2 * kernel/workqueue.c - generic async execution with shared worker pool
4 * Copyright (C) 2002 Ingo Molnar
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
12 * Made to use alloc_percpu by Christoph Lameter.
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
24 * Please read Documentation/workqueue.txt for details.
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
52 #include "workqueue_internal.h"
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
67 * Note that DISASSOCIATED should be flipped only while holding
68 * attach_mutex to avoid changing binding state while
69 * worker_attach_to_pool() is in progress.
71 POOL_DISASSOCIATED
= 1 << 2, /* cpu can't serve workers */
74 WORKER_DIE
= 1 << 1, /* die die die */
75 WORKER_IDLE
= 1 << 2, /* is idle */
76 WORKER_PREP
= 1 << 3, /* preparing to run works */
77 WORKER_CPU_INTENSIVE
= 1 << 6, /* cpu intensive */
78 WORKER_UNBOUND
= 1 << 7, /* worker is unbound */
79 WORKER_REBOUND
= 1 << 8, /* worker was rebound */
81 WORKER_NOT_RUNNING
= WORKER_PREP
| WORKER_CPU_INTENSIVE
|
82 WORKER_UNBOUND
| WORKER_REBOUND
,
84 NR_STD_WORKER_POOLS
= 2, /* # standard pools per cpu */
86 UNBOUND_POOL_HASH_ORDER
= 6, /* hashed by pool->attrs */
87 BUSY_WORKER_HASH_ORDER
= 6, /* 64 pointers */
89 MAX_IDLE_WORKERS_RATIO
= 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT
= 300 * HZ
, /* keep idle ones for 5 mins */
92 MAYDAY_INITIAL_TIMEOUT
= HZ
/ 100 >= 2 ? HZ
/ 100 : 2,
93 /* call for help after 10ms
95 MAYDAY_INTERVAL
= HZ
/ 10, /* and then every 100ms */
96 CREATE_COOLDOWN
= HZ
, /* time to breath after fail */
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give MIN_NICE.
102 RESCUER_NICE_LEVEL
= MIN_NICE
,
103 HIGHPRI_NICE_LEVEL
= MIN_NICE
,
109 * Structure fields follow one of the following exclusion rules.
111 * I: Modifiable by initialization/destruction paths and read-only for
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
117 * L: pool->lock protected. Access with pool->lock held.
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
124 * A: pool->attach_mutex protected.
126 * PL: wq_pool_mutex protected.
128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
135 * WQ: wq->mutex protected.
137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
139 * MD: wq_mayday_lock protected.
142 /* struct worker is defined in workqueue_internal.h */
145 spinlock_t lock
; /* the pool lock */
146 int cpu
; /* I: the associated cpu */
147 int node
; /* I: the associated node ID */
148 int id
; /* I: pool ID */
149 unsigned int flags
; /* X: flags */
151 unsigned long watchdog_ts
; /* L: watchdog timestamp */
153 struct list_head worklist
; /* L: list of pending works */
154 int nr_workers
; /* L: total number of workers */
156 /* nr_idle includes the ones off idle_list for rebinding */
157 int nr_idle
; /* L: currently idle ones */
159 struct list_head idle_list
; /* X: list of idle workers */
160 struct timer_list idle_timer
; /* L: worker idle timeout */
161 struct timer_list mayday_timer
; /* L: SOS timer for workers */
163 /* a workers is either on busy_hash or idle_list, or the manager */
164 DECLARE_HASHTABLE(busy_hash
, BUSY_WORKER_HASH_ORDER
);
165 /* L: hash of busy workers */
167 /* see manage_workers() for details on the two manager mutexes */
168 struct mutex manager_arb
; /* manager arbitration */
169 struct worker
*manager
; /* L: purely informational */
170 struct mutex attach_mutex
; /* attach/detach exclusion */
171 struct list_head workers
; /* A: attached workers */
172 struct completion
*detach_completion
; /* all workers detached */
174 struct ida worker_ida
; /* worker IDs for task name */
176 struct workqueue_attrs
*attrs
; /* I: worker attributes */
177 struct hlist_node hash_node
; /* PL: unbound_pool_hash node */
178 int refcnt
; /* PL: refcnt for unbound pools */
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
185 atomic_t nr_running ____cacheline_aligned_in_smp
;
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
192 } ____cacheline_aligned_in_smp
;
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
200 struct pool_workqueue
{
201 struct worker_pool
*pool
; /* I: the associated pool */
202 struct workqueue_struct
*wq
; /* I: the owning workqueue */
203 int work_color
; /* L: current color */
204 int flush_color
; /* L: flushing color */
205 int refcnt
; /* L: reference count */
206 int nr_in_flight
[WORK_NR_COLORS
];
207 /* L: nr of in_flight works */
208 int nr_active
; /* L: nr of active works */
209 int max_active
; /* L: max active works */
210 struct list_head delayed_works
; /* L: delayed works */
211 struct list_head pwqs_node
; /* WR: node on wq->pwqs */
212 struct list_head mayday_node
; /* MD: node on wq->maydays */
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
218 * determined without grabbing wq->mutex.
220 struct work_struct unbound_release_work
;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS
);
225 * Structure used to wait for workqueue flush.
228 struct list_head list
; /* WQ: list of flushers */
229 int flush_color
; /* WQ: flush color waiting for */
230 struct completion done
; /* flush completion */
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
239 struct workqueue_struct
{
240 struct list_head pwqs
; /* WR: all pwqs of this wq */
241 struct list_head list
; /* PR: list of all workqueues */
243 struct mutex mutex
; /* protects this wq */
244 int work_color
; /* WQ: current work color */
245 int flush_color
; /* WQ: current flush color */
246 atomic_t nr_pwqs_to_flush
; /* flush in progress */
247 struct wq_flusher
*first_flusher
; /* WQ: first flusher */
248 struct list_head flusher_queue
; /* WQ: flush waiters */
249 struct list_head flusher_overflow
; /* WQ: flush overflow list */
251 struct list_head maydays
; /* MD: pwqs requesting rescue */
252 struct worker
*rescuer
; /* I: rescue worker */
254 int nr_drainers
; /* WQ: drain in progress */
255 int saved_max_active
; /* WQ: saved pwq max_active */
257 struct workqueue_attrs
*unbound_attrs
; /* PW: only for unbound wqs */
258 struct pool_workqueue
*dfl_pwq
; /* PW: only for unbound wqs */
261 struct wq_device
*wq_dev
; /* I: for sysfs interface */
263 #ifdef CONFIG_LOCKDEP
264 struct lockdep_map lockdep_map
;
266 char name
[WQ_NAME_LEN
]; /* I: workqueue name */
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned
; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu
*cpu_pwqs
; /* I: per-cpu pwqs */
278 struct pool_workqueue __rcu
*numa_pwq_tbl
[]; /* PWR: unbound pwqs indexed by node */
281 static struct kmem_cache
*pwq_cache
;
283 static cpumask_var_t
*wq_numa_possible_cpumask
;
284 /* possible CPUs of each node */
286 static bool wq_disable_numa
;
287 module_param_named(disable_numa
, wq_disable_numa
, bool, 0444);
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient
= IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT
);
291 module_param_named(power_efficient
, wq_power_efficient
, bool, 0444);
293 static bool wq_numa_enabled
; /* unbound NUMA affinity enabled */
295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296 static struct workqueue_attrs
*wq_update_unbound_numa_attrs_buf
;
298 static DEFINE_MUTEX(wq_pool_mutex
); /* protects pools and workqueues list */
299 static DEFINE_SPINLOCK(wq_mayday_lock
); /* protects wq->maydays list */
301 static LIST_HEAD(workqueues
); /* PR: list of all workqueues */
302 static bool workqueue_freezing
; /* PL: have wqs started freezing? */
304 /* PL: allowable cpus for unbound wqs and work items */
305 static cpumask_var_t wq_unbound_cpumask
;
307 /* CPU where unbound work was last round robin scheduled from this CPU */
308 static DEFINE_PER_CPU(int, wq_rr_cpu_last
);
311 * Local execution of unbound work items is no longer guaranteed. The
312 * following always forces round-robin CPU selection on unbound work items
313 * to uncover usages which depend on it.
315 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
316 static bool wq_debug_force_rr_cpu
= true;
318 static bool wq_debug_force_rr_cpu
= false;
320 module_param_named(debug_force_rr_cpu
, wq_debug_force_rr_cpu
, bool, 0644);
322 /* the per-cpu worker pools */
323 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool
[NR_STD_WORKER_POOLS
],
326 static DEFINE_IDR(worker_pool_idr
); /* PR: idr of all pools */
328 /* PL: hash of all unbound pools keyed by pool->attrs */
329 static DEFINE_HASHTABLE(unbound_pool_hash
, UNBOUND_POOL_HASH_ORDER
);
331 /* I: attributes used when instantiating standard unbound pools on demand */
332 static struct workqueue_attrs
*unbound_std_wq_attrs
[NR_STD_WORKER_POOLS
];
334 /* I: attributes used when instantiating ordered pools on demand */
335 static struct workqueue_attrs
*ordered_wq_attrs
[NR_STD_WORKER_POOLS
];
337 struct workqueue_struct
*system_wq __read_mostly
;
338 EXPORT_SYMBOL(system_wq
);
339 struct workqueue_struct
*system_highpri_wq __read_mostly
;
340 EXPORT_SYMBOL_GPL(system_highpri_wq
);
341 struct workqueue_struct
*system_long_wq __read_mostly
;
342 EXPORT_SYMBOL_GPL(system_long_wq
);
343 struct workqueue_struct
*system_unbound_wq __read_mostly
;
344 EXPORT_SYMBOL_GPL(system_unbound_wq
);
345 struct workqueue_struct
*system_freezable_wq __read_mostly
;
346 EXPORT_SYMBOL_GPL(system_freezable_wq
);
347 struct workqueue_struct
*system_power_efficient_wq __read_mostly
;
348 EXPORT_SYMBOL_GPL(system_power_efficient_wq
);
349 struct workqueue_struct
*system_freezable_power_efficient_wq __read_mostly
;
350 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq
);
352 static int worker_thread(void *__worker
);
353 static void workqueue_sysfs_unregister(struct workqueue_struct
*wq
);
355 #define CREATE_TRACE_POINTS
356 #include <trace/events/workqueue.h>
358 #define assert_rcu_or_pool_mutex() \
359 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
360 !lockdep_is_held(&wq_pool_mutex), \
361 "sched RCU or wq_pool_mutex should be held")
363 #define assert_rcu_or_wq_mutex(wq) \
364 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
365 !lockdep_is_held(&wq->mutex), \
366 "sched RCU or wq->mutex should be held")
368 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
369 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
370 !lockdep_is_held(&wq->mutex) && \
371 !lockdep_is_held(&wq_pool_mutex), \
372 "sched RCU, wq->mutex or wq_pool_mutex should be held")
374 #define for_each_cpu_worker_pool(pool, cpu) \
375 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
376 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
380 * for_each_pool - iterate through all worker_pools in the system
381 * @pool: iteration cursor
382 * @pi: integer used for iteration
384 * This must be called either with wq_pool_mutex held or sched RCU read
385 * locked. If the pool needs to be used beyond the locking in effect, the
386 * caller is responsible for guaranteeing that the pool stays online.
388 * The if/else clause exists only for the lockdep assertion and can be
391 #define for_each_pool(pool, pi) \
392 idr_for_each_entry(&worker_pool_idr, pool, pi) \
393 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
397 * for_each_pool_worker - iterate through all workers of a worker_pool
398 * @worker: iteration cursor
399 * @pool: worker_pool to iterate workers of
401 * This must be called with @pool->attach_mutex.
403 * The if/else clause exists only for the lockdep assertion and can be
406 #define for_each_pool_worker(worker, pool) \
407 list_for_each_entry((worker), &(pool)->workers, node) \
408 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
412 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
413 * @pwq: iteration cursor
414 * @wq: the target workqueue
416 * This must be called either with wq->mutex held or sched RCU read locked.
417 * If the pwq needs to be used beyond the locking in effect, the caller is
418 * responsible for guaranteeing that the pwq stays online.
420 * The if/else clause exists only for the lockdep assertion and can be
423 #define for_each_pwq(pwq, wq) \
424 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
425 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
428 #ifdef CONFIG_DEBUG_OBJECTS_WORK
430 static struct debug_obj_descr work_debug_descr
;
432 static void *work_debug_hint(void *addr
)
434 return ((struct work_struct
*) addr
)->func
;
438 * fixup_init is called when:
439 * - an active object is initialized
441 static int work_fixup_init(void *addr
, enum debug_obj_state state
)
443 struct work_struct
*work
= addr
;
446 case ODEBUG_STATE_ACTIVE
:
447 cancel_work_sync(work
);
448 debug_object_init(work
, &work_debug_descr
);
456 * fixup_activate is called when:
457 * - an active object is activated
458 * - an unknown object is activated (might be a statically initialized object)
460 static int work_fixup_activate(void *addr
, enum debug_obj_state state
)
462 struct work_struct
*work
= addr
;
466 case ODEBUG_STATE_NOTAVAILABLE
:
468 * This is not really a fixup. The work struct was
469 * statically initialized. We just make sure that it
470 * is tracked in the object tracker.
472 if (test_bit(WORK_STRUCT_STATIC_BIT
, work_data_bits(work
))) {
473 debug_object_init(work
, &work_debug_descr
);
474 debug_object_activate(work
, &work_debug_descr
);
480 case ODEBUG_STATE_ACTIVE
:
489 * fixup_free is called when:
490 * - an active object is freed
492 static int work_fixup_free(void *addr
, enum debug_obj_state state
)
494 struct work_struct
*work
= addr
;
497 case ODEBUG_STATE_ACTIVE
:
498 cancel_work_sync(work
);
499 debug_object_free(work
, &work_debug_descr
);
506 static struct debug_obj_descr work_debug_descr
= {
507 .name
= "work_struct",
508 .debug_hint
= work_debug_hint
,
509 .fixup_init
= work_fixup_init
,
510 .fixup_activate
= work_fixup_activate
,
511 .fixup_free
= work_fixup_free
,
514 static inline void debug_work_activate(struct work_struct
*work
)
516 debug_object_activate(work
, &work_debug_descr
);
519 static inline void debug_work_deactivate(struct work_struct
*work
)
521 debug_object_deactivate(work
, &work_debug_descr
);
524 void __init_work(struct work_struct
*work
, int onstack
)
527 debug_object_init_on_stack(work
, &work_debug_descr
);
529 debug_object_init(work
, &work_debug_descr
);
531 EXPORT_SYMBOL_GPL(__init_work
);
533 void destroy_work_on_stack(struct work_struct
*work
)
535 debug_object_free(work
, &work_debug_descr
);
537 EXPORT_SYMBOL_GPL(destroy_work_on_stack
);
539 void destroy_delayed_work_on_stack(struct delayed_work
*work
)
541 destroy_timer_on_stack(&work
->timer
);
542 debug_object_free(&work
->work
, &work_debug_descr
);
544 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack
);
547 static inline void debug_work_activate(struct work_struct
*work
) { }
548 static inline void debug_work_deactivate(struct work_struct
*work
) { }
552 * worker_pool_assign_id - allocate ID and assing it to @pool
553 * @pool: the pool pointer of interest
555 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
556 * successfully, -errno on failure.
558 static int worker_pool_assign_id(struct worker_pool
*pool
)
562 lockdep_assert_held(&wq_pool_mutex
);
564 ret
= idr_alloc(&worker_pool_idr
, pool
, 0, WORK_OFFQ_POOL_NONE
,
574 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
575 * @wq: the target workqueue
578 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
580 * If the pwq needs to be used beyond the locking in effect, the caller is
581 * responsible for guaranteeing that the pwq stays online.
583 * Return: The unbound pool_workqueue for @node.
585 static struct pool_workqueue
*unbound_pwq_by_node(struct workqueue_struct
*wq
,
588 assert_rcu_or_wq_mutex_or_pool_mutex(wq
);
591 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
592 * delayed item is pending. The plan is to keep CPU -> NODE
593 * mapping valid and stable across CPU on/offlines. Once that
594 * happens, this workaround can be removed.
596 if (unlikely(node
== NUMA_NO_NODE
))
599 return rcu_dereference_raw(wq
->numa_pwq_tbl
[node
]);
602 static unsigned int work_color_to_flags(int color
)
604 return color
<< WORK_STRUCT_COLOR_SHIFT
;
607 static int get_work_color(struct work_struct
*work
)
609 return (*work_data_bits(work
) >> WORK_STRUCT_COLOR_SHIFT
) &
610 ((1 << WORK_STRUCT_COLOR_BITS
) - 1);
613 static int work_next_color(int color
)
615 return (color
+ 1) % WORK_NR_COLORS
;
619 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
620 * contain the pointer to the queued pwq. Once execution starts, the flag
621 * is cleared and the high bits contain OFFQ flags and pool ID.
623 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
624 * and clear_work_data() can be used to set the pwq, pool or clear
625 * work->data. These functions should only be called while the work is
626 * owned - ie. while the PENDING bit is set.
628 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
629 * corresponding to a work. Pool is available once the work has been
630 * queued anywhere after initialization until it is sync canceled. pwq is
631 * available only while the work item is queued.
633 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
634 * canceled. While being canceled, a work item may have its PENDING set
635 * but stay off timer and worklist for arbitrarily long and nobody should
636 * try to steal the PENDING bit.
638 static inline void set_work_data(struct work_struct
*work
, unsigned long data
,
641 WARN_ON_ONCE(!work_pending(work
));
642 atomic_long_set(&work
->data
, data
| flags
| work_static(work
));
645 static void set_work_pwq(struct work_struct
*work
, struct pool_workqueue
*pwq
,
646 unsigned long extra_flags
)
648 set_work_data(work
, (unsigned long)pwq
,
649 WORK_STRUCT_PENDING
| WORK_STRUCT_PWQ
| extra_flags
);
652 static void set_work_pool_and_keep_pending(struct work_struct
*work
,
655 set_work_data(work
, (unsigned long)pool_id
<< WORK_OFFQ_POOL_SHIFT
,
656 WORK_STRUCT_PENDING
);
659 static void set_work_pool_and_clear_pending(struct work_struct
*work
,
663 * The following wmb is paired with the implied mb in
664 * test_and_set_bit(PENDING) and ensures all updates to @work made
665 * here are visible to and precede any updates by the next PENDING
669 set_work_data(work
, (unsigned long)pool_id
<< WORK_OFFQ_POOL_SHIFT
, 0);
672 static void clear_work_data(struct work_struct
*work
)
674 smp_wmb(); /* see set_work_pool_and_clear_pending() */
675 set_work_data(work
, WORK_STRUCT_NO_POOL
, 0);
678 static struct pool_workqueue
*get_work_pwq(struct work_struct
*work
)
680 unsigned long data
= atomic_long_read(&work
->data
);
682 if (data
& WORK_STRUCT_PWQ
)
683 return (void *)(data
& WORK_STRUCT_WQ_DATA_MASK
);
689 * get_work_pool - return the worker_pool a given work was associated with
690 * @work: the work item of interest
692 * Pools are created and destroyed under wq_pool_mutex, and allows read
693 * access under sched-RCU read lock. As such, this function should be
694 * called under wq_pool_mutex or with preemption disabled.
696 * All fields of the returned pool are accessible as long as the above
697 * mentioned locking is in effect. If the returned pool needs to be used
698 * beyond the critical section, the caller is responsible for ensuring the
699 * returned pool is and stays online.
701 * Return: The worker_pool @work was last associated with. %NULL if none.
703 static struct worker_pool
*get_work_pool(struct work_struct
*work
)
705 unsigned long data
= atomic_long_read(&work
->data
);
708 assert_rcu_or_pool_mutex();
710 if (data
& WORK_STRUCT_PWQ
)
711 return ((struct pool_workqueue
*)
712 (data
& WORK_STRUCT_WQ_DATA_MASK
))->pool
;
714 pool_id
= data
>> WORK_OFFQ_POOL_SHIFT
;
715 if (pool_id
== WORK_OFFQ_POOL_NONE
)
718 return idr_find(&worker_pool_idr
, pool_id
);
722 * get_work_pool_id - return the worker pool ID a given work is associated with
723 * @work: the work item of interest
725 * Return: The worker_pool ID @work was last associated with.
726 * %WORK_OFFQ_POOL_NONE if none.
728 static int get_work_pool_id(struct work_struct
*work
)
730 unsigned long data
= atomic_long_read(&work
->data
);
732 if (data
& WORK_STRUCT_PWQ
)
733 return ((struct pool_workqueue
*)
734 (data
& WORK_STRUCT_WQ_DATA_MASK
))->pool
->id
;
736 return data
>> WORK_OFFQ_POOL_SHIFT
;
739 static void mark_work_canceling(struct work_struct
*work
)
741 unsigned long pool_id
= get_work_pool_id(work
);
743 pool_id
<<= WORK_OFFQ_POOL_SHIFT
;
744 set_work_data(work
, pool_id
| WORK_OFFQ_CANCELING
, WORK_STRUCT_PENDING
);
747 static bool work_is_canceling(struct work_struct
*work
)
749 unsigned long data
= atomic_long_read(&work
->data
);
751 return !(data
& WORK_STRUCT_PWQ
) && (data
& WORK_OFFQ_CANCELING
);
755 * Policy functions. These define the policies on how the global worker
756 * pools are managed. Unless noted otherwise, these functions assume that
757 * they're being called with pool->lock held.
