_objectid(root
,
1450 &root
->highest_objectid
);
1452 mutex_unlock(&root
->objectid_mutex
);
1456 ASSERT(root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
1458 mutex_unlock(&root
->objectid_mutex
);
1462 /* The caller is responsible to call btrfs_free_fs_root */
1466 static struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1469 struct btrfs_root
*root
;
1471 spin_lock(&fs_info
->fs_roots_radix_lock
);
1472 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1473 (unsigned long)root_id
);
1475 root
= btrfs_grab_root(root
);
1476 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1480 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1481 struct btrfs_root
*root
)
1485 ret
= radix_tree_preload(GFP_NOFS
);
1489 spin_lock(&fs_info
->fs_roots_radix_lock
);
1490 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1491 (unsigned long)root
->root_key
.objectid
,
1494 btrfs_grab_root(root
);
1495 set_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
);
1497 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1498 radix_tree_preload_end();
1503 void btrfs_check_leaked_roots(struct btrfs_fs_info
*fs_info
)
1505 #ifdef CONFIG_BTRFS_DEBUG
1506 struct btrfs_root
*root
;
1508 while (!list_empty(&fs_info
->allocated_roots
)) {
1509 root
= list_first_entry(&fs_info
->allocated_roots
,
1510 struct btrfs_root
, leak_list
);
1511 btrfs_err(fs_info
, "leaked root %llu-%llu refcount %d",
1512 root
->root_key
.objectid
, root
->root_key
.offset
,
1513 refcount_read(&root
->refs
));
1514 while (refcount_read(&root
->refs
) > 1)
1515 btrfs_put_root(root
);
1516 btrfs_put_root(root
);
1521 void btrfs_free_fs_info(struct btrfs_fs_info
*fs_info
)
1523 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
1524 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
1525 percpu_counter_destroy(&fs_info
->dio_bytes
);
1526 percpu_counter_destroy(&fs_info
->dev_replace
.bio_counter
);
1527 btrfs_free_csum_hash(fs_info
);
1528 btrfs_free_stripe_hash_table(fs_info
);
1529 btrfs_free_ref_cache(fs_info
);
1530 kfree(fs_info
->balance_ctl
);
1531 kfree(fs_info
->delayed_root
);
1532 btrfs_put_root(fs_info
->extent_root
);
1533 btrfs_put_root(fs_info
->tree_root
);
1534 btrfs_put_root(fs_info
->chunk_root
);
1535 btrfs_put_root(fs_info
->dev_root
);
1536 btrfs_put_root(fs_info
->csum_root
);
1537 btrfs_put_root(fs_info
->quota_root
);
1538 btrfs_put_root(fs_info
->uuid_root
);
1539 btrfs_put_root(fs_info
->free_space_root
);
1540 btrfs_put_root(fs_info
->fs_root
);
1541 btrfs_put_root(fs_info
->data_reloc_root
);
1542 btrfs_check_leaked_roots(fs_info
);
1543 btrfs_extent_buffer_leak_debug_check(fs_info
);
1544 kfree(fs_info
->super_copy
);
1545 kfree(fs_info
->super_for_commit
);
1551 * Get an in-memory reference of a root structure.
1553 * For essential trees like root/extent tree, we grab it from fs_info directly.
1554 * For subvolume trees, we check the cached filesystem roots first. If not
1555 * found, then read it from disk and add it to cached fs roots.
1557 * Caller should release the root by calling btrfs_put_root() after the usage.
1559 * NOTE: Reloc and log trees can't be read by this function as they share the
1560 * same root objectid.
1562 * @objectid: root id
1563 * @anon_dev: preallocated anonymous block device number for new roots,
1564 * pass 0 for new allocation.
1565 * @check_ref: whether to check root item references, If true, return -ENOENT
1568 static struct btrfs_root
*btrfs_get_root_ref(struct btrfs_fs_info
*fs_info
,
1569 u64 objectid
, dev_t anon_dev
,
1572 struct btrfs_root
*root
;
1573 struct btrfs_path
*path
;
1574 struct btrfs_key key
;
1577 if (objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1578 return btrfs_grab_root(fs_info
->tree_root
);
1579 if (objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1580 return btrfs_grab_root(fs_info
->extent_root
);
1581 if (objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1582 return btrfs_grab_root(fs_info
->chunk_root
);
1583 if (objectid
== BTRFS_DEV_TREE_OBJECTID
)
1584 return btrfs_grab_root(fs_info
->dev_root
);
1585 if (objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1586 return btrfs_grab_root(fs_info
->csum_root
);
1587 if (objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1588 return btrfs_grab_root(fs_info
->quota_root
) ?
1589 fs_info
->quota_root
: ERR_PTR(-ENOENT
);
1590 if (objectid
== BTRFS_UUID_TREE_OBJECTID
)
1591 return btrfs_grab_root(fs_info
->uuid_root
) ?
1592 fs_info
->uuid_root
: ERR_PTR(-ENOENT
);
1593 if (objectid
== BTRFS_FREE_SPACE_TREE_OBJECTID
)
1594 return btrfs_grab_root(fs_info
->free_space_root
) ?
1595 fs_info
->free_space_root
: ERR_PTR(-ENOENT
);
1597 root
= btrfs_lookup_fs_root(fs_info
, objectid
);
1599 /* Shouldn't get preallocated anon_dev for cached roots */
1601 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1602 btrfs_put_root(root
);
1603 return ERR_PTR(-ENOENT
);
1608 key
.objectid
= objectid
;
1609 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1610 key
.offset
= (u64
)-1;
1611 root
= btrfs_read_tree_root(fs_info
->tree_root
, &key
);
1615 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1620 ret
= btrfs_init_fs_root(root
, anon_dev
);
1624 path
= btrfs_alloc_path();
1629 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1630 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1631 key
.offset
= objectid
;
1633 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1634 btrfs_free_path(path
);
1638 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
);
1640 ret
= btrfs_insert_fs_root(fs_info
, root
);
1642 btrfs_put_root(root
);
1649 btrfs_put_root(root
);
1650 return ERR_PTR(ret
);
1654 * Get in-memory reference of a root structure
1656 * @objectid: tree objectid
1657 * @check_ref: if set, verify that the tree exists and the item has at least
1660 struct btrfs_root
*btrfs_get_fs_root(struct btrfs_fs_info
*fs_info
,
1661 u64 objectid
, bool check_ref
)
1663 return btrfs_get_root_ref(fs_info
, objectid
, 0, check_ref
);
1667 * Get in-memory reference of a root structure, created as new, optionally pass
1668 * the anonymous block device id
1670 * @objectid: tree objectid
1671 * @anon_dev: if zero, allocate a new anonymous block device or use the
1674 struct btrfs_root
*btrfs_get_new_fs_root(struct btrfs_fs_info
*fs_info
,
1675 u64 objectid
, dev_t anon_dev
)
1677 return btrfs_get_root_ref(fs_info
, objectid
, anon_dev
, true);
1681 * called by the kthread helper functions to finally call the bio end_io
1682 * functions. This is where read checksum verification actually happens
1684 static void end_workqueue_fn(struct btrfs_work
*work
)
1687 struct btrfs_end_io_wq
*end_io_wq
;
1689 end_io_wq
= container_of(work
, struct btrfs_end_io_wq
, work
);
1690 bio
= end_io_wq
->bio
;
1692 bio
->bi_status
= end_io_wq
->status
;
1693 bio
->bi_private
= end_io_wq
->private;
1694 bio
->bi_end_io
= end_io_wq
->end_io
;
1696 kmem_cache_free(btrfs_end_io_wq_cache
, end_io_wq
);
1699 static int cleaner_kthread(void *arg
)
1701 struct btrfs_root
*root
= arg
;
1702 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1708 set_bit(BTRFS_FS_CLEANER_RUNNING
, &fs_info
->flags
);
1710 /* Make the cleaner go to sleep early. */
1711 if (btrfs_need_cleaner_sleep(fs_info
))
1715 * Do not do anything if we might cause open_ctree() to block
1716 * before we have finished mounting the filesystem.
1718 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
1721 if (!mutex_trylock(&fs_info
->cleaner_mutex
))
1725 * Avoid the problem that we change the status of the fs
1726 * during the above check and trylock.
1728 if (btrfs_need_cleaner_sleep(fs_info
)) {
1729 mutex_unlock(&fs_info
->cleaner_mutex
);
1733 btrfs_run_delayed_iputs(fs_info
);
1735 again
= btrfs_clean_one_deleted_snapshot(root
);
1736 mutex_unlock(&fs_info
->cleaner_mutex
);
1739 * The defragger has dealt with the R/O remount and umount,
1740 * needn't do anything special here.
1742 btrfs_run_defrag_inodes(fs_info
);
1745 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1746 * with relocation (btrfs_relocate_chunk) and relocation
1747 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1748 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1749 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1750 * unused block groups.
1752 btrfs_delete_unused_bgs(fs_info
);
1754 clear_bit(BTRFS_FS_CLEANER_RUNNING
, &fs_info
->flags
);
1755 if (kthread_should_park())
1757 if (kthread_should_stop())
1760 set_current_state(TASK_INTERRUPTIBLE
);
1762 __set_current_state(TASK_RUNNING
);
1767 static int transaction_kthread(void *arg
)
1769 struct btrfs_root
*root
= arg
;
1770 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1771 struct btrfs_trans_handle
*trans
;
1772 struct btrfs_transaction
*cur
;
1775 unsigned long delay
;
1779 cannot_commit
= false;
1780 delay
= HZ
* fs_info
->commit_interval
;
1781 mutex_lock(&fs_info
->transaction_kthread_mutex
);
1783 spin_lock(&fs_info
->trans_lock
);
1784 cur
= fs_info
->running_transaction
;
1786 spin_unlock(&fs_info
->trans_lock
);
1790 now
= ktime_get_seconds();
1791 if (cur
->state
< TRANS_STATE_COMMIT_START
&&
1792 (now
< cur
->start_time
||
1793 now
- cur
->start_time
< fs_info
->commit_interval
)) {
1794 spin_unlock(&fs_info
->trans_lock
);
1798 transid
= cur
->transid
;
1799 spin_unlock(&fs_info
->trans_lock
);
1801 /* If the file system is aborted, this will always fail. */
1802 trans
= btrfs_attach_transaction(root
);
1803 if (IS_ERR(trans
)) {
1804 if (PTR_ERR(trans
) != -ENOENT
)
1805 cannot_commit
= true;
1808 if (transid
== trans
->transid
) {
1809 btrfs_commit_transaction(trans
);
1811 btrfs_end_transaction(trans
);
1814 wake_up_process(fs_info
->cleaner_kthread
);
1815 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
1817 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR
,
1818 &fs_info
->fs_state
)))
1819 btrfs_cleanup_transaction(fs_info
);
1820 if (!kthread_should_stop() &&
1821 (!btrfs_transaction_blocked(fs_info
) ||
1823 schedule_timeout_interruptible(delay
);
1824 } while (!kthread_should_stop());
1829 * This will find the highest generation in the array of root backups. The
1830 * index of the highest array is returned, or -EINVAL if we can't find
1833 * We check to make sure the array is valid by comparing the
1834 * generation of the latest root in the array with the generation
1835 * in the super block. If they don't match we pitch it.
1837 static int find_newest_super_backup(struct btrfs_fs_info
*info
)
1839 const u64 newest_gen
= btrfs_super_generation(info
->super_copy
);
1841 struct btrfs_root_backup
*root_backup
;
1844 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1845 root_backup
= info
->super_copy
->super_roots
+ i
;
1846 cur
= btrfs_backup_tree_root_gen(root_backup
);
1847 if (cur
== newest_gen
)
1855 * copy all the root pointers into the super backup array.
