ext4: fix FITRIM in no journal mode
[linux/fpc-iii.git] / fs / ext4 / indirect.c
blob594009f5f523f0fd2228a72f1aa593a6f3ebf66f
1 /*
2 * linux/fs/ext4/indirect.c
4 * from
6 * linux/fs/ext4/inode.c
8 * Copyright (C) 1992, 1993, 1994, 1995
9 * Remy Card (card@masi.ibp.fr)
10 * Laboratoire MASI - Institut Blaise Pascal
11 * Universite Pierre et Marie Curie (Paris VI)
13 * from
15 * linux/fs/minix/inode.c
17 * Copyright (C) 1991, 1992 Linus Torvalds
19 * Goal-directed block allocation by Stephen Tweedie
20 * (sct@redhat.com), 1993, 1998
23 #include <linux/aio.h>
24 #include "ext4_jbd2.h"
25 #include "truncate.h"
27 #include <trace/events/ext4.h>
29 typedef struct {
30 __le32 *p;
31 __le32 key;
32 struct buffer_head *bh;
33 } Indirect;
35 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
37 p->key = *(p->p = v);
38 p->bh = bh;
41 /**
42 * ext4_block_to_path - parse the block number into array of offsets
43 * @inode: inode in question (we are only interested in its superblock)
44 * @i_block: block number to be parsed
45 * @offsets: array to store the offsets in
46 * @boundary: set this non-zero if the referred-to block is likely to be
47 * followed (on disk) by an indirect block.
49 * To store the locations of file's data ext4 uses a data structure common
50 * for UNIX filesystems - tree of pointers anchored in the inode, with
51 * data blocks at leaves and indirect blocks in intermediate nodes.
52 * This function translates the block number into path in that tree -
53 * return value is the path length and @offsets[n] is the offset of
54 * pointer to (n+1)th node in the nth one. If @block is out of range
55 * (negative or too large) warning is printed and zero returned.
57 * Note: function doesn't find node addresses, so no IO is needed. All
58 * we need to know is the capacity of indirect blocks (taken from the
59 * inode->i_sb).
63 * Portability note: the last comparison (check that we fit into triple
64 * indirect block) is spelled differently, because otherwise on an
65 * architecture with 32-bit longs and 8Kb pages we might get into trouble
66 * if our filesystem had 8Kb blocks. We might use long long, but that would
67 * kill us on x86. Oh, well, at least the sign propagation does not matter -
68 * i_block would have to be negative in the very beginning, so we would not
69 * get there at all.
72 static int ext4_block_to_path(struct inode *inode,
73 ext4_lblk_t i_block,
74 ext4_lblk_t offsets[4], int *boundary)
76 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
77 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
78 const long direct_blocks = EXT4_NDIR_BLOCKS,
79 indirect_blocks = ptrs,
80 double_blocks = (1 << (ptrs_bits * 2));
81 int n = 0;
82 int final = 0;
84 if (i_block < direct_blocks) {
85 offsets[n++] = i_block;
86 final = direct_blocks;
87 } else if ((i_block -= direct_blocks) < indirect_blocks) {
88 offsets[n++] = EXT4_IND_BLOCK;
89 offsets[n++] = i_block;
90 final = ptrs;
91 } else if ((i_block -= indirect_blocks) < double_blocks) {
92 offsets[n++] = EXT4_DIND_BLOCK;
93 offsets[n++] = i_block >> ptrs_bits;
94 offsets[n++] = i_block & (ptrs - 1);
95 final = ptrs;
96 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
97 offsets[n++] = EXT4_TIND_BLOCK;
98 offsets[n++] = i_block >> (ptrs_bits * 2);
99 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
100 offsets[n++] = i_block & (ptrs - 1);
101 final = ptrs;
102 } else {
103 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
104 i_block + direct_blocks +
105 indirect_blocks + double_blocks, inode->i_ino);
107 if (boundary)
108 *boundary = final - 1 - (i_block & (ptrs - 1));
109 return n;
113 * ext4_get_branch - read the chain of indirect blocks leading to data
114 * @inode: inode in question
115 * @depth: depth of the chain (1 - direct pointer, etc.)