760 static bool __need_more_worker(struct worker_pool
*pool
)
762 return !atomic_read(&pool
->nr_running
);
766 * Need to wake up a worker? Called from anything but currently
769 * Note that, because unbound workers never contribute to nr_running, this
770 * function will always return %true for unbound pools as long as the
771 * worklist isn't empty.
773 static bool need_more_worker(struct worker_pool
*pool
)
775 return !list_empty(&pool
->worklist
) && __need_more_worker(pool
);
778 /* Can I start working? Called from busy but !running workers. */
779 static bool may_start_working(struct worker_pool
*pool
)
781 return pool
->nr_idle
;
784 /* Do I need to keep working? Called from currently running workers. */
785 static bool keep_working(struct worker_pool
*pool
)
787 return !list_empty(&pool
->worklist
) &&
788 atomic_read(&pool
->nr_running
) <= 1;
791 /* Do we need a new worker? Called from manager. */
792 static bool need_to_create_worker(struct worker_pool
*pool
)
794 return need_more_worker(pool
) && !may_start_working(pool
);
797 /* Do we have too many workers and should some go away? */
798 static bool too_many_workers(struct worker_pool
*pool
)
800 bool managing
= mutex_is_locked(&pool
->manager_arb
);
801 int nr_idle
= pool
->nr_idle
+ managing
; /* manager is considered idle */
802 int nr_busy
= pool
->nr_workers
- nr_idle
;
804 return nr_idle
> 2 && (nr_idle
- 2) * MAX_IDLE_WORKERS_RATIO
>= nr_busy
;
811 /* Return the first idle worker. Safe with preemption disabled */
812 static struct worker
*first_idle_worker(struct worker_pool
*pool
)
814 if (unlikely(list_empty(&pool
->idle_list
)))
817 return list_first_entry(&pool
->idle_list
, struct worker
, entry
);
821 * wake_up_worker - wake up an idle worker
822 * @pool: worker pool to wake worker from
824 * Wake up the first idle worker of @pool.
827 * spin_lock_irq(pool->lock).
829 static void wake_up_worker(struct worker_pool
*pool
)
831 struct worker
*worker
= first_idle_worker(pool
);
834 wake_up_process(worker
->task
);
838 * wq_worker_waking_up - a worker is waking up
839 * @task: task waking up
840 * @cpu: CPU @task is waking up to
842 * This function is called during try_to_wake_up() when a worker is
846 * spin_lock_irq(rq->lock)
848 void wq_worker_waking_up(struct task_struct
*task
, int cpu
)
850 struct worker
*worker
= kthread_data(task
);
852 if (!(worker
->flags
& WORKER_NOT_RUNNING
)) {
853 WARN_ON_ONCE(worker
->pool
->cpu
!= cpu
);
854 atomic_inc(&worker
->pool
->nr_running
);
859 * wq_worker_sleeping - a worker is going to sleep
860 * @task: task going to sleep
861 * @cpu: CPU in question, must be the current CPU number
863 * This function is called during schedule() when a busy worker is
864 * going to sleep. Worker on the same cpu can be woken up by
865 * returning pointer to its task.
868 * spin_lock_irq(rq->lock)
871 * Worker task on @cpu to wake up, %NULL if none.
873 struct task_struct
*wq_worker_sleeping(struct task_struct
*task
, int cpu
)
875 struct worker
*worker
= kthread_data(task
), *to_wakeup
= NULL
;
876 struct worker_pool
*pool
;
879 * Rescuers, which may not have all the fields set up like normal
880 * workers, also reach here, let's not access anything before
881 * checking NOT_RUNNING.
883 if (worker
->flags
& WORKER_NOT_RUNNING
)
888 /* this can only happen on the local cpu */
889 if (WARN_ON_ONCE(cpu
!= raw_smp_processor_id() || pool
->cpu
!= cpu
))
893 * The counterpart of the following dec_and_test, implied mb,
894 * worklist not empty test sequence is in insert_work().
895 * Please read comment there.
897 * NOT_RUNNING is clear. This means that we're bound to and
898 * running on the local cpu w/ rq lock held and preemption
899 * disabled, which in turn means that none else could be
900 * manipulating idle_list, so dereferencing idle_list without pool
903 if (atomic_dec_and_test(&pool
->nr_running
) &&
904 !list_empty(&pool
->worklist
))
905 to_wakeup
= first_idle_worker(pool
);
906 return to_wakeup
? to_wakeup
->task
: NULL
;
910 * worker_set_flags - set worker flags and adjust nr_running accordingly
912 * @flags: flags to set
914 * Set @flags in @worker->flags and adjust nr_running accordingly.
917 * spin_lock_irq(pool->lock)
919 static inline void worker_set_flags(struct worker
*worker
, unsigned int flags
)
921 struct worker_pool
*pool
= worker
->pool
;
923 WARN_ON_ONCE(worker
->task
!= current
);
925 /* If transitioning into NOT_RUNNING, adjust nr_running. */
926 if ((flags
& WORKER_NOT_RUNNING
) &&
927 !(worker
->flags
& WORKER_NOT_RUNNING
)) {
928 atomic_dec(&pool
->nr_running
);
931 worker
->flags
|= flags
;
935 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
937 * @flags: flags to clear
939 * Clear @flags in @worker->flags and adjust nr_running accordingly.
942 * spin_lock_irq(pool->lock)
944 static inline void worker_clr_flags(struct worker
*worker
, unsigned int flags
)
946 struct worker_pool
*pool
= worker
->pool
;
947 unsigned int oflags
= worker
->flags
;
949 WARN_ON_ONCE(worker
->task
!= current
);
951 worker
->flags
&= ~flags
;
954 * If transitioning out of NOT_RUNNING, increment nr_running. Note
955 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
956 * of multiple flags, not a single flag.
958 if ((flags
& WORKER_NOT_RUNNING
) && (oflags
& WORKER_NOT_RUNNING
))
959 if (!(worker
->flags
& WORKER_NOT_RUNNING
))
960 atomic_inc(&pool
->nr_running
);
964 * find_worker_executing_work - find worker which is executing a work
965 * @pool: pool of interest
966 * @work: work to find worker for
968 * Find a worker which is executing @work on @pool by searching
969 * @pool->busy_hash which is keyed by the address of @work. For a worker
970 * to match, its current execution should match the address of @work and
971 * its work function. This is to avoid unwanted dependency between
972 * unrelated work executions through a work item being recycled while still
975 * This is a bit tricky. A work item may be freed once its execution
976 * starts and nothing prevents the freed area from being recycled for
977 * another work item. If the same work item address ends up being reused
978 * before the original execution finishes, workqueue will identify the
979 * recycled work item as currently executing and make it wait until the
980 * current execution finishes, introducing an unwanted dependency.
982 * This function checks the work item address and work function to avoid
983 * false positives. Note that this isn't complete as one may construct a
984 * work function which can introduce dependency onto itself through a
985 * recycled work item. Well, if somebody wants to shoot oneself in the
986 * foot that badly, there's only so much we can do, and if such deadlock
987 * actually occurs, it should be easy to locate the culprit work function.
990 * spin_lock_irq(pool->lock).
993 * Pointer to worker which is executing @work if found, %NULL
996 static struct worker
*find_worker_executing_work(struct worker_pool
*pool
,
997 struct work_struct
*work
)
999 struct worker
*worker
;
1001 hash_for_each_possible(pool
->busy_hash
, worker
, hentry
,
1002 (unsigned long)work
)
1003 if (worker
->current_work
== work
&&
1004 worker
->current_func
== work
->func
)
1011 * move_linked_works - move linked works to a list
1012 * @work: start of series of works to be scheduled
1013 * @head: target list to append @work to
1014 * @nextp: out parameter for nested worklist walking
1016 * Schedule linked works starting from @work to @head. Work series to
1017 * be scheduled starts at @work and includes any consecutive work with
1018 * WORK_STRUCT_LINKED set in its predecessor.
1020 * If @nextp is not NULL, it's updated to point to the next work of
1021 * the last scheduled work. This allows move_linked_works() to be
1022 * nested inside outer list_for_each_entry_safe().
1025 * spin_lock_irq(pool->lock).
1027 static void move_linked_works(struct work_struct
*work
, struct list_head
*head
,
1028 struct work_struct
**nextp
)
1030 struct work_struct
*n
;
1033 * Linked worklist will always end before the end of the list,
1034 * use NULL for list head.
1036 list_for_each_entry_safe_from(work
, n
, NULL
, entry
) {
1037 list_move_tail(&work
->entry
, head
);
1038 if (!(*work_data_bits(work
) & WORK_STRUCT_LINKED
))
1043 * If we're already inside safe list traversal and have moved
1044 * multiple works to the scheduled queue, the next position
1045 * needs to be updated.
1052 * get_pwq - get an extra reference on the specified pool_workqueue
1053 * @pwq: pool_workqueue to get
1055 * Obtain an extra reference on @pwq. The caller should guarantee that
1056 * @pwq has positive refcnt and be holding the matching pool->lock.
1058 static void get_pwq(struct pool_workqueue
*pwq
)
1060 lockdep_assert_held(&pwq
->pool
->lock
);
1061 WARN_ON_ONCE(pwq
->refcnt
<= 0);
1066 * put_pwq - put a pool_workqueue reference
1067 * @pwq: pool_workqueue to put
1069 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1070 * destruction. The caller should be holding the matching pool->lock.
1072 static void put_pwq(struct pool_workqueue
*pwq
)
1074 lockdep_assert_held(&pwq
->pool
->lock
);
1075 if (likely(--pwq
->refcnt
))
1077 if (WARN_ON_ONCE(!(pwq
->wq
->flags
& WQ_UNBOUND
)))
1080 * @pwq can't be released under pool->lock, bounce to
1081 * pwq_unbound_release_workfn(). This never recurses on the same
1082 * pool->lock as this path is taken only for unbound workqueues and
1083 * the release work item is scheduled on a per-cpu workqueue. To
1084 * avoid lockdep warning, unbound pool->locks are given lockdep
1085 * subclass of 1 in get_unbound_pool().
1087 schedule_work(&pwq
->unbound_release_work
);
1091 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1092 * @pwq: pool_workqueue to put (can be %NULL)
1094 * put_pwq() with locking. This function also allows %NULL @pwq.
1096 static void put_pwq_unlocked(struct pool_workqueue
*pwq
)
1100 * As both pwqs and pools are sched-RCU protected, the
1101 * following lock operations are safe.
1103 spin_lock_irq(&pwq
->pool
->lock
);
1105 spin_unlock_irq(&pwq
->pool
->lock
);
1109 static void pwq_activate_delayed_work(struct work_struct
*work
)
1111 struct pool_workqueue
*pwq
= get_work_pwq(work
);
1113 trace_workqueue_activate_work(work
);
1114 if (list_empty(&pwq
->pool
->worklist
))
1115 pwq
->pool
->watchdog_ts
= jiffies
;
1116 move_linked_works(work
, &pwq
->pool
->worklist
, NULL
);
1117 __clear_bit(WORK_STRUCT_DELAYED_BIT
, work_data_bits(work
));
1121 static void pwq_activate_first_delayed(struct pool_workqueue
*pwq
)
1123 struct work_struct
*work
= list_first_entry(&pwq
->delayed_works
,
1124 struct work_struct
, entry
);
1126 pwq_activate_delayed_work(work
);
1130 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1131 * @pwq: pwq of interest
1132 * @color: color of work which left the queue
1134 * A work either has completed or is removed from pending queue,
1135 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1138 * spin_lock_irq(pool->lock).
1140 static void pwq_dec_nr_in_flight(struct pool_workqueue
*pwq
, int color
)
1142 /* uncolored work items don't participate in flushing or nr_active */
1143 if (color
== WORK_NO_COLOR
)
1146 pwq
->nr_in_flight
[color
]--;
1149 if (!list_empty(&pwq
->delayed_works
)) {
1150 /* one down, submit a delayed one */
1151 if (pwq
->nr_active
< pwq
->max_active
)
1152 pwq_activate_first_delayed(pwq
);
1155 /* is flush in progress and are we at the flushing tip? */
1156 if (likely(pwq
->flush_color
!= color
))
1159 /* are there still in-flight works? */
1160 if (pwq
->nr_in_flight
[color
])
1163 /* this pwq is done, clear flush_color */
1164 pwq
->flush_color
= -1;
1167 * If this was the last pwq, wake up the first flusher. It
1168 * will handle the rest.
1170 if (atomic_dec_and_test(&pwq
->wq
->nr_pwqs_to_flush
))
1171 complete(&pwq
->wq
->first_flusher
->done
);
1177 * try_to_grab_pending - steal work item from worklist and disable irq
1178 * @work: work item to steal
1179 * @is_dwork: @work is a delayed_work
1180 * @flags: place to store irq state
1182 * Try to grab PENDING bit of @work. This function can handle @work in any
1183 * stable state - idle, on timer or on worklist.
1186 * 1 if @work was pending and we successfully stole PENDING
1187 * 0 if @work was idle and we claimed PENDING
1188 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1189 * -ENOENT if someone else is canceling @work, this state may persist
1190 * for arbitrarily long
1193 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1194 * interrupted while holding PENDING and @work off queue, irq must be
1195 * disabled on entry. This, combined with delayed_work->timer being
1196 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1198 * On successful return, >= 0, irq is disabled and the caller is
1199 * responsible for releasing it using local_irq_restore(*@flags).
1201 * This function is safe to call from any context including IRQ handler.
1203 static int try_to_grab_pending(struct work_struct
*work
, bool is_dwork
,
1204 unsigned long *flags
)
1206 struct worker_pool
*pool
;
1207 struct pool_workqueue
*pwq
;
1209 local_irq_save(*flags
);
1211 /* try to steal the timer if it exists */
1213 struct delayed_work
*dwork
= to_delayed_work(work
);
1216 * dwork->timer is irqsafe. If del_timer() fails, it's
1217 * guaranteed that the timer is not queued anywhere and not
1218 * running on the local CPU.
1220 if (likely(del_timer(&dwork
->timer
)))
1224 /* try to claim PENDING the normal way */
1225 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(work
)))
1229 * The queueing is in progress, or it is already queued. Try to
1230 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1232 pool
= get_work_pool(work
);
1236 spin_lock(&pool
->lock
);
1238 * work->data is guaranteed to point to pwq only while the work
1239 * item is queued on pwq->wq, and both updating work->data to point
1240 * to pwq on queueing and to pool on dequeueing are done under
1241 * pwq->pool->lock. This in turn guarantees that, if work->data
1242 * points to pwq which is associated with a locked pool, the work
1243 * item is currently queued on that pool.
1245 pwq
= get_work_pwq(work
);
1246 if (pwq
&& pwq
->pool
== pool
) {
1247 debug_work_deactivate(work
);
1250 * A delayed work item cannot be grabbed directly because
1251 * it might have linked NO_COLOR work items which, if left
1252 * on the delayed_list, will confuse pwq->nr_active
1253 * management later on and cause stall. Make sure the work
1254 * item is activated before grabbing.
1256 if (*work_data_bits(work
) & WORK_STRUCT_DELAYED
)
1257 pwq_activate_delayed_work(work
);
1259 list_del_init(&work
->entry
);
1260 pwq_dec_nr_in_flight(pwq
, get_work_color(work
));
1262 /* work->data points to pwq iff queued, point to pool */
1263 set_work_pool_and_keep_pending(work
, pool
->id
);
1265 spin_unlock(&pool
->lock
);
1268 spin_unlock(&pool
->lock
);
1270 local_irq_restore(*flags
);
1271 if (work_is_canceling(work
))
1278 * insert_work - insert a work into a pool
1279 * @pwq: pwq @work belongs to
1280 * @work: work to insert
1281 * @head: insertion point
1282 * @extra_flags: extra WORK_STRUCT_* flags to set
1284 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1285 * work_struct flags.
1288 * spin_lock_irq(pool->lock).
1290 static void insert_work(struct pool_workqueue
*pwq
, struct work_struct
*work
,
1291 struct list_head
*head
, unsigned int extra_flags
)
1293 struct worker_pool
*pool
= pwq
->pool
;
1295 /* we own @work, set data and link */
1296 set_work_pwq(work
, pwq
, extra_flags
);
1297 list_add_tail(&work
->entry
, head
);
1301 * Ensure either wq_worker_sleeping() sees the above
1302 * list_add_tail() or we see zero nr_running to avoid workers lying
1303 * around lazily while there are works to be processed.
1307 if (__need_more_worker(pool
))
1308 wake_up_worker(pool
);
1312 * Test whether @work is being queued from another work executing on the
1315 static bool is_chained_work(struct workqueue_struct
*wq
)
1317 struct worker
*worker
;
1319 worker
= current_wq_worker();
1321 * Return %true iff I'm a worker execuing a work item on @wq. If
1322 * I'm @worker, it's safe to dereference it without locking.
1324 return worker
&& worker
->current_pwq
->wq
== wq
;
1328 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1329 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1330 * avoid perturbing sensitive tasks.
1332 static int wq_select_unbound_cpu(int cpu
)
1334 static bool printed_dbg_warning
;
1337 if (likely(!wq_debug_force_rr_cpu
)) {
1338 if (cpumask_test_cpu(cpu
, wq_unbound_cpumask
))
1340 } else if (!printed_dbg_warning
) {
1341 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1342 printed_dbg_warning
= true;
1345 if (cpumask_empty(wq_unbound_cpumask
))
1348 new_cpu
= __this_cpu_read(wq_rr_cpu_last
);
1349 new_cpu
= cpumask_next_and(new_cpu
, wq_unbound_cpumask
, cpu_online_mask
);
1350 if (unlikely(new_cpu
>= nr_cpu_ids
)) {
1351 new_cpu
= cpumask_first_and(wq_unbound_cpumask
, cpu_online_mask
);
1352 if (unlikely(new_cpu
>= nr_cpu_ids
))
1355 __this_cpu_write(wq_rr_cpu_last
, new_cpu
);
1360 static void __queue_work(int cpu
, struct workqueue_struct
*wq
,
1361 struct work_struct
*work
)
1363 struct pool_workqueue
*pwq
;
1364 struct worker_pool
*last_pool
;
1365 struct list_head
*worklist
;
1366 unsigned int work_flags
;
1367 unsigned int req_cpu
= cpu
;
1370 * While a work item is PENDING && off queue, a task trying to
1371 * steal the PENDING will busy-loop waiting for it to either get
1372 * queued or lose PENDING. Grabbing PENDING and queueing should
1373 * happen with IRQ disabled.
1375 WARN_ON_ONCE(!irqs_disabled());
1377 debug_work_activate(work
);
1379 /* if draining, only works from the same workqueue are allowed */
1380 if (unlikely(wq
->flags
& __WQ_DRAINING
) &&
1381 WARN_ON_ONCE(!is_chained_work(wq
)))
1384 if (req_cpu
== WORK_CPU_UNBOUND
)
1385 cpu
= wq_select_unbound_cpu(raw_smp_processor_id());
1387 /* pwq which will be used unless @work is executing elsewhere */
1388 if (!(wq
->flags
& WQ_UNBOUND
))
1389 pwq
= per_cpu_ptr(wq
->cpu_pwqs
, cpu
);
1391 pwq
= unbound_pwq_by_node(wq
, cpu_to_node(cpu
));
1394 * If @work was previously on a different pool, it might still be
1395 * running there, in which case the work needs to be queued on that
1396 * pool to guarantee non-reentrancy.
1398 last_pool
= get_work_pool(work
);
1399 if (last_pool
&& last_pool
!= pwq
->pool
) {
1400 struct worker
*worker
;
1402 spin_lock(&last_pool
->lock
);
1404 worker
= find_worker_executing_work(last_pool
, work
);
1406 if (worker
&& worker
->current_pwq
->wq
== wq
) {
1407 pwq
= worker
->current_pwq
;
1409 /* meh... not running there, queue here */
1410 spin_unlock(&last_pool
->lock
);
1411 spin_lock(&pwq
->pool
->lock
);
1414 spin_lock(&pwq
->pool
->lock
);
1418 * pwq is determined and locked. For unbound pools, we could have
1419 * raced with pwq release and it could already be dead. If its
1420 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1421 * without another pwq replacing it in the numa_pwq_tbl or while
1422 * work items are executing on it, so the retrying is guaranteed to
1423 * make forward-progress.
1425 if (unlikely(!pwq
->refcnt
)) {
1426 if (wq
->flags
& WQ_UNBOUND
) {
1427 spin_unlock(&pwq
->pool
->lock
);
1432 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1436 /* pwq determined, queue */
1437 trace_workqueue_queue_work(req_cpu
, pwq
, work
);
1439 if (WARN_ON(!list_empty(&work
->entry
))) {
1440 spin_unlock(&pwq
->pool
->lock
);
1444 pwq
->nr_in_flight
[pwq
->work_color
]++;
1445 work_flags
= work_color_to_flags(pwq
->work_color
);
1447 if (likely(pwq
->nr_active
< pwq
->max_active
)) {
1448 trace_workqueue_activate_work(work
);
1450 worklist
= &pwq
->pool
->worklist
;
1451 if (list_empty(worklist
))
1452 pwq
->pool
->watchdog_ts
= jiffies
;
1454 work_flags
|= WORK_STRUCT_DELAYED
;
1455 worklist
= &pwq
->delayed_works
;
1458 insert_work(pwq
, work
, worklist
, work_flags
);
1460 spin_unlock(&pwq
->pool
->lock
);
1464 * queue_work_on - queue work on specific cpu
1465 * @cpu: CPU number to execute work on
1466 * @wq: workqueue to use
1467 * @work: work to queue
1469 * We queue the work to a specific CPU, the caller must ensure it
1472 * Return: %false if @work was already on a queue, %true otherwise.
