2 * kexec.c - kexec system call core code.
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/capability.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
43 #include <asm/sections.h>
45 #include <crypto/hash.h>
46 #include <crypto/sha.h>
47 #include "kexec_internal.h"
49 DEFINE_MUTEX(kexec_mutex
);
51 /* Per cpu memory for storing cpu states in case of system crash. */
52 note_buf_t __percpu
*crash_notes
;
54 /* vmcoreinfo stuff */
55 static unsigned char vmcoreinfo_data
[VMCOREINFO_BYTES
];
56 u32 vmcoreinfo_note
[VMCOREINFO_NOTE_SIZE
/4];
57 size_t vmcoreinfo_size
;
58 size_t vmcoreinfo_max_size
= sizeof(vmcoreinfo_data
);
60 /* Flag to indicate we are going to kexec a new kernel */
61 bool kexec_in_progress
= false;
64 /* Location of the reserved area for the crash kernel */
65 struct resource crashk_res
= {
66 .name
= "Crash kernel",
69 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
71 struct resource crashk_low_res
= {
72 .name
= "Crash kernel",
75 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
78 int kexec_should_crash(struct task_struct
*p
)
81 * If crash_kexec_post_notifiers is enabled, don't run
82 * crash_kexec() here yet, which must be run after panic
83 * notifiers in panic().
85 if (crash_kexec_post_notifiers
)
88 * There are 4 panic() calls in do_exit() path, each of which
89 * corresponds to each of these 4 conditions.
91 if (in_interrupt() || !p
->pid
|| is_global_init(p
) || panic_on_oops
)
97 * When kexec transitions to the new kernel there is a one-to-one
98 * mapping between physical and virtual addresses. On processors
99 * where you can disable the MMU this is trivial, and easy. For
100 * others it is still a simple predictable page table to setup.
102 * In that environment kexec copies the new kernel to its final
103 * resting place. This means I can only support memory whose
104 * physical address can fit in an unsigned long. In particular
105 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
106 * If the assembly stub has more restrictive requirements
107 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
108 * defined more restrictively in <asm/kexec.h>.
110 * The code for the transition from the current kernel to the
111 * the new kernel is placed in the control_code_buffer, whose size
112 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
113 * page of memory is necessary, but some architectures require more.
114 * Because this memory must be identity mapped in the transition from
115 * virtual to physical addresses it must live in the range
116 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
119 * The assembly stub in the control code buffer is passed a linked list
120 * of descriptor pages detailing the source pages of the new kernel,
121 * and the destination addresses of those source pages. As this data
122 * structure is not used in the context of the current OS, it must
125 * The code has been made to work with highmem pages and will use a
126 * destination page in its final resting place (if it happens
127 * to allocate it). The end product of this is that most of the
128 * physical address space, and most of RAM can be used.
130 * Future directions include:
131 * - allocating a page table with the control code buffer identity
132 * mapped, to simplify machine_kexec and make kexec_on_panic more
137 * KIMAGE_NO_DEST is an impossible destination address..., for
138 * allocating pages whose destination address we do not care about.
140 #define KIMAGE_NO_DEST (-1UL)
142 static struct page
*kimage_alloc_page(struct kimage
*image
,
146 int sanity_check_segment_list(struct kimage
*image
)
149 unsigned long nr_segments
= image
->nr_segments
;
152 * Verify we have good destination addresses. The caller is
153 * responsible for making certain we don't attempt to load
154 * the new image into invalid or reserved areas of RAM. This
155 * just verifies it is an address we can use.
157 * Since the kernel does everything in page size chunks ensure
158 * the destination addresses are page aligned. Too many
159 * special cases crop of when we don't do this. The most
160 * insidious is getting overlapping destination addresses
161 * simply because addresses are changed to page size
164 result
= -EADDRNOTAVAIL
;
165 for (i
= 0; i
< nr_segments
; i
++) {
166 unsigned long mstart
, mend
;
168 mstart
= image
->segment
[i
].mem
;
169 mend
= mstart
+ image
->segment
[i
].memsz
;
170 if ((mstart
& ~PAGE_MASK
) || (mend
& ~PAGE_MASK
))
172 if (mend
>= KEXEC_DESTINATION_MEMORY_LIMIT
)
176 /* Verify our destination addresses do not overlap.
177 * If we alloed overlapping destination addresses
178 * through very weird things can happen with no
179 * easy explanation as one segment stops on another.
182 for (i
= 0; i
< nr_segments
; i
++) {
183 unsigned long mstart
, mend
;
186 mstart
= image
->segment
[i
].mem
;
187 mend
= mstart
+ image
->segment
[i
].memsz
;
188 for (j
= 0; j
< i
; j
++) {
189 unsigned long pstart
, pend
;
191 pstart
= image
->segment
[j
].mem
;
192 pend
= pstart
+ image
->segment
[j
].memsz
;
193 /* Do the segments overlap ? */
194 if ((mend
> pstart
) && (mstart
< pend
))
199 /* Ensure our buffer sizes are strictly less than
200 * our memory sizes. This should always be the case,
201 * and it is easier to check up front than to be surprised
205 for (i
= 0; i
< nr_segments
; i
++) {
206 if (image
->segment
[i
].bufsz
> image
->segment
[i
].memsz
)
211 * Verify we have good destination addresses. Normally
212 * the caller is responsible for making certain we don't
213 * attempt to load the new image into invalid or reserved
214 * areas of RAM. But crash kernels are preloaded into a
215 * reserved area of ram. We must ensure the addresses
216 * are in the reserved area otherwise preloading the
217 * kernel could corrupt things.
