ARM: dt: Add PMU node, making PMU child devices childs of this node
[linux/fpc-iii.git] / fs / xfs / xfs_inode.c
blob3da9f4da4f3d2e6b67ffd1bd752b4b0993af9fda
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_inode.h"
29 #include "xfs_da_format.h"
30 #include "xfs_da_btree.h"
31 #include "xfs_dir2.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_attr.h"
34 #include "xfs_trans_space.h"
35 #include "xfs_trans.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_bmap_util.h"
41 #include "xfs_error.h"
42 #include "xfs_quota.h"
43 #include "xfs_filestream.h"
44 #include "xfs_cksum.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_symlink.h"
48 #include "xfs_trans_priv.h"
49 #include "xfs_log.h"
50 #include "xfs_bmap_btree.h"
52 kmem_zone_t *xfs_inode_zone;
55 * Used in xfs_itruncate_extents(). This is the maximum number of extents
56 * freed from a file in a single transaction.
58 #define XFS_ITRUNC_MAX_EXTENTS 2
60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
62 STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
65 * helper function to extract extent size hint from inode
67 xfs_extlen_t
68 xfs_get_extsz_hint(
69 struct xfs_inode *ip)
71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 return ip->i_d.di_extsize;
73 if (XFS_IS_REALTIME_INODE(ip))
74 return ip->i_mount->m_sb.sb_rextsize;
75 return 0;
79 * These two are wrapper routines around the xfs_ilock() routine used to
80 * centralize some grungy code. They are used in places that wish to lock the
81 * inode solely for reading the extents. The reason these places can't just
82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83 * bringing in of the extents from disk for a file in b-tree format. If the
84 * inode is in b-tree format, then we need to lock the inode exclusively until
85 * the extents are read in. Locking it exclusively all the time would limit
86 * our parallelism unnecessarily, though. What we do instead is check to see
87 * if the extents have been read in yet, and only lock the inode exclusively
88 * if they have not.
90 * The functions return a value which should be given to the corresponding
91 * xfs_iunlock() call.
93 uint
94 xfs_ilock_data_map_shared(
95 struct xfs_inode *ip)
97 uint lock_mode = XFS_ILOCK_SHARED;
99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
101 lock_mode = XFS_ILOCK_EXCL;
102 xfs_ilock(ip, lock_mode);
103 return lock_mode;
106 uint
107 xfs_ilock_attr_map_shared(
108 struct xfs_inode *ip)
110 uint lock_mode = XFS_ILOCK_SHARED;
112 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114 lock_mode = XFS_ILOCK_EXCL;
115 xfs_ilock(ip, lock_mode);
116 return lock_mode;
120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
121 * the i_lock. This routine allows various combinations of the locks to be
122 * obtained.
124 * The 3 locks should always be ordered so that the IO lock is obtained first,
125 * the mmap lock second and the ilock last in order to prevent deadlock.
127 * Basic locking order:
129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
131 * mmap_sem locking order:
133 * i_iolock -> page lock -> mmap_sem
134 * mmap_sem -> i_mmap_lock -> page_lock
136 * The difference in mmap_sem locking order mean that we cannot hold the
137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
139 * in get_user_pages() to map the user pages into the kernel address space for
140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
141 * page faults already hold the mmap_sem.
143 * Hence to serialise fully against both syscall and mmap based IO, we need to
144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
145 * taken in places where we need to invalidate the page cache in a race
146 * free manner (e.g. truncate, hole punch and other extent manipulation
147 * functions).
149 void
150 xfs_ilock(
151 xfs_inode_t *ip,
152 uint lock_flags)
154 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
157 * You can't set both SHARED and EXCL for the same lock,
158 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
159 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
161 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
162 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
163 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
164 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
165 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
166 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
167 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
169 if (lock_flags & XFS_IOLOCK_EXCL)
170 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
171 else if (lock_flags & XFS_IOLOCK_SHARED)
172 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
174 if (lock_flags & XFS_MMAPLOCK_EXCL)
175 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
176 else if (lock_flags & XFS_MMAPLOCK_SHARED)
177 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
179 if (lock_flags & XFS_ILOCK_EXCL)
180 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
181 else if (lock_flags & XFS_ILOCK_SHARED)
182 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
186 * This is just like xfs_ilock(), except that the caller
187 * is guaranteed not to sleep. It returns 1 if it gets
188 * the requested locks and 0 otherwise. If the IO lock is
189 * obtained but the inode lock cannot be, then the IO lock
190 * is dropped before returning.
192 * ip -- the inode being locked
193 * lock_flags -- this parameter indicates the inode's locks to be
194 * to be locked. See the comment for xfs_ilock() for a list
195 * of valid values.
198 xfs_ilock_nowait(
199 xfs_inode_t *ip,
200 uint lock_flags)
202 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
205 * You can't set both SHARED and EXCL for the same lock,
206 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
207 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
209 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
210 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
211 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
212 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
213 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
214 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
215 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
217 if (lock_flags & XFS_IOLOCK_EXCL) {
218 if (!mrtryupdate(&ip->i_iolock))
219 goto out;
220 } else if (lock_flags & XFS_IOLOCK_SHARED) {
221 if (!mrtryaccess(&ip->i_iolock))
222 goto out;
225 if (lock_flags & XFS_MMAPLOCK_EXCL) {
226 if (!mrtryupdate(&ip->i_mmaplock))
227 goto out_undo_iolock;
228 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
229 if (!mrtryaccess(&ip->i_mmaplock))
230 goto out_undo_iolock;
233 if (lock_flags & XFS_ILOCK_EXCL) {
234 if (!mrtryupdate(&ip->i_lock))
235 goto out_undo_mmaplock;
236 } else if (lock_flags & XFS_ILOCK_SHARED) {
237 if (!mrtryaccess(&ip->i_lock))
238 goto out_undo_mmaplock;
240 return 1;
242 out_undo_mmaplock:
243 if (lock_flags & XFS_MMAPLOCK_EXCL)
244 mrunlock_excl(&ip->i_mmaplock);
245 else if (lock_flags & XFS_MMAPLOCK_SHARED)
246 mrunlock_shared(&ip->i_mmaplock);
247 out_undo_iolock:
248 if (lock_flags & XFS_IOLOCK_EXCL)
249 mrunlock_excl(&ip->i_iolock);
250 else if (lock_flags & XFS_IOLOCK_SHARED)
251 mrunlock_shared(&ip->i_iolock);
252 out:
253 return 0;
257 * xfs_iunlock() is used to drop the inode locks acquired with
258 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
260 * that we know which locks to drop.
262 * ip -- the inode being unlocked
263 * lock_flags -- this parameter indicates the inode's locks to be
264 * to be unlocked. See the comment for xfs_ilock() for a list
265 * of valid values for this parameter.
268 void
269 xfs_iunlock(
270 xfs_inode_t *ip,
271 uint lock_flags)
274 * You can't set both SHARED and EXCL for the same lock,
275 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
276 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
278 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
279 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
280 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
281 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
282 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
283 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
284 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
285 ASSERT(lock_flags != 0);
287 if (lock_flags & XFS_IOLOCK_EXCL)
288 mrunlock_excl(&ip->i_iolock);
289 else if (lock_flags & XFS_IOLOCK_SHARED)
290 mrunlock_shared(&ip->i_iolock);
292 if (lock_flags & XFS_MMAPLOCK_EXCL)
293 mrunlock_excl(&ip->i_mmaplock);
294 else if (lock_flags & XFS_MMAPLOCK_SHARED)
295 mrunlock_shared(&ip->i_mmaplock);
297 if (lock_flags & XFS_ILOCK_EXCL)
298 mrunlock_excl(&ip->i_lock);
299 else if (lock_flags & XFS_ILOCK_SHARED)
300 mrunlock_shared(&ip->i_lock);
302 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
306 * give up write locks. the i/o lock cannot be held nested
307 * if it is being demoted.
309 void
310 xfs_ilock_demote(
311 xfs_inode_t *ip,
312 uint lock_flags)
314 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
315 ASSERT((lock_flags &
316 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
318 if (lock_flags & XFS_ILOCK_EXCL)
319 mrdemote(&ip->i_lock);
320 if (lock_flags & XFS_MMAPLOCK_EXCL)
321 mrdemote(&ip->i_mmaplock);
322 if (lock_flags & XFS_IOLOCK_EXCL)
323 mrdemote(&ip->i_iolock);
325 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
328 #if defined(DEBUG) || defined(XFS_WARN)
330 xfs_isilocked(
331 xfs_inode_t *ip,
332 uint lock_flags)
334 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
335 if (!(lock_flags & XFS_ILOCK_SHARED))
336 return !!ip->i_lock.mr_writer;
337 return rwsem_is_locked(&ip->i_lock.mr_lock);
340 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
341 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
342 return !!ip->i_mmaplock.mr_writer;
343 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
346 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
347 if (!(lock_flags & XFS_IOLOCK_SHARED))
348 return !!ip->i_iolock.mr_writer;
349 return rwsem_is_locked(&ip->i_iolock.mr_lock);
352 ASSERT(0);
353 return 0;
355 #endif
357 #ifdef DEBUG
358 int xfs_locked_n;
359 int xfs_small_retries;
360 int xfs_middle_retries;
361 int xfs_lots_retries;
362 int xfs_lock_delays;
363 #endif
366 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
367 * value. This shouldn't be called for page fault locking, but we also need to
368 * ensure we don't overrun the number of lockdep subclasses for the iolock or
369 * mmaplock as that is limited to 12 by the mmap lock lockdep annotations.
371 static inline int
372 xfs_lock_inumorder(int lock_mode, int subclass)
374 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
375 ASSERT(subclass + XFS_LOCK_INUMORDER <
376 (1 << (XFS_MMAPLOCK_SHIFT - XFS_IOLOCK_SHIFT)));
377 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
380 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
381 ASSERT(subclass + XFS_LOCK_INUMORDER <
382 (1 << (XFS_ILOCK_SHIFT - XFS_MMAPLOCK_SHIFT)));
383 lock_mode |= (subclass + XFS_LOCK_INUMORDER) <<
384 XFS_MMAPLOCK_SHIFT;
387 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
388 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
390 return lock_mode;
394 * The following routine will lock n inodes in exclusive mode. We assume the
395 * caller calls us with the inodes in i_ino order.
397 * We need to detect deadlock where an inode that we lock is in the AIL and we
398 * start waiting for another inode that is locked by a thread in a long running
399 * transaction (such as truncate). This can result in deadlock since the long
400 * running trans might need to wait for the inode we just locked in order to
401 * push the tail and free space in the log.
403 void
404 xfs_lock_inodes(
405 xfs_inode_t **ips,
406 int inodes,
407 uint lock_mode)
409 int attempts = 0, i, j, try_lock;
410 xfs_log_item_t *lp;
412 /* currently supports between 2 and 5 inodes */
413 ASSERT(ips && inodes >= 2 && inodes <= 5);
415 try_lock = 0;
416 i = 0;
417 again:
418 for (; i < inodes; i++) {
419 ASSERT(ips[i]);
421 if (i && (ips[i] == ips[i - 1])) /* Already locked */
422 continue;
425 * If try_lock is not set yet, make sure all locked inodes are
426 * not in the AIL. If any are, set try_lock to be used later.
428 if (!try_lock) {
429 for (j = (i - 1); j >= 0 && !try_lock; j--) {
430 lp = (xfs_log_item_t *)ips[j]->i_itemp;
431 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
432 try_lock++;
437 * If any of the previous locks we have locked is in the AIL,
438 * we must TRY to get the second and subsequent locks. If
439 * we can't get any, we must release all we have
440 * and try again.
442 if (!try_lock) {
443 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
444 continue;
447 /* try_lock means we have an inode locked that is in the AIL. */
448 ASSERT(i != 0);
449 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
450 continue;
453 * Unlock all previous guys and try again. xfs_iunlock will try
454 * to push the tail if the inode is in the AIL.
456 attempts++;
457 for (j = i - 1; j >= 0; j--) {
459 * Check to see if we've already unlocked this one. Not
460 * the first one going back, and the inode ptr is the
461 * same.
