Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux/fpc-iii.git] / fs / ubifs / sb.c
blob4b4b65b48c575025fce9072e190ba6584a8ddb0c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
12 * This file implements UBIFS superblock. The superblock is stored at the first
13 * LEB of the volume and is never changed by UBIFS. Only user-space tools may
14 * change it. The superblock node mostly contains geometry information.
17 #include "ubifs.h"
18 #include <linux/slab.h>
19 #include <linux/math64.h>
20 #include <linux/uuid.h>
23 * Default journal size in logical eraseblocks as a percent of total
24 * flash size.
26 #define DEFAULT_JNL_PERCENT 5
28 /* Default maximum journal size in bytes */
29 #define DEFAULT_MAX_JNL (32*1024*1024)
31 /* Default indexing tree fanout */
32 #define DEFAULT_FANOUT 8
34 /* Default number of data journal heads */
35 #define DEFAULT_JHEADS_CNT 1
37 /* Default positions of different LEBs in the main area */
38 #define DEFAULT_IDX_LEB 0
39 #define DEFAULT_DATA_LEB 1
40 #define DEFAULT_GC_LEB 2
42 /* Default number of LEB numbers in LPT's save table */
43 #define DEFAULT_LSAVE_CNT 256
45 /* Default reserved pool size as a percent of maximum free space */
46 #define DEFAULT_RP_PERCENT 5
48 /* The default maximum size of reserved pool in bytes */
49 #define DEFAULT_MAX_RP_SIZE (5*1024*1024)
51 /* Default time granularity in nanoseconds */
52 #define DEFAULT_TIME_GRAN 1000000000
54 static int get_default_compressor(struct ubifs_info *c)
56 if (ubifs_compr_present(c, UBIFS_COMPR_LZO))
57 return UBIFS_COMPR_LZO;
59 if (ubifs_compr_present(c, UBIFS_COMPR_ZLIB))
60 return UBIFS_COMPR_ZLIB;
62 return UBIFS_COMPR_NONE;
65 /**
66 * create_default_filesystem - format empty UBI volume.
67 * @c: UBIFS file-system description object
69 * This function creates default empty file-system. Returns zero in case of
70 * success and a negative error code in case of failure.
72 static int create_default_filesystem(struct ubifs_info *c)
74 struct ubifs_sb_node *sup;
75 struct ubifs_mst_node *mst;
76 struct ubifs_idx_node *idx;
77 struct ubifs_branch *br;
78 struct ubifs_ino_node *ino;
79 struct ubifs_cs_node *cs;
80 union ubifs_key key;
81 int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
82 int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
83 int min_leb_cnt = UBIFS_MIN_LEB_CNT;
84 int idx_node_size;
85 long long tmp64, main_bytes;
86 __le64 tmp_le64;
87 struct timespec64 ts;
88 u8 hash[UBIFS_HASH_ARR_SZ];
89 u8 hash_lpt[UBIFS_HASH_ARR_SZ];
91 /* Some functions called from here depend on the @c->key_len filed */
92 c->key_len = UBIFS_SK_LEN;
95 * First of all, we have to calculate default file-system geometry -
96 * log size, journal size, etc.
98 if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
99 /* We can first multiply then divide and have no overflow */
100 jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
101 else
102 jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
104 if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
105 jnl_lebs = UBIFS_MIN_JNL_LEBS;
106 if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
107 jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
110 * The log should be large enough to fit reference nodes for all bud
111 * LEBs. Because buds do not have to start from the beginning of LEBs
112 * (half of the LEB may contain committed data), the log should
113 * generally be larger, make it twice as large.
115 tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
116 log_lebs = tmp / c->leb_size;
117 /* Plus one LEB reserved for commit */
118 log_lebs += 1;
119 if (c->leb_cnt - min_leb_cnt > 8) {
120 /* And some extra space to allow writes while committing */
121 log_lebs += 1;
122 min_leb_cnt += 1;
125 max_buds = jnl_lebs - log_lebs;
126 if (max_buds < UBIFS_MIN_BUD_LEBS)
127 max_buds = UBIFS_MIN_BUD_LEBS;
130 * Orphan nodes are stored in a separate area. One node can store a lot
131 * of orphan inode numbers, but when new orphan comes we just add a new
132 * orphan node. At some point the nodes are consolidated into one
133 * orphan node.