220 if (image
->type
== KEXEC_TYPE_CRASH
) {
221 result
= -EADDRNOTAVAIL
;
222 for (i
= 0; i
< nr_segments
; i
++) {
223 unsigned long mstart
, mend
;
225 mstart
= image
->segment
[i
].mem
;
226 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
227 /* Ensure we are within the crash kernel limits */
228 if ((mstart
< crashk_res
.start
) ||
229 (mend
> crashk_res
.end
))
237 struct kimage
*do_kimage_alloc_init(void)
239 struct kimage
*image
;
241 /* Allocate a controlling structure */
242 image
= kzalloc(sizeof(*image
), GFP_KERNEL
);
247 image
->entry
= &image
->head
;
248 image
->last_entry
= &image
->head
;
249 image
->control_page
= ~0; /* By default this does not apply */
250 image
->type
= KEXEC_TYPE_DEFAULT
;
252 /* Initialize the list of control pages */
253 INIT_LIST_HEAD(&image
->control_pages
);
255 /* Initialize the list of destination pages */
256 INIT_LIST_HEAD(&image
->dest_pages
);
258 /* Initialize the list of unusable pages */
259 INIT_LIST_HEAD(&image
->unusable_pages
);
264 int kimage_is_destination_range(struct kimage
*image
,
270 for (i
= 0; i
< image
->nr_segments
; i
++) {
271 unsigned long mstart
, mend
;
273 mstart
= image
->segment
[i
].mem
;
274 mend
= mstart
+ image
->segment
[i
].memsz
;
275 if ((end
> mstart
) && (start
< mend
))
282 static struct page
*kimage_alloc_pages(gfp_t gfp_mask
, unsigned int order
)
286 pages
= alloc_pages(gfp_mask
, order
);
288 unsigned int count
, i
;
290 pages
->mapping
= NULL
;
291 set_page_private(pages
, order
);
293 for (i
= 0; i
< count
; i
++)
294 SetPageReserved(pages
+ i
);
300 static void kimage_free_pages(struct page
*page
)
302 unsigned int order
, count
, i
;
304 order
= page_private(page
);
306 for (i
= 0; i
< count
; i
++)
307 ClearPageReserved(page
+ i
);
308 __free_pages(page
, order
);
311 void kimage_free_page_list(struct list_head
*list
)
313 struct page
*page
, *next
;
315 list_for_each_entry_safe(page
, next
, list
, lru
) {
316 list_del(&page
->lru
);
317 kimage_free_pages(page
);
321 static struct page
*kimage_alloc_normal_control_pages(struct kimage
*image
,
324 /* Control pages are special, they are the intermediaries
325 * that are needed while we copy the rest of the pages
326 * to their final resting place. As such they must
327 * not conflict with either the destination addresses
328 * or memory the kernel is already using.
330 * The only case where we really need more than one of
331 * these are for architectures where we cannot disable
332 * the MMU and must instead generate an identity mapped
333 * page table for all of the memory.
335 * At worst this runs in O(N) of the image size.
337 struct list_head extra_pages
;
342 INIT_LIST_HEAD(&extra_pages
);
344 /* Loop while I can allocate a page and the page allocated
345 * is a destination page.
348 unsigned long pfn
, epfn
, addr
, eaddr
;
350 pages
= kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP
, order
);
353 pfn
= page_to_pfn(pages
);
355 addr
= pfn
<< PAGE_SHIFT
;
356 eaddr
= epfn
<< PAGE_SHIFT
;
357 if ((epfn
>= (KEXEC_CONTROL_MEMORY_LIMIT
>> PAGE_SHIFT
)) ||
358 kimage_is_destination_range(image
, addr
, eaddr
)) {
359 list_add(&pages
->lru
, &extra_pages
);
365 /* Remember the allocated page... */
366 list_add(&pages
->lru
, &image
->control_pages
);
368 /* Because the page is already in it's destination
369 * location we will never allocate another page at
370 * that address. Therefore kimage_alloc_pages
371 * will not return it (again) and we don't need
372 * to give it an entry in image->segment[].
375 /* Deal with the destination pages I have inadvertently allocated.
377 * Ideally I would convert multi-page allocations into single
378 * page allocations, and add everything to image->dest_pages.
380 * For now it is simpler to just free the pages.
382 kimage_free_page_list(&extra_pages
);
387 static struct page
*kimage_alloc_crash_control_pages(struct kimage
*image
,
390 /* Control pages are special, they are the intermediaries
391 * that are needed while we copy the rest of the pages
392 * to their final resting place. As such they must
393 * not conflict with either the destination addresses
394 * or memory the kernel is already using.
396 * Control pages are also the only pags we must allocate
397 * when loading a crash kernel. All of the other pages
398 * are specified by the segments and we just memcpy
399 * into them directly.
401 * The only case where we really need more than one of
402 * these are for architectures where we cannot disable
403 * the MMU and must instead generate an identity mapped
404 * page table for all of the memory.