1856 * this will bump the backup pointer by one when it is
1859 static void backup_super_roots(struct btrfs_fs_info
*info
)
1861 const int next_backup
= info
->backup_root_index
;
1862 struct btrfs_root_backup
*root_backup
;
1864 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1867 * make sure all of our padding and empty slots get zero filled
1868 * regardless of which ones we use today
1870 memset(root_backup
, 0, sizeof(*root_backup
));
1872 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1874 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1875 btrfs_set_backup_tree_root_gen(root_backup
,
1876 btrfs_header_generation(info
->tree_root
->node
));
1878 btrfs_set_backup_tree_root_level(root_backup
,
1879 btrfs_header_level(info
->tree_root
->node
));
1881 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1882 btrfs_set_backup_chunk_root_gen(root_backup
,
1883 btrfs_header_generation(info
->chunk_root
->node
));
1884 btrfs_set_backup_chunk_root_level(root_backup
,
1885 btrfs_header_level(info
->chunk_root
->node
));
1887 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1888 btrfs_set_backup_extent_root_gen(root_backup
,
1889 btrfs_header_generation(info
->extent_root
->node
));
1890 btrfs_set_backup_extent_root_level(root_backup
,
1891 btrfs_header_level(info
->extent_root
->node
));
1894 * we might commit during log recovery, which happens before we set
1895 * the fs_root. Make sure it is valid before we fill it in.
1897 if (info
->fs_root
&& info
->fs_root
->node
) {
1898 btrfs_set_backup_fs_root(root_backup
,
1899 info
->fs_root
->node
->start
);
1900 btrfs_set_backup_fs_root_gen(root_backup
,
1901 btrfs_header_generation(info
->fs_root
->node
));
1902 btrfs_set_backup_fs_root_level(root_backup
,
1903 btrfs_header_level(info
->fs_root
->node
));
1906 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1907 btrfs_set_backup_dev_root_gen(root_backup
,
1908 btrfs_header_generation(info
->dev_root
->node
));
1909 btrfs_set_backup_dev_root_level(root_backup
,
1910 btrfs_header_level(info
->dev_root
->node
));
1912 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
1913 btrfs_set_backup_csum_root_gen(root_backup
,
1914 btrfs_header_generation(info
->csum_root
->node
));
1915 btrfs_set_backup_csum_root_level(root_backup
,
1916 btrfs_header_level(info
->csum_root
->node
));
1918 btrfs_set_backup_total_bytes(root_backup
,
1919 btrfs_super_total_bytes(info
->super_copy
));
1920 btrfs_set_backup_bytes_used(root_backup
,
1921 btrfs_super_bytes_used(info
->super_copy
));
1922 btrfs_set_backup_num_devices(root_backup
,
1923 btrfs_super_num_devices(info
->super_copy
));
1926 * if we don't copy this out to the super_copy, it won't get remembered
1927 * for the next commit
1929 memcpy(&info
->super_copy
->super_roots
,
1930 &info
->super_for_commit
->super_roots
,
1931 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
1935 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1936 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1938 * fs_info - filesystem whose backup roots need to be read
1939 * priority - priority of backup root required
1941 * Returns backup root index on success and -EINVAL otherwise.
1943 static int read_backup_root(struct btrfs_fs_info
*fs_info
, u8 priority
)
1945 int backup_index
= find_newest_super_backup(fs_info
);
1946 struct btrfs_super_block
*super
= fs_info
->super_copy
;
1947 struct btrfs_root_backup
*root_backup
;
1949 if (priority
< BTRFS_NUM_BACKUP_ROOTS
&& backup_index
>= 0) {
1951 return backup_index
;
1953 backup_index
= backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- priority
;
1954 backup_index
%= BTRFS_NUM_BACKUP_ROOTS
;
1959 root_backup
= super
->super_roots
+ backup_index
;
1961 btrfs_set_super_generation(super
,
1962 btrfs_backup_tree_root_gen(root_backup
));
1963 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
1964 btrfs_set_super_root_level(super
,
1965 btrfs_backup_tree_root_level(root_backup
));
1966 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
1969 * Fixme: the total bytes and num_devices need to match or we should
1972 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
1973 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
1975 return backup_index
;
1978 /* helper to cleanup workers */
1979 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
1981 btrfs_destroy_workqueue(fs_info
->fixup_workers
);
1982 btrfs_destroy_workqueue(fs_info
->delalloc_workers
);
1983 btrfs_destroy_workqueue(fs_info
->workers
);
1984 btrfs_destroy_workqueue(fs_info
->endio_workers
);
1985 btrfs_destroy_workqueue(fs_info
->endio_raid56_workers
);
1986 btrfs_destroy_workqueue(fs_info
->rmw_workers
);
1987 btrfs_destroy_workqueue(fs_info
->endio_write_workers
);
1988 btrfs_destroy_workqueue(fs_info
->endio_freespace_worker
);
1989 btrfs_destroy_workqueue(fs_info
->delayed_workers
);
1990 btrfs_destroy_workqueue(fs_info
->caching_workers
);
1991 btrfs_destroy_workqueue(fs_info
->readahead_workers
);
1992 btrfs_destroy_workqueue(fs_info
->flush_workers
);
1993 btrfs_destroy_workqueue(fs_info
->qgroup_rescan_workers
);
1994 if (fs_info
->discard_ctl
.discard_workers
)
1995 destroy_workqueue(fs_info
->discard_ctl
.discard_workers
);
1997 * Now that all other work queues are destroyed, we can safely destroy
1998 * the queues used for metadata I/O, since tasks from those other work
1999 * queues can do metadata I/O operations.
2001 btrfs_destroy_workqueue(fs_info
->endio_meta_workers
);
2002 btrfs_destroy_workqueue(fs_info
->endio_meta_write_workers
);
2005 static void free_root_extent_buffers(struct btrfs_root
*root
)
2008 free_extent_buffer(root
->node
);
2009 free_extent_buffer(root
->commit_root
);
2011 root
->commit_root
= NULL
;
2015 /* helper to cleanup tree roots */
2016 static void free_root_pointers(struct btrfs_fs_info
*info
, bool free_chunk_root
)
2018 free_root_extent_buffers(info
->tree_root
);
2020 free_root_extent_buffers(info
->dev_root
);
2021 free_root_extent_buffers(info
->extent_root
);
2022 free_root_extent_buffers(info
->csum_root
);
2023 free_root_extent_buffers(info
->quota_root
);
2024 free_root_extent_buffers(info
->uuid_root
);
2025 free_root_extent_buffers(info
->fs_root
);
2026 free_root_extent_buffers(info
->data_reloc_root
);
2027 if (free_chunk_root
)
2028 free_root_extent_buffers(info
->chunk_root
);
2029 free_root_extent_buffers(info
->free_space_root
);
2032 void btrfs_put_root(struct btrfs_root
*root
)
2037 if (refcount_dec_and_test(&root
->refs
)) {
2038 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
2039 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE
, &root
->state
));
2041 free_anon_bdev(root
->anon_dev
);
2042 btrfs_drew_lock_destroy(&root
->snapshot_lock
);
2043 free_root_extent_buffers(root
);
2044 kfree(root
->free_ino_ctl
);
2045 kfree(root
->free_ino_pinned
);
2046 #ifdef CONFIG_BTRFS_DEBUG
2047 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
2048 list_del_init(&root
->leak_list
);
2049 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
2055 void btrfs_free_fs_roots(struct btrfs_fs_info
*fs_info
)
2058 struct btrfs_root
*gang
[8];
2061 while (!list_empty(&fs_info
->dead_roots
)) {
2062 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2063 struct btrfs_root
, root_list
);
2064 list_del(&gang
[0]->root_list
);
2066 if (test_bit(BTRFS_ROOT_IN_RADIX
, &gang
[0]->state
))
2067 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
2068 btrfs_put_root(gang
[0]);
2072 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2077 for (i
= 0; i
< ret
; i
++)
2078 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
2082 static void btrfs_init_scrub(struct btrfs_fs_info
*fs_info
)
2084 mutex_init(&fs_info
->scrub_lock
);
2085 atomic_set(&fs_info
->scrubs_running
, 0);
2086 atomic_set(&fs_info
->scrub_pause_req
, 0);
2087 atomic_set(&fs_info
->scrubs_paused
, 0);
2088 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2089 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2090 refcount_set(&fs_info
->scrub_workers_refcnt
, 0);
2093 static void btrfs_init_balance(struct btrfs_fs_info
*fs_info
)
2095 spin_lock_init(&fs_info
->balance_lock
);
2096 mutex_init(&fs_info
->balance_mutex
);
2097 atomic_set(&fs_info
->balance_pause_req
, 0);
2098 atomic_set(&fs_info
->balance_cancel_req
, 0);
2099 fs_info
->balance_ctl
= NULL
;
2100 init_waitqueue_head(&fs_info
->balance_wait_q
);
2103 static void btrfs_init_btree_inode(struct btrfs_fs_info
*fs_info
)
2105 struct inode
*inode
= fs_info
->btree_inode
;
2107 inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2108 set_nlink(inode
, 1);
2110 * we set the i_size on the btree inode to the max possible int.
2111 * the real end of the address space is determined by all of
2112 * the devices in the system
2114 inode
->i_size
= OFFSET_MAX
;
2115 inode
->i_mapping
->a_ops
= &btree_aops
;
2117 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
2118 extent_io_tree_init(fs_info
, &BTRFS_I(inode
)->io_tree
,
2119 IO_TREE_INODE_IO
, inode
);
2120 BTRFS_I(inode
)->io_tree
.track_uptodate
= false;
2121 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
);
2123 BTRFS_I(inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2125 BTRFS_I(inode
)->root
= btrfs_grab_root(fs_info
->tree_root
);
2126 memset(&BTRFS_I(inode
)->location
, 0, sizeof(struct btrfs_key
));
2127 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
2128 btrfs_insert_inode_hash(inode
);
2131 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info
*fs_info
)
2133 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2134 init_rwsem(&fs_info
->dev_replace
.rwsem
);
2135 init_waitqueue_head(&fs_info
->dev_replace
.replace_wait
);
2138 static void btrfs_init_qgroup(struct btrfs_fs_info
*fs_info
)
2140 spin_lock_init(&fs_info
->qgroup_lock
);
2141 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2142 fs_info
->qgroup_tree
= RB_ROOT
;
2143 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2144 fs_info
->qgroup_seq
= 1;
2145 fs_info
->qgroup_ulist
= NULL
;
2146 fs_info
->qgroup_rescan_running
= false;
2147 mutex_init(&fs_info
->qgroup_rescan_lock
);
2150 static int btrfs_init_workqueues(struct btrfs_fs_info
*fs_info
,
2151 struct btrfs_fs_devices
*fs_devices
)
2153 u32 max_active
= fs_info
->thread_pool_size
;
2154 unsigned int flags
= WQ_MEM_RECLAIM
| WQ_FREEZABLE
| WQ_UNBOUND
;
2157 btrfs_alloc_workqueue(fs_info
, "worker",
2158 flags
| WQ_HIGHPRI
, max_active
, 16);
2160 fs_info
->delalloc_workers
=
2161 btrfs_alloc_workqueue(fs_info
, "delalloc",
2162 flags
, max_active
, 2);
2164 fs_info
->flush_workers
=
2165 btrfs_alloc_workqueue(fs_info
, "flush_delalloc",
2166 flags
, max_active
, 0);
2168 fs_info
->caching_workers
=
2169 btrfs_alloc_workqueue(fs_info
, "cache", flags
, max_active
, 0);
2171 fs_info
->fixup_workers
=
2172 btrfs_alloc_workqueue(fs_info
, "fixup", flags
, 1, 0);
2175 * endios are largely parallel and should have a very
2178 fs_info
->endio_workers
=
2179 btrfs_alloc_workqueue(fs_info
, "endio", flags
, max_active
, 4);
2180 fs_info
->endio_meta_workers
=
2181 btrfs_alloc_workqueue(fs_info
, "endio-meta", flags