463 if (j != (i - 1) && ips[j] == ips[j + 1])
464 continue;
466 xfs_iunlock(ips[j], lock_mode);
469 if ((attempts % 5) == 0) {
470 delay(1); /* Don't just spin the CPU */
471 #ifdef DEBUG
472 xfs_lock_delays++;
473 #endif
475 i = 0;
476 try_lock = 0;
477 goto again;
480 #ifdef DEBUG
481 if (attempts) {
482 if (attempts < 5) xfs_small_retries++;
483 else if (attempts < 100) xfs_middle_retries++;
484 else xfs_lots_retries++;
485 } else {
486 xfs_locked_n++;
488 #endif
492 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
493 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
494 * lock more than one at a time, lockdep will report false positives saying we
495 * have violated locking orders.
497 void
498 xfs_lock_two_inodes(
499 xfs_inode_t *ip0,
500 xfs_inode_t *ip1,
501 uint lock_mode)
503 xfs_inode_t *temp;
504 int attempts = 0;
505 xfs_log_item_t *lp;
507 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
508 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
509 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
510 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
511 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
513 ASSERT(ip0->i_ino != ip1->i_ino);
515 if (ip0->i_ino > ip1->i_ino) {
516 temp = ip0;
517 ip0 = ip1;
518 ip1 = temp;
521 again:
522 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
525 * If the first lock we have locked is in the AIL, we must TRY to get
526 * the second lock. If we can't get it, we must release the first one
527 * and try again.
529 lp = (xfs_log_item_t *)ip0->i_itemp;
530 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
531 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
532 xfs_iunlock(ip0, lock_mode);
533 if ((++attempts % 5) == 0)
534 delay(1); /* Don't just spin the CPU */
535 goto again;
537 } else {
538 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
543 void
544 __xfs_iflock(
545 struct xfs_inode *ip)
547 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
548 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
550 do {
551 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
552 if (xfs_isiflocked(ip))
553 io_schedule();
554 } while (!xfs_iflock_nowait(ip));
556 finish_wait(wq, &wait.wait);
559 STATIC uint
560 _xfs_dic2xflags(
561 __uint16_t di_flags)
563 uint flags = 0;
565 if (di_flags & XFS_DIFLAG_ANY) {
566 if (di_flags & XFS_DIFLAG_REALTIME)
567 flags |= XFS_XFLAG_REALTIME;
568 if (di_flags & XFS_DIFLAG_PREALLOC)
569 flags |= XFS_XFLAG_PREALLOC;
570 if (di_flags & XFS_DIFLAG_IMMUTABLE)
571 flags |= XFS_XFLAG_IMMUTABLE;
572 if (di_flags & XFS_DIFLAG_APPEND)
573 flags |= XFS_XFLAG_APPEND;
574 if (di_flags & XFS_DIFLAG_SYNC)
575 flags |= XFS_XFLAG_SYNC;
576 if (di_flags & XFS_DIFLAG_NOATIME)
577 flags |= XFS_XFLAG_NOATIME;
578 if (di_flags & XFS_DIFLAG_NODUMP)
579 flags |= XFS_XFLAG_NODUMP;
580 if (di_flags & XFS_DIFLAG_RTINHERIT)
581 flags |= XFS_XFLAG_RTINHERIT;
582 if (di_flags & XFS_DIFLAG_PROJINHERIT)
583 flags |= XFS_XFLAG_PROJINHERIT;
584 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
585 flags |= XFS_XFLAG_NOSYMLINKS;
586 if (di_flags & XFS_DIFLAG_EXTSIZE)
587 flags |= XFS_XFLAG_EXTSIZE;
588 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
589 flags |= XFS_XFLAG_EXTSZINHERIT;
590 if (di_flags & XFS_DIFLAG_NODEFRAG)
591 flags |= XFS_XFLAG_NODEFRAG;
592 if (di_flags & XFS_DIFLAG_FILESTREAM)
593 flags |= XFS_XFLAG_FILESTREAM;
596 return flags;
599 uint
600 xfs_ip2xflags(
601 xfs_inode_t *ip)
603 xfs_icdinode_t *dic = &ip->i_d;
605 return _xfs_dic2xflags(dic->di_flags) |
606 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
609 uint
610 xfs_dic2xflags(
611 xfs_dinode_t *dip)
613 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
614 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
618 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
619 * is allowed, otherwise it has to be an exact match. If a CI match is found,
620 * ci_name->name will point to a the actual name (caller must free) or
621 * will be set to NULL if an exact match is found.
624 xfs_lookup(
625 xfs_inode_t *dp,
626 struct xfs_name *name,
627 xfs_inode_t **ipp,
628 struct xfs_name *ci_name)
630 xfs_ino_t inum;
631 int error;
632 uint lock_mode;
634 trace_xfs_lookup(dp, name);
636 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
637 return -EIO;
639 lock_mode = xfs_ilock_data_map_shared(dp);
640 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
641 xfs_iunlock(dp, lock_mode);
643 if (error)
644 goto out;
646 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
647 if (error)
648 goto out_free_name;
650 return 0;
652 out_free_name:
653 if (ci_name)
654 kmem_free(ci_name->name);
655 out:
656 *ipp = NULL;
657 return error;
661 * Allocate an inode on disk and return a copy of its in-core version.
662 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
663 * appropriately within the inode. The uid and gid for the inode are
664 * set according to the contents of the given cred structure.
666 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
667 * has a free inode available, call xfs_iget() to obtain the in-core
668 * version of the allocated inode. Finally, fill in the inode and
669 * log its initial contents. In this case, ialloc_context would be
670 * set to NULL.
672 * If xfs_dialloc() does not have an available inode, it will replenish
673 * its supply by doing an allocation. Since we can only do one
674 * allocation within a transaction without deadlocks, we must commit
675 * the current transaction before returning the inode itself.
676 * In this case, therefore, we will set ialloc_context and return.
677 * The caller should then commit the current transaction, start a new
678 * transaction, and call xfs_ialloc() again to actually get the inode.
680 * To ensure that some other process does not grab the inode that
681 * was allocated during the first call to xfs_ialloc(), this routine
682 * also returns the [locked] bp pointing to the head of the freelist
683 * as ialloc_context. The caller should hold this buffer across
684 * the commit and pass it back into this routine on the second call.
686 * If we are allocating quota inodes, we do not have a parent inode
687 * to attach to or associate with (i.e. pip == NULL) because they
688 * are not linked into the directory structure - they are attached
689 * directly to the superblock - and so have no parent.
692 xfs_ialloc(
693 xfs_trans_t *tp,
694 xfs_inode_t *pip,
695 umode_t mode,
696 xfs_nlink_t nlink,
697 xfs_dev_t rdev,
698 prid_t prid,
699 int okalloc,
700 xfs_buf_t **ialloc_context,
701 xfs_inode_t **ipp)
703 struct xfs_mount *mp = tp->t_mountp;
704 xfs_ino_t ino;
705 xfs_inode_t *ip;
706 uint flags;
707 int error;
708 struct timespec tv;
711 * Call the space management code to pick
712 * the on-disk inode to be allocated.
714 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
715 ialloc_context, &ino);
716 if (error)
717 return error;
718 if (*ialloc_context || ino == NULLFSINO) {
719 *ipp = NULL;
720 return 0;
722 ASSERT(*ialloc_context == NULL);
725 * Get the in-core inode with the lock held exclusively.
726 * This is because we're setting fields here we need
727 * to prevent others from looking at until we're done.
729 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
730 XFS_ILOCK_EXCL, &ip);
731 if (error)
732 return error;
733 ASSERT(ip != NULL);
736 * We always convert v1 inodes to v2 now - we only support filesystems
737 * with >= v2 inode capability, so there is no reason for ever leaving
738 * an inode in v1 format.
740 if (ip->i_d.di_version == 1)
741 ip->i_d.di_version = 2;
743 ip->i_d.di_mode = mode;
744 ip->i_d.di_onlink = 0;
745 ip->i_d.di_nlink = nlink;
746 ASSERT(ip->i_d.di_nlink == nlink);
747 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
748 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
749 xfs_set_projid(ip, prid);
750 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
752 if (pip && XFS_INHERIT_GID(pip)) {
753 ip->i_d.di_gid = pip->i_d.di_gid;
754 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
755 ip->i_d.di_mode |= S_ISGID;
760 * If the group ID of the new file does not match the effective group
761 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
762 * (and only if the irix_sgid_inherit compatibility variable is set).
764 if ((irix_sgid_inherit) &&
765 (ip->i_d.di_mode & S_ISGID) &&
766 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
767 ip->i_d.di_mode &= ~S_ISGID;
770 ip->i_d.di_size = 0;
771 ip->i_d.di_nextents = 0;
772 ASSERT(ip->i_d.di_nblocks == 0);
774 tv = current_fs_time(mp->m_super);
775 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
776 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
777 ip->i_d.di_atime = ip->i_d.di_mtime;
778 ip->i_d.di_ctime = ip->i_d.di_mtime;
781 * di_gen will have been taken care of in xfs_iread.
783 ip->i_d.di_extsize = 0;
784 ip->i_d.di_dmevmask = 0;
785 ip->i_d.di_dmstate = 0;
786 ip->i_d.di_flags = 0;
788 if (ip->i_d.di_version == 3) {
789 ASSERT(ip->i_d.di_ino == ino);
790 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
791 ip->i_d.di_crc = 0;
792 ip->i_d.di_changecount = 1;
793 ip->i_d.di_lsn = 0;
794 ip->i_d.di_flags2 = 0;
795 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
796 ip->i_d.di_crtime = ip->i_d.di_mtime;
800 flags = XFS_ILOG_CORE;
801 switch (mode & S_IFMT) {
802 case S_IFIFO:
803 case S_IFCHR:
804 case S_IFBLK:
805 case S_IFSOCK:
806 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
807 ip->i_df.if_u2.if_rdev = rdev;
808 ip->i_df.if_flags = 0;
809 flags |= XFS_ILOG_DEV;
810 break;
811 case S_IFREG:
812 case S_IFDIR:
813 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
814 uint di_flags = 0;
816 if (S_ISDIR(mode)) {
817 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
818 di_flags |= XFS_DIFLAG_RTINHERIT;
819 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
820 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
821 ip->i_d.di_extsize = pip->i_d.di_extsize;
823 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
824 di_flags |= XFS_DIFLAG_PROJINHERIT;
825 } else if (S_ISREG(mode)) {
826 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
827 di_flags |= XFS_DIFLAG_REALTIME;
828 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
829 di_flags |= XFS_DIFLAG_EXTSIZE;
830 ip->i_d.di_extsize = pip->i_d.di_extsize;
833 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
834 xfs_inherit_noatime)
835 di_flags |= XFS_DIFLAG_NOATIME;
836 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
837 xfs_inherit_nodump)
838 di_flags |= XFS_DIFLAG_NODUMP;
839 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
840 xfs_inherit_sync)
841 di_flags |= XFS_DIFLAG_SYNC;
842 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
843 xfs_inherit_nosymlinks)
844 di_flags |= XFS_DIFLAG_NOSYMLINKS;
845 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
846 xfs_inherit_nodefrag)
847 di_flags |= XFS_DIFLAG_NODEFRAG;
848 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
849 di_flags |= XFS_DIFLAG_FILESTREAM;
850 ip->i_d.di_flags |= di_flags;
852 /* FALLTHROUGH */
853 case S_IFLNK:
854 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
855 ip->i_df.if_flags = XFS_IFEXTENTS;
856 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
857 ip->i_df.if_u1.if_extents = NULL;
858 break;
859 default:
860 ASSERT(0);
863 * Attribute fork settings for new inode.
865 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
866 ip->i_d.di_anextents = 0;
869 * Log the new values stuffed into the inode.
871 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
872 xfs_trans_log_inode(tp, ip, flags);
874 /* now that we have an i_mode we can setup the inode structure */
875 xfs_setup_inode(ip);
877 *ipp = ip;
878 return 0;
882 * Allocates a new inode from disk and return a pointer to the
883 * incore copy. This routine will internally commit the current
884 * transaction and allocate a new one if the Space Manager needed
885 * to do an allocation to replenish the inode free-list.
887 * This routine is designed to be called from xfs_create and
888 * xfs_create_dir.