116 * @offsets: offsets of pointers in inode/indirect blocks
117 * @chain: place to store the result
118 * @err: here we store the error value
120 * Function fills the array of triples <key, p, bh> and returns %NULL
121 * if everything went OK or the pointer to the last filled triple
122 * (incomplete one) otherwise. Upon the return chain[i].key contains
123 * the number of (i+1)-th block in the chain (as it is stored in memory,
124 * i.e. little-endian 32-bit), chain[i].p contains the address of that
125 * number (it points into struct inode for i==0 and into the bh->b_data
126 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
127 * block for i>0 and NULL for i==0. In other words, it holds the block
128 * numbers of the chain, addresses they were taken from (and where we can
129 * verify that chain did not change) and buffer_heads hosting these
130 * numbers.
132 * Function stops when it stumbles upon zero pointer (absent block)
133 * (pointer to last triple returned, *@err == 0)
134 * or when it gets an IO error reading an indirect block
135 * (ditto, *@err == -EIO)
136 * or when it reads all @depth-1 indirect blocks successfully and finds
137 * the whole chain, all way to the data (returns %NULL, *err == 0).
139 * Need to be called with
140 * down_read(&EXT4_I(inode)->i_data_sem)
142 static Indirect *ext4_get_branch(struct inode *inode, int depth,
143 ext4_lblk_t *offsets,
144 Indirect chain[4], int *err)
146 struct super_block *sb = inode->i_sb;
147 Indirect *p = chain;
148 struct buffer_head *bh;
149 int ret = -EIO;
151 *err = 0;
152 /* i_data is not going away, no lock needed */
153 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
154 if (!p->key)
155 goto no_block;
156 while (--depth) {
157 bh = sb_getblk(sb, le32_to_cpu(p->key));
158 if (unlikely(!bh)) {
159 ret = -ENOMEM;
160 goto failure;
163 if (!bh_uptodate_or_lock(bh)) {
164 if (bh_submit_read(bh) < 0) {
165 put_bh(bh);
166 goto failure;
168 /* validate block references */
169 if (ext4_check_indirect_blockref(inode, bh)) {
170 put_bh(bh);
171 goto failure;
175 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
176 /* Reader: end */
177 if (!p->key)
178 goto no_block;
180 return NULL;
182 failure:
183 *err = ret;
184 no_block:
185 return p;
189 * ext4_find_near - find a place for allocation with sufficient locality
190 * @inode: owner
191 * @ind: descriptor of indirect block.
193 * This function returns the preferred place for block allocation.
194 * It is used when heuristic for sequential allocation fails.
195 * Rules are:
196 * + if there is a block to the left of our position - allocate near it.
197 * + if pointer will live in indirect block - allocate near that block.
198 * + if pointer will live in inode - allocate in the same
199 * cylinder group.
201 * In the latter case we colour the starting block by the callers PID to
202 * prevent it from clashing with concurrent allocations for a different inode
203 * in the same block group. The PID is used here so that functionally related
204 * files will be close-by on-disk.
206 * Caller must make sure that @ind is valid and will stay that way.
208 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
210 struct ext4_inode_info *ei = EXT4_I(inode);
211 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
212 __le32 *p;
214 /* Try to find previous block */
215 for (p = ind->p - 1; p >= start; p--) {
216 if (*p)
217 return le32_to_cpu(*p);
220 /* No such thing, so let's try location of indirect block */
221 if (ind->bh)
222 return ind->bh->b_blocknr;
225 * It is going to be referred to from the inode itself? OK, just put it
226 * into the same cylinder group then.
228 return ext4_inode_to_goal_block(inode);
232 * ext4_find_goal - find a preferred place for allocation.
233 * @inode: owner
234 * @block: block we want
235 * @partial: pointer to the last triple within a chain
237 * Normally this function find the preferred place for block allocation,
238 * returns it.
239 * Because this is only used for non-extent files, we limit the block nr
240 * to 32 bits.
242 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
243 Indirect *partial)
245 ext4_fsblk_t goal;
248 * XXX need to get goal block from mballoc's data structures
251 goal = ext4_find_near(inode, partial);
252 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
253 return goal;
257 * ext4_blks_to_allocate - Look up the block map and count the number
258 * of direct blocks need to be allocated for the given branch.