,
2183 fs_info
->endio_meta_write_workers
=
2184 btrfs_alloc_workqueue(fs_info
, "endio-meta-write", flags
,
2186 fs_info
->endio_raid56_workers
=
2187 btrfs_alloc_workqueue(fs_info
, "endio-raid56", flags
,
2189 fs_info
->rmw_workers
=
2190 btrfs_alloc_workqueue(fs_info
, "rmw", flags
, max_active
, 2);
2191 fs_info
->endio_write_workers
=
2192 btrfs_alloc_workqueue(fs_info
, "endio-write", flags
,
2194 fs_info
->endio_freespace_worker
=
2195 btrfs_alloc_workqueue(fs_info
, "freespace-write", flags
,
2197 fs_info
->delayed_workers
=
2198 btrfs_alloc_workqueue(fs_info
, "delayed-meta", flags
,
2200 fs_info
->readahead_workers
=
2201 btrfs_alloc_workqueue(fs_info
, "readahead", flags
,
2203 fs_info
->qgroup_rescan_workers
=
2204 btrfs_alloc_workqueue(fs_info
, "qgroup-rescan", flags
, 1, 0);
2205 fs_info
->discard_ctl
.discard_workers
=
2206 alloc_workqueue("btrfs_discard", WQ_UNBOUND
| WQ_FREEZABLE
, 1);
2208 if (!(fs_info
->workers
&& fs_info
->delalloc_workers
&&
2209 fs_info
->flush_workers
&&
2210 fs_info
->endio_workers
&& fs_info
->endio_meta_workers
&&
2211 fs_info
->endio_meta_write_workers
&&
2212 fs_info
->endio_write_workers
&& fs_info
->endio_raid56_workers
&&
2213 fs_info
->endio_freespace_worker
&& fs_info
->rmw_workers
&&
2214 fs_info
->caching_workers
&& fs_info
->readahead_workers
&&
2215 fs_info
->fixup_workers
&& fs_info
->delayed_workers
&&
2216 fs_info
->qgroup_rescan_workers
&&
2217 fs_info
->discard_ctl
.discard_workers
)) {
2224 static int btrfs_init_csum_hash(struct btrfs_fs_info
*fs_info
, u16 csum_type
)
2226 struct crypto_shash
*csum_shash
;
2227 const char *csum_driver
= btrfs_super_csum_driver(csum_type
);
2229 csum_shash
= crypto_alloc_shash(csum_driver
, 0, 0);
2231 if (IS_ERR(csum_shash
)) {
2232 btrfs_err(fs_info
, "error allocating %s hash for checksum",
2234 return PTR_ERR(csum_shash
);
2237 fs_info
->csum_shash
= csum_shash
;
2242 static int btrfs_replay_log(struct btrfs_fs_info
*fs_info
,
2243 struct btrfs_fs_devices
*fs_devices
)
2246 struct btrfs_root
*log_tree_root
;
2247 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2248 u64 bytenr
= btrfs_super_log_root(disk_super
);
2249 int level
= btrfs_super_log_root_level(disk_super
);
2251 if (fs_devices
->rw_devices
== 0) {
2252 btrfs_warn(fs_info
, "log replay required on RO media");
2256 log_tree_root
= btrfs_alloc_root(fs_info
, BTRFS_TREE_LOG_OBJECTID
,
2261 log_tree_root
->node
= read_tree_block(fs_info
, bytenr
,
2262 fs_info
->generation
+ 1,
2264 if (IS_ERR(log_tree_root
->node
)) {
2265 btrfs_warn(fs_info
, "failed to read log tree");
2266 ret
= PTR_ERR(log_tree_root
->node
);
2267 log_tree_root
->node
= NULL
;
2268 btrfs_put_root(log_tree_root
);
2270 } else if (!extent_buffer_uptodate(log_tree_root
->node
)) {
2271 btrfs_err(fs_info
, "failed to read log tree");
2272 btrfs_put_root(log_tree_root
);
2275 /* returns with log_tree_root freed on success */
2276 ret
= btrfs_recover_log_trees(log_tree_root
);
2278 btrfs_handle_fs_error(fs_info
, ret
,
2279 "Failed to recover log tree");
2280 btrfs_put_root(log_tree_root
);
2284 if (sb_rdonly(fs_info
->sb
)) {
2285 ret
= btrfs_commit_super(fs_info
);
2293 static int btrfs_read_roots(struct btrfs_fs_info
*fs_info
)
2295 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2296 struct btrfs_root
*root
;
2297 struct btrfs_key location
;
2300 BUG_ON(!fs_info
->tree_root
);
2302 location
.objectid
= BTRFS_EXTENT_TREE_OBJECTID
;
2303 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2304 location
.offset
= 0;
2306 root
= btrfs_read_tree_root(tree_root
, &location
);
2308 ret
= PTR_ERR(root
);
2311 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2312 fs_info
->extent_root
= root
;
2314 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2315 root
= btrfs_read_tree_root(tree_root
, &location
);
2317 ret
= PTR_ERR(root
);
2320 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2321 fs_info
->dev_root
= root
;
2322 btrfs_init_devices_late(fs_info
);
2324 location
.objectid
= BTRFS_CSUM_TREE_OBJECTID
;
2325 root
= btrfs_read_tree_root(tree_root
, &location
);
2327 ret
= PTR_ERR(root
);
2330 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2331 fs_info
->csum_root
= root
;
2334 * This tree can share blocks with some other fs tree during relocation
2335 * and we need a proper setup by btrfs_get_fs_root
2337 root
= btrfs_get_fs_root(tree_root
->fs_info
,
2338 BTRFS_DATA_RELOC_TREE_OBJECTID
, true);
2340 ret
= PTR_ERR(root
);
2343 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2344 fs_info
->data_reloc_root
= root
;
2346 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2347 root
= btrfs_read_tree_root(tree_root
, &location
);
2348 if (!IS_ERR(root
)) {
2349 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2350 set_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
);
2351 fs_info
->quota_root
= root
;
2354 location
.objectid
= BTRFS_UUID_TREE_OBJECTID
;
2355 root
= btrfs_read_tree_root(tree_root
, &location
);
2357 ret
= PTR_ERR(root
);
2361 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2362 fs_info
->uuid_root
= root
;
2365 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
2366 location
.objectid
= BTRFS_FREE_SPACE_TREE_OBJECTID
;
2367 root
= btrfs_read_tree_root(tree_root
, &location
);
2369 ret
= PTR_ERR(root
);
2372 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2373 fs_info
->free_space_root
= root
;
2378 btrfs_warn(fs_info
, "failed to read root (objectid=%llu): %d",
2379 location
.objectid
, ret
);
2384 * Real super block validation
2385 * NOTE: super csum type and incompat features will not be checked here.
2387 * @sb: super block to check
2388 * @mirror_num: the super block number to check its bytenr:
2389 * 0 the primary (1st) sb
2390 * 1, 2 2nd and 3rd backup copy
2391 * -1 skip bytenr check
2393 static int validate_super(struct btrfs_fs_info
*fs_info
,
2394 struct btrfs_super_block
*sb
, int mirror_num
)
2396 u64 nodesize
= btrfs_super_nodesize(sb
);
2397 u64 sectorsize
= btrfs_super_sectorsize(sb
);
2400 if (btrfs_super_magic(sb
) != BTRFS_MAGIC
) {
2401 btrfs_err(fs_info
, "no valid FS found");
2404 if (btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
) {
2405 btrfs_err(fs_info
, "unrecognized or unsupported super flag: %llu",
2406 btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
);
2409 if (btrfs_super_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2410 btrfs_err(fs_info
, "tree_root level too big: %d >= %d",
2411 btrfs_super_root_level(sb
), BTRFS_MAX_LEVEL
);
2414 if (btrfs_super_chunk_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2415 btrfs_err(fs_info
, "chunk_root level too big: %d >= %d",
2416 btrfs_super_chunk_root_level(sb
), BTRFS_MAX_LEVEL
);
2419 if (btrfs_super_log_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2420 btrfs_err(fs_info
, "log_root level too big: %d >= %d",
2421 btrfs_super_log_root_level(sb
), BTRFS_MAX_LEVEL
);
2426 * Check sectorsize and nodesize first, other check will need it.
2427 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2429 if (!is_power_of_2(sectorsize
) || sectorsize
< 4096 ||
2430 sectorsize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
2431 btrfs_err(fs_info
, "invalid sectorsize %llu", sectorsize
);
2434 /* Only PAGE SIZE is supported yet */
2435 if (sectorsize
!= PAGE_SIZE
) {
2437 "sectorsize %llu not supported yet, only support %lu",
2438 sectorsize
, PAGE_SIZE
);
2441 if (!is_power_of_2(nodesize
) || nodesize
< sectorsize
||
2442 nodesize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
2443 btrfs_err(fs_info
, "invalid nodesize %llu", nodesize
);
2446 if (nodesize
!= le32_to_cpu(sb
->__unused_leafsize
)) {
2447 btrfs_err(fs_info
, "invalid leafsize %u, should be %llu",
2448 le32_to_cpu(sb
->__unused_leafsize
), nodesize
);
2452 /* Root alignment check */
2453 if (!IS_ALIGNED(btrfs_super_root(sb
), sectorsize
)) {
2454 btrfs_warn(fs_info
, "tree_root block unaligned: %llu",
2455 btrfs_super_root(sb
));
2458 if (!IS_ALIGNED(btrfs_super_chunk_root(sb
), sectorsize
)) {
2459 btrfs_warn(fs_info
, "chunk_root block unaligned: %llu",
2460 btrfs_super_chunk_root(sb
));
2463 if (!IS_ALIGNED(btrfs_super_log_root(sb
), sectorsize
)) {
2464 btrfs_warn(fs_info
, "log_root block unaligned: %llu",
2465 btrfs_super_log_root(sb
));
2469 if (memcmp(fs_info
->fs_devices
->metadata_uuid
, sb
->dev_item
.fsid
,
2470 BTRFS_FSID_SIZE
) != 0) {
2472 "dev_item UUID does not match metadata fsid: %pU != %pU",
2473 fs_info
->fs_devices
->metadata_uuid
, sb
->dev_item
.fsid
);
2478 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2481 if (btrfs_super_bytes_used(sb
) < 6 * btrfs_super_nodesize(sb
)) {
2482 btrfs_err(fs_info
, "bytes_used is too small %llu",
2483 btrfs_super_bytes_used(sb
));
2486 if (!is_power_of_2(btrfs_super_stripesize(sb
))) {
2487 btrfs_err(fs_info
, "invalid stripesize %u",
2488 btrfs_super_stripesize(sb
));
2491 if (btrfs_super_num_devices(sb
) > (1UL << 31))
2492 btrfs_warn(fs_info
, "suspicious number of devices: %llu",
2493 btrfs_super_num_devices(sb
));
2494 if (btrfs_super_num_devices(sb
) == 0) {
2495 btrfs_err(fs_info
, "number of devices is 0");
2499 if (mirror_num
>= 0 &&
2500 btrfs_super_bytenr(sb
) != btrfs_sb_offset(mirror_num
)) {
2501 btrfs_err(fs_info
, "super offset mismatch %llu != %u",
2502 btrfs_super_bytenr(sb
), BTRFS_SUPER_INFO_OFFSET
);
2507 * Obvious sys_chunk_array corruptions, it must hold at least one key
2510 if (btrfs_super_sys_array_size(sb
) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
2511 btrfs_err(fs_info
, "system chunk array too big %u > %u",
2512 btrfs_super_sys_array_size(sb
),
2513 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
);
2516 if (btrfs_super_sys_array_size(sb
) < sizeof(struct btrfs_disk_key
)
2517 + sizeof(struct btrfs_chunk
)) {
2518 btrfs_err(fs_info
, "system chunk array too small %u < %zu",
2519 btrfs_super_sys_array_size(sb
),
2520 sizeof(struct btrfs_disk_key
)
2521 + sizeof(struct btrfs_chunk
));
2526 * The generation is a global counter, we'll trust it more than the others
2527 * but it's still possible that it's the one that's wrong.
2529 if (btrfs_super_generation(sb
) < btrfs_super_chunk_root_generation(sb
))
2531 "suspicious: generation < chunk_root_generation: %llu < %llu",
2532 btrfs_super_generation(sb
),
2533 btrfs_super_chunk_root_generation(sb
));
2534 if (btrfs_super_generation(sb
) < btrfs_super_cache_generation(sb
)
2535 && btrfs_super_cache_generation(sb
) != (u64
)-1)
2537 "suspicious: generation < cache_generation: %llu < %llu",
2538 btrfs_super_generation(sb
),
2539 btrfs_super_cache_generation(sb
));
2545 * Validation of super block at mount time.
2546 * Some checks already done early at mount time, like csum type and incompat
2547 * flags will be skipped.
2549 static int btrfs_validate_mount_super(struct btrfs_fs_info
*fs_info
)
2551 return validate_super(fs_info
, fs_info
->super_copy
, 0);
2555 * Validation of super block at write time.
2556 * Some checks like bytenr check will be skipped as their values will be
2558 * Extra checks like csum type and incompat flags will be done here.