892 xfs_dir_ialloc(
893 xfs_trans_t **tpp, /* input: current transaction;
894 output: may be a new transaction. */
895 xfs_inode_t *dp, /* directory within whose allocate
896 the inode. */
897 umode_t mode,
898 xfs_nlink_t nlink,
899 xfs_dev_t rdev,
900 prid_t prid, /* project id */
901 int okalloc, /* ok to allocate new space */
902 xfs_inode_t **ipp, /* pointer to inode; it will be
903 locked. */
904 int *committed)
907 xfs_trans_t *tp;
908 xfs_inode_t *ip;
909 xfs_buf_t *ialloc_context = NULL;
910 int code;
911 void *dqinfo;
912 uint tflags;
914 tp = *tpp;
915 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
918 * xfs_ialloc will return a pointer to an incore inode if
919 * the Space Manager has an available inode on the free
920 * list. Otherwise, it will do an allocation and replenish
921 * the freelist. Since we can only do one allocation per
922 * transaction without deadlocks, we will need to commit the
923 * current transaction and start a new one. We will then
924 * need to call xfs_ialloc again to get the inode.
926 * If xfs_ialloc did an allocation to replenish the freelist,
927 * it returns the bp containing the head of the freelist as
928 * ialloc_context. We will hold a lock on it across the
929 * transaction commit so that no other process can steal
930 * the inode(s) that we've just allocated.
932 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
933 &ialloc_context, &ip);
936 * Return an error if we were unable to allocate a new inode.
937 * This should only happen if we run out of space on disk or
938 * encounter a disk error.
940 if (code) {
941 *ipp = NULL;
942 return code;
944 if (!ialloc_context && !ip) {
945 *ipp = NULL;
946 return -ENOSPC;
950 * If the AGI buffer is non-NULL, then we were unable to get an
951 * inode in one operation. We need to commit the current
952 * transaction and call xfs_ialloc() again. It is guaranteed
953 * to succeed the second time.
955 if (ialloc_context) {
957 * Normally, xfs_trans_commit releases all the locks.
958 * We call bhold to hang on to the ialloc_context across
959 * the commit. Holding this buffer prevents any other
960 * processes from doing any allocations in this
961 * allocation group.
963 xfs_trans_bhold(tp, ialloc_context);
966 * We want the quota changes to be associated with the next
967 * transaction, NOT this one. So, detach the dqinfo from this
968 * and attach it to the next transaction.
970 dqinfo = NULL;
971 tflags = 0;
972 if (tp->t_dqinfo) {
973 dqinfo = (void *)tp->t_dqinfo;
974 tp->t_dqinfo = NULL;
975 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
976 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
979 code = xfs_trans_roll(&tp, 0);
980 if (committed != NULL)
981 *committed = 1;
984 * Re-attach the quota info that we detached from prev trx.
986 if (dqinfo) {
987 tp->t_dqinfo = dqinfo;
988 tp->t_flags |= tflags;
991 if (code) {
992 xfs_buf_relse(ialloc_context);
993 *tpp = tp;
994 *ipp = NULL;
995 return code;
997 xfs_trans_bjoin(tp, ialloc_context);
1000 * Call ialloc again. Since we've locked out all
1001 * other allocations in this allocation group,
1002 * this call should always succeed.
1004 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1005 okalloc, &ialloc_context, &ip);
1008 * If we get an error at this point, return to the caller
1009 * so that the current transaction can be aborted.
1011 if (code) {
1012 *tpp = tp;
1013 *ipp = NULL;
1014 return code;
1016 ASSERT(!ialloc_context && ip);
1018 } else {
1019 if (committed != NULL)
1020 *committed = 0;
1023 *ipp = ip;
1024 *tpp = tp;
1026 return 0;
1030 * Decrement the link count on an inode & log the change.
1031 * If this causes the link count to go to zero, initiate the
1032 * logging activity required to truncate a file.
1034 int /* error */
1035 xfs_droplink(
1036 xfs_trans_t *tp,
1037 xfs_inode_t *ip)
1039 int error;
1041 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1043 ASSERT (ip->i_d.di_nlink > 0);
1044 ip->i_d.di_nlink--;
1045 drop_nlink(VFS_I(ip));
1046 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1048 error = 0;
1049 if (ip->i_d.di_nlink == 0) {
1051 * We're dropping the last link to this file.
1052 * Move the on-disk inode to the AGI unlinked list.
1053 * From xfs_inactive() we will pull the inode from
1054 * the list and free it.
1056 error = xfs_iunlink(tp, ip);
1058 return error;
1062 * Increment the link count on an inode & log the change.
1065 xfs_bumplink(
1066 xfs_trans_t *tp,
1067 xfs_inode_t *ip)
1069 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1071 ASSERT(ip->i_d.di_version > 1);
1072 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
1073 ip->i_d.di_nlink++;
1074 inc_nlink(VFS_I(ip));
1075 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1076 return 0;
1080 xfs_create(
1081 xfs_inode_t *dp,
1082 struct xfs_name *name,
1083 umode_t mode,
1084 xfs_dev_t rdev,
1085 xfs_inode_t **ipp)
1087 int is_dir = S_ISDIR(mode);
1088 struct xfs_mount *mp = dp->i_mount;
1089 struct xfs_inode *ip = NULL;
1090 struct xfs_trans *tp = NULL;
1091 int error;
1092 xfs_bmap_free_t free_list;
1093 xfs_fsblock_t first_block;
1094 bool unlock_dp_on_error = false;
1095 int committed;
1096 prid_t prid;
1097 struct xfs_dquot *udqp = NULL;
1098 struct xfs_dquot *gdqp = NULL;
1099 struct xfs_dquot *pdqp = NULL;
1100 struct xfs_trans_res *tres;
1101 uint resblks;
1103 trace_xfs_create(dp, name);
1105 if (XFS_FORCED_SHUTDOWN(mp))
1106 return -EIO;
1108 prid = xfs_get_initial_prid(dp);
1111 * Make sure that we have allocated dquot(s) on disk.
1113 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1114 xfs_kgid_to_gid(current_fsgid()), prid,
1115 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1116 &udqp, &gdqp, &pdqp);
1117 if (error)
1118 return error;
1120 if (is_dir) {
1121 rdev = 0;
1122 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1123 tres = &M_RES(mp)->tr_mkdir;
1124 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1125 } else {
1126 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1127 tres = &M_RES(mp)->tr_create;
1128 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1132 * Initially assume that the file does not exist and
1133 * reserve the resources for that case. If that is not
1134 * the case we'll drop the one we have and get a more
1135 * appropriate transaction later.
1137 error = xfs_trans_reserve(tp, tres, resblks, 0);
1138 if (error == -ENOSPC) {
1139 /* flush outstanding delalloc blocks and retry */
1140 xfs_flush_inodes(mp);
1141 error = xfs_trans_reserve(tp, tres, resblks, 0);
1143 if (error == -ENOSPC) {
1144 /* No space at all so try a "no-allocation" reservation */
1145 resblks = 0;
1146 error = xfs_trans_reserve(tp, tres, 0, 0);
1148 if (error)
1149 goto out_trans_cancel;
1152 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1153 unlock_dp_on_error = true;
1155 xfs_bmap_init(&free_list, &first_block);
1158 * Reserve disk quota and the inode.
1160 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1161 pdqp, resblks, 1, 0);
1162 if (error)
1163 goto out_trans_cancel;
1165 if (!resblks) {
1166 error = xfs_dir_canenter(tp, dp, name);
1167 if (error)
1168 goto out_trans_cancel;
1172 * A newly created regular or special file just has one directory
1173 * entry pointing to them, but a directory also the "." entry
1174 * pointing to itself.
1176 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1177 prid, resblks > 0, &ip, &committed);
1178 if (error) {
1179 if (error == -ENOSPC)
1180 goto out_trans_cancel;
1181 goto out_trans_cancel;
1185 * Now we join the directory inode to the transaction. We do not do it
1186 * earlier because xfs_dir_ialloc might commit the previous transaction
1187 * (and release all the locks). An error from here on will result in
1188 * the transaction cancel unlocking dp so don't do it explicitly in the
1189 * error path.
1191 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1192 unlock_dp_on_error = false;
1194 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1195 &first_block, &free_list, resblks ?
1196 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1197 if (error) {
1198 ASSERT(error != -ENOSPC);
1199 goto out_trans_cancel;
1201 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1202 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1204 if (is_dir) {
1205 error = xfs_dir_init(tp, ip, dp);
1206 if (error)
1207 goto out_bmap_cancel;
1209 error = xfs_bumplink(tp, dp);
1210 if (error)
1211 goto out_bmap_cancel;
1215 * If this is a synchronous mount, make sure that the
1216 * create transaction goes to disk before returning to
1217 * the user.
1219 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1220 xfs_trans_set_sync(tp);
1223 * Attach the dquot(s) to the inodes and modify them incore.
1224 * These ids of the inode couldn't have changed since the new
1225 * inode has been locked ever since it was created.
1227 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1229 error = xfs_bmap_finish(&tp, &free_list, &committed);
1230 if (error)
1231 goto out_bmap_cancel;
1233 error = xfs_trans_commit(tp);
1234 if (error)
1235 goto out_release_inode;
1237 xfs_qm_dqrele(udqp);
1238 xfs_qm_dqrele(gdqp);
1239 xfs_qm_dqrele(pdqp);
1241 *ipp = ip;
1242 return 0;
1244 out_bmap_cancel:
1245 xfs_bmap_cancel(&free_list);
1246 out_trans_cancel:
1247 xfs_trans_cancel(tp);
1248 out_release_inode:
1250 * Wait until after the current transaction is aborted to finish the
1251 * setup of the inode and release the inode. This prevents recursive
1252 * transactions and deadlocks from xfs_inactive.
1254 if (ip) {
1255 xfs_finish_inode_setup(ip);
1256 IRELE(ip);
1259 xfs_qm_dqrele(udqp);
1260 xfs_qm_dqrele(gdqp);
1261 xfs_qm_dqrele(pdqp);
1263 if (unlock_dp_on_error)
1264 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1265 return error;
1269 xfs_create_tmpfile(
1270 struct xfs_inode *dp,
1271 struct dentry *dentry,
1272 umode_t mode,
1273 struct xfs_inode **ipp)
1275 struct xfs_mount *mp = dp->i_mount;
1276 struct xfs_inode *ip = NULL;
1277 struct xfs_trans *tp = NULL;
1278 int error;
1279 prid_t prid;
1280 struct xfs_dquot *udqp = NULL;
1281 struct xfs_dquot *gdqp = NULL;
1282 struct xfs_dquot *pdqp = NULL;
1283 struct xfs_trans_res *tres;
1284 uint resblks;
1286 if (XFS_FORCED_SHUTDOWN(mp))
1287 return -EIO;
1289 prid = xfs_get_initial_prid(dp);
1292 * Make sure that we have allocated dquot(s) on disk.
1294 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1295 xfs_kgid_to_gid(current_fsgid()), prid,
1296 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1297 &udqp, &gdqp, &pdqp);
1298 if (error)
1299 return error;
1301 resblks = XFS_IALLOC_SPACE_RES(mp);
1302 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1304 tres = &M_RES(mp)->tr_create_tmpfile;
1305 error = xfs_trans_reserve(tp, tres, resblks, 0);
1306 if (error == -ENOSPC) {
1307 /* No space at all so try a "no-allocation" reservation */
1308 resblks = 0;
1309 error = xfs_trans_reserve(tp, tres, 0, 0);
1311 if (error)
1312 goto out_trans_cancel;
1314 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1315 pdqp, resblks, 1, 0);
1316 if (error)
1317 goto out_trans_cancel;
1319 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1320 prid, resblks > 0, &ip, NULL);
1321 if (error) {
1322 if (error == -ENOSPC)
1323 goto out_trans_cancel;
1324 goto out_trans_cancel;
1327 if (mp->m_flags & XFS_MOUNT_WSYNC)
1328 xfs_trans_set_sync(tp);
1331 * Attach the dquot(s) to the inodes and modify them incore.
1332 * These ids of the inode couldn't have changed since the new
1333 * inode has been locked ever since it was created.