260 * @branch: chain of indirect blocks
261 * @k: number of blocks need for indirect blocks
262 * @blks: number of data blocks to be mapped.
263 * @blocks_to_boundary: the offset in the indirect block
265 * return the total number of blocks to be allocate, including the
266 * direct and indirect blocks.
268 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
269 int blocks_to_boundary)
271 unsigned int count = 0;
274 * Simple case, [t,d]Indirect block(s) has not allocated yet
275 * then it's clear blocks on that path have not allocated
277 if (k > 0) {
278 /* right now we don't handle cross boundary allocation */
279 if (blks < blocks_to_boundary + 1)
280 count += blks;
281 else
282 count += blocks_to_boundary + 1;
283 return count;
286 count++;
287 while (count < blks && count <= blocks_to_boundary &&
288 le32_to_cpu(*(branch[0].p + count)) == 0) {
289 count++;
291 return count;
295 * ext4_alloc_branch - allocate and set up a chain of blocks.
296 * @handle: handle for this transaction
297 * @inode: owner
298 * @indirect_blks: number of allocated indirect blocks
299 * @blks: number of allocated direct blocks
300 * @goal: preferred place for allocation
301 * @offsets: offsets (in the blocks) to store the pointers to next.
302 * @branch: place to store the chain in.
304 * This function allocates blocks, zeroes out all but the last one,
305 * links them into chain and (if we are synchronous) writes them to disk.
306 * In other words, it prepares a branch that can be spliced onto the
307 * inode. It stores the information about that chain in the branch[], in
308 * the same format as ext4_get_branch() would do. We are calling it after
309 * we had read the existing part of chain and partial points to the last
310 * triple of that (one with zero ->key). Upon the exit we have the same
311 * picture as after the successful ext4_get_block(), except that in one
312 * place chain is disconnected - *branch->p is still zero (we did not
313 * set the last link), but branch->key contains the number that should
314 * be placed into *branch->p to fill that gap.
316 * If allocation fails we free all blocks we've allocated (and forget
317 * their buffer_heads) and return the error value the from failed
318 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
319 * as described above and return 0.
321 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
322 ext4_lblk_t iblock, int indirect_blks,
323 int *blks, ext4_fsblk_t goal,
324 ext4_lblk_t *offsets, Indirect *branch)
326 struct ext4_allocation_request ar;
327 struct buffer_head * bh;
328 ext4_fsblk_t b, new_blocks[4];
329 __le32 *p;
330 int i, j, err, len = 1;
333 * Set up for the direct block allocation
335 memset(&ar, 0, sizeof(ar));
336 ar.inode = inode;
337 ar.len = *blks;
338 ar.logical = iblock;
339 if (S_ISREG(inode->i_mode))
340 ar.flags = EXT4_MB_HINT_DATA;
342 for (i = 0; i <= indirect_blks; i++) {
343 if (i == indirect_blks) {
344 ar.goal = goal;
345 new_blocks[i] = ext4_mb_new_blocks(handle, &ar, &err);
346 } else
347 goal = new_blocks[i] = ext4_new_meta_blocks(handle, inode,
348 goal, 0, NULL, &err);
349 if (err) {
350 i--;
351 goto failed;
353 branch[i].key = cpu_to_le32(new_blocks[i]);
354 if (i == 0)
355 continue;
357 bh = branch[i].bh = sb_getblk(inode->i_sb, new_blocks[i-1]);
358 if (unlikely(!bh)) {
359 err = -ENOMEM;
360 goto failed;
362 lock_buffer(bh);
363 BUFFER_TRACE(bh, "call get_create_access");
364 err = ext4_journal_get_create_access(handle, bh);
365 if (err) {
366 unlock_buffer(bh);
367 goto failed;
370 memset(bh->b_data, 0, bh->b_size);
371 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
372 b = new_blocks[i];
374 if (i == indirect_blks)
375 len = ar.len;
376 for (j = 0; j < len; j++)
377 *p++ = cpu_to_le32(b++);
379 BUFFER_TRACE(bh, "marking uptodate");
380 set_buffer_uptodate(bh);
381 unlock_buffer(bh);
383 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
384 err = ext4_handle_dirty_metadata(handle, inode, bh);
385 if (err)
386 goto failed;
388 *blks = ar.len;
389 return 0;
390 failed:
391 for (; i >= 0; i--) {
392 if (i != indirect_blks && branch[i].bh)
393 ext4_forget(handle, 1, inode, branch[i].bh,
394 branch[i].bh->b_blocknr);
395 ext4_free_blocks(handle, inode, NULL, new_blocks[i],
396 (i == indirect_blks) ? ar.len : 1, 0);
398 return err;
402 * ext4_splice_branch - splice the allocated branch onto inode.