2560 static int btrfs_validate_write_super(struct btrfs_fs_info
*fs_info
,
2561 struct btrfs_super_block
*sb
)
2565 ret
= validate_super(fs_info
, sb
, -1);
2568 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb
))) {
2570 btrfs_err(fs_info
, "invalid csum type, has %u want %u",
2571 btrfs_super_csum_type(sb
), BTRFS_CSUM_TYPE_CRC32
);
2574 if (btrfs_super_incompat_flags(sb
) & ~BTRFS_FEATURE_INCOMPAT_SUPP
) {
2577 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2578 btrfs_super_incompat_flags(sb
),
2579 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP
);
2585 "super block corruption detected before writing it to disk");
2589 static int __cold
init_tree_roots(struct btrfs_fs_info
*fs_info
)
2591 int backup_index
= find_newest_super_backup(fs_info
);
2592 struct btrfs_super_block
*sb
= fs_info
->super_copy
;
2593 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2594 bool handle_error
= false;
2598 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
2603 if (!IS_ERR(tree_root
->node
))
2604 free_extent_buffer(tree_root
->node
);
2605 tree_root
->node
= NULL
;
2607 if (!btrfs_test_opt(fs_info
, USEBACKUPROOT
))
2610 free_root_pointers(fs_info
, 0);
2613 * Don't use the log in recovery mode, it won't be
2616 btrfs_set_super_log_root(sb
, 0);
2618 /* We can't trust the free space cache either */
2619 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
2621 ret
= read_backup_root(fs_info
, i
);
2626 generation
= btrfs_super_generation(sb
);
2627 level
= btrfs_super_root_level(sb
);
2628 tree_root
->node
= read_tree_block(fs_info
, btrfs_super_root(sb
),
2629 generation
, level
, NULL
);
2630 if (IS_ERR(tree_root
->node
) ||
2631 !extent_buffer_uptodate(tree_root
->node
)) {
2632 handle_error
= true;
2634 if (IS_ERR(tree_root
->node
)) {
2635 ret
= PTR_ERR(tree_root
->node
);
2636 tree_root
->node
= NULL
;
2637 } else if (!extent_buffer_uptodate(tree_root
->node
)) {
2641 btrfs_warn(fs_info
, "failed to read tree root");
2645 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2646 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2647 btrfs_set_root_refs(&tree_root
->root_item
, 1);
2650 * No need to hold btrfs_root::objectid_mutex since the fs
2651 * hasn't been fully initialised and we are the only user
2653 ret
= btrfs_find_highest_objectid(tree_root
,
2654 &tree_root
->highest_objectid
);
2656 handle_error
= true;
2660 ASSERT(tree_root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
2662 ret
= btrfs_read_roots(fs_info
);
2664 handle_error
= true;
2668 /* All successful */
2669 fs_info
->generation
= generation
;
2670 fs_info
->last_trans_committed
= generation
;
2672 /* Always begin writing backup roots after the one being used */
2673 if (backup_index
< 0) {
2674 fs_info
->backup_root_index
= 0;
2676 fs_info
->backup_root_index
= backup_index
+ 1;
2677 fs_info
->backup_root_index
%= BTRFS_NUM_BACKUP_ROOTS
;
2685 void btrfs_init_fs_info(struct btrfs_fs_info
*fs_info
)
2687 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2688 INIT_RADIX_TREE(&fs_info
->buffer_radix
, GFP_ATOMIC
);
2689 INIT_LIST_HEAD(&fs_info
->trans_list
);
2690 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2691 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2692 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2693 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2694 spin_lock_init(&fs_info
->delalloc_root_lock
);
2695 spin_lock_init(&fs_info
->trans_lock
);
2696 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2697 spin_lock_init(&fs_info
->delayed_iput_lock
);
2698 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2699 spin_lock_init(&fs_info
->super_lock
);
2700 spin_lock_init(&fs_info
->buffer_lock
);
2701 spin_lock_init(&fs_info
->unused_bgs_lock
);
2702 rwlock_init(&fs_info
->tree_mod_log_lock
);
2703 mutex_init(&fs_info
->unused_bg_unpin_mutex
);
2704 mutex_init(&fs_info
->delete_unused_bgs_mutex
);
2705 mutex_init(&fs_info
->reloc_mutex
);
2706 mutex_init(&fs_info
->delalloc_root_mutex
);
2707 seqlock_init(&fs_info
->profiles_lock
);
2709 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2710 INIT_LIST_HEAD(&fs_info
->space_info
);
2711 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2712 INIT_LIST_HEAD(&fs_info
->unused_bgs
);
2713 #ifdef CONFIG_BTRFS_DEBUG
2714 INIT_LIST_HEAD(&fs_info
->allocated_roots
);
2715 INIT_LIST_HEAD(&fs_info
->allocated_ebs
);
2716 spin_lock_init(&fs_info
->eb_leak_lock
);
2718 extent_map_tree_init(&fs_info
->mapping_tree
);
2719 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2720 BTRFS_BLOCK_RSV_GLOBAL
);
2721 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2722 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2723 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2724 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2725 BTRFS_BLOCK_RSV_DELOPS
);
2726 btrfs_init_block_rsv(&fs_info
->delayed_refs_rsv
,
2727 BTRFS_BLOCK_RSV_DELREFS
);
2729 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2730 atomic_set(&fs_info
->defrag_running
, 0);
2731 atomic_set(&fs_info
->reada_works_cnt
, 0);
2732 atomic_set(&fs_info
->nr_delayed_iputs
, 0);
2733 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2734 fs_info
->max_inline
= BTRFS_DEFAULT_MAX_INLINE
;
2735 fs_info
->metadata_ratio
= 0;
2736 fs_info
->defrag_inodes
= RB_ROOT
;
2737 atomic64_set(&fs_info
->free_chunk_space
, 0);
2738 fs_info
->tree_mod_log
= RB_ROOT
;
2739 fs_info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
2740 fs_info
->avg_delayed_ref_runtime
= NSEC_PER_SEC
>> 6; /* div by 64 */
2741 /* readahead state */
2742 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
2743 spin_lock_init(&fs_info
->reada_lock
);
2744 btrfs_init_ref_verify(fs_info
);
2746 fs_info
->thread_pool_size
= min_t(unsigned long,
2747 num_online_cpus() + 2, 8);
2749 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2750 spin_lock_init(&fs_info
->ordered_root_lock
);
2752 btrfs_init_scrub(fs_info
);
2753 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2754 fs_info
->check_integrity_print_mask
= 0;
2756 btrfs_init_balance(fs_info
);
2757 btrfs_init_async_reclaim_work(&fs_info
->async_reclaim_work
);
2759 spin_lock_init(&fs_info
->block_group_cache_lock
);
2760 fs_info
->block_group_cache_tree
= RB_ROOT
;
2761 fs_info
->first_logical_byte
= (u64
)-1;
2763 extent_io_tree_init(fs_info
, &fs_info
->excluded_extents
,
2764 IO_TREE_FS_EXCLUDED_EXTENTS
, NULL
);
2765 set_bit(BTRFS_FS_BARRIER
, &fs_info
->flags
);
2767 mutex_init(&fs_info
->ordered_operations_mutex
);
2768 mutex_init(&fs_info
->tree_log_mutex
);
2769 mutex_init(&fs_info
->chunk_mutex
);
2770 mutex_init(&fs_info
->transaction_kthread_mutex
);
2771 mutex_init(&fs_info
->cleaner_mutex
);
2772 mutex_init(&fs_info
->ro_block_group_mutex
);
2773 init_rwsem(&fs_info
->commit_root_sem
);
2774 init_rwsem(&fs_info
->cleanup_work_sem
);
2775 init_rwsem(&fs_info
->subvol_sem
);
2776 sema_init(&fs_info
->uuid_tree_rescan_sem
, 1);
2778 btrfs_init_dev_replace_locks(fs_info
);
2779 btrfs_init_qgroup(fs_info
);
2780 btrfs_discard_init(fs_info
);
2782 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2783 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2785 init_waitqueue_head(&fs_info
->transaction_throttle
);
2786 init_waitqueue_head(&fs_info
->transaction_wait
);
2787 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2788 init_waitqueue_head(&fs_info
->async_submit_wait
);
2789 init_waitqueue_head(&fs_info
->delayed_iputs_wait
);
2791 /* Usable values until the real ones are cached from the superblock */
2792 fs_info
->nodesize
= 4096;
2793 fs_info
->sectorsize
= 4096;
2794 fs_info
->stripesize
= 4096;
2796 spin_lock_init(&fs_info
->swapfile_pins_lock
);
2797 fs_info
->swapfile_pins
= RB_ROOT
;
2799 fs_info
->send_in_progress
= 0;
2802 static int init_mount_fs_info(struct btrfs_fs_info
*fs_info
, struct super_block
*sb
)
2807 sb
->s_blocksize
= BTRFS_BDEV_BLOCKSIZE
;
2808 sb
->s_blocksize_bits
= blksize_bits(BTRFS_BDEV_BLOCKSIZE
);
2810 ret
= percpu_counter_init(&fs_info
->dio_bytes
, 0, GFP_KERNEL
);
2814 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0, GFP_KERNEL
);
2818 fs_info
->dirty_metadata_batch
= PAGE_SIZE
*
2819 (1 + ilog2(nr_cpu_ids
));
2821 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0, GFP_KERNEL
);
2825 ret
= percpu_counter_init(&fs_info
->dev_replace
.bio_counter
, 0,
2830 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2832 if (!fs_info
->delayed_root
)
2834 btrfs_init_delayed_root(fs_info
->delayed_root
);
2836 return btrfs_alloc_stripe_hash_table(fs_info
);
2839 static int btrfs_uuid_rescan_kthread(void *data
)
2841 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
2845 * 1st step is to iterate through the existing UUID tree and
2846 * to delete all entries that contain outdated data.
2847 * 2nd step is to add all missing entries to the UUID tree.
2849 ret
= btrfs_uuid_tree_iterate(fs_info
);
2852 btrfs_warn(fs_info
, "iterating uuid_tree failed %d",
2854 up(&fs_info
->uuid_tree_rescan_sem
);
2857 return btrfs_uuid_scan_kthread(data
);
2860 static int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
2862 struct task_struct
*task
;
2864 down(&fs_info
->uuid_tree_rescan_sem
);
2865 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
2867 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2868 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
2869 up(&fs_info
->uuid_tree_rescan_sem
);
2870 return PTR_ERR(task
);
2876 int __cold
open_ctree(struct super_block
*sb
, struct btrfs_fs_devices
*fs_devices
,
2885 struct btrfs_super_block
*disk_super
;
2886 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2887 struct btrfs_root
*tree_root
;
2888 struct btrfs_root
*chunk_root
;
2891 int clear_free_space_tree
= 0;
2894 ret
= init_mount_fs_info(fs_info
, sb
);
2900 /* These need to be init'ed before we start creating inodes and such. */
2901 tree_root
= btrfs_alloc_root(fs_info
, BTRFS_ROOT_TREE_OBJECTID
,
2903 fs_info
->tree_root
= tree_root
;
2904 chunk_root
= btrfs_alloc_root(fs_info
, BTRFS_CHUNK_TREE_OBJECTID
,
2906 fs_info
->chunk_root
= chunk_root
;
2907 if (!tree_root
|| !chunk_root
) {
2912 fs_info
->btree_inode
= new_inode(sb
);
2913 if (!fs_info
->btree_inode
) {
2917 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2918 btrfs_init_btree_inode(fs_info
);
2920 invalidate_bdev(fs_devices
->latest_bdev
);
2923 * Read super block and check the signature bytes only
2925 disk_super
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2926 if (IS_ERR(disk_super
)) {
2927 err
= PTR_ERR(disk_super
);
2932 * Verify the type first, if that or the the checksum value are
2933 * corrupted, we'll find out
2935 csum_type
= btrfs_super_csum_type(disk_super
);
2936 if (!btrfs_supported_super_csum(csum_type
)) {
2937 btrfs_err(fs_info
, "unsupported checksum algorithm: %u",
2940 btrfs_release_disk_super(disk_super
);
2944 ret
= btrfs_init_csum_hash(fs_info
, csum_type
);
2947 btrfs_release_disk_super(disk_super
);
2952 * We want to check superblock checksum, the type is stored inside.