1474 bool queue_work_on(int cpu
, struct workqueue_struct
*wq
,
1475 struct work_struct
*work
)
1478 unsigned long flags
;
1480 local_irq_save(flags
);
1482 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(work
))) {
1483 __queue_work(cpu
, wq
, work
);
1487 local_irq_restore(flags
);
1490 EXPORT_SYMBOL(queue_work_on
);
1492 void delayed_work_timer_fn(unsigned long __data
)
1494 struct delayed_work
*dwork
= (struct delayed_work
*)__data
;
1496 /* should have been called from irqsafe timer with irq already off */
1497 __queue_work(dwork
->cpu
, dwork
->wq
, &dwork
->work
);
1499 EXPORT_SYMBOL(delayed_work_timer_fn
);
1501 static void __queue_delayed_work(int cpu
, struct workqueue_struct
*wq
,
1502 struct delayed_work
*dwork
, unsigned long delay
)
1504 struct timer_list
*timer
= &dwork
->timer
;
1505 struct work_struct
*work
= &dwork
->work
;
1507 WARN_ON_ONCE(timer
->function
!= delayed_work_timer_fn
||
1508 timer
->data
!= (unsigned long)dwork
);
1509 WARN_ON_ONCE(timer_pending(timer
));
1510 WARN_ON_ONCE(!list_empty(&work
->entry
));
1513 * If @delay is 0, queue @dwork->work immediately. This is for
1514 * both optimization and correctness. The earliest @timer can
1515 * expire is on the closest next tick and delayed_work users depend
1516 * on that there's no such delay when @delay is 0.
1519 __queue_work(cpu
, wq
, &dwork
->work
);
1523 timer_stats_timer_set_start_info(&dwork
->timer
);
1527 timer
->expires
= jiffies
+ delay
;
1529 if (unlikely(cpu
!= WORK_CPU_UNBOUND
))
1530 add_timer_on(timer
, cpu
);
1536 * queue_delayed_work_on - queue work on specific CPU after delay
1537 * @cpu: CPU number to execute work on
1538 * @wq: workqueue to use
1539 * @dwork: work to queue
1540 * @delay: number of jiffies to wait before queueing
1542 * Return: %false if @work was already on a queue, %true otherwise. If
1543 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1546 bool queue_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
1547 struct delayed_work
*dwork
, unsigned long delay
)
1549 struct work_struct
*work
= &dwork
->work
;
1551 unsigned long flags
;
1553 /* read the comment in __queue_work() */
1554 local_irq_save(flags
);
1556 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(work
))) {
1557 __queue_delayed_work(cpu
, wq
, dwork
, delay
);
1561 local_irq_restore(flags
);
1564 EXPORT_SYMBOL(queue_delayed_work_on
);
1567 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1568 * @cpu: CPU number to execute work on
1569 * @wq: workqueue to use
1570 * @dwork: work to queue
1571 * @delay: number of jiffies to wait before queueing
1573 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1574 * modify @dwork's timer so that it expires after @delay. If @delay is
1575 * zero, @work is guaranteed to be scheduled immediately regardless of its
1578 * Return: %false if @dwork was idle and queued, %true if @dwork was
1579 * pending and its timer was modified.
1581 * This function is safe to call from any context including IRQ handler.
1582 * See try_to_grab_pending() for details.
1584 bool mod_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
1585 struct delayed_work
*dwork
, unsigned long delay
)
1587 unsigned long flags
;
1591 ret
= try_to_grab_pending(&dwork
->work
, true, &flags
);
1592 } while (unlikely(ret
== -EAGAIN
));
1594 if (likely(ret
>= 0)) {
1595 __queue_delayed_work(cpu
, wq
, dwork
, delay
);
1596 local_irq_restore(flags
);
1599 /* -ENOENT from try_to_grab_pending() becomes %true */
1602 EXPORT_SYMBOL_GPL(mod_delayed_work_on
);
1605 * worker_enter_idle - enter idle state
1606 * @worker: worker which is entering idle state
1608 * @worker is entering idle state. Update stats and idle timer if
1612 * spin_lock_irq(pool->lock).
1614 static void worker_enter_idle(struct worker
*worker
)
1616 struct worker_pool
*pool
= worker
->pool
;
1618 if (WARN_ON_ONCE(worker
->flags
& WORKER_IDLE
) ||
1619 WARN_ON_ONCE(!list_empty(&worker
->entry
) &&
1620 (worker
->hentry
.next
|| worker
->hentry
.pprev
)))
1623 /* can't use worker_set_flags(), also called from create_worker() */
1624 worker
->flags
|= WORKER_IDLE
;
1626 worker
->last_active
= jiffies
;
1628 /* idle_list is LIFO */
1629 list_add(&worker
->entry
, &pool
->idle_list
);
1631 if (too_many_workers(pool
) && !timer_pending(&pool
->idle_timer
))
1632 mod_timer(&pool
->idle_timer
, jiffies
+ IDLE_WORKER_TIMEOUT
);
1635 * Sanity check nr_running. Because wq_unbind_fn() releases
1636 * pool->lock between setting %WORKER_UNBOUND and zapping
1637 * nr_running, the warning may trigger spuriously. Check iff
1638 * unbind is not in progress.
1640 WARN_ON_ONCE(!(pool
->flags
& POOL_DISASSOCIATED
) &&
1641 pool
->nr_workers
== pool
->nr_idle
&&
1642 atomic_read(&pool
->nr_running
));
1646 * worker_leave_idle - leave idle state
1647 * @worker: worker which is leaving idle state
1649 * @worker is leaving idle state. Update stats.
1652 * spin_lock_irq(pool->lock).
1654 static void worker_leave_idle(struct worker
*worker
)
1656 struct worker_pool
*pool
= worker
->pool
;
1658 if (WARN_ON_ONCE(!(worker
->flags
& WORKER_IDLE
)))
1660 worker_clr_flags(worker
, WORKER_IDLE
);
1662 list_del_init(&worker
->entry
);
1665 static struct worker
*alloc_worker(int node
)
1667 struct worker
*worker
;
1669 worker
= kzalloc_node(sizeof(*worker
), GFP_KERNEL
, node
);
1671 INIT_LIST_HEAD(&worker
->entry
);
1672 INIT_LIST_HEAD(&worker
->scheduled
);
1673 INIT_LIST_HEAD(&worker
->node
);
1674 /* on creation a worker is in !idle && prep state */
1675 worker
->flags
= WORKER_PREP
;
1681 * worker_attach_to_pool() - attach a worker to a pool
1682 * @worker: worker to be attached
1683 * @pool: the target pool
1685 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1686 * cpu-binding of @worker are kept coordinated with the pool across
1689 static void worker_attach_to_pool(struct worker
*worker
,
1690 struct worker_pool
*pool
)
1692 mutex_lock(&pool
->attach_mutex
);
1695 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1696 * online CPUs. It'll be re-applied when any of the CPUs come up.
1698 set_cpus_allowed_ptr(worker
->task
, pool
->attrs
->cpumask
);
1701 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1702 * stable across this function. See the comments above the
1703 * flag definition for details.
1705 if (pool
->flags
& POOL_DISASSOCIATED
)
1706 worker
->flags
|= WORKER_UNBOUND
;
1708 list_add_tail(&worker
->node
, &pool
->workers
);
1710 mutex_unlock(&pool
->attach_mutex
);
1714 * worker_detach_from_pool() - detach a worker from its pool
1715 * @worker: worker which is attached to its pool
1716 * @pool: the pool @worker is attached to
1718 * Undo the attaching which had been done in worker_attach_to_pool(). The
1719 * caller worker shouldn't access to the pool after detached except it has
1720 * other reference to the pool.
1722 static void worker_detach_from_pool(struct worker
*worker
,
1723 struct worker_pool
*pool
)
1725 struct completion
*detach_completion
= NULL
;
1727 mutex_lock(&pool
->attach_mutex
);
1728 list_del(&worker
->node
);
1729 if (list_empty(&pool
->workers
))
1730 detach_completion
= pool
->detach_completion
;
1731 mutex_unlock(&pool
->attach_mutex
);
1733 /* clear leftover flags without pool->lock after it is detached */
1734 worker
->flags
&= ~(WORKER_UNBOUND
| WORKER_REBOUND
);
1736 if (detach_completion
)
1737 complete(detach_completion
);
1741 * create_worker - create a new workqueue worker
1742 * @pool: pool the new worker will belong to
1744 * Create and start a new worker which is attached to @pool.
1747 * Might sleep. Does GFP_KERNEL allocations.
1750 * Pointer to the newly created worker.
1752 static struct worker
*create_worker(struct worker_pool
*pool
)
1754 struct worker
*worker
= NULL
;
1758 /* ID is needed to determine kthread name */
1759 id
= ida_simple_get(&pool
->worker_ida
, 0, 0, GFP_KERNEL
);
1763 worker
= alloc_worker(pool
->node
);
1767 worker
->pool
= pool
;
1771 snprintf(id_buf
, sizeof(id_buf
), "%d:%d%s", pool
->cpu
, id
,
1772 pool
->attrs
->nice
< 0 ? "H" : "");
1774 snprintf(id_buf
, sizeof(id_buf
), "u%d:%d", pool
->id
, id
);
1776 worker
->task
= kthread_create_on_node(worker_thread
, worker
, pool
->node
,
1777 "kworker/%s", id_buf
);
1778 if (IS_ERR(worker
->task
))
1781 set_user_nice(worker
->task
, pool
->attrs
->nice
);
1782 kthread_bind_mask(worker
->task
, pool
->attrs
->cpumask
);
1784 /* successful, attach the worker to the pool */
1785 worker_attach_to_pool(worker
, pool
);
1787 /* start the newly created worker */
1788 spin_lock_irq(&pool
->lock
);
1789 worker
->pool
->nr_workers
++;
1790 worker_enter_idle(worker
);
1791 wake_up_process(worker
->task
);
1792 spin_unlock_irq(&pool
->lock
);
1798 ida_simple_remove(&pool
->worker_ida
, id
);
1804 * destroy_worker - destroy a workqueue worker
1805 * @worker: worker to be destroyed
1807 * Destroy @worker and adjust @pool stats accordingly. The worker should
1811 * spin_lock_irq(pool->lock).
1813 static void destroy_worker(struct worker
*worker
)
1815 struct worker_pool
*pool
= worker
->pool
;
1817 lockdep_assert_held(&pool
->lock
);
1819 /* sanity check frenzy */
1820 if (WARN_ON(worker
->current_work
) ||
1821 WARN_ON(!list_empty(&worker
->scheduled
)) ||
1822 WARN_ON(!(worker
->flags
& WORKER_IDLE
)))
1828 list_del_init(&worker
->entry
);
1829 worker
->flags
|= WORKER_DIE
;
1830 wake_up_process(worker
->task
);
1833 static void idle_worker_timeout(unsigned long __pool
)
1835 struct worker_pool
*pool
= (void *)__pool
;
1837 spin_lock_irq(&pool
->lock
);
1839 while (too_many_workers(pool
)) {
1840 struct worker
*worker
;
1841 unsigned long expires
;
1843 /* idle_list is kept in LIFO order, check the last one */
1844 worker
= list_entry(pool
->idle_list
.prev
, struct worker
, entry
);
1845 expires
= worker
->last_active
+ IDLE_WORKER_TIMEOUT
;
1847 if (time_before(jiffies
, expires
)) {
1848 mod_timer(&pool
->idle_timer
, expires
);
1852 destroy_worker(worker
);
1855 spin_unlock_irq(&pool
->lock
);
1858 static void send_mayday(struct work_struct
*work
)
1860 struct pool_workqueue
*pwq
= get_work_pwq(work
);
1861 struct workqueue_struct
*wq
= pwq
->wq
;
1863 lockdep_assert_held(&wq_mayday_lock
);
1868 /* mayday mayday mayday */
1869 if (list_empty(&pwq
->mayday_node
)) {
1871 * If @pwq is for an unbound wq, its base ref may be put at
1872 * any time due to an attribute change. Pin @pwq until the
1873 * rescuer is done with it.
1876 list_add_tail(&pwq
->mayday_node
, &wq
->maydays
);
1877 wake_up_process(wq
->rescuer
->task
);
1881 static void pool_mayday_timeout(unsigned long __pool
)
1883 struct worker_pool
*pool
= (void *)__pool
;
1884 struct work_struct
*work
;
1886 spin_lock_irq(&pool
->lock
);
1887 spin_lock(&wq_mayday_lock
); /* for wq->maydays */
1889 if (need_to_create_worker(pool
)) {
1891 * We've been trying to create a new worker but
1892 * haven't been successful. We might be hitting an
1893 * allocation deadlock. Send distress signals to
1896 list_for_each_entry(work
, &pool
->worklist
, entry
)
1900 spin_unlock(&wq_mayday_lock
);
1901 spin_unlock_irq(&pool
->lock
);
1903 mod_timer(&pool
->mayday_timer
, jiffies
+ MAYDAY_INTERVAL
);
1907 * maybe_create_worker - create a new worker if necessary
1908 * @pool: pool to create a new worker for
1910 * Create a new worker for @pool if necessary. @pool is guaranteed to
1911 * have at least one idle worker on return from this function. If
1912 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1913 * sent to all rescuers with works scheduled on @pool to resolve
1914 * possible allocation deadlock.
1916 * On return, need_to_create_worker() is guaranteed to be %false and
1917 * may_start_working() %true.
1920 * spin_lock_irq(pool->lock) which may be released and regrabbed
1921 * multiple times. Does GFP_KERNEL allocations. Called only from
1924 static void maybe_create_worker(struct worker_pool
*pool
)
1925 __releases(&pool
->lock
)
1926 __acquires(&pool
->lock
)
1929 spin_unlock_irq(&pool
->lock
);
1931 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1932 mod_timer(&pool
->mayday_timer
, jiffies
+ MAYDAY_INITIAL_TIMEOUT
);
1935 if (create_worker(pool
) || !need_to_create_worker(pool
))
1938 schedule_timeout_interruptible(CREATE_COOLDOWN
);
1940 if (!need_to_create_worker(pool
))
1944 del_timer_sync(&pool
->mayday_timer
);
1945 spin_lock_irq(&pool
->lock
);
1947 * This is necessary even after a new worker was just successfully
1948 * created as @pool->lock was dropped and the new worker might have
1949 * already become busy.
1951 if (need_to_create_worker(pool
))
1956 * manage_workers - manage worker pool
1959 * Assume the manager role and manage the worker pool @worker belongs
1960 * to. At any given time, there can be only zero or one manager per
1961 * pool. The exclusion is handled automatically by this function.
1963 * The caller can safely start processing works on false return. On
1964 * true return, it's guaranteed that need_to_create_worker() is false
1965 * and may_start_working() is true.
1968 * spin_lock_irq(pool->lock) which may be released and regrabbed
1969 * multiple times. Does GFP_KERNEL allocations.
1972 * %false if the pool doesn't need management and the caller can safely
1973 * start processing works, %true if management function was performed and
1974 * the conditions that the caller verified before calling the function may
1975 * no longer be true.
1977 static bool manage_workers(struct worker
*worker
)
1979 struct worker_pool
*pool
= worker
->pool
;
1982 * Anyone who successfully grabs manager_arb wins the arbitration
1983 * and becomes the manager. mutex_trylock() on pool->manager_arb
1984 * failure while holding pool->lock reliably indicates that someone
1985 * else is managing the pool and the worker which failed trylock
1986 * can proceed to executing work items. This means that anyone
1987 * grabbing manager_arb is responsible for actually performing
1988 * manager duties. If manager_arb is grabbed and released without
1989 * actual management, the pool may stall indefinitely.
1991 if (!mutex_trylock(&pool
->manager_arb
))
1993 pool
->manager
= worker
;
1995 maybe_create_worker(pool
);
1997 pool
->manager
= NULL
;
1998 mutex_unlock(&pool
->manager_arb
);
2003 * process_one_work - process single work
2005 * @work: work to process
2007 * Process @work. This function contains all the logics necessary to
2008 * process a single work including synchronization against and
2009 * interaction with other workers on the same cpu, queueing and
2010 * flushing. As long as context requirement is met, any worker can
2011 * call this function to process a work.
2014 * spin_lock_irq(pool->lock) which is released and regrabbed.
2016 static void process_one_work(struct worker
*worker
, struct work_struct
*work
)
2017 __releases(&pool
->lock
)
2018 __acquires(&pool
->lock
)
2020 struct pool_workqueue
*pwq
= get_work_pwq(work
);
2021 struct worker_pool
*pool
= worker
->pool
;
2022 bool cpu_intensive
= pwq
->wq
->flags
& WQ_CPU_INTENSIVE
;
2024 struct worker
*collision
;
2025 #ifdef CONFIG_LOCKDEP
2027 * It is permissible to free the struct work_struct from
2028 * inside the function that is called from it, this we need to
2029 * take into account for lockdep too. To avoid bogus "held
2030 * lock freed" warnings as well as problems when looking into
2031 * work->lockdep_map, make a copy and use that here.
2033 struct lockdep_map lockdep_map
;
2035 lockdep_copy_map(&lockdep_map
, &work
->lockdep_map
);
2037 /* ensure we're on the correct CPU */
2038 WARN_ON_ONCE(!(pool
->flags
& POOL_DISASSOCIATED
) &&
2039 raw_smp_processor_id() != pool
->cpu
);
2042 * A single work shouldn't be executed concurrently by
2043 * multiple workers on a single cpu. Check whether anyone is
2044 * already processing the work. If so, defer the work to the
2045 * currently executing one.
2047 collision
= find_worker_executing_work(pool
, work
);
2048 if (unlikely(collision
)) {
2049 move_linked_works(work
, &collision
->scheduled
, NULL
);
2053 /* claim and dequeue */
2054 debug_work_deactivate(work
);
2055 hash_add(pool
->busy_hash
, &worker
->hentry
, (unsigned long)work
);
2056 worker
->current_work
= work
;
2057 worker
->current_func
= work
->func
;
2058 worker
->current_pwq
= pwq
;
2059 work_color
= get_work_color(work
);
2061 list_del_init(&work
->entry
);
2064 * CPU intensive works don't participate in concurrency management.
2065 * They're the scheduler's responsibility. This takes @worker out
2066 * of concurrency management and the next code block will chain
2067 * execution of the pending work items.
2069 if (unlikely(cpu_intensive
))
2070 worker_set_flags(worker
, WORKER_CPU_INTENSIVE
);
2073 * Wake up another worker if necessary. The condition is always
2074 * false for normal per-cpu workers since nr_running would always
2075 * be >= 1 at this point. This is used to chain execution of the
2076 * pending work items for WORKER_NOT_RUNNING workers such as the
2077 * UNBOUND and CPU_INTENSIVE ones.
2079 if (need_more_worker(pool
))
2080 wake_up_worker(pool
);
2083 * Record the last pool and clear PENDING which should be the last
2084 * update to @work. Also, do this inside @pool->lock so that
2085 * PENDING and queued state changes happen together while IRQ is
2088 set_work_pool_and_clear_pending(work
, pool
->id
);
2090 spin_unlock_irq(&pool
->lock
);
2092 lock_map_acquire_read(&pwq
->wq
->lockdep_map
);
2093 lock_map_acquire(&lockdep_map
);
2094 trace_workqueue_execute_start(work
);
2095 worker
->current_func(work
);
2097 * While we must be careful to not use "work" after this, the trace
2098 * point will only record its address.
2100 trace_workqueue_execute_end(work
);
2101 lock_map_release(&lockdep_map
);
2102 lock_map_release(&pwq
->wq
->lockdep_map
);
2104 if (unlikely(in_atomic() || lockdep_depth(current
) > 0)) {
2105 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2106 " last function: %pf\n",
2107 current
->comm
, preempt_count(), task_pid_nr(current
),
2108 worker
->current_func
);
2109 debug_show_held_locks(current
);
2114 * The following prevents a kworker from hogging CPU on !PREEMPT
2115 * kernels, where a requeueing work item waiting for something to
2116 * happen could deadlock with stop_machine as such work item could
2117 * indefinitely requeue itself while all other CPUs are trapped in
2118 * stop_machine. At the same time, report a quiescent RCU state so
2119 * the same condition doesn't freeze RCU.
2121 cond_resched_rcu_qs();
2123 spin_lock_irq(&pool
->lock
);
2125 /* clear cpu intensive status */
2126 if (unlikely(cpu_intensive
))
2127 worker_clr_flags(worker
, WORKER_CPU_INTENSIVE
);
2129 /* we're done with it, release */
2130 hash_del(&worker
->hentry
);
2131 worker
->current_work
= NULL
;
2132 worker
->current_func
= NULL
;
2133 worker
->current_pwq
= NULL
;
2134 worker
->desc_valid
= false;
2135 pwq_dec_nr_in_flight(pwq
, work_color
);
2139 * process_scheduled_works - process scheduled works
2142 * Process all scheduled works. Please note that the scheduled list
2143 * may change while processing a work, so this function repeatedly
2144 * fetches a work from the top and executes it.
