2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
26 #include "print-tree.h"
29 #include "compression.h"
32 /* magic values for the inode_only field in btrfs_log_inode:
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
42 * directory trouble cases
44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45 * log, we must force a full commit before doing an fsync of the directory
46 * where the unlink was done.
47 * ---> record transid of last unlink/rename per directory
51 * rename foo/some_dir foo2/some_dir
53 * fsync foo/some_dir/some_file
55 * The fsync above will unlink the original some_dir without recording
56 * it in its new location (foo2). After a crash, some_dir will be gone
57 * unless the fsync of some_file forces a full commit
59 * 2) we must log any new names for any file or dir that is in the fsync
60 * log. ---> check inode while renaming/linking.
62 * 2a) we must log any new names for any file or dir during rename
63 * when the directory they are being removed from was logged.
64 * ---> check inode and old parent dir during rename
66 * 2a is actually the more important variant. With the extra logging
67 * a crash might unlink the old name without recreating the new one
69 * 3) after a crash, we must go through any directories with a link count
70 * of zero and redo the rm -rf
77 * The directory f1 was fully removed from the FS, but fsync was never
78 * called on f1, only its parent dir. After a crash the rm -rf must
79 * be replayed. This must be able to recurse down the entire
80 * directory tree. The inode link count fixup code takes care of the
85 * stages for the tree walking. The first
86 * stage (0) is to only pin down the blocks we find
87 * the second stage (1) is to make sure that all the inodes
88 * we find in the log are created in the subvolume.
90 * The last stage is to deal with directories and links and extents
91 * and all the other fun semantics
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_DIR_INDEX 2
96 #define LOG_WALK_REPLAY_ALL 3
98 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
99 struct btrfs_root
*root
, struct inode
*inode
,
103 struct btrfs_log_ctx
*ctx
);
104 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
105 struct btrfs_root
*root
,
106 struct btrfs_path
*path
, u64 objectid
);
107 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
108 struct btrfs_root
*root
,
109 struct btrfs_root
*log
,
110 struct btrfs_path
*path
,
111 u64 dirid
, int del_all
);
114 * tree logging is a special write ahead log used to make sure that
115 * fsyncs and O_SYNCs can happen without doing full tree commits.
117 * Full tree commits are expensive because they require commonly
118 * modified blocks to be recowed, creating many dirty pages in the
119 * extent tree an 4x-6x higher write load than ext3.
121 * Instead of doing a tree commit on every fsync, we use the
122 * key ranges and transaction ids to find items for a given file or directory
123 * that have changed in this transaction. Those items are copied into
124 * a special tree (one per subvolume root), that tree is written to disk
125 * and then the fsync is considered complete.
127 * After a crash, items are copied out of the log-tree back into the
128 * subvolume tree. Any file data extents found are recorded in the extent
129 * allocation tree, and the log-tree freed.
131 * The log tree is read three times, once to pin down all the extents it is
132 * using in ram and once, once to create all the inodes logged in the tree
133 * and once to do all the other items.
137 * start a sub transaction and setup the log tree
138 * this increments the log tree writer count to make the people
139 * syncing the tree wait for us to finish
141 static int start_log_trans(struct btrfs_trans_handle
*trans
,
142 struct btrfs_root
*root
,
143 struct btrfs_log_ctx
*ctx
)
145 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
148 mutex_lock(&root
->log_mutex
);
150 if (root
->log_root
) {
151 if (btrfs_need_log_full_commit(fs_info
, trans
)) {
156 if (!root
->log_start_pid
) {
157 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
158 root
->log_start_pid
= current
->pid
;
159 } else if (root
->log_start_pid
!= current
->pid
) {
160 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
163 mutex_lock(&fs_info
->tree_log_mutex
);
164 if (!fs_info
->log_root_tree
)
165 ret
= btrfs_init_log_root_tree(trans
, fs_info
);
166 mutex_unlock(&fs_info
->tree_log_mutex
);
170 ret
= btrfs_add_log_tree(trans
, root
);
174 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
175 root
->log_start_pid
= current
->pid
;
178 atomic_inc(&root
->log_batch
);
179 atomic_inc(&root
->log_writers
);
181 int index
= root
->log_transid
% 2;
182 list_add_tail(&ctx
->list
, &root
->log_ctxs
[index
]);
183 ctx
->log_transid
= root
->log_transid
;
187 mutex_unlock(&root
->log_mutex
);
192 * returns 0 if there was a log transaction running and we were able
193 * to join, or returns -ENOENT if there were not transactions
196 static int join_running_log_trans(struct btrfs_root
*root
)
204 mutex_lock(&root
->log_mutex
);
205 if (root
->log_root
) {
207 atomic_inc(&root
->log_writers
);
209 mutex_unlock(&root
->log_mutex
);
214 * This either makes the current running log transaction wait
215 * until you call btrfs_end_log_trans() or it makes any future
216 * log transactions wait until you call btrfs_end_log_trans()
218 int btrfs_pin_log_trans(struct btrfs_root
*root
)
222 mutex_lock(&root
->log_mutex
);
223 atomic_inc(&root
->log_writers
);
224 mutex_unlock(&root
->log_mutex
);
229 * indicate we're done making changes to the log tree
230 * and wake up anyone waiting to do a sync
232 void btrfs_end_log_trans(struct btrfs_root
*root
)
234 if (atomic_dec_and_test(&root
->log_writers
)) {
236 * Implicit memory barrier after atomic_dec_and_test
238 if (waitqueue_active(&root
->log_writer_wait
))
239 wake_up(&root
->log_writer_wait
);
245 * the walk control struct is used to pass state down the chain when
246 * processing the log tree. The stage field tells us which part
247 * of the log tree processing we are currently doing. The others
248 * are state fields used for that specific part
250 struct walk_control
{
251 /* should we free the extent on disk when done? This is used
252 * at transaction commit time while freeing a log tree
256 /* should we write out the extent buffer? This is used
257 * while flushing the log tree to disk during a sync
261 /* should we wait for the extent buffer io to finish? Also used
262 * while flushing the log tree to disk for a sync
266 /* pin only walk, we record which extents on disk belong to the
271 /* what stage of the replay code we're currently in */
274 /* the root we are currently replaying */
275 struct btrfs_root
*replay_dest
;
277 /* the trans handle for the current replay */
278 struct btrfs_trans_handle
*trans
;
280 /* the function that gets used to process blocks we find in the
281 * tree. Note the extent_buffer might not be up to date when it is
282 * passed in, and it must be checked or read if you need the data
285 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
286 struct walk_control
*wc
, u64 gen
);
290 * process_func used to pin down extents, write them or wait on them
292 static int process_one_buffer(struct btrfs_root
*log
,
293 struct extent_buffer
*eb
,
294 struct walk_control
*wc
, u64 gen
)
296 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
300 * If this fs is mixed then we need to be able to process the leaves to
301 * pin down any logged extents, so we have to read the block.
303 if (btrfs_fs_incompat(fs_info
, MIXED_GROUPS
)) {
304 ret
= btrfs_read_buffer(eb
, gen
);
310 ret
= btrfs_pin_extent_for_log_replay(fs_info
, eb
->start
,
313 if (!ret
&& btrfs_buffer_uptodate(eb
, gen
, 0)) {
314 if (wc
->pin
&& btrfs_header_level(eb
) == 0)
315 ret
= btrfs_exclude_logged_extents(fs_info
, eb
);
317 btrfs_write_tree_block(eb
);
319 btrfs_wait_tree_block_writeback(eb
);
325 * Item overwrite used by replay and tree logging. eb, slot and key all refer
326 * to the src data we are copying out.
328 * root is the tree we are copying into, and path is a scratch
329 * path for use in this function (it should be released on entry and
330 * will be released on exit).
332 * If the key is already in the destination tree the existing item is
333 * overwritten. If the existing item isn't big enough, it is extended.
334 * If it is too large, it is truncated.
336 * If the key isn't in the destination yet, a new item is inserted.
338 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
339 struct btrfs_root
*root
,
340 struct btrfs_path
*path
,
341 struct extent_buffer
*eb
, int slot
,
342 struct btrfs_key
*key
)
344 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
347 u64 saved_i_size
= 0;
348 int save_old_i_size
= 0;
349 unsigned long src_ptr
;
350 unsigned long dst_ptr
;
351 int overwrite_root
= 0;
352 bool inode_item
= key
->type
== BTRFS_INODE_ITEM_KEY
;
354 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
357 item_size
= btrfs_item_size_nr(eb
, slot
);
358 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
360 /* look for the key in the destination tree */
361 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
368 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
370 if (dst_size
!= item_size
)
373 if (item_size
== 0) {
374 btrfs_release_path(path
);
377 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
378 src_copy
= kmalloc(item_size
, GFP_NOFS
);
379 if (!dst_copy
|| !src_copy
) {
380 btrfs_release_path(path
);
386 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
388 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
389 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
391 ret
= memcmp(dst_copy
, src_copy
, item_size
);
396 * they have the same contents, just return, this saves
397 * us from cowing blocks in the destination tree and doing
398 * extra writes that may not have been done by a previous
402 btrfs_release_path(path
);
407 * We need to load the old nbytes into the inode so when we
408 * replay the extents we've logged we get the right nbytes.
411 struct btrfs_inode_item
*item
;
415 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
416 struct btrfs_inode_item
);
417 nbytes
= btrfs_inode_nbytes(path
->nodes
[0], item
);
418 item
= btrfs_item_ptr(eb
, slot
,
419 struct btrfs_inode_item
);
420 btrfs_set_inode_nbytes(eb
, item
, nbytes
);
423 * If this is a directory we need to reset the i_size to
424 * 0 so that we can set it up properly when replaying
425 * the rest of the items in this log.
427 mode
= btrfs_inode_mode(eb
, item
);
429 btrfs_set_inode_size(eb
, item
, 0);
431 } else if (inode_item
) {
432 struct btrfs_inode_item
*item
;
436 * New inode, set nbytes to 0 so that the nbytes comes out
437 * properly when we replay the extents.
439 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
440 btrfs_set_inode_nbytes(eb
, item
, 0);
443 * If this is a directory we need to reset the i_size to 0 so
444 * that we can set it up properly when replaying the rest of
445 * the items in this log.
447 mode
= btrfs_inode_mode(eb
, item
);
449 btrfs_set_inode_size(eb
, item
, 0);
452 btrfs_release_path(path
);
453 /* try to insert the key into the destination tree */
454 path
->skip_release_on_error
= 1;
455 ret
= btrfs_insert_empty_item(trans
, root
, path
,
457 path
->skip_release_on_error
= 0;
459 /* make sure any existing item is the correct size */
460 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
) {
462 found_size
= btrfs_item_size_nr(path
->nodes
[0],
464 if (found_size
> item_size
)
465 btrfs_truncate_item(fs_info
, path
, item_size
, 1);
466 else if (found_size
< item_size
)
467 btrfs_extend_item(fs_info
, path
,
468 item_size
- found_size
);
472 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
475 /* don't overwrite an existing inode if the generation number
476 * was logged as zero. This is done when the tree logging code
477 * is just logging an inode to make sure it exists after recovery.
479 * Also, don't overwrite i_size on directories during replay.
480 * log replay inserts and removes directory items based on the
481 * state of the tree found in the subvolume, and i_size is modified
484 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
485 struct btrfs_inode_item
*src_item
;
486 struct btrfs_inode_item
*dst_item
;
488 src_item
= (struct btrfs_inode_item
*)src_ptr
;
489 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
491 if (btrfs_inode_generation(eb
, src_item
) == 0) {
492 struct extent_buffer
*dst_eb
= path
->nodes
[0];
493 const u64 ino_size
= btrfs_inode_size(eb
, src_item
);
496 * For regular files an ino_size == 0 is used only when
497 * logging that an inode exists, as part of a directory
498 * fsync, and the inode wasn't fsynced before. In this
499 * case don't set the size of the inode in the fs/subvol
500 * tree, otherwise we would be throwing valid data away.
502 if (S_ISREG(btrfs_inode_mode(eb
, src_item
)) &&
503 S_ISREG(btrfs_inode_mode(dst_eb
, dst_item
)) &&
505 struct btrfs_map_token token
;
507 btrfs_init_map_token(&token
);
508 btrfs_set_token_inode_size(dst_eb
, dst_item
,
514 if (overwrite_root
&&
515 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
516 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
518 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
523 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
526 if (save_old_i_size
) {
527 struct btrfs_inode_item
*dst_item
;
528 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
529 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
532 /* make sure the generation is filled in */
533 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
534 struct btrfs_inode_item
*dst_item
;
535 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
536 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
537 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
542 btrfs_mark_buffer_dirty(path
->nodes
[0]);
543 btrfs_release_path(path
);
548 * simple helper to read an inode off the disk from a given root
549 * This can only be called for subvolume roots and not for the log
551 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
554 struct btrfs_key key
;
557 key
.objectid
= objectid
;
558 key
.type
= BTRFS_INODE_ITEM_KEY
;
560 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
, NULL
);
563 } else if (is_bad_inode(inode
)) {
570 /* replays a single extent in 'eb' at 'slot' with 'key' into the
571 * subvolume 'root'. path is released on entry and should be released
574 * extents in the log tree have not been allocated out of the extent
575 * tree yet. So, this completes the allocation, taking a reference
576 * as required if the extent already exists or creating a new extent
577 * if it isn't in the extent allocation tree yet.
579 * The extent is inserted into the file, dropping any existing extents
580 * from the file that overlap the new one.
582 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
583 struct btrfs_root
*root
,
584 struct btrfs_path
*path
,
585 struct extent_buffer
*eb
, int slot
,
586 struct btrfs_key
*key
)
588 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
591 u64 start
= key
->offset
;
593 struct btrfs_file_extent_item
*item
;
594 struct inode
*inode
= NULL
;
598 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
599 found_type
= btrfs_file_extent_type(eb
, item
);
601 if (found_type
== BTRFS_FILE_EXTENT_REG
||
602 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
603 nbytes
= btrfs_file_extent_num_bytes(eb
, item
);
604 extent_end
= start
+ nbytes
;
607 * We don't add to the inodes nbytes if we are prealloc or a
610 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
612 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
613 size
= btrfs_file_extent_inline_len(eb
, slot
, item
);
614 nbytes
= btrfs_file_extent_ram_bytes(eb
, item
);
615 extent_end
= ALIGN(start
+ size
,
616 fs_info
->sectorsize
);
622 inode
= read_one_inode(root
, key
->objectid
);
629 * first check to see if we already have this extent in the
630 * file. This must be done before the btrfs_drop_extents run
631 * so we don't try to drop this extent.
633 ret
= btrfs_lookup_file_extent(trans
, root
, path
, btrfs_ino(inode
),
637 (found_type
== BTRFS_FILE_EXTENT_REG
||
638 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
639 struct btrfs_file_extent_item cmp1
;
640 struct btrfs_file_extent_item cmp2
;
641 struct btrfs_file_extent_item
*existing
;
642 struct extent_buffer
*leaf
;
644 leaf
= path
->nodes
[0];
645 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
646 struct btrfs_file_extent_item
);
648 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
650 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
654 * we already have a pointer to this exact extent,
655 * we don't have to do anything
657 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
658 btrfs_release_path(path
);
662 btrfs_release_path(path
);
664 /* drop any overlapping extents */
665 ret
= btrfs_drop_extents(trans
, root
, inode
, start
, extent_end
, 1);
669 if (found_type
== BTRFS_FILE_EXTENT_REG
||
670 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
672 unsigned long dest_offset
;
673 struct btrfs_key ins
;
675 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
679 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
681 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
682 (unsigned long)item
, sizeof(*item
));
684 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
685 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
686 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
687 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
690 * Manually record dirty extent, as here we did a shallow
691 * file extent item copy and skip normal backref update,
692 * but modifying extent tree all by ourselves.