135 orph_lebs = UBIFS_MIN_ORPH_LEBS;
136 if (c->leb_cnt - min_leb_cnt > 1)
138 * For debugging purposes it is better to have at least 2
139 * orphan LEBs, because the orphan subsystem would need to do
140 * consolidations and would be stressed more.
142 orph_lebs += 1;
144 main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
145 main_lebs -= orph_lebs;
147 lpt_first = UBIFS_LOG_LNUM + log_lebs;
148 c->lsave_cnt = DEFAULT_LSAVE_CNT;
149 c->max_leb_cnt = c->leb_cnt;
150 err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
151 &big_lpt, hash_lpt);
152 if (err)
153 return err;
155 dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
156 lpt_first + lpt_lebs - 1);
158 main_first = c->leb_cnt - main_lebs;
160 sup = kzalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_KERNEL);
161 mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
162 idx_node_size = ubifs_idx_node_sz(c, 1);
163 idx = kzalloc(ALIGN(idx_node_size, c->min_io_size), GFP_KERNEL);
164 ino = kzalloc(ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size), GFP_KERNEL);
165 cs = kzalloc(ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size), GFP_KERNEL);
167 if (!sup || !mst || !idx || !ino || !cs) {
168 err = -ENOMEM;
169 goto out;
172 /* Create default superblock */
174 tmp64 = (long long)max_buds * c->leb_size;
175 if (big_lpt)
176 sup_flags |= UBIFS_FLG_BIGLPT;
177 sup_flags |= UBIFS_FLG_DOUBLE_HASH;
179 if (ubifs_authenticated(c)) {
180 sup_flags |= UBIFS_FLG_AUTHENTICATION;
181 sup->hash_algo = cpu_to_le16(c->auth_hash_algo);
182 err = ubifs_hmac_wkm(c, sup->hmac_wkm);
183 if (err)
184 goto out;
185 } else {
186 sup->hash_algo = cpu_to_le16(0xffff);
189 sup->ch.node_type = UBIFS_SB_NODE;
190 sup->key_hash = UBIFS_KEY_HASH_R5;
191 sup->flags = cpu_to_le32(sup_flags);
192 sup->min_io_size = cpu_to_le32(c->min_io_size);
193 sup->leb_size = cpu_to_le32(c->leb_size);
194 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
195 sup->max_leb_cnt = cpu_to_le32(c->max_leb_cnt);
196 sup->max_bud_bytes = cpu_to_le64(tmp64);
197 sup->log_lebs = cpu_to_le32(log_lebs);
198 sup->lpt_lebs = cpu_to_le32(lpt_lebs);
199 sup->orph_lebs = cpu_to_le32(orph_lebs);
200 sup->jhead_cnt = cpu_to_le32(DEFAULT_JHEADS_CNT);
201 sup->fanout = cpu_to_le32(DEFAULT_FANOUT);
202 sup->lsave_cnt = cpu_to_le32(c->lsave_cnt);
203 sup->fmt_version = cpu_to_le32(UBIFS_FORMAT_VERSION);
204 sup->time_gran = cpu_to_le32(DEFAULT_TIME_GRAN);
205 if (c->mount_opts.override_compr)
206 sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
207 else
208 sup->default_compr = cpu_to_le16(get_default_compressor(c));
210 generate_random_uuid(sup->uuid);
212 main_bytes = (long long)main_lebs * c->leb_size;
213 tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100);
214 if (tmp64 > DEFAULT_MAX_RP_SIZE)
215 tmp64 = DEFAULT_MAX_RP_SIZE;
216 sup->rp_size = cpu_to_le64(tmp64);
217 sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
219 dbg_gen("default superblock created at LEB 0:0");
221 /* Create default master node */
223 mst->ch.node_type = UBIFS_MST_NODE;
224 mst->log_lnum = cpu_to_le32(UBIFS_LOG_LNUM);
225 mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
226 mst->cmt_no = 0;
227 mst->root_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
228 mst->root_offs = 0;
229 tmp = ubifs_idx_node_sz(c, 1);
230 mst->root_len = cpu_to_le32(tmp);
231 mst->gc_lnum = cpu_to_le32(main_first + DEFAULT_GC_LEB);
232 mst->ihead_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
233 mst->ihead_offs = cpu_to_le32(ALIGN(tmp, c->min_io_size));
234 mst->index_size = cpu_to_le64(ALIGN(tmp, 8));
235 mst->lpt_lnum = cpu_to_le32(c->lpt_lnum);
236 mst->lpt_offs = cpu_to_le32(c->lpt_offs);
237 mst->nhead_lnum = cpu_to_le32(c->nhead_lnum);
238 mst->nhead_offs = cpu_to_le32(c->nhead_offs);
239 mst->ltab_lnum = cpu_to_le32(c->ltab_lnum);