2147 * spin_lock_irq(pool->lock) which may be released and regrabbed
2150 static void process_scheduled_works(struct worker
*worker
)
2152 while (!list_empty(&worker
->scheduled
)) {
2153 struct work_struct
*work
= list_first_entry(&worker
->scheduled
,
2154 struct work_struct
, entry
);
2155 process_one_work(worker
, work
);
2160 * worker_thread - the worker thread function
2163 * The worker thread function. All workers belong to a worker_pool -
2164 * either a per-cpu one or dynamic unbound one. These workers process all
2165 * work items regardless of their specific target workqueue. The only
2166 * exception is work items which belong to workqueues with a rescuer which
2167 * will be explained in rescuer_thread().
2171 static int worker_thread(void *__worker
)
2173 struct worker
*worker
= __worker
;
2174 struct worker_pool
*pool
= worker
->pool
;
2176 /* tell the scheduler that this is a workqueue worker */
2177 worker
->task
->flags
|= PF_WQ_WORKER
;
2179 spin_lock_irq(&pool
->lock
);
2181 /* am I supposed to die? */
2182 if (unlikely(worker
->flags
& WORKER_DIE
)) {
2183 spin_unlock_irq(&pool
->lock
);
2184 WARN_ON_ONCE(!list_empty(&worker
->entry
));
2185 worker
->task
->flags
&= ~PF_WQ_WORKER
;
2187 set_task_comm(worker
->task
, "kworker/dying");
2188 ida_simple_remove(&pool
->worker_ida
, worker
->id
);
2189 worker_detach_from_pool(worker
, pool
);
2194 worker_leave_idle(worker
);
2196 /* no more worker necessary? */
2197 if (!need_more_worker(pool
))
2200 /* do we need to manage? */
2201 if (unlikely(!may_start_working(pool
)) && manage_workers(worker
))
2205 * ->scheduled list can only be filled while a worker is
2206 * preparing to process a work or actually processing it.
2207 * Make sure nobody diddled with it while I was sleeping.
2209 WARN_ON_ONCE(!list_empty(&worker
->scheduled
));
2212 * Finish PREP stage. We're guaranteed to have at least one idle
2213 * worker or that someone else has already assumed the manager
2214 * role. This is where @worker starts participating in concurrency
2215 * management if applicable and concurrency management is restored
2216 * after being rebound. See rebind_workers() for details.
2218 worker_clr_flags(worker
, WORKER_PREP
| WORKER_REBOUND
);
2221 struct work_struct
*work
=
2222 list_first_entry(&pool
->worklist
,
2223 struct work_struct
, entry
);
2225 pool
->watchdog_ts
= jiffies
;
2227 if (likely(!(*work_data_bits(work
) & WORK_STRUCT_LINKED
))) {
2228 /* optimization path, not strictly necessary */
2229 process_one_work(worker
, work
);
2230 if (unlikely(!list_empty(&worker
->scheduled
)))
2231 process_scheduled_works(worker
);
2233 move_linked_works(work
, &worker
->scheduled
, NULL
);
2234 process_scheduled_works(worker
);
2236 } while (keep_working(pool
));
2238 worker_set_flags(worker
, WORKER_PREP
);
2241 * pool->lock is held and there's no work to process and no need to
2242 * manage, sleep. Workers are woken up only while holding
2243 * pool->lock or from local cpu, so setting the current state
2244 * before releasing pool->lock is enough to prevent losing any
2247 worker_enter_idle(worker
);
2248 __set_current_state(TASK_INTERRUPTIBLE
);
2249 spin_unlock_irq(&pool
->lock
);
2255 * rescuer_thread - the rescuer thread function
2258 * Workqueue rescuer thread function. There's one rescuer for each
2259 * workqueue which has WQ_MEM_RECLAIM set.
2261 * Regular work processing on a pool may block trying to create a new
2262 * worker which uses GFP_KERNEL allocation which has slight chance of
2263 * developing into deadlock if some works currently on the same queue
2264 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2265 * the problem rescuer solves.
2267 * When such condition is possible, the pool summons rescuers of all
2268 * workqueues which have works queued on the pool and let them process
2269 * those works so that forward progress can be guaranteed.
2271 * This should happen rarely.
2275 static int rescuer_thread(void *__rescuer
)
2277 struct worker
*rescuer
= __rescuer
;
2278 struct workqueue_struct
*wq
= rescuer
->rescue_wq
;
2279 struct list_head
*scheduled
= &rescuer
->scheduled
;
2282 set_user_nice(current
, RESCUER_NICE_LEVEL
);
2285 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2286 * doesn't participate in concurrency management.
2288 rescuer
->task
->flags
|= PF_WQ_WORKER
;
2290 set_current_state(TASK_INTERRUPTIBLE
);
2293 * By the time the rescuer is requested to stop, the workqueue
2294 * shouldn't have any work pending, but @wq->maydays may still have
2295 * pwq(s) queued. This can happen by non-rescuer workers consuming
2296 * all the work items before the rescuer got to them. Go through
2297 * @wq->maydays processing before acting on should_stop so that the
2298 * list is always empty on exit.
2300 should_stop
= kthread_should_stop();
2302 /* see whether any pwq is asking for help */
2303 spin_lock_irq(&wq_mayday_lock
);
2305 while (!list_empty(&wq
->maydays
)) {
2306 struct pool_workqueue
*pwq
= list_first_entry(&wq
->maydays
,
2307 struct pool_workqueue
, mayday_node
);
2308 struct worker_pool
*pool
= pwq
->pool
;
2309 struct work_struct
*work
, *n
;
2312 __set_current_state(TASK_RUNNING
);
2313 list_del_init(&pwq
->mayday_node
);
2315 spin_unlock_irq(&wq_mayday_lock
);
2317 worker_attach_to_pool(rescuer
, pool
);
2319 spin_lock_irq(&pool
->lock
);
2320 rescuer
->pool
= pool
;
2323 * Slurp in all works issued via this workqueue and
2326 WARN_ON_ONCE(!list_empty(scheduled
));
2327 list_for_each_entry_safe(work
, n
, &pool
->worklist
, entry
) {
2328 if (get_work_pwq(work
) == pwq
) {
2330 pool
->watchdog_ts
= jiffies
;
2331 move_linked_works(work
, scheduled
, &n
);
2336 if (!list_empty(scheduled
)) {
2337 process_scheduled_works(rescuer
);
2340 * The above execution of rescued work items could
2341 * have created more to rescue through
2342 * pwq_activate_first_delayed() or chained
2343 * queueing. Let's put @pwq back on mayday list so
2344 * that such back-to-back work items, which may be
2345 * being used to relieve memory pressure, don't
2346 * incur MAYDAY_INTERVAL delay inbetween.
2348 if (need_to_create_worker(pool
)) {
2349 spin_lock(&wq_mayday_lock
);
2351 list_move_tail(&pwq
->mayday_node
, &wq
->maydays
);
2352 spin_unlock(&wq_mayday_lock
);
2357 * Put the reference grabbed by send_mayday(). @pool won't
2358 * go away while we're still attached to it.
2363 * Leave this pool. If need_more_worker() is %true, notify a
2364 * regular worker; otherwise, we end up with 0 concurrency
2365 * and stalling the execution.
2367 if (need_more_worker(pool
))
2368 wake_up_worker(pool
);
2370 rescuer
->pool
= NULL
;
2371 spin_unlock_irq(&pool
->lock
);
2373 worker_detach_from_pool(rescuer
, pool
);
2375 spin_lock_irq(&wq_mayday_lock
);
2378 spin_unlock_irq(&wq_mayday_lock
);
2381 __set_current_state(TASK_RUNNING
);
2382 rescuer
->task
->flags
&= ~PF_WQ_WORKER
;
2386 /* rescuers should never participate in concurrency management */
2387 WARN_ON_ONCE(!(rescuer
->flags
& WORKER_NOT_RUNNING
));
2393 * check_flush_dependency - check for flush dependency sanity
2394 * @target_wq: workqueue being flushed
2395 * @target_work: work item being flushed (NULL for workqueue flushes)
2397 * %current is trying to flush the whole @target_wq or @target_work on it.
2398 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2399 * reclaiming memory or running on a workqueue which doesn't have
2400 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2403 static void check_flush_dependency(struct workqueue_struct
*target_wq
,
2404 struct work_struct
*target_work
)
2406 work_func_t target_func
= target_work
? target_work
->func
: NULL
;
2407 struct worker
*worker
;
2409 if (target_wq
->flags
& WQ_MEM_RECLAIM
)
2412 worker
= current_wq_worker();
2414 WARN_ONCE(current
->flags
& PF_MEMALLOC
,
2415 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2416 current
->pid
, current
->comm
, target_wq
->name
, target_func
);
2417 WARN_ONCE(worker
&& ((worker
->current_pwq
->wq
->flags
&
2418 (WQ_MEM_RECLAIM
| __WQ_LEGACY
)) == WQ_MEM_RECLAIM
),
2419 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2420 worker
->current_pwq
->wq
->name
, worker
->current_func
,
2421 target_wq
->name
, target_func
);
2425 struct work_struct work
;
2426 struct completion done
;
2427 struct task_struct
*task
; /* purely informational */
2430 static void wq_barrier_func(struct work_struct
*work
)
2432 struct wq_barrier
*barr
= container_of(work
, struct wq_barrier
, work
);
2433 complete(&barr
->done
);
2437 * insert_wq_barrier - insert a barrier work
2438 * @pwq: pwq to insert barrier into
2439 * @barr: wq_barrier to insert
2440 * @target: target work to attach @barr to
2441 * @worker: worker currently executing @target, NULL if @target is not executing
2443 * @barr is linked to @target such that @barr is completed only after
2444 * @target finishes execution. Please note that the ordering
2445 * guarantee is observed only with respect to @target and on the local
2448 * Currently, a queued barrier can't be canceled. This is because
2449 * try_to_grab_pending() can't determine whether the work to be
2450 * grabbed is at the head of the queue and thus can't clear LINKED
2451 * flag of the previous work while there must be a valid next work
2452 * after a work with LINKED flag set.
2454 * Note that when @worker is non-NULL, @target may be modified
2455 * underneath us, so we can't reliably determine pwq from @target.
2458 * spin_lock_irq(pool->lock).
2460 static void insert_wq_barrier(struct pool_workqueue
*pwq
,
2461 struct wq_barrier
*barr
,
2462 struct work_struct
*target
, struct worker
*worker
)
2464 struct list_head
*head
;
2465 unsigned int linked
= 0;
2468 * debugobject calls are safe here even with pool->lock locked
2469 * as we know for sure that this will not trigger any of the
2470 * checks and call back into the fixup functions where we
2473 INIT_WORK_ONSTACK(&barr
->work
, wq_barrier_func
);
2474 __set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(&barr
->work
));
2475 init_completion(&barr
->done
);
2476 barr
->task
= current
;
2479 * If @target is currently being executed, schedule the
2480 * barrier to the worker; otherwise, put it after @target.
2483 head
= worker
->scheduled
.next
;
2485 unsigned long *bits
= work_data_bits(target
);
2487 head
= target
->entry
.next
;
2488 /* there can already be other linked works, inherit and set */
2489 linked
= *bits
& WORK_STRUCT_LINKED
;
2490 __set_bit(WORK_STRUCT_LINKED_BIT
, bits
);
2493 debug_work_activate(&barr
->work
);
2494 insert_work(pwq
, &barr
->work
, head
,
2495 work_color_to_flags(WORK_NO_COLOR
) | linked
);
2499 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2500 * @wq: workqueue being flushed
2501 * @flush_color: new flush color, < 0 for no-op
2502 * @work_color: new work color, < 0 for no-op
2504 * Prepare pwqs for workqueue flushing.
2506 * If @flush_color is non-negative, flush_color on all pwqs should be
2507 * -1. If no pwq has in-flight commands at the specified color, all
2508 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2509 * has in flight commands, its pwq->flush_color is set to
2510 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2511 * wakeup logic is armed and %true is returned.
2513 * The caller should have initialized @wq->first_flusher prior to
2514 * calling this function with non-negative @flush_color. If
2515 * @flush_color is negative, no flush color update is done and %false
2518 * If @work_color is non-negative, all pwqs should have the same
2519 * work_color which is previous to @work_color and all will be
2520 * advanced to @work_color.
2523 * mutex_lock(wq->mutex).
2526 * %true if @flush_color >= 0 and there's something to flush. %false
2529 static bool flush_workqueue_prep_pwqs(struct workqueue_struct
*wq
,
2530 int flush_color
, int work_color
)
2533 struct pool_workqueue
*pwq
;
2535 if (flush_color
>= 0) {
2536 WARN_ON_ONCE(atomic_read(&wq
->nr_pwqs_to_flush
));
2537 atomic_set(&wq
->nr_pwqs_to_flush
, 1);
2540 for_each_pwq(pwq
, wq
) {
2541 struct worker_pool
*pool
= pwq
->pool
;
2543 spin_lock_irq(&pool
->lock
);
2545 if (flush_color
>= 0) {
2546 WARN_ON_ONCE(pwq
->flush_color
!= -1);
2548 if (pwq
->nr_in_flight
[flush_color
]) {
2549 pwq
->flush_color
= flush_color
;
2550 atomic_inc(&wq
->nr_pwqs_to_flush
);
2555 if (work_color
>= 0) {
2556 WARN_ON_ONCE(work_color
!= work_next_color(pwq
->work_color
));
2557 pwq
->work_color
= work_color
;
2560 spin_unlock_irq(&pool
->lock
);
2563 if (flush_color
>= 0 && atomic_dec_and_test(&wq
->nr_pwqs_to_flush
))
2564 complete(&wq
->first_flusher
->done
);
2570 * flush_workqueue - ensure that any scheduled work has run to completion.
2571 * @wq: workqueue to flush
2573 * This function sleeps until all work items which were queued on entry
2574 * have finished execution, but it is not livelocked by new incoming ones.
2576 void flush_workqueue(struct workqueue_struct
*wq
)
2578 struct wq_flusher this_flusher
= {
2579 .list
= LIST_HEAD_INIT(this_flusher
.list
),
2581 .done
= COMPLETION_INITIALIZER_ONSTACK(this_flusher
.done
),
2585 lock_map_acquire(&wq
->lockdep_map
);
2586 lock_map_release(&wq
->lockdep_map
);
2588 mutex_lock(&wq
->mutex
);
2591 * Start-to-wait phase
2593 next_color
= work_next_color(wq
->work_color
);
2595 if (next_color
!= wq
->flush_color
) {
2597 * Color space is not full. The current work_color
2598 * becomes our flush_color and work_color is advanced
2601 WARN_ON_ONCE(!list_empty(&wq
->flusher_overflow
));
2602 this_flusher
.flush_color
= wq
->work_color
;
2603 wq
->work_color
= next_color
;
2605 if (!wq
->first_flusher
) {
2606 /* no flush in progress, become the first flusher */
2607 WARN_ON_ONCE(wq
->flush_color
!= this_flusher
.flush_color
);
2609 wq
->first_flusher
= &this_flusher
;
2611 if (!flush_workqueue_prep_pwqs(wq
, wq
->flush_color
,
2613 /* nothing to flush, done */
2614 wq
->flush_color
= next_color
;
2615 wq
->first_flusher
= NULL
;
2620 WARN_ON_ONCE(wq
->flush_color
== this_flusher
.flush_color
);
2621 list_add_tail(&this_flusher
.list
, &wq
->flusher_queue
);
2622 flush_workqueue_prep_pwqs(wq
, -1, wq
->work_color
);
2626 * Oops, color space is full, wait on overflow queue.
2627 * The next flush completion will assign us
2628 * flush_color and transfer to flusher_queue.
2630 list_add_tail(&this_flusher
.list
, &wq
->flusher_overflow
);
2633 check_flush_dependency(wq
, NULL
);
2635 mutex_unlock(&wq
->mutex
);
2637 wait_for_completion(&this_flusher
.done
);
2640 * Wake-up-and-cascade phase
2642 * First flushers are responsible for cascading flushes and
2643 * handling overflow. Non-first flushers can simply return.
2645 if (wq
->first_flusher
!= &this_flusher
)
2648 mutex_lock(&wq
->mutex
);
2650 /* we might have raced, check again with mutex held */
2651 if (wq
->first_flusher
!= &this_flusher
)
2654 wq
->first_flusher
= NULL
;
2656 WARN_ON_ONCE(!list_empty(&this_flusher
.list
));
2657 WARN_ON_ONCE(wq
->flush_color
!= this_flusher
.flush_color
);
2660 struct wq_flusher
*next
, *tmp
;
2662 /* complete all the flushers sharing the current flush color */
2663 list_for_each_entry_safe(next
, tmp
, &wq
->flusher_queue
, list
) {
2664 if (next
->flush_color
!= wq
->flush_color
)
2666 list_del_init(&next
->list
);
2667 complete(&next
->done
);
2670 WARN_ON_ONCE(!list_empty(&wq
->flusher_overflow
) &&
2671 wq
->flush_color
!= work_next_color(wq
->work_color
));
2673 /* this flush_color is finished, advance by one */
2674 wq
->flush_color
= work_next_color(wq
->flush_color
);
2676 /* one color has been freed, handle overflow queue */
2677 if (!list_empty(&wq
->flusher_overflow
)) {
2679 * Assign the same color to all overflowed
2680 * flushers, advance work_color and append to
2681 * flusher_queue. This is the start-to-wait
2682 * phase for these overflowed flushers.
2684 list_for_each_entry(tmp
, &wq
->flusher_overflow
, list
)
2685 tmp
->flush_color
= wq
->work_color
;
2687 wq
->work_color
= work_next_color(wq
->work_color
);
2689 list_splice_tail_init(&wq
->flusher_overflow
,
2690 &wq
->flusher_queue
);
2691 flush_workqueue_prep_pwqs(wq
, -1, wq
->work_color
);
2694 if (list_empty(&wq
->flusher_queue
)) {
2695 WARN_ON_ONCE(wq
->flush_color
!= wq
->work_color
);
2700 * Need to flush more colors. Make the next flusher
2701 * the new first flusher and arm pwqs.
2703 WARN_ON_ONCE(wq
->flush_color
== wq
->work_color
);
2704 WARN_ON_ONCE(wq
->flush_color
!= next
->flush_color
);
2706 list_del_init(&next
->list
);
2707 wq
->first_flusher
= next
;
2709 if (flush_workqueue_prep_pwqs(wq
, wq
->flush_color
, -1))
2713 * Meh... this color is already done, clear first
2714 * flusher and repeat cascading.
2716 wq
->first_flusher
= NULL
;
2720 mutex_unlock(&wq
->mutex
);
2722 EXPORT_SYMBOL(flush_workqueue
);
2725 * drain_workqueue - drain a workqueue
2726 * @wq: workqueue to drain
2728 * Wait until the workqueue becomes empty. While draining is in progress,
2729 * only chain queueing is allowed. IOW, only currently pending or running
2730 * work items on @wq can queue further work items on it. @wq is flushed
2731 * repeatedly until it becomes empty. The number of flushing is determined
2732 * by the depth of chaining and should be relatively short. Whine if it
2735 void drain_workqueue(struct workqueue_struct
*wq
)
2737 unsigned int flush_cnt
= 0;
2738 struct pool_workqueue
*pwq
;
2741 * __queue_work() needs to test whether there are drainers, is much
2742 * hotter than drain_workqueue() and already looks at @wq->flags.
2743 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2745 mutex_lock(&wq
->mutex
);
2746 if (!wq
->nr_drainers
++)
2747 wq
->flags
|= __WQ_DRAINING
;
2748 mutex_unlock(&wq
->mutex
);
2750 flush_workqueue(wq
);
2752 mutex_lock(&wq
->mutex
);
2754 for_each_pwq(pwq
, wq
) {
2757 spin_lock_irq(&pwq
->pool
->lock
);
2758 drained
= !pwq
->nr_active
&& list_empty(&pwq
->delayed_works
);
2759 spin_unlock_irq(&pwq
->pool
->lock
);
2764 if (++flush_cnt
== 10 ||
2765 (flush_cnt
% 100 == 0 && flush_cnt
<= 1000))
2766 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2767 wq
->name
, flush_cnt
);
2769 mutex_unlock(&wq
->mutex
);
2773 if (!--wq
->nr_drainers
)
2774 wq
->flags
&= ~__WQ_DRAINING
;
2775 mutex_unlock(&wq
->mutex
);
2777 EXPORT_SYMBOL_GPL(drain_workqueue
);
2779 static bool start_flush_work(struct work_struct
*work
, struct wq_barrier
*barr
)
2781 struct worker
*worker
= NULL
;
2782 struct worker_pool
*pool
;
2783 struct pool_workqueue
*pwq
;
2787 local_irq_disable();
2788 pool
= get_work_pool(work
);
2794 spin_lock(&pool
->lock
);
2795 /* see the comment in try_to_grab_pending() with the same code */
2796 pwq
= get_work_pwq(work
);
2798 if (unlikely(pwq
->pool
!= pool
))
2801 worker
= find_worker_executing_work(pool
, work
);
2804 pwq
= worker
->current_pwq
;
2807 check_flush_dependency(pwq
->wq
, work
);
2809 insert_wq_barrier(pwq
, barr
, work
, worker
);
2810 spin_unlock_irq(&pool
->lock
);
2813 * If @max_active is 1 or rescuer is in use, flushing another work
2814 * item on the same workqueue may lead to deadlock. Make sure the
2815 * flusher is not running on the same workqueue by verifying write
2818 if (pwq
->wq
->saved_max_active
== 1 || pwq
->wq
->rescuer
)
2819 lock_map_acquire(&pwq
->wq
->lockdep_map
);
2821 lock_map_acquire_read(&pwq
->wq
->lockdep_map
);
2822 lock_map_release(&pwq
->wq
->lockdep_map
);
2826 spin_unlock_irq(&pool
->lock
);
2831 * flush_work - wait for a work to finish executing the last queueing instance
2832 * @work: the work to flush
2834 * Wait until @work has finished execution. @work is guaranteed to be idle
2835 * on return if it hasn't been requeued since flush started.