693 * So need to manually record dirty extent for qgroup,
694 * as the owner of the file extent changed from log tree
695 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
697 ret
= btrfs_qgroup_trace_extent(trans
, fs_info
,
698 btrfs_file_extent_disk_bytenr(eb
, item
),
699 btrfs_file_extent_disk_num_bytes(eb
, item
),
704 if (ins
.objectid
> 0) {
707 LIST_HEAD(ordered_sums
);
709 * is this extent already allocated in the extent
710 * allocation tree? If so, just add a reference
712 ret
= btrfs_lookup_data_extent(fs_info
, ins
.objectid
,
715 ret
= btrfs_inc_extent_ref(trans
, fs_info
,
716 ins
.objectid
, ins
.offset
,
717 0, root
->root_key
.objectid
,
718 key
->objectid
, offset
);
723 * insert the extent pointer in the extent
726 ret
= btrfs_alloc_logged_file_extent(trans
,
728 root
->root_key
.objectid
,
729 key
->objectid
, offset
, &ins
);
733 btrfs_release_path(path
);
735 if (btrfs_file_extent_compression(eb
, item
)) {
736 csum_start
= ins
.objectid
;
737 csum_end
= csum_start
+ ins
.offset
;
739 csum_start
= ins
.objectid
+
740 btrfs_file_extent_offset(eb
, item
);
741 csum_end
= csum_start
+
742 btrfs_file_extent_num_bytes(eb
, item
);
745 ret
= btrfs_lookup_csums_range(root
->log_root
,
746 csum_start
, csum_end
- 1,
751 * Now delete all existing cums in the csum root that
752 * cover our range. We do this because we can have an
753 * extent that is completely referenced by one file
754 * extent item and partially referenced by another
755 * file extent item (like after using the clone or
756 * extent_same ioctls). In this case if we end up doing
757 * the replay of the one that partially references the
758 * extent first, and we do not do the csum deletion
759 * below, we can get 2 csum items in the csum tree that
760 * overlap each other. For example, imagine our log has
761 * the two following file extent items:
763 * key (257 EXTENT_DATA 409600)
764 * extent data disk byte 12845056 nr 102400
765 * extent data offset 20480 nr 20480 ram 102400
767 * key (257 EXTENT_DATA 819200)
768 * extent data disk byte 12845056 nr 102400
769 * extent data offset 0 nr 102400 ram 102400
771 * Where the second one fully references the 100K extent
772 * that starts at disk byte 12845056, and the log tree
773 * has a single csum item that covers the entire range
776 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
778 * After the first file extent item is replayed, the
779 * csum tree gets the following csum item:
781 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
783 * Which covers the 20K sub-range starting at offset 20K
784 * of our extent. Now when we replay the second file
785 * extent item, if we do not delete existing csum items
786 * that cover any of its blocks, we end up getting two
787 * csum items in our csum tree that overlap each other:
789 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
790 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
792 * Which is a problem, because after this anyone trying
793 * to lookup up for the checksum of any block of our
794 * extent starting at an offset of 40K or higher, will
795 * end up looking at the second csum item only, which
796 * does not contain the checksum for any block starting
797 * at offset 40K or higher of our extent.
799 while (!list_empty(&ordered_sums
)) {
800 struct btrfs_ordered_sum
*sums
;
801 sums
= list_entry(ordered_sums
.next
,
802 struct btrfs_ordered_sum
,
805 ret
= btrfs_del_csums(trans
, fs_info
,
809 ret
= btrfs_csum_file_blocks(trans
,
810 fs_info
->csum_root
, sums
);
811 list_del(&sums
->list
);
817 btrfs_release_path(path
);
819 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
820 /* inline extents are easy, we just overwrite them */
821 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
826 inode_add_bytes(inode
, nbytes
);
827 ret
= btrfs_update_inode(trans
, root
, inode
);
835 * when cleaning up conflicts between the directory names in the
836 * subvolume, directory names in the log and directory names in the
837 * inode back references, we may have to unlink inodes from directories.
839 * This is a helper function to do the unlink of a specific directory
842 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
843 struct btrfs_root
*root
,
844 struct btrfs_path
*path
,
846 struct btrfs_dir_item
*di
)
848 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
852 struct extent_buffer
*leaf
;
853 struct btrfs_key location
;
856 leaf
= path
->nodes
[0];
858 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
859 name_len
= btrfs_dir_name_len(leaf
, di
);
860 name
= kmalloc(name_len
, GFP_NOFS
);
864 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
865 btrfs_release_path(path
);
867 inode
= read_one_inode(root
, location
.objectid
);
873 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
877 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
881 ret
= btrfs_run_delayed_items(trans
, fs_info
);
889 * helper function to see if a given name and sequence number found
890 * in an inode back reference are already in a directory and correctly
891 * point to this inode
893 static noinline
int inode_in_dir(struct btrfs_root
*root
,
894 struct btrfs_path
*path
,
895 u64 dirid
, u64 objectid
, u64 index
,
896 const char *name
, int name_len
)
898 struct btrfs_dir_item
*di
;
899 struct btrfs_key location
;
902 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
903 index
, name
, name_len
, 0);
904 if (di
&& !IS_ERR(di
)) {
905 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
906 if (location
.objectid
!= objectid
)
910 btrfs_release_path(path
);
912 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
913 if (di
&& !IS_ERR(di
)) {
914 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
915 if (location
.objectid
!= objectid
)
921 btrfs_release_path(path
);
926 * helper function to check a log tree for a named back reference in
927 * an inode. This is used to decide if a back reference that is
928 * found in the subvolume conflicts with what we find in the log.
930 * inode backreferences may have multiple refs in a single item,
931 * during replay we process one reference at a time, and we don't
932 * want to delete valid links to a file from the subvolume if that
933 * link is also in the log.
935 static noinline
int backref_in_log(struct btrfs_root
*log
,
936 struct btrfs_key
*key
,
938 const char *name
, int namelen
)
940 struct btrfs_path
*path
;
941 struct btrfs_inode_ref
*ref
;
943 unsigned long ptr_end
;
944 unsigned long name_ptr
;
950 path
= btrfs_alloc_path();
954 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
958 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
960 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
961 if (btrfs_find_name_in_ext_backref(path
, ref_objectid
,
962 name
, namelen
, NULL
))
968 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
969 ptr_end
= ptr
+ item_size
;
970 while (ptr
< ptr_end
) {
971 ref
= (struct btrfs_inode_ref
*)ptr
;
972 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
973 if (found_name_len
== namelen
) {
974 name_ptr
= (unsigned long)(ref
+ 1);
975 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
982 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
985 btrfs_free_path(path
);
989 static inline int __add_inode_ref(struct btrfs_trans_handle
*trans
,
990 struct btrfs_root
*root
,
991 struct btrfs_path
*path
,
992 struct btrfs_root
*log_root
,
993 struct inode
*dir
, struct inode
*inode
,
994 struct extent_buffer
*eb
,
995 u64 inode_objectid
, u64 parent_objectid
,
996 u64 ref_index
, char *name
, int namelen
,
999 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1002 int victim_name_len
;
1003 struct extent_buffer
*leaf
;
1004 struct btrfs_dir_item
*di
;
1005 struct btrfs_key search_key
;
1006 struct btrfs_inode_extref
*extref
;
1009 /* Search old style refs */
1010 search_key
.objectid
= inode_objectid
;
1011 search_key
.type
= BTRFS_INODE_REF_KEY
;
1012 search_key
.offset
= parent_objectid
;
1013 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
1015 struct btrfs_inode_ref
*victim_ref
;
1017 unsigned long ptr_end
;
1019 leaf
= path
->nodes
[0];
1021 /* are we trying to overwrite a back ref for the root directory
1022 * if so, just jump out, we're done
1024 if (search_key
.objectid
== search_key
.offset
)
1027 /* check all the names in this back reference to see
1028 * if they are in the log. if so, we allow them to stay
1029 * otherwise they must be unlinked as a conflict
1031 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1032 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1033 while (ptr
< ptr_end
) {
1034 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
1035 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
1037 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1041 read_extent_buffer(leaf
, victim_name
,
1042 (unsigned long)(victim_ref
+ 1),
1045 if (!backref_in_log(log_root
, &search_key
,
1050 btrfs_release_path(path
);
1052 ret
= btrfs_unlink_inode(trans
, root
, dir
,
1058 ret
= btrfs_run_delayed_items(trans
, fs_info
);
1066 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
1070 * NOTE: we have searched root tree and checked the
1071 * corresponding ref, it does not need to check again.
1075 btrfs_release_path(path
);
1077 /* Same search but for extended refs */
1078 extref
= btrfs_lookup_inode_extref(NULL
, root
, path
, name
, namelen
,
1079 inode_objectid
, parent_objectid
, 0,
1081 if (!IS_ERR_OR_NULL(extref
)) {
1085 struct inode
*victim_parent
;
1087 leaf
= path
->nodes
[0];
1089 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1090 base
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1092 while (cur_offset
< item_size
) {
1093 extref
= (struct btrfs_inode_extref
*)(base
+ cur_offset
);
1095 victim_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1097 if (btrfs_inode_extref_parent(leaf
, extref
) != parent_objectid
)
1100 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1103 read_extent_buffer(leaf
, victim_name
, (unsigned long)&extref
->name
,
1106 search_key
.objectid
= inode_objectid
;
1107 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1108 search_key
.offset
= btrfs_extref_hash(parent_objectid
,
1112 if (!backref_in_log(log_root
, &search_key
,
1113 parent_objectid
, victim_name
,
1116 victim_parent
= read_one_inode(root
,
1118 if (victim_parent
) {
1120 btrfs_release_path(path
);
1122 ret
= btrfs_unlink_inode(trans
, root
,
1128 ret
= btrfs_run_delayed_items(
1132 iput(victim_parent
);
1143 cur_offset
+= victim_name_len
+ sizeof(*extref
);
1147 btrfs_release_path(path
);
1149 /* look for a conflicting sequence number */
1150 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, btrfs_ino(dir
),
1151 ref_index
, name
, namelen
, 0);
1152 if (di
&& !IS_ERR(di
)) {
1153 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1157 btrfs_release_path(path
);
1159 /* look for a conflicing name */
1160 di
= btrfs_lookup_dir_item(trans
, root
, path
, btrfs_ino(dir
),
1162 if (di
&& !IS_ERR(di
)) {
1163 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1167 btrfs_release_path(path
);
1172 static int extref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1173 u32
*namelen
, char **name
, u64
*index
,
1174 u64
*parent_objectid
)
1176 struct btrfs_inode_extref
*extref
;
1178 extref
= (struct btrfs_inode_extref
*)ref_ptr
;
1180 *namelen
= btrfs_inode_extref_name_len(eb
, extref
);
1181 *name
= kmalloc(*namelen
, GFP_NOFS
);
1185 read_extent_buffer(eb
, *name
, (unsigned long)&extref
->name
,
1188 *index
= btrfs_inode_extref_index(eb
, extref
);
1189 if (parent_objectid
)
1190 *parent_objectid
= btrfs_inode_extref_parent(eb
, extref
);
1195 static int ref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1196 u32
*namelen
, char **name
, u64
*index
)
1198 struct btrfs_inode_ref
*ref
;
1200 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
1202 *namelen
= btrfs_inode_ref_name_len(eb
, ref
);
1203 *name
= kmalloc(*namelen
, GFP_NOFS
);
1207 read_extent_buffer(eb
, *name
, (unsigned long)(ref
+ 1), *namelen
);
1209 *index
= btrfs_inode_ref_index(eb
, ref
);
1215 * replay one inode back reference item found in the log tree.
1216 * eb, slot and key refer to the buffer and key found in the log tree.
1217 * root is the destination we are replaying into, and path is for temp
1218 * use by this function. (it should be released on return).
1220 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
1221 struct btrfs_root
*root
,
1222 struct btrfs_root
*log
,
1223 struct btrfs_path
*path
,
1224 struct extent_buffer
*eb
, int slot
,
1225 struct btrfs_key
*key
)
1227 struct inode
*dir
= NULL
;
1228 struct inode
*inode
= NULL
;
1229 unsigned long ref_ptr
;
1230 unsigned long ref_end
;
1234 int search_done
= 0;
1235 int log_ref_ver
= 0;
1236 u64 parent_objectid
;
1239 int ref_struct_size
;
1241 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
1242 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
1244 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
1245 struct btrfs_inode_extref
*r
;
1247 ref_struct_size
= sizeof(struct btrfs_inode_extref
);
1249 r
= (struct btrfs_inode_extref
*)ref_ptr
;
1250 parent_objectid
= btrfs_inode_extref_parent(eb
, r
);
1252 ref_struct_size
= sizeof(struct btrfs_inode_ref
);
1253 parent_objectid
= key
->offset
;
1255 inode_objectid
= key
->objectid
;
1258 * it is possible that we didn't log all the parent directories
1259 * for a given inode. If we don't find the dir, just don't
1260 * copy the back ref in. The link count fixup code will take
1263 dir
= read_one_inode(root
, parent_objectid
);
1269 inode
= read_one_inode(root
, inode_objectid
);
1275 while (ref_ptr
< ref_end
) {
1277 ret
= extref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1278 &ref_index
, &parent_objectid
);
1280 * parent object can change from one array
1284 dir
= read_one_inode(root
, parent_objectid
);
1290 ret
= ref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1296 /* if we already have a perfect match, we're done */
1297 if (!inode_in_dir(root
, path
, btrfs_ino(dir
), btrfs_ino(inode
),
1298 ref_index
, name
, namelen
)) {
1300 * look for a conflicting back reference in the
1301 * metadata. if we find one we have to unlink that name
1302 * of the file before we add our new link. Later on, we
1303 * overwrite any existing back reference, and we don't
1304 * want to create dangling pointers in the directory.
1308 ret
= __add_inode_ref(trans
, root
, path
, log
,
1312 ref_index
, name
, namelen
,
1321 /* insert our name */
1322 ret
= btrfs_add_link(trans
, dir
, inode
, name
, namelen
,
1327 btrfs_update_inode(trans
, root
, inode
);
1330 ref_ptr
= (unsigned long)(ref_ptr
+ ref_struct_size
) + namelen
;
1339 /* finally write the back reference in the inode */
1340 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
1342 btrfs_release_path(path
);
1349 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
1350 struct btrfs_root
*root
, u64 ino
)
1354 ret
= btrfs_insert_orphan_item(trans
, root
, ino
);
1361 static int count_inode_extrefs(struct btrfs_root
*root
,
1362 struct inode
*inode
, struct btrfs_path
*path
)
1366 unsigned int nlink
= 0;
1369 u64 inode_objectid
= btrfs_ino(inode
);
1372 struct btrfs_inode_extref
*extref
;
1373 struct extent_buffer
*leaf
;
1376 ret
= btrfs_find_one_extref(root
, inode_objectid
, offset
, path
,
1381 leaf
= path
->nodes
[0];
1382 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1383 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1386 while (cur_offset
< item_size
) {
1387 extref
= (struct btrfs_inode_extref
*) (ptr
+ cur_offset
);
1388 name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1392 cur_offset
+= name_len
+ sizeof(*extref
);
1396 btrfs_release_path(path
);
1398 btrfs_release_path(path
);
1400 if (ret
< 0 && ret
!= -ENOENT
)
1405 static int count_inode_refs(struct btrfs_root
*root
,
1406 struct inode
*inode
, struct btrfs_path
*path
)
1409 struct btrfs_key key
;
1410 unsigned int nlink
= 0;
1412 unsigned long ptr_end
;
1414 u64 ino
= btrfs_ino(inode
);
1417 key
.type
= BTRFS_INODE_REF_KEY
;
1418 key
.offset
= (u64
)-1;
1421 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1425 if (path
->slots
[0] == 0)
1430 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1432 if (key
.objectid
!= ino
||
1433 key
.type
!= BTRFS_INODE_REF_KEY
)
1435 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
1436 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
1438 while (ptr
< ptr_end
) {
1439 struct btrfs_inode_ref
*ref
;
1441 ref
= (struct btrfs_inode_ref
*)ptr
;
1442 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1444 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1448 if (key
.offset
== 0)
1450 if (path
->slots
[0] > 0) {
1455 btrfs_release_path(path
);
1457 btrfs_release_path(path
);
1463 * There are a few corners where the link count of the file can't
1464 * be properly maintained during replay. So, instead of adding
1465 * lots of complexity to the log code, we just scan the backrefs
1466 * for any file that has been through replay.
1468 * The scan will update the link count on the inode to reflect the
1469 * number of back refs found. If it goes down to zero, the iput
1470 * will free the inode.
1472 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
1473 struct btrfs_root
*root
,
1474 struct inode
*inode
)
1476 struct btrfs_path
*path
;
1479 u64 ino
= btrfs_ino(inode
);
1481 path
= btrfs_alloc_path();
1485 ret
= count_inode_refs(root
, inode
, path
);
1491 ret
= count_inode_extrefs(root
, inode
, path
);
1499 if (nlink
!= inode
->i_nlink
) {
1500 set_nlink(inode
, nlink
);
1501 btrfs_update_inode(trans
, root
, inode
);
1503 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1505 if (inode
->i_nlink
== 0) {
1506 if (S_ISDIR(inode
->i_mode
)) {
1507 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1512 ret
= insert_orphan_item(trans
, root
, ino
);
1516 btrfs_free_path(path
);
1520 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1521 struct btrfs_root
*root
,
1522 struct btrfs_path
*path
)
1525 struct btrfs_key key
;
1526 struct inode
*inode
;
1528 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1529 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1530 key
.offset
= (u64
)-1;
1532 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1537 if (path
->slots
[0] == 0)
1542 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1543 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1544 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1547 ret
= btrfs_del_item(trans
, root
, path
);
1551 btrfs_release_path(path
);
1552 inode
= read_one_inode(root
, key
.offset
);
1556 ret
= fixup_inode_link_count(trans
, root
, inode
);
1562 * fixup on a directory may create new entries,
1563 * make sure we always look for the highset possible
1566 key
.offset
= (u64
)-1;
1570 btrfs_release_path(path
);
1576 * record a given inode in the fixup dir so we can check its link
1577 * count when replay is done. The link count is incremented here
1578 * so the inode won't go away until we check it
1580 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1581 struct btrfs_root
*root
,
1582 struct btrfs_path
*path
,
1585 struct btrfs_key key
;
1587 struct inode
*inode
;
1589 inode
= read_one_inode(root
, objectid
);
1593 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1594 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1595 key
.offset
= objectid
;
1597 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1599 btrfs_release_path(path
);
1601 if (!inode
->i_nlink
)
1602 set_nlink(inode
, 1);
1605 ret
= btrfs_update_inode(trans
, root
, inode
);
1606 } else if (ret
== -EEXIST
) {
1609 BUG(); /* Logic Error */
1617 * when replaying the log for a directory, we only insert names
1618 * for inodes that actually exist. This means an fsync on a directory
1619 * does not implicitly fsync all the new files in it
1621 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1622 struct btrfs_root
*root
,
1623 u64 dirid
, u64 index
,
1624 char *name
, int name_len
,
1625 struct btrfs_key
*location
)
1627 struct inode
*inode
;
1631 inode
= read_one_inode(root
, location
->objectid
);
1635 dir
= read_one_inode(root
, dirid
);
1641 ret
= btrfs_add_link(trans
, dir
, inode
, name
, name_len
, 1, index
);
1643 /* FIXME, put inode into FIXUP list */
1651 * Return true if an inode reference exists in the log for the given name,
1652 * inode and parent inode.