403 * @handle: handle for this transaction
404 * @inode: owner
405 * @block: (logical) number of block we are adding
406 * @chain: chain of indirect blocks (with a missing link - see
407 * ext4_alloc_branch)
408 * @where: location of missing link
409 * @num: number of indirect blocks we are adding
410 * @blks: number of direct blocks we are adding
412 * This function fills the missing link and does all housekeeping needed in
413 * inode (->i_blocks, etc.). In case of success we end up with the full
414 * chain to new block and return 0.
416 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
417 ext4_lblk_t block, Indirect *where, int num,
418 int blks)
420 int i;
421 int err = 0;
422 ext4_fsblk_t current_block;
425 * If we're splicing into a [td]indirect block (as opposed to the
426 * inode) then we need to get write access to the [td]indirect block
427 * before the splice.
429 if (where->bh) {
430 BUFFER_TRACE(where->bh, "get_write_access");
431 err = ext4_journal_get_write_access(handle, where->bh);
432 if (err)
433 goto err_out;
435 /* That's it */
437 *where->p = where->key;
440 * Update the host buffer_head or inode to point to more just allocated
441 * direct blocks blocks
443 if (num == 0 && blks > 1) {
444 current_block = le32_to_cpu(where->key) + 1;
445 for (i = 1; i < blks; i++)
446 *(where->p + i) = cpu_to_le32(current_block++);
449 /* We are done with atomic stuff, now do the rest of housekeeping */
450 /* had we spliced it onto indirect block? */
451 if (where->bh) {
453 * If we spliced it onto an indirect block, we haven't
454 * altered the inode. Note however that if it is being spliced
455 * onto an indirect block at the very end of the file (the
456 * file is growing) then we *will* alter the inode to reflect
457 * the new i_size. But that is not done here - it is done in
458 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
460 jbd_debug(5, "splicing indirect only\n");
461 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
462 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
463 if (err)
464 goto err_out;
465 } else {
467 * OK, we spliced it into the inode itself on a direct block.
469 ext4_mark_inode_dirty(handle, inode);
470 jbd_debug(5, "splicing direct\n");
472 return err;
474 err_out:
475 for (i = 1; i <= num; i++) {
477 * branch[i].bh is newly allocated, so there is no
478 * need to revoke the block, which is why we don't
479 * need to set EXT4_FREE_BLOCKS_METADATA.
481 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
482 EXT4_FREE_BLOCKS_FORGET);
484 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
485 blks, 0);
487 return err;
491 * The ext4_ind_map_blocks() function handles non-extents inodes
492 * (i.e., using the traditional indirect/double-indirect i_blocks
493 * scheme) for ext4_map_blocks().
495 * Allocation strategy is simple: if we have to allocate something, we will
496 * have to go the whole way to leaf. So let's do it before attaching anything
497 * to tree, set linkage between the newborn blocks, write them if sync is
498 * required, recheck the path, free and repeat if check fails, otherwise
499 * set the last missing link (that will protect us from any truncate-generated
500 * removals - all blocks on the path are immune now) and possibly force the
501 * write on the parent block.
502 * That has a nice additional property: no special recovery from the failed
503 * allocations is needed - we simply release blocks and do not touch anything
504 * reachable from inode.
506 * `handle' can be NULL if create == 0.
508 * return > 0, # of blocks mapped or allocated.
509 * return = 0, if plain lookup failed.
510 * return < 0, error case.
512 * The ext4_ind_get_blocks() function should be called with
513 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
514 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
515 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
516 * blocks.