2838 * %true if flush_work() waited for the work to finish execution,
2839 * %false if it was already idle.
2841 bool flush_work(struct work_struct
*work
)
2843 struct wq_barrier barr
;
2845 lock_map_acquire(&work
->lockdep_map
);
2846 lock_map_release(&work
->lockdep_map
);
2848 if (start_flush_work(work
, &barr
)) {
2849 wait_for_completion(&barr
.done
);
2850 destroy_work_on_stack(&barr
.work
);
2856 EXPORT_SYMBOL_GPL(flush_work
);
2860 struct work_struct
*work
;
2863 static int cwt_wakefn(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
2865 struct cwt_wait
*cwait
= container_of(wait
, struct cwt_wait
, wait
);
2867 if (cwait
->work
!= key
)
2869 return autoremove_wake_function(wait
, mode
, sync
, key
);
2872 static bool __cancel_work_timer(struct work_struct
*work
, bool is_dwork
)
2874 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq
);
2875 unsigned long flags
;
2879 ret
= try_to_grab_pending(work
, is_dwork
, &flags
);
2881 * If someone else is already canceling, wait for it to
2882 * finish. flush_work() doesn't work for PREEMPT_NONE
2883 * because we may get scheduled between @work's completion
2884 * and the other canceling task resuming and clearing
2885 * CANCELING - flush_work() will return false immediately
2886 * as @work is no longer busy, try_to_grab_pending() will
2887 * return -ENOENT as @work is still being canceled and the
2888 * other canceling task won't be able to clear CANCELING as
2889 * we're hogging the CPU.
2891 * Let's wait for completion using a waitqueue. As this
2892 * may lead to the thundering herd problem, use a custom
2893 * wake function which matches @work along with exclusive
2896 if (unlikely(ret
== -ENOENT
)) {
2897 struct cwt_wait cwait
;
2899 init_wait(&cwait
.wait
);
2900 cwait
.wait
.func
= cwt_wakefn
;
2903 prepare_to_wait_exclusive(&cancel_waitq
, &cwait
.wait
,
2904 TASK_UNINTERRUPTIBLE
);
2905 if (work_is_canceling(work
))
2907 finish_wait(&cancel_waitq
, &cwait
.wait
);
2909 } while (unlikely(ret
< 0));
2911 /* tell other tasks trying to grab @work to back off */
2912 mark_work_canceling(work
);
2913 local_irq_restore(flags
);
2916 clear_work_data(work
);
2919 * Paired with prepare_to_wait() above so that either
2920 * waitqueue_active() is visible here or !work_is_canceling() is
2924 if (waitqueue_active(&cancel_waitq
))
2925 __wake_up(&cancel_waitq
, TASK_NORMAL
, 1, work
);
2931 * cancel_work_sync - cancel a work and wait for it to finish
2932 * @work: the work to cancel
2934 * Cancel @work and wait for its execution to finish. This function
2935 * can be used even if the work re-queues itself or migrates to
2936 * another workqueue. On return from this function, @work is
2937 * guaranteed to be not pending or executing on any CPU.
2939 * cancel_work_sync(&delayed_work->work) must not be used for
2940 * delayed_work's. Use cancel_delayed_work_sync() instead.
2942 * The caller must ensure that the workqueue on which @work was last
2943 * queued can't be destroyed before this function returns.
2946 * %true if @work was pending, %false otherwise.
2948 bool cancel_work_sync(struct work_struct
*work
)
2950 return __cancel_work_timer(work
, false);
2952 EXPORT_SYMBOL_GPL(cancel_work_sync
);
2955 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2956 * @dwork: the delayed work to flush
2958 * Delayed timer is cancelled and the pending work is queued for
2959 * immediate execution. Like flush_work(), this function only
2960 * considers the last queueing instance of @dwork.
2963 * %true if flush_work() waited for the work to finish execution,
2964 * %false if it was already idle.
2966 bool flush_delayed_work(struct delayed_work
*dwork
)
2968 local_irq_disable();
2969 if (del_timer_sync(&dwork
->timer
))
2970 __queue_work(dwork
->cpu
, dwork
->wq
, &dwork
->work
);
2972 return flush_work(&dwork
->work
);
2974 EXPORT_SYMBOL(flush_delayed_work
);
2977 * cancel_delayed_work - cancel a delayed work
2978 * @dwork: delayed_work to cancel
2980 * Kill off a pending delayed_work.
2982 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2986 * The work callback function may still be running on return, unless
2987 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2988 * use cancel_delayed_work_sync() to wait on it.
2990 * This function is safe to call from any context including IRQ handler.
2992 bool cancel_delayed_work(struct delayed_work
*dwork
)
2994 unsigned long flags
;
2998 ret
= try_to_grab_pending(&dwork
->work
, true, &flags
);
2999 } while (unlikely(ret
== -EAGAIN
));
3001 if (unlikely(ret
< 0))
3004 set_work_pool_and_clear_pending(&dwork
->work
,
3005 get_work_pool_id(&dwork
->work
));
3006 local_irq_restore(flags
);
3009 EXPORT_SYMBOL(cancel_delayed_work
);
3012 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3013 * @dwork: the delayed work cancel
3015 * This is cancel_work_sync() for delayed works.
3018 * %true if @dwork was pending, %false otherwise.
3020 bool cancel_delayed_work_sync(struct delayed_work
*dwork
)
3022 return __cancel_work_timer(&dwork
->work
, true);
3024 EXPORT_SYMBOL(cancel_delayed_work_sync
);
3027 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3028 * @func: the function to call
3030 * schedule_on_each_cpu() executes @func on each online CPU using the
3031 * system workqueue and blocks until all CPUs have completed.
3032 * schedule_on_each_cpu() is very slow.
3035 * 0 on success, -errno on failure.
3037 int schedule_on_each_cpu(work_func_t func
)
3040 struct work_struct __percpu
*works
;
3042 works
= alloc_percpu(struct work_struct
);
3048 for_each_online_cpu(cpu
) {
3049 struct work_struct
*work
= per_cpu_ptr(works
, cpu
);
3051 INIT_WORK(work
, func
);
3052 schedule_work_on(cpu
, work
);
3055 for_each_online_cpu(cpu
)
3056 flush_work(per_cpu_ptr(works
, cpu
));
3064 * execute_in_process_context - reliably execute the routine with user context
3065 * @fn: the function to execute
3066 * @ew: guaranteed storage for the execute work structure (must
3067 * be available when the work executes)
3069 * Executes the function immediately if process context is available,
3070 * otherwise schedules the function for delayed execution.
3072 * Return: 0 - function was executed
3073 * 1 - function was scheduled for execution
3075 int execute_in_process_context(work_func_t fn
, struct execute_work
*ew
)
3077 if (!in_interrupt()) {
3082 INIT_WORK(&ew
->work
, fn
);
3083 schedule_work(&ew
->work
);
3087 EXPORT_SYMBOL_GPL(execute_in_process_context
);
3090 * free_workqueue_attrs - free a workqueue_attrs
3091 * @attrs: workqueue_attrs to free
3093 * Undo alloc_workqueue_attrs().
3095 void free_workqueue_attrs(struct workqueue_attrs
*attrs
)
3098 free_cpumask_var(attrs
->cpumask
);
3104 * alloc_workqueue_attrs - allocate a workqueue_attrs
3105 * @gfp_mask: allocation mask to use
3107 * Allocate a new workqueue_attrs, initialize with default settings and
3110 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3112 struct workqueue_attrs
*alloc_workqueue_attrs(gfp_t gfp_mask
)
3114 struct workqueue_attrs
*attrs
;
3116 attrs
= kzalloc(sizeof(*attrs
), gfp_mask
);
3119 if (!alloc_cpumask_var(&attrs
->cpumask
, gfp_mask
))
3122 cpumask_copy(attrs
->cpumask
, cpu_possible_mask
);
3125 free_workqueue_attrs(attrs
);
3129 static void copy_workqueue_attrs(struct workqueue_attrs
*to
,
3130 const struct workqueue_attrs
*from
)
3132 to
->nice
= from
->nice
;
3133 cpumask_copy(to
->cpumask
, from
->cpumask
);
3135 * Unlike hash and equality test, this function doesn't ignore
3136 * ->no_numa as it is used for both pool and wq attrs. Instead,
3137 * get_unbound_pool() explicitly clears ->no_numa after copying.
3139 to
->no_numa
= from
->no_numa
;
3142 /* hash value of the content of @attr */
3143 static u32
wqattrs_hash(const struct workqueue_attrs
*attrs
)
3147 hash
= jhash_1word(attrs
->nice
, hash
);
3148 hash
= jhash(cpumask_bits(attrs
->cpumask
),
3149 BITS_TO_LONGS(nr_cpumask_bits
) * sizeof(long), hash
);
3153 /* content equality test */
3154 static bool wqattrs_equal(const struct workqueue_attrs
*a
,
3155 const struct workqueue_attrs
*b
)
3157 if (a
->nice
!= b
->nice
)
3159 if (!cpumask_equal(a
->cpumask
, b
->cpumask
))
3165 * init_worker_pool - initialize a newly zalloc'd worker_pool
3166 * @pool: worker_pool to initialize
3168 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3170 * Return: 0 on success, -errno on failure. Even on failure, all fields
3171 * inside @pool proper are initialized and put_unbound_pool() can be called
3172 * on @pool safely to release it.
3174 static int init_worker_pool(struct worker_pool
*pool
)
3176 spin_lock_init(&pool
->lock
);
3179 pool
->node
= NUMA_NO_NODE
;
3180 pool
->flags
|= POOL_DISASSOCIATED
;
3181 pool
->watchdog_ts
= jiffies
;
3182 INIT_LIST_HEAD(&pool
->worklist
);
3183 INIT_LIST_HEAD(&pool
->idle_list
);
3184 hash_init(pool
->busy_hash
);
3186 init_timer_deferrable(&pool
->idle_timer
);
3187 pool
->idle_timer
.function
= idle_worker_timeout
;
3188 pool
->idle_timer
.data
= (unsigned long)pool
;
3190 setup_timer(&pool
->mayday_timer
, pool_mayday_timeout
,
3191 (unsigned long)pool
);
3193 mutex_init(&pool
->manager_arb
);
3194 mutex_init(&pool
->attach_mutex
);
3195 INIT_LIST_HEAD(&pool
->workers
);
3197 ida_init(&pool
->worker_ida
);
3198 INIT_HLIST_NODE(&pool
->hash_node
);
3201 /* shouldn't fail above this point */
3202 pool
->attrs
= alloc_workqueue_attrs(GFP_KERNEL
);
3208 static void rcu_free_wq(struct rcu_head
*rcu
)
3210 struct workqueue_struct
*wq
=
3211 container_of(rcu
, struct workqueue_struct
, rcu
);
3213 if (!(wq
->flags
& WQ_UNBOUND
))
3214 free_percpu(wq
->cpu_pwqs
);
3216 free_workqueue_attrs(wq
->unbound_attrs
);
3222 static void rcu_free_pool(struct rcu_head
*rcu
)
3224 struct worker_pool
*pool
= container_of(rcu
, struct worker_pool
, rcu
);
3226 ida_destroy(&pool
->worker_ida
);
3227 free_workqueue_attrs(pool
->attrs
);
3232 * put_unbound_pool - put a worker_pool
3233 * @pool: worker_pool to put
3235 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3236 * safe manner. get_unbound_pool() calls this function on its failure path
3237 * and this function should be able to release pools which went through,
3238 * successfully or not, init_worker_pool().
3240 * Should be called with wq_pool_mutex held.
3242 static void put_unbound_pool(struct worker_pool
*pool
)
3244 DECLARE_COMPLETION_ONSTACK(detach_completion
);
3245 struct worker
*worker
;
3247 lockdep_assert_held(&wq_pool_mutex
);
3253 if (WARN_ON(!(pool
->cpu
< 0)) ||
3254 WARN_ON(!list_empty(&pool
->worklist
)))
3257 /* release id and unhash */
3259 idr_remove(&worker_pool_idr
, pool
->id
);
3260 hash_del(&pool
->hash_node
);
3263 * Become the manager and destroy all workers. Grabbing
3264 * manager_arb prevents @pool's workers from blocking on
3267 mutex_lock(&pool
->manager_arb
);
3269 spin_lock_irq(&pool
->lock
);
3270 while ((worker
= first_idle_worker(pool
)))
3271 destroy_worker(worker
);
3272 WARN_ON(pool
->nr_workers
|| pool
->nr_idle
);
3273 spin_unlock_irq(&pool
->lock
);
3275 mutex_lock(&pool
->attach_mutex
);
3276 if (!list_empty(&pool
->workers
))
3277 pool
->detach_completion
= &detach_completion
;
3278 mutex_unlock(&pool
->attach_mutex
);
3280 if (pool
->detach_completion
)
3281 wait_for_completion(pool
->detach_completion
);
3283 mutex_unlock(&pool
->manager_arb
);
3285 /* shut down the timers */
3286 del_timer_sync(&pool
->idle_timer
);
3287 del_timer_sync(&pool
->mayday_timer
);
3289 /* sched-RCU protected to allow dereferences from get_work_pool() */
3290 call_rcu_sched(&pool
->rcu
, rcu_free_pool
);
3294 * get_unbound_pool - get a worker_pool with the specified attributes
3295 * @attrs: the attributes of the worker_pool to get
3297 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3298 * reference count and return it. If there already is a matching
3299 * worker_pool, it will be used; otherwise, this function attempts to
3302 * Should be called with wq_pool_mutex held.
3304 * Return: On success, a worker_pool with the same attributes as @attrs.
3305 * On failure, %NULL.
3307 static struct worker_pool
*get_unbound_pool(const struct workqueue_attrs
*attrs
)
3309 u32 hash
= wqattrs_hash(attrs
);
3310 struct worker_pool
*pool
;
3312 int target_node
= NUMA_NO_NODE
;
3314 lockdep_assert_held(&wq_pool_mutex
);
3316 /* do we already have a matching pool? */
3317 hash_for_each_possible(unbound_pool_hash
, pool
, hash_node
, hash
) {
3318 if (wqattrs_equal(pool
->attrs
, attrs
)) {
3324 /* if cpumask is contained inside a NUMA node, we belong to that node */
3325 if (wq_numa_enabled
) {
3326 for_each_node(node
) {
3327 if (cpumask_subset(attrs
->cpumask
,
3328 wq_numa_possible_cpumask
[node
])) {
3335 /* nope, create a new one */
3336 pool
= kzalloc_node(sizeof(*pool
), GFP_KERNEL
, target_node
);
3337 if (!pool
|| init_worker_pool(pool
) < 0)
3340 lockdep_set_subclass(&pool
->lock
, 1); /* see put_pwq() */
3341 copy_workqueue_attrs(pool
->attrs
, attrs
);
3342 pool
->node
= target_node
;
3345 * no_numa isn't a worker_pool attribute, always clear it. See
3346 * 'struct workqueue_attrs' comments for detail.
3348 pool
->attrs
->no_numa
= false;
3350 if (worker_pool_assign_id(pool
) < 0)
3353 /* create and start the initial worker */
3354 if (!create_worker(pool
))
3358 hash_add(unbound_pool_hash
, &pool
->hash_node
, hash
);
3363 put_unbound_pool(pool
);
3367 static void rcu_free_pwq(struct rcu_head
*rcu
)
3369 kmem_cache_free(pwq_cache
,
3370 container_of(rcu
, struct pool_workqueue
, rcu
));
3374 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3375 * and needs to be destroyed.
3377 static void pwq_unbound_release_workfn(struct work_struct
*work
)
3379 struct pool_workqueue
*pwq
= container_of(work
, struct pool_workqueue
,
3380 unbound_release_work
);
3381 struct workqueue_struct
*wq
= pwq
->wq
;
3382 struct worker_pool
*pool
= pwq
->pool
;
3385 if (WARN_ON_ONCE(!(wq
->flags
& WQ_UNBOUND
)))
3388 mutex_lock(&wq
->mutex
);
3389 list_del_rcu(&pwq
->pwqs_node
);
3390 is_last
= list_empty(&wq
->pwqs
);
3391 mutex_unlock(&wq
->mutex
);
3393 mutex_lock(&wq_pool_mutex
);
3394 put_unbound_pool(pool
);
3395 mutex_unlock(&wq_pool_mutex
);
3397 call_rcu_sched(&pwq
->rcu
, rcu_free_pwq
);
3400 * If we're the last pwq going away, @wq is already dead and no one
3401 * is gonna access it anymore. Schedule RCU free.
3404 call_rcu_sched(&wq
->rcu
, rcu_free_wq
);
3408 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3409 * @pwq: target pool_workqueue
3411 * If @pwq isn't freezing, set @pwq->max_active to the associated
3412 * workqueue's saved_max_active and activate delayed work items
3413 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3415 static void pwq_adjust_max_active(struct pool_workqueue
*pwq
)
3417 struct workqueue_struct
*wq
= pwq
->wq
;
3418 bool freezable
= wq
->flags
& WQ_FREEZABLE
;
3420 /* for @wq->saved_max_active */
3421 lockdep_assert_held(&wq
->mutex
);
3423 /* fast exit for non-freezable wqs */
3424 if (!freezable
&& pwq
->max_active
== wq
->saved_max_active
)
3427 spin_lock_irq(&pwq
->pool
->lock
);
3430 * During [un]freezing, the caller is responsible for ensuring that
3431 * this function is called at least once after @workqueue_freezing
3432 * is updated and visible.
3434 if (!freezable
|| !workqueue_freezing
) {
3435 pwq
->max_active
= wq
->saved_max_active
;
3437 while (!list_empty(&pwq
->delayed_works
) &&
3438 pwq
->nr_active
< pwq
->max_active
)
3439 pwq_activate_first_delayed(pwq
);
3442 * Need to kick a worker after thawed or an unbound wq's
3443 * max_active is bumped. It's a slow path. Do it always.
3445 wake_up_worker(pwq
->pool
);
3447 pwq
->max_active
= 0;
3450 spin_unlock_irq(&pwq
->pool
->lock
);
3453 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3454 static void init_pwq(struct pool_workqueue
*pwq
, struct workqueue_struct
*wq
,
3455 struct worker_pool
*pool
)
3457 BUG_ON((unsigned long)pwq
& WORK_STRUCT_FLAG_MASK
);
3459 memset(pwq
, 0, sizeof(*pwq
));
3463 pwq
->flush_color
= -1;
3465 INIT_LIST_HEAD(&pwq
->delayed_works
);
3466 INIT_LIST_HEAD(&pwq
->pwqs_node
);
3467 INIT_LIST_HEAD(&pwq
->mayday_node
);
3468 INIT_WORK(&pwq
->unbound_release_work
, pwq_unbound_release_workfn
);
3471 /* sync @pwq with the current state of its associated wq and link it */
3472 static void link_pwq(struct pool_workqueue
*pwq
)
3474 struct workqueue_struct
*wq
= pwq
->wq
;
3476 lockdep_assert_held(&wq
->mutex
);
3478 /* may be called multiple times, ignore if already linked */
3479 if (!list_empty(&pwq
->pwqs_node
))
3482 /* set the matching work_color */
3483 pwq
->work_color
= wq
->work_color
;
3485 /* sync max_active to the current setting */
3486 pwq_adjust_max_active(pwq
);
3489 list_add_rcu(&pwq
->pwqs_node
, &wq
->pwqs
);
3492 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3493 static struct pool_workqueue
*alloc_unbound_pwq(struct workqueue_struct
*wq
,
3494 const struct workqueue_attrs
*attrs
)
3496 struct worker_pool
*pool
;
3497 struct pool_workqueue
*pwq
;
3499 lockdep_assert_held(&wq_pool_mutex
);
3501 pool
= get_unbound_pool(attrs
);
3505 pwq
= kmem_cache_alloc_node(pwq_cache
, GFP_KERNEL
, pool
->node
);
3507 put_unbound_pool(pool
);
3511 init_pwq(pwq
, wq
, pool
);
3516 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3517 * @attrs: the wq_attrs of the default pwq of the target workqueue
3518 * @node: the target NUMA node
3519 * @cpu_going_down: if >= 0, the CPU to consider as offline
3520 * @cpumask: outarg, the resulting cpumask
3522 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3523 * @cpu_going_down is >= 0, that cpu is considered offline during
3524 * calculation. The result is stored in @cpumask.