1335 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1337 ip->i_d.di_nlink--;
1338 error = xfs_iunlink(tp, ip);
1339 if (error)
1340 goto out_trans_cancel;
1342 error = xfs_trans_commit(tp);
1343 if (error)
1344 goto out_release_inode;
1346 xfs_qm_dqrele(udqp);
1347 xfs_qm_dqrele(gdqp);
1348 xfs_qm_dqrele(pdqp);
1350 *ipp = ip;
1351 return 0;
1353 out_trans_cancel:
1354 xfs_trans_cancel(tp);
1355 out_release_inode:
1357 * Wait until after the current transaction is aborted to finish the
1358 * setup of the inode and release the inode. This prevents recursive
1359 * transactions and deadlocks from xfs_inactive.
1361 if (ip) {
1362 xfs_finish_inode_setup(ip);
1363 IRELE(ip);
1366 xfs_qm_dqrele(udqp);
1367 xfs_qm_dqrele(gdqp);
1368 xfs_qm_dqrele(pdqp);
1370 return error;
1374 xfs_link(
1375 xfs_inode_t *tdp,
1376 xfs_inode_t *sip,
1377 struct xfs_name *target_name)
1379 xfs_mount_t *mp = tdp->i_mount;
1380 xfs_trans_t *tp;
1381 int error;
1382 xfs_bmap_free_t free_list;
1383 xfs_fsblock_t first_block;
1384 int committed;
1385 int resblks;
1387 trace_xfs_link(tdp, target_name);
1389 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1391 if (XFS_FORCED_SHUTDOWN(mp))
1392 return -EIO;
1394 error = xfs_qm_dqattach(sip, 0);
1395 if (error)
1396 goto std_return;
1398 error = xfs_qm_dqattach(tdp, 0);
1399 if (error)
1400 goto std_return;
1402 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1403 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1404 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1405 if (error == -ENOSPC) {
1406 resblks = 0;
1407 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1409 if (error)
1410 goto error_return;
1412 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1414 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1415 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1418 * If we are using project inheritance, we only allow hard link
1419 * creation in our tree when the project IDs are the same; else
1420 * the tree quota mechanism could be circumvented.
1422 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1423 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1424 error = -EXDEV;
1425 goto error_return;
1428 if (!resblks) {
1429 error = xfs_dir_canenter(tp, tdp, target_name);
1430 if (error)
1431 goto error_return;
1434 xfs_bmap_init(&free_list, &first_block);
1436 if (sip->i_d.di_nlink == 0) {
1437 error = xfs_iunlink_remove(tp, sip);
1438 if (error)
1439 goto error_return;
1442 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1443 &first_block, &free_list, resblks);
1444 if (error)
1445 goto error_return;
1446 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1447 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1449 error = xfs_bumplink(tp, sip);
1450 if (error)
1451 goto error_return;
1454 * If this is a synchronous mount, make sure that the
1455 * link transaction goes to disk before returning to
1456 * the user.
1458 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1459 xfs_trans_set_sync(tp);
1462 error = xfs_bmap_finish (&tp, &free_list, &committed);
1463 if (error) {
1464 xfs_bmap_cancel(&free_list);
1465 goto error_return;
1468 return xfs_trans_commit(tp);
1470 error_return:
1471 xfs_trans_cancel(tp);
1472 std_return:
1473 return error;
1477 * Free up the underlying blocks past new_size. The new size must be smaller
1478 * than the current size. This routine can be used both for the attribute and
1479 * data fork, and does not modify the inode size, which is left to the caller.
1481 * The transaction passed to this routine must have made a permanent log
1482 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1483 * given transaction and start new ones, so make sure everything involved in
1484 * the transaction is tidy before calling here. Some transaction will be
1485 * returned to the caller to be committed. The incoming transaction must
1486 * already include the inode, and both inode locks must be held exclusively.
1487 * The inode must also be "held" within the transaction. On return the inode
1488 * will be "held" within the returned transaction. This routine does NOT
1489 * require any disk space to be reserved for it within the transaction.
1491 * If we get an error, we must return with the inode locked and linked into the
1492 * current transaction. This keeps things simple for the higher level code,
1493 * because it always knows that the inode is locked and held in the transaction
1494 * that returns to it whether errors occur or not. We don't mark the inode
1495 * dirty on error so that transactions can be easily aborted if possible.
1498 xfs_itruncate_extents(
1499 struct xfs_trans **tpp,
1500 struct xfs_inode *ip,
1501 int whichfork,
1502 xfs_fsize_t new_size)
1504 struct xfs_mount *mp = ip->i_mount;
1505 struct xfs_trans *tp = *tpp;
1506 xfs_bmap_free_t free_list;
1507 xfs_fsblock_t first_block;
1508 xfs_fileoff_t first_unmap_block;
1509 xfs_fileoff_t last_block;
1510 xfs_filblks_t unmap_len;
1511 int committed;
1512 int error = 0;
1513 int done = 0;
1515 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1516 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1517 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1518 ASSERT(new_size <= XFS_ISIZE(ip));
1519 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1520 ASSERT(ip->i_itemp != NULL);
1521 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1522 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1524 trace_xfs_itruncate_extents_start(ip, new_size);
1527 * Since it is possible for space to become allocated beyond
1528 * the end of the file (in a crash where the space is allocated
1529 * but the inode size is not yet updated), simply remove any
1530 * blocks which show up between the new EOF and the maximum
1531 * possible file size. If the first block to be removed is
1532 * beyond the maximum file size (ie it is the same as last_block),
1533 * then there is nothing to do.
1535 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1536 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1537 if (first_unmap_block == last_block)
1538 return 0;
1540 ASSERT(first_unmap_block < last_block);
1541 unmap_len = last_block - first_unmap_block + 1;
1542 while (!done) {
1543 xfs_bmap_init(&free_list, &first_block);
1544 error = xfs_bunmapi(tp, ip,
1545 first_unmap_block, unmap_len,
1546 xfs_bmapi_aflag(whichfork),
1547 XFS_ITRUNC_MAX_EXTENTS,
1548 &first_block, &free_list,
1549 &done);
1550 if (error)
1551 goto out_bmap_cancel;
1554 * Duplicate the transaction that has the permanent
1555 * reservation and commit the old transaction.
1557 error = xfs_bmap_finish(&tp, &free_list, &committed);
1558 if (committed)
1559 xfs_trans_ijoin(tp, ip, 0);
1560 if (error)
1561 goto out_bmap_cancel;
1563 error = xfs_trans_roll(&tp, ip);
1564 if (error)
1565 goto out;
1569 * Always re-log the inode so that our permanent transaction can keep
1570 * on rolling it forward in the log.
1572 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1574 trace_xfs_itruncate_extents_end(ip, new_size);
1576 out:
1577 *tpp = tp;
1578 return error;
1579 out_bmap_cancel:
1581 * If the bunmapi call encounters an error, return to the caller where
1582 * the transaction can be properly aborted. We just need to make sure
1583 * we're not holding any resources that we were not when we came in.
1585 xfs_bmap_cancel(&free_list);
1586 goto out;
1590 xfs_release(
1591 xfs_inode_t *ip)
1593 xfs_mount_t *mp = ip->i_mount;
1594 int error;
1596 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1597 return 0;
1599 /* If this is a read-only mount, don't do this (would generate I/O) */
1600 if (mp->m_flags & XFS_MOUNT_RDONLY)
1601 return 0;
1603 if (!XFS_FORCED_SHUTDOWN(mp)) {
1604 int truncated;
1607 * If we previously truncated this file and removed old data
1608 * in the process, we want to initiate "early" writeout on
1609 * the last close. This is an attempt to combat the notorious
1610 * NULL files problem which is particularly noticeable from a
1611 * truncate down, buffered (re-)write (delalloc), followed by
1612 * a crash. What we are effectively doing here is
1613 * significantly reducing the time window where we'd otherwise
1614 * be exposed to that problem.
1616 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1617 if (truncated) {
1618 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1619 if (ip->i_delayed_blks > 0) {
1620 error = filemap_flush(VFS_I(ip)->i_mapping);
1621 if (error)
1622 return error;
1627 if (ip->i_d.di_nlink == 0)
1628 return 0;
1630 if (xfs_can_free_eofblocks(ip, false)) {
1633 * If we can't get the iolock just skip truncating the blocks
1634 * past EOF because we could deadlock with the mmap_sem
1635 * otherwise. We'll get another chance to drop them once the
1636 * last reference to the inode is dropped, so we'll never leak
1637 * blocks permanently.
1639 * Further, check if the inode is being opened, written and
1640 * closed frequently and we have delayed allocation blocks
1641 * outstanding (e.g. streaming writes from the NFS server),
1642 * truncating the blocks past EOF will cause fragmentation to
1643 * occur.
1645 * In this case don't do the truncation, either, but we have to
1646 * be careful how we detect this case. Blocks beyond EOF show
1647 * up as i_delayed_blks even when the inode is clean, so we
1648 * need to truncate them away first before checking for a dirty
1649 * release. Hence on the first dirty close we will still remove
1650 * the speculative allocation, but after that we will leave it
1651 * in place.
1653 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1654 return 0;
1656 error = xfs_free_eofblocks(mp, ip, true);
1657 if (error && error != -EAGAIN)
1658 return error;
1660 /* delalloc blocks after truncation means it really is dirty */
1661 if (ip->i_delayed_blks)
1662 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1664 return 0;
1668 * xfs_inactive_truncate
1670 * Called to perform a truncate when an inode becomes unlinked.
1672 STATIC int
1673 xfs_inactive_truncate(
1674 struct xfs_inode *ip)
1676 struct xfs_mount *mp = ip->i_mount;
1677 struct xfs_trans *tp;
1678 int error;
1680 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1681 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1682 if (error) {
1683 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1684 xfs_trans_cancel(tp);
1685 return error;
1688 xfs_ilock(ip, XFS_ILOCK_EXCL);
1689 xfs_trans_ijoin(tp, ip, 0);
1692 * Log the inode size first to prevent stale data exposure in the event
1693 * of a system crash before the truncate completes. See the related
1694 * comment in xfs_setattr_size() for details.
1696 ip->i_d.di_size = 0;
1697 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1699 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1700 if (error)
1701 goto error_trans_cancel;
1703 ASSERT(ip->i_d.di_nextents == 0);
1705 error = xfs_trans_commit(tp);
1706 if (error)
1707 goto error_unlock;
1709 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1710 return 0;
1712 error_trans_cancel:
1713 xfs_trans_cancel(tp);
1714 error_unlock:
1715 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1716 return error;
1720 * xfs_inactive_ifree()
1722 * Perform the inode free when an inode is unlinked.
1724 STATIC int
1725 xfs_inactive_ifree(
1726 struct xfs_inode *ip)
1728 xfs_bmap_free_t free_list;
1729 xfs_fsblock_t first_block;
1730 int committed;
1731 struct xfs_mount *mp = ip->i_mount;
1732 struct xfs_trans *tp;
1733 int error;
1735 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1738 * The ifree transaction might need to allocate blocks for record
1739 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1740 * allow ifree to dip into the reserved block pool if necessary.
1742 * Freeing large sets of inodes generally means freeing inode chunks,
1743 * directory and file data blocks, so this should be relatively safe.
1744 * Only under severe circumstances should it be possible to free enough
1745 * inodes to exhaust the reserve block pool via finobt expansion while
1746 * at the same time not creating free space in the filesystem.
1748 * Send a warning if the reservation does happen to fail, as the inode
1749 * now remains allocated and sits on the unlinked list until the fs is
1750 * repaired.
1752 tp->t_flags |= XFS_TRANS_RESERVE;
1753 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1754 XFS_IFREE_SPACE_RES(mp), 0);
1755 if (error) {
1756 if (error == -ENOSPC) {
1757 xfs_warn_ratelimited(mp,
1758 "Failed to remove inode(s) from unlinked list. "
1759 "Please free space, unmount and run xfs_repair.");
1760 } else {
1761 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1763 xfs_trans_cancel(tp);
1764 return error;
1767 xfs_ilock(ip, XFS_ILOCK_EXCL);
1768 xfs_trans_ijoin(tp, ip, 0);
1770 xfs_bmap_init(&free_list, &first_block);
1771 error = xfs_ifree(tp, ip, &free_list);
1772 if (error) {
1774 * If we fail to free the inode, shut down. The cancel
1775 * might do that, we need to make sure. Otherwise the
1776 * inode might be lost for a long time or forever.