240 mst->ltab_offs = cpu_to_le32(c->ltab_offs);
241 mst->lsave_lnum = cpu_to_le32(c->lsave_lnum);
242 mst->lsave_offs = cpu_to_le32(c->lsave_offs);
243 mst->lscan_lnum = cpu_to_le32(main_first);
244 mst->empty_lebs = cpu_to_le32(main_lebs - 2);
245 mst->idx_lebs = cpu_to_le32(1);
246 mst->leb_cnt = cpu_to_le32(c->leb_cnt);
247 ubifs_copy_hash(c, hash_lpt, mst->hash_lpt);
249 /* Calculate lprops statistics */
250 tmp64 = main_bytes;
251 tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
252 tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
253 mst->total_free = cpu_to_le64(tmp64);
255 tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
256 ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
257 UBIFS_INO_NODE_SZ;
258 tmp64 += ino_waste;
259 tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
260 mst->total_dirty = cpu_to_le64(tmp64);
262 /* The indexing LEB does not contribute to dark space */
263 tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm);
264 mst->total_dark = cpu_to_le64(tmp64);
266 mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
268 dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
270 /* Create the root indexing node */
272 c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
273 c->key_hash = key_r5_hash;
275 idx->ch.node_type = UBIFS_IDX_NODE;
276 idx->child_cnt = cpu_to_le16(1);
277 ino_key_init(c, &key, UBIFS_ROOT_INO);
278 br = ubifs_idx_branch(c, idx, 0);
279 key_write_idx(c, &key, &br->key);
280 br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
281 br->len = cpu_to_le32(UBIFS_INO_NODE_SZ);
283 dbg_gen("default root indexing node created LEB %d:0",
284 main_first + DEFAULT_IDX_LEB);
286 /* Create default root inode */
288 ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
289 ino->ch.node_type = UBIFS_INO_NODE;
290 ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
291 ino->nlink = cpu_to_le32(2);
293 ktime_get_coarse_real_ts64(&ts);
294 tmp_le64 = cpu_to_le64(ts.tv_sec);
295 ino->atime_sec = tmp_le64;
296 ino->ctime_sec = tmp_le64;
297 ino->mtime_sec = tmp_le64;
298 ino->atime_nsec = 0;
299 ino->ctime_nsec = 0;
300 ino->mtime_nsec = 0;
301 ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
302 ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
304 /* Set compression enabled by default */
305 ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
307 dbg_gen("root inode created at LEB %d:0",
308 main_first + DEFAULT_DATA_LEB);
311 * The first node in the log has to be the commit start node. This is
312 * always the case during normal file-system operation. Write a fake
313 * commit start node to the log.
316 cs->ch.node_type = UBIFS_CS_NODE;
318 err = ubifs_write_node_hmac(c, sup, UBIFS_SB_NODE_SZ, 0, 0,
319 offsetof(struct ubifs_sb_node, hmac));
320 if (err)
321 goto out;
323 err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
324 main_first + DEFAULT_DATA_LEB, 0);
325 if (err)
326 goto out;
328 ubifs_node_calc_hash(c, ino, hash);
329 ubifs_copy_hash(c, hash, ubifs_branch_hash(c, br));
331 err = ubifs_write_node(c, idx, idx_node_size, main_first + DEFAULT_IDX_LEB, 0);
332 if (err)
333 goto out;
335 ubifs_node_calc_hash(c, idx, hash);
336 ubifs_copy_hash(c, hash, mst->hash_root_idx);
338 err = ubifs_write_node_hmac(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0,
339 offsetof(struct ubifs_mst_node, hmac));
340 if (err)
341 goto out;
343 err = ubifs_write_node_hmac(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1,
344 0, offsetof(struct ubifs_mst_node, hmac));
345 if (err)
346 goto out;
348 err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0);
349 if (err)
350 goto out;
352 ubifs_msg(c, "default file-system created");
354 err = 0;
355 out:
356 kfree(sup);
357 kfree(mst);
358 kfree(idx);
359 kfree(ino);
360 kfree(cs);
362 return err;
366 * validate_sb - validate superblock node.