518 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
519 struct ext4_map_blocks *map,
520 int flags)
522 int err = -EIO;
523 ext4_lblk_t offsets[4];
524 Indirect chain[4];
525 Indirect *partial;
526 ext4_fsblk_t goal;
527 int indirect_blks;
528 int blocks_to_boundary = 0;
529 int depth;
530 int count = 0;
531 ext4_fsblk_t first_block = 0;
533 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
534 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
535 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
536 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
537 &blocks_to_boundary);
539 if (depth == 0)
540 goto out;
542 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
544 /* Simplest case - block found, no allocation needed */
545 if (!partial) {
546 first_block = le32_to_cpu(chain[depth - 1].key);
547 count++;
548 /*map more blocks*/
549 while (count < map->m_len && count <= blocks_to_boundary) {
550 ext4_fsblk_t blk;
552 blk = le32_to_cpu(*(chain[depth-1].p + count));
554 if (blk == first_block + count)
555 count++;
556 else
557 break;
559 goto got_it;
562 /* Next simple case - plain lookup or failed read of indirect block */
563 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
564 goto cleanup;
567 * Okay, we need to do block allocation.
569 if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
570 EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
571 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
572 "non-extent mapped inodes with bigalloc");
573 return -ENOSPC;
576 goal = ext4_find_goal(inode, map->m_lblk, partial);
578 /* the number of blocks need to allocate for [d,t]indirect blocks */
579 indirect_blks = (chain + depth) - partial - 1;
582 * Next look up the indirect map to count the totoal number of
583 * direct blocks to allocate for this branch.
585 count = ext4_blks_to_allocate(partial, indirect_blks,
586 map->m_len, blocks_to_boundary);
588 * Block out ext4_truncate while we alter the tree
590 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
591 &count, goal,
592 offsets + (partial - chain), partial);
595 * The ext4_splice_branch call will free and forget any buffers
596 * on the new chain if there is a failure, but that risks using
597 * up transaction credits, especially for bitmaps where the
598 * credits cannot be returned. Can we handle this somehow? We
599 * may need to return -EAGAIN upwards in the worst case. --sct
601 if (!err)
602 err = ext4_splice_branch(handle, inode, map->m_lblk,
603 partial, indirect_blks, count);
604 if (err)
605 goto cleanup;
607 map->m_flags |= EXT4_MAP_NEW;
609 ext4_update_inode_fsync_trans(handle, inode, 1);
610 got_it:
611 map->m_flags |= EXT4_MAP_MAPPED;
612 map->m_pblk = le32_to_cpu(chain[depth-1].key);
613 map->m_len = count;
614 if (count > blocks_to_boundary)
615 map->m_flags |= EXT4_MAP_BOUNDARY;
616 err = count;
617 /* Clean up and exit */
618 partial = chain + depth - 1; /* the whole chain */
619 cleanup:
620 while (partial > chain) {
621 BUFFER_TRACE(partial->bh, "call brelse");
622 brelse(partial->bh);
623 partial--;
625 out:
626 trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
627 return err;
631 * O_DIRECT for ext3 (or indirect map) based files
633 * If the O_DIRECT write will extend the file then add this inode to the
634 * orphan list. So recovery will truncate it back to the original size
635 * if the machine crashes during the write.
637 * If the O_DIRECT write is intantiating holes inside i_size and the machine
638 * crashes then stale disk data _may_ be exposed inside the file. But current
639 * VFS code falls back into buffered path in that case so we are safe.
641 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
642 const struct iovec *iov, loff_t offset,
643 unsigned long nr_segs)
645 struct file *file = iocb->ki_filp;
646 struct inode *inode = file->f_mapping->host;
647 struct ext4_inode_info *ei = EXT4_I(inode);
648 handle_t *handle;
649 ssize_t ret;
650 int orphan = 0;
651 size_t count = iov_length(iov, nr_segs);
652 int retries = 0;
654 if (rw == WRITE) {
655 loff_t final_size = offset + count;
657 if (final_size > inode->i_size) {
658 /* Credits for sb + inode write */
659 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
660 if (IS_ERR(handle)) {
661 ret = PTR_ERR(handle);
662 goto out;
664 ret = ext4_orphan_add(handle, inode);
665 if (ret) {
666 ext4_journal_stop(handle);
667 goto out;
669 orphan = 1;
670 ei->i_disksize = inode->i_size;
671 ext4_journal_stop(handle);
675 retry:
676 if (rw == READ && ext4_should_dioread_nolock(inode)) {
678 * Nolock dioread optimization may be dynamically disabled
679 * via ext4_inode_block_unlocked_dio(). Check inode's state
680 * while holding extra i_dio_count ref.