1778 if (!XFS_FORCED_SHUTDOWN(mp)) {
1779 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1780 __func__, error);
1781 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1783 xfs_trans_cancel(tp);
1784 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1785 return error;
1789 * Credit the quota account(s). The inode is gone.
1791 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1794 * Just ignore errors at this point. There is nothing we can
1795 * do except to try to keep going. Make sure it's not a silent
1796 * error.
1798 error = xfs_bmap_finish(&tp, &free_list, &committed);
1799 if (error)
1800 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1801 __func__, error);
1802 error = xfs_trans_commit(tp);
1803 if (error)
1804 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1805 __func__, error);
1807 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1808 return 0;
1812 * xfs_inactive
1814 * This is called when the vnode reference count for the vnode
1815 * goes to zero. If the file has been unlinked, then it must
1816 * now be truncated. Also, we clear all of the read-ahead state
1817 * kept for the inode here since the file is now closed.
1819 void
1820 xfs_inactive(
1821 xfs_inode_t *ip)
1823 struct xfs_mount *mp;
1824 int error;
1825 int truncate = 0;
1828 * If the inode is already free, then there can be nothing
1829 * to clean up here.
1831 if (ip->i_d.di_mode == 0) {
1832 ASSERT(ip->i_df.if_real_bytes == 0);
1833 ASSERT(ip->i_df.if_broot_bytes == 0);
1834 return;
1837 mp = ip->i_mount;
1839 /* If this is a read-only mount, don't do this (would generate I/O) */
1840 if (mp->m_flags & XFS_MOUNT_RDONLY)
1841 return;
1843 if (ip->i_d.di_nlink != 0) {
1845 * force is true because we are evicting an inode from the
1846 * cache. Post-eof blocks must be freed, lest we end up with
1847 * broken free space accounting.
1849 if (xfs_can_free_eofblocks(ip, true))
1850 xfs_free_eofblocks(mp, ip, false);
1852 return;
1855 if (S_ISREG(ip->i_d.di_mode) &&
1856 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1857 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1858 truncate = 1;
1860 error = xfs_qm_dqattach(ip, 0);
1861 if (error)
1862 return;
1864 if (S_ISLNK(ip->i_d.di_mode))
1865 error = xfs_inactive_symlink(ip);
1866 else if (truncate)
1867 error = xfs_inactive_truncate(ip);
1868 if (error)
1869 return;
1872 * If there are attributes associated with the file then blow them away
1873 * now. The code calls a routine that recursively deconstructs the
1874 * attribute fork. If also blows away the in-core attribute fork.
1876 if (XFS_IFORK_Q(ip)) {
1877 error = xfs_attr_inactive(ip);
1878 if (error)
1879 return;
1882 ASSERT(!ip->i_afp);
1883 ASSERT(ip->i_d.di_anextents == 0);
1884 ASSERT(ip->i_d.di_forkoff == 0);
1887 * Free the inode.
1889 error = xfs_inactive_ifree(ip);
1890 if (error)
1891 return;
1894 * Release the dquots held by inode, if any.
1896 xfs_qm_dqdetach(ip);
1900 * This is called when the inode's link count goes to 0.
1901 * We place the on-disk inode on a list in the AGI. It
1902 * will be pulled from this list when the inode is freed.
1905 xfs_iunlink(
1906 xfs_trans_t *tp,
1907 xfs_inode_t *ip)
1909 xfs_mount_t *mp;
1910 xfs_agi_t *agi;
1911 xfs_dinode_t *dip;
1912 xfs_buf_t *agibp;
1913 xfs_buf_t *ibp;
1914 xfs_agino_t agino;
1915 short bucket_index;
1916 int offset;
1917 int error;
1919 ASSERT(ip->i_d.di_nlink == 0);
1920 ASSERT(ip->i_d.di_mode != 0);
1922 mp = tp->t_mountp;
1925 * Get the agi buffer first. It ensures lock ordering
1926 * on the list.
1928 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1929 if (error)
1930 return error;
1931 agi = XFS_BUF_TO_AGI(agibp);
1934 * Get the index into the agi hash table for the
1935 * list this inode will go on.
1937 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1938 ASSERT(agino != 0);
1939 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1940 ASSERT(agi->agi_unlinked[bucket_index]);
1941 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1943 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1945 * There is already another inode in the bucket we need
1946 * to add ourselves to. Add us at the front of the list.
1947 * Here we put the head pointer into our next pointer,
1948 * and then we fall through to point the head at us.
1950 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1951 0, 0);
1952 if (error)
1953 return error;
1955 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1956 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1957 offset = ip->i_imap.im_boffset +
1958 offsetof(xfs_dinode_t, di_next_unlinked);
1960 /* need to recalc the inode CRC if appropriate */
1961 xfs_dinode_calc_crc(mp, dip);
1963 xfs_trans_inode_buf(tp, ibp);
1964 xfs_trans_log_buf(tp, ibp, offset,
1965 (offset + sizeof(xfs_agino_t) - 1));
1966 xfs_inobp_check(mp, ibp);
1970 * Point the bucket head pointer at the inode being inserted.
1972 ASSERT(agino != 0);
1973 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1974 offset = offsetof(xfs_agi_t, agi_unlinked) +
1975 (sizeof(xfs_agino_t) * bucket_index);
1976 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1977 xfs_trans_log_buf(tp, agibp, offset,
1978 (offset + sizeof(xfs_agino_t) - 1));
1979 return 0;
1983 * Pull the on-disk inode from the AGI unlinked list.
1985 STATIC int
1986 xfs_iunlink_remove(
1987 xfs_trans_t *tp,
1988 xfs_inode_t *ip)
1990 xfs_ino_t next_ino;
1991 xfs_mount_t *mp;
1992 xfs_agi_t *agi;
1993 xfs_dinode_t *dip;
1994 xfs_buf_t *agibp;
1995 xfs_buf_t *ibp;
1996 xfs_agnumber_t agno;
1997 xfs_agino_t agino;
1998 xfs_agino_t next_agino;
1999 xfs_buf_t *last_ibp;
2000 xfs_dinode_t *last_dip = NULL;
2001 short bucket_index;
2002 int offset, last_offset = 0;
2003 int error;
2005 mp = tp->t_mountp;
2006 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2009 * Get the agi buffer first. It ensures lock ordering
2010 * on the list.
2012 error = xfs_read_agi(mp, tp, agno, &agibp);
2013 if (error)
2014 return error;
2016 agi = XFS_BUF_TO_AGI(agibp);
2019 * Get the index into the agi hash table for the
2020 * list this inode will go on.
2022 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2023 ASSERT(agino != 0);
2024 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2025 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2026 ASSERT(agi->agi_unlinked[bucket_index]);
2028 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2030 * We're at the head of the list. Get the inode's on-disk
2031 * buffer to see if there is anyone after us on the list.
2032 * Only modify our next pointer if it is not already NULLAGINO.
2033 * This saves us the overhead of dealing with the buffer when
2034 * there is no need to change it.
2036 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2037 0, 0);
2038 if (error) {
2039 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2040 __func__, error);
2041 return error;
2043 next_agino = be32_to_cpu(dip->di_next_unlinked);
2044 ASSERT(next_agino != 0);
2045 if (next_agino != NULLAGINO) {
2046 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2047 offset = ip->i_imap.im_boffset +
2048 offsetof(xfs_dinode_t, di_next_unlinked);
2050 /* need to recalc the inode CRC if appropriate */
2051 xfs_dinode_calc_crc(mp, dip);
2053 xfs_trans_inode_buf(tp, ibp);
2054 xfs_trans_log_buf(tp, ibp, offset,
2055 (offset + sizeof(xfs_agino_t) - 1));
2056 xfs_inobp_check(mp, ibp);
2057 } else {
2058 xfs_trans_brelse(tp, ibp);
2061 * Point the bucket head pointer at the next inode.
2063 ASSERT(next_agino != 0);
2064 ASSERT(next_agino != agino);
2065 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2066 offset = offsetof(xfs_agi_t, agi_unlinked) +
2067 (sizeof(xfs_agino_t) * bucket_index);
2068 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2069 xfs_trans_log_buf(tp, agibp, offset,
2070 (offset + sizeof(xfs_agino_t) - 1));
2071 } else {
2073 * We need to search the list for the inode being freed.
2075 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2076 last_ibp = NULL;
2077 while (next_agino != agino) {
2078 struct xfs_imap imap;
2080 if (last_ibp)
2081 xfs_trans_brelse(tp, last_ibp);
2083 imap.im_blkno = 0;
2084 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2086 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2087 if (error) {
2088 xfs_warn(mp,
2089 "%s: xfs_imap returned error %d.",
2090 __func__, error);
2091 return error;
2094 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2095 &last_ibp, 0, 0);
2096 if (error) {
2097 xfs_warn(mp,
2098 "%s: xfs_imap_to_bp returned error %d.",
2099 __func__, error);
2100 return error;
2103 last_offset = imap.im_boffset;
2104 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2105 ASSERT(next_agino != NULLAGINO);
2106 ASSERT(next_agino != 0);
2110 * Now last_ibp points to the buffer previous to us on the
2111 * unlinked list. Pull us from the list.
2113 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2114 0, 0);
2115 if (error) {
2116 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2117 __func__, error);
2118 return error;
2120 next_agino = be32_to_cpu(dip->di_next_unlinked);
2121 ASSERT(next_agino != 0);
2122 ASSERT(next_agino != agino);
2123 if (next_agino != NULLAGINO) {
2124 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2125 offset = ip->i_imap.im_boffset +
2126 offsetof(xfs_dinode_t, di_next_unlinked);
2128 /* need to recalc the inode CRC if appropriate */
2129 xfs_dinode_calc_crc(mp, dip);
2131 xfs_trans_inode_buf(tp, ibp);
2132 xfs_trans_log_buf(tp, ibp, offset,
2133 (offset + sizeof(xfs_agino_t) - 1));
2134 xfs_inobp_check(mp, ibp);
2135 } else {
2136 xfs_trans_brelse(tp, ibp);
2139 * Point the previous inode on the list to the next inode.
2141 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2142 ASSERT(next_agino != 0);
2143 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2145 /* need to recalc the inode CRC if appropriate */
2146 xfs_dinode_calc_crc(mp, last_dip);
2148 xfs_trans_inode_buf(tp, last_ibp);
2149 xfs_trans_log_buf(tp, last_ibp, offset,
2150 (offset + sizeof(xfs_agino_t) - 1));
2151 xfs_inobp_check(mp, last_ibp);
2153 return 0;
2157 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2158 * inodes that are in memory - they all must be marked stale and attached to
2159 * the cluster buffer.
2161 STATIC int
2162 xfs_ifree_cluster(
2163 xfs_inode_t *free_ip,
2164 xfs_trans_t *tp,
2165 struct xfs_icluster *xic)
2167 xfs_mount_t *mp = free_ip->i_mount;
2168 int blks_per_cluster;
2169 int inodes_per_cluster;
2170 int nbufs;
2171 int i, j;
2172 int ioffset;
2173 xfs_daddr_t blkno;
2174 xfs_buf_t *bp;
2175 xfs_inode_t *ip;
2176 xfs_inode_log_item_t *iip;
2177 xfs_log_item_t *lip;
2178 struct xfs_perag *pag;
2179 xfs_ino_t inum;
2181 inum = xic->first_ino;
2182 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2183 blks_per_cluster = xfs_icluster_size_fsb(mp);
2184 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2185 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2187 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2189 * The allocation bitmap tells us which inodes of the chunk were
2190 * physically allocated. Skip the cluster if an inode falls into
2191 * a sparse region.
2193 ioffset = inum - xic->first_ino;
2194 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2195 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2196 continue;
2199 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2200 XFS_INO_TO_AGBNO(mp, inum));
2203 * We obtain and lock the backing buffer first in the process
2204 * here, as we have to ensure that any dirty inode that we
2205 * can't get the flush lock on is attached to the buffer.
2206 * If we scan the in-memory inodes first, then buffer IO can
2207 * complete before we get a lock on it, and hence we may fail
2208 * to mark all the active inodes on the buffer stale.