367 * @c: UBIFS file-system description object
368 * @sup: superblock node
370 * This function validates superblock node @sup. Since most of data was read
371 * from the superblock and stored in @c, the function validates fields in @c
372 * instead. Returns zero in case of success and %-EINVAL in case of validation
373 * failure.
375 static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
377 long long max_bytes;
378 int err = 1, min_leb_cnt;
380 if (!c->key_hash) {
381 err = 2;
382 goto failed;
385 if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
386 err = 3;
387 goto failed;
390 if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
391 ubifs_err(c, "min. I/O unit mismatch: %d in superblock, %d real",
392 le32_to_cpu(sup->min_io_size), c->min_io_size);
393 goto failed;
396 if (le32_to_cpu(sup->leb_size) != c->leb_size) {
397 ubifs_err(c, "LEB size mismatch: %d in superblock, %d real",
398 le32_to_cpu(sup->leb_size), c->leb_size);
399 goto failed;
402 if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
403 c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
404 c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
405 c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
406 err = 4;
407 goto failed;
411 * Calculate minimum allowed amount of main area LEBs. This is very
412 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
413 * have just read from the superblock.
415 min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
416 min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
418 if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
419 ubifs_err(c, "bad LEB count: %d in superblock, %d on UBI volume, %d minimum required",
420 c->leb_cnt, c->vi.size, min_leb_cnt);
421 goto failed;
424 if (c->max_leb_cnt < c->leb_cnt) {
425 ubifs_err(c, "max. LEB count %d less than LEB count %d",
426 c->max_leb_cnt, c->leb_cnt);
427 goto failed;
430 if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
431 ubifs_err(c, "too few main LEBs count %d, must be at least %d",
432 c->main_lebs, UBIFS_MIN_MAIN_LEBS);
433 goto failed;
436 max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS;
437 if (c->max_bud_bytes < max_bytes) {
438 ubifs_err(c, "too small journal (%lld bytes), must be at least %lld bytes",
439 c->max_bud_bytes, max_bytes);
440 goto failed;
443 max_bytes = (long long)c->leb_size * c->main_lebs;
444 if (c->max_bud_bytes > max_bytes) {
445 ubifs_err(c, "too large journal size (%lld bytes), only %lld bytes available in the main area",
446 c->max_bud_bytes, max_bytes);
447 goto failed;
450 if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
451 c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
452 err = 9;
453 goto failed;
456 if (c->fanout < UBIFS_MIN_FANOUT ||
457 ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
458 err = 10;
459 goto failed;
462 if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
463 c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
464 c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
465 err = 11;
466 goto failed;
469 if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
470 c->orph_lebs + c->main_lebs != c->leb_cnt) {
471 err = 12;
472 goto failed;
475 if (c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
476 err = 13;
477 goto failed;
480 if (c->rp_size < 0 || max_bytes < c->rp_size) {
481 err = 14;
482 goto failed;
485 if (le32_to_cpu(sup->time_gran) > 1000000000 ||
486 le32_to_cpu(sup->time_gran) < 1) {
487 err = 15;
488 goto failed;
491 if (!c->double_hash && c->fmt_version >= 5) {
492 err = 16;
493 goto failed;
496 if (c->encrypted && c->fmt_version < 5) {
497 err = 17;
498 goto failed;
501 return 0;
503 failed:
504 ubifs_err(c, "bad superblock, error %d", err);
505 ubifs_dump_node(c, sup);
506 return -EINVAL;
510 * ubifs_read_sb_node - read superblock node.
511 * @c: UBIFS file-system description object
513 * This function returns a pointer to the superblock node or a negative error
514 * code. Note, the user of this function is responsible of kfree()'ing the
515 * returned superblock buffer.