682 atomic_inc(&inode->i_dio_count);
683 smp_mb();
684 if (unlikely(ext4_test_inode_state(inode,
685 EXT4_STATE_DIOREAD_LOCK))) {
686 inode_dio_done(inode);
687 goto locked;
689 ret = __blockdev_direct_IO(rw, iocb, inode,
690 inode->i_sb->s_bdev, iov,
691 offset, nr_segs,
692 ext4_get_block, NULL, NULL, 0);
693 inode_dio_done(inode);
694 } else {
695 locked:
696 ret = blockdev_direct_IO(rw, iocb, inode, iov,
697 offset, nr_segs, ext4_get_block);
699 if (unlikely((rw & WRITE) && ret < 0)) {
700 loff_t isize = i_size_read(inode);
701 loff_t end = offset + iov_length(iov, nr_segs);
703 if (end > isize)
704 ext4_truncate_failed_write(inode);
707 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
708 goto retry;
710 if (orphan) {
711 int err;
713 /* Credits for sb + inode write */
714 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
715 if (IS_ERR(handle)) {
716 /* This is really bad luck. We've written the data
717 * but cannot extend i_size. Bail out and pretend
718 * the write failed... */
719 ret = PTR_ERR(handle);
720 if (inode->i_nlink)
721 ext4_orphan_del(NULL, inode);
723 goto out;
725 if (inode->i_nlink)
726 ext4_orphan_del(handle, inode);
727 if (ret > 0) {
728 loff_t end = offset + ret;
729 if (end > inode->i_size) {
730 ei->i_disksize = end;
731 i_size_write(inode, end);
733 * We're going to return a positive `ret'
734 * here due to non-zero-length I/O, so there's
735 * no way of reporting error returns from
736 * ext4_mark_inode_dirty() to userspace. So
737 * ignore it.
739 ext4_mark_inode_dirty(handle, inode);
742 err = ext4_journal_stop(handle);
743 if (ret == 0)
744 ret = err;
746 out:
747 return ret;
751 * Calculate the number of metadata blocks need to reserve
752 * to allocate a new block at @lblocks for non extent file based file
754 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
756 struct ext4_inode_info *ei = EXT4_I(inode);
757 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
758 int blk_bits;
760 if (lblock < EXT4_NDIR_BLOCKS)
761 return 0;
763 lblock -= EXT4_NDIR_BLOCKS;
765 if (ei->i_da_metadata_calc_len &&
766 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
767 ei->i_da_metadata_calc_len++;
768 return 0;
770 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
771 ei->i_da_metadata_calc_len = 1;
772 blk_bits = order_base_2(lblock);
773 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
777 * Calculate number of indirect blocks touched by mapping @nrblocks logically
778 * contiguous blocks
780 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
783 * With N contiguous data blocks, we need at most
784 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
785 * 2 dindirect blocks, and 1 tindirect block
787 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
791 * Truncate transactions can be complex and absolutely huge. So we need to
792 * be able to restart the transaction at a conventient checkpoint to make
793 * sure we don't overflow the journal.
795 * Try to extend this transaction for the purposes of truncation. If
796 * extend fails, we need to propagate the failure up and restart the
797 * transaction in the top-level truncate loop. --sct
799 * Returns 0 if we managed to create more room. If we can't create more
800 * room, and the transaction must be restarted we return 1.
802 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
804 if (!ext4_handle_valid(handle))
805 return 0;
806 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
807 return 0;
808 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
809 return 0;
810 return 1;
814 * Probably it should be a library function... search for first non-zero word
815 * or memcmp with zero_page, whatever is better for particular architecture.
816 * Linus?
818 static inline int all_zeroes(__le32 *p, __le32 *q)
820 while (p < q)
821 if (*p++)
822 return 0;
823 return 1;
827 * ext4_find_shared - find the indirect blocks for partial truncation.