2210 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2211 mp->m_bsize * blks_per_cluster,
2212 XBF_UNMAPPED);
2214 if (!bp)
2215 return -ENOMEM;
2218 * This buffer may not have been correctly initialised as we
2219 * didn't read it from disk. That's not important because we are
2220 * only using to mark the buffer as stale in the log, and to
2221 * attach stale cached inodes on it. That means it will never be
2222 * dispatched for IO. If it is, we want to know about it, and we
2223 * want it to fail. We can acheive this by adding a write
2224 * verifier to the buffer.
2226 bp->b_ops = &xfs_inode_buf_ops;
2229 * Walk the inodes already attached to the buffer and mark them
2230 * stale. These will all have the flush locks held, so an
2231 * in-memory inode walk can't lock them. By marking them all
2232 * stale first, we will not attempt to lock them in the loop
2233 * below as the XFS_ISTALE flag will be set.
2235 lip = bp->b_fspriv;
2236 while (lip) {
2237 if (lip->li_type == XFS_LI_INODE) {
2238 iip = (xfs_inode_log_item_t *)lip;
2239 ASSERT(iip->ili_logged == 1);
2240 lip->li_cb = xfs_istale_done;
2241 xfs_trans_ail_copy_lsn(mp->m_ail,
2242 &iip->ili_flush_lsn,
2243 &iip->ili_item.li_lsn);
2244 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2246 lip = lip->li_bio_list;
2251 * For each inode in memory attempt to add it to the inode
2252 * buffer and set it up for being staled on buffer IO
2253 * completion. This is safe as we've locked out tail pushing
2254 * and flushing by locking the buffer.
2256 * We have already marked every inode that was part of a
2257 * transaction stale above, which means there is no point in
2258 * even trying to lock them.
2260 for (i = 0; i < inodes_per_cluster; i++) {
2261 retry:
2262 rcu_read_lock();
2263 ip = radix_tree_lookup(&pag->pag_ici_root,
2264 XFS_INO_TO_AGINO(mp, (inum + i)));
2266 /* Inode not in memory, nothing to do */
2267 if (!ip) {
2268 rcu_read_unlock();
2269 continue;
2273 * because this is an RCU protected lookup, we could
2274 * find a recently freed or even reallocated inode
2275 * during the lookup. We need to check under the
2276 * i_flags_lock for a valid inode here. Skip it if it
2277 * is not valid, the wrong inode or stale.
2279 spin_lock(&ip->i_flags_lock);
2280 if (ip->i_ino != inum + i ||
2281 __xfs_iflags_test(ip, XFS_ISTALE)) {
2282 spin_unlock(&ip->i_flags_lock);
2283 rcu_read_unlock();
2284 continue;
2286 spin_unlock(&ip->i_flags_lock);
2289 * Don't try to lock/unlock the current inode, but we
2290 * _cannot_ skip the other inodes that we did not find
2291 * in the list attached to the buffer and are not
2292 * already marked stale. If we can't lock it, back off
2293 * and retry.
2295 if (ip != free_ip &&
2296 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2297 rcu_read_unlock();
2298 delay(1);
2299 goto retry;
2301 rcu_read_unlock();
2303 xfs_iflock(ip);
2304 xfs_iflags_set(ip, XFS_ISTALE);
2307 * we don't need to attach clean inodes or those only
2308 * with unlogged changes (which we throw away, anyway).
2310 iip = ip->i_itemp;
2311 if (!iip || xfs_inode_clean(ip)) {
2312 ASSERT(ip != free_ip);
2313 xfs_ifunlock(ip);
2314 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2315 continue;
2318 iip->ili_last_fields = iip->ili_fields;
2319 iip->ili_fields = 0;
2320 iip->ili_logged = 1;
2321 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2322 &iip->ili_item.li_lsn);
2324 xfs_buf_attach_iodone(bp, xfs_istale_done,
2325 &iip->ili_item);
2327 if (ip != free_ip)
2328 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2331 xfs_trans_stale_inode_buf(tp, bp);
2332 xfs_trans_binval(tp, bp);
2335 xfs_perag_put(pag);
2336 return 0;
2340 * This is called to return an inode to the inode free list.
2341 * The inode should already be truncated to 0 length and have
2342 * no pages associated with it. This routine also assumes that
2343 * the inode is already a part of the transaction.
2345 * The on-disk copy of the inode will have been added to the list
2346 * of unlinked inodes in the AGI. We need to remove the inode from
2347 * that list atomically with respect to freeing it here.
2350 xfs_ifree(
2351 xfs_trans_t *tp,
2352 xfs_inode_t *ip,
2353 xfs_bmap_free_t *flist)
2355 int error;
2356 struct xfs_icluster xic = { 0 };
2358 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2359 ASSERT(ip->i_d.di_nlink == 0);
2360 ASSERT(ip->i_d.di_nextents == 0);
2361 ASSERT(ip->i_d.di_anextents == 0);
2362 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2363 ASSERT(ip->i_d.di_nblocks == 0);
2366 * Pull the on-disk inode from the AGI unlinked list.
2368 error = xfs_iunlink_remove(tp, ip);
2369 if (error)
2370 return error;
2372 error = xfs_difree(tp, ip->i_ino, flist, &xic);
2373 if (error)
2374 return error;
2376 ip->i_d.di_mode = 0; /* mark incore inode as free */
2377 ip->i_d.di_flags = 0;
2378 ip->i_d.di_dmevmask = 0;
2379 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2380 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2381 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2383 * Bump the generation count so no one will be confused
2384 * by reincarnations of this inode.
2386 ip->i_d.di_gen++;
2387 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2389 if (xic.deleted)
2390 error = xfs_ifree_cluster(ip, tp, &xic);
2392 return error;
2396 * This is called to unpin an inode. The caller must have the inode locked
2397 * in at least shared mode so that the buffer cannot be subsequently pinned
2398 * once someone is waiting for it to be unpinned.
2400 static void
2401 xfs_iunpin(
2402 struct xfs_inode *ip)
2404 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2406 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2408 /* Give the log a push to start the unpinning I/O */
2409 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2413 static void
2414 __xfs_iunpin_wait(
2415 struct xfs_inode *ip)
2417 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2418 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2420 xfs_iunpin(ip);
2422 do {
2423 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2424 if (xfs_ipincount(ip))
2425 io_schedule();
2426 } while (xfs_ipincount(ip));
2427 finish_wait(wq, &wait.wait);
2430 void
2431 xfs_iunpin_wait(
2432 struct xfs_inode *ip)
2434 if (xfs_ipincount(ip))
2435 __xfs_iunpin_wait(ip);
2439 * Removing an inode from the namespace involves removing the directory entry
2440 * and dropping the link count on the inode. Removing the directory entry can
2441 * result in locking an AGF (directory blocks were freed) and removing a link
2442 * count can result in placing the inode on an unlinked list which results in
2443 * locking an AGI.
2445 * The big problem here is that we have an ordering constraint on AGF and AGI
2446 * locking - inode allocation locks the AGI, then can allocate a new extent for
2447 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2448 * removes the inode from the unlinked list, requiring that we lock the AGI
2449 * first, and then freeing the inode can result in an inode chunk being freed
2450 * and hence freeing disk space requiring that we lock an AGF.
2452 * Hence the ordering that is imposed by other parts of the code is AGI before
2453 * AGF. This means we cannot remove the directory entry before we drop the inode
2454 * reference count and put it on the unlinked list as this results in a lock
2455 * order of AGF then AGI, and this can deadlock against inode allocation and
2456 * freeing. Therefore we must drop the link counts before we remove the
2457 * directory entry.
2459 * This is still safe from a transactional point of view - it is not until we
2460 * get to xfs_bmap_finish() that we have the possibility of multiple
2461 * transactions in this operation. Hence as long as we remove the directory
2462 * entry and drop the link count in the first transaction of the remove
2463 * operation, there are no transactional constraints on the ordering here.
2466 xfs_remove(
2467 xfs_inode_t *dp,
2468 struct xfs_name *name,
2469 xfs_inode_t *ip)
2471 xfs_mount_t *mp = dp->i_mount;
2472 xfs_trans_t *tp = NULL;
2473 int is_dir = S_ISDIR(ip->i_d.di_mode);
2474 int error = 0;
2475 xfs_bmap_free_t free_list;
2476 xfs_fsblock_t first_block;
2477 int committed;
2478 uint resblks;
2480 trace_xfs_remove(dp, name);
2482 if (XFS_FORCED_SHUTDOWN(mp))
2483 return -EIO;
2485 error = xfs_qm_dqattach(dp, 0);
2486 if (error)
2487 goto std_return;
2489 error = xfs_qm_dqattach(ip, 0);
2490 if (error)
2491 goto std_return;
2493 if (is_dir)
2494 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2495 else
2496 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2499 * We try to get the real space reservation first,
2500 * allowing for directory btree deletion(s) implying
2501 * possible bmap insert(s). If we can't get the space
2502 * reservation then we use 0 instead, and avoid the bmap
2503 * btree insert(s) in the directory code by, if the bmap
2504 * insert tries to happen, instead trimming the LAST
2505 * block from the directory.
2507 resblks = XFS_REMOVE_SPACE_RES(mp);
2508 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2509 if (error == -ENOSPC) {
2510 resblks = 0;
2511 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2513 if (error) {
2514 ASSERT(error != -ENOSPC);
2515 goto out_trans_cancel;
2518 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2520 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2521 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2524 * If we're removing a directory perform some additional validation.
2526 if (is_dir) {
2527 ASSERT(ip->i_d.di_nlink >= 2);
2528 if (ip->i_d.di_nlink != 2) {
2529 error = -ENOTEMPTY;
2530 goto out_trans_cancel;
2532 if (!xfs_dir_isempty(ip)) {
2533 error = -ENOTEMPTY;
2534 goto out_trans_cancel;
2537 /* Drop the link from ip's "..". */
2538 error = xfs_droplink(tp, dp);
2539 if (error)
2540 goto out_trans_cancel;
2542 /* Drop the "." link from ip to self. */
2543 error = xfs_droplink(tp, ip);
2544 if (error)
2545 goto out_trans_cancel;
2546 } else {
2548 * When removing a non-directory we need to log the parent
2549 * inode here. For a directory this is done implicitly
2550 * by the xfs_droplink call for the ".." entry.
2552 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2554 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2556 /* Drop the link from dp to ip. */
2557 error = xfs_droplink(tp, ip);
2558 if (error)
2559 goto out_trans_cancel;
2561 xfs_bmap_init(&free_list, &first_block);
2562 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2563 &first_block, &free_list, resblks);
2564 if (error) {
2565 ASSERT(error != -ENOENT);
2566 goto out_bmap_cancel;
2570 * If this is a synchronous mount, make sure that the
2571 * remove transaction goes to disk before returning to
2572 * the user.
2574 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2575 xfs_trans_set_sync(tp);
2577 error = xfs_bmap_finish(&tp, &free_list, &committed);
2578 if (error)
2579 goto out_bmap_cancel;
2581 error = xfs_trans_commit(tp);
2582 if (error)
2583 goto std_return;
2585 if (is_dir && xfs_inode_is_filestream(ip))
2586 xfs_filestream_deassociate(ip);
2588 return 0;
2590 out_bmap_cancel:
2591 xfs_bmap_cancel(&free_list);
2592 out_trans_cancel:
2593 xfs_trans_cancel(tp);
2594 std_return:
2595 return error;
2599 * Enter all inodes for a rename transaction into a sorted array.
2601 #define __XFS_SORT_INODES 5
2602 STATIC void
2603 xfs_sort_for_rename(
2604 struct xfs_inode *dp1, /* in: old (source) directory inode */
2605 struct xfs_inode *dp2, /* in: new (target) directory inode */
2606 struct xfs_inode *ip1, /* in: inode of old entry */
2607 struct xfs_inode *ip2, /* in: inode of new entry */
2608 struct xfs_inode *wip, /* in: whiteout inode */
2609 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2610 int *num_inodes) /* in/out: inodes in array */
2612 int i, j;
2614 ASSERT(*num_inodes == __XFS_SORT_INODES);
2615 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2618 * i_tab contains a list of pointers to inodes. We initialize
2619 * the table here & we'll sort it. We will then use it to
2620 * order the acquisition of the inode locks.
