1 // SPDX-License-Identifier: GPL-2.0
3 * pptt.c - parsing of Processor Properties Topology Table (PPTT)
5 * Copyright (C) 2018, ARM
7 * This file implements parsing of the Processor Properties Topology Table
8 * which is optionally used to describe the processor and cache topology.
9 * Due to the relative pointers used throughout the table, this doesn't
10 * leverage the existing subtable parsing in the kernel.
12 * The PPTT structure is an inverted tree, with each node potentially
13 * holding one or two inverted tree data structures describing
14 * the caches available at that level. Each cache structure optionally
15 * contains properties describing the cache at a given level which can be
16 * used to override hardware probed values.
18 #define pr_fmt(fmt) "ACPI PPTT: " fmt
20 #include <linux/acpi.h>
21 #include <linux/cacheinfo.h>
22 #include <acpi/processor.h>
24 static struct acpi_subtable_header
*fetch_pptt_subtable(struct acpi_table_header
*table_hdr
,
27 struct acpi_subtable_header
*entry
;
29 /* there isn't a subtable at reference 0 */
30 if (pptt_ref
< sizeof(struct acpi_subtable_header
))
33 if (pptt_ref
+ sizeof(struct acpi_subtable_header
) > table_hdr
->length
)
36 entry
= ACPI_ADD_PTR(struct acpi_subtable_header
, table_hdr
, pptt_ref
);
38 if (entry
->length
== 0)
41 if (pptt_ref
+ entry
->length
> table_hdr
->length
)
47 static struct acpi_pptt_processor
*fetch_pptt_node(struct acpi_table_header
*table_hdr
,
50 return (struct acpi_pptt_processor
*)fetch_pptt_subtable(table_hdr
, pptt_ref
);
53 static struct acpi_pptt_cache
*fetch_pptt_cache(struct acpi_table_header
*table_hdr
,
56 return (struct acpi_pptt_cache
*)fetch_pptt_subtable(table_hdr
, pptt_ref
);
59 static struct acpi_subtable_header
*acpi_get_pptt_resource(struct acpi_table_header
*table_hdr
,
60 struct acpi_pptt_processor
*node
,
65 if (resource
>= node
->number_of_priv_resources
)
68 ref
= ACPI_ADD_PTR(u32
, node
, sizeof(struct acpi_pptt_processor
));
71 return fetch_pptt_subtable(table_hdr
, *ref
);
74 static inline bool acpi_pptt_match_type(int table_type
, int type
)
76 return ((table_type
& ACPI_PPTT_MASK_CACHE_TYPE
) == type
||
77 table_type
& ACPI_PPTT_CACHE_TYPE_UNIFIED
& type
);
81 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
82 * @table_hdr: Pointer to the head of the PPTT table
83 * @local_level: passed res reflects this cache level
84 * @res: cache resource in the PPTT we want to walk
85 * @found: returns a pointer to the requested level if found
86 * @level: the requested cache level
87 * @type: the requested cache type
89 * Attempt to find a given cache level, while counting the max number
90 * of cache levels for the cache node.
92 * Given a pptt resource, verify that it is a cache node, then walk
93 * down each level of caches, counting how many levels are found
94 * as well as checking the cache type (icache, dcache, unified). If a
95 * level & type match, then we set found, and continue the search.
96 * Once the entire cache branch has been walked return its max
99 * Return: The cache structure and the level we terminated with.
101 static int acpi_pptt_walk_cache(struct acpi_table_header
*table_hdr
,
103 struct acpi_subtable_header
*res
,
104 struct acpi_pptt_cache
**found
,
107 struct acpi_pptt_cache
*cache
;
109 if (res
->type
!= ACPI_PPTT_TYPE_CACHE
)
112 cache
= (struct acpi_pptt_cache
*) res
;
116 if (local_level
== level
&&
117 cache
->flags
& ACPI_PPTT_CACHE_TYPE_VALID
&&
118 acpi_pptt_match_type(cache
->attributes
, type
)) {
119 if (*found
!= NULL
&& cache
!= *found
)
120 pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
122 pr_debug("Found cache @ level %d\n", level
);
125 * continue looking at this node's resource list
126 * to verify that we don't find a duplicate
130 cache
= fetch_pptt_cache(table_hdr
, cache
->next_level_of_cache
);
135 static struct acpi_pptt_cache
*acpi_find_cache_level(struct acpi_table_header
*table_hdr
,
136 struct acpi_pptt_processor
*cpu_node
,
137 int *starting_level
, int level
,
140 struct acpi_subtable_header
*res
;
141 int number_of_levels
= *starting_level
;
143 struct acpi_pptt_cache
*ret
= NULL
;
146 /* walk down from processor node */
147 while ((res
= acpi_get_pptt_resource(table_hdr
, cpu_node
, resource
))) {
150 local_level
= acpi_pptt_walk_cache(table_hdr
, *starting_level
,
151 res
, &ret
, level
, type
);
153 * we are looking for the max depth. Since its potentially
154 * possible for a given node to have resources with differing
155 * depths verify that the depth we have found is the largest.