406 * Given the low demand this implements a very simple
407 * allocator that finds the first hole of the appropriate
408 * size in the reserved memory region, and allocates all
409 * of the memory up to and including the hole.
411 unsigned long hole_start
, hole_end
, size
;
415 size
= (1 << order
) << PAGE_SHIFT
;
416 hole_start
= (image
->control_page
+ (size
- 1)) & ~(size
- 1);
417 hole_end
= hole_start
+ size
- 1;
418 while (hole_end
<= crashk_res
.end
) {
421 if (hole_end
> KEXEC_CRASH_CONTROL_MEMORY_LIMIT
)
423 /* See if I overlap any of the segments */
424 for (i
= 0; i
< image
->nr_segments
; i
++) {
425 unsigned long mstart
, mend
;
427 mstart
= image
->segment
[i
].mem
;
428 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
429 if ((hole_end
>= mstart
) && (hole_start
<= mend
)) {
430 /* Advance the hole to the end of the segment */
431 hole_start
= (mend
+ (size
- 1)) & ~(size
- 1);
432 hole_end
= hole_start
+ size
- 1;
436 /* If I don't overlap any segments I have found my hole! */
437 if (i
== image
->nr_segments
) {
438 pages
= pfn_to_page(hole_start
>> PAGE_SHIFT
);
439 image
->control_page
= hole_end
;
448 struct page
*kimage_alloc_control_pages(struct kimage
*image
,
451 struct page
*pages
= NULL
;
453 switch (image
->type
) {
454 case KEXEC_TYPE_DEFAULT
:
455 pages
= kimage_alloc_normal_control_pages(image
, order
);
457 case KEXEC_TYPE_CRASH
:
458 pages
= kimage_alloc_crash_control_pages(image
, order
);
465 static int kimage_add_entry(struct kimage
*image
, kimage_entry_t entry
)
467 if (*image
->entry
!= 0)
470 if (image
->entry
== image
->last_entry
) {
471 kimage_entry_t
*ind_page
;
474 page
= kimage_alloc_page(image
, GFP_KERNEL
, KIMAGE_NO_DEST
);
478 ind_page
= page_address(page
);
479 *image
->entry
= virt_to_phys(ind_page
) | IND_INDIRECTION
;
480 image
->entry
= ind_page
;
481 image
->last_entry
= ind_page
+
482 ((PAGE_SIZE
/sizeof(kimage_entry_t
)) - 1);
484 *image
->entry
= entry
;
491 static int kimage_set_destination(struct kimage
*image
,
492 unsigned long destination
)
496 destination
&= PAGE_MASK
;
497 result
= kimage_add_entry(image
, destination
| IND_DESTINATION
);
503 static int kimage_add_page(struct kimage
*image
, unsigned long page
)
508 result
= kimage_add_entry(image
, page
| IND_SOURCE
);
514 static void kimage_free_extra_pages(struct kimage
*image
)
516 /* Walk through and free any extra destination pages I may have */
517 kimage_free_page_list(&image
->dest_pages
);
519 /* Walk through and free any unusable pages I have cached */
520 kimage_free_page_list(&image
->unusable_pages
);
523 void kimage_terminate(struct kimage
*image
)
525 if (*image
->entry
!= 0)
528 *image
->entry
= IND_DONE
;
531 #define for_each_kimage_entry(image, ptr, entry) \
532 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
533 ptr = (entry & IND_INDIRECTION) ? \
534 phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
536 static void kimage_free_entry(kimage_entry_t entry
)
540 page
= pfn_to_page(entry
>> PAGE_SHIFT
);
541 kimage_free_pages(page
);
544 void kimage_free(struct kimage
*image
)
546 kimage_entry_t
*ptr
, entry
;
547 kimage_entry_t ind
= 0;
552 kimage_free_extra_pages(image
);
553 for_each_kimage_entry(image
, ptr
, entry
) {
554 if (entry
& IND_INDIRECTION
) {
555 /* Free the previous indirection page */
556 if (ind
& IND_INDIRECTION
)
557 kimage_free_entry(ind
);
558 /* Save this indirection page until we are
562 } else if (entry
& IND_SOURCE
)
563 kimage_free_entry(entry
);
565 /* Free the final indirection page */
566 if (ind
& IND_INDIRECTION
)
567 kimage_free_entry(ind
);
569 /* Handle any machine specific cleanup */
570 machine_kexec_cleanup(image
);
572 /* Free the kexec control pages... */
573 kimage_free_page_list(&image
->control_pages
);
576 * Free up any temporary buffers allocated. This might hit if
577 * error occurred much later after buffer allocation.
579 if (image
->file_mode
)
580 kimage_file_post_load_cleanup(image
);
585 static kimage_entry_t
*kimage_dst_used(struct kimage
*image
,
588 kimage_entry_t
*ptr
, entry
;
589 unsigned long destination
= 0;
591 for_each_kimage_entry(image
, ptr
, entry
) {
592 if (entry
& IND_DESTINATION
)
593 destination
= entry
& PAGE_MASK
;
594 else if (entry
& IND_SOURCE
) {
595 if (page
== destination
)
597 destination
+= PAGE_SIZE
;
604 static struct page
*kimage_alloc_page(struct kimage
*image
,
606 unsigned long destination
)
609 * Here we implement safeguards to ensure that a source page
610 * is not copied to its destination page before the data on
611 * the destination page is no longer useful.