517 static struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
519 struct ubifs_sb_node *sup;
520 int err;
522 sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
523 if (!sup)
524 return ERR_PTR(-ENOMEM);
526 err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
527 UBIFS_SB_LNUM, 0);
528 if (err) {
529 kfree(sup);
530 return ERR_PTR(err);
533 return sup;
536 static int authenticate_sb_node(struct ubifs_info *c,
537 const struct ubifs_sb_node *sup)
539 unsigned int sup_flags = le32_to_cpu(sup->flags);
540 u8 hmac_wkm[UBIFS_HMAC_ARR_SZ];
541 int authenticated = !!(sup_flags & UBIFS_FLG_AUTHENTICATION);
542 int hash_algo;
543 int err;
545 if (c->authenticated && !authenticated) {
546 ubifs_err(c, "authenticated FS forced, but found FS without authentication");
547 return -EINVAL;
550 if (!c->authenticated && authenticated) {
551 ubifs_err(c, "authenticated FS found, but no key given");
552 return -EINVAL;
555 ubifs_msg(c, "Mounting in %sauthenticated mode",
556 c->authenticated ? "" : "un");
558 if (!c->authenticated)
559 return 0;
561 if (!IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION))
562 return -EOPNOTSUPP;
564 hash_algo = le16_to_cpu(sup->hash_algo);
565 if (hash_algo >= HASH_ALGO__LAST) {
566 ubifs_err(c, "superblock uses unknown hash algo %d",
567 hash_algo);
568 return -EINVAL;
571 if (strcmp(hash_algo_name[hash_algo], c->auth_hash_name)) {
572 ubifs_err(c, "This filesystem uses %s for hashing,"
573 " but %s is specified", hash_algo_name[hash_algo],
574 c->auth_hash_name);
575 return -EINVAL;
579 * The super block node can either be authenticated by a HMAC or
580 * by a signature in a ubifs_sig_node directly following the
581 * super block node to support offline image creation.
583 if (ubifs_hmac_zero(c, sup->hmac)) {
584 err = ubifs_sb_verify_signature(c, sup);
585 } else {
586 err = ubifs_hmac_wkm(c, hmac_wkm);
587 if (err)
588 return err;
589 if (ubifs_check_hmac(c, hmac_wkm, sup->hmac_wkm)) {
590 ubifs_err(c, "provided key does not fit");
591 return -ENOKEY;
593 err = ubifs_node_verify_hmac(c, sup, sizeof(*sup),
594 offsetof(struct ubifs_sb_node,
595 hmac));
598 if (err)
599 ubifs_err(c, "Failed to authenticate superblock: %d", err);
601 return err;
605 * ubifs_write_sb_node - write superblock node.
606 * @c: UBIFS file-system description object
607 * @sup: superblock node read with 'ubifs_read_sb_node()'
609 * This function returns %0 on success and a negative error code on failure.
611 int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
613 int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
614 int err;
616 err = ubifs_prepare_node_hmac(c, sup, UBIFS_SB_NODE_SZ,
617 offsetof(struct ubifs_sb_node, hmac), 1);
618 if (err)
619 return err;
621 return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len);
625 * ubifs_read_superblock - read superblock.
626 * @c: UBIFS file-system description object
628 * This function finds, reads and checks the superblock. If an empty UBI volume
629 * is being mounted, this function creates default superblock. Returns zero in
630 * case of success, and a negative error code in case of failure.
632 int ubifs_read_superblock(struct ubifs_info *c)
634 int err, sup_flags;
635 struct ubifs_sb_node *sup;
637 if (c->empty) {
638 err = create_default_filesystem(c);
639 if (err)
640 return err;
643 sup = ubifs_read_sb_node(c);
644 if (IS_ERR(sup))
645 return PTR_ERR(sup);
647 c->sup_node = sup;
649 c->fmt_version = le32_to_cpu(sup->fmt_version);
650 c->ro_compat_version = le32_to_cpu(sup->ro_compat_version);
653 * The software supports all previous versions but not future versions,
654 * due to the unavailability of time-travelling equipment.