1654 static bool name_in_log_ref(struct btrfs_root
*log_root
,
1655 const char *name
, const int name_len
,
1656 const u64 dirid
, const u64 ino
)
1658 struct btrfs_key search_key
;
1660 search_key
.objectid
= ino
;
1661 search_key
.type
= BTRFS_INODE_REF_KEY
;
1662 search_key
.offset
= dirid
;
1663 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1666 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1667 search_key
.offset
= btrfs_extref_hash(dirid
, name
, name_len
);
1668 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1675 * take a single entry in a log directory item and replay it into
1678 * if a conflicting item exists in the subdirectory already,
1679 * the inode it points to is unlinked and put into the link count
1682 * If a name from the log points to a file or directory that does
1683 * not exist in the FS, it is skipped. fsyncs on directories
1684 * do not force down inodes inside that directory, just changes to the
1685 * names or unlinks in a directory.
1687 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1688 * non-existing inode) and 1 if the name was replayed.
1690 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1691 struct btrfs_root
*root
,
1692 struct btrfs_path
*path
,
1693 struct extent_buffer
*eb
,
1694 struct btrfs_dir_item
*di
,
1695 struct btrfs_key
*key
)
1699 struct btrfs_dir_item
*dst_di
;
1700 struct btrfs_key found_key
;
1701 struct btrfs_key log_key
;
1706 bool update_size
= (key
->type
== BTRFS_DIR_INDEX_KEY
);
1707 bool name_added
= false;
1709 dir
= read_one_inode(root
, key
->objectid
);
1713 name_len
= btrfs_dir_name_len(eb
, di
);
1714 name
= kmalloc(name_len
, GFP_NOFS
);
1720 log_type
= btrfs_dir_type(eb
, di
);
1721 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1724 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1725 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1730 btrfs_release_path(path
);
1732 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1733 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1735 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1736 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1745 if (IS_ERR_OR_NULL(dst_di
)) {
1746 /* we need a sequence number to insert, so we only
1747 * do inserts for the BTRFS_DIR_INDEX_KEY types
1749 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1754 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1755 /* the existing item matches the logged item */
1756 if (found_key
.objectid
== log_key
.objectid
&&
1757 found_key
.type
== log_key
.type
&&
1758 found_key
.offset
== log_key
.offset
&&
1759 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1760 update_size
= false;
1765 * don't drop the conflicting directory entry if the inode
1766 * for the new entry doesn't exist
1771 ret
= drop_one_dir_item(trans
, root
, path
, dir
, dst_di
);
1775 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1778 btrfs_release_path(path
);
1779 if (!ret
&& update_size
) {
1780 btrfs_i_size_write(dir
, dir
->i_size
+ name_len
* 2);
1781 ret
= btrfs_update_inode(trans
, root
, dir
);
1785 if (!ret
&& name_added
)
1790 if (name_in_log_ref(root
->log_root
, name
, name_len
,
1791 key
->objectid
, log_key
.objectid
)) {
1792 /* The dentry will be added later. */
1794 update_size
= false;
1797 btrfs_release_path(path
);
1798 ret
= insert_one_name(trans
, root
, key
->objectid
, key
->offset
,
1799 name
, name_len
, &log_key
);
1800 if (ret
&& ret
!= -ENOENT
&& ret
!= -EEXIST
)
1804 update_size
= false;
1810 * find all the names in a directory item and reconcile them into
1811 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1812 * one name in a directory item, but the same code gets used for
1813 * both directory index types
1815 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1816 struct btrfs_root
*root
,
1817 struct btrfs_path
*path
,
1818 struct extent_buffer
*eb
, int slot
,
1819 struct btrfs_key
*key
)
1821 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1823 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1824 struct btrfs_dir_item
*di
;
1827 unsigned long ptr_end
;
1828 struct btrfs_path
*fixup_path
= NULL
;
1830 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1831 ptr_end
= ptr
+ item_size
;
1832 while (ptr
< ptr_end
) {
1833 di
= (struct btrfs_dir_item
*)ptr
;
1834 if (verify_dir_item(fs_info
, eb
, di
))
1836 name_len
= btrfs_dir_name_len(eb
, di
);
1837 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1840 ptr
= (unsigned long)(di
+ 1);
1844 * If this entry refers to a non-directory (directories can not
1845 * have a link count > 1) and it was added in the transaction
1846 * that was not committed, make sure we fixup the link count of
1847 * the inode it the entry points to. Otherwise something like
1848 * the following would result in a directory pointing to an
1849 * inode with a wrong link that does not account for this dir
1857 * ln testdir/bar testdir/bar_link
1858 * ln testdir/foo testdir/foo_link
1859 * xfs_io -c "fsync" testdir/bar
1863 * mount fs, log replay happens
1865 * File foo would remain with a link count of 1 when it has two
1866 * entries pointing to it in the directory testdir. This would
1867 * make it impossible to ever delete the parent directory has
1868 * it would result in stale dentries that can never be deleted.
1870 if (ret
== 1 && btrfs_dir_type(eb
, di
) != BTRFS_FT_DIR
) {
1871 struct btrfs_key di_key
;
1874 fixup_path
= btrfs_alloc_path();
1881 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
1882 ret
= link_to_fixup_dir(trans
, root
, fixup_path
,
1889 btrfs_free_path(fixup_path
);
1894 * directory replay has two parts. There are the standard directory
1895 * items in the log copied from the subvolume, and range items
1896 * created in the log while the subvolume was logged.
1898 * The range items tell us which parts of the key space the log
1899 * is authoritative for. During replay, if a key in the subvolume
1900 * directory is in a logged range item, but not actually in the log
1901 * that means it was deleted from the directory before the fsync
1902 * and should be removed.
1904 static noinline
int find_dir_range(struct btrfs_root
*root
,
1905 struct btrfs_path
*path
,
1906 u64 dirid
, int key_type
,
1907 u64
*start_ret
, u64
*end_ret
)
1909 struct btrfs_key key
;
1911 struct btrfs_dir_log_item
*item
;
1915 if (*start_ret
== (u64
)-1)
1918 key
.objectid
= dirid
;
1919 key
.type
= key_type
;
1920 key
.offset
= *start_ret
;
1922 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1926 if (path
->slots
[0] == 0)
1931 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1933 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1937 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1938 struct btrfs_dir_log_item
);
1939 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1941 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1943 *start_ret
= key
.offset
;
1944 *end_ret
= found_end
;
1949 /* check the next slot in the tree to see if it is a valid item */
1950 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1952 if (path
->slots
[0] >= nritems
) {
1953 ret
= btrfs_next_leaf(root
, path
);
1958 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1960 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1964 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1965 struct btrfs_dir_log_item
);
1966 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1967 *start_ret
= key
.offset
;
1968 *end_ret
= found_end
;
1971 btrfs_release_path(path
);
1976 * this looks for a given directory item in the log. If the directory
1977 * item is not in the log, the item is removed and the inode it points
1980 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1981 struct btrfs_root
*root
,
1982 struct btrfs_root
*log
,
1983 struct btrfs_path
*path
,
1984 struct btrfs_path
*log_path
,
1986 struct btrfs_key
*dir_key
)
1988 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1990 struct extent_buffer
*eb
;
1993 struct btrfs_dir_item
*di
;
1994 struct btrfs_dir_item
*log_di
;
1997 unsigned long ptr_end
;
1999 struct inode
*inode
;
2000 struct btrfs_key location
;
2003 eb
= path
->nodes
[0];
2004 slot
= path
->slots
[0];
2005 item_size
= btrfs_item_size_nr(eb
, slot
);
2006 ptr
= btrfs_item_ptr_offset(eb
, slot
);
2007 ptr_end
= ptr
+ item_size
;
2008 while (ptr
< ptr_end
) {
2009 di
= (struct btrfs_dir_item
*)ptr
;
2010 if (verify_dir_item(fs_info
, eb
, di
)) {
2015 name_len
= btrfs_dir_name_len(eb
, di
);
2016 name
= kmalloc(name_len
, GFP_NOFS
);
2021 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
2024 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
2025 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
2028 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
2029 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
2035 if (!log_di
|| (IS_ERR(log_di
) && PTR_ERR(log_di
) == -ENOENT
)) {
2036 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
2037 btrfs_release_path(path
);
2038 btrfs_release_path(log_path
);
2039 inode
= read_one_inode(root
, location
.objectid
);
2045 ret
= link_to_fixup_dir(trans
, root
,
2046 path
, location
.objectid
);
2054 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
2057 ret
= btrfs_run_delayed_items(trans
, fs_info
);
2063 /* there might still be more names under this key
2064 * check and repeat if required
2066 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
2072 } else if (IS_ERR(log_di
)) {
2074 return PTR_ERR(log_di
);
2076 btrfs_release_path(log_path
);
2079 ptr
= (unsigned long)(di
+ 1);
2084 btrfs_release_path(path
);
2085 btrfs_release_path(log_path
);
2089 static int replay_xattr_deletes(struct btrfs_trans_handle
*trans
,
2090 struct btrfs_root
*root
,
2091 struct btrfs_root
*log
,
2092 struct btrfs_path
*path
,
2095 struct btrfs_key search_key
;
2096 struct btrfs_path
*log_path
;
2101 log_path
= btrfs_alloc_path();
2105 search_key
.objectid
= ino
;
2106 search_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2107 search_key
.offset
= 0;
2109 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
2113 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2114 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2115 struct btrfs_key key
;
2116 struct btrfs_dir_item
*di
;
2117 struct btrfs_dir_item
*log_di
;
2121 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, i
);
2122 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
) {
2127 di
= btrfs_item_ptr(path
->nodes
[0], i
, struct btrfs_dir_item
);
2128 total_size
= btrfs_item_size_nr(path
->nodes
[0], i
);
2130 while (cur
< total_size
) {
2131 u16 name_len
= btrfs_dir_name_len(path
->nodes
[0], di
);
2132 u16 data_len
= btrfs_dir_data_len(path
->nodes
[0], di
);
2133 u32 this_len
= sizeof(*di
) + name_len
+ data_len
;
2136 name
= kmalloc(name_len
, GFP_NOFS
);
2141 read_extent_buffer(path
->nodes
[0], name
,
2142 (unsigned long)(di
+ 1), name_len
);
2144 log_di
= btrfs_lookup_xattr(NULL
, log
, log_path
, ino
,
2146 btrfs_release_path(log_path
);
2148 /* Doesn't exist in log tree, so delete it. */
2149 btrfs_release_path(path
);
2150 di
= btrfs_lookup_xattr(trans
, root
, path
, ino
,
2151 name
, name_len
, -1);
2158 ret
= btrfs_delete_one_dir_name(trans
, root
,
2162 btrfs_release_path(path
);
2167 if (IS_ERR(log_di
)) {
2168 ret
= PTR_ERR(log_di
);
2172 di
= (struct btrfs_dir_item
*)((char *)di
+ this_len
);
2175 ret
= btrfs_next_leaf(root
, path
);
2181 btrfs_free_path(log_path
);
2182 btrfs_release_path(path
);
2188 * deletion replay happens before we copy any new directory items
2189 * out of the log or out of backreferences from inodes. It
2190 * scans the log to find ranges of keys that log is authoritative for,
2191 * and then scans the directory to find items in those ranges that are
2192 * not present in the log.
2194 * Anything we don't find in the log is unlinked and removed from the
2197 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
2198 struct btrfs_root
*root
,
2199 struct btrfs_root
*log
,
2200 struct btrfs_path
*path
,
2201 u64 dirid
, int del_all
)
2205 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
2207 struct btrfs_key dir_key
;
2208 struct btrfs_key found_key
;
2209 struct btrfs_path
*log_path
;
2212 dir_key
.objectid
= dirid
;
2213 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
2214 log_path
= btrfs_alloc_path();
2218 dir
= read_one_inode(root
, dirid
);
2219 /* it isn't an error if the inode isn't there, that can happen
2220 * because we replay the deletes before we copy in the inode item
2224 btrfs_free_path(log_path
);
2232 range_end
= (u64
)-1;
2234 ret
= find_dir_range(log
, path
, dirid
, key_type
,
2235 &range_start
, &range_end
);
2240 dir_key
.offset
= range_start
;
2243 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
2248 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2249 if (path
->slots
[0] >= nritems
) {
2250 ret
= btrfs_next_leaf(root
, path
);
2254 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2256 if (found_key
.objectid
!= dirid
||
2257 found_key
.type
!= dir_key
.type
)
2260 if (found_key
.offset
> range_end
)
2263 ret
= check_item_in_log(trans
, root
, log
, path
,
2268 if (found_key
.offset
== (u64
)-1)
2270 dir_key
.offset
= found_key
.offset
+ 1;
2272 btrfs_release_path(path
);
2273 if (range_end
== (u64
)-1)
2275 range_start
= range_end
+ 1;
2280 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
2281 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2282 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
2283 btrfs_release_path(path
);
2287 btrfs_release_path(path
);
2288 btrfs_free_path(log_path
);
2294 * the process_func used to replay items from the log tree. This
2295 * gets called in two different stages. The first stage just looks
2296 * for inodes and makes sure they are all copied into the subvolume.
2298 * The second stage copies all the other item types from the log into
2299 * the subvolume. The two stage approach is slower, but gets rid of
2300 * lots of complexity around inodes referencing other inodes that exist
2301 * only in the log (references come from either directory items or inode
2304 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
2305 struct walk_control
*wc
, u64 gen
)
2308 struct btrfs_path
*path
;
2309 struct btrfs_root
*root
= wc
->replay_dest
;
2310 struct btrfs_key key
;
2315 ret
= btrfs_read_buffer(eb
, gen
);
2319 level
= btrfs_header_level(eb
);
2324 path
= btrfs_alloc_path();
2328 nritems
= btrfs_header_nritems(eb
);
2329 for (i
= 0; i
< nritems
; i
++) {
2330 btrfs_item_key_to_cpu(eb
, &key
, i
);
2332 /* inode keys are done during the first stage */
2333 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
2334 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
2335 struct btrfs_inode_item
*inode_item
;
2338 inode_item
= btrfs_item_ptr(eb
, i
,
2339 struct btrfs_inode_item
);
2340 ret
= replay_xattr_deletes(wc
->trans
, root
, log
,
2341 path
, key
.objectid
);
2344 mode
= btrfs_inode_mode(eb
, inode_item
);
2345 if (S_ISDIR(mode
)) {
2346 ret
= replay_dir_deletes(wc
->trans
,
2347 root
, log
, path
, key
.objectid
, 0);
2351 ret
= overwrite_item(wc
->trans
, root
, path
,
2356 /* for regular files, make sure corresponding
2357 * orphan item exist. extents past the new EOF
2358 * will be truncated later by orphan cleanup.
