1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
12 * This file contains miscelanious TNC-related functions shared betweend
13 * different files. This file does not form any logically separate TNC
14 * sub-system. The file was created because there is a lot of TNC code and
15 * putting it all in one file would make that file too big and unreadable.
21 * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal.
22 * @c: UBIFS file-system description object
23 * @zr: root of the subtree to traverse
24 * @znode: previous znode
26 * This function implements levelorder TNC traversal. The LNC is ignored.
27 * Returns the next element or %NULL if @znode is already the last one.
29 struct ubifs_znode
*ubifs_tnc_levelorder_next(const struct ubifs_info
*c
,
30 struct ubifs_znode
*zr
,
31 struct ubifs_znode
*znode
)
33 int level
, iip
, level_search
= 0;
34 struct ubifs_znode
*zn
;
41 if (unlikely(znode
== zr
)) {
42 if (znode
->level
== 0)
44 return ubifs_tnc_find_child(zr
, 0);
51 ubifs_assert(c
, znode
->level
<= zr
->level
);
54 * First walk up until there is a znode with next branch to
57 while (znode
->parent
!= zr
&& iip
>= znode
->parent
->child_cnt
) {
58 znode
= znode
->parent
;
62 if (unlikely(znode
->parent
== zr
&&
63 iip
>= znode
->parent
->child_cnt
)) {
64 /* This level is done, switch to the lower one */
66 if (level_search
|| level
< 0)
68 * We were already looking for znode at lower
69 * level ('level_search'). As we are here
70 * again, it just does not exist. Or all levels
71 * were finished ('level < 0').
77 znode
= ubifs_tnc_find_child(zr
, 0);
78 ubifs_assert(c
, znode
);
81 /* Switch to the next index */
82 zn
= ubifs_tnc_find_child(znode
->parent
, iip
+ 1);
84 /* No more children to look at, we have walk up */
85 iip
= znode
->parent
->child_cnt
;
89 /* Walk back down to the level we came from ('level') */
90 while (zn
->level
!= level
) {
92 zn
= ubifs_tnc_find_child(zn
, 0);
95 * This path is not too deep so it does not
96 * reach 'level'. Try next path.
104 ubifs_assert(c
, zn
->level
>= 0);
111 * ubifs_search_zbranch - search znode branch.
112 * @c: UBIFS file-system description object
113 * @znode: znode to search in
114 * @key: key to search for
115 * @n: znode branch slot number is returned here
117 * This is a helper function which search branch with key @key in @znode using
118 * binary search. The result of the search may be:
119 * o exact match, then %1 is returned, and the slot number of the branch is
121 * o no exact match, then %0 is returned and the slot number of the left
122 * closest branch is returned in @n; the slot if all keys in this znode are
123 * greater than @key, then %-1 is returned in @n.
125 int ubifs_search_zbranch(const struct ubifs_info
*c
,
126 const struct ubifs_znode
*znode
,
127 const union ubifs_key
*key
, int *n
)
129 int beg
= 0, end
= znode
->child_cnt
, mid
;
131 const struct ubifs_zbranch
*zbr
= &znode
->zbranch
[0];
133 ubifs_assert(c
, end
> beg
);
136 mid
= (beg
+ end
) >> 1;
137 cmp
= keys_cmp(c
, key
, &zbr
[mid
].key
);
150 /* The insert point is after *n */
151 ubifs_assert(c
, *n
>= -1 && *n
< znode
->child_cnt
);
153 ubifs_assert(c
, keys_cmp(c
, key
, &zbr
[0].key
) < 0);
155 ubifs_assert(c
, keys_cmp(c
, key
, &zbr
[*n
].key
) > 0);
156 if (*n
+ 1 < znode
->child_cnt
)
157 ubifs_assert(c
, keys_cmp(c
, key
, &zbr
[*n
+ 1].key
) < 0);
163 * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal.
164 * @znode: znode to start at (root of the sub-tree to traverse)
166 * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is
169 struct ubifs_znode
*ubifs_tnc_postorder_first(struct ubifs_znode
*znode
)
171 if (unlikely(!znode
))
174 while (znode
->level
> 0) {
175 struct ubifs_znode
*child
;
177 child
= ubifs_tnc_find_child(znode
, 0);
187 * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal.
188 * @c: UBIFS file-system description object
189 * @znode: previous znode
191 * This function implements postorder TNC traversal. The LNC is ignored.
192 * Returns the next element or %NULL if @znode is already the last one.