656 if (c->fmt_version > UBIFS_FORMAT_VERSION) {
657 ubifs_assert(c, !c->ro_media || c->ro_mount);
658 if (!c->ro_mount ||
659 c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
660 ubifs_err(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
661 c->fmt_version, c->ro_compat_version,
662 UBIFS_FORMAT_VERSION,
663 UBIFS_RO_COMPAT_VERSION);
664 if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
665 ubifs_msg(c, "only R/O mounting is possible");
666 err = -EROFS;
667 } else
668 err = -EINVAL;
669 goto out;
673 * The FS is mounted R/O, and the media format is
674 * R/O-compatible with the UBIFS implementation, so we can
675 * mount.
677 c->rw_incompat = 1;
680 if (c->fmt_version < 3) {
681 ubifs_err(c, "on-flash format version %d is not supported",
682 c->fmt_version);
683 err = -EINVAL;
684 goto out;
687 switch (sup->key_hash) {
688 case UBIFS_KEY_HASH_R5:
689 c->key_hash = key_r5_hash;
690 c->key_hash_type = UBIFS_KEY_HASH_R5;
691 break;
693 case UBIFS_KEY_HASH_TEST:
694 c->key_hash = key_test_hash;
695 c->key_hash_type = UBIFS_KEY_HASH_TEST;
696 break;
699 c->key_fmt = sup->key_fmt;
701 switch (c->key_fmt) {
702 case UBIFS_SIMPLE_KEY_FMT:
703 c->key_len = UBIFS_SK_LEN;
704 break;
705 default:
706 ubifs_err(c, "unsupported key format");
707 err = -EINVAL;
708 goto out;
711 c->leb_cnt = le32_to_cpu(sup->leb_cnt);
712 c->max_leb_cnt = le32_to_cpu(sup->max_leb_cnt);
713 c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
714 c->log_lebs = le32_to_cpu(sup->log_lebs);
715 c->lpt_lebs = le32_to_cpu(sup->lpt_lebs);
716 c->orph_lebs = le32_to_cpu(sup->orph_lebs);
717 c->jhead_cnt = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
718 c->fanout = le32_to_cpu(sup->fanout);
719 c->lsave_cnt = le32_to_cpu(sup->lsave_cnt);
720 c->rp_size = le64_to_cpu(sup->rp_size);
721 c->rp_uid = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid));
722 c->rp_gid = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid));
723 sup_flags = le32_to_cpu(sup->flags);
724 if (!c->mount_opts.override_compr)
725 c->default_compr = le16_to_cpu(sup->default_compr);
727 c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
728 memcpy(&c->uuid, &sup->uuid, 16);
729 c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
730 c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
731 c->double_hash = !!(sup_flags & UBIFS_FLG_DOUBLE_HASH);
732 c->encrypted = !!(sup_flags & UBIFS_FLG_ENCRYPTION);
734 err = authenticate_sb_node(c, sup);
735 if (err)
736 goto out;
738 if ((sup_flags & ~UBIFS_FLG_MASK) != 0) {
739 ubifs_err(c, "Unknown feature flags found: %#x",
740 sup_flags & ~UBIFS_FLG_MASK);
741 err = -EINVAL;
742 goto out;
745 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION) && c->encrypted) {
746 ubifs_err(c, "file system contains encrypted files but UBIFS"
747 " was built without crypto support.");
748 err = -EINVAL;
749 goto out;
752 /* Automatically increase file system size to the maximum size */
753 if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
754 int old_leb_cnt = c->leb_cnt;
756 c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
757 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
759 c->superblock_need_write = 1;
761 dbg_mnt("Auto resizing from %d LEBs to %d LEBs",
762 old_leb_cnt, c->leb_cnt);
765 c->log_bytes = (long long)c->log_lebs * c->leb_size;
766 c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
767 c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
768 c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
769 c->orph_first = c->lpt_last + 1;
770 c->orph_last = c->orph_first + c->orph_lebs - 1;
771 c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
772 c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
773 c->main_first = c->leb_cnt - c->main_lebs;
775 err = validate_sb(c, sup);
776 out:
777 return err;
781 * fixup_leb - fixup/unmap an LEB containing free space.
782 * @c: UBIFS file-system description object
783 * @lnum: the LEB number to fix up
784 * @len: number of used bytes in LEB (starting at offset 0)
786 * This function reads the contents of the given LEB number @lnum, then fixes
787 * it up, so that empty min. I/O units in the end of LEB are actually erased on
788 * flash (rather than being just all-0xff real data). If the LEB is completely
789 * empty, it is simply unmapped.