2953 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2955 if (btrfs_check_super_csum(fs_info
, (u8
*)disk_super
)) {
2956 btrfs_err(fs_info
, "superblock checksum mismatch");
2958 btrfs_release_disk_super(disk_super
);
2963 * super_copy is zeroed at allocation time and we never touch the
2964 * following bytes up to INFO_SIZE, the checksum is calculated from
2965 * the whole block of INFO_SIZE
2967 memcpy(fs_info
->super_copy
, disk_super
, sizeof(*fs_info
->super_copy
));
2968 btrfs_release_disk_super(disk_super
);
2970 disk_super
= fs_info
->super_copy
;
2972 ASSERT(!memcmp(fs_info
->fs_devices
->fsid
, fs_info
->super_copy
->fsid
,
2975 if (btrfs_fs_incompat(fs_info
, METADATA_UUID
)) {
2976 ASSERT(!memcmp(fs_info
->fs_devices
->metadata_uuid
,
2977 fs_info
->super_copy
->metadata_uuid
,
2981 features
= btrfs_super_flags(disk_super
);
2982 if (features
& BTRFS_SUPER_FLAG_CHANGING_FSID_V2
) {
2983 features
&= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2
;
2984 btrfs_set_super_flags(disk_super
, features
);
2986 "found metadata UUID change in progress flag, clearing");
2989 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2990 sizeof(*fs_info
->super_for_commit
));
2992 ret
= btrfs_validate_mount_super(fs_info
);
2994 btrfs_err(fs_info
, "superblock contains fatal errors");
2999 if (!btrfs_super_root(disk_super
))
3002 /* check FS state, whether FS is broken. */
3003 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
3004 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
3007 * In the long term, we'll store the compression type in the super
3008 * block, and it'll be used for per file compression control.
3010 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
3012 ret
= btrfs_parse_options(fs_info
, options
, sb
->s_flags
);
3018 features
= btrfs_super_incompat_flags(disk_super
) &
3019 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
3022 "cannot mount because of unsupported optional features (%llx)",
3028 features
= btrfs_super_incompat_flags(disk_super
);
3029 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
3030 if (fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
3031 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
3032 else if (fs_info
->compress_type
== BTRFS_COMPRESS_ZSTD
)
3033 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD
;
3035 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
3036 btrfs_info(fs_info
, "has skinny extents");
3039 * flag our filesystem as having big metadata blocks if
3040 * they are bigger than the page size
3042 if (btrfs_super_nodesize(disk_super
) > PAGE_SIZE
) {
3043 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
3045 "flagging fs with big metadata feature");
3046 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
3049 nodesize
= btrfs_super_nodesize(disk_super
);
3050 sectorsize
= btrfs_super_sectorsize(disk_super
);
3051 stripesize
= sectorsize
;
3052 fs_info
->dirty_metadata_batch
= nodesize
* (1 + ilog2(nr_cpu_ids
));
3053 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
3055 /* Cache block sizes */
3056 fs_info
->nodesize
= nodesize
;
3057 fs_info
->sectorsize
= sectorsize
;
3058 fs_info
->stripesize
= stripesize
;
3061 * mixed block groups end up with duplicate but slightly offset
3062 * extent buffers for the same range. It leads to corruptions
3064 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
3065 (sectorsize
!= nodesize
)) {
3067 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3068 nodesize
, sectorsize
);
3073 * Needn't use the lock because there is no other task which will
3076 btrfs_set_super_incompat_flags(disk_super
, features
);
3078 features
= btrfs_super_compat_ro_flags(disk_super
) &
3079 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
3080 if (!sb_rdonly(sb
) && features
) {
3082 "cannot mount read-write because of unsupported optional features (%llx)",
3088 ret
= btrfs_init_workqueues(fs_info
, fs_devices
);
3091 goto fail_sb_buffer
;
3094 sb
->s_bdi
->capabilities
|= BDI_CAP_CGROUP_WRITEBACK
;
3095 sb
->s_bdi
->ra_pages
= VM_READAHEAD_PAGES
;
3096 sb
->s_bdi
->ra_pages
*= btrfs_super_num_devices(disk_super
);
3097 sb
->s_bdi
->ra_pages
= max(sb
->s_bdi
->ra_pages
, SZ_4M
/ PAGE_SIZE
);
3099 sb
->s_blocksize
= sectorsize
;
3100 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
3101 memcpy(&sb
->s_uuid
, fs_info
->fs_devices
->fsid
, BTRFS_FSID_SIZE
);
3103 mutex_lock(&fs_info
->chunk_mutex
);
3104 ret
= btrfs_read_sys_array(fs_info
);
3105 mutex_unlock(&fs_info
->chunk_mutex
);
3107 btrfs_err(fs_info
, "failed to read the system array: %d", ret
);
3108 goto fail_sb_buffer
;
3111 generation
= btrfs_super_chunk_root_generation(disk_super
);
3112 level
= btrfs_super_chunk_root_level(disk_super
);
3114 chunk_root
->node
= read_tree_block(fs_info
,
3115 btrfs_super_chunk_root(disk_super
),
3116 generation
, level
, NULL
);
3117 if (IS_ERR(chunk_root
->node
) ||
3118 !extent_buffer_uptodate(chunk_root
->node
)) {
3119 btrfs_err(fs_info
, "failed to read chunk root");
3120 if (!IS_ERR(chunk_root
->node
))
3121 free_extent_buffer(chunk_root
->node
);
3122 chunk_root
->node
= NULL
;
3123 goto fail_tree_roots
;
3125 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
3126 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
3128 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
3129 offsetof(struct btrfs_header
, chunk_tree_uuid
),
3132 ret
= btrfs_read_chunk_tree(fs_info
);
3134 btrfs_err(fs_info
, "failed to read chunk tree: %d", ret
);
3135 goto fail_tree_roots
;
3139 * Keep the devid that is marked to be the target device for the
3140 * device replace procedure
3142 btrfs_free_extra_devids(fs_devices
, 0);
3144 if (!fs_devices
->latest_bdev
) {
3145 btrfs_err(fs_info
, "failed to read devices");
3146 goto fail_tree_roots
;
3149 ret
= init_tree_roots(fs_info
);
3151 goto fail_tree_roots
;
3154 * If we have a uuid root and we're not being told to rescan we need to
3155 * check the generation here so we can set the
3156 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3157 * transaction during a balance or the log replay without updating the
3158 * uuid generation, and then if we crash we would rescan the uuid tree,
3159 * even though it was perfectly fine.
3161 if (fs_info
->uuid_root
&& !btrfs_test_opt(fs_info
, RESCAN_UUID_TREE
) &&
3162 fs_info
->generation
== btrfs_super_uuid_tree_generation(disk_super
))
3163 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
3165 ret
= btrfs_verify_dev_extents(fs_info
);
3168 "failed to verify dev extents against chunks: %d",
3170 goto fail_block_groups
;
3172 ret
= btrfs_recover_balance(fs_info
);
3174 btrfs_err(fs_info
, "failed to recover balance: %d", ret
);
3175 goto fail_block_groups
;
3178 ret
= btrfs_init_dev_stats(fs_info
);
3180 btrfs_err(fs_info
, "failed to init dev_stats: %d", ret
);
3181 goto fail_block_groups
;
3184 ret
= btrfs_init_dev_replace(fs_info
);
3186 btrfs_err(fs_info
, "failed to init dev_replace: %d", ret
);
3187 goto fail_block_groups
;
3190 btrfs_free_extra_devids(fs_devices
, 1);
3192 ret
= btrfs_sysfs_add_fsid(fs_devices
);
3194 btrfs_err(fs_info
, "failed to init sysfs fsid interface: %d",
3196 goto fail_block_groups
;
3199 ret
= btrfs_sysfs_add_mounted(fs_info
);
3201 btrfs_err(fs_info
, "failed to init sysfs interface: %d", ret
);
3202 goto fail_fsdev_sysfs
;
3205 ret
= btrfs_init_space_info(fs_info
);
3207 btrfs_err(fs_info
, "failed to initialize space info: %d", ret
);
3211 ret
= btrfs_read_block_groups(fs_info
);
3213 btrfs_err(fs_info
, "failed to read block groups: %d", ret
);
3217 if (!sb_rdonly(sb
) && !btrfs_check_rw_degradable(fs_info
, NULL
)) {
3219 "writable mount is not allowed due to too many missing devices");
3223 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
3225 if (IS_ERR(fs_info
->cleaner_kthread
))
3228 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
3230 "btrfs-transaction");
3231 if (IS_ERR(fs_info
->transaction_kthread
))
3234 if (!btrfs_test_opt(fs_info
, NOSSD
) &&
3235 !fs_info
->fs_devices
->rotating
) {
3236 btrfs_set_and_info(fs_info
, SSD
, "enabling ssd optimizations");
3240 * Mount does not set all options immediately, we can do it now and do
3241 * not have to wait for transaction commit
3243 btrfs_apply_pending_changes(fs_info
);
3245 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3246 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
)) {
3247 ret
= btrfsic_mount(fs_info
, fs_devices
,
3248 btrfs_test_opt(fs_info
,
3249 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
3251 fs_info
->check_integrity_print_mask
);
3254 "failed to initialize integrity check module: %d",
3258 ret
= btrfs_read_qgroup_config(fs_info
);
3260 goto fail_trans_kthread
;
3262 if (btrfs_build_ref_tree(fs_info
))
3263 btrfs_err(fs_info
, "couldn't build ref tree");
3265 /* do not make disk changes in broken FS or nologreplay is given */
3266 if (btrfs_super_log_root(disk_super
) != 0 &&
3267 !btrfs_test_opt(fs_info
, NOLOGREPLAY
)) {
3268 btrfs_info(fs_info
, "start tree-log replay");
3269 ret
= btrfs_replay_log(fs_info
, fs_devices
);
3276 ret
= btrfs_find_orphan_roots(fs_info
);
3280 if (!sb_rdonly(sb
)) {
3281 ret
= btrfs_cleanup_fs_roots(fs_info
);
3285 mutex_lock(&fs_info
->cleaner_mutex
);
3286 ret
= btrfs_recover_relocation(tree_root
);
3287 mutex_unlock(&fs_info
->cleaner_mutex
);
3289 btrfs_warn(fs_info
, "failed to recover relocation: %d",
3296 fs_info
->fs_root
= btrfs_get_fs_root(fs_info
, BTRFS_FS_TREE_OBJECTID
, true);
3297 if (IS_ERR(fs_info
->fs_root
)) {
3298 err
= PTR_ERR(fs_info
->fs_root
);
3299 btrfs_warn(fs_info
, "failed to read fs tree: %d", err
);
3300 fs_info
->fs_root
= NULL
;
3307 if (btrfs_test_opt(fs_info
, CLEAR_CACHE
) &&
3308 btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3309 clear_free_space_tree
= 1;
3310 } else if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
) &&
3311 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE_VALID
)) {
3312 btrfs_warn(fs_info
, "free space tree is invalid");
3313 clear_free_space_tree
= 1;
3316 if (clear_free_space_tree
) {
3317 btrfs_info(fs_info
, "clearing free space tree");
3318 ret
= btrfs_clear_free_space_tree(fs_info
);
3321 "failed to clear free space tree: %d", ret
);
3322 close_ctree(fs_info
);
3327 if (btrfs_test_opt(fs_info
, FREE_SPACE_TREE
) &&
3328 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3329 btrfs_info(fs_info
, "creating free space tree");
3330 ret
= btrfs_create_free_space_tree(fs_info
);
3333 "failed to create free space tree: %d", ret
);
3334 close_ctree(fs_info
);
3339 down_read(&fs_info
->cleanup_work_sem
);
3340 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
3341 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
3342 up_read(&fs_info
->cleanup_work_sem
);
3343 close_ctree(fs_info
);
3346 up_read(&fs_info
->cleanup_work_sem
);
3348 ret
= btrfs_resume_balance_async(fs_info
);
3350 btrfs_warn(fs_info
, "failed to resume balance: %d", ret
);
3351 close_ctree(fs_info
);
3355 ret
= btrfs_resume_dev_replace_async(fs_info
);
3357 btrfs_warn(fs_info
, "failed to resume device replace: %d", ret
);
3358 close_ctree(fs_info
);
3362 btrfs_qgroup_rescan_resume(fs_info
);
3363 btrfs_discard_resume(fs_info
);
3365 if (!fs_info
->uuid_root
) {
3366 btrfs_info(fs_info
, "creating UUID tree");
3367 ret
= btrfs_create_uuid_tree(fs_info
);
3370 "failed to create the UUID tree: %d", ret
);
3371 close_ctree(fs_info
);
3374 } else if (btrfs_test_opt(fs_info
, RESCAN_UUID_TREE
) ||
3375 fs_info
->generation
!=
3376 btrfs_super_uuid_tree_generation(disk_super
)) {
3377 btrfs_info(fs_info
, "checking UUID tree");
3378 ret
= btrfs_check_uuid_tree(fs_info
);
3381 "failed to check the UUID tree: %d", ret
);
3382 close_ctree(fs_info
);
3386 set_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
3389 * backuproot only affect mount behavior, and if open_ctree succeeded,
3390 * no need to keep the flag
3392 btrfs_clear_opt(fs_info
->mount_opt
, USEBACKUPROOT
);
3397 btrfs_free_qgroup_config(fs_info
);
3399 kthread_stop(fs_info
->transaction_kthread
);
3400 btrfs_cleanup_transaction(fs_info
);
3401 btrfs_free_fs_roots(fs_info
);
3403 kthread_stop(fs_info
->cleaner_kthread
);
3406 * make sure we're done with the btree inode before we stop our
3409 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
3412 btrfs_sysfs_remove_mounted(fs_info
);
3415 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3418 btrfs_put_block_group_cache(fs_info
);
3421 free_root_pointers(fs_info
, true);
3422 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3425 btrfs_stop_all_workers(fs_info
);
3426 btrfs_free_block_groups(fs_info
);
3428 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3430 iput(fs_info
->btree_inode
);
3432 btrfs_close_devices(fs_info
->fs_devices
);
3435 ALLOW_ERROR_INJECTION(open_ctree
, ERRNO
);
3437 static void btrfs_end_super_write(struct bio
*bio
)
3439 struct btrfs_device
*device
= bio
->bi_private
;
3440 struct bio_vec
*bvec
;
3441 struct bvec_iter_all iter_all
;
3444 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
3445 page
= bvec
->bv_page
;
3447 if (bio
->bi_status
) {
3448 btrfs_warn_rl_in_rcu(device
->fs_info
,
3449 "lost page write due to IO error on %s (%d)",
3450 rcu_str_deref(device
->name
),
3451 blk_status_to_errno(bio
->bi_status
));
3452 ClearPageUptodate(page
);
3454 btrfs_dev_stat_inc_and_print(device
,
3455 BTRFS_DEV_STAT_WRITE_ERRS
);
3457 SetPageUptodate(page
);
3467 struct btrfs_super_block
*btrfs_read_dev_one_super(struct block_device
*bdev
,
3470 struct btrfs_super_block
*super
;
3473 struct address_space
*mapping
= bdev
->bd_inode
->i_mapping
;
3475 bytenr
= btrfs_sb_offset(copy_num
);
3476 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= i_size_read(bdev
->bd_inode
))
3477 return ERR_PTR(-EINVAL
);
3479 page
= read_cache_page_gfp(mapping
, bytenr
>> PAGE_SHIFT
, GFP_NOFS
);
3481 return ERR_CAST(page
);
3483 super
= page_address(page
);
3484 if (btrfs_super_bytenr(super
) != bytenr
||
3485 btrfs_super_magic(super
) != BTRFS_MAGIC
) {
3486 btrfs_release_disk_super(super
);
3487 return ERR_PTR(-EINVAL
);
3494 struct btrfs_super_block
*btrfs_read_dev_super(struct block_device
*bdev
)
3496 struct btrfs_super_block
*super
, *latest
= NULL
;
3500 /* we would like to check all the supers, but that would make
3501 * a btrfs mount succeed after a mkfs from a different FS.