3526 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3527 * enabled and @node has online CPUs requested by @attrs, the returned
3528 * cpumask is the intersection of the possible CPUs of @node and
3531 * The caller is responsible for ensuring that the cpumask of @node stays
3534 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3537 static bool wq_calc_node_cpumask(const struct workqueue_attrs
*attrs
, int node
,
3538 int cpu_going_down
, cpumask_t
*cpumask
)
3540 if (!wq_numa_enabled
|| attrs
->no_numa
)
3543 /* does @node have any online CPUs @attrs wants? */
3544 cpumask_and(cpumask
, cpumask_of_node(node
), attrs
->cpumask
);
3545 if (cpu_going_down
>= 0)
3546 cpumask_clear_cpu(cpu_going_down
, cpumask
);
3548 if (cpumask_empty(cpumask
))
3551 /* yeap, return possible CPUs in @node that @attrs wants */
3552 cpumask_and(cpumask
, attrs
->cpumask
, wq_numa_possible_cpumask
[node
]);
3553 return !cpumask_equal(cpumask
, attrs
->cpumask
);
3556 cpumask_copy(cpumask
, attrs
->cpumask
);
3560 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3561 static struct pool_workqueue
*numa_pwq_tbl_install(struct workqueue_struct
*wq
,
3563 struct pool_workqueue
*pwq
)
3565 struct pool_workqueue
*old_pwq
;
3567 lockdep_assert_held(&wq_pool_mutex
);
3568 lockdep_assert_held(&wq
->mutex
);
3570 /* link_pwq() can handle duplicate calls */
3573 old_pwq
= rcu_access_pointer(wq
->numa_pwq_tbl
[node
]);
3574 rcu_assign_pointer(wq
->numa_pwq_tbl
[node
], pwq
);
3578 /* context to store the prepared attrs & pwqs before applying */
3579 struct apply_wqattrs_ctx
{
3580 struct workqueue_struct
*wq
; /* target workqueue */
3581 struct workqueue_attrs
*attrs
; /* attrs to apply */
3582 struct list_head list
; /* queued for batching commit */
3583 struct pool_workqueue
*dfl_pwq
;
3584 struct pool_workqueue
*pwq_tbl
[];
3587 /* free the resources after success or abort */
3588 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx
*ctx
)
3594 put_pwq_unlocked(ctx
->pwq_tbl
[node
]);
3595 put_pwq_unlocked(ctx
->dfl_pwq
);
3597 free_workqueue_attrs(ctx
->attrs
);
3603 /* allocate the attrs and pwqs for later installation */
3604 static struct apply_wqattrs_ctx
*
3605 apply_wqattrs_prepare(struct workqueue_struct
*wq
,
3606 const struct workqueue_attrs
*attrs
)
3608 struct apply_wqattrs_ctx
*ctx
;
3609 struct workqueue_attrs
*new_attrs
, *tmp_attrs
;
3612 lockdep_assert_held(&wq_pool_mutex
);
3614 ctx
= kzalloc(sizeof(*ctx
) + nr_node_ids
* sizeof(ctx
->pwq_tbl
[0]),
3617 new_attrs
= alloc_workqueue_attrs(GFP_KERNEL
);
3618 tmp_attrs
= alloc_workqueue_attrs(GFP_KERNEL
);
3619 if (!ctx
|| !new_attrs
|| !tmp_attrs
)
3623 * Calculate the attrs of the default pwq.
3624 * If the user configured cpumask doesn't overlap with the
3625 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3627 copy_workqueue_attrs(new_attrs
, attrs
);
3628 cpumask_and(new_attrs
->cpumask
, new_attrs
->cpumask
, wq_unbound_cpumask
);
3629 if (unlikely(cpumask_empty(new_attrs
->cpumask
)))
3630 cpumask_copy(new_attrs
->cpumask
, wq_unbound_cpumask
);
3633 * We may create multiple pwqs with differing cpumasks. Make a
3634 * copy of @new_attrs which will be modified and used to obtain
3637 copy_workqueue_attrs(tmp_attrs
, new_attrs
);
3640 * If something goes wrong during CPU up/down, we'll fall back to
3641 * the default pwq covering whole @attrs->cpumask. Always create
3642 * it even if we don't use it immediately.
3644 ctx
->dfl_pwq
= alloc_unbound_pwq(wq
, new_attrs
);
3648 for_each_node(node
) {
3649 if (wq_calc_node_cpumask(new_attrs
, node
, -1, tmp_attrs
->cpumask
)) {
3650 ctx
->pwq_tbl
[node
] = alloc_unbound_pwq(wq
, tmp_attrs
);
3651 if (!ctx
->pwq_tbl
[node
])
3654 ctx
->dfl_pwq
->refcnt
++;
3655 ctx
->pwq_tbl
[node
] = ctx
->dfl_pwq
;
3659 /* save the user configured attrs and sanitize it. */
3660 copy_workqueue_attrs(new_attrs
, attrs
);
3661 cpumask_and(new_attrs
->cpumask
, new_attrs
->cpumask
, cpu_possible_mask
);
3662 ctx
->attrs
= new_attrs
;
3665 free_workqueue_attrs(tmp_attrs
);
3669 free_workqueue_attrs(tmp_attrs
);
3670 free_workqueue_attrs(new_attrs
);
3671 apply_wqattrs_cleanup(ctx
);
3675 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3676 static void apply_wqattrs_commit(struct apply_wqattrs_ctx
*ctx
)
3680 /* all pwqs have been created successfully, let's install'em */
3681 mutex_lock(&ctx
->wq
->mutex
);
3683 copy_workqueue_attrs(ctx
->wq
->unbound_attrs
, ctx
->attrs
);
3685 /* save the previous pwq and install the new one */
3687 ctx
->pwq_tbl
[node
] = numa_pwq_tbl_install(ctx
->wq
, node
,
3688 ctx
->pwq_tbl
[node
]);
3690 /* @dfl_pwq might not have been used, ensure it's linked */
3691 link_pwq(ctx
->dfl_pwq
);
3692 swap(ctx
->wq
->dfl_pwq
, ctx
->dfl_pwq
);
3694 mutex_unlock(&ctx
->wq
->mutex
);
3697 static void apply_wqattrs_lock(void)
3699 /* CPUs should stay stable across pwq creations and installations */
3701 mutex_lock(&wq_pool_mutex
);
3704 static void apply_wqattrs_unlock(void)
3706 mutex_unlock(&wq_pool_mutex
);
3710 static int apply_workqueue_attrs_locked(struct workqueue_struct
*wq
,
3711 const struct workqueue_attrs
*attrs
)
3713 struct apply_wqattrs_ctx
*ctx
;
3715 /* only unbound workqueues can change attributes */
3716 if (WARN_ON(!(wq
->flags
& WQ_UNBOUND
)))
3719 /* creating multiple pwqs breaks ordering guarantee */
3720 if (WARN_ON((wq
->flags
& __WQ_ORDERED
) && !list_empty(&wq
->pwqs
)))
3723 ctx
= apply_wqattrs_prepare(wq
, attrs
);
3727 /* the ctx has been prepared successfully, let's commit it */
3728 apply_wqattrs_commit(ctx
);
3729 apply_wqattrs_cleanup(ctx
);
3735 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3736 * @wq: the target workqueue
3737 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3739 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3740 * machines, this function maps a separate pwq to each NUMA node with
3741 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3742 * NUMA node it was issued on. Older pwqs are released as in-flight work
3743 * items finish. Note that a work item which repeatedly requeues itself
3744 * back-to-back will stay on its current pwq.
3746 * Performs GFP_KERNEL allocations.
3748 * Return: 0 on success and -errno on failure.
3750 int apply_workqueue_attrs(struct workqueue_struct
*wq
,
3751 const struct workqueue_attrs
*attrs
)
3755 apply_wqattrs_lock();
3756 ret
= apply_workqueue_attrs_locked(wq
, attrs
);
3757 apply_wqattrs_unlock();
3763 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3764 * @wq: the target workqueue
3765 * @cpu: the CPU coming up or going down
3766 * @online: whether @cpu is coming up or going down
3768 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3769 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3772 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3773 * falls back to @wq->dfl_pwq which may not be optimal but is always
3776 * Note that when the last allowed CPU of a NUMA node goes offline for a
3777 * workqueue with a cpumask spanning multiple nodes, the workers which were
3778 * already executing the work items for the workqueue will lose their CPU
3779 * affinity and may execute on any CPU. This is similar to how per-cpu
3780 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3781 * affinity, it's the user's responsibility to flush the work item from
3784 static void wq_update_unbound_numa(struct workqueue_struct
*wq
, int cpu
,
3787 int node
= cpu_to_node(cpu
);
3788 int cpu_off
= online
? -1 : cpu
;
3789 struct pool_workqueue
*old_pwq
= NULL
, *pwq
;
3790 struct workqueue_attrs
*target_attrs
;
3793 lockdep_assert_held(&wq_pool_mutex
);
3795 if (!wq_numa_enabled
|| !(wq
->flags
& WQ_UNBOUND
) ||
3796 wq
->unbound_attrs
->no_numa
)
3800 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3801 * Let's use a preallocated one. The following buf is protected by
3802 * CPU hotplug exclusion.
3804 target_attrs
= wq_update_unbound_numa_attrs_buf
;
3805 cpumask
= target_attrs
->cpumask
;
3807 copy_workqueue_attrs(target_attrs
, wq
->unbound_attrs
);
3808 pwq
= unbound_pwq_by_node(wq
, node
);
3811 * Let's determine what needs to be done. If the target cpumask is
3812 * different from the default pwq's, we need to compare it to @pwq's
3813 * and create a new one if they don't match. If the target cpumask
3814 * equals the default pwq's, the default pwq should be used.
3816 if (wq_calc_node_cpumask(wq
->dfl_pwq
->pool
->attrs
, node
, cpu_off
, cpumask
)) {
3817 if (cpumask_equal(cpumask
, pwq
->pool
->attrs
->cpumask
))
3823 /* create a new pwq */
3824 pwq
= alloc_unbound_pwq(wq
, target_attrs
);
3826 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3831 /* Install the new pwq. */
3832 mutex_lock(&wq
->mutex
);
3833 old_pwq
= numa_pwq_tbl_install(wq
, node
, pwq
);
3837 mutex_lock(&wq
->mutex
);
3838 spin_lock_irq(&wq
->dfl_pwq
->pool
->lock
);
3839 get_pwq(wq
->dfl_pwq
);
3840 spin_unlock_irq(&wq
->dfl_pwq
->pool
->lock
);
3841 old_pwq
= numa_pwq_tbl_install(wq
, node
, wq
->dfl_pwq
);
3843 mutex_unlock(&wq
->mutex
);
3844 put_pwq_unlocked(old_pwq
);
3847 static int alloc_and_link_pwqs(struct workqueue_struct
*wq
)
3849 bool highpri
= wq
->flags
& WQ_HIGHPRI
;
3852 if (!(wq
->flags
& WQ_UNBOUND
)) {
3853 wq
->cpu_pwqs
= alloc_percpu(struct pool_workqueue
);
3857 for_each_possible_cpu(cpu
) {
3858 struct pool_workqueue
*pwq
=
3859 per_cpu_ptr(wq
->cpu_pwqs
, cpu
);
3860 struct worker_pool
*cpu_pools
=
3861 per_cpu(cpu_worker_pools
, cpu
);
3863 init_pwq(pwq
, wq
, &cpu_pools
[highpri
]);
3865 mutex_lock(&wq
->mutex
);
3867 mutex_unlock(&wq
->mutex
);
3870 } else if (wq
->flags
& __WQ_ORDERED
) {
3871 ret
= apply_workqueue_attrs(wq
, ordered_wq_attrs
[highpri
]);
3872 /* there should only be single pwq for ordering guarantee */
3873 WARN(!ret
&& (wq
->pwqs
.next
!= &wq
->dfl_pwq
->pwqs_node
||
3874 wq
->pwqs
.prev
!= &wq
->dfl_pwq
->pwqs_node
),
3875 "ordering guarantee broken for workqueue %s\n", wq
->name
);
3878 return apply_workqueue_attrs(wq
, unbound_std_wq_attrs
[highpri
]);
3882 static int wq_clamp_max_active(int max_active
, unsigned int flags
,
3885 int lim
= flags
& WQ_UNBOUND
? WQ_UNBOUND_MAX_ACTIVE
: WQ_MAX_ACTIVE
;
3887 if (max_active
< 1 || max_active
> lim
)
3888 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3889 max_active
, name
, 1, lim
);
3891 return clamp_val(max_active
, 1, lim
);
3894 struct workqueue_struct
*__alloc_workqueue_key(const char *fmt
,
3897 struct lock_class_key
*key
,
3898 const char *lock_name
, ...)
3900 size_t tbl_size
= 0;
3902 struct workqueue_struct
*wq
;
3903 struct pool_workqueue
*pwq
;
3905 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3906 if ((flags
& WQ_POWER_EFFICIENT
) && wq_power_efficient
)
3907 flags
|= WQ_UNBOUND
;
3909 /* allocate wq and format name */
3910 if (flags
& WQ_UNBOUND
)
3911 tbl_size
= nr_node_ids
* sizeof(wq
->numa_pwq_tbl
[0]);
3913 wq
= kzalloc(sizeof(*wq
) + tbl_size
, GFP_KERNEL
);
3917 if (flags
& WQ_UNBOUND
) {
3918 wq
->unbound_attrs
= alloc_workqueue_attrs(GFP_KERNEL
);
3919 if (!wq
->unbound_attrs
)
3923 va_start(args
, lock_name
);
3924 vsnprintf(wq
->name
, sizeof(wq
->name
), fmt
, args
);
3927 max_active
= max_active
?: WQ_DFL_ACTIVE
;
3928 max_active
= wq_clamp_max_active(max_active
, flags
, wq
->name
);
3932 wq
->saved_max_active
= max_active
;
3933 mutex_init(&wq
->mutex
);
3934 atomic_set(&wq
->nr_pwqs_to_flush
, 0);
3935 INIT_LIST_HEAD(&wq
->pwqs
);
3936 INIT_LIST_HEAD(&wq
->flusher_queue
);
3937 INIT_LIST_HEAD(&wq
->flusher_overflow
);
3938 INIT_LIST_HEAD(&wq
->maydays
);
3940 lockdep_init_map(&wq
->lockdep_map
, lock_name
, key
, 0);
3941 INIT_LIST_HEAD(&wq
->list
);
3943 if (alloc_and_link_pwqs(wq
) < 0)
3947 * Workqueues which may be used during memory reclaim should
3948 * have a rescuer to guarantee forward progress.
3950 if (flags
& WQ_MEM_RECLAIM
) {
3951 struct worker
*rescuer
;
3953 rescuer
= alloc_worker(NUMA_NO_NODE
);
3957 rescuer
->rescue_wq
= wq
;
3958 rescuer
->task
= kthread_create(rescuer_thread
, rescuer
, "%s",
3960 if (IS_ERR(rescuer
->task
)) {
3965 wq
->rescuer
= rescuer
;
3966 kthread_bind_mask(rescuer
->task
, cpu_possible_mask
);
3967 wake_up_process(rescuer
->task
);
3970 if ((wq
->flags
& WQ_SYSFS
) && workqueue_sysfs_register(wq
))
3974 * wq_pool_mutex protects global freeze state and workqueues list.
3975 * Grab it, adjust max_active and add the new @wq to workqueues
3978 mutex_lock(&wq_pool_mutex
);
3980 mutex_lock(&wq
->mutex
);
3981 for_each_pwq(pwq
, wq
)
3982 pwq_adjust_max_active(pwq
);
3983 mutex_unlock(&wq
->mutex
);
3985 list_add_tail_rcu(&wq
->list
, &workqueues
);
3987 mutex_unlock(&wq_pool_mutex
);
3992 free_workqueue_attrs(wq
->unbound_attrs
);
3996 destroy_workqueue(wq
);
3999 EXPORT_SYMBOL_GPL(__alloc_workqueue_key
);
4002 * destroy_workqueue - safely terminate a workqueue
4003 * @wq: target workqueue
4005 * Safely destroy a workqueue. All work currently pending will be done first.
4007 void destroy_workqueue(struct workqueue_struct
*wq
)
4009 struct pool_workqueue
*pwq
;
4012 /* drain it before proceeding with destruction */
4013 drain_workqueue(wq
);
4016 mutex_lock(&wq
->mutex
);
4017 for_each_pwq(pwq
, wq
) {
4020 for (i
= 0; i
< WORK_NR_COLORS
; i
++) {
4021 if (WARN_ON(pwq
->nr_in_flight
[i
])) {
4022 mutex_unlock(&wq
->mutex
);
4027 if (WARN_ON((pwq
!= wq
->dfl_pwq
) && (pwq
->refcnt
> 1)) ||
4028 WARN_ON(pwq
->nr_active
) ||
4029 WARN_ON(!list_empty(&pwq
->delayed_works
))) {
4030 mutex_unlock(&wq
->mutex
);
4034 mutex_unlock(&wq
->mutex
);
4037 * wq list is used to freeze wq, remove from list after
4038 * flushing is complete in case freeze races us.
4040 mutex_lock(&wq_pool_mutex
);
4041 list_del_rcu(&wq
->list
);
4042 mutex_unlock(&wq_pool_mutex
);
4044 workqueue_sysfs_unregister(wq
);
4047 kthread_stop(wq
->rescuer
->task
);
4049 if (!(wq
->flags
& WQ_UNBOUND
)) {
4051 * The base ref is never dropped on per-cpu pwqs. Directly
4052 * schedule RCU free.
4054 call_rcu_sched(&wq
->rcu
, rcu_free_wq
);
4057 * We're the sole accessor of @wq at this point. Directly
4058 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4059 * @wq will be freed when the last pwq is released.
4061 for_each_node(node
) {
4062 pwq
= rcu_access_pointer(wq
->numa_pwq_tbl
[node
]);
4063 RCU_INIT_POINTER(wq
->numa_pwq_tbl
[node
], NULL
);
4064 put_pwq_unlocked(pwq
);
4068 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4069 * put. Don't access it afterwards.
4073 put_pwq_unlocked(pwq
);
4076 EXPORT_SYMBOL_GPL(destroy_workqueue
);
4079 * workqueue_set_max_active - adjust max_active of a workqueue
4080 * @wq: target workqueue
4081 * @max_active: new max_active value.
4083 * Set max_active of @wq to @max_active.
4086 * Don't call from IRQ context.
4088 void workqueue_set_max_active(struct workqueue_struct
*wq
, int max_active
)
4090 struct pool_workqueue
*pwq
;
4092 /* disallow meddling with max_active for ordered workqueues */
4093 if (WARN_ON(wq
->flags
& __WQ_ORDERED
))
4096 max_active
= wq_clamp_max_active(max_active
, wq
->flags
, wq
->name
);
4098 mutex_lock(&wq
->mutex
);
4100 wq
->saved_max_active
= max_active
;
4102 for_each_pwq(pwq
, wq
)
4103 pwq_adjust_max_active(pwq
);
4105 mutex_unlock(&wq
->mutex
);
4107 EXPORT_SYMBOL_GPL(workqueue_set_max_active
);
4110 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4112 * Determine whether %current is a workqueue rescuer. Can be used from
4113 * work functions to determine whether it's being run off the rescuer task.
4115 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4117 bool current_is_workqueue_rescuer(void)
4119 struct worker
*worker
= current_wq_worker();
4121 return worker
&& worker
->rescue_wq
;
4125 * workqueue_congested - test whether a workqueue is congested
4126 * @cpu: CPU in question
4127 * @wq: target workqueue
4129 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4130 * no synchronization around this function and the test result is
4131 * unreliable and only useful as advisory hints or for debugging.
4133 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4134 * Note that both per-cpu and unbound workqueues may be associated with
4135 * multiple pool_workqueues which have separate congested states. A
4136 * workqueue being congested on one CPU doesn't mean the workqueue is also
4137 * contested on other CPUs / NUMA nodes.
4140 * %true if congested, %false otherwise.
4142 bool workqueue_congested(int cpu
, struct workqueue_struct
*wq
)
4144 struct pool_workqueue
*pwq
;
4147 rcu_read_lock_sched();
4149 if (cpu
== WORK_CPU_UNBOUND
)
4150 cpu
= smp_processor_id();
4152 if (!(wq
->flags
& WQ_UNBOUND
))
4153 pwq
= per_cpu_ptr(wq
->cpu_pwqs
, cpu
);
4155 pwq
= unbound_pwq_by_node(wq
, cpu_to_node(cpu
));
4157 ret
= !list_empty(&pwq
->delayed_works
);
4158 rcu_read_unlock_sched();
4162 EXPORT_SYMBOL_GPL(workqueue_congested
);
4165 * work_busy - test whether a work is currently pending or running
4166 * @work: the work to be tested
4168 * Test whether @work is currently pending or running. There is no
4169 * synchronization around this function and the test result is
4170 * unreliable and only useful as advisory hints or for debugging.
4173 * OR'd bitmask of WORK_BUSY_* bits.