613 * To do this we maintain the invariant that a source page is
614 * either its own destination page, or it is not a
615 * destination page at all.
617 * That is slightly stronger than required, but the proof
618 * that no problems will not occur is trivial, and the
619 * implementation is simply to verify.
621 * When allocating all pages normally this algorithm will run
622 * in O(N) time, but in the worst case it will run in O(N^2)
623 * time. If the runtime is a problem the data structures can
630 * Walk through the list of destination pages, and see if I
633 list_for_each_entry(page
, &image
->dest_pages
, lru
) {
634 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
635 if (addr
== destination
) {
636 list_del(&page
->lru
);
644 /* Allocate a page, if we run out of memory give up */
645 page
= kimage_alloc_pages(gfp_mask
, 0);
648 /* If the page cannot be used file it away */
649 if (page_to_pfn(page
) >
650 (KEXEC_SOURCE_MEMORY_LIMIT
>> PAGE_SHIFT
)) {
651 list_add(&page
->lru
, &image
->unusable_pages
);
654 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
656 /* If it is the destination page we want use it */
657 if (addr
== destination
)
660 /* If the page is not a destination page use it */
661 if (!kimage_is_destination_range(image
, addr
,
666 * I know that the page is someones destination page.
667 * See if there is already a source page for this
668 * destination page. And if so swap the source pages.
670 old
= kimage_dst_used(image
, addr
);
673 unsigned long old_addr
;
674 struct page
*old_page
;
676 old_addr
= *old
& PAGE_MASK
;
677 old_page
= pfn_to_page(old_addr
>> PAGE_SHIFT
);
678 copy_highpage(page
, old_page
);
679 *old
= addr
| (*old
& ~PAGE_MASK
);
681 /* The old page I have found cannot be a
682 * destination page, so return it if it's
683 * gfp_flags honor the ones passed in.
685 if (!(gfp_mask
& __GFP_HIGHMEM
) &&
686 PageHighMem(old_page
)) {
687 kimage_free_pages(old_page
);
694 /* Place the page on the destination list, to be used later */
695 list_add(&page
->lru
, &image
->dest_pages
);
701 static int kimage_load_normal_segment(struct kimage
*image
,
702 struct kexec_segment
*segment
)
705 size_t ubytes
, mbytes
;
707 unsigned char __user
*buf
= NULL
;
708 unsigned char *kbuf
= NULL
;
711 if (image
->file_mode
)
712 kbuf
= segment
->kbuf
;
715 ubytes
= segment
->bufsz
;
716 mbytes
= segment
->memsz
;
717 maddr
= segment
->mem
;
719 result
= kimage_set_destination(image
, maddr
);
726 size_t uchunk
, mchunk
;
728 page
= kimage_alloc_page(image
, GFP_HIGHUSER
, maddr
);
733 result
= kimage_add_page(image
, page_to_pfn(page
)
739 /* Start with a clear page */
741 ptr
+= maddr
& ~PAGE_MASK
;
742 mchunk
= min_t(size_t, mbytes
,
743 PAGE_SIZE
- (maddr
& ~PAGE_MASK
));
744 uchunk
= min(ubytes
, mchunk
);
746 /* For file based kexec, source pages are in kernel memory */
747 if (image
->file_mode
)
748 memcpy(ptr
, kbuf
, uchunk
);
750 result
= copy_from_user(ptr
, buf
, uchunk
);
758 if (image
->file_mode
)
768 static int kimage_load_crash_segment(struct kimage
*image
,
769 struct kexec_segment
*segment
)
771 /* For crash dumps kernels we simply copy the data from
772 * user space to it's destination.
773 * We do things a page at a time for the sake of kmap.
776 size_t ubytes
, mbytes
;
778 unsigned char __user
*buf
= NULL
;
779 unsigned char *kbuf
= NULL
;
782 if (image
->file_mode
)
783 kbuf
= segment
->kbuf
;
786 ubytes
= segment
->bufsz
;
787 mbytes
= segment
->memsz
;
788 maddr
= segment
->mem
;
792 size_t uchunk
, mchunk
;
794 page
= pfn_to_page(maddr
>> PAGE_SHIFT
);
800 ptr
+= maddr
& ~PAGE_MASK
;
801 mchunk
= min_t(size_t, mbytes
,
802 PAGE_SIZE
- (maddr
& ~PAGE_MASK
));
803 uchunk
= min(ubytes
, mchunk
);
804 if (mchunk
> uchunk
) {
805 /* Zero the trailing part of the page */
806 memset(ptr
+ uchunk
, 0, mchunk
- uchunk
);
809 /* For file based kexec, source pages are in kernel memory */
810 if (image
->file_mode
)
811 memcpy(ptr
, kbuf
, uchunk
);
813 result
= copy_from_user(ptr
, buf
, uchunk
);
814 kexec_flush_icache_page(page
);
822 if (image
->file_mode
)
832 int kimage_load_segment(struct kimage
*image
,
833 struct kexec_segment
*segment
)
835 int result
= -ENOMEM
;
837 switch (image
->type
) {
838 case KEXEC_TYPE_DEFAULT
:
839 result
= kimage_load_normal_segment(image
, segment
);
841 case KEXEC_TYPE_CRASH
:
842 result
= kimage_load_crash_segment(image
, segment
);
849 struct kimage
*kexec_image
;
850 struct kimage
*kexec_crash_image
;
851 int kexec_load_disabled
;
854 * No panic_cpu check version of crash_kexec(). This function is called
855 * only when panic_cpu holds the current CPU number; this is the only CPU
856 * which processes crash_kexec routines.