3502 * So, we need to add a special mount option to scan for
3503 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3505 for (i
= 0; i
< 1; i
++) {
3506 super
= btrfs_read_dev_one_super(bdev
, i
);
3510 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3512 btrfs_release_disk_super(super
);
3515 transid
= btrfs_super_generation(super
);
3523 * Write superblock @sb to the @device. Do not wait for completion, all the
3524 * pages we use for writing are locked.
3526 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3527 * the expected device size at commit time. Note that max_mirrors must be
3528 * same for write and wait phases.
3530 * Return number of errors when page is not found or submission fails.
3532 static int write_dev_supers(struct btrfs_device
*device
,
3533 struct btrfs_super_block
*sb
, int max_mirrors
)
3535 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
3536 struct address_space
*mapping
= device
->bdev
->bd_inode
->i_mapping
;
3537 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
3542 if (max_mirrors
== 0)
3543 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3545 shash
->tfm
= fs_info
->csum_shash
;
3547 for (i
= 0; i
< max_mirrors
; i
++) {
3550 struct btrfs_super_block
*disk_super
;
3552 bytenr
= btrfs_sb_offset(i
);
3553 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3554 device
->commit_total_bytes
)
3557 btrfs_set_super_bytenr(sb
, bytenr
);
3559 crypto_shash_digest(shash
, (const char *)sb
+ BTRFS_CSUM_SIZE
,
3560 BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
,
3563 page
= find_or_create_page(mapping
, bytenr
>> PAGE_SHIFT
,
3566 btrfs_err(device
->fs_info
,
3567 "couldn't get super block page for bytenr %llu",
3573 /* Bump the refcount for wait_dev_supers() */
3576 disk_super
= page_address(page
);
3577 memcpy(disk_super
, sb
, BTRFS_SUPER_INFO_SIZE
);
3580 * Directly use bios here instead of relying on the page cache
3581 * to do I/O, so we don't lose the ability to do integrity
3584 bio
= bio_alloc(GFP_NOFS
, 1);
3585 bio_set_dev(bio
, device
->bdev
);
3586 bio
->bi_iter
.bi_sector
= bytenr
>> SECTOR_SHIFT
;
3587 bio
->bi_private
= device
;
3588 bio
->bi_end_io
= btrfs_end_super_write
;
3589 __bio_add_page(bio
, page
, BTRFS_SUPER_INFO_SIZE
,
3590 offset_in_page(bytenr
));
3593 * We FUA only the first super block. The others we allow to
3594 * go down lazy and there's a short window where the on-disk
3595 * copies might still contain the older version.
3597 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_META
| REQ_PRIO
;
3598 if (i
== 0 && !btrfs_test_opt(device
->fs_info
, NOBARRIER
))
3599 bio
->bi_opf
|= REQ_FUA
;
3601 btrfsic_submit_bio(bio
);
3603 return errors
< i
? 0 : -1;
3607 * Wait for write completion of superblocks done by write_dev_supers,
3608 * @max_mirrors same for write and wait phases.
3610 * Return number of errors when page is not found or not marked up to
3613 static int wait_dev_supers(struct btrfs_device
*device
, int max_mirrors
)
3617 bool primary_failed
= false;
3620 if (max_mirrors
== 0)
3621 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3623 for (i
= 0; i
< max_mirrors
; i
++) {
3626 bytenr
= btrfs_sb_offset(i
);
3627 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3628 device
->commit_total_bytes
)
3631 page
= find_get_page(device
->bdev
->bd_inode
->i_mapping
,
3632 bytenr
>> PAGE_SHIFT
);
3636 primary_failed
= true;
3639 /* Page is submitted locked and unlocked once the IO completes */
3640 wait_on_page_locked(page
);
3641 if (PageError(page
)) {
3644 primary_failed
= true;
3647 /* Drop our reference */
3650 /* Drop the reference from the writing run */
3654 /* log error, force error return */
3655 if (primary_failed
) {
3656 btrfs_err(device
->fs_info
, "error writing primary super block to device %llu",
3661 return errors
< i
? 0 : -1;
3665 * endio for the write_dev_flush, this will wake anyone waiting
3666 * for the barrier when it is done
3668 static void btrfs_end_empty_barrier(struct bio
*bio
)
3670 complete(bio
->bi_private
);
3674 * Submit a flush request to the device if it supports it. Error handling is
3675 * done in the waiting counterpart.
3677 static void write_dev_flush(struct btrfs_device
*device
)
3679 struct request_queue
*q
= bdev_get_queue(device
->bdev
);
3680 struct bio
*bio
= device
->flush_bio
;
3682 if (!test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
))
3686 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3687 bio_set_dev(bio
, device
->bdev
);
3688 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_PREFLUSH
;
3689 init_completion(&device
->flush_wait
);
3690 bio
->bi_private
= &device
->flush_wait
;
3692 btrfsic_submit_bio(bio
);
3693 set_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
);
3697 * If the flush bio has been submitted by write_dev_flush, wait for it.
3699 static blk_status_t
wait_dev_flush(struct btrfs_device
*device
)
3701 struct bio
*bio
= device
->flush_bio
;
3703 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
))
3706 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
);
3707 wait_for_completion_io(&device
->flush_wait
);
3709 return bio
->bi_status
;
3712 static int check_barrier_error(struct btrfs_fs_info
*fs_info
)
3714 if (!btrfs_check_rw_degradable(fs_info
, NULL
))
3720 * send an empty flush down to each device in parallel,
3721 * then wait for them
3723 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3725 struct list_head
*head
;
3726 struct btrfs_device
*dev
;
3727 int errors_wait
= 0;
3730 lockdep_assert_held(&info
->fs_devices
->device_list_mutex
);
3731 /* send down all the barriers */
3732 head
= &info
->fs_devices
->devices
;
3733 list_for_each_entry(dev
, head
, dev_list
) {
3734 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
3738 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3739 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3742 write_dev_flush(dev
);
3743 dev
->last_flush_error
= BLK_STS_OK
;
3746 /* wait for all the barriers */
3747 list_for_each_entry(dev
, head
, dev_list
) {
3748 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
3754 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3755 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3758 ret
= wait_dev_flush(dev
);
3760 dev
->last_flush_error
= ret
;
3761 btrfs_dev_stat_inc_and_print(dev
,
3762 BTRFS_DEV_STAT_FLUSH_ERRS
);
3769 * At some point we need the status of all disks
3770 * to arrive at the volume status. So error checking
3771 * is being pushed to a separate loop.
3773 return check_barrier_error(info
);
3778 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags
)
3781 int min_tolerated
= INT_MAX
;
3783 if ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 ||
3784 (flags
& BTRFS_AVAIL_ALLOC_BIT_SINGLE
))
3785 min_tolerated
= min_t(int, min_tolerated
,
3786 btrfs_raid_array
[BTRFS_RAID_SINGLE
].
3787 tolerated_failures
);
3789 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
3790 if (raid_type
== BTRFS_RAID_SINGLE
)
3792 if (!(flags
& btrfs_raid_array
[raid_type
].bg_flag
))
3794 min_tolerated
= min_t(int, min_tolerated
,
3795 btrfs_raid_array
[raid_type
].
3796 tolerated_failures
);
3799 if (min_tolerated
== INT_MAX
) {
3800 pr_warn("BTRFS: unknown raid flag: %llu", flags
);
3804 return min_tolerated
;
3807 int write_all_supers(struct btrfs_fs_info
*fs_info
, int max_mirrors
)
3809 struct list_head
*head
;
3810 struct btrfs_device
*dev
;
3811 struct btrfs_super_block
*sb
;
3812 struct btrfs_dev_item
*dev_item
;
3816 int total_errors
= 0;
3819 do_barriers
= !btrfs_test_opt(fs_info
, NOBARRIER
);
3822 * max_mirrors == 0 indicates we're from commit_transaction,
3823 * not from fsync where the tree roots in fs_info have not
3824 * been consistent on disk.