4175 unsigned int work_busy(struct work_struct
*work
)
4177 struct worker_pool
*pool
;
4178 unsigned long flags
;
4179 unsigned int ret
= 0;
4181 if (work_pending(work
))
4182 ret
|= WORK_BUSY_PENDING
;
4184 local_irq_save(flags
);
4185 pool
= get_work_pool(work
);
4187 spin_lock(&pool
->lock
);
4188 if (find_worker_executing_work(pool
, work
))
4189 ret
|= WORK_BUSY_RUNNING
;
4190 spin_unlock(&pool
->lock
);
4192 local_irq_restore(flags
);
4196 EXPORT_SYMBOL_GPL(work_busy
);
4199 * set_worker_desc - set description for the current work item
4200 * @fmt: printf-style format string
4201 * @...: arguments for the format string
4203 * This function can be called by a running work function to describe what
4204 * the work item is about. If the worker task gets dumped, this
4205 * information will be printed out together to help debugging. The
4206 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4208 void set_worker_desc(const char *fmt
, ...)
4210 struct worker
*worker
= current_wq_worker();
4214 va_start(args
, fmt
);
4215 vsnprintf(worker
->desc
, sizeof(worker
->desc
), fmt
, args
);
4217 worker
->desc_valid
= true;
4222 * print_worker_info - print out worker information and description
4223 * @log_lvl: the log level to use when printing
4224 * @task: target task
4226 * If @task is a worker and currently executing a work item, print out the
4227 * name of the workqueue being serviced and worker description set with
4228 * set_worker_desc() by the currently executing work item.
4230 * This function can be safely called on any task as long as the
4231 * task_struct itself is accessible. While safe, this function isn't
4232 * synchronized and may print out mixups or garbages of limited length.
4234 void print_worker_info(const char *log_lvl
, struct task_struct
*task
)
4236 work_func_t
*fn
= NULL
;
4237 char name
[WQ_NAME_LEN
] = { };
4238 char desc
[WORKER_DESC_LEN
] = { };
4239 struct pool_workqueue
*pwq
= NULL
;
4240 struct workqueue_struct
*wq
= NULL
;
4241 bool desc_valid
= false;
4242 struct worker
*worker
;
4244 if (!(task
->flags
& PF_WQ_WORKER
))
4248 * This function is called without any synchronization and @task
4249 * could be in any state. Be careful with dereferences.
4251 worker
= probe_kthread_data(task
);
4254 * Carefully copy the associated workqueue's workfn and name. Keep
4255 * the original last '\0' in case the original contains garbage.
4257 probe_kernel_read(&fn
, &worker
->current_func
, sizeof(fn
));
4258 probe_kernel_read(&pwq
, &worker
->current_pwq
, sizeof(pwq
));
4259 probe_kernel_read(&wq
, &pwq
->wq
, sizeof(wq
));
4260 probe_kernel_read(name
, wq
->name
, sizeof(name
) - 1);
4262 /* copy worker description */
4263 probe_kernel_read(&desc_valid
, &worker
->desc_valid
, sizeof(desc_valid
));
4265 probe_kernel_read(desc
, worker
->desc
, sizeof(desc
) - 1);
4267 if (fn
|| name
[0] || desc
[0]) {
4268 printk("%sWorkqueue: %s %pf", log_lvl
, name
, fn
);
4270 pr_cont(" (%s)", desc
);
4275 static void pr_cont_pool_info(struct worker_pool
*pool
)
4277 pr_cont(" cpus=%*pbl", nr_cpumask_bits
, pool
->attrs
->cpumask
);
4278 if (pool
->node
!= NUMA_NO_NODE
)
4279 pr_cont(" node=%d", pool
->node
);
4280 pr_cont(" flags=0x%x nice=%d", pool
->flags
, pool
->attrs
->nice
);
4283 static void pr_cont_work(bool comma
, struct work_struct
*work
)
4285 if (work
->func
== wq_barrier_func
) {
4286 struct wq_barrier
*barr
;
4288 barr
= container_of(work
, struct wq_barrier
, work
);
4290 pr_cont("%s BAR(%d)", comma
? "," : "",
4291 task_pid_nr(barr
->task
));
4293 pr_cont("%s %pf", comma
? "," : "", work
->func
);
4297 static void show_pwq(struct pool_workqueue
*pwq
)
4299 struct worker_pool
*pool
= pwq
->pool
;
4300 struct work_struct
*work
;
4301 struct worker
*worker
;
4302 bool has_in_flight
= false, has_pending
= false;
4305 pr_info(" pwq %d:", pool
->id
);
4306 pr_cont_pool_info(pool
);
4308 pr_cont(" active=%d/%d%s\n", pwq
->nr_active
, pwq
->max_active
,
4309 !list_empty(&pwq
->mayday_node
) ? " MAYDAY" : "");
4311 hash_for_each(pool
->busy_hash
, bkt
, worker
, hentry
) {
4312 if (worker
->current_pwq
== pwq
) {
4313 has_in_flight
= true;
4317 if (has_in_flight
) {
4320 pr_info(" in-flight:");
4321 hash_for_each(pool
->busy_hash
, bkt
, worker
, hentry
) {
4322 if (worker
->current_pwq
!= pwq
)
4325 pr_cont("%s %d%s:%pf", comma
? "," : "",
4326 task_pid_nr(worker
->task
),
4327 worker
== pwq
->wq
->rescuer
? "(RESCUER)" : "",
4328 worker
->current_func
);
4329 list_for_each_entry(work
, &worker
->scheduled
, entry
)
4330 pr_cont_work(false, work
);
4336 list_for_each_entry(work
, &pool
->worklist
, entry
) {
4337 if (get_work_pwq(work
) == pwq
) {
4345 pr_info(" pending:");
4346 list_for_each_entry(work
, &pool
->worklist
, entry
) {
4347 if (get_work_pwq(work
) != pwq
)
4350 pr_cont_work(comma
, work
);
4351 comma
= !(*work_data_bits(work
) & WORK_STRUCT_LINKED
);
4356 if (!list_empty(&pwq
->delayed_works
)) {
4359 pr_info(" delayed:");
4360 list_for_each_entry(work
, &pwq
->delayed_works
, entry
) {
4361 pr_cont_work(comma
, work
);
4362 comma
= !(*work_data_bits(work
) & WORK_STRUCT_LINKED
);
4369 * show_workqueue_state - dump workqueue state
4371 * Called from a sysrq handler and prints out all busy workqueues and
4374 void show_workqueue_state(void)
4376 struct workqueue_struct
*wq
;
4377 struct worker_pool
*pool
;
4378 unsigned long flags
;
4381 rcu_read_lock_sched();
4383 pr_info("Showing busy workqueues and worker pools:\n");
4385 list_for_each_entry_rcu(wq
, &workqueues
, list
) {
4386 struct pool_workqueue
*pwq
;
4389 for_each_pwq(pwq
, wq
) {
4390 if (pwq
->nr_active
|| !list_empty(&pwq
->delayed_works
)) {
4398 pr_info("workqueue %s: flags=0x%x\n", wq
->name
, wq
->flags
);
4400 for_each_pwq(pwq
, wq
) {
4401 spin_lock_irqsave(&pwq
->pool
->lock
, flags
);
4402 if (pwq
->nr_active
|| !list_empty(&pwq
->delayed_works
))
4404 spin_unlock_irqrestore(&pwq
->pool
->lock
, flags
);
4408 for_each_pool(pool
, pi
) {
4409 struct worker
*worker
;
4412 spin_lock_irqsave(&pool
->lock
, flags
);
4413 if (pool
->nr_workers
== pool
->nr_idle
)
4416 pr_info("pool %d:", pool
->id
);
4417 pr_cont_pool_info(pool
);
4418 pr_cont(" hung=%us workers=%d",
4419 jiffies_to_msecs(jiffies
- pool
->watchdog_ts
) / 1000,
4422 pr_cont(" manager: %d",
4423 task_pid_nr(pool
->manager
->task
));
4424 list_for_each_entry(worker
, &pool
->idle_list
, entry
) {
4425 pr_cont(" %s%d", first
? "idle: " : "",
4426 task_pid_nr(worker
->task
));
4431 spin_unlock_irqrestore(&pool
->lock
, flags
);
4434 rcu_read_unlock_sched();
4440 * There are two challenges in supporting CPU hotplug. Firstly, there
4441 * are a lot of assumptions on strong associations among work, pwq and
4442 * pool which make migrating pending and scheduled works very
4443 * difficult to implement without impacting hot paths. Secondly,
4444 * worker pools serve mix of short, long and very long running works making
4445 * blocked draining impractical.
4447 * This is solved by allowing the pools to be disassociated from the CPU
4448 * running as an unbound one and allowing it to be reattached later if the
4449 * cpu comes back online.
4452 static void wq_unbind_fn(struct work_struct
*work
)
4454 int cpu
= smp_processor_id();
4455 struct worker_pool
*pool
;
4456 struct worker
*worker
;
4458 for_each_cpu_worker_pool(pool
, cpu
) {
4459 mutex_lock(&pool
->attach_mutex
);
4460 spin_lock_irq(&pool
->lock
);
4463 * We've blocked all attach/detach operations. Make all workers
4464 * unbound and set DISASSOCIATED. Before this, all workers
4465 * except for the ones which are still executing works from
4466 * before the last CPU down must be on the cpu. After
4467 * this, they may become diasporas.
4469 for_each_pool_worker(worker
, pool
)
4470 worker
->flags
|= WORKER_UNBOUND
;
4472 pool
->flags
|= POOL_DISASSOCIATED
;
4474 spin_unlock_irq(&pool
->lock
);
4475 mutex_unlock(&pool
->attach_mutex
);
4478 * Call schedule() so that we cross rq->lock and thus can
4479 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4480 * This is necessary as scheduler callbacks may be invoked
4486 * Sched callbacks are disabled now. Zap nr_running.
4487 * After this, nr_running stays zero and need_more_worker()
4488 * and keep_working() are always true as long as the
4489 * worklist is not empty. This pool now behaves as an
4490 * unbound (in terms of concurrency management) pool which
4491 * are served by workers tied to the pool.
4493 atomic_set(&pool
->nr_running
, 0);
4496 * With concurrency management just turned off, a busy
4497 * worker blocking could lead to lengthy stalls. Kick off
4498 * unbound chain execution of currently pending work items.
4500 spin_lock_irq(&pool
->lock
);
4501 wake_up_worker(pool
);
4502 spin_unlock_irq(&pool
->lock
);
4507 * rebind_workers - rebind all workers of a pool to the associated CPU
4508 * @pool: pool of interest
4510 * @pool->cpu is coming online. Rebind all workers to the CPU.
4512 static void rebind_workers(struct worker_pool
*pool
)
4514 struct worker
*worker
;
4516 lockdep_assert_held(&pool
->attach_mutex
);
4519 * Restore CPU affinity of all workers. As all idle workers should
4520 * be on the run-queue of the associated CPU before any local
4521 * wake-ups for concurrency management happen, restore CPU affinity
4522 * of all workers first and then clear UNBOUND. As we're called
4523 * from CPU_ONLINE, the following shouldn't fail.
4525 for_each_pool_worker(worker
, pool
)
4526 WARN_ON_ONCE(set_cpus_allowed_ptr(worker
->task
,
4527 pool
->attrs
->cpumask
) < 0);
4529 spin_lock_irq(&pool
->lock
);
4530 pool
->flags
&= ~POOL_DISASSOCIATED
;
4532 for_each_pool_worker(worker
, pool
) {
4533 unsigned int worker_flags
= worker
->flags
;
4536 * A bound idle worker should actually be on the runqueue
4537 * of the associated CPU for local wake-ups targeting it to
4538 * work. Kick all idle workers so that they migrate to the
4539 * associated CPU. Doing this in the same loop as
4540 * replacing UNBOUND with REBOUND is safe as no worker will
4541 * be bound before @pool->lock is released.
4543 if (worker_flags
& WORKER_IDLE
)
4544 wake_up_process(worker
->task
);
4547 * We want to clear UNBOUND but can't directly call
4548 * worker_clr_flags() or adjust nr_running. Atomically
4549 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4550 * @worker will clear REBOUND using worker_clr_flags() when
4551 * it initiates the next execution cycle thus restoring
4552 * concurrency management. Note that when or whether
4553 * @worker clears REBOUND doesn't affect correctness.
4555 * ACCESS_ONCE() is necessary because @worker->flags may be
4556 * tested without holding any lock in
4557 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4558 * fail incorrectly leading to premature concurrency
4559 * management operations.
4561 WARN_ON_ONCE(!(worker_flags
& WORKER_UNBOUND
));
4562 worker_flags
|= WORKER_REBOUND
;
4563 worker_flags
&= ~WORKER_UNBOUND
;
4564 ACCESS_ONCE(worker
->flags
) = worker_flags
;
4567 spin_unlock_irq(&pool
->lock
);
4571 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4572 * @pool: unbound pool of interest
4573 * @cpu: the CPU which is coming up
4575 * An unbound pool may end up with a cpumask which doesn't have any online
4576 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4577 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4578 * online CPU before, cpus_allowed of all its workers should be restored.
4580 static void restore_unbound_workers_cpumask(struct worker_pool
*pool
, int cpu
)
4582 static cpumask_t cpumask
;
4583 struct worker
*worker
;
4585 lockdep_assert_held(&pool
->attach_mutex
);
4587 /* is @cpu allowed for @pool? */
4588 if (!cpumask_test_cpu(cpu
, pool
->attrs
->cpumask
))
4591 /* is @cpu the only online CPU? */
4592 cpumask_and(&cpumask
, pool
->attrs
->cpumask
, cpu_online_mask
);
4593 if (cpumask_weight(&cpumask
) != 1)
4596 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4597 for_each_pool_worker(worker
, pool
)
4598 WARN_ON_ONCE(set_cpus_allowed_ptr(worker
->task
,
4599 pool
->attrs
->cpumask
) < 0);
4603 * Workqueues should be brought up before normal priority CPU notifiers.
4604 * This will be registered high priority CPU notifier.
4606 static int workqueue_cpu_up_callback(struct notifier_block
*nfb
,
4607 unsigned long action
,
4610 int cpu
= (unsigned long)hcpu
;
4611 struct worker_pool
*pool
;
4612 struct workqueue_struct
*wq
;
4615 switch (action
& ~CPU_TASKS_FROZEN
) {
4616 case CPU_UP_PREPARE
:
4617 for_each_cpu_worker_pool(pool
, cpu
) {
4618 if (pool
->nr_workers
)
4620 if (!create_worker(pool
))
4625 case CPU_DOWN_FAILED
:
4627 mutex_lock(&wq_pool_mutex
);
4629 for_each_pool(pool
, pi
) {
4630 mutex_lock(&pool
->attach_mutex
);
4632 if (pool
->cpu
== cpu
)
4633 rebind_workers(pool
);
4634 else if (pool
->cpu
< 0)
4635 restore_unbound_workers_cpumask(pool
, cpu
);
4637 mutex_unlock(&pool
->attach_mutex
);
4640 /* update NUMA affinity of unbound workqueues */
4641 list_for_each_entry(wq
, &workqueues
, list
)
4642 wq_update_unbound_numa(wq
, cpu
, true);
4644 mutex_unlock(&wq_pool_mutex
);
4651 * Workqueues should be brought down after normal priority CPU notifiers.
4652 * This will be registered as low priority CPU notifier.
4654 static int workqueue_cpu_down_callback(struct notifier_block
*nfb
,
4655 unsigned long action
,
4658 int cpu
= (unsigned long)hcpu
;
4659 struct work_struct unbind_work
;
4660 struct workqueue_struct
*wq
;
4662 switch (action
& ~CPU_TASKS_FROZEN
) {
4663 case CPU_DOWN_PREPARE
:
4664 /* unbinding per-cpu workers should happen on the local CPU */
4665 INIT_WORK_ONSTACK(&unbind_work
, wq_unbind_fn
);
4666 queue_work_on(cpu
, system_highpri_wq
, &unbind_work
);
4668 /* update NUMA affinity of unbound workqueues */
4669 mutex_lock(&wq_pool_mutex
);
4670 list_for_each_entry(wq
, &workqueues
, list
)
4671 wq_update_unbound_numa(wq
, cpu
, false);
4672 mutex_unlock(&wq_pool_mutex
);
4674 /* wait for per-cpu unbinding to finish */
4675 flush_work(&unbind_work
);
4676 destroy_work_on_stack(&unbind_work
);
4684 struct work_for_cpu
{
4685 struct work_struct work
;
4691 static void work_for_cpu_fn(struct work_struct
*work
)
4693 struct work_for_cpu
*wfc
= container_of(work
, struct work_for_cpu
, work
);
4695 wfc
->ret
= wfc
->fn(wfc
->arg
);
4699 * work_on_cpu - run a function in user context on a particular cpu
4700 * @cpu: the cpu to run on
4701 * @fn: the function to run
4702 * @arg: the function arg
4704 * It is up to the caller to ensure that the cpu doesn't go offline.
4705 * The caller must not hold any locks which would prevent @fn from completing.
4707 * Return: The value @fn returns.
4709 long work_on_cpu(int cpu
, long (*fn
)(void *), void *arg
)
4711 struct work_for_cpu wfc
= { .fn
= fn
, .arg
= arg
};
4713 INIT_WORK_ONSTACK(&wfc
.work
, work_for_cpu_fn
);
4714 schedule_work_on(cpu
, &wfc
.work
);
4715 flush_work(&wfc
.work
);
4716 destroy_work_on_stack(&wfc
.work
);
4719 EXPORT_SYMBOL_GPL(work_on_cpu
);
4720 #endif /* CONFIG_SMP */
4722 #ifdef CONFIG_FREEZER
4725 * freeze_workqueues_begin - begin freezing workqueues
4727 * Start freezing workqueues. After this function returns, all freezable
4728 * workqueues will queue new works to their delayed_works list instead of
4732 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4734 void freeze_workqueues_begin(void)
4736 struct workqueue_struct
*wq
;
4737 struct pool_workqueue
*pwq
;
4739 mutex_lock(&wq_pool_mutex
);
4741 WARN_ON_ONCE(workqueue_freezing
);
4742 workqueue_freezing
= true;
4744 list_for_each_entry(wq
, &workqueues
, list
) {
4745 mutex_lock(&wq
->mutex
);
4746 for_each_pwq(pwq
, wq
)
4747 pwq_adjust_max_active(pwq
);
4748 mutex_unlock(&wq
->mutex
);
4751 mutex_unlock(&wq_pool_mutex
);
4755 * freeze_workqueues_busy - are freezable workqueues still busy?
4757 * Check whether freezing is complete. This function must be called
4758 * between freeze_workqueues_begin() and thaw_workqueues().
4761 * Grabs and releases wq_pool_mutex.
4764 * %true if some freezable workqueues are still busy. %false if freezing
4767 bool freeze_workqueues_busy(void)
4770 struct workqueue_struct
*wq
;
4771 struct pool_workqueue
*pwq
;
4773 mutex_lock(&wq_pool_mutex
);
4775 WARN_ON_ONCE(!workqueue_freezing
);
4777 list_for_each_entry(wq
, &workqueues
, list
) {
4778 if (!(wq
->flags
& WQ_FREEZABLE
))
4781 * nr_active is monotonically decreasing. It's safe
4782 * to peek without lock.
4784 rcu_read_lock_sched();
4785 for_each_pwq(pwq
, wq
) {
4786 WARN_ON_ONCE(pwq
->nr_active
< 0);
4787 if (pwq
->nr_active
) {
4789 rcu_read_unlock_sched();
4793 rcu_read_unlock_sched();
4796 mutex_unlock(&wq_pool_mutex
);
4801 * thaw_workqueues - thaw workqueues
4803 * Thaw workqueues. Normal queueing is restored and all collected
4804 * frozen works are transferred to their respective pool worklists.
4807 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4809 void thaw_workqueues(void)
4811 struct workqueue_struct
*wq
;
4812 struct pool_workqueue
*pwq
;
4814 mutex_lock(&wq_pool_mutex
);
4816 if (!workqueue_freezing
)
4819 workqueue_freezing
= false;
4821 /* restore max_active and repopulate worklist */
4822 list_for_each_entry(wq
, &workqueues
, list
) {
4823 mutex_lock(&wq
->mutex
);
4824 for_each_pwq(pwq
, wq
)
4825 pwq_adjust_max_active(pwq
);
4826 mutex_unlock(&wq
->mutex
);
4830 mutex_unlock(&wq_pool_mutex
);
4832 #endif /* CONFIG_FREEZER */
4834 static int workqueue_apply_unbound_cpumask(void)
4838 struct workqueue_struct
*wq
;
4839 struct apply_wqattrs_ctx
*ctx
, *n
;
4841 lockdep_assert_held(&wq_pool_mutex
);
4843 list_for_each_entry(wq
, &workqueues
, list
) {
4844 if (!(wq
->flags
& WQ_UNBOUND
))
4846 /* creating multiple pwqs breaks ordering guarantee */
4847 if (wq
->flags
& __WQ_ORDERED
)
4850 ctx
= apply_wqattrs_prepare(wq
, wq
->unbound_attrs
);
4856 list_add_tail(&ctx
->list
, &ctxs
);
4859 list_for_each_entry_safe(ctx
, n
, &ctxs
, list
) {
4861 apply_wqattrs_commit(ctx
);
4862 apply_wqattrs_cleanup(ctx
);
4869 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4870 * @cpumask: the cpumask to set
4872 * The low-level workqueues cpumask is a global cpumask that limits
4873 * the affinity of all unbound workqueues. This function check the @cpumask
4874 * and apply it to all unbound workqueues and updates all pwqs of them.