2360 if (S_ISREG(mode
)) {
2361 ret
= insert_orphan_item(wc
->trans
, root
,
2367 ret
= link_to_fixup_dir(wc
->trans
, root
,
2368 path
, key
.objectid
);
2373 if (key
.type
== BTRFS_DIR_INDEX_KEY
&&
2374 wc
->stage
== LOG_WALK_REPLAY_DIR_INDEX
) {
2375 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2381 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
2384 /* these keys are simply copied */
2385 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
2386 ret
= overwrite_item(wc
->trans
, root
, path
,
2390 } else if (key
.type
== BTRFS_INODE_REF_KEY
||
2391 key
.type
== BTRFS_INODE_EXTREF_KEY
) {
2392 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
2394 if (ret
&& ret
!= -ENOENT
)
2397 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
2398 ret
= replay_one_extent(wc
->trans
, root
, path
,
2402 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
) {
2403 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2409 btrfs_free_path(path
);
2413 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
2414 struct btrfs_root
*root
,
2415 struct btrfs_path
*path
, int *level
,
2416 struct walk_control
*wc
)
2418 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2422 struct extent_buffer
*next
;
2423 struct extent_buffer
*cur
;
2424 struct extent_buffer
*parent
;
2428 WARN_ON(*level
< 0);
2429 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2431 while (*level
> 0) {
2432 WARN_ON(*level
< 0);
2433 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2434 cur
= path
->nodes
[*level
];
2436 WARN_ON(btrfs_header_level(cur
) != *level
);
2438 if (path
->slots
[*level
] >=
2439 btrfs_header_nritems(cur
))
2442 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
2443 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
2444 blocksize
= fs_info
->nodesize
;
2446 parent
= path
->nodes
[*level
];
2447 root_owner
= btrfs_header_owner(parent
);
2449 next
= btrfs_find_create_tree_block(fs_info
, bytenr
);
2451 return PTR_ERR(next
);
2454 ret
= wc
->process_func(root
, next
, wc
, ptr_gen
);
2456 free_extent_buffer(next
);
2460 path
->slots
[*level
]++;
2462 ret
= btrfs_read_buffer(next
, ptr_gen
);
2464 free_extent_buffer(next
);
2469 btrfs_tree_lock(next
);
2470 btrfs_set_lock_blocking(next
);
2471 clean_tree_block(trans
, fs_info
, next
);
2472 btrfs_wait_tree_block_writeback(next
);
2473 btrfs_tree_unlock(next
);
2476 WARN_ON(root_owner
!=
2477 BTRFS_TREE_LOG_OBJECTID
);
2478 ret
= btrfs_free_and_pin_reserved_extent(
2482 free_extent_buffer(next
);
2486 free_extent_buffer(next
);
2489 ret
= btrfs_read_buffer(next
, ptr_gen
);
2491 free_extent_buffer(next
);
2495 WARN_ON(*level
<= 0);
2496 if (path
->nodes
[*level
-1])
2497 free_extent_buffer(path
->nodes
[*level
-1]);
2498 path
->nodes
[*level
-1] = next
;
2499 *level
= btrfs_header_level(next
);
2500 path
->slots
[*level
] = 0;
2503 WARN_ON(*level
< 0);
2504 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2506 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
2512 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
2513 struct btrfs_root
*root
,
2514 struct btrfs_path
*path
, int *level
,
2515 struct walk_control
*wc
)
2517 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2523 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
2524 slot
= path
->slots
[i
];
2525 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
2528 WARN_ON(*level
== 0);
2531 struct extent_buffer
*parent
;
2532 if (path
->nodes
[*level
] == root
->node
)
2533 parent
= path
->nodes
[*level
];
2535 parent
= path
->nodes
[*level
+ 1];
2537 root_owner
= btrfs_header_owner(parent
);
2538 ret
= wc
->process_func(root
, path
->nodes
[*level
], wc
,
2539 btrfs_header_generation(path
->nodes
[*level
]));
2544 struct extent_buffer
*next
;
2546 next
= path
->nodes
[*level
];
2549 btrfs_tree_lock(next
);
2550 btrfs_set_lock_blocking(next
);
2551 clean_tree_block(trans
, fs_info
, next
);
2552 btrfs_wait_tree_block_writeback(next
);
2553 btrfs_tree_unlock(next
);
2556 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
2557 ret
= btrfs_free_and_pin_reserved_extent(
2559 path
->nodes
[*level
]->start
,
2560 path
->nodes
[*level
]->len
);
2564 free_extent_buffer(path
->nodes
[*level
]);
2565 path
->nodes
[*level
] = NULL
;
2573 * drop the reference count on the tree rooted at 'snap'. This traverses
2574 * the tree freeing any blocks that have a ref count of zero after being
2577 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
2578 struct btrfs_root
*log
, struct walk_control
*wc
)
2580 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
2584 struct btrfs_path
*path
;
2587 path
= btrfs_alloc_path();
2591 level
= btrfs_header_level(log
->node
);
2593 path
->nodes
[level
] = log
->node
;
2594 extent_buffer_get(log
->node
);
2595 path
->slots
[level
] = 0;
2598 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
2606 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
2615 /* was the root node processed? if not, catch it here */
2616 if (path
->nodes
[orig_level
]) {
2617 ret
= wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
2618 btrfs_header_generation(path
->nodes
[orig_level
]));
2622 struct extent_buffer
*next
;
2624 next
= path
->nodes
[orig_level
];
2627 btrfs_tree_lock(next
);
2628 btrfs_set_lock_blocking(next
);
2629 clean_tree_block(trans
, fs_info
, next
);
2630 btrfs_wait_tree_block_writeback(next
);
2631 btrfs_tree_unlock(next
);
2634 WARN_ON(log
->root_key
.objectid
!=
2635 BTRFS_TREE_LOG_OBJECTID
);
2636 ret
= btrfs_free_and_pin_reserved_extent(fs_info
,
2637 next
->start
, next
->len
);
2644 btrfs_free_path(path
);
2649 * helper function to update the item for a given subvolumes log root
2650 * in the tree of log roots
2652 static int update_log_root(struct btrfs_trans_handle
*trans
,
2653 struct btrfs_root
*log
)
2655 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
2658 if (log
->log_transid
== 1) {
2659 /* insert root item on the first sync */
2660 ret
= btrfs_insert_root(trans
, fs_info
->log_root_tree
,
2661 &log
->root_key
, &log
->root_item
);
2663 ret
= btrfs_update_root(trans
, fs_info
->log_root_tree
,
2664 &log
->root_key
, &log
->root_item
);
2669 static void wait_log_commit(struct btrfs_root
*root
, int transid
)
2672 int index
= transid
% 2;
2675 * we only allow two pending log transactions at a time,
2676 * so we know that if ours is more than 2 older than the
2677 * current transaction, we're done
2680 prepare_to_wait(&root
->log_commit_wait
[index
],
2681 &wait
, TASK_UNINTERRUPTIBLE
);
2682 mutex_unlock(&root
->log_mutex
);
2684 if (root
->log_transid_committed
< transid
&&
2685 atomic_read(&root
->log_commit
[index
]))
2688 finish_wait(&root
->log_commit_wait
[index
], &wait
);
2689 mutex_lock(&root
->log_mutex
);
2690 } while (root
->log_transid_committed
< transid
&&
2691 atomic_read(&root
->log_commit
[index
]));
2694 static void wait_for_writer(struct btrfs_root
*root
)
2698 while (atomic_read(&root
->log_writers
)) {
2699 prepare_to_wait(&root
->log_writer_wait
,
2700 &wait
, TASK_UNINTERRUPTIBLE
);
2701 mutex_unlock(&root
->log_mutex
);
2702 if (atomic_read(&root
->log_writers
))
2704 finish_wait(&root
->log_writer_wait
, &wait
);
2705 mutex_lock(&root
->log_mutex
);
2709 static inline void btrfs_remove_log_ctx(struct btrfs_root
*root
,
2710 struct btrfs_log_ctx
*ctx
)
2715 mutex_lock(&root
->log_mutex
);
2716 list_del_init(&ctx
->list
);
2717 mutex_unlock(&root
->log_mutex
);
2721 * Invoked in log mutex context, or be sure there is no other task which
2722 * can access the list.
2724 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root
*root
,
2725 int index
, int error
)
2727 struct btrfs_log_ctx
*ctx
;
2728 struct btrfs_log_ctx
*safe
;
2730 list_for_each_entry_safe(ctx
, safe
, &root
->log_ctxs
[index
], list
) {
2731 list_del_init(&ctx
->list
);
2732 ctx
->log_ret
= error
;
2735 INIT_LIST_HEAD(&root
->log_ctxs
[index
]);
2739 * btrfs_sync_log does sends a given tree log down to the disk and
2740 * updates the super blocks to record it. When this call is done,
2741 * you know that any inodes previously logged are safely on disk only
2744 * Any other return value means you need to call btrfs_commit_transaction.
2745 * Some of the edge cases for fsyncing directories that have had unlinks
2746 * or renames done in the past mean that sometimes the only safe
2747 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2748 * that has happened.
2750 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
2751 struct btrfs_root
*root
, struct btrfs_log_ctx
*ctx
)
2757 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2758 struct btrfs_root
*log
= root
->log_root
;
2759 struct btrfs_root
*log_root_tree
= fs_info
->log_root_tree
;
2760 int log_transid
= 0;
2761 struct btrfs_log_ctx root_log_ctx
;
2762 struct blk_plug plug
;
2764 mutex_lock(&root
->log_mutex
);
2765 log_transid
= ctx
->log_transid
;
2766 if (root
->log_transid_committed
>= log_transid
) {
2767 mutex_unlock(&root
->log_mutex
);
2768 return ctx
->log_ret
;
2771 index1
= log_transid
% 2;
2772 if (atomic_read(&root
->log_commit
[index1
])) {
2773 wait_log_commit(root
, log_transid
);
2774 mutex_unlock(&root
->log_mutex
);
2775 return ctx
->log_ret
;
2777 ASSERT(log_transid
== root
->log_transid
);
2778 atomic_set(&root
->log_commit
[index1
], 1);
2780 /* wait for previous tree log sync to complete */
2781 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
2782 wait_log_commit(root
, log_transid
- 1);
2785 int batch
= atomic_read(&root
->log_batch
);
2786 /* when we're on an ssd, just kick the log commit out */
2787 if (!btrfs_test_opt(fs_info
, SSD
) &&
2788 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
)) {
2789 mutex_unlock(&root
->log_mutex
);
2790 schedule_timeout_uninterruptible(1);
2791 mutex_lock(&root
->log_mutex
);
2793 wait_for_writer(root
);
2794 if (batch
== atomic_read(&root
->log_batch
))
2798 /* bail out if we need to do a full commit */
2799 if (btrfs_need_log_full_commit(fs_info
, trans
)) {
2801 btrfs_free_logged_extents(log
, log_transid
);
2802 mutex_unlock(&root
->log_mutex
);
2806 if (log_transid
% 2 == 0)
2807 mark
= EXTENT_DIRTY
;
2811 /* we start IO on all the marked extents here, but we don't actually
2812 * wait for them until later.
2814 blk_start_plug(&plug
);
2815 ret
= btrfs_write_marked_extents(fs_info
, &log
->dirty_log_pages
, mark
);
2817 blk_finish_plug(&plug
);
2818 btrfs_abort_transaction(trans
, ret
);
2819 btrfs_free_logged_extents(log
, log_transid
);
2820 btrfs_set_log_full_commit(fs_info
, trans
);
2821 mutex_unlock(&root
->log_mutex
);
2825 btrfs_set_root_node(&log
->root_item
, log
->node
);
2827 root
->log_transid
++;
2828 log
->log_transid
= root
->log_transid
;
2829 root
->log_start_pid
= 0;
2831 * IO has been started, blocks of the log tree have WRITTEN flag set
2832 * in their headers. new modifications of the log will be written to
2833 * new positions. so it's safe to allow log writers to go in.
2835 mutex_unlock(&root
->log_mutex
);
2837 btrfs_init_log_ctx(&root_log_ctx
, NULL
);
2839 mutex_lock(&log_root_tree
->log_mutex
);
2840 atomic_inc(&log_root_tree
->log_batch
);
2841 atomic_inc(&log_root_tree
->log_writers
);
2843 index2
= log_root_tree
->log_transid
% 2;
2844 list_add_tail(&root_log_ctx
.list
, &log_root_tree
->log_ctxs
[index2
]);
2845 root_log_ctx
.log_transid
= log_root_tree
->log_transid
;
2847 mutex_unlock(&log_root_tree
->log_mutex
);
2849 ret
= update_log_root(trans
, log
);
2851 mutex_lock(&log_root_tree
->log_mutex
);
2852 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2854 * Implicit memory barrier after atomic_dec_and_test
2856 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2857 wake_up(&log_root_tree
->log_writer_wait
);
2861 if (!list_empty(&root_log_ctx
.list
))
2862 list_del_init(&root_log_ctx
.list
);
2864 blk_finish_plug(&plug
);
2865 btrfs_set_log_full_commit(fs_info
, trans
);
2867 if (ret
!= -ENOSPC
) {
2868 btrfs_abort_transaction(trans
, ret
);
2869 mutex_unlock(&log_root_tree
->log_mutex
);
2872 btrfs_wait_tree_log_extents(log
, mark
);
2873 btrfs_free_logged_extents(log
, log_transid
);
2874 mutex_unlock(&log_root_tree
->log_mutex
);
2879 if (log_root_tree
->log_transid_committed
>= root_log_ctx
.log_transid
) {
2880 blk_finish_plug(&plug
);
2881 list_del_init(&root_log_ctx
.list
);
2882 mutex_unlock(&log_root_tree
->log_mutex
);
2883 ret
= root_log_ctx
.log_ret
;
2887 index2
= root_log_ctx
.log_transid
% 2;
2888 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2889 blk_finish_plug(&plug
);
2890 ret
= btrfs_wait_tree_log_extents(log
, mark
);
2891 btrfs_wait_logged_extents(trans
, log
, log_transid
);
2892 wait_log_commit(log_root_tree
,
2893 root_log_ctx
.log_transid
);
2894 mutex_unlock(&log_root_tree
->log_mutex
);
2896 ret
= root_log_ctx
.log_ret
;
2899 ASSERT(root_log_ctx
.log_transid
== log_root_tree
->log_transid
);
2900 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2902 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2903 wait_log_commit(log_root_tree
,
2904 root_log_ctx
.log_transid
- 1);
2907 wait_for_writer(log_root_tree
);
2910 * now that we've moved on to the tree of log tree roots,
2911 * check the full commit flag again
2913 if (btrfs_need_log_full_commit(fs_info
, trans
)) {
2914 blk_finish_plug(&plug
);
2915 btrfs_wait_tree_log_extents(log
, mark
);
2916 btrfs_free_logged_extents(log
, log_transid
);
2917 mutex_unlock(&log_root_tree
->log_mutex
);
2919 goto out_wake_log_root
;
2922 ret
= btrfs_write_marked_extents(fs_info
,
2923 &log_root_tree
->dirty_log_pages
,
2924 EXTENT_DIRTY
| EXTENT_NEW
);
2925 blk_finish_plug(&plug
);
2927 btrfs_set_log_full_commit(fs_info
, trans
);
2928 btrfs_abort_transaction(trans
, ret
);
2929 btrfs_free_logged_extents(log
, log_transid
);
2930 mutex_unlock(&log_root_tree
->log_mutex
);
2931 goto out_wake_log_root
;
2933 ret
= btrfs_wait_tree_log_extents(log
, mark
);
2935 ret
= btrfs_wait_tree_log_extents(log_root_tree
,
2936 EXTENT_NEW
| EXTENT_DIRTY
);
2938 btrfs_set_log_full_commit(fs_info
, trans
);
2939 btrfs_free_logged_extents(log
, log_transid
);
2940 mutex_unlock(&log_root_tree
->log_mutex
);
2941 goto out_wake_log_root
;
2943 btrfs_wait_logged_extents(trans
, log
, log_transid
);
2945 btrfs_set_super_log_root(fs_info
->super_for_commit
,
2946 log_root_tree
->node
->start
);
2947 btrfs_set_super_log_root_level(fs_info
->super_for_commit
,
2948 btrfs_header_level(log_root_tree
->node
));
2950 log_root_tree
->log_transid
++;
2951 mutex_unlock(&log_root_tree
->log_mutex
);
2954 * nobody else is going to jump in and write the the ctree
2955 * super here because the log_commit atomic below is protecting
2956 * us. We must be called with a transaction handle pinning
2957 * the running transaction open, so a full commit can't hop
2958 * in and cause problems either.
2960 ret
= write_ctree_super(trans
, fs_info
, 1);
2962 btrfs_set_log_full_commit(fs_info
, trans
);
2963 btrfs_abort_transaction(trans
, ret
);
2964 goto out_wake_log_root
;
2967 mutex_lock(&root
->log_mutex
);
2968 if (root
->last_log_commit
< log_transid
)
2969 root
->last_log_commit
= log_transid
;
2970 mutex_unlock(&root
->log_mutex
);
2973 mutex_lock(&log_root_tree
->log_mutex
);
2974 btrfs_remove_all_log_ctxs(log_root_tree
, index2
, ret
);
2976 log_root_tree
->log_transid_committed
++;
2977 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2978 mutex_unlock(&log_root_tree
->log_mutex
);
2981 * The barrier before waitqueue_active is implied by mutex_unlock
2983 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2984 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2986 mutex_lock(&root
->log_mutex
);
2987 btrfs_remove_all_log_ctxs(root
, index1
, ret
);
2988 root
->log_transid_committed
++;
2989 atomic_set(&root
->log_commit
[index1
], 0);
2990 mutex_unlock(&root
->log_mutex
);
2993 * The barrier before waitqueue_active is implied by mutex_unlock
2995 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
2996 wake_up(&root
->log_commit_wait
[index1
]);
3000 static void free_log_tree(struct btrfs_trans_handle
*trans
,
3001 struct btrfs_root
*log
)
3006 struct walk_control wc
= {
3008 .process_func
= process_one_buffer
3011 ret
= walk_log_tree(trans
, log
, &wc
);
3012 /* I don't think this can happen but just in case */
3014 btrfs_abort_transaction(trans
, ret
);
3017 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
3018 0, &start
, &end
, EXTENT_DIRTY
| EXTENT_NEW
,
3023 clear_extent_bits(&log
->dirty_log_pages
, start
, end
,
3024 EXTENT_DIRTY
| EXTENT_NEW
);
3028 * We may have short-circuited the log tree with the full commit logic
3029 * and left ordered extents on our list, so clear these out to keep us
3030 * from leaking inodes and memory.