791 static int fixup_leb(struct ubifs_info *c, int lnum, int len)
793 int err;
795 ubifs_assert(c, len >= 0);
796 ubifs_assert(c, len % c->min_io_size == 0);
797 ubifs_assert(c, len < c->leb_size);
799 if (len == 0) {
800 dbg_mnt("unmap empty LEB %d", lnum);
801 return ubifs_leb_unmap(c, lnum);
804 dbg_mnt("fixup LEB %d, data len %d", lnum, len);
805 err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
806 if (err)
807 return err;
809 return ubifs_leb_change(c, lnum, c->sbuf, len);
813 * fixup_free_space - find & remap all LEBs containing free space.
814 * @c: UBIFS file-system description object
816 * This function walks through all LEBs in the filesystem and fiexes up those
817 * containing free/empty space.
819 static int fixup_free_space(struct ubifs_info *c)
821 int lnum, err = 0;
822 struct ubifs_lprops *lprops;
824 ubifs_get_lprops(c);
826 /* Fixup LEBs in the master area */
827 for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
828 err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
829 if (err)
830 goto out;
833 /* Unmap unused log LEBs */
834 lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
835 while (lnum != c->ltail_lnum) {
836 err = fixup_leb(c, lnum, 0);
837 if (err)
838 goto out;
839 lnum = ubifs_next_log_lnum(c, lnum);
843 * Fixup the log head which contains the only a CS node at the
844 * beginning.
846 err = fixup_leb(c, c->lhead_lnum,
847 ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size));
848 if (err)
849 goto out;
851 /* Fixup LEBs in the LPT area */
852 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
853 int free = c->ltab[lnum - c->lpt_first].free;
855 if (free > 0) {
856 err = fixup_leb(c, lnum, c->leb_size - free);
857 if (err)
858 goto out;
862 /* Unmap LEBs in the orphans area */
863 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
864 err = fixup_leb(c, lnum, 0);
865 if (err)
866 goto out;
869 /* Fixup LEBs in the main area */
870 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
871 lprops = ubifs_lpt_lookup(c, lnum);
872 if (IS_ERR(lprops)) {
873 err = PTR_ERR(lprops);
874 goto out;
877 if (lprops->free > 0) {
878 err = fixup_leb(c, lnum, c->leb_size - lprops->free);
879 if (err)
880 goto out;
884 out:
885 ubifs_release_lprops(c);
886 return err;
890 * ubifs_fixup_free_space - find & fix all LEBs with free space.
891 * @c: UBIFS file-system description object
893 * This function fixes up LEBs containing free space on first mount, if the
894 * appropriate flag was set when the FS was created. Each LEB with one or more
895 * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
896 * the free space is actually erased. E.g., this is necessary for some NAND
897 * chips, since the free space may have been programmed like real "0xff" data
898 * (generating a non-0xff ECC), causing future writes to the not-really-erased
899 * NAND pages to behave badly. After the space is fixed up, the superblock flag
900 * is cleared, so that this is skipped for all future mounts.
902 int ubifs_fixup_free_space(struct ubifs_info *c)
904 int err;
905 struct ubifs_sb_node *sup = c->sup_node;
907 ubifs_assert(c, c->space_fixup);
908 ubifs_assert(c, !c->ro_mount);
910 ubifs_msg(c, "start fixing up free space");
912 err = fixup_free_space(c);
913 if (err)
914 return err;
916 /* Free-space fixup is no longer required */
917 c->space_fixup = 0;
918 sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
920 c->superblock_need_write = 1;
922 ubifs_msg(c, "free space fixup complete");
923 return err;
926 int ubifs_enable_encryption(struct ubifs_info *c)
928 int err;
929 struct ubifs_sb_node *sup = c->sup_node;
931 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION))
932 return -EOPNOTSUPP;
934 if (c->encrypted)
935 return 0;
937 if (c->ro_mount || c->ro_media)
938 return -EROFS;
940 if (c->fmt_version < 5) {
941 ubifs_err(c, "on-flash format version 5 is needed for encryption");
942 return -EINVAL;
945 sup->flags |= cpu_to_le32(UBIFS_FLG_ENCRYPTION);
947 err = ubifs_write_sb_node(c, sup);
948 if (!err)
949 c->encrypted = 1;
951 return err;