157 if (number_of_levels
< local_level
)
158 number_of_levels
= local_level
;
160 if (number_of_levels
> *starting_level
)
161 *starting_level
= number_of_levels
;
167 * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches
168 * @table_hdr: Pointer to the head of the PPTT table
169 * @cpu_node: processor node we wish to count caches for
171 * Given a processor node containing a processing unit, walk into it and count
172 * how many levels exist solely for it, and then walk up each level until we hit
173 * the root node (ignore the package level because it may be possible to have
174 * caches that exist across packages). Count the number of cache levels that
175 * exist at each level on the way up.
177 * Return: Total number of levels found.
179 static int acpi_count_levels(struct acpi_table_header
*table_hdr
,
180 struct acpi_pptt_processor
*cpu_node
)
182 int total_levels
= 0;
185 acpi_find_cache_level(table_hdr
, cpu_node
, &total_levels
, 0, 0);
186 cpu_node
= fetch_pptt_node(table_hdr
, cpu_node
->parent
);
193 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
194 * @table_hdr: Pointer to the head of the PPTT table
195 * @node: passed node is checked to see if its a leaf
197 * Determine if the *node parameter is a leaf node by iterating the
198 * PPTT table, looking for nodes which reference it.
200 * Return: 0 if we find a node referencing the passed node (or table error),
203 static int acpi_pptt_leaf_node(struct acpi_table_header
*table_hdr
,
204 struct acpi_pptt_processor
*node
)
206 struct acpi_subtable_header
*entry
;
207 unsigned long table_end
;
209 struct acpi_pptt_processor
*cpu_node
;
212 if (table_hdr
->revision
> 1)
213 return (node
->flags
& ACPI_PPTT_ACPI_LEAF_NODE
);
215 table_end
= (unsigned long)table_hdr
+ table_hdr
->length
;
216 node_entry
= ACPI_PTR_DIFF(node
, table_hdr
);
217 entry
= ACPI_ADD_PTR(struct acpi_subtable_header
, table_hdr
,
218 sizeof(struct acpi_table_pptt
));
219 proc_sz
= sizeof(struct acpi_pptt_processor
*);
221 while ((unsigned long)entry
+ proc_sz
< table_end
) {
222 cpu_node
= (struct acpi_pptt_processor
*)entry
;
223 if (entry
->type
== ACPI_PPTT_TYPE_PROCESSOR
&&
224 cpu_node
->parent
== node_entry
)
226 if (entry
->length
== 0)
228 entry
= ACPI_ADD_PTR(struct acpi_subtable_header
, entry
,
236 * acpi_find_processor_node() - Given a PPTT table find the requested processor
237 * @table_hdr: Pointer to the head of the PPTT table
238 * @acpi_cpu_id: CPU we are searching for
240 * Find the subtable entry describing the provided processor.
241 * This is done by iterating the PPTT table looking for processor nodes
242 * which have an acpi_processor_id that matches the acpi_cpu_id parameter
243 * passed into the function. If we find a node that matches this criteria
244 * we verify that its a leaf node in the topology rather than depending
245 * on the valid flag, which doesn't need to be set for leaf nodes.