3826 if (max_mirrors
== 0)
3827 backup_super_roots(fs_info
);
3829 sb
= fs_info
->super_for_commit
;
3830 dev_item
= &sb
->dev_item
;
3832 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3833 head
= &fs_info
->fs_devices
->devices
;
3834 max_errors
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
3837 ret
= barrier_all_devices(fs_info
);
3840 &fs_info
->fs_devices
->device_list_mutex
);
3841 btrfs_handle_fs_error(fs_info
, ret
,
3842 "errors while submitting device barriers.");
3847 list_for_each_entry(dev
, head
, dev_list
) {
3852 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3853 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3856 btrfs_set_stack_device_generation(dev_item
, 0);
3857 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3858 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3859 btrfs_set_stack_device_total_bytes(dev_item
,
3860 dev
->commit_total_bytes
);
3861 btrfs_set_stack_device_bytes_used(dev_item
,
3862 dev
->commit_bytes_used
);
3863 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3864 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3865 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3866 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3867 memcpy(dev_item
->fsid
, dev
->fs_devices
->metadata_uuid
,
3870 flags
= btrfs_super_flags(sb
);
3871 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3873 ret
= btrfs_validate_write_super(fs_info
, sb
);
3875 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3876 btrfs_handle_fs_error(fs_info
, -EUCLEAN
,
3877 "unexpected superblock corruption detected");
3881 ret
= write_dev_supers(dev
, sb
, max_mirrors
);
3885 if (total_errors
> max_errors
) {
3886 btrfs_err(fs_info
, "%d errors while writing supers",
3888 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3890 /* FUA is masked off if unsupported and can't be the reason */
3891 btrfs_handle_fs_error(fs_info
, -EIO
,
3892 "%d errors while writing supers",
3898 list_for_each_entry(dev
, head
, dev_list
) {
3901 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3902 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3905 ret
= wait_dev_supers(dev
, max_mirrors
);
3909 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3910 if (total_errors
> max_errors
) {
3911 btrfs_handle_fs_error(fs_info
, -EIO
,
3912 "%d errors while writing supers",
3919 /* Drop a fs root from the radix tree and free it. */
3920 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
3921 struct btrfs_root
*root
)
3923 bool drop_ref
= false;
3925 spin_lock(&fs_info
->fs_roots_radix_lock
);
3926 radix_tree_delete(&fs_info
->fs_roots_radix
,
3927 (unsigned long)root
->root_key
.objectid
);
3928 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
))
3930 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3932 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
3933 ASSERT(root
->log_root
== NULL
);
3934 if (root
->reloc_root
) {
3935 btrfs_put_root(root
->reloc_root
);
3936 root
->reloc_root
= NULL
;
3940 if (root
->free_ino_pinned
)
3941 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3942 if (root
->free_ino_ctl
)
3943 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3944 if (root
->ino_cache_inode
) {
3945 iput(root
->ino_cache_inode
);
3946 root
->ino_cache_inode
= NULL
;
3949 btrfs_put_root(root
);
3952 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3954 u64 root_objectid
= 0;
3955 struct btrfs_root
*gang
[8];
3958 unsigned int ret
= 0;
3961 spin_lock(&fs_info
->fs_roots_radix_lock
);
3962 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3963 (void **)gang
, root_objectid
,
3966 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3969 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3971 for (i
= 0; i
< ret
; i
++) {
3972 /* Avoid to grab roots in dead_roots */
3973 if (btrfs_root_refs(&gang
[i
]->root_item
) == 0) {
3977 /* grab all the search result for later use */
3978 gang
[i
] = btrfs_grab_root(gang
[i
]);
3980 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3982 for (i
= 0; i
< ret
; i
++) {
3985 root_objectid
= gang
[i
]->root_key
.objectid
;
3986 err
= btrfs_orphan_cleanup(gang
[i
]);
3989 btrfs_put_root(gang
[i
]);
3994 /* release the uncleaned roots due to error */
3995 for (; i
< ret
; i
++) {
3997 btrfs_put_root(gang
[i
]);
4002 int btrfs_commit_super(struct btrfs_fs_info
*fs_info
)
4004 struct btrfs_root
*root
= fs_info
->tree_root
;
4005 struct btrfs_trans_handle
*trans
;
4007 mutex_lock(&fs_info
->cleaner_mutex
);
4008 btrfs_run_delayed_iputs(fs_info
);
4009 mutex_unlock(&fs_info
->cleaner_mutex
);
4010 wake_up_process(fs_info
->cleaner_kthread
);
4012 /* wait until ongoing cleanup work done */
4013 down_write(&fs_info
->cleanup_work_sem
);
4014 up_write(&fs_info
->cleanup_work_sem
);
4016 trans
= btrfs_join_transaction(root
);
4018 return PTR_ERR(trans
);
4019 return btrfs_commit_transaction(trans
);
4022 void __cold
close_ctree(struct btrfs_fs_info
*fs_info
)
4026 set_bit(BTRFS_FS_CLOSING_START
, &fs_info
->flags
);
4028 * We don't want the cleaner to start new transactions, add more delayed
4029 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4030 * because that frees the task_struct, and the transaction kthread might
4031 * still try to wake up the cleaner.
4033 kthread_park(fs_info
->cleaner_kthread
);
4035 /* wait for the qgroup rescan worker to stop */
4036 btrfs_qgroup_wait_for_completion(fs_info
, false);
4038 /* wait for the uuid_scan task to finish */
4039 down(&fs_info
->uuid_tree_rescan_sem
);
4040 /* avoid complains from lockdep et al., set sem back to initial state */
4041 up(&fs_info
->uuid_tree_rescan_sem
);
4043 /* pause restriper - we want to resume on mount */
4044 btrfs_pause_balance(fs_info
);
4046 btrfs_dev_replace_suspend_for_unmount(fs_info
);
4048 btrfs_scrub_cancel(fs_info
);
4050 /* wait for any defraggers to finish */
4051 wait_event(fs_info
->transaction_wait
,
4052 (atomic_read(&fs_info
->defrag_running
) == 0));
4054 /* clear out the rbtree of defraggable inodes */
4055 btrfs_cleanup_defrag_inodes(fs_info
);
4057 cancel_work_sync(&fs_info
->async_reclaim_work
);
4059 /* Cancel or finish ongoing discard work */
4060 btrfs_discard_cleanup(fs_info
);
4062 if (!sb_rdonly(fs_info
->sb
)) {
4064 * The cleaner kthread is stopped, so do one final pass over
4065 * unused block groups.
4067 btrfs_delete_unused_bgs(fs_info
);
4070 * There might be existing delayed inode workers still running
4071 * and holding an empty delayed inode item. We must wait for
4072 * them to complete first because they can create a transaction.
4073 * This happens when someone calls btrfs_balance_delayed_items()
4074 * and then a transaction commit runs the same delayed nodes
4075 * before any delayed worker has done something with the nodes.
4076 * We must wait for any worker here and not at transaction
4077 * commit time since that could cause a deadlock.
4078 * This is a very rare case.
4080 btrfs_flush_workqueue(fs_info
->delayed_workers
);
4082 ret
= btrfs_commit_super(fs_info
);
4084 btrfs_err(fs_info
, "commit super ret %d", ret
);
4087 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
) ||
4088 test_bit(BTRFS_FS_STATE_TRANS_ABORTED
, &fs_info
->fs_state
))
4089 btrfs_error_commit_super(fs_info
);
4091 kthread_stop(fs_info
->transaction_kthread
);
4092 kthread_stop(fs_info
->cleaner_kthread
);
4094 ASSERT(list_empty(&fs_info
->delayed_iputs
));
4095 set_bit(BTRFS_FS_CLOSING_DONE
, &fs_info
->flags
);
4097 if (btrfs_check_quota_leak(fs_info
)) {
4098 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG
));
4099 btrfs_err(fs_info
, "qgroup reserved space leaked");
4102 btrfs_free_qgroup_config(fs_info
);
4103 ASSERT(list_empty(&fs_info
->delalloc_roots
));
4105 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
4106 btrfs_info(fs_info
, "at unmount delalloc count %lld",
4107 percpu_counter_sum(&fs_info
->delalloc_bytes
));
4110 if (percpu_counter_sum(&fs_info
->dio_bytes
))
4111 btrfs_info(fs_info
, "at unmount dio bytes count %lld",
4112 percpu_counter_sum(&fs_info
->dio_bytes
));
4114 btrfs_sysfs_remove_mounted(fs_info
);
4115 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
4117 btrfs_put_block_group_cache(fs_info
);
4120 * we must make sure there is not any read request to
4121 * submit after we stopping all workers.
4123 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
4124 btrfs_stop_all_workers(fs_info
);
4126 clear_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
4127 free_root_pointers(fs_info
, true);
4128 btrfs_free_fs_roots(fs_info
);
4131 * We must free the block groups after dropping the fs_roots as we could
4132 * have had an IO error and have left over tree log blocks that aren't
4133 * cleaned up until the fs roots are freed. This makes the block group
4134 * accounting appear to be wrong because there's pending reserved bytes,
4135 * so make sure we do the block group cleanup afterwards.
4137 btrfs_free_block_groups(fs_info
);
4139 iput(fs_info
->btree_inode
);
4141 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4142 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
))
4143 btrfsic_unmount(fs_info
->fs_devices
);
4146 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
4147 btrfs_close_devices(fs_info
->fs_devices
);
4150 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
4154 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
4156 ret
= extent_buffer_uptodate(buf
);
4160 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
4161 parent_transid
, atomic
);
4167 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
4169 struct btrfs_fs_info
*fs_info
;
4170 struct btrfs_root
*root
;
4171 u64 transid
= btrfs_header_generation(buf
);
4174 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4176 * This is a fast path so only do this check if we have sanity tests
4177 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4178 * outside of the sanity tests.
4180 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED
, &buf
->bflags
)))
4183 root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
4184 fs_info
= root
->fs_info
;
4185 btrfs_assert_tree_locked(buf
);
4186 if (transid
!= fs_info
->generation
)
4187 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4188 buf
->start
, transid
, fs_info
->generation
);
4189 was_dirty
= set_extent_buffer_dirty(buf
);
4191 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
4193 fs_info
->dirty_metadata_batch
);
4194 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4196 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4197 * but item data not updated.
4198 * So here we should only check item pointers, not item data.
4200 if (btrfs_header_level(buf
) == 0 &&
4201 btrfs_check_leaf_relaxed(buf
)) {
4202 btrfs_print_leaf(buf
);
4208 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
,
4212 * looks as though older kernels can get into trouble with
4213 * this code, they end up stuck in balance_dirty_pages forever
4217 if (current
->flags
& PF_MEMALLOC
)
4221 btrfs_balance_delayed_items(fs_info
);
4223 ret
= __percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
4224 BTRFS_DIRTY_METADATA_THRESH
,
4225 fs_info
->dirty_metadata_batch
);
4227 balance_dirty_pages_ratelimited(fs_info
->btree_inode
->i_mapping
);
4231 void btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
)
4233 __btrfs_btree_balance_dirty(fs_info
, 1);
4236 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info
*fs_info
)
4238 __btrfs_btree_balance_dirty(fs_info
, 0);
4241 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
, int level
,
4242 struct btrfs_key
*first_key
)
4244 return btree_read_extent_buffer_pages(buf
, parent_transid
,
4248 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
)
4250 /* cleanup FS via transaction */
4251 btrfs_cleanup_transaction(fs_info
);
4253 mutex_lock(&fs_info
->cleaner_mutex
);
4254 btrfs_run_delayed_iputs(fs_info
);
4255 mutex_unlock(&fs_info
->cleaner_mutex
);
4257 down_write(&fs_info
->cleanup_work_sem
);
4258 up_write(&fs_info
->cleanup_work_sem
);
4261 static void btrfs_drop_all_logs(struct btrfs_fs_info
*fs_info
)
4263 struct btrfs_root
*gang
[8];
4264 u64 root_objectid
= 0;
4267 spin_lock(&fs_info
->fs_roots_radix_lock
);
4268 while ((ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
4269 (void **)gang
, root_objectid
,
4270 ARRAY_SIZE(gang
))) != 0) {
4273 for (i
= 0; i
< ret
; i
++)
4274 gang
[i
] = btrfs_grab_root(gang
[i
]);
4275 spin_unlock(&fs_info
->fs_roots_radix_lock
);
4277 for (i
= 0; i
< ret
; i
++) {
4280 root_objectid
= gang
[i
]->root_key
.objectid
;
4281 btrfs_free_log(NULL
, gang
[i
]);
4282 btrfs_put_root(gang
[i
]);
4285 spin_lock(&fs_info
->fs_roots_radix_lock
);
4287 spin_unlock(&fs_info
->fs_roots_radix_lock
);
4288 btrfs_free_log_root_tree(NULL
, fs_info
);
4291 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
4293 struct btrfs_ordered_extent
*ordered
;
4295 spin_lock(&root
->ordered_extent_lock
);
4297 * This will just short circuit the ordered completion stuff which will
4298 * make sure the ordered extent gets properly cleaned up.