858 void __crash_kexec(struct pt_regs
*regs
)
860 /* Take the kexec_mutex here to prevent sys_kexec_load
861 * running on one cpu from replacing the crash kernel
862 * we are using after a panic on a different cpu.
864 * If the crash kernel was not located in a fixed area
865 * of memory the xchg(&kexec_crash_image) would be
866 * sufficient. But since I reuse the memory...
868 if (mutex_trylock(&kexec_mutex
)) {
869 if (kexec_crash_image
) {
870 struct pt_regs fixed_regs
;
872 crash_setup_regs(&fixed_regs
, regs
);
873 crash_save_vmcoreinfo();
874 machine_crash_shutdown(&fixed_regs
);
875 machine_kexec(kexec_crash_image
);
877 mutex_unlock(&kexec_mutex
);
881 void crash_kexec(struct pt_regs
*regs
)
883 int old_cpu
, this_cpu
;
886 * Only one CPU is allowed to execute the crash_kexec() code as with
887 * panic(). Otherwise parallel calls of panic() and crash_kexec()
888 * may stop each other. To exclude them, we use panic_cpu here too.
890 this_cpu
= raw_smp_processor_id();
891 old_cpu
= atomic_cmpxchg(&panic_cpu
, PANIC_CPU_INVALID
, this_cpu
);
892 if (old_cpu
== PANIC_CPU_INVALID
) {
893 /* This is the 1st CPU which comes here, so go ahead. */
897 * Reset panic_cpu to allow another panic()/crash_kexec()
900 atomic_set(&panic_cpu
, PANIC_CPU_INVALID
);
904 size_t crash_get_memory_size(void)
908 mutex_lock(&kexec_mutex
);
909 if (crashk_res
.end
!= crashk_res
.start
)
910 size
= resource_size(&crashk_res
);
911 mutex_unlock(&kexec_mutex
);
915 void __weak
crash_free_reserved_phys_range(unsigned long begin
,
920 for (addr
= begin
; addr
< end
; addr
+= PAGE_SIZE
)
921 free_reserved_page(pfn_to_page(addr
>> PAGE_SHIFT
));
924 int crash_shrink_memory(unsigned long new_size
)
927 unsigned long start
, end
;
928 unsigned long old_size
;
929 struct resource
*ram_res
;
931 mutex_lock(&kexec_mutex
);
933 if (kexec_crash_image
) {
937 start
= crashk_res
.start
;
938 end
= crashk_res
.end
;
939 old_size
= (end
== 0) ? 0 : end
- start
+ 1;
940 if (new_size
>= old_size
) {
941 ret
= (new_size
== old_size
) ? 0 : -EINVAL
;
945 ram_res
= kzalloc(sizeof(*ram_res
), GFP_KERNEL
);
951 start
= roundup(start
, KEXEC_CRASH_MEM_ALIGN
);
952 end
= roundup(start
+ new_size
, KEXEC_CRASH_MEM_ALIGN
);
954 crash_map_reserved_pages();
955 crash_free_reserved_phys_range(end
, crashk_res
.end
);
957 if ((start
== end
) && (crashk_res
.parent
!= NULL
))
958 release_resource(&crashk_res
);
960 ram_res
->start
= end
;
961 ram_res
->end
= crashk_res
.end
;
962 ram_res
->flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
;
963 ram_res
->name
= "System RAM";
965 crashk_res
.end
= end
- 1;
967 insert_resource(&iomem_resource
, ram_res
);
968 crash_unmap_reserved_pages();
971 mutex_unlock(&kexec_mutex
);
975 static u32
*append_elf_note(u32
*buf
, char *name
, unsigned type
, void *data
,
978 struct elf_note note
;
980 note
.n_namesz
= strlen(name
) + 1;
981 note
.n_descsz
= data_len
;
983 memcpy(buf
, ¬e
, sizeof(note
));
984 buf
+= (sizeof(note
) + 3)/4;
985 memcpy(buf
, name
, note
.n_namesz
);
986 buf
+= (note
.n_namesz
+ 3)/4;
987 memcpy(buf
, data
, note
.n_descsz
);
988 buf
+= (note
.n_descsz
+ 3)/4;
993 static void final_note(u32
*buf
)
995 struct elf_note note
;
1000 memcpy(buf
, ¬e
, sizeof(note
));
1003 void crash_save_cpu(struct pt_regs
*regs
, int cpu
)
1005 struct elf_prstatus prstatus
;
1008 if ((cpu
< 0) || (cpu
>= nr_cpu_ids
))
1011 /* Using ELF notes here is opportunistic.
1012 * I need a well defined structure format
1013 * for the data I pass, and I need tags
1014 * on the data to indicate what information I have
1015 * squirrelled away. ELF notes happen to provide
1016 * all of that, so there is no need to invent something new.