247 * Return: NULL, or the processors acpi_pptt_processor*
249 static struct acpi_pptt_processor
*acpi_find_processor_node(struct acpi_table_header
*table_hdr
,
252 struct acpi_subtable_header
*entry
;
253 unsigned long table_end
;
254 struct acpi_pptt_processor
*cpu_node
;
257 table_end
= (unsigned long)table_hdr
+ table_hdr
->length
;
258 entry
= ACPI_ADD_PTR(struct acpi_subtable_header
, table_hdr
,
259 sizeof(struct acpi_table_pptt
));
260 proc_sz
= sizeof(struct acpi_pptt_processor
*);
262 /* find the processor structure associated with this cpuid */
263 while ((unsigned long)entry
+ proc_sz
< table_end
) {
264 cpu_node
= (struct acpi_pptt_processor
*)entry
;
266 if (entry
->length
== 0) {
267 pr_warn("Invalid zero length subtable\n");
270 if (entry
->type
== ACPI_PPTT_TYPE_PROCESSOR
&&
271 acpi_cpu_id
== cpu_node
->acpi_processor_id
&&
272 acpi_pptt_leaf_node(table_hdr
, cpu_node
)) {
273 return (struct acpi_pptt_processor
*)entry
;
276 entry
= ACPI_ADD_PTR(struct acpi_subtable_header
, entry
,
283 static int acpi_find_cache_levels(struct acpi_table_header
*table_hdr
,
286 int number_of_levels
= 0;
287 struct acpi_pptt_processor
*cpu
;
289 cpu
= acpi_find_processor_node(table_hdr
, acpi_cpu_id
);
291 number_of_levels
= acpi_count_levels(table_hdr
, cpu
);
293 return number_of_levels
;
296 static u8
acpi_cache_type(enum cache_type type
)
299 case CACHE_TYPE_DATA
:
300 pr_debug("Looking for data cache\n");
301 return ACPI_PPTT_CACHE_TYPE_DATA
;
302 case CACHE_TYPE_INST
:
303 pr_debug("Looking for instruction cache\n");
304 return ACPI_PPTT_CACHE_TYPE_INSTR
;
306 case CACHE_TYPE_UNIFIED
:
307 pr_debug("Looking for unified cache\n");
309 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
310 * contains the bit pattern that will match both
311 * ACPI unified bit patterns because we use it later
312 * to match both cases.
314 return ACPI_PPTT_CACHE_TYPE_UNIFIED
;
318 static struct acpi_pptt_cache
*acpi_find_cache_node(struct acpi_table_header
*table_hdr
,
320 enum cache_type type
,
322 struct acpi_pptt_processor
**node
)
324 int total_levels
= 0;
325 struct acpi_pptt_cache
*found
= NULL
;
326 struct acpi_pptt_processor
*cpu_node
;
327 u8 acpi_type
= acpi_cache_type(type
);
329 pr_debug("Looking for CPU %d's level %d cache type %d\n",
330 acpi_cpu_id
, level
, acpi_type
);
332 cpu_node
= acpi_find_processor_node(table_hdr
, acpi_cpu_id
);
334 while (cpu_node
&& !found
) {
335 found
= acpi_find_cache_level(table_hdr
, cpu_node
,
336 &total_levels
, level
, acpi_type
);
338 cpu_node
= fetch_pptt_node(table_hdr
, cpu_node
->parent
);
345 * update_cache_properties() - Update cacheinfo for the given processor
346 * @this_leaf: Kernel cache info structure being updated
347 * @found_cache: The PPTT node describing this cache instance
348 * @cpu_node: A unique reference to describe this cache instance
350 * The ACPI spec implies that the fields in the cache structures are used to
351 * extend and correct the information probed from the hardware. Lets only
352 * set fields that we determine are VALID.
354 * Return: nothing. Side effect of updating the global cacheinfo
356 static void update_cache_properties(struct cacheinfo
*this_leaf
,
357 struct acpi_pptt_cache
*found_cache
,
358 struct acpi_pptt_processor
*cpu_node
)
360 this_leaf
->fw_token
= cpu_node
;
361 if (found_cache
->flags
& ACPI_PPTT_SIZE_PROPERTY_VALID
)
362 this_leaf
->size
= found_cache
->size
;
363 if (found_cache
->flags
& ACPI_PPTT_LINE_SIZE_VALID
)
364 this_leaf
->coherency_line_size
= found_cache
->line_size
;
365 if (found_cache
->flags
& ACPI_PPTT_NUMBER_OF_SETS_VALID
)
366 this_leaf
->number_of_sets
= found_cache
->number_of_sets
;
367 if (found_cache
->flags
& ACPI_PPTT_ASSOCIATIVITY_VALID
)
368 this_leaf
->ways_of_associativity
= found_cache
->associativity
;
369 if (found_cache
->flags
& ACPI_PPTT_WRITE_POLICY_VALID
) {
370 switch (found_cache
->attributes
& ACPI_PPTT_MASK_WRITE_POLICY
) {
371 case ACPI_PPTT_CACHE_POLICY_WT
:
372 this_leaf
->attributes
= CACHE_WRITE_THROUGH
;
374 case ACPI_PPTT_CACHE_POLICY_WB
:
375 this_leaf
->attributes
= CACHE_WRITE_BACK
;
379 if (found_cache