3032 btrfs_free_logged_extents(log
, 0);
3033 btrfs_free_logged_extents(log
, 1);
3035 free_extent_buffer(log
->node
);
3040 * free all the extents used by the tree log. This should be called
3041 * at commit time of the full transaction
3043 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
3045 if (root
->log_root
) {
3046 free_log_tree(trans
, root
->log_root
);
3047 root
->log_root
= NULL
;
3052 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
3053 struct btrfs_fs_info
*fs_info
)
3055 if (fs_info
->log_root_tree
) {
3056 free_log_tree(trans
, fs_info
->log_root_tree
);
3057 fs_info
->log_root_tree
= NULL
;
3063 * If both a file and directory are logged, and unlinks or renames are
3064 * mixed in, we have a few interesting corners:
3066 * create file X in dir Y
3067 * link file X to X.link in dir Y
3069 * unlink file X but leave X.link
3072 * After a crash we would expect only X.link to exist. But file X
3073 * didn't get fsync'd again so the log has back refs for X and X.link.
3075 * We solve this by removing directory entries and inode backrefs from the
3076 * log when a file that was logged in the current transaction is
3077 * unlinked. Any later fsync will include the updated log entries, and
3078 * we'll be able to reconstruct the proper directory items from backrefs.
3080 * This optimizations allows us to avoid relogging the entire inode
3081 * or the entire directory.
3083 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
3084 struct btrfs_root
*root
,
3085 const char *name
, int name_len
,
3086 struct inode
*dir
, u64 index
)
3088 struct btrfs_root
*log
;
3089 struct btrfs_dir_item
*di
;
3090 struct btrfs_path
*path
;
3094 u64 dir_ino
= btrfs_ino(dir
);
3096 if (BTRFS_I(dir
)->logged_trans
< trans
->transid
)
3099 ret
= join_running_log_trans(root
);
3103 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
3105 log
= root
->log_root
;
3106 path
= btrfs_alloc_path();
3112 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir_ino
,
3113 name
, name_len
, -1);
3119 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3120 bytes_del
+= name_len
;
3126 btrfs_release_path(path
);
3127 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir_ino
,
3128 index
, name
, name_len
, -1);
3134 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3135 bytes_del
+= name_len
;
3142 /* update the directory size in the log to reflect the names
3146 struct btrfs_key key
;
3148 key
.objectid
= dir_ino
;
3150 key
.type
= BTRFS_INODE_ITEM_KEY
;
3151 btrfs_release_path(path
);
3153 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
3159 struct btrfs_inode_item
*item
;
3162 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3163 struct btrfs_inode_item
);
3164 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
3165 if (i_size
> bytes_del
)
3166 i_size
-= bytes_del
;
3169 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
3170 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3173 btrfs_release_path(path
);
3176 btrfs_free_path(path
);
3178 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
3179 if (ret
== -ENOSPC
) {
3180 btrfs_set_log_full_commit(root
->fs_info
, trans
);
3183 btrfs_abort_transaction(trans
, ret
);
3185 btrfs_end_log_trans(root
);
3190 /* see comments for btrfs_del_dir_entries_in_log */
3191 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
3192 struct btrfs_root
*root
,
3193 const char *name
, int name_len
,
3194 struct inode
*inode
, u64 dirid
)
3196 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3197 struct btrfs_root
*log
;
3201 if (BTRFS_I(inode
)->logged_trans
< trans
->transid
)
3204 ret
= join_running_log_trans(root
);
3207 log
= root
->log_root
;
3208 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
3210 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, btrfs_ino(inode
),
3212 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
3213 if (ret
== -ENOSPC
) {
3214 btrfs_set_log_full_commit(fs_info
, trans
);
3216 } else if (ret
< 0 && ret
!= -ENOENT
)
3217 btrfs_abort_transaction(trans
, ret
);
3218 btrfs_end_log_trans(root
);
3224 * creates a range item in the log for 'dirid'. first_offset and
3225 * last_offset tell us which parts of the key space the log should
3226 * be considered authoritative for.
3228 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
3229 struct btrfs_root
*log
,
3230 struct btrfs_path
*path
,
3231 int key_type
, u64 dirid
,
3232 u64 first_offset
, u64 last_offset
)
3235 struct btrfs_key key
;
3236 struct btrfs_dir_log_item
*item
;
3238 key
.objectid
= dirid
;
3239 key
.offset
= first_offset
;
3240 if (key_type
== BTRFS_DIR_ITEM_KEY
)
3241 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
3243 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
3244 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
3248 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3249 struct btrfs_dir_log_item
);
3250 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
3251 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3252 btrfs_release_path(path
);
3257 * log all the items included in the current transaction for a given
3258 * directory. This also creates the range items in the log tree required
3259 * to replay anything deleted before the fsync
3261 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
3262 struct btrfs_root
*root
, struct inode
*inode
,
3263 struct btrfs_path
*path
,
3264 struct btrfs_path
*dst_path
, int key_type
,
3265 struct btrfs_log_ctx
*ctx
,
3266 u64 min_offset
, u64
*last_offset_ret
)
3268 struct btrfs_key min_key
;
3269 struct btrfs_root
*log
= root
->log_root
;
3270 struct extent_buffer
*src
;
3275 u64 first_offset
= min_offset
;
3276 u64 last_offset
= (u64
)-1;
3277 u64 ino
= btrfs_ino(inode
);
3279 log
= root
->log_root
;
3281 min_key
.objectid
= ino
;
3282 min_key
.type
= key_type
;
3283 min_key
.offset
= min_offset
;
3285 ret
= btrfs_search_forward(root
, &min_key
, path
, trans
->transid
);
3288 * we didn't find anything from this transaction, see if there
3289 * is anything at all
3291 if (ret
!= 0 || min_key
.objectid
!= ino
|| min_key
.type
!= key_type
) {
3292 min_key
.objectid
= ino
;
3293 min_key
.type
= key_type
;
3294 min_key
.offset
= (u64
)-1;
3295 btrfs_release_path(path
);
3296 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3298 btrfs_release_path(path
);
3301 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3303 /* if ret == 0 there are items for this type,
3304 * create a range to tell us the last key of this type.
3305 * otherwise, there are no items in this directory after
3306 * *min_offset, and we create a range to indicate that.
3309 struct btrfs_key tmp
;
3310 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
3312 if (key_type
== tmp
.type
)
3313 first_offset
= max(min_offset
, tmp
.offset
) + 1;
3318 /* go backward to find any previous key */
3319 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3321 struct btrfs_key tmp
;
3322 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3323 if (key_type
== tmp
.type
) {
3324 first_offset
= tmp
.offset
;
3325 ret
= overwrite_item(trans
, log
, dst_path
,
3326 path
->nodes
[0], path
->slots
[0],
3334 btrfs_release_path(path
);
3336 /* find the first key from this transaction again */
3337 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3338 if (WARN_ON(ret
!= 0))
3342 * we have a block from this transaction, log every item in it
3343 * from our directory
3346 struct btrfs_key tmp
;
3347 src
= path
->nodes
[0];
3348 nritems
= btrfs_header_nritems(src
);
3349 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
3350 struct btrfs_dir_item
*di
;
3352 btrfs_item_key_to_cpu(src
, &min_key
, i
);
3354 if (min_key
.objectid
!= ino
|| min_key
.type
!= key_type
)
3356 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
3364 * We must make sure that when we log a directory entry,
3365 * the corresponding inode, after log replay, has a
3366 * matching link count. For example:
3372 * xfs_io -c "fsync" mydir
3374 * <mount fs and log replay>
3376 * Would result in a fsync log that when replayed, our
3377 * file inode would have a link count of 1, but we get
3378 * two directory entries pointing to the same inode.
3379 * After removing one of the names, it would not be
3380 * possible to remove the other name, which resulted
3381 * always in stale file handle errors, and would not
3382 * be possible to rmdir the parent directory, since
3383 * its i_size could never decrement to the value
3384 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3386 di
= btrfs_item_ptr(src
, i
, struct btrfs_dir_item
);
3387 btrfs_dir_item_key_to_cpu(src
, di
, &tmp
);
3389 (btrfs_dir_transid(src
, di
) == trans
->transid
||
3390 btrfs_dir_type(src
, di
) == BTRFS_FT_DIR
) &&
3391 tmp
.type
!= BTRFS_ROOT_ITEM_KEY
)
3392 ctx
->log_new_dentries
= true;
3394 path
->slots
[0] = nritems
;
3397 * look ahead to the next item and see if it is also
3398 * from this directory and from this transaction
3400 ret
= btrfs_next_leaf(root
, path
);
3402 last_offset
= (u64
)-1;
3405 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3406 if (tmp
.objectid
!= ino
|| tmp
.type
!= key_type
) {
3407 last_offset
= (u64
)-1;
3410 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
3411 ret
= overwrite_item(trans
, log
, dst_path
,
3412 path
->nodes
[0], path
->slots
[0],
3417 last_offset
= tmp
.offset
;
3422 btrfs_release_path(path
);
3423 btrfs_release_path(dst_path
);
3426 *last_offset_ret
= last_offset
;
3428 * insert the log range keys to indicate where the log
3431 ret
= insert_dir_log_key(trans
, log
, path
, key_type
,
3432 ino
, first_offset
, last_offset
);
3440 * logging directories is very similar to logging inodes, We find all the items
3441 * from the current transaction and write them to the log.
3443 * The recovery code scans the directory in the subvolume, and if it finds a
3444 * key in the range logged that is not present in the log tree, then it means
3445 * that dir entry was unlinked during the transaction.
3447 * In order for that scan to work, we must include one key smaller than
3448 * the smallest logged by this transaction and one key larger than the largest
3449 * key logged by this transaction.
3451 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
3452 struct btrfs_root
*root
, struct inode
*inode
,
3453 struct btrfs_path
*path
,
3454 struct btrfs_path
*dst_path
,
3455 struct btrfs_log_ctx
*ctx
)
3460 int key_type
= BTRFS_DIR_ITEM_KEY
;
3466 ret
= log_dir_items(trans
, root
, inode
, path
,
3467 dst_path
, key_type
, ctx
, min_key
,
3471 if (max_key
== (u64
)-1)
3473 min_key
= max_key
+ 1;
3476 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
3477 key_type
= BTRFS_DIR_INDEX_KEY
;
3484 * a helper function to drop items from the log before we relog an
3485 * inode. max_key_type indicates the highest item type to remove.
3486 * This cannot be run for file data extents because it does not
3487 * free the extents they point to.
3489 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
3490 struct btrfs_root
*log
,
3491 struct btrfs_path
*path
,
3492 u64 objectid
, int max_key_type
)
3495 struct btrfs_key key
;
3496 struct btrfs_key found_key
;
3499 key
.objectid
= objectid
;
3500 key
.type
= max_key_type
;
3501 key
.offset
= (u64
)-1;
3504 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
3505 BUG_ON(ret
== 0); /* Logic error */
3509 if (path
->slots
[0] == 0)
3513 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3516 if (found_key
.objectid
!= objectid
)
3519 found_key
.offset
= 0;
3521 ret
= btrfs_bin_search(path
->nodes
[0], &found_key
, 0,
3524 ret
= btrfs_del_items(trans
, log
, path
, start_slot
,
3525 path
->slots
[0] - start_slot
+ 1);
3527 * If start slot isn't 0 then we don't need to re-search, we've
3528 * found the last guy with the objectid in this tree.
3530 if (ret
|| start_slot
!= 0)
3532 btrfs_release_path(path
);
3534 btrfs_release_path(path
);
3540 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3541 struct extent_buffer
*leaf
,
3542 struct btrfs_inode_item
*item
,
3543 struct inode
*inode
, int log_inode_only
,
3546 struct btrfs_map_token token
;
3548 btrfs_init_map_token(&token
);
3550 if (log_inode_only
) {
3551 /* set the generation to zero so the recover code
3552 * can tell the difference between an logging
3553 * just to say 'this inode exists' and a logging
3554 * to say 'update this inode with these values'
3556 btrfs_set_token_inode_generation(leaf
, item
, 0, &token
);
3557 btrfs_set_token_inode_size(leaf
, item
, logged_isize
, &token
);
3559 btrfs_set_token_inode_generation(leaf
, item
,
3560 BTRFS_I(inode
)->generation
,
3562 btrfs_set_token_inode_size(leaf
, item
, inode
->i_size
, &token
);
3565 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3566 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3567 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3568 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3570 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3571 inode
->i_atime
.tv_sec
, &token
);
3572 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3573 inode
->i_atime
.tv_nsec
, &token
);
3575 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3576 inode
->i_mtime
.tv_sec
, &token
);
3577 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3578 inode
->i_mtime
.tv_nsec
, &token
);
3580 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3581 inode
->i_ctime
.tv_sec
, &token
);
3582 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3583 inode
->i_ctime
.tv_nsec
, &token
);
3585 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3588 btrfs_set_token_inode_sequence(leaf
, item
, inode
->i_version
, &token
);
3589 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3590 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3591 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3592 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3595 static int log_inode_item(struct btrfs_trans_handle
*trans
,
3596 struct btrfs_root
*log
, struct btrfs_path
*path
,
3597 struct inode
*inode
)
3599 struct btrfs_inode_item
*inode_item
;
3602 ret
= btrfs_insert_empty_item(trans
, log
, path
,
3603 &BTRFS_I(inode
)->location
,
3604 sizeof(*inode_item
));
3605 if (ret
&& ret
!= -EEXIST
)
3607 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3608 struct btrfs_inode_item
);
3609 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
, 0, 0);
3610 btrfs_release_path(path
);
3614 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
3615 struct inode
*inode
,
3616 struct btrfs_path
*dst_path
,
3617 struct btrfs_path
*src_path
, u64
*last_extent
,
3618 int start_slot
, int nr
, int inode_only
,
3621 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3622 unsigned long src_offset
;
3623 unsigned long dst_offset
;
3624 struct btrfs_root
*log
= BTRFS_I(inode
)->root
->log_root
;
3625 struct btrfs_file_extent_item
*extent
;
3626 struct btrfs_inode_item
*inode_item
;
3627 struct extent_buffer
*src
= src_path
->nodes
[0];
3628 struct btrfs_key first_key
, last_key
, key
;
3630 struct btrfs_key
*ins_keys
;
3634 struct list_head ordered_sums
;
3635 int skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
3636 bool has_extents
= false;
3637 bool need_find_last_extent
= true;
3640 INIT_LIST_HEAD(&ordered_sums
);
3642 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
3643 nr
* sizeof(u32
), GFP_NOFS
);
3647 first_key
.objectid
= (u64
)-1;
3649 ins_sizes
= (u32
*)ins_data
;
3650 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
3652 for (i
= 0; i
< nr
; i
++) {
3653 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
3654 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
3656 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
3657 ins_keys
, ins_sizes
, nr
);
3663 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
3664 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
3665 dst_path
->slots
[0]);
3667 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
3669 if ((i
== (nr
- 1)))
3670 last_key
= ins_keys
[i
];
3672 if (ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
3673 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
3675 struct btrfs_inode_item
);
3676 fill_inode_item(trans
, dst_path
->nodes
[0], inode_item
,
3677 inode
, inode_only
== LOG_INODE_EXISTS
,
3680 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
3681 src_offset
, ins_sizes
[i
]);
3685 * We set need_find_last_extent here in case we know we were
3686 * processing other items and then walk into the first extent in
3687 * the inode. If we don't hit an extent then nothing changes,
3688 * we'll do the last search the next time around.
3690 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
) {
3692 if (first_key
.objectid
== (u64
)-1)
3693 first_key
= ins_keys
[i
];
3695 need_find_last_extent
= false;
3698 /* take a reference on file data extents so that truncates
3699 * or deletes of this inode don't have to relog the inode
3702 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
&&
3705 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
3706 struct btrfs_file_extent_item
);
3708 if (btrfs_file_extent_generation(src
, extent
) < trans
->transid
)
3711 found_type
= btrfs_file_extent_type(src
, extent
);
3712 if (found_type
== BTRFS_FILE_EXTENT_REG
) {
3714 ds
= btrfs_file_extent_disk_bytenr(src
,
3716 /* ds == 0 is a hole */
3720 dl
= btrfs_file_extent_disk_num_bytes(src
,
3722 cs
= btrfs_file_extent_offset(src
, extent
);
3723 cl
= btrfs_file_extent_num_bytes(src
,
3725 if (btrfs_file_extent_compression(src
,
3731 ret
= btrfs_lookup_csums_range(
3733 ds
+ cs
, ds
+ cs
+ cl
- 1,
3736 btrfs_release_path(dst_path
);
3744 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
3745 btrfs_release_path(dst_path
);
3749 * we have to do this after the loop above to avoid changing the
3750 * log tree while trying to change the log tree.
3753 while (!list_empty(&ordered_sums
)) {
3754 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
3755 struct btrfs_ordered_sum
,
3758 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
3759 list_del(&sums
->list
);
3766 if (need_find_last_extent
&& *last_extent
== first_key
.offset
) {
3768 * We don't have any leafs between our current one and the one
3769 * we processed before that can have file extent items for our
3770 * inode (and have a generation number smaller than our current
3773 need_find_last_extent
= false;
3777 * Because we use btrfs_search_forward we could skip leaves that were
3778 * not modified and then assume *last_extent is valid when it really
3779 * isn't. So back up to the previous leaf and read the end of the last
3780 * extent before we go and fill in holes.