828 * @inode: inode in question
829 * @depth: depth of the affected branch
830 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
831 * @chain: place to store the pointers to partial indirect blocks
832 * @top: place to the (detached) top of branch
834 * This is a helper function used by ext4_truncate().
836 * When we do truncate() we may have to clean the ends of several
837 * indirect blocks but leave the blocks themselves alive. Block is
838 * partially truncated if some data below the new i_size is referred
839 * from it (and it is on the path to the first completely truncated
840 * data block, indeed). We have to free the top of that path along
841 * with everything to the right of the path. Since no allocation
842 * past the truncation point is possible until ext4_truncate()
843 * finishes, we may safely do the latter, but top of branch may
844 * require special attention - pageout below the truncation point
845 * might try to populate it.
847 * We atomically detach the top of branch from the tree, store the
848 * block number of its root in *@top, pointers to buffer_heads of
849 * partially truncated blocks - in @chain[].bh and pointers to
850 * their last elements that should not be removed - in
851 * @chain[].p. Return value is the pointer to last filled element
852 * of @chain.
854 * The work left to caller to do the actual freeing of subtrees:
855 * a) free the subtree starting from *@top
856 * b) free the subtrees whose roots are stored in
857 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
858 * c) free the subtrees growing from the inode past the @chain[0].
859 * (no partially truncated stuff there). */
861 static Indirect *ext4_find_shared(struct inode *inode, int depth,
862 ext4_lblk_t offsets[4], Indirect chain[4],
863 __le32 *top)
865 Indirect *partial, *p;
866 int k, err;
868 *top = 0;
869 /* Make k index the deepest non-null offset + 1 */
870 for (k = depth; k > 1 && !offsets[k-1]; k--)
872 partial = ext4_get_branch(inode, k, offsets, chain, &err);
873 /* Writer: pointers */
874 if (!partial)
875 partial = chain + k-1;
877 * If the branch acquired continuation since we've looked at it -
878 * fine, it should all survive and (new) top doesn't belong to us.
880 if (!partial->key && *partial->p)
881 /* Writer: end */
882 goto no_top;
883 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
886 * OK, we've found the last block that must survive. The rest of our
887 * branch should be detached before unlocking. However, if that rest
888 * of branch is all ours and does not grow immediately from the inode
889 * it's easier to cheat and just decrement partial->p.
891 if (p == chain + k - 1 && p > chain) {
892 p->p--;
893 } else {
894 *top = *p->p;
895 /* Nope, don't do this in ext4. Must leave the tree intact */
896 #if 0
897 *p->p = 0;
898 #endif
900 /* Writer: end */
902 while (partial > p) {
903 brelse(partial->bh);
904 partial--;
906 no_top:
907 return partial;
911 * Zero a number of block pointers in either an inode or an indirect block.
912 * If we restart the transaction we must again get write access to the
913 * indirect block for further modification.
915 * We release `count' blocks on disk, but (last - first) may be greater
916 * than `count' because there can be holes in there.
918 * Return 0 on success, 1 on invalid block range
919 * and < 0 on fatal error.
921 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
922 struct buffer_head *bh,
923 ext4_fsblk_t block_to_free,
924 unsigned long count, __le32 *first,
925 __le32 *last)
927 __le32 *p;
928 int flags = EXT4_FREE_BLOCKS_VALIDATED;
929 int err;
931 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
932 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
933 else if (ext4_should_journal_data(inode))
934 flags |= EXT4_FREE_BLOCKS_FORGET;
936 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
937 count)) {
938 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
939 "blocks %llu len %lu",
940 (unsigned long long) block_to_free, count);
941 return 1;
944 if (try_to_extend_transaction(handle, inode)) {
945 if (bh) {
946 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
947 err = ext4_handle_dirty_metadata(handle, inode, bh);
948 if (unlikely(err))
949 goto out_err;
951 err = ext4_mark_inode_dirty(handle, inode);
952 if (unlikely(err))
953 goto out_err;
954 err = ext4_truncate_restart_trans(handle, inode,
955 ext4_blocks_for_truncate(inode));
956 if (unlikely(err))
957 goto out_err;
958 if (bh) {
959 BUFFER_TRACE(bh, "retaking write access");
960 err = ext4_journal_get_write_access(handle, bh);
961 if (unlikely(err))
962 goto out_err;
966 for (p = first; p < last; p++)
967 *p = 0;
969 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
970 return 0;
971 out_err:
972 ext4_std_error(inode->i_sb, err);
973 return err;
977 * ext4_free_data - free a list of data blocks
978 * @handle: handle for this transaction
979 * @inode: inode we are dealing with
980 * @this_bh: indirect buffer_head which contains *@first and *@last
981 * @first: array of block numbers
982 * @last: points immediately past the end of array
984 * We are freeing all blocks referred from that array (numbers are stored as
985 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
987 * We accumulate contiguous runs of blocks to free. Conveniently, if these
988 * blocks are contiguous then releasing them at one time will only affect one
989 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
990 * actually use a lot of journal space.