2622 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2624 i = 0;
2625 i_tab[i++] = dp1;
2626 i_tab[i++] = dp2;
2627 i_tab[i++] = ip1;
2628 if (ip2)
2629 i_tab[i++] = ip2;
2630 if (wip)
2631 i_tab[i++] = wip;
2632 *num_inodes = i;
2635 * Sort the elements via bubble sort. (Remember, there are at
2636 * most 5 elements to sort, so this is adequate.)
2638 for (i = 0; i < *num_inodes; i++) {
2639 for (j = 1; j < *num_inodes; j++) {
2640 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2641 struct xfs_inode *temp = i_tab[j];
2642 i_tab[j] = i_tab[j-1];
2643 i_tab[j-1] = temp;
2649 static int
2650 xfs_finish_rename(
2651 struct xfs_trans *tp,
2652 struct xfs_bmap_free *free_list)
2654 int committed = 0;
2655 int error;
2658 * If this is a synchronous mount, make sure that the rename transaction
2659 * goes to disk before returning to the user.
2661 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2662 xfs_trans_set_sync(tp);
2664 error = xfs_bmap_finish(&tp, free_list, &committed);
2665 if (error) {
2666 xfs_bmap_cancel(free_list);
2667 xfs_trans_cancel(tp);
2668 return error;
2671 return xfs_trans_commit(tp);
2675 * xfs_cross_rename()
2677 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2679 STATIC int
2680 xfs_cross_rename(
2681 struct xfs_trans *tp,
2682 struct xfs_inode *dp1,
2683 struct xfs_name *name1,
2684 struct xfs_inode *ip1,
2685 struct xfs_inode *dp2,
2686 struct xfs_name *name2,
2687 struct xfs_inode *ip2,
2688 struct xfs_bmap_free *free_list,
2689 xfs_fsblock_t *first_block,
2690 int spaceres)
2692 int error = 0;
2693 int ip1_flags = 0;
2694 int ip2_flags = 0;
2695 int dp2_flags = 0;
2697 /* Swap inode number for dirent in first parent */
2698 error = xfs_dir_replace(tp, dp1, name1,
2699 ip2->i_ino,
2700 first_block, free_list, spaceres);
2701 if (error)
2702 goto out_trans_abort;
2704 /* Swap inode number for dirent in second parent */
2705 error = xfs_dir_replace(tp, dp2, name2,
2706 ip1->i_ino,
2707 first_block, free_list, spaceres);
2708 if (error)
2709 goto out_trans_abort;
2712 * If we're renaming one or more directories across different parents,
2713 * update the respective ".." entries (and link counts) to match the new
2714 * parents.
2716 if (dp1 != dp2) {
2717 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2719 if (S_ISDIR(ip2->i_d.di_mode)) {
2720 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2721 dp1->i_ino, first_block,
2722 free_list, spaceres);
2723 if (error)
2724 goto out_trans_abort;
2726 /* transfer ip2 ".." reference to dp1 */
2727 if (!S_ISDIR(ip1->i_d.di_mode)) {
2728 error = xfs_droplink(tp, dp2);
2729 if (error)
2730 goto out_trans_abort;
2731 error = xfs_bumplink(tp, dp1);
2732 if (error)
2733 goto out_trans_abort;
2737 * Although ip1 isn't changed here, userspace needs
2738 * to be warned about the change, so that applications
2739 * relying on it (like backup ones), will properly
2740 * notify the change
2742 ip1_flags |= XFS_ICHGTIME_CHG;
2743 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2746 if (S_ISDIR(ip1->i_d.di_mode)) {
2747 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2748 dp2->i_ino, first_block,
2749 free_list, spaceres);
2750 if (error)
2751 goto out_trans_abort;
2753 /* transfer ip1 ".." reference to dp2 */
2754 if (!S_ISDIR(ip2->i_d.di_mode)) {
2755 error = xfs_droplink(tp, dp1);
2756 if (error)
2757 goto out_trans_abort;
2758 error = xfs_bumplink(tp, dp2);
2759 if (error)
2760 goto out_trans_abort;
2764 * Although ip2 isn't changed here, userspace needs
2765 * to be warned about the change, so that applications
2766 * relying on it (like backup ones), will properly
2767 * notify the change
2769 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2770 ip2_flags |= XFS_ICHGTIME_CHG;
2774 if (ip1_flags) {
2775 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2776 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2778 if (ip2_flags) {
2779 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2780 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2782 if (dp2_flags) {
2783 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2784 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2786 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2787 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2788 return xfs_finish_rename(tp, free_list);
2790 out_trans_abort:
2791 xfs_bmap_cancel(free_list);
2792 xfs_trans_cancel(tp);
2793 return error;
2797 * xfs_rename_alloc_whiteout()
2799 * Return a referenced, unlinked, unlocked inode that that can be used as a
2800 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2801 * crash between allocating the inode and linking it into the rename transaction
2802 * recovery will free the inode and we won't leak it.
2804 static int
2805 xfs_rename_alloc_whiteout(
2806 struct xfs_inode *dp,
2807 struct xfs_inode **wip)
2809 struct xfs_inode *tmpfile;
2810 int error;
2812 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2813 if (error)
2814 return error;
2817 * Prepare the tmpfile inode as if it were created through the VFS.
2818 * Otherwise, the link increment paths will complain about nlink 0->1.
2819 * Drop the link count as done by d_tmpfile(), complete the inode setup
2820 * and flag it as linkable.
2822 drop_nlink(VFS_I(tmpfile));
2823 xfs_finish_inode_setup(tmpfile);
2824 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2826 *wip = tmpfile;
2827 return 0;
2831 * xfs_rename
2834 xfs_rename(
2835 struct xfs_inode *src_dp,
2836 struct xfs_name *src_name,
2837 struct xfs_inode *src_ip,
2838 struct xfs_inode *target_dp,
2839 struct xfs_name *target_name,
2840 struct xfs_inode *target_ip,
2841 unsigned int flags)
2843 struct xfs_mount *mp = src_dp->i_mount;
2844 struct xfs_trans *tp;
2845 struct xfs_bmap_free free_list;
2846 xfs_fsblock_t first_block;
2847 struct xfs_inode *wip = NULL; /* whiteout inode */
2848 struct xfs_inode *inodes[__XFS_SORT_INODES];
2849 int num_inodes = __XFS_SORT_INODES;
2850 bool new_parent = (src_dp != target_dp);
2851 bool src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2852 int spaceres;
2853 int error;
2855 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2857 if ((flags & RENAME_EXCHANGE) && !target_ip)
2858 return -EINVAL;
2861 * If we are doing a whiteout operation, allocate the whiteout inode
2862 * we will be placing at the target and ensure the type is set
2863 * appropriately.
2865 if (flags & RENAME_WHITEOUT) {
2866 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2867 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2868 if (error)
2869 return error;
2871 /* setup target dirent info as whiteout */
2872 src_name->type = XFS_DIR3_FT_CHRDEV;
2875 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2876 inodes, &num_inodes);
2878 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2879 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2880 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2881 if (error == -ENOSPC) {
2882 spaceres = 0;
2883 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2885 if (error)
2886 goto out_trans_cancel;
2889 * Attach the dquots to the inodes
2891 error = xfs_qm_vop_rename_dqattach(inodes);
2892 if (error)
2893 goto out_trans_cancel;
2896 * Lock all the participating inodes. Depending upon whether
2897 * the target_name exists in the target directory, and
2898 * whether the target directory is the same as the source
2899 * directory, we can lock from 2 to 4 inodes.
2901 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2904 * Join all the inodes to the transaction. From this point on,
2905 * we can rely on either trans_commit or trans_cancel to unlock
2906 * them.
2908 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2909 if (new_parent)
2910 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2911 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2912 if (target_ip)
2913 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2914 if (wip)
2915 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2918 * If we are using project inheritance, we only allow renames
2919 * into our tree when the project IDs are the same; else the
2920 * tree quota mechanism would be circumvented.
2922 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2923 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2924 error = -EXDEV;
2925 goto out_trans_cancel;
2928 xfs_bmap_init(&free_list, &first_block);
2930 /* RENAME_EXCHANGE is unique from here on. */
2931 if (flags & RENAME_EXCHANGE)
2932 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2933 target_dp, target_name, target_ip,
2934 &free_list, &first_block, spaceres);
2937 * Set up the target.
2939 if (target_ip == NULL) {
2941 * If there's no space reservation, check the entry will
2942 * fit before actually inserting it.
2944 if (!spaceres) {
2945 error = xfs_dir_canenter(tp, target_dp, target_name);
2946 if (error)
2947 goto out_trans_cancel;
2950 * If target does not exist and the rename crosses
2951 * directories, adjust the target directory link count
2952 * to account for the ".." reference from the new entry.
2954 error = xfs_dir_createname(tp, target_dp, target_name,
2955 src_ip->i_ino, &first_block,
2956 &free_list, spaceres);
2957 if (error)
2958 goto out_bmap_cancel;
2960 xfs_trans_ichgtime(tp, target_dp,
2961 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2963 if (new_parent && src_is_directory) {
2964 error = xfs_bumplink(tp, target_dp);
2965 if (error)
2966 goto out_bmap_cancel;
2968 } else { /* target_ip != NULL */
2970 * If target exists and it's a directory, check that both
2971 * target and source are directories and that target can be
2972 * destroyed, or that neither is a directory.
2974 if (S_ISDIR(target_ip->i_d.di_mode)) {
2976 * Make sure target dir is empty.
2978 if (!(xfs_dir_isempty(target_ip)) ||
2979 (target_ip->i_d.di_nlink > 2)) {
2980 error = -EEXIST;
2981 goto out_trans_cancel;
2986 * Link the source inode under the target name.
2987 * If the source inode is a directory and we are moving
2988 * it across directories, its ".." entry will be
2989 * inconsistent until we replace that down below.
2991 * In case there is already an entry with the same
2992 * name at the destination directory, remove it first.
2994 error = xfs_dir_replace(tp, target_dp, target_name,
2995 src_ip->i_ino,
2996 &first_block, &free_list, spaceres);
2997 if (error)
2998 goto out_bmap_cancel;
3000 xfs_trans_ichgtime(tp, target_dp,
3001 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3004 * Decrement the link count on the target since the target
3005 * dir no longer points to it.
3007 error = xfs_droplink(tp, target_ip);
3008 if (error)
3009 goto out_bmap_cancel;
3011 if (src_is_directory) {
3013 * Drop the link from the old "." entry.
3015 error = xfs_droplink(tp, target_ip);
3016 if (error)
3017 goto out_bmap_cancel;
3019 } /* target_ip != NULL */
3022 * Remove the source.
3024 if (new_parent && src_is_directory) {
3026 * Rewrite the ".." entry to point to the new
3027 * directory.
3029 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3030 target_dp->i_ino,
3031 &first_block, &free_list, spaceres);
3032 ASSERT(error != -EEXIST);
3033 if (error)
3034 goto out_bmap_cancel;
3038 * We always want to hit the ctime on the source inode.
3040 * This isn't strictly required by the standards since the source
3041 * inode isn't really being changed, but old unix file systems did
3042 * it and some incremental backup programs won't work without it.
3044 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3045 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3048 * Adjust the link count on src_dp. This is necessary when
3049 * renaming a directory, either within one parent when
3050 * the target existed, or across two parent directories.
3052 if (src_is_directory && (new_parent || target_ip != NULL)) {
3055 * Decrement link count on src_directory since the
3056 * entry that's moved no longer points to it.
3058 error = xfs_droplink(tp, src_dp);
3059 if (error)
3060 goto out_bmap_cancel;
3064 * For whiteouts, we only need to update the source dirent with the
3065 * inode number of the whiteout inode rather than removing it
3066 * altogether.
3068 if (wip) {
3069 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3070 &first_block, &free_list, spaceres);
3071 } else
3072 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3073 &first_block, &free_list, spaceres);
3074 if (error)
3075 goto out_bmap_cancel;
3078 * For whiteouts, we need to bump the link count on the whiteout inode.
3079 * This means that failures all the way up to this point leave the inode
3080 * on the unlinked list and so cleanup is a simple matter of dropping
3081 * the remaining reference to it. If we fail here after bumping the link
3082 * count, we're shutting down the filesystem so we'll never see the
3083 * intermediate state on disk.