3782 if (need_find_last_extent
) {
3785 ret
= btrfs_prev_leaf(BTRFS_I(inode
)->root
, src_path
);
3790 if (src_path
->slots
[0])
3791 src_path
->slots
[0]--;
3792 src
= src_path
->nodes
[0];
3793 btrfs_item_key_to_cpu(src
, &key
, src_path
->slots
[0]);
3794 if (key
.objectid
!= btrfs_ino(inode
) ||
3795 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3797 extent
= btrfs_item_ptr(src
, src_path
->slots
[0],
3798 struct btrfs_file_extent_item
);
3799 if (btrfs_file_extent_type(src
, extent
) ==
3800 BTRFS_FILE_EXTENT_INLINE
) {
3801 len
= btrfs_file_extent_inline_len(src
,
3804 *last_extent
= ALIGN(key
.offset
+ len
,
3805 fs_info
->sectorsize
);
3807 len
= btrfs_file_extent_num_bytes(src
, extent
);
3808 *last_extent
= key
.offset
+ len
;
3812 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3813 * things could have happened
3815 * 1) A merge could have happened, so we could currently be on a leaf
3816 * that holds what we were copying in the first place.
3817 * 2) A split could have happened, and now not all of the items we want
3818 * are on the same leaf.
3820 * So we need to adjust how we search for holes, we need to drop the
3821 * path and re-search for the first extent key we found, and then walk
3822 * forward until we hit the last one we copied.
3824 if (need_find_last_extent
) {
3825 /* btrfs_prev_leaf could return 1 without releasing the path */
3826 btrfs_release_path(src_path
);
3827 ret
= btrfs_search_slot(NULL
, BTRFS_I(inode
)->root
, &first_key
,
3832 src
= src_path
->nodes
[0];
3833 i
= src_path
->slots
[0];
3839 * Ok so here we need to go through and fill in any holes we may have
3840 * to make sure that holes are punched for those areas in case they had
3841 * extents previously.
3847 if (i
>= btrfs_header_nritems(src_path
->nodes
[0])) {
3848 ret
= btrfs_next_leaf(BTRFS_I(inode
)->root
, src_path
);
3852 src
= src_path
->nodes
[0];
3856 btrfs_item_key_to_cpu(src
, &key
, i
);
3857 if (!btrfs_comp_cpu_keys(&key
, &last_key
))
3859 if (key
.objectid
!= btrfs_ino(inode
) ||
3860 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
3864 extent
= btrfs_item_ptr(src
, i
, struct btrfs_file_extent_item
);
3865 if (btrfs_file_extent_type(src
, extent
) ==
3866 BTRFS_FILE_EXTENT_INLINE
) {
3867 len
= btrfs_file_extent_inline_len(src
, i
, extent
);
3868 extent_end
= ALIGN(key
.offset
+ len
,
3869 fs_info
->sectorsize
);
3871 len
= btrfs_file_extent_num_bytes(src
, extent
);
3872 extent_end
= key
.offset
+ len
;
3876 if (*last_extent
== key
.offset
) {
3877 *last_extent
= extent_end
;
3880 offset
= *last_extent
;
3881 len
= key
.offset
- *last_extent
;
3882 ret
= btrfs_insert_file_extent(trans
, log
, btrfs_ino(inode
),
3883 offset
, 0, 0, len
, 0, len
, 0,
3887 *last_extent
= extent_end
;
3890 * Need to let the callers know we dropped the path so they should
3893 if (!ret
&& need_find_last_extent
)
3898 static int extent_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3900 struct extent_map
*em1
, *em2
;
3902 em1
= list_entry(a
, struct extent_map
, list
);
3903 em2
= list_entry(b
, struct extent_map
, list
);
3905 if (em1
->start
< em2
->start
)
3907 else if (em1
->start
> em2
->start
)
3912 static int wait_ordered_extents(struct btrfs_trans_handle
*trans
,
3913 struct inode
*inode
,
3914 struct btrfs_root
*root
,
3915 const struct extent_map
*em
,
3916 const struct list_head
*logged_list
,
3917 bool *ordered_io_error
)
3919 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3920 struct btrfs_ordered_extent
*ordered
;
3921 struct btrfs_root
*log
= root
->log_root
;
3922 u64 mod_start
= em
->mod_start
;
3923 u64 mod_len
= em
->mod_len
;
3924 const bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
3927 LIST_HEAD(ordered_sums
);
3930 *ordered_io_error
= false;
3932 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
3933 em
->block_start
== EXTENT_MAP_HOLE
)
3937 * Wait far any ordered extent that covers our extent map. If it
3938 * finishes without an error, first check and see if our csums are on
3939 * our outstanding ordered extents.
3941 list_for_each_entry(ordered
, logged_list
, log_list
) {
3942 struct btrfs_ordered_sum
*sum
;
3947 if (ordered
->file_offset
+ ordered
->len
<= mod_start
||
3948 mod_start
+ mod_len
<= ordered
->file_offset
)
3951 if (!test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) &&
3952 !test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
) &&
3953 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
)) {
3954 const u64 start
= ordered
->file_offset
;
3955 const u64 end
= ordered
->file_offset
+ ordered
->len
- 1;
3957 WARN_ON(ordered
->inode
!= inode
);
3958 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
3961 wait_event(ordered
->wait
,
3962 (test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) ||
3963 test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
)));
3965 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
)) {
3967 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3968 * i_mapping flags, so that the next fsync won't get
3969 * an outdated io error too.
3971 filemap_check_errors(inode
->i_mapping
);
3972 *ordered_io_error
= true;
3976 * We are going to copy all the csums on this ordered extent, so
3977 * go ahead and adjust mod_start and mod_len in case this
3978 * ordered extent has already been logged.
3980 if (ordered
->file_offset
> mod_start
) {
3981 if (ordered
->file_offset
+ ordered
->len
>=
3982 mod_start
+ mod_len
)
3983 mod_len
= ordered
->file_offset
- mod_start
;
3985 * If we have this case
3987 * |--------- logged extent ---------|
3988 * |----- ordered extent ----|
3990 * Just don't mess with mod_start and mod_len, we'll
3991 * just end up logging more csums than we need and it
3995 if (ordered
->file_offset
+ ordered
->len
<
3996 mod_start
+ mod_len
) {
3997 mod_len
= (mod_start
+ mod_len
) -
3998 (ordered
->file_offset
+ ordered
->len
);
3999 mod_start
= ordered
->file_offset
+
4010 * To keep us from looping for the above case of an ordered
4011 * extent that falls inside of the logged extent.
4013 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM
,
4017 list_for_each_entry(sum
, &ordered
->list
, list
) {
4018 ret
= btrfs_csum_file_blocks(trans
, log
, sum
);
4024 if (*ordered_io_error
|| !mod_len
|| ret
|| skip_csum
)
4027 if (em
->compress_type
) {
4029 csum_len
= max(em
->block_len
, em
->orig_block_len
);
4031 csum_offset
= mod_start
- em
->start
;
4035 /* block start is already adjusted for the file extent offset. */
4036 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
,
4037 em
->block_start
+ csum_offset
,
4038 em
->block_start
+ csum_offset
+
4039 csum_len
- 1, &ordered_sums
, 0);
4043 while (!list_empty(&ordered_sums
)) {
4044 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
4045 struct btrfs_ordered_sum
,
4048 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
4049 list_del(&sums
->list
);
4056 static int log_one_extent(struct btrfs_trans_handle
*trans
,
4057 struct inode
*inode
, struct btrfs_root
*root
,
4058 const struct extent_map
*em
,
4059 struct btrfs_path
*path
,
4060 const struct list_head
*logged_list
,
4061 struct btrfs_log_ctx
*ctx
)
4063 struct btrfs_root
*log
= root
->log_root
;
4064 struct btrfs_file_extent_item
*fi
;
4065 struct extent_buffer
*leaf
;
4066 struct btrfs_map_token token
;
4067 struct btrfs_key key
;
4068 u64 extent_offset
= em
->start
- em
->orig_start
;
4071 int extent_inserted
= 0;
4072 bool ordered_io_err
= false;
4074 ret
= wait_ordered_extents(trans
, inode
, root
, em
, logged_list
,
4079 if (ordered_io_err
) {
4084 btrfs_init_map_token(&token
);
4086 ret
= __btrfs_drop_extents(trans
, log
, inode
, path
, em
->start
,
4087 em
->start
+ em
->len
, NULL
, 0, 1,
4088 sizeof(*fi
), &extent_inserted
);
4092 if (!extent_inserted
) {
4093 key
.objectid
= btrfs_ino(inode
);
4094 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4095 key
.offset
= em
->start
;
4097 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
,
4102 leaf
= path
->nodes
[0];
4103 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4104 struct btrfs_file_extent_item
);
4106 btrfs_set_token_file_extent_generation(leaf
, fi
, trans
->transid
,
4108 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
4109 btrfs_set_token_file_extent_type(leaf
, fi
,
4110 BTRFS_FILE_EXTENT_PREALLOC
,
4113 btrfs_set_token_file_extent_type(leaf
, fi
,
4114 BTRFS_FILE_EXTENT_REG
,
4117 block_len
= max(em
->block_len
, em
->orig_block_len
);
4118 if (em
->compress_type
!= BTRFS_COMPRESS_NONE
) {
4119 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4122 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4124 } else if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
4125 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4127 extent_offset
, &token
);
4128 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4131 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
, 0, &token
);
4132 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, 0,
4136 btrfs_set_token_file_extent_offset(leaf
, fi
, extent_offset
, &token
);
4137 btrfs_set_token_file_extent_num_bytes(leaf
, fi
, em
->len
, &token
);
4138 btrfs_set_token_file_extent_ram_bytes(leaf
, fi
, em
->ram_bytes
, &token
);
4139 btrfs_set_token_file_extent_compression(leaf
, fi
, em
->compress_type
,
4141 btrfs_set_token_file_extent_encryption(leaf
, fi
, 0, &token
);
4142 btrfs_set_token_file_extent_other_encoding(leaf
, fi
, 0, &token
);
4143 btrfs_mark_buffer_dirty(leaf
);
4145 btrfs_release_path(path
);
4150 static int btrfs_log_changed_extents(struct btrfs_trans_handle
*trans
,
4151 struct btrfs_root
*root
,
4152 struct inode
*inode
,
4153 struct btrfs_path
*path
,
4154 struct list_head
*logged_list
,
4155 struct btrfs_log_ctx
*ctx
,
4159 struct extent_map
*em
, *n
;
4160 struct list_head extents
;
4161 struct extent_map_tree
*tree
= &BTRFS_I(inode
)->extent_tree
;
4166 INIT_LIST_HEAD(&extents
);
4168 down_write(&BTRFS_I(inode
)->dio_sem
);
4169 write_lock(&tree
->lock
);
4170 test_gen
= root
->fs_info
->last_trans_committed
;
4172 list_for_each_entry_safe(em
, n
, &tree
->modified_extents
, list
) {
4173 list_del_init(&em
->list
);
4176 * Just an arbitrary number, this can be really CPU intensive
4177 * once we start getting a lot of extents, and really once we
4178 * have a bunch of extents we just want to commit since it will
4181 if (++num
> 32768) {
4182 list_del_init(&tree
->modified_extents
);
4187 if (em
->generation
<= test_gen
)
4189 /* Need a ref to keep it from getting evicted from cache */
4190 atomic_inc(&em
->refs
);
4191 set_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
4192 list_add_tail(&em
->list
, &extents
);
4196 list_sort(NULL
, &extents
, extent_cmp
);
4197 btrfs_get_logged_extents(inode
, logged_list
, start
, end
);
4199 * Some ordered extents started by fsync might have completed
4200 * before we could collect them into the list logged_list, which
4201 * means they're gone, not in our logged_list nor in the inode's
4202 * ordered tree. We want the application/user space to know an
4203 * error happened while attempting to persist file data so that
4204 * it can take proper action. If such error happened, we leave
4205 * without writing to the log tree and the fsync must report the
4206 * file data write error and not commit the current transaction.
4208 ret
= filemap_check_errors(inode
->i_mapping
);
4212 while (!list_empty(&extents
)) {
4213 em
= list_entry(extents
.next
, struct extent_map
, list
);
4215 list_del_init(&em
->list
);
4218 * If we had an error we just need to delete everybody from our
4222 clear_em_logging(tree
, em
);
4223 free_extent_map(em
);
4227 write_unlock(&tree
->lock
);
4229 ret
= log_one_extent(trans
, inode
, root
, em
, path
, logged_list
,
4231 write_lock(&tree
->lock
);
4232 clear_em_logging(tree
, em
);
4233 free_extent_map(em
);
4235 WARN_ON(!list_empty(&extents
));
4236 write_unlock(&tree
->lock
);
4237 up_write(&BTRFS_I(inode
)->dio_sem
);
4239 btrfs_release_path(path
);
4243 static int logged_inode_size(struct btrfs_root
*log
, struct inode
*inode
,
4244 struct btrfs_path
*path
, u64
*size_ret
)
4246 struct btrfs_key key
;
4249 key
.objectid
= btrfs_ino(inode
);
4250 key
.type
= BTRFS_INODE_ITEM_KEY
;
4253 ret
= btrfs_search_slot(NULL
, log
, &key
, path
, 0, 0);
4256 } else if (ret
> 0) {
4259 struct btrfs_inode_item
*item
;
4261 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4262 struct btrfs_inode_item
);
4263 *size_ret
= btrfs_inode_size(path
->nodes
[0], item
);
4266 btrfs_release_path(path
);
4271 * At the moment we always log all xattrs. This is to figure out at log replay
4272 * time which xattrs must have their deletion replayed. If a xattr is missing
4273 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4274 * because if a xattr is deleted, the inode is fsynced and a power failure
4275 * happens, causing the log to be replayed the next time the fs is mounted,
4276 * we want the xattr to not exist anymore (same behaviour as other filesystems
4277 * with a journal, ext3/4, xfs, f2fs, etc).
4279 static int btrfs_log_all_xattrs(struct btrfs_trans_handle
*trans
,
4280 struct btrfs_root
*root
,
4281 struct inode
*inode
,
4282 struct btrfs_path
*path
,
4283 struct btrfs_path
*dst_path
)
4286 struct btrfs_key key
;
4287 const u64 ino
= btrfs_ino(inode
);
4292 key
.type
= BTRFS_XATTR_ITEM_KEY
;
4295 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4300 int slot
= path
->slots
[0];
4301 struct extent_buffer
*leaf
= path
->nodes
[0];
4302 int nritems
= btrfs_header_nritems(leaf
);
4304 if (slot
>= nritems
) {
4306 u64 last_extent
= 0;
4308 ret
= copy_items(trans
, inode
, dst_path
, path
,
4309 &last_extent
, start_slot
,
4311 /* can't be 1, extent items aren't processed */
4317 ret
= btrfs_next_leaf(root
, path
);
4325 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4326 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
)
4336 u64 last_extent
= 0;
4338 ret
= copy_items(trans
, inode
, dst_path
, path
,
4339 &last_extent
, start_slot
,
4341 /* can't be 1, extent items aren't processed */
4351 * If the no holes feature is enabled we need to make sure any hole between the
4352 * last extent and the i_size of our inode is explicitly marked in the log. This
4353 * is to make sure that doing something like:
4355 * 1) create file with 128Kb of data
4356 * 2) truncate file to 64Kb
4357 * 3) truncate file to 256Kb
4359 * 5) <crash/power failure>
4360 * 6) mount fs and trigger log replay
4362 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4363 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4364 * file correspond to a hole. The presence of explicit holes in a log tree is
4365 * what guarantees that log replay will remove/adjust file extent items in the
4368 * Here we do not need to care about holes between extents, that is already done
4369 * by copy_items(). We also only need to do this in the full sync path, where we
4370 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4371 * lookup the list of modified extent maps and if any represents a hole, we
4372 * insert a corresponding extent representing a hole in the log tree.
4374 static int btrfs_log_trailing_hole(struct btrfs_trans_handle
*trans
,
4375 struct btrfs_root
*root
,
4376 struct inode
*inode
,
4377 struct btrfs_path
*path
)
4379 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4381 struct btrfs_key key
;
4384 struct extent_buffer
*leaf
;
4385 struct btrfs_root
*log
= root
->log_root
;
4386 const u64 ino
= btrfs_ino(inode
);
4387 const u64 i_size
= i_size_read(inode
);
4389 if (!btrfs_fs_incompat(fs_info
, NO_HOLES
))
4393 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4394 key
.offset
= (u64
)-1;
4396 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4401 ASSERT(path
->slots
[0] > 0);
4403 leaf
= path
->nodes
[0];
4404 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4406 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
4407 /* inode does not have any extents */
4411 struct btrfs_file_extent_item
*extent
;
4415 * If there's an extent beyond i_size, an explicit hole was
4416 * already inserted by copy_items().
4418 if (key
.offset
>= i_size
)
4421 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
4422 struct btrfs_file_extent_item
);
4424 if (btrfs_file_extent_type(leaf
, extent
) ==
4425 BTRFS_FILE_EXTENT_INLINE
) {
4426 len
= btrfs_file_extent_inline_len(leaf
,
4429 ASSERT(len
== i_size
);
4433 len
= btrfs_file_extent_num_bytes(leaf
, extent
);
4434 /* Last extent goes beyond i_size, no need to log a hole. */
4435 if (key
.offset
+ len
> i_size
)
4437 hole_start
= key
.offset
+ len
;
4438 hole_size
= i_size
- hole_start
;
4440 btrfs_release_path(path
);
4442 /* Last extent ends at i_size. */
4446 hole_size
= ALIGN(hole_size
, fs_info
->sectorsize
);
4447 ret
= btrfs_insert_file_extent(trans
, log
, ino
, hole_start
, 0, 0,
4448 hole_size
, 0, hole_size
, 0, 0, 0);
4453 * When we are logging a new inode X, check if it doesn't have a reference that
4454 * matches the reference from some other inode Y created in a past transaction
4455 * and that was renamed in the current transaction. If we don't do this, then at
4456 * log replay time we can lose inode Y (and all its files if it's a directory):
4459 * echo "hello world" > /mnt/x/foobar
4462 * mkdir /mnt/x # or touch /mnt/x
4463 * xfs_io -c fsync /mnt/x
4465 * mount fs, trigger log replay
4467 * After the log replay procedure, we would lose the first directory and all its
4468 * files (file foobar).