1018 buf
= (u32
*)per_cpu_ptr(crash_notes
, cpu
);
1021 memset(&prstatus
, 0, sizeof(prstatus
));
1022 prstatus
.pr_pid
= current
->pid
;
1023 elf_core_copy_kernel_regs(&prstatus
.pr_reg
, regs
);
1024 buf
= append_elf_note(buf
, KEXEC_CORE_NOTE_NAME
, NT_PRSTATUS
,
1025 &prstatus
, sizeof(prstatus
));
1029 static int __init
crash_notes_memory_init(void)
1031 /* Allocate memory for saving cpu registers. */
1035 * crash_notes could be allocated across 2 vmalloc pages when percpu
1036 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1037 * pages are also on 2 continuous physical pages. In this case the
1038 * 2nd part of crash_notes in 2nd page could be lost since only the
1039 * starting address and size of crash_notes are exported through sysfs.
1040 * Here round up the size of crash_notes to the nearest power of two
1041 * and pass it to __alloc_percpu as align value. This can make sure
1042 * crash_notes is allocated inside one physical page.
1044 size
= sizeof(note_buf_t
);
1045 align
= min(roundup_pow_of_two(sizeof(note_buf_t
)), PAGE_SIZE
);
1048 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1049 * definitely will be in 2 pages with that.
1051 BUILD_BUG_ON(size
> PAGE_SIZE
);
1053 crash_notes
= __alloc_percpu(size
, align
);
1055 pr_warn("Memory allocation for saving cpu register states failed\n");
1060 subsys_initcall(crash_notes_memory_init
);
1064 * parsing the "crashkernel" commandline
1066 * this code is intended to be called from architecture specific code
1071 * This function parses command lines in the format
1073 * crashkernel=ramsize-range:size[,...][@offset]
1075 * The function returns 0 on success and -EINVAL on failure.
1077 static int __init
parse_crashkernel_mem(char *cmdline
,
1078 unsigned long long system_ram
,
1079 unsigned long long *crash_size
,
1080 unsigned long long *crash_base
)
1082 char *cur
= cmdline
, *tmp
;
1084 /* for each entry of the comma-separated list */
1086 unsigned long long start
, end
= ULLONG_MAX
, size
;
1088 /* get the start of the range */
1089 start
= memparse(cur
, &tmp
);
1091 pr_warn("crashkernel: Memory value expected\n");
1096 pr_warn("crashkernel: '-' expected\n");
1101 /* if no ':' is here, than we read the end */
1103 end
= memparse(cur
, &tmp
);
1105 pr_warn("crashkernel: Memory value expected\n");
1110 pr_warn("crashkernel: end <= start\n");
1116 pr_warn("crashkernel: ':' expected\n");
1121 size
= memparse(cur
, &tmp
);
1123 pr_warn("Memory value expected\n");
1127 if (size
>= system_ram
) {
1128 pr_warn("crashkernel: invalid size\n");
1133 if (system_ram
>= start
&& system_ram
< end
) {
1137 } while (*cur
++ == ',');
1139 if (*crash_size
> 0) {
1140 while (*cur
&& *cur
!= ' ' && *cur
!= '@')
1144 *crash_base
= memparse(cur
, &tmp
);
1146 pr_warn("Memory value expected after '@'\n");
1156 * That function parses "simple" (old) crashkernel command lines like
1158 * crashkernel=size[@offset]
1160 * It returns 0 on success and -EINVAL on failure.
1162 static int __init
parse_crashkernel_simple(char *cmdline
,
1163 unsigned long long *crash_size
,
1164 unsigned long long *crash_base
)
1166 char *cur
= cmdline
;
1168 *crash_size
= memparse(cmdline
, &cur
);
1169 if (cmdline
== cur
) {
1170 pr_warn("crashkernel: memory value expected\n");
1175 *crash_base
= memparse(cur
+1, &cur
);
1176 else if (*cur
!= ' ' && *cur
!= '\0') {
1177 pr_warn("crashkernel: unrecognized char: %c\n", *cur
);
1184 #define SUFFIX_HIGH 0
1185 #define SUFFIX_LOW 1
1186 #define SUFFIX_NULL 2
1187 static __initdata
char *suffix_tbl
[] = {
1188 [SUFFIX_HIGH
] = ",high",
1189 [SUFFIX_LOW
] = ",low",
1190 [SUFFIX_NULL
] = NULL
,
1194 * That function parses "suffix" crashkernel command lines like
1196 * crashkernel=size,[high|low]
1198 * It returns 0 on success and -EINVAL on failure.