3085 if (wip) {
3086 ASSERT(VFS_I(wip)->i_nlink == 0 && wip->i_d.di_nlink == 0);
3087 error = xfs_bumplink(tp, wip);
3088 if (error)
3089 goto out_bmap_cancel;
3090 error = xfs_iunlink_remove(tp, wip);
3091 if (error)
3092 goto out_bmap_cancel;
3093 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3096 * Now we have a real link, clear the "I'm a tmpfile" state
3097 * flag from the inode so it doesn't accidentally get misused in
3098 * future.
3100 VFS_I(wip)->i_state &= ~I_LINKABLE;
3103 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3104 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3105 if (new_parent)
3106 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3108 error = xfs_finish_rename(tp, &free_list);
3109 if (wip)
3110 IRELE(wip);
3111 return error;
3113 out_bmap_cancel:
3114 xfs_bmap_cancel(&free_list);
3115 out_trans_cancel:
3116 xfs_trans_cancel(tp);
3117 if (wip)
3118 IRELE(wip);
3119 return error;
3122 STATIC int
3123 xfs_iflush_cluster(
3124 xfs_inode_t *ip,
3125 xfs_buf_t *bp)
3127 xfs_mount_t *mp = ip->i_mount;
3128 struct xfs_perag *pag;
3129 unsigned long first_index, mask;
3130 unsigned long inodes_per_cluster;
3131 int ilist_size;
3132 xfs_inode_t **ilist;
3133 xfs_inode_t *iq;
3134 int nr_found;
3135 int clcount = 0;
3136 int bufwasdelwri;
3137 int i;
3139 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3141 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3142 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3143 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3144 if (!ilist)
3145 goto out_put;
3147 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3148 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3149 rcu_read_lock();
3150 /* really need a gang lookup range call here */
3151 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3152 first_index, inodes_per_cluster);
3153 if (nr_found == 0)
3154 goto out_free;
3156 for (i = 0; i < nr_found; i++) {
3157 iq = ilist[i];
3158 if (iq == ip)
3159 continue;
3162 * because this is an RCU protected lookup, we could find a
3163 * recently freed or even reallocated inode during the lookup.
3164 * We need to check under the i_flags_lock for a valid inode
3165 * here. Skip it if it is not valid or the wrong inode.
3167 spin_lock(&ip->i_flags_lock);
3168 if (!ip->i_ino ||
3169 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3170 spin_unlock(&ip->i_flags_lock);
3171 continue;
3173 spin_unlock(&ip->i_flags_lock);
3176 * Do an un-protected check to see if the inode is dirty and
3177 * is a candidate for flushing. These checks will be repeated
3178 * later after the appropriate locks are acquired.
3180 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
3181 continue;
3184 * Try to get locks. If any are unavailable or it is pinned,
3185 * then this inode cannot be flushed and is skipped.
3188 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3189 continue;
3190 if (!xfs_iflock_nowait(iq)) {
3191 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3192 continue;
3194 if (xfs_ipincount(iq)) {
3195 xfs_ifunlock(iq);
3196 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3197 continue;
3201 * arriving here means that this inode can be flushed. First
3202 * re-check that it's dirty before flushing.
3204 if (!xfs_inode_clean(iq)) {
3205 int error;
3206 error = xfs_iflush_int(iq, bp);
3207 if (error) {
3208 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3209 goto cluster_corrupt_out;
3211 clcount++;
3212 } else {
3213 xfs_ifunlock(iq);
3215 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3218 if (clcount) {
3219 XFS_STATS_INC(xs_icluster_flushcnt);
3220 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3223 out_free:
3224 rcu_read_unlock();
3225 kmem_free(ilist);
3226 out_put:
3227 xfs_perag_put(pag);
3228 return 0;
3231 cluster_corrupt_out:
3233 * Corruption detected in the clustering loop. Invalidate the
3234 * inode buffer and shut down the filesystem.
3236 rcu_read_unlock();
3238 * Clean up the buffer. If it was delwri, just release it --
3239 * brelse can handle it with no problems. If not, shut down the
3240 * filesystem before releasing the buffer.
3242 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3243 if (bufwasdelwri)
3244 xfs_buf_relse(bp);
3246 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3248 if (!bufwasdelwri) {
3250 * Just like incore_relse: if we have b_iodone functions,
3251 * mark the buffer as an error and call them. Otherwise
3252 * mark it as stale and brelse.
3254 if (bp->b_iodone) {
3255 XFS_BUF_UNDONE(bp);
3256 xfs_buf_stale(bp);
3257 xfs_buf_ioerror(bp, -EIO);
3258 xfs_buf_ioend(bp);
3259 } else {
3260 xfs_buf_stale(bp);
3261 xfs_buf_relse(bp);
3266 * Unlocks the flush lock
3268 xfs_iflush_abort(iq, false);
3269 kmem_free(ilist);
3270 xfs_perag_put(pag);
3271 return -EFSCORRUPTED;
3275 * Flush dirty inode metadata into the backing buffer.
3277 * The caller must have the inode lock and the inode flush lock held. The
3278 * inode lock will still be held upon return to the caller, and the inode
3279 * flush lock will be released after the inode has reached the disk.
3281 * The caller must write out the buffer returned in *bpp and release it.
3284 xfs_iflush(
3285 struct xfs_inode *ip,
3286 struct xfs_buf **bpp)
3288 struct xfs_mount *mp = ip->i_mount;
3289 struct xfs_buf *bp;
3290 struct xfs_dinode *dip;
3291 int error;
3293 XFS_STATS_INC(xs_iflush_count);
3295 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3296 ASSERT(xfs_isiflocked(ip));
3297 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3298 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3300 *bpp = NULL;
3302 xfs_iunpin_wait(ip);
3305 * For stale inodes we cannot rely on the backing buffer remaining
3306 * stale in cache for the remaining life of the stale inode and so
3307 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3308 * inodes below. We have to check this after ensuring the inode is
3309 * unpinned so that it is safe to reclaim the stale inode after the
3310 * flush call.
3312 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3313 xfs_ifunlock(ip);
3314 return 0;
3318 * This may have been unpinned because the filesystem is shutting
3319 * down forcibly. If that's the case we must not write this inode
3320 * to disk, because the log record didn't make it to disk.
3322 * We also have to remove the log item from the AIL in this case,
3323 * as we wait for an empty AIL as part of the unmount process.
3325 if (XFS_FORCED_SHUTDOWN(mp)) {
3326 error = -EIO;
3327 goto abort_out;
3331 * Get the buffer containing the on-disk inode.
3333 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3335 if (error || !bp) {
3336 xfs_ifunlock(ip);
3337 return error;
3341 * First flush out the inode that xfs_iflush was called with.
3343 error = xfs_iflush_int(ip, bp);
3344 if (error)
3345 goto corrupt_out;
3348 * If the buffer is pinned then push on the log now so we won't
3349 * get stuck waiting in the write for too long.
3351 if (xfs_buf_ispinned(bp))
3352 xfs_log_force(mp, 0);
3355 * inode clustering:
3356 * see if other inodes can be gathered into this write
3358 error = xfs_iflush_cluster(ip, bp);
3359 if (error)
3360 goto cluster_corrupt_out;
3362 *bpp = bp;
3363 return 0;
3365 corrupt_out:
3366 xfs_buf_relse(bp);
3367 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3368 cluster_corrupt_out:
3369 error = -EFSCORRUPTED;
3370 abort_out:
3372 * Unlocks the flush lock
3374 xfs_iflush_abort(ip, false);
3375 return error;
3378 STATIC int
3379 xfs_iflush_int(
3380 struct xfs_inode *ip,
3381 struct xfs_buf *bp)
3383 struct xfs_inode_log_item *iip = ip->i_itemp;
3384 struct xfs_dinode *dip;
3385 struct xfs_mount *mp = ip->i_mount;
3387 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3388 ASSERT(xfs_isiflocked(ip));
3389 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3390 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3391 ASSERT(iip != NULL && iip->ili_fields != 0);
3392 ASSERT(ip->i_d.di_version > 1);
3394 /* set *dip = inode's place in the buffer */
3395 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3397 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3398 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3399 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3400 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3401 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3402 goto corrupt_out;
3404 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3405 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3406 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3407 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3408 __func__, ip->i_ino, ip, ip->i_d.di_magic);
3409 goto corrupt_out;
3411 if (S_ISREG(ip->i_d.di_mode)) {
3412 if (XFS_TEST_ERROR(
3413 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3414 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3415 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3416 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3417 "%s: Bad regular inode %Lu, ptr 0x%p",
3418 __func__, ip->i_ino, ip);
3419 goto corrupt_out;
3421 } else if (S_ISDIR(ip->i_d.di_mode)) {
3422 if (XFS_TEST_ERROR(
3423 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3424 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3425 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3426 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3427 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3428 "%s: Bad directory inode %Lu, ptr 0x%p",
3429 __func__, ip->i_ino, ip);
3430 goto corrupt_out;
3433 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3434 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3435 XFS_RANDOM_IFLUSH_5)) {
3436 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3437 "%s: detected corrupt incore inode %Lu, "
3438 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3439 __func__, ip->i_ino,
3440 ip->i_d.di_nextents + ip->i_d.di_anextents,
3441 ip->i_d.di_nblocks, ip);
3442 goto corrupt_out;
3444 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3445 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3446 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3447 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3448 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3449 goto corrupt_out;
3453 * Inode item log recovery for v2 inodes are dependent on the
3454 * di_flushiter count for correct sequencing. We bump the flush
3455 * iteration count so we can detect flushes which postdate a log record
3456 * during recovery. This is redundant as we now log every change and
3457 * hence this can't happen but we need to still do it to ensure
3458 * backwards compatibility with old kernels that predate logging all
3459 * inode changes.
3461 if (ip->i_d.di_version < 3)
3462 ip->i_d.di_flushiter++;
3465 * Copy the dirty parts of the inode into the on-disk
3466 * inode. We always copy out the core of the inode,
3467 * because if the inode is dirty at all the core must
3468 * be.
3470 xfs_dinode_to_disk(dip, &ip->i_d);
3472 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3473 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3474 ip->i_d.di_flushiter = 0;
3476 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3477 if (XFS_IFORK_Q(ip))
3478 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3479 xfs_inobp_check(mp, bp);
3482 * We've recorded everything logged in the inode, so we'd like to clear
3483 * the ili_fields bits so we don't log and flush things unnecessarily.
3484 * However, we can't stop logging all this information until the data
3485 * we've copied into the disk buffer is written to disk. If we did we
3486 * might overwrite the copy of the inode in the log with all the data
3487 * after re-logging only part of it, and in the face of a crash we
3488 * wouldn't have all the data we need to recover.
3490 * What we do is move the bits to the ili_last_fields field. When
3491 * logging the inode, these bits are moved back to the ili_fields field.
3492 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3493 * know that the information those bits represent is permanently on
3494 * disk. As long as the flush completes before the inode is logged
3495 * again, then both ili_fields and ili_last_fields will be cleared.
3497 * We can play with the ili_fields bits here, because the inode lock
3498 * must be held exclusively in order to set bits there and the flush
3499 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3500 * done routine can tell whether or not to look in the AIL. Also, store
3501 * the current LSN of the inode so that we can tell whether the item has
3502 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3503 * need the AIL lock, because it is a 64 bit value that cannot be read
3504 * atomically.
3506 iip->ili_last_fields = iip->ili_fields;
3507 iip->ili_fields = 0;
3508 iip->ili_logged = 1;
3510 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3511 &iip->ili_item.li_lsn);
3514 * Attach the function xfs_iflush_done to the inode's
3515 * buffer. This will remove the inode from the AIL
3516 * and unlock the inode's flush lock when the inode is
3517 * completely written to disk.
3519 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3521 /* update the lsn in the on disk inode if required */
3522 if (ip->i_d.di_version == 3)
3523 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3525 /* generate the checksum. */
3526 xfs_dinode_calc_crc(mp, dip);
3528 ASSERT(bp->b_fspriv != NULL);
3529 ASSERT(bp->b_iodone != NULL);
3530 return 0;
3532 corrupt_out:
3533 return -EFSCORRUPTED;