4469 * For the case where inode Y is not a directory we simply end up losing it:
4471 * echo "123" > /mnt/foo
4473 * mv /mnt/foo /mnt/bar
4474 * echo "abc" > /mnt/foo
4475 * xfs_io -c fsync /mnt/foo
4478 * We also need this for cases where a snapshot entry is replaced by some other
4479 * entry (file or directory) otherwise we end up with an unreplayable log due to
4480 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4481 * if it were a regular entry:
4484 * btrfs subvolume snapshot /mnt /mnt/x/snap
4485 * btrfs subvolume delete /mnt/x/snap
4488 * fsync /mnt/x or fsync some new file inside it
4491 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4492 * the same transaction.
4494 static int btrfs_check_ref_name_override(struct extent_buffer
*eb
,
4496 const struct btrfs_key
*key
,
4497 struct inode
*inode
,
4501 struct btrfs_path
*search_path
;
4504 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
4506 unsigned long ptr
= btrfs_item_ptr_offset(eb
, slot
);
4508 search_path
= btrfs_alloc_path();
4511 search_path
->search_commit_root
= 1;
4512 search_path
->skip_locking
= 1;
4514 while (cur_offset
< item_size
) {
4518 unsigned long name_ptr
;
4519 struct btrfs_dir_item
*di
;
4521 if (key
->type
== BTRFS_INODE_REF_KEY
) {
4522 struct btrfs_inode_ref
*iref
;
4524 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur_offset
);
4525 parent
= key
->offset
;
4526 this_name_len
= btrfs_inode_ref_name_len(eb
, iref
);
4527 name_ptr
= (unsigned long)(iref
+ 1);
4528 this_len
= sizeof(*iref
) + this_name_len
;
4530 struct btrfs_inode_extref
*extref
;
4532 extref
= (struct btrfs_inode_extref
*)(ptr
+
4534 parent
= btrfs_inode_extref_parent(eb
, extref
);
4535 this_name_len
= btrfs_inode_extref_name_len(eb
, extref
);
4536 name_ptr
= (unsigned long)&extref
->name
;
4537 this_len
= sizeof(*extref
) + this_name_len
;
4540 if (this_name_len
> name_len
) {
4543 new_name
= krealloc(name
, this_name_len
, GFP_NOFS
);
4548 name_len
= this_name_len
;
4552 read_extent_buffer(eb
, name
, name_ptr
, this_name_len
);
4553 di
= btrfs_lookup_dir_item(NULL
, BTRFS_I(inode
)->root
,
4554 search_path
, parent
,
4555 name
, this_name_len
, 0);
4556 if (di
&& !IS_ERR(di
)) {
4557 struct btrfs_key di_key
;
4559 btrfs_dir_item_key_to_cpu(search_path
->nodes
[0],
4561 if (di_key
.type
== BTRFS_INODE_ITEM_KEY
) {
4563 *other_ino
= di_key
.objectid
;
4568 } else if (IS_ERR(di
)) {
4572 btrfs_release_path(search_path
);
4574 cur_offset
+= this_len
;
4578 btrfs_free_path(search_path
);
4583 /* log a single inode in the tree log.
4584 * At least one parent directory for this inode must exist in the tree
4585 * or be logged already.
4587 * Any items from this inode changed by the current transaction are copied
4588 * to the log tree. An extra reference is taken on any extents in this
4589 * file, allowing us to avoid a whole pile of corner cases around logging
4590 * blocks that have been removed from the tree.
4592 * See LOG_INODE_ALL and related defines for a description of what inode_only
4595 * This handles both files and directories.
4597 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
4598 struct btrfs_root
*root
, struct inode
*inode
,
4602 struct btrfs_log_ctx
*ctx
)
4604 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4605 struct btrfs_path
*path
;
4606 struct btrfs_path
*dst_path
;
4607 struct btrfs_key min_key
;
4608 struct btrfs_key max_key
;
4609 struct btrfs_root
*log
= root
->log_root
;
4610 struct extent_buffer
*src
= NULL
;
4611 LIST_HEAD(logged_list
);
4612 u64 last_extent
= 0;
4616 int ins_start_slot
= 0;
4618 bool fast_search
= false;
4619 u64 ino
= btrfs_ino(inode
);
4620 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4621 u64 logged_isize
= 0;
4622 bool need_log_inode_item
= true;
4624 path
= btrfs_alloc_path();
4627 dst_path
= btrfs_alloc_path();
4629 btrfs_free_path(path
);
4633 min_key
.objectid
= ino
;
4634 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
4637 max_key
.objectid
= ino
;
4640 /* today the code can only do partial logging of directories */
4641 if (S_ISDIR(inode
->i_mode
) ||
4642 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4643 &BTRFS_I(inode
)->runtime_flags
) &&
4644 inode_only
== LOG_INODE_EXISTS
))
4645 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4647 max_key
.type
= (u8
)-1;
4648 max_key
.offset
= (u64
)-1;
4651 * Only run delayed items if we are a dir or a new file.
4652 * Otherwise commit the delayed inode only, which is needed in
4653 * order for the log replay code to mark inodes for link count
4654 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4656 if (S_ISDIR(inode
->i_mode
) ||
4657 BTRFS_I(inode
)->generation
> fs_info
->last_trans_committed
)
4658 ret
= btrfs_commit_inode_delayed_items(trans
, inode
);
4660 ret
= btrfs_commit_inode_delayed_inode(inode
);
4663 btrfs_free_path(path
);
4664 btrfs_free_path(dst_path
);
4668 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
4671 * a brute force approach to making sure we get the most uptodate
4672 * copies of everything.
4674 if (S_ISDIR(inode
->i_mode
)) {
4675 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
4677 if (inode_only
== LOG_INODE_EXISTS
)
4678 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
4679 ret
= drop_objectid_items(trans
, log
, path
, ino
, max_key_type
);
4681 if (inode_only
== LOG_INODE_EXISTS
) {
4683 * Make sure the new inode item we write to the log has
4684 * the same isize as the current one (if it exists).
4685 * This is necessary to prevent data loss after log
4686 * replay, and also to prevent doing a wrong expanding
4687 * truncate - for e.g. create file, write 4K into offset
4688 * 0, fsync, write 4K into offset 4096, add hard link,
4689 * fsync some other file (to sync log), power fail - if
4690 * we use the inode's current i_size, after log replay
4691 * we get a 8Kb file, with the last 4Kb extent as a hole
4692 * (zeroes), as if an expanding truncate happened,
4693 * instead of getting a file of 4Kb only.
4695 err
= logged_inode_size(log
, inode
, path
,
4700 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4701 &BTRFS_I(inode
)->runtime_flags
)) {
4702 if (inode_only
== LOG_INODE_EXISTS
) {
4703 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4704 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4707 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4708 &BTRFS_I(inode
)->runtime_flags
);
4709 clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4710 &BTRFS_I(inode
)->runtime_flags
);
4712 ret
= btrfs_truncate_inode_items(trans
,
4718 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4719 &BTRFS_I(inode
)->runtime_flags
) ||
4720 inode_only
== LOG_INODE_EXISTS
) {
4721 if (inode_only
== LOG_INODE_ALL
)
4723 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4724 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4727 if (inode_only
== LOG_INODE_ALL
)
4740 ret
= btrfs_search_forward(root
, &min_key
,
4741 path
, trans
->transid
);
4749 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4750 if (min_key
.objectid
!= ino
)
4752 if (min_key
.type
> max_key
.type
)
4755 if (min_key
.type
== BTRFS_INODE_ITEM_KEY
)
4756 need_log_inode_item
= false;
4758 if ((min_key
.type
== BTRFS_INODE_REF_KEY
||
4759 min_key
.type
== BTRFS_INODE_EXTREF_KEY
) &&
4760 BTRFS_I(inode
)->generation
== trans
->transid
) {
4763 ret
= btrfs_check_ref_name_override(path
->nodes
[0],
4770 } else if (ret
> 0 && ctx
&&
4771 other_ino
!= btrfs_ino(ctx
->inode
)) {
4772 struct btrfs_key inode_key
;
4773 struct inode
*other_inode
;
4779 ins_start_slot
= path
->slots
[0];
4781 ret
= copy_items(trans
, inode
, dst_path
, path
,
4782 &last_extent
, ins_start_slot
,
4790 btrfs_release_path(path
);
4791 inode_key
.objectid
= other_ino
;
4792 inode_key
.type
= BTRFS_INODE_ITEM_KEY
;
4793 inode_key
.offset
= 0;
4794 other_inode
= btrfs_iget(fs_info
->sb
,
4798 * If the other inode that had a conflicting dir
4799 * entry was deleted in the current transaction,
4800 * we don't need to do more work nor fallback to
4801 * a transaction commit.
4803 if (IS_ERR(other_inode
) &&
4804 PTR_ERR(other_inode
) == -ENOENT
) {
4806 } else if (IS_ERR(other_inode
)) {
4807 err
= PTR_ERR(other_inode
);
4811 * We are safe logging the other inode without
4812 * acquiring its i_mutex as long as we log with
4813 * the LOG_INODE_EXISTS mode. We're safe against
4814 * concurrent renames of the other inode as well
4815 * because during a rename we pin the log and
4816 * update the log with the new name before we
4819 err
= btrfs_log_inode(trans
, root
, other_inode
,
4830 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4831 if (min_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
4834 ret
= copy_items(trans
, inode
, dst_path
, path
,
4835 &last_extent
, ins_start_slot
,
4836 ins_nr
, inode_only
, logged_isize
);
4843 btrfs_release_path(path
);
4849 src
= path
->nodes
[0];
4850 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
4853 } else if (!ins_nr
) {
4854 ins_start_slot
= path
->slots
[0];
4859 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
4860 ins_start_slot
, ins_nr
, inode_only
,
4868 btrfs_release_path(path
);
4872 ins_start_slot
= path
->slots
[0];
4875 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4877 if (path
->slots
[0] < nritems
) {
4878 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
4883 ret
= copy_items(trans
, inode
, dst_path
, path
,
4884 &last_extent
, ins_start_slot
,
4885 ins_nr
, inode_only
, logged_isize
);
4893 btrfs_release_path(path
);
4895 if (min_key
.offset
< (u64
)-1) {
4897 } else if (min_key
.type
< max_key
.type
) {
4905 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
4906 ins_start_slot
, ins_nr
, inode_only
,
4916 btrfs_release_path(path
);
4917 btrfs_release_path(dst_path
);
4918 err
= btrfs_log_all_xattrs(trans
, root
, inode
, path
, dst_path
);
4921 if (max_key
.type
>= BTRFS_EXTENT_DATA_KEY
&& !fast_search
) {
4922 btrfs_release_path(path
);
4923 btrfs_release_path(dst_path
);
4924 err
= btrfs_log_trailing_hole(trans
, root
, inode
, path
);
4929 btrfs_release_path(path
);
4930 btrfs_release_path(dst_path
);
4931 if (need_log_inode_item
) {
4932 err
= log_inode_item(trans
, log
, dst_path
, inode
);
4937 ret
= btrfs_log_changed_extents(trans
, root
, inode
, dst_path
,
4938 &logged_list
, ctx
, start
, end
);
4943 } else if (inode_only
== LOG_INODE_ALL
) {
4944 struct extent_map
*em
, *n
;
4946 write_lock(&em_tree
->lock
);
4948 * We can't just remove every em if we're called for a ranged
4949 * fsync - that is, one that doesn't cover the whole possible
4950 * file range (0 to LLONG_MAX). This is because we can have
4951 * em's that fall outside the range we're logging and therefore
4952 * their ordered operations haven't completed yet
4953 * (btrfs_finish_ordered_io() not invoked yet). This means we
4954 * didn't get their respective file extent item in the fs/subvol
4955 * tree yet, and need to let the next fast fsync (one which
4956 * consults the list of modified extent maps) find the em so
4957 * that it logs a matching file extent item and waits for the
4958 * respective ordered operation to complete (if it's still
4961 * Removing every em outside the range we're logging would make
4962 * the next fast fsync not log their matching file extent items,
4963 * therefore making us lose data after a log replay.
4965 list_for_each_entry_safe(em
, n
, &em_tree
->modified_extents
,
4967 const u64 mod_end
= em
->mod_start
+ em
->mod_len
- 1;
4969 if (em
->mod_start
>= start
&& mod_end
<= end
)
4970 list_del_init(&em
->list
);
4972 write_unlock(&em_tree
->lock
);
4975 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->i_mode
)) {
4976 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
,
4984 spin_lock(&BTRFS_I(inode
)->lock
);
4985 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
4986 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->last_sub_trans
;
4987 spin_unlock(&BTRFS_I(inode
)->lock
);
4990 btrfs_put_logged_extents(&logged_list
);
4992 btrfs_submit_logged_extents(&logged_list
, log
);
4993 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
4995 btrfs_free_path(path
);
4996 btrfs_free_path(dst_path
);
5001 * Check if we must fallback to a transaction commit when logging an inode.
5002 * This must be called after logging the inode and is used only in the context
5003 * when fsyncing an inode requires the need to log some other inode - in which
5004 * case we can't lock the i_mutex of each other inode we need to log as that
5005 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5006 * log inodes up or down in the hierarchy) or rename operations for example. So
5007 * we take the log_mutex of the inode after we have logged it and then check for
5008 * its last_unlink_trans value - this is safe because any task setting
5009 * last_unlink_trans must take the log_mutex and it must do this before it does
5010 * the actual unlink operation, so if we do this check before a concurrent task
5011 * sets last_unlink_trans it means we've logged a consistent version/state of
5012 * all the inode items, otherwise we are not sure and must do a transaction
5013 * commit (the concurrent task might have only updated last_unlink_trans before
5014 * we logged the inode or it might have also done the unlink).
5016 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle
*trans
,
5017 struct inode
*inode
)
5019 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
5022 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
5023 if (BTRFS_I(inode
)->last_unlink_trans
> fs_info
->last_trans_committed
) {
5025 * Make sure any commits to the log are forced to be full
5028 btrfs_set_log_full_commit(fs_info
, trans
);
5031 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
5037 * follow the dentry parent pointers up the chain and see if any
5038 * of the directories in it require a full commit before they can
5039 * be logged. Returns zero if nothing special needs to be done or 1 if
5040 * a full commit is required.
5042 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
5043 struct inode
*inode
,
5044 struct dentry
*parent
,
5045 struct super_block
*sb
,
5049 struct dentry
*old_parent
= NULL
;
5050 struct inode
*orig_inode
= inode
;
5053 * for regular files, if its inode is already on disk, we don't
5054 * have to worry about the parents at all. This is because
5055 * we can use the last_unlink_trans field to record renames
5056 * and other fun in this file.
5058 if (S_ISREG(inode
->i_mode
) &&
5059 BTRFS_I(inode
)->generation
<= last_committed
&&
5060 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
5063 if (!S_ISDIR(inode
->i_mode
)) {
5064 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5066 inode
= d_inode(parent
);
5071 * If we are logging a directory then we start with our inode,
5072 * not our parent's inode, so we need to skip setting the
5073 * logged_trans so that further down in the log code we don't
5074 * think this inode has already been logged.
5076 if (inode
!= orig_inode
)
5077 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
5080 if (btrfs_must_commit_transaction(trans
, inode
)) {
5085 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5088 if (IS_ROOT(parent
)) {
5089 inode
= d_inode(parent
);
5090 if (btrfs_must_commit_transaction(trans
, inode
))
5095 parent
= dget_parent(parent
);
5097 old_parent
= parent
;
5098 inode
= d_inode(parent
);
5106 struct btrfs_dir_list
{
5108 struct list_head list
;
5112 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5113 * details about the why it is needed.
5114 * This is a recursive operation - if an existing dentry corresponds to a
5115 * directory, that directory's new entries are logged too (same behaviour as
5116 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5117 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5118 * complains about the following circular lock dependency / possible deadlock:
5122 * lock(&type->i_mutex_dir_key#3/2);
5123 * lock(sb_internal#2);
5124 * lock(&type->i_mutex_dir_key#3/2);
5125 * lock(&sb->s_type->i_mutex_key#14);
5127 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5128 * sb_start_intwrite() in btrfs_start_transaction().
5129 * Not locking i_mutex of the inodes is still safe because:
5131 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5132 * that while logging the inode new references (names) are added or removed
5133 * from the inode, leaving the logged inode item with a link count that does
5134 * not match the number of logged inode reference items. This is fine because
5135 * at log replay time we compute the real number of links and correct the
5136 * link count in the inode item (see replay_one_buffer() and
5137 * link_to_fixup_dir());
5139 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5140 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5141 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5142 * has a size that doesn't match the sum of the lengths of all the logged
5143 * names. This does not result in a problem because if a dir_item key is
5144 * logged but its matching dir_index key is not logged, at log replay time we
5145 * don't use it to replay the respective name (see replay_one_name()). On the
5146 * other hand if only the dir_index key ends up being logged, the respective
5147 * name is added to the fs/subvol tree with both the dir_item and dir_index
5148 * keys created (see replay_one_name()).