194 struct ubifs_znode
*ubifs_tnc_postorder_next(const struct ubifs_info
*c
,
195 struct ubifs_znode
*znode
)
197 struct ubifs_znode
*zn
;
199 ubifs_assert(c
, znode
);
200 if (unlikely(!znode
->parent
))
203 /* Switch to the next index in the parent */
204 zn
= ubifs_tnc_find_child(znode
->parent
, znode
->iip
+ 1);
206 /* This is in fact the last child, return parent */
207 return znode
->parent
;
209 /* Go to the first znode in this new subtree */
210 return ubifs_tnc_postorder_first(zn
);
214 * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree.
215 * @c: UBIFS file-system description object
216 * @znode: znode defining subtree to destroy
218 * This function destroys subtree of the TNC tree. Returns number of clean
219 * znodes in the subtree.
221 long ubifs_destroy_tnc_subtree(const struct ubifs_info
*c
,
222 struct ubifs_znode
*znode
)
224 struct ubifs_znode
*zn
= ubifs_tnc_postorder_first(znode
);
225 long clean_freed
= 0;
230 for (n
= 0; n
< zn
->child_cnt
; n
++) {
231 if (!zn
->zbranch
[n
].znode
)
235 !ubifs_zn_dirty(zn
->zbranch
[n
].znode
))
239 kfree(zn
->zbranch
[n
].znode
);
243 if (!ubifs_zn_dirty(zn
))
249 zn
= ubifs_tnc_postorder_next(c
, zn
);
254 * read_znode - read an indexing node from flash and fill znode.
255 * @c: UBIFS file-system description object
256 * @zzbr: the zbranch describing the node to read
257 * @znode: znode to read to
259 * This function reads an indexing node from the flash media and fills znode
260 * with the read data. Returns zero in case of success and a negative error
261 * code in case of failure. The read indexing node is validated and if anything
262 * is wrong with it, this function prints complaint messages and returns
265 static int read_znode(struct ubifs_info
*c
, struct ubifs_zbranch
*zzbr
,
266 struct ubifs_znode
*znode
)
268 int lnum
= zzbr
->lnum
;
269 int offs
= zzbr
->offs
;
271 int i
, err
, type
, cmp
;
272 struct ubifs_idx_node
*idx
;
274 idx
= kmalloc(c
->max_idx_node_sz
, GFP_NOFS
);
278 err
= ubifs_read_node(c
, idx
, UBIFS_IDX_NODE
, len
, lnum
, offs
);
284 err
= ubifs_node_check_hash(c
, idx
, zzbr
->hash
);
286 ubifs_bad_hash(c
, idx
, zzbr
->hash
, lnum
, offs
);
291 znode
->child_cnt
= le16_to_cpu(idx
->child_cnt
);
292 znode
->level
= le16_to_cpu(idx
->level
);
294 dbg_tnc("LEB %d:%d, level %d, %d branch",
295 lnum
, offs
, znode
->level
, znode
->child_cnt
);
297 if (znode
->child_cnt
> c
->fanout
|| znode
->level
> UBIFS_MAX_LEVELS
) {
298 ubifs_err(c
, "current fanout %d, branch count %d",
299 c
->fanout
, znode
->child_cnt
);
300 ubifs_err(c
, "max levels %d, znode level %d",
301 UBIFS_MAX_LEVELS
, znode
->level
);
306 for (i
= 0; i
< znode
->child_cnt
; i
++) {
307 struct ubifs_branch
*br
= ubifs_idx_branch(c
, idx
, i
);
308 struct ubifs_zbranch
*zbr
= &znode
->zbranch
[i
];
310 key_read(c
, &br
->key
, &zbr
->key
);
311 zbr
->lnum
= le32_to_cpu(br
->lnum
);
312 zbr
->offs
= le32_to_cpu(br
->offs
);
313 zbr
->len
= le32_to_cpu(br
->len
);
314 ubifs_copy_hash(c
, ubifs_branch_hash(c
, br
), zbr
->hash
);
317 /* Validate branch */
319 if (zbr
->lnum
< c
->main_first
||
320 zbr
->lnum
>= c
->leb_cnt
|| zbr
->offs
< 0 ||
321 zbr
->offs
+ zbr
->len
> c
->leb_size
|| zbr
->offs
& 7) {
322 ubifs_err(c
, "bad branch %d", i
);
327 switch (key_type(c
, &zbr
->key
)) {
334 ubifs_err(c
, "bad key type at slot %d: %d",
335 i
, key_type(c
, &zbr
->key
));
343 type
= key_type(c
, &zbr
->key
);
344 if (c
->ranges
[type
].max_len
== 0) {
345 if (zbr
->len
!= c
->ranges
[type
].len
) {
346 ubifs_err(c
, "bad target node (type %d) length (%d)",