1200 static int __init
parse_crashkernel_suffix(char *cmdline
,
1201 unsigned long long *crash_size
,
1204 char *cur
= cmdline
;
1206 *crash_size
= memparse(cmdline
, &cur
);
1207 if (cmdline
== cur
) {
1208 pr_warn("crashkernel: memory value expected\n");
1212 /* check with suffix */
1213 if (strncmp(cur
, suffix
, strlen(suffix
))) {
1214 pr_warn("crashkernel: unrecognized char: %c\n", *cur
);
1217 cur
+= strlen(suffix
);
1218 if (*cur
!= ' ' && *cur
!= '\0') {
1219 pr_warn("crashkernel: unrecognized char: %c\n", *cur
);
1226 static __init
char *get_last_crashkernel(char *cmdline
,
1230 char *p
= cmdline
, *ck_cmdline
= NULL
;
1232 /* find crashkernel and use the last one if there are more */
1233 p
= strstr(p
, name
);
1235 char *end_p
= strchr(p
, ' ');
1239 end_p
= p
+ strlen(p
);
1244 /* skip the one with any known suffix */
1245 for (i
= 0; suffix_tbl
[i
]; i
++) {
1246 q
= end_p
- strlen(suffix_tbl
[i
]);
1247 if (!strncmp(q
, suffix_tbl
[i
],
1248 strlen(suffix_tbl
[i
])))
1253 q
= end_p
- strlen(suffix
);
1254 if (!strncmp(q
, suffix
, strlen(suffix
)))
1258 p
= strstr(p
+1, name
);
1267 static int __init
__parse_crashkernel(char *cmdline
,
1268 unsigned long long system_ram
,
1269 unsigned long long *crash_size
,
1270 unsigned long long *crash_base
,
1274 char *first_colon
, *first_space
;
1277 BUG_ON(!crash_size
|| !crash_base
);
1281 ck_cmdline
= get_last_crashkernel(cmdline
, name
, suffix
);
1286 ck_cmdline
+= strlen(name
);
1289 return parse_crashkernel_suffix(ck_cmdline
, crash_size
,
1292 * if the commandline contains a ':', then that's the extended
1293 * syntax -- if not, it must be the classic syntax
1295 first_colon
= strchr(ck_cmdline
, ':');
1296 first_space
= strchr(ck_cmdline
, ' ');
1297 if (first_colon
&& (!first_space
|| first_colon
< first_space
))
1298 return parse_crashkernel_mem(ck_cmdline
, system_ram
,
1299 crash_size
, crash_base
);
1301 return parse_crashkernel_simple(ck_cmdline
, crash_size
, crash_base
);
1305 * That function is the entry point for command line parsing and should be
1306 * called from the arch-specific code.
1308 int __init
parse_crashkernel(char *cmdline
,
1309 unsigned long long system_ram
,
1310 unsigned long long *crash_size
,
1311 unsigned long long *crash_base
)
1313 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1314 "crashkernel=", NULL
);
1317 int __init
parse_crashkernel_high(char *cmdline
,
1318 unsigned long long system_ram
,
1319 unsigned long long *crash_size
,
1320 unsigned long long *crash_base
)
1322 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1323 "crashkernel=", suffix_tbl
[SUFFIX_HIGH
]);
1326 int __init
parse_crashkernel_low(char *cmdline
,
1327 unsigned long long system_ram
,
1328 unsigned long long *crash_size
,
1329 unsigned long long *crash_base
)
1331 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1332 "crashkernel=", suffix_tbl
[SUFFIX_LOW
]);
1335 static void update_vmcoreinfo_note(void)
1337 u32
*buf
= vmcoreinfo_note
;
1339 if (!vmcoreinfo_size
)
1341 buf
= append_elf_note(buf
, VMCOREINFO_NOTE_NAME
, 0, vmcoreinfo_data
,
1346 void crash_save_vmcoreinfo(void)
1348 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1349 update_vmcoreinfo_note();
1352 void vmcoreinfo_append_str(const char *fmt
, ...)
1358 va_start(args
, fmt
);
1359 r
= vscnprintf(buf
, sizeof(buf
), fmt
, args
);
1362 r
= min(r
, vmcoreinfo_max_size
- vmcoreinfo_size
);
1364 memcpy(&vmcoreinfo_data
[vmcoreinfo_size
], buf
, r
);
1366 vmcoreinfo_size
+= r
;
1370 * provide an empty default implementation here -- architecture
1371 * code may override this
1373 void __weak
arch_crash_save_vmcoreinfo(void)
1376 unsigned long __weak
paddr_vmcoreinfo_note(void)
1378 return __pa((unsigned long)(char *)&vmcoreinfo_note
);
1381 static int __init
crash_save_vmcoreinfo_init(void)
1383 VMCOREINFO_OSRELEASE(init_uts_ns
.name
.release
);
1384 VMCOREINFO_PAGESIZE(PAGE_SIZE
);
1386 VMCOREINFO_SYMBOL(init_uts_ns
);
1387 VMCOREINFO_SYMBOL(node_online_map
);
1389 VMCOREINFO_SYMBOL(swapper_pg_dir
);
1391 VMCOREINFO_SYMBOL(_stext
);
1392 VMCOREINFO_SYMBOL(vmap_area_list
);
1394 #ifndef CONFIG_NEED_MULTIPLE_NODES