4300 list_for_each_entry(ordered
, &root
->ordered_extents
,
4302 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
4303 spin_unlock(&root
->ordered_extent_lock
);
4306 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
4308 struct btrfs_root
*root
;
4309 struct list_head splice
;
4311 INIT_LIST_HEAD(&splice
);
4313 spin_lock(&fs_info
->ordered_root_lock
);
4314 list_splice_init(&fs_info
->ordered_roots
, &splice
);
4315 while (!list_empty(&splice
)) {
4316 root
= list_first_entry(&splice
, struct btrfs_root
,
4318 list_move_tail(&root
->ordered_root
,
4319 &fs_info
->ordered_roots
);
4321 spin_unlock(&fs_info
->ordered_root_lock
);
4322 btrfs_destroy_ordered_extents(root
);
4325 spin_lock(&fs_info
->ordered_root_lock
);
4327 spin_unlock(&fs_info
->ordered_root_lock
);
4330 * We need this here because if we've been flipped read-only we won't
4331 * get sync() from the umount, so we need to make sure any ordered
4332 * extents that haven't had their dirty pages IO start writeout yet
4333 * actually get run and error out properly.
4335 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, 0, (u64
)-1);
4338 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
4339 struct btrfs_fs_info
*fs_info
)
4341 struct rb_node
*node
;
4342 struct btrfs_delayed_ref_root
*delayed_refs
;
4343 struct btrfs_delayed_ref_node
*ref
;
4346 delayed_refs
= &trans
->delayed_refs
;
4348 spin_lock(&delayed_refs
->lock
);
4349 if (atomic_read(&delayed_refs
->num_entries
) == 0) {
4350 spin_unlock(&delayed_refs
->lock
);
4351 btrfs_debug(fs_info
, "delayed_refs has NO entry");
4355 while ((node
= rb_first_cached(&delayed_refs
->href_root
)) != NULL
) {
4356 struct btrfs_delayed_ref_head
*head
;
4358 bool pin_bytes
= false;
4360 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
4362 if (btrfs_delayed_ref_lock(delayed_refs
, head
))
4365 spin_lock(&head
->lock
);
4366 while ((n
= rb_first_cached(&head
->ref_tree
)) != NULL
) {
4367 ref
= rb_entry(n
, struct btrfs_delayed_ref_node
,
4370 rb_erase_cached(&ref
->ref_node
, &head
->ref_tree
);
4371 RB_CLEAR_NODE(&ref
->ref_node
);
4372 if (!list_empty(&ref
->add_list
))
4373 list_del(&ref
->add_list
);
4374 atomic_dec(&delayed_refs
->num_entries
);
4375 btrfs_put_delayed_ref(ref
);
4377 if (head
->must_insert_reserved
)
4379 btrfs_free_delayed_extent_op(head
->extent_op
);
4380 btrfs_delete_ref_head(delayed_refs
, head
);
4381 spin_unlock(&head
->lock
);
4382 spin_unlock(&delayed_refs
->lock
);
4383 mutex_unlock(&head
->mutex
);
4386 struct btrfs_block_group
*cache
;
4388 cache
= btrfs_lookup_block_group(fs_info
, head
->bytenr
);
4391 spin_lock(&cache
->space_info
->lock
);
4392 spin_lock(&cache
->lock
);
4393 cache
->pinned
+= head
->num_bytes
;
4394 btrfs_space_info_update_bytes_pinned(fs_info
,
4395 cache
->space_info
, head
->num_bytes
);
4396 cache
->reserved
-= head
->num_bytes
;
4397 cache
->space_info
->bytes_reserved
-= head
->num_bytes
;
4398 spin_unlock(&cache
->lock
);
4399 spin_unlock(&cache
->space_info
->lock
);
4400 percpu_counter_add_batch(
4401 &cache
->space_info
->total_bytes_pinned
,
4402 head
->num_bytes
, BTRFS_TOTAL_BYTES_PINNED_BATCH
);
4404 btrfs_put_block_group(cache
);
4406 btrfs_error_unpin_extent_range(fs_info
, head
->bytenr
,
4407 head
->bytenr
+ head
->num_bytes
- 1);
4409 btrfs_cleanup_ref_head_accounting(fs_info
, delayed_refs
, head
);
4410 btrfs_put_delayed_ref_head(head
);
4412 spin_lock(&delayed_refs
->lock
);
4414 btrfs_qgroup_destroy_extent_records(trans
);
4416 spin_unlock(&delayed_refs
->lock
);
4421 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
4423 struct btrfs_inode
*btrfs_inode
;
4424 struct list_head splice
;
4426 INIT_LIST_HEAD(&splice
);
4428 spin_lock(&root
->delalloc_lock
);
4429 list_splice_init(&root
->delalloc_inodes
, &splice
);
4431 while (!list_empty(&splice
)) {
4432 struct inode
*inode
= NULL
;
4433 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
4435 __btrfs_del_delalloc_inode(root
, btrfs_inode
);
4436 spin_unlock(&root
->delalloc_lock
);
4439 * Make sure we get a live inode and that it'll not disappear
4442 inode
= igrab(&btrfs_inode
->vfs_inode
);
4444 invalidate_inode_pages2(inode
->i_mapping
);
4447 spin_lock(&root
->delalloc_lock
);
4449 spin_unlock(&root
->delalloc_lock
);
4452 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
4454 struct btrfs_root
*root
;
4455 struct list_head splice
;
4457 INIT_LIST_HEAD(&splice
);
4459 spin_lock(&fs_info
->delalloc_root_lock
);
4460 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
4461 while (!list_empty(&splice
)) {
4462 root
= list_first_entry(&splice
, struct btrfs_root
,
4464 root
= btrfs_grab_root(root
);
4466 spin_unlock(&fs_info
->delalloc_root_lock
);
4468 btrfs_destroy_delalloc_inodes(root
);
4469 btrfs_put_root(root
);
4471 spin_lock(&fs_info
->delalloc_root_lock
);
4473 spin_unlock(&fs_info
->delalloc_root_lock
);
4476 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
4477 struct extent_io_tree
*dirty_pages
,
4481 struct extent_buffer
*eb
;
4486 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
4491 clear_extent_bits(dirty_pages
, start
, end
, mark
);
4492 while (start
<= end
) {
4493 eb
= find_extent_buffer(fs_info
, start
);
4494 start
+= fs_info
->nodesize
;
4497 wait_on_extent_buffer_writeback(eb
);
4499 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
4501 clear_extent_buffer_dirty(eb
);
4502 free_extent_buffer_stale(eb
);
4509 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
4510 struct extent_io_tree
*unpin
)
4517 struct extent_state
*cached_state
= NULL
;
4520 * The btrfs_finish_extent_commit() may get the same range as
4521 * ours between find_first_extent_bit and clear_extent_dirty.
4522 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4523 * the same extent range.
4525 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
4526 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4527 EXTENT_DIRTY
, &cached_state
);
4529 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
4533 clear_extent_dirty(unpin
, start
, end
, &cached_state
);
4534 free_extent_state(cached_state
);
4535 btrfs_error_unpin_extent_range(fs_info
, start
, end
);
4536 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
4543 static void btrfs_cleanup_bg_io(struct btrfs_block_group
*cache
)
4545 struct inode
*inode
;
4547 inode
= cache
->io_ctl
.inode
;
4549 invalidate_inode_pages2(inode
->i_mapping
);
4550 BTRFS_I(inode
)->generation
= 0;
4551 cache
->io_ctl
.inode
= NULL
;
4554 btrfs_put_block_group(cache
);
4557 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction
*cur_trans
,
4558 struct btrfs_fs_info
*fs_info
)
4560 struct btrfs_block_group
*cache
;
4562 spin_lock(&cur_trans
->dirty_bgs_lock
);
4563 while (!list_empty(&cur_trans
->dirty_bgs
)) {
4564 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
4565 struct btrfs_block_group
,
4568 if (!list_empty(&cache
->io_list
)) {
4569 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4570 list_del_init(&cache
->io_list
);
4571 btrfs_cleanup_bg_io(cache
);
4572 spin_lock(&cur_trans
->dirty_bgs_lock
);
4575 list_del_init(&cache
->dirty_list
);
4576 spin_lock(&cache
->lock
);
4577 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4578 spin_unlock(&cache
->lock
);
4580 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4581 btrfs_put_block_group(cache
);
4582 btrfs_delayed_refs_rsv_release(fs_info
, 1);
4583 spin_lock(&cur_trans
->dirty_bgs_lock
);
4585 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4588 * Refer to the definition of io_bgs member for details why it's safe
4589 * to use it without any locking
4591 while (!list_empty(&cur_trans
->io_bgs
)) {
4592 cache
= list_first_entry(&cur_trans
->io_bgs
,
4593 struct btrfs_block_group
,
4596 list_del_init(&cache
->io_list
);
4597 spin_lock(&cache
->lock
);
4598 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4599 spin_unlock(&cache
->lock
);
4600 btrfs_cleanup_bg_io(cache
);
4604 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
4605 struct btrfs_fs_info
*fs_info
)
4607 struct btrfs_device
*dev
, *tmp
;
4609 btrfs_cleanup_dirty_bgs(cur_trans
, fs_info
);
4610 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
4611 ASSERT(list_empty(&cur_trans
->io_bgs
));
4613 list_for_each_entry_safe(dev
, tmp
, &cur_trans
->dev_update_list
,
4615 list_del_init(&dev
->post_commit_list
);
4618 btrfs_destroy_delayed_refs(cur_trans
, fs_info
);
4620 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
4621 wake_up(&fs_info
->transaction_blocked_wait
);
4623 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
4624 wake_up(&fs_info
->transaction_wait
);
4626 btrfs_destroy_delayed_inodes(fs_info
);
4628 btrfs_destroy_marked_extents(fs_info
, &cur_trans
->dirty_pages
,
4630 btrfs_destroy_pinned_extent(fs_info
, &cur_trans
->pinned_extents
);
4632 cur_trans
->state
=TRANS_STATE_COMPLETED
;
4633 wake_up(&cur_trans
->commit_wait
);
4636 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
)
4638 struct btrfs_transaction
*t
;
4640 mutex_lock(&fs_info
->transaction_kthread_mutex
);
4642 spin_lock(&fs_info
->trans_lock
);
4643 while (!list_empty(&fs_info
->trans_list
)) {
4644 t
= list_first_entry(&fs_info
->trans_list
,
4645 struct btrfs_transaction
, list
);
4646 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
4647 refcount_inc(&t
->use_count
);
4648 spin_unlock(&fs_info
->trans_lock
);
4649 btrfs_wait_for_commit(fs_info
, t
->transid
);
4650 btrfs_put_transaction(t
);
4651 spin_lock(&fs_info
->trans_lock
);
4654 if (t
== fs_info
->running_transaction
) {
4655 t
->state
= TRANS_STATE_COMMIT_DOING
;
4656 spin_unlock(&fs_info
->trans_lock
);
4658 * We wait for 0 num_writers since we don't hold a trans
4659 * handle open currently for this transaction.
4661 wait_event(t
->writer_wait
,
4662 atomic_read(&t
->num_writers
) == 0);
4664 spin_unlock(&fs_info
->trans_lock
);
4666 btrfs_cleanup_one_transaction(t
, fs_info
);
4668 spin_lock(&fs_info
->trans_lock
);
4669 if (t
== fs_info
->running_transaction
)
4670 fs_info
->running_transaction
= NULL
;
4671 list_del_init(&t
->list
);
4672 spin_unlock(&fs_info
->trans_lock
);
4674 btrfs_put_transaction(t
);
4675 trace_btrfs_transaction_commit(fs_info
->tree_root
);
4676 spin_lock(&fs_info
->trans_lock
);
4678 spin_unlock(&fs_info
->trans_lock
);
4679 btrfs_destroy_all_ordered_extents(fs_info
);
4680 btrfs_destroy_delayed_inodes(fs_info
);
4681 btrfs_assert_delayed_root_empty(fs_info
);
4682 btrfs_destroy_all_delalloc_inodes(fs_info
);
4683 btrfs_drop_all_logs(fs_info
);
4684 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
4689 static const struct extent_io_ops btree_extent_io_ops
= {
4690 /* mandatory callbacks */
4691 .submit_bio_hook
= btree_submit_bio_hook
,
4692 .readpage_end_io_hook
= btree_readpage_end_io_hook
,