->flags
& ACPI_PPTT_ALLOCATION_TYPE_VALID
) {
380 switch (found_cache
->attributes
& ACPI_PPTT_MASK_ALLOCATION_TYPE
) {
381 case ACPI_PPTT_CACHE_READ_ALLOCATE
:
382 this_leaf
->attributes
|= CACHE_READ_ALLOCATE
;
384 case ACPI_PPTT_CACHE_WRITE_ALLOCATE
:
385 this_leaf
->attributes
|= CACHE_WRITE_ALLOCATE
;
387 case ACPI_PPTT_CACHE_RW_ALLOCATE
:
388 case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT
:
389 this_leaf
->attributes
|=
390 CACHE_READ_ALLOCATE
| CACHE_WRITE_ALLOCATE
;
395 * If cache type is NOCACHE, then the cache hasn't been specified
396 * via other mechanisms. Update the type if a cache type has been
399 * Note, we assume such caches are unified based on conventional system
400 * design and known examples. Significant work is required elsewhere to
401 * fully support data/instruction only type caches which are only
404 if (this_leaf
->type
== CACHE_TYPE_NOCACHE
&&
405 found_cache
->flags
& ACPI_PPTT_CACHE_TYPE_VALID
)
406 this_leaf
->type
= CACHE_TYPE_UNIFIED
;
409 static void cache_setup_acpi_cpu(struct acpi_table_header
*table
,
412 struct acpi_pptt_cache
*found_cache
;
413 struct cpu_cacheinfo
*this_cpu_ci
= get_cpu_cacheinfo(cpu
);
414 u32 acpi_cpu_id
= get_acpi_id_for_cpu(cpu
);
415 struct cacheinfo
*this_leaf
;
416 unsigned int index
= 0;
417 struct acpi_pptt_processor
*cpu_node
= NULL
;
419 while (index
< get_cpu_cacheinfo(cpu
)->num_leaves
) {
420 this_leaf
= this_cpu_ci
->info_list
+ index
;
421 found_cache
= acpi_find_cache_node(table
, acpi_cpu_id
,
425 pr_debug("found = %p %p\n", found_cache
, cpu_node
);
427 update_cache_properties(this_leaf
,
435 /* Passing level values greater than this will result in search termination */
436 #define PPTT_ABORT_PACKAGE 0xFF
438 static struct acpi_pptt_processor
*acpi_find_processor_package_id(struct acpi_table_header
*table_hdr
,
439 struct acpi_pptt_processor
*cpu
,
442 struct acpi_pptt_processor
*prev_node
;
444 while (cpu
&& level
) {
445 if (cpu
->flags
& flag
)
447 pr_debug("level %d\n", level
);
448 prev_node
= fetch_pptt_node(table_hdr
, cpu
->parent
);
449 if (prev_node
== NULL
)
457 static void acpi_pptt_warn_missing(void)
459 pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
463 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
464 * @table: Pointer to the head of the PPTT table
465 * @cpu: Kernel logical CPU number
466 * @level: A level that terminates the search
467 * @flag: A flag which terminates the search
469 * Get a unique value given a CPU, and a topology level, that can be
470 * matched to determine which cpus share common topological features
473 * Return: Unique value, or -ENOENT if unable to locate CPU
475 static int topology_get_acpi_cpu_tag(struct acpi_table_header
*table
,
476 unsigned int cpu
, int level
, int flag
)
478 struct acpi_pptt_processor
*cpu_node
;
479 u32 acpi_cpu_id
= get_acpi_id_for_cpu(cpu
);
481 cpu_node
= acpi_find_processor_node(table
, acpi_cpu_id
);
483 cpu_node
= acpi_find_processor_package_id(table
, cpu_node
,
486 * As per specification if the processor structure represents
487 * an actual processor, then ACPI processor ID must be valid.
488 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
489 * should be set if the UID is valid
492 cpu_node
->flags
& ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
)
493 return cpu_node
->acpi_processor_id
;
494 return ACPI_PTR_DIFF(cpu_node
, table
);
496 pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
501 static int find_acpi_cpu_topology_tag(unsigned int cpu
, int level
, int flag
)
503 struct acpi_table_header
*table
;
507 status
= acpi_get_table(ACPI_SIG_PPTT
, 0, &table
);
508 if (ACPI_FAILURE(status
)) {
509 acpi_pptt_warn_missing();
512 retval
= topology_get_acpi_cpu_tag(table
, cpu
, level
, flag
);
513 pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
515 acpi_put_table(table
);
521 * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
522 * @cpu: Kernel logical CPU number
524 * Given a logical CPU number, returns the number of levels of cache represented
525 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
526 * indicating we didn't find any cache levels.