4876 * Retun: 0 - Success
4877 * -EINVAL - Invalid @cpumask
4878 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4880 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask
)
4883 cpumask_var_t saved_cpumask
;
4885 if (!zalloc_cpumask_var(&saved_cpumask
, GFP_KERNEL
))
4888 cpumask_and(cpumask
, cpumask
, cpu_possible_mask
);
4889 if (!cpumask_empty(cpumask
)) {
4890 apply_wqattrs_lock();
4892 /* save the old wq_unbound_cpumask. */
4893 cpumask_copy(saved_cpumask
, wq_unbound_cpumask
);
4895 /* update wq_unbound_cpumask at first and apply it to wqs. */
4896 cpumask_copy(wq_unbound_cpumask
, cpumask
);
4897 ret
= workqueue_apply_unbound_cpumask();
4899 /* restore the wq_unbound_cpumask when failed. */
4901 cpumask_copy(wq_unbound_cpumask
, saved_cpumask
);
4903 apply_wqattrs_unlock();
4906 free_cpumask_var(saved_cpumask
);
4912 * Workqueues with WQ_SYSFS flag set is visible to userland via
4913 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4914 * following attributes.
4916 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4917 * max_active RW int : maximum number of in-flight work items
4919 * Unbound workqueues have the following extra attributes.
4921 * id RO int : the associated pool ID
4922 * nice RW int : nice value of the workers
4923 * cpumask RW mask : bitmask of allowed CPUs for the workers
4926 struct workqueue_struct
*wq
;
4930 static struct workqueue_struct
*dev_to_wq(struct device
*dev
)
4932 struct wq_device
*wq_dev
= container_of(dev
, struct wq_device
, dev
);
4937 static ssize_t
per_cpu_show(struct device
*dev
, struct device_attribute
*attr
,
4940 struct workqueue_struct
*wq
= dev_to_wq(dev
);
4942 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (bool)!(wq
->flags
& WQ_UNBOUND
));
4944 static DEVICE_ATTR_RO(per_cpu
);
4946 static ssize_t
max_active_show(struct device
*dev
,
4947 struct device_attribute
*attr
, char *buf
)
4949 struct workqueue_struct
*wq
= dev_to_wq(dev
);
4951 return scnprintf(buf
, PAGE_SIZE
, "%d\n", wq
->saved_max_active
);
4954 static ssize_t
max_active_store(struct device
*dev
,
4955 struct device_attribute
*attr
, const char *buf
,
4958 struct workqueue_struct
*wq
= dev_to_wq(dev
);
4961 if (sscanf(buf
, "%d", &val
) != 1 || val
<= 0)
4964 workqueue_set_max_active(wq
, val
);
4967 static DEVICE_ATTR_RW(max_active
);
4969 static struct attribute
*wq_sysfs_attrs
[] = {
4970 &dev_attr_per_cpu
.attr
,
4971 &dev_attr_max_active
.attr
,
4974 ATTRIBUTE_GROUPS(wq_sysfs
);
4976 static ssize_t
wq_pool_ids_show(struct device
*dev
,
4977 struct device_attribute
*attr
, char *buf
)
4979 struct workqueue_struct
*wq
= dev_to_wq(dev
);
4980 const char *delim
= "";
4981 int node
, written
= 0;
4983 rcu_read_lock_sched();
4984 for_each_node(node
) {
4985 written
+= scnprintf(buf
+ written
, PAGE_SIZE
- written
,
4986 "%s%d:%d", delim
, node
,
4987 unbound_pwq_by_node(wq
, node
)->pool
->id
);
4990 written
+= scnprintf(buf
+ written
, PAGE_SIZE
- written
, "\n");
4991 rcu_read_unlock_sched();
4996 static ssize_t
wq_nice_show(struct device
*dev
, struct device_attribute
*attr
,
4999 struct workqueue_struct
*wq
= dev_to_wq(dev
);
5002 mutex_lock(&wq
->mutex
);
5003 written
= scnprintf(buf
, PAGE_SIZE
, "%d\n", wq
->unbound_attrs
->nice
);
5004 mutex_unlock(&wq
->mutex
);
5009 /* prepare workqueue_attrs for sysfs store operations */
5010 static struct workqueue_attrs
*wq_sysfs_prep_attrs(struct workqueue_struct
*wq
)
5012 struct workqueue_attrs
*attrs
;
5014 lockdep_assert_held(&wq_pool_mutex
);
5016 attrs
= alloc_workqueue_attrs(GFP_KERNEL
);
5020 copy_workqueue_attrs(attrs
, wq
->unbound_attrs
);
5024 static ssize_t
wq_nice_store(struct device
*dev
, struct device_attribute
*attr
,
5025 const char *buf
, size_t count
)
5027 struct workqueue_struct
*wq
= dev_to_wq(dev
);
5028 struct workqueue_attrs
*attrs
;
5031 apply_wqattrs_lock();
5033 attrs
= wq_sysfs_prep_attrs(wq
);
5037 if (sscanf(buf
, "%d", &attrs
->nice
) == 1 &&
5038 attrs
->nice
>= MIN_NICE
&& attrs
->nice
<= MAX_NICE
)
5039 ret
= apply_workqueue_attrs_locked(wq
, attrs
);
5044 apply_wqattrs_unlock();
5045 free_workqueue_attrs(attrs
);
5046 return ret
?: count
;
5049 static ssize_t
wq_cpumask_show(struct device
*dev
,
5050 struct device_attribute
*attr
, char *buf
)
5052 struct workqueue_struct
*wq
= dev_to_wq(dev
);
5055 mutex_lock(&wq
->mutex
);
5056 written
= scnprintf(buf
, PAGE_SIZE
, "%*pb\n",
5057 cpumask_pr_args(wq
->unbound_attrs
->cpumask
));
5058 mutex_unlock(&wq
->mutex
);
5062 static ssize_t
wq_cpumask_store(struct device
*dev
,
5063 struct device_attribute
*attr
,
5064 const char *buf
, size_t count
)
5066 struct workqueue_struct
*wq
= dev_to_wq(dev
);
5067 struct workqueue_attrs
*attrs
;
5070 apply_wqattrs_lock();
5072 attrs
= wq_sysfs_prep_attrs(wq
);
5076 ret
= cpumask_parse(buf
, attrs
->cpumask
);
5078 ret
= apply_workqueue_attrs_locked(wq
, attrs
);
5081 apply_wqattrs_unlock();
5082 free_workqueue_attrs(attrs
);
5083 return ret
?: count
;
5086 static ssize_t
wq_numa_show(struct device
*dev
, struct device_attribute
*attr
,
5089 struct workqueue_struct
*wq
= dev_to_wq(dev
);
5092 mutex_lock(&wq
->mutex
);
5093 written
= scnprintf(buf
, PAGE_SIZE
, "%d\n",
5094 !wq
->unbound_attrs
->no_numa
);
5095 mutex_unlock(&wq
->mutex
);
5100 static ssize_t
wq_numa_store(struct device
*dev
, struct device_attribute
*attr
,
5101 const char *buf
, size_t count
)
5103 struct workqueue_struct
*wq
= dev_to_wq(dev
);
5104 struct workqueue_attrs
*attrs
;
5105 int v
, ret
= -ENOMEM
;
5107 apply_wqattrs_lock();
5109 attrs
= wq_sysfs_prep_attrs(wq
);
5114 if (sscanf(buf
, "%d", &v
) == 1) {
5115 attrs
->no_numa
= !v
;
5116 ret
= apply_workqueue_attrs_locked(wq
, attrs
);
5120 apply_wqattrs_unlock();
5121 free_workqueue_attrs(attrs
);
5122 return ret
?: count
;
5125 static struct device_attribute wq_sysfs_unbound_attrs
[] = {
5126 __ATTR(pool_ids
, 0444, wq_pool_ids_show
, NULL
),
5127 __ATTR(nice
, 0644, wq_nice_show
, wq_nice_store
),
5128 __ATTR(cpumask
, 0644, wq_cpumask_show
, wq_cpumask_store
),
5129 __ATTR(numa
, 0644, wq_numa_show
, wq_numa_store
),
5133 static struct bus_type wq_subsys
= {
5134 .name
= "workqueue",
5135 .dev_groups
= wq_sysfs_groups
,
5138 static ssize_t
wq_unbound_cpumask_show(struct device
*dev
,
5139 struct device_attribute
*attr
, char *buf
)
5143 mutex_lock(&wq_pool_mutex
);
5144 written
= scnprintf(buf
, PAGE_SIZE
, "%*pb\n",
5145 cpumask_pr_args(wq_unbound_cpumask
));
5146 mutex_unlock(&wq_pool_mutex
);
5151 static ssize_t
wq_unbound_cpumask_store(struct device
*dev
,
5152 struct device_attribute
*attr
, const char *buf
, size_t count
)
5154 cpumask_var_t cpumask
;
5157 if (!zalloc_cpumask_var(&cpumask
, GFP_KERNEL
))
5160 ret
= cpumask_parse(buf
, cpumask
);
5162 ret
= workqueue_set_unbound_cpumask(cpumask
);
5164 free_cpumask_var(cpumask
);
5165 return ret
? ret
: count
;
5168 static struct device_attribute wq_sysfs_cpumask_attr
=
5169 __ATTR(cpumask
, 0644, wq_unbound_cpumask_show
,
5170 wq_unbound_cpumask_store
);
5172 static int __init
wq_sysfs_init(void)
5176 err
= subsys_virtual_register(&wq_subsys
, NULL
);
5180 return device_create_file(wq_subsys
.dev_root
, &wq_sysfs_cpumask_attr
);
5182 core_initcall(wq_sysfs_init
);
5184 static void wq_device_release(struct device
*dev
)
5186 struct wq_device
*wq_dev
= container_of(dev
, struct wq_device
, dev
);
5192 * workqueue_sysfs_register - make a workqueue visible in sysfs
5193 * @wq: the workqueue to register
5195 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5196 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5197 * which is the preferred method.
5199 * Workqueue user should use this function directly iff it wants to apply
5200 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5201 * apply_workqueue_attrs() may race against userland updating the
5204 * Return: 0 on success, -errno on failure.
5206 int workqueue_sysfs_register(struct workqueue_struct
*wq
)
5208 struct wq_device
*wq_dev
;
5212 * Adjusting max_active or creating new pwqs by applying
5213 * attributes breaks ordering guarantee. Disallow exposing ordered
5216 if (WARN_ON(wq
->flags
& __WQ_ORDERED
))
5219 wq
->wq_dev
= wq_dev
= kzalloc(sizeof(*wq_dev
), GFP_KERNEL
);
5224 wq_dev
->dev
.bus
= &wq_subsys
;
5225 wq_dev
->dev
.init_name
= wq
->name
;
5226 wq_dev
->dev
.release
= wq_device_release
;
5229 * unbound_attrs are created separately. Suppress uevent until
5230 * everything is ready.
5232 dev_set_uevent_suppress(&wq_dev
->dev
, true);
5234 ret
= device_register(&wq_dev
->dev
);
5241 if (wq
->flags
& WQ_UNBOUND
) {
5242 struct device_attribute
*attr
;
5244 for (attr
= wq_sysfs_unbound_attrs
; attr
->attr
.name
; attr
++) {
5245 ret
= device_create_file(&wq_dev
->dev
, attr
);
5247 device_unregister(&wq_dev
->dev
);
5254 dev_set_uevent_suppress(&wq_dev
->dev
, false);
5255 kobject_uevent(&wq_dev
->dev
.kobj
, KOBJ_ADD
);
5260 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5261 * @wq: the workqueue to unregister
5263 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5265 static void workqueue_sysfs_unregister(struct workqueue_struct
*wq
)
5267 struct wq_device
*wq_dev
= wq
->wq_dev
;
5273 device_unregister(&wq_dev
->dev
);
5275 #else /* CONFIG_SYSFS */
5276 static void workqueue_sysfs_unregister(struct workqueue_struct
*wq
) { }
5277 #endif /* CONFIG_SYSFS */
5280 * Workqueue watchdog.
5282 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5283 * flush dependency, a concurrency managed work item which stays RUNNING
5284 * indefinitely. Workqueue stalls can be very difficult to debug as the
5285 * usual warning mechanisms don't trigger and internal workqueue state is
5288 * Workqueue watchdog monitors all worker pools periodically and dumps
5289 * state if some pools failed to make forward progress for a while where
5290 * forward progress is defined as the first item on ->worklist changing.
5292 * This mechanism is controlled through the kernel parameter
5293 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5294 * corresponding sysfs parameter file.
5296 #ifdef CONFIG_WQ_WATCHDOG
5298 static void wq_watchdog_timer_fn(unsigned long data
);
5300 static unsigned long wq_watchdog_thresh
= 30;
5301 static struct timer_list wq_watchdog_timer
=
5302 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn
, 0, 0);
5304 static unsigned long wq_watchdog_touched
= INITIAL_JIFFIES
;
5305 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu
) = INITIAL_JIFFIES
;
5307 static void wq_watchdog_reset_touched(void)
5311 wq_watchdog_touched
= jiffies
;
5312 for_each_possible_cpu(cpu
)
5313 per_cpu(wq_watchdog_touched_cpu
, cpu
) = jiffies
;
5316 static void wq_watchdog_timer_fn(unsigned long data
)
5318 unsigned long thresh
= READ_ONCE(wq_watchdog_thresh
) * HZ
;
5319 bool lockup_detected
= false;
5320 struct worker_pool
*pool
;
5328 for_each_pool(pool
, pi
) {
5329 unsigned long pool_ts
, touched
, ts
;
5331 if (list_empty(&pool
->worklist
))
5334 /* get the latest of pool and touched timestamps */
5335 pool_ts
= READ_ONCE(pool
->watchdog_ts
);
5336 touched
= READ_ONCE(wq_watchdog_touched
);
5338 if (time_after(pool_ts
, touched
))
5343 if (pool
->cpu
>= 0) {
5344 unsigned long cpu_touched
=
5345 READ_ONCE(per_cpu(wq_watchdog_touched_cpu
,
5347 if (time_after(cpu_touched
, ts
))
5352 if (time_after(jiffies
, ts
+ thresh
)) {
5353 lockup_detected
= true;
5354 pr_emerg("BUG: workqueue lockup - pool");
5355 pr_cont_pool_info(pool
);
5356 pr_cont(" stuck for %us!\n",
5357 jiffies_to_msecs(jiffies
- pool_ts
) / 1000);
5363 if (lockup_detected
)
5364 show_workqueue_state();
5366 wq_watchdog_reset_touched();
5367 mod_timer(&wq_watchdog_timer
, jiffies
+ thresh
);
5370 void wq_watchdog_touch(int cpu
)
5373 per_cpu(wq_watchdog_touched_cpu
, cpu
) = jiffies
;
5375 wq_watchdog_touched
= jiffies
;
5378 static void wq_watchdog_set_thresh(unsigned long thresh
)
5380 wq_watchdog_thresh
= 0;
5381 del_timer_sync(&wq_watchdog_timer
);
5384 wq_watchdog_thresh
= thresh
;
5385 wq_watchdog_reset_touched();
5386 mod_timer(&wq_watchdog_timer
, jiffies
+ thresh
* HZ
);
5390 static int wq_watchdog_param_set_thresh(const char *val
,
5391 const struct kernel_param
*kp
)
5393 unsigned long thresh
;
5396 ret
= kstrtoul(val
, 0, &thresh
);
5401 wq_watchdog_set_thresh(thresh
);
5403 wq_watchdog_thresh
= thresh
;
5408 static const struct kernel_param_ops wq_watchdog_thresh_ops
= {
5409 .set
= wq_watchdog_param_set_thresh
,
5410 .get
= param_get_ulong
,
5413 module_param_cb(watchdog_thresh
, &wq_watchdog_thresh_ops
, &wq_watchdog_thresh
,
5416 static void wq_watchdog_init(void)
5418 wq_watchdog_set_thresh(wq_watchdog_thresh
);
5421 #else /* CONFIG_WQ_WATCHDOG */
5423 static inline void wq_watchdog_init(void) { }
5425 #endif /* CONFIG_WQ_WATCHDOG */
5427 static void __init
wq_numa_init(void)
5432 if (num_possible_nodes() <= 1)
5435 if (wq_disable_numa
) {
5436 pr_info("workqueue: NUMA affinity support disabled\n");
5440 wq_update_unbound_numa_attrs_buf
= alloc_workqueue_attrs(GFP_KERNEL
);
5441 BUG_ON(!wq_update_unbound_numa_attrs_buf
);
5444 * We want masks of possible CPUs of each node which isn't readily
5445 * available. Build one from cpu_to_node() which should have been
5446 * fully initialized by now.
5448 tbl
= kzalloc(nr_node_ids
* sizeof(tbl
[0]), GFP_KERNEL
);
5452 BUG_ON(!zalloc_cpumask_var_node(&tbl
[node
], GFP_KERNEL
,
5453 node_online(node
) ? node
: NUMA_NO_NODE
));
5455 for_each_possible_cpu(cpu
) {
5456 node
= cpu_to_node(cpu
);
5457 if (WARN_ON(node
== NUMA_NO_NODE
)) {
5458 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu
);
5459 /* happens iff arch is bonkers, let's just proceed */
5462 cpumask_set_cpu(cpu
, tbl
[node
]);
5465 wq_numa_possible_cpumask
= tbl
;
5466 wq_numa_enabled
= true;
5469 static int __init
init_workqueues(void)
5471 int std_nice
[NR_STD_WORKER_POOLS
] = { 0, HIGHPRI_NICE_LEVEL
};
5474 WARN_ON(__alignof__(struct pool_workqueue
) < __alignof__(long long));
5476 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask
, GFP_KERNEL
));
5477 cpumask_copy(wq_unbound_cpumask
, cpu_possible_mask
);
5479 pwq_cache
= KMEM_CACHE(pool_workqueue
, SLAB_PANIC
);
5481 cpu_notifier(workqueue_cpu_up_callback
, CPU_PRI_WORKQUEUE_UP
);
5482 hotcpu_notifier(workqueue_cpu_down_callback
, CPU_PRI_WORKQUEUE_DOWN
);
5486 /* initialize CPU pools */
5487 for_each_possible_cpu(cpu
) {
5488 struct worker_pool
*pool
;
5491 for_each_cpu_worker_pool(pool
, cpu
) {
5492 BUG_ON(init_worker_pool(pool
));
5494 cpumask_copy(pool
->attrs
->cpumask
, cpumask_of(cpu
));
5495 pool
->attrs
->nice
= std_nice
[i
++];
5496 pool
->node
= cpu_to_node(cpu
);
5499 mutex_lock(&wq_pool_mutex
);
5500 BUG_ON(worker_pool_assign_id(pool
));
5501 mutex_unlock(&wq_pool_mutex
);
5505 /* create the initial worker */
5506 for_each_online_cpu(cpu
) {
5507 struct worker_pool
*pool
;
5509 for_each_cpu_worker_pool(pool
, cpu
) {
5510 pool
->flags
&= ~POOL_DISASSOCIATED
;
5511 BUG_ON(!create_worker(pool
));
5515 /* create default unbound and ordered wq attrs */
5516 for (i
= 0; i
< NR_STD_WORKER_POOLS
; i
++) {
5517 struct workqueue_attrs
*attrs
;
5519 BUG_ON(!(attrs
= alloc_workqueue_attrs(GFP_KERNEL
)));
5520 attrs
->nice
= std_nice
[i
];
5521 unbound_std_wq_attrs
[i
] = attrs
;
5524 * An ordered wq should have only one pwq as ordering is
5525 * guaranteed by max_active which is enforced by pwqs.
5526 * Turn off NUMA so that dfl_pwq is used for all nodes.
5528 BUG_ON(!(attrs
= alloc_workqueue_attrs(GFP_KERNEL
)));
5529 attrs
->nice
= std_nice
[i
];
5530 attrs
->no_numa
= true;
5531 ordered_wq_attrs
[i
] = attrs
;
5534 system_wq
= alloc_workqueue("events", 0, 0);
5535 system_highpri_wq
= alloc_workqueue("events_highpri", WQ_HIGHPRI
, 0);
5536 system_long_wq
= alloc_workqueue("events_long", 0, 0);
5537 system_unbound_wq
= alloc_workqueue("events_unbound", WQ_UNBOUND
,
5538 WQ_UNBOUND_MAX_ACTIVE
);
5539 system_freezable_wq
= alloc_workqueue("events_freezable",
5541 system_power_efficient_wq
= alloc_workqueue("events_power_efficient",
5542 WQ_POWER_EFFICIENT
, 0);
5543 system_freezable_power_efficient_wq
= alloc_workqueue("events_freezable_power_efficient",
5544 WQ_FREEZABLE
| WQ_POWER_EFFICIENT
,
5546 BUG_ON(!system_wq
|| !system_highpri_wq
|| !system_long_wq
||
5547 !system_unbound_wq
|| !system_freezable_wq
||
5548 !system_power_efficient_wq
||
5549 !system_freezable_power_efficient_wq
);
5555 early_initcall(init_workqueues
);