348 ubifs_err(c
, "have to be %d", c
->ranges
[type
].len
);
352 } else if (zbr
->len
< c
->ranges
[type
].min_len
||
353 zbr
->len
> c
->ranges
[type
].max_len
) {
354 ubifs_err(c
, "bad target node (type %d) length (%d)",
356 ubifs_err(c
, "have to be in range of %d-%d",
357 c
->ranges
[type
].min_len
,
358 c
->ranges
[type
].max_len
);
365 * Ensure that the next key is greater or equivalent to the
368 for (i
= 0; i
< znode
->child_cnt
- 1; i
++) {
369 const union ubifs_key
*key1
, *key2
;
371 key1
= &znode
->zbranch
[i
].key
;
372 key2
= &znode
->zbranch
[i
+ 1].key
;
374 cmp
= keys_cmp(c
, key1
, key2
);
376 ubifs_err(c
, "bad key order (keys %d and %d)", i
, i
+ 1);
379 } else if (cmp
== 0 && !is_hash_key(c
, key1
)) {
380 /* These can only be keys with colliding hash */
381 ubifs_err(c
, "keys %d and %d are not hashed but equivalent",
392 ubifs_err(c
, "bad indexing node at LEB %d:%d, error %d", lnum
, offs
, err
);
393 ubifs_dump_node(c
, idx
);
399 * ubifs_load_znode - load znode to TNC cache.
400 * @c: UBIFS file-system description object
402 * @parent: znode's parent
403 * @iip: index in parent
405 * This function loads znode pointed to by @zbr into the TNC cache and
406 * returns pointer to it in case of success and a negative error code in case
409 struct ubifs_znode
*ubifs_load_znode(struct ubifs_info
*c
,
410 struct ubifs_zbranch
*zbr
,
411 struct ubifs_znode
*parent
, int iip
)
414 struct ubifs_znode
*znode
;
416 ubifs_assert(c
, !zbr
->znode
);
418 * A slab cache is not presently used for znodes because the znode size
419 * depends on the fanout which is stored in the superblock.
421 znode
= kzalloc(c
->max_znode_sz
, GFP_NOFS
);
423 return ERR_PTR(-ENOMEM
);
425 err
= read_znode(c
, zbr
, znode
);
429 atomic_long_inc(&c
->clean_zn_cnt
);
432 * Increment the global clean znode counter as well. It is OK that
433 * global and per-FS clean znode counters may be inconsistent for some
434 * short time (because we might be preempted at this point), the global
435 * one is only used in shrinker.
437 atomic_long_inc(&ubifs_clean_zn_cnt
);
440 znode
->parent
= parent
;
441 znode
->time
= ktime_get_seconds();
452 * ubifs_tnc_read_node - read a leaf node from the flash media.
453 * @c: UBIFS file-system description object
454 * @zbr: key and position of the node
455 * @node: node is returned here
457 * This function reads a node defined by @zbr from the flash media. Returns
458 * zero in case of success or a negative negative error code in case of
461 int ubifs_tnc_read_node(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
464 union ubifs_key key1
, *key
= &zbr
->key
;
465 int err
, type
= key_type(c
, key
);
466 struct ubifs_wbuf
*wbuf
;
469 * 'zbr' has to point to on-flash node. The node may sit in a bud and
470 * may even be in a write buffer, so we have to take care about this.
472 wbuf
= ubifs_get_wbuf(c
, zbr
->lnum
);
474 err
= ubifs_read_node_wbuf(wbuf
, node
, type
, zbr
->len
,
475 zbr
->lnum
, zbr
->offs
);
477 err
= ubifs_read_node(c
, node
, type
, zbr
->len
, zbr
->lnum
,
481 dbg_tnck(key
, "key ");
485 /* Make sure the key of the read node is correct */
486 key_read(c
, node
+ UBIFS_KEY_OFFSET
, &key1
);
487 if (!keys_eq(c
, key
, &key1
)) {
488 ubifs_err(c
, "bad key in node at LEB %d:%d",
489 zbr
->lnum
, zbr
->offs
);
490 dbg_tnck(key
, "looked for key ");
491 dbg_tnck(&key1
, "but found node's key ");
492 ubifs_dump_node(c
, node
);
496 err
= ubifs_node_check_hash(c
, node
, zbr
->hash
);
498 ubifs_bad_hash(c
, node
, zbr
->hash
, zbr
->lnum
, zbr
->offs
);