1395 VMCOREINFO_SYMBOL(mem_map
);
1396 VMCOREINFO_SYMBOL(contig_page_data
);
1398 #ifdef CONFIG_SPARSEMEM
1399 VMCOREINFO_SYMBOL(mem_section
);
1400 VMCOREINFO_LENGTH(mem_section
, NR_SECTION_ROOTS
);
1401 VMCOREINFO_STRUCT_SIZE(mem_section
);
1402 VMCOREINFO_OFFSET(mem_section
, section_mem_map
);
1404 VMCOREINFO_STRUCT_SIZE(page
);
1405 VMCOREINFO_STRUCT_SIZE(pglist_data
);
1406 VMCOREINFO_STRUCT_SIZE(zone
);
1407 VMCOREINFO_STRUCT_SIZE(free_area
);
1408 VMCOREINFO_STRUCT_SIZE(list_head
);
1409 VMCOREINFO_SIZE(nodemask_t
);
1410 VMCOREINFO_OFFSET(page
, flags
);
1411 VMCOREINFO_OFFSET(page
, _count
);
1412 VMCOREINFO_OFFSET(page
, mapping
);
1413 VMCOREINFO_OFFSET(page
, lru
);
1414 VMCOREINFO_OFFSET(page
, _mapcount
);
1415 VMCOREINFO_OFFSET(page
, private);
1416 VMCOREINFO_OFFSET(pglist_data
, node_zones
);
1417 VMCOREINFO_OFFSET(pglist_data
, nr_zones
);
1418 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1419 VMCOREINFO_OFFSET(pglist_data
, node_mem_map
);
1421 VMCOREINFO_OFFSET(pglist_data
, node_start_pfn
);
1422 VMCOREINFO_OFFSET(pglist_data
, node_spanned_pages
);
1423 VMCOREINFO_OFFSET(pglist_data
, node_id
);
1424 VMCOREINFO_OFFSET(zone
, free_area
);
1425 VMCOREINFO_OFFSET(zone
, vm_stat
);
1426 VMCOREINFO_OFFSET(zone
, spanned_pages
);
1427 VMCOREINFO_OFFSET(free_area
, free_list
);
1428 VMCOREINFO_OFFSET(list_head
, next
);
1429 VMCOREINFO_OFFSET(list_head
, prev
);
1430 VMCOREINFO_OFFSET(vmap_area
, va_start
);
1431 VMCOREINFO_OFFSET(vmap_area
, list
);
1432 VMCOREINFO_LENGTH(zone
.free_area
, MAX_ORDER
);
1433 log_buf_kexec_setup();
1434 VMCOREINFO_LENGTH(free_area
.free_list
, MIGRATE_TYPES
);
1435 VMCOREINFO_NUMBER(NR_FREE_PAGES
);
1436 VMCOREINFO_NUMBER(PG_lru
);
1437 VMCOREINFO_NUMBER(PG_private
);
1438 VMCOREINFO_NUMBER(PG_swapcache
);
1439 VMCOREINFO_NUMBER(PG_slab
);
1440 #ifdef CONFIG_MEMORY_FAILURE
1441 VMCOREINFO_NUMBER(PG_hwpoison
);
1443 VMCOREINFO_NUMBER(PG_head_mask
);
1444 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE
);
1446 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE
);
1448 #ifdef CONFIG_HUGETLBFS
1449 VMCOREINFO_SYMBOL(free_huge_page
);
1452 arch_crash_save_vmcoreinfo();
1453 update_vmcoreinfo_note();
1458 subsys_initcall(crash_save_vmcoreinfo_init
);
1461 * Move into place and start executing a preloaded standalone
1462 * executable. If nothing was preloaded return an error.
1464 int kernel_kexec(void)
1468 if (!mutex_trylock(&kexec_mutex
))
1475 #ifdef CONFIG_KEXEC_JUMP
1476 if (kexec_image
->preserve_context
) {
1477 lock_system_sleep();
1478 pm_prepare_console();
1479 error
= freeze_processes();
1482 goto Restore_console
;
1485 error
= dpm_suspend_start(PMSG_FREEZE
);
1487 goto Resume_console
;
1488 /* At this point, dpm_suspend_start() has been called,
1489 * but *not* dpm_suspend_end(). We *must* call
1490 * dpm_suspend_end() now. Otherwise, drivers for
1491 * some devices (e.g. interrupt controllers) become
1492 * desynchronized with the actual state of the
1493 * hardware at resume time, and evil weirdness ensues.
1495 error
= dpm_suspend_end(PMSG_FREEZE
);
1497 goto Resume_devices
;
1498 error
= disable_nonboot_cpus();
1501 local_irq_disable();
1502 error
= syscore_suspend();
1508 kexec_in_progress
= true;
1509 kernel_restart_prepare(NULL
);
1510 migrate_to_reboot_cpu();
1513 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1514 * no further code needs to use CPU hotplug (which is true in
1515 * the reboot case). However, the kexec path depends on using
1516 * CPU hotplug again; so re-enable it here.
1518 cpu_hotplug_enable();
1519 pr_emerg("Starting new kernel\n");
1523 machine_kexec(kexec_image
);
1525 #ifdef CONFIG_KEXEC_JUMP
1526 if (kexec_image
->preserve_context
) {
1531 enable_nonboot_cpus();
1532 dpm_resume_start(PMSG_RESTORE
);
1534 dpm_resume_end(PMSG_RESTORE
);
1539 pm_restore_console();
1540 unlock_system_sleep();
1545 mutex_unlock(&kexec_mutex
);
1550 * Add and remove page tables for crashkernel memory
1552 * Provide an empty default implementation here -- architecture
1553 * code may override this
1555 void __weak
crash_map_reserved_pages(void)
1558 void __weak
crash_unmap_reserved_pages(void)