5149 * The directory's inode item with a wrong i_size is not a problem as well,
5150 * since we don't use it at log replay time to set the i_size in the inode
5151 * item of the fs/subvol tree (see overwrite_item()).
5153 static int log_new_dir_dentries(struct btrfs_trans_handle
*trans
,
5154 struct btrfs_root
*root
,
5155 struct inode
*start_inode
,
5156 struct btrfs_log_ctx
*ctx
)
5158 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5159 struct btrfs_root
*log
= root
->log_root
;
5160 struct btrfs_path
*path
;
5161 LIST_HEAD(dir_list
);
5162 struct btrfs_dir_list
*dir_elem
;
5165 path
= btrfs_alloc_path();
5169 dir_elem
= kmalloc(sizeof(*dir_elem
), GFP_NOFS
);
5171 btrfs_free_path(path
);
5174 dir_elem
->ino
= btrfs_ino(start_inode
);
5175 list_add_tail(&dir_elem
->list
, &dir_list
);
5177 while (!list_empty(&dir_list
)) {
5178 struct extent_buffer
*leaf
;
5179 struct btrfs_key min_key
;
5183 dir_elem
= list_first_entry(&dir_list
, struct btrfs_dir_list
,
5186 goto next_dir_inode
;
5188 min_key
.objectid
= dir_elem
->ino
;
5189 min_key
.type
= BTRFS_DIR_ITEM_KEY
;
5192 btrfs_release_path(path
);
5193 ret
= btrfs_search_forward(log
, &min_key
, path
, trans
->transid
);
5195 goto next_dir_inode
;
5196 } else if (ret
> 0) {
5198 goto next_dir_inode
;
5202 leaf
= path
->nodes
[0];
5203 nritems
= btrfs_header_nritems(leaf
);
5204 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
5205 struct btrfs_dir_item
*di
;
5206 struct btrfs_key di_key
;
5207 struct inode
*di_inode
;
5208 struct btrfs_dir_list
*new_dir_elem
;
5209 int log_mode
= LOG_INODE_EXISTS
;
5212 btrfs_item_key_to_cpu(leaf
, &min_key
, i
);
5213 if (min_key
.objectid
!= dir_elem
->ino
||
5214 min_key
.type
!= BTRFS_DIR_ITEM_KEY
)
5215 goto next_dir_inode
;
5217 di
= btrfs_item_ptr(leaf
, i
, struct btrfs_dir_item
);
5218 type
= btrfs_dir_type(leaf
, di
);
5219 if (btrfs_dir_transid(leaf
, di
) < trans
->transid
&&
5220 type
!= BTRFS_FT_DIR
)
5222 btrfs_dir_item_key_to_cpu(leaf
, di
, &di_key
);
5223 if (di_key
.type
== BTRFS_ROOT_ITEM_KEY
)
5226 btrfs_release_path(path
);
5227 di_inode
= btrfs_iget(fs_info
->sb
, &di_key
, root
, NULL
);
5228 if (IS_ERR(di_inode
)) {
5229 ret
= PTR_ERR(di_inode
);
5230 goto next_dir_inode
;
5233 if (btrfs_inode_in_log(di_inode
, trans
->transid
)) {
5238 ctx
->log_new_dentries
= false;
5239 if (type
== BTRFS_FT_DIR
|| type
== BTRFS_FT_SYMLINK
)
5240 log_mode
= LOG_INODE_ALL
;
5241 ret
= btrfs_log_inode(trans
, root
, di_inode
,
5242 log_mode
, 0, LLONG_MAX
, ctx
);
5244 btrfs_must_commit_transaction(trans
, di_inode
))
5248 goto next_dir_inode
;
5249 if (ctx
->log_new_dentries
) {
5250 new_dir_elem
= kmalloc(sizeof(*new_dir_elem
),
5252 if (!new_dir_elem
) {
5254 goto next_dir_inode
;
5256 new_dir_elem
->ino
= di_key
.objectid
;
5257 list_add_tail(&new_dir_elem
->list
, &dir_list
);
5262 ret
= btrfs_next_leaf(log
, path
);
5264 goto next_dir_inode
;
5265 } else if (ret
> 0) {
5267 goto next_dir_inode
;
5271 if (min_key
.offset
< (u64
)-1) {
5276 list_del(&dir_elem
->list
);
5280 btrfs_free_path(path
);
5284 static int btrfs_log_all_parents(struct btrfs_trans_handle
*trans
,
5285 struct inode
*inode
,
5286 struct btrfs_log_ctx
*ctx
)
5288 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5290 struct btrfs_path
*path
;
5291 struct btrfs_key key
;
5292 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5293 const u64 ino
= btrfs_ino(inode
);
5295 path
= btrfs_alloc_path();
5298 path
->skip_locking
= 1;
5299 path
->search_commit_root
= 1;
5302 key
.type
= BTRFS_INODE_REF_KEY
;
5304 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5309 struct extent_buffer
*leaf
= path
->nodes
[0];
5310 int slot
= path
->slots
[0];
5315 if (slot
>= btrfs_header_nritems(leaf
)) {
5316 ret
= btrfs_next_leaf(root
, path
);
5324 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5325 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5326 if (key
.objectid
!= ino
|| key
.type
> BTRFS_INODE_EXTREF_KEY
)
5329 item_size
= btrfs_item_size_nr(leaf
, slot
);
5330 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
5331 while (cur_offset
< item_size
) {
5332 struct btrfs_key inode_key
;
5333 struct inode
*dir_inode
;
5335 inode_key
.type
= BTRFS_INODE_ITEM_KEY
;
5336 inode_key
.offset
= 0;
5338 if (key
.type
== BTRFS_INODE_EXTREF_KEY
) {
5339 struct btrfs_inode_extref
*extref
;
5341 extref
= (struct btrfs_inode_extref
*)
5343 inode_key
.objectid
= btrfs_inode_extref_parent(
5345 cur_offset
+= sizeof(*extref
);
5346 cur_offset
+= btrfs_inode_extref_name_len(leaf
,
5349 inode_key
.objectid
= key
.offset
;
5350 cur_offset
= item_size
;
5353 dir_inode
= btrfs_iget(fs_info
->sb
, &inode_key
,
5355 /* If parent inode was deleted, skip it. */
5356 if (IS_ERR(dir_inode
))
5360 ctx
->log_new_dentries
= false;
5361 ret
= btrfs_log_inode(trans
, root
, dir_inode
,
5362 LOG_INODE_ALL
, 0, LLONG_MAX
, ctx
);
5364 btrfs_must_commit_transaction(trans
, dir_inode
))
5366 if (!ret
&& ctx
&& ctx
->log_new_dentries
)
5367 ret
= log_new_dir_dentries(trans
, root
,
5377 btrfs_free_path(path
);
5382 * helper function around btrfs_log_inode to make sure newly created
5383 * parent directories also end up in the log. A minimal inode and backref
5384 * only logging is done of any parent directories that are older than
5385 * the last committed transaction
5387 static int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
5388 struct btrfs_root
*root
, struct inode
*inode
,
5389 struct dentry
*parent
,
5393 struct btrfs_log_ctx
*ctx
)
5395 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5396 int inode_only
= exists_only
? LOG_INODE_EXISTS
: LOG_INODE_ALL
;
5397 struct super_block
*sb
;
5398 struct dentry
*old_parent
= NULL
;
5400 u64 last_committed
= fs_info
->last_trans_committed
;
5401 bool log_dentries
= false;
5402 struct inode
*orig_inode
= inode
;
5406 if (btrfs_test_opt(fs_info
, NOTREELOG
)) {
5412 * The prev transaction commit doesn't complete, we need do
5413 * full commit by ourselves.
5415 if (fs_info
->last_trans_log_full_commit
>
5416 fs_info
->last_trans_committed
) {
5421 if (root
!= BTRFS_I(inode
)->root
||
5422 btrfs_root_refs(&root
->root_item
) == 0) {
5427 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
,
5428 sb
, last_committed
);
5432 if (btrfs_inode_in_log(inode
, trans
->transid
)) {
5433 ret
= BTRFS_NO_LOG_SYNC
;
5437 ret
= start_log_trans(trans
, root
, ctx
);
5441 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
, start
, end
, ctx
);
5446 * for regular files, if its inode is already on disk, we don't
5447 * have to worry about the parents at all. This is because
5448 * we can use the last_unlink_trans field to record renames
5449 * and other fun in this file.
5451 if (S_ISREG(inode
->i_mode
) &&
5452 BTRFS_I(inode
)->generation
<= last_committed
&&
5453 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
) {
5458 if (S_ISDIR(inode
->i_mode
) && ctx
&& ctx
->log_new_dentries
)
5459 log_dentries
= true;
5462 * On unlink we must make sure all our current and old parent directory
5463 * inodes are fully logged. This is to prevent leaving dangling
5464 * directory index entries in directories that were our parents but are
5465 * not anymore. Not doing this results in old parent directory being
5466 * impossible to delete after log replay (rmdir will always fail with
5467 * error -ENOTEMPTY).
5473 * ln testdir/foo testdir/bar
5475 * unlink testdir/bar
5476 * xfs_io -c fsync testdir/foo
5478 * mount fs, triggers log replay
5480 * If we don't log the parent directory (testdir), after log replay the
5481 * directory still has an entry pointing to the file inode using the bar
5482 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5483 * the file inode has a link count of 1.
5489 * ln foo testdir/foo2
5490 * ln foo testdir/foo3
5492 * unlink testdir/foo3
5493 * xfs_io -c fsync foo
5495 * mount fs, triggers log replay
5497 * Similar as the first example, after log replay the parent directory
5498 * testdir still has an entry pointing to the inode file with name foo3
5499 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5500 * and has a link count of 2.
5502 if (BTRFS_I(inode
)->last_unlink_trans
> last_committed
) {
5503 ret
= btrfs_log_all_parents(trans
, orig_inode
, ctx
);
5509 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5512 inode
= d_inode(parent
);
5513 if (root
!= BTRFS_I(inode
)->root
)
5516 if (BTRFS_I(inode
)->generation
> last_committed
) {
5517 ret
= btrfs_log_inode(trans
, root
, inode
,
5523 if (IS_ROOT(parent
))
5526 parent
= dget_parent(parent
);
5528 old_parent
= parent
;
5531 ret
= log_new_dir_dentries(trans
, root
, orig_inode
, ctx
);
5537 btrfs_set_log_full_commit(fs_info
, trans
);
5542 btrfs_remove_log_ctx(root
, ctx
);
5543 btrfs_end_log_trans(root
);
5549 * it is not safe to log dentry if the chunk root has added new
5550 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5551 * If this returns 1, you must commit the transaction to safely get your
5554 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
5555 struct btrfs_root
*root
, struct dentry
*dentry
,
5558 struct btrfs_log_ctx
*ctx
)
5560 struct dentry
*parent
= dget_parent(dentry
);
5563 ret
= btrfs_log_inode_parent(trans
, root
, d_inode(dentry
), parent
,
5564 start
, end
, 0, ctx
);
5571 * should be called during mount to recover any replay any log trees
5574 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
5577 struct btrfs_path
*path
;
5578 struct btrfs_trans_handle
*trans
;
5579 struct btrfs_key key
;
5580 struct btrfs_key found_key
;
5581 struct btrfs_key tmp_key
;
5582 struct btrfs_root
*log
;
5583 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
5584 struct walk_control wc
= {
5585 .process_func
= process_one_buffer
,
5589 path
= btrfs_alloc_path();
5593 set_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
5595 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
5596 if (IS_ERR(trans
)) {
5597 ret
= PTR_ERR(trans
);
5604 ret
= walk_log_tree(trans
, log_root_tree
, &wc
);
5606 btrfs_handle_fs_error(fs_info
, ret
,
5607 "Failed to pin buffers while recovering log root tree.");
5612 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
5613 key
.offset
= (u64
)-1;
5614 key
.type
= BTRFS_ROOT_ITEM_KEY
;
5617 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
5620 btrfs_handle_fs_error(fs_info
, ret
,
5621 "Couldn't find tree log root.");
5625 if (path
->slots
[0] == 0)
5629 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
5631 btrfs_release_path(path
);
5632 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
5635 log
= btrfs_read_fs_root(log_root_tree
, &found_key
);
5638 btrfs_handle_fs_error(fs_info
, ret
,
5639 "Couldn't read tree log root.");
5643 tmp_key
.objectid
= found_key
.offset
;
5644 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
5645 tmp_key
.offset
= (u64
)-1;
5647 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
5648 if (IS_ERR(wc
.replay_dest
)) {
5649 ret
= PTR_ERR(wc
.replay_dest
);
5650 free_extent_buffer(log
->node
);
5651 free_extent_buffer(log
->commit_root
);
5653 btrfs_handle_fs_error(fs_info
, ret
,
5654 "Couldn't read target root for tree log recovery.");
5658 wc
.replay_dest
->log_root
= log
;
5659 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
5660 ret
= walk_log_tree(trans
, log
, &wc
);
5662 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
5663 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
5667 key
.offset
= found_key
.offset
- 1;
5668 wc
.replay_dest
->log_root
= NULL
;
5669 free_extent_buffer(log
->node
);
5670 free_extent_buffer(log
->commit_root
);
5676 if (found_key
.offset
== 0)
5679 btrfs_release_path(path
);
5681 /* step one is to pin it all, step two is to replay just inodes */
5684 wc
.process_func
= replay_one_buffer
;
5685 wc
.stage
= LOG_WALK_REPLAY_INODES
;
5688 /* step three is to replay everything */
5689 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
5694 btrfs_free_path(path
);
5696 /* step 4: commit the transaction, which also unpins the blocks */
5697 ret
= btrfs_commit_transaction(trans
);
5701 free_extent_buffer(log_root_tree
->node
);
5702 log_root_tree
->log_root
= NULL
;
5703 clear_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
5704 kfree(log_root_tree
);
5709 btrfs_end_transaction(wc
.trans
);
5710 btrfs_free_path(path
);
5715 * there are some corner cases where we want to force a full
5716 * commit instead of allowing a directory to be logged.
5718 * They revolve around files there were unlinked from the directory, and
5719 * this function updates the parent directory so that a full commit is
5720 * properly done if it is fsync'd later after the unlinks are done.
5722 * Must be called before the unlink operations (updates to the subvolume tree,
5723 * inodes, etc) are done.
5725 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
5726 struct inode
*dir
, struct inode
*inode
,
5730 * when we're logging a file, if it hasn't been renamed
5731 * or unlinked, and its inode is fully committed on disk,
5732 * we don't have to worry about walking up the directory chain
5733 * to log its parents.
5735 * So, we use the last_unlink_trans field to put this transid
5736 * into the file. When the file is logged we check it and
5737 * don't log the parents if the file is fully on disk.
5739 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
5740 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
5741 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
5744 * if this directory was already logged any new
5745 * names for this file/dir will get recorded
5748 if (BTRFS_I(dir
)->logged_trans
== trans
->transid
)
5752 * if the inode we're about to unlink was logged,
5753 * the log will be properly updated for any new names
5755 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
)
5759 * when renaming files across directories, if the directory
5760 * there we're unlinking from gets fsync'd later on, there's
5761 * no way to find the destination directory later and fsync it
5762 * properly. So, we have to be conservative and force commits
5763 * so the new name gets discovered.
5768 /* we can safely do the unlink without any special recording */
5772 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
5773 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
5774 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
5778 * Make sure that if someone attempts to fsync the parent directory of a deleted
5779 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5780 * that after replaying the log tree of the parent directory's root we will not
5781 * see the snapshot anymore and at log replay time we will not see any log tree
5782 * corresponding to the deleted snapshot's root, which could lead to replaying
5783 * it after replaying the log tree of the parent directory (which would replay
5784 * the snapshot delete operation).
5786 * Must be called before the actual snapshot destroy operation (updates to the
5787 * parent root and tree of tree roots trees, etc) are done.
5789 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle
*trans
,
5792 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
5793 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
5794 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
5798 * Call this after adding a new name for a file and it will properly
5799 * update the log to reflect the new name.
5801 * It will return zero if all goes well, and it will return 1 if a
5802 * full transaction commit is required.
5804 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
5805 struct inode
*inode
, struct inode
*old_dir
,
5806 struct dentry
*parent
)
5808 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5809 struct btrfs_root
* root
= BTRFS_I(inode
)->root
;
5812 * this will force the logging code to walk the dentry chain
5815 if (S_ISREG(inode
->i_mode
))
5816 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
5819 * if this inode hasn't been logged and directory we're renaming it
5820 * from hasn't been logged, we don't need to log it
5822 if (BTRFS_I(inode
)->logged_trans
<=
5823 fs_info
->last_trans_committed
&&
5824 (!old_dir
|| BTRFS_I(old_dir
)->logged_trans
<=
5825 fs_info
->last_trans_committed
))
5828 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 0,
5829 LLONG_MAX
, 1, NULL
);