528 * Return: Cache levels visible to this core.
530 int acpi_find_last_cache_level(unsigned int cpu
)
533 struct acpi_table_header
*table
;
534 int number_of_levels
= 0;
537 pr_debug("Cache Setup find last level CPU=%d\n", cpu
);
539 acpi_cpu_id
= get_acpi_id_for_cpu(cpu
);
540 status
= acpi_get_table(ACPI_SIG_PPTT
, 0, &table
);
541 if (ACPI_FAILURE(status
)) {
542 acpi_pptt_warn_missing();
544 number_of_levels
= acpi_find_cache_levels(table
, acpi_cpu_id
);
545 acpi_put_table(table
);
547 pr_debug("Cache Setup find last level level=%d\n", number_of_levels
);
549 return number_of_levels
;
553 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
554 * @cpu: Kernel logical CPU number
556 * Updates the global cache info provided by cpu_get_cacheinfo()
557 * when there are valid properties in the acpi_pptt_cache nodes. A
558 * successful parse may not result in any updates if none of the
559 * cache levels have any valid flags set. Further, a unique value is
560 * associated with each known CPU cache entry. This unique value
561 * can be used to determine whether caches are shared between CPUs.
563 * Return: -ENOENT on failure to find table, or 0 on success
565 int cache_setup_acpi(unsigned int cpu
)
567 struct acpi_table_header
*table
;
570 pr_debug("Cache Setup ACPI CPU %d\n", cpu
);
572 status
= acpi_get_table(ACPI_SIG_PPTT
, 0, &table
);
573 if (ACPI_FAILURE(status
)) {
574 acpi_pptt_warn_missing();
578 cache_setup_acpi_cpu(table
, cpu
);
579 acpi_put_table(table
);
585 * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
586 * @cpu: Kernel logical CPU number
587 * @level: The topological level for which we would like a unique ID
589 * Determine a topology unique ID for each thread/core/cluster/mc_grouping
590 * /socket/etc. This ID can then be used to group peers, which will have
593 * The search terminates when either the requested level is found or
594 * we reach a root node. Levels beyond the termination point will return the
595 * same unique ID. The unique id for level 0 is the acpi processor id. All
596 * other levels beyond this use a generated value to uniquely identify
597 * a topological feature.
599 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
600 * Otherwise returns a value which represents a unique topological feature.
602 int find_acpi_cpu_topology(unsigned int cpu
, int level
)
604 return find_acpi_cpu_topology_tag(cpu
, level
, 0);
608 * find_acpi_cpu_cache_topology() - Determine a unique cache topology value
609 * @cpu: Kernel logical CPU number
610 * @level: The cache level for which we would like a unique ID
612 * Determine a unique ID for each unified cache in the system
614 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
615 * Otherwise returns a value which represents a unique topological feature.
617 int find_acpi_cpu_cache_topology(unsigned int cpu
, int level
)
619 struct acpi_table_header
*table
;
620 struct acpi_pptt_cache
*found_cache
;
622 u32 acpi_cpu_id
= get_acpi_id_for_cpu(cpu
);
623 struct acpi_pptt_processor
*cpu_node
= NULL
;
626 status
= acpi_get_table(ACPI_SIG_PPTT
, 0, &table
);
627 if (ACPI_FAILURE(status
)) {
628 acpi_pptt_warn_missing();
632 found_cache
= acpi_find_cache_node(table
, acpi_cpu_id
,
637 ret
= ACPI_PTR_DIFF(cpu_node
, table
);
639 acpi_put_table(table
);
646 * find_acpi_cpu_topology_package() - Determine a unique CPU package value
647 * @cpu: Kernel logical CPU number
649 * Determine a topology unique package ID for the given CPU.
650 * This ID can then be used to group peers, which will have matching ids.
652 * The search terminates when either a level is found with the PHYSICAL_PACKAGE
653 * flag set or we reach a root node.
655 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
656 * Otherwise returns a value which represents the package for this CPU.
658 int find_acpi_cpu_topology_package(unsigned int cpu
)
660 return find_acpi_cpu_topology_tag(cpu
, PPTT_ABORT_PACKAGE
,
661 ACPI_PPTT_PHYSICAL_PACKAGE
);