992 * @this_bh will be %NULL if @first and @last point into the inode's direct
993 * block pointers.
995 static void ext4_free_data(handle_t *handle, struct inode *inode,
996 struct buffer_head *this_bh,
997 __le32 *first, __le32 *last)
999 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
1000 unsigned long count = 0; /* Number of blocks in the run */
1001 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
1002 corresponding to
1003 block_to_free */
1004 ext4_fsblk_t nr; /* Current block # */
1005 __le32 *p; /* Pointer into inode/ind
1006 for current block */
1007 int err = 0;
1009 if (this_bh) { /* For indirect block */
1010 BUFFER_TRACE(this_bh, "get_write_access");
1011 err = ext4_journal_get_write_access(handle, this_bh);
1012 /* Important: if we can't update the indirect pointers
1013 * to the blocks, we can't free them. */
1014 if (err)
1015 return;
1018 for (p = first; p < last; p++) {
1019 nr = le32_to_cpu(*p);
1020 if (nr) {
1021 /* accumulate blocks to free if they're contiguous */
1022 if (count == 0) {
1023 block_to_free = nr;
1024 block_to_free_p = p;
1025 count = 1;
1026 } else if (nr == block_to_free + count) {
1027 count++;
1028 } else {
1029 err = ext4_clear_blocks(handle, inode, this_bh,
1030 block_to_free, count,
1031 block_to_free_p, p);
1032 if (err)
1033 break;
1034 block_to_free = nr;
1035 block_to_free_p = p;
1036 count = 1;
1041 if (!err && count > 0)
1042 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1043 count, block_to_free_p, p);
1044 if (err < 0)
1045 /* fatal error */
1046 return;
1048 if (this_bh) {
1049 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1052 * The buffer head should have an attached journal head at this
1053 * point. However, if the data is corrupted and an indirect
1054 * block pointed to itself, it would have been detached when
1055 * the block was cleared. Check for this instead of OOPSing.
1057 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1058 ext4_handle_dirty_metadata(handle, inode, this_bh);
1059 else
1060 EXT4_ERROR_INODE(inode,
1061 "circular indirect block detected at "
1062 "block %llu",
1063 (unsigned long long) this_bh->b_blocknr);
1068 * ext4_free_branches - free an array of branches
1069 * @handle: JBD handle for this transaction
1070 * @inode: inode we are dealing with
1071 * @parent_bh: the buffer_head which contains *@first and *@last
1072 * @first: array of block numbers
1073 * @last: pointer immediately past the end of array
1074 * @depth: depth of the branches to free
1076 * We are freeing all blocks referred from these branches (numbers are
1077 * stored as little-endian 32-bit) and updating @inode->i_blocks
1078 * appropriately.
1080 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1081 struct buffer_head *parent_bh,
1082 __le32 *first, __le32 *last, int depth)
1084 ext4_fsblk_t nr;
1085 __le32 *p;
1087 if (ext4_handle_is_aborted(handle))
1088 return;
1090 if (depth--) {
1091 struct buffer_head *bh;
1092 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1093 p = last;
1094 while (--p >= first) {
1095 nr = le32_to_cpu(*p);
1096 if (!nr)
1097 continue; /* A hole */
1099 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1100 nr, 1)) {
1101 EXT4_ERROR_INODE(inode,
1102 "invalid indirect mapped "
1103 "block %lu (level %d)",
1104 (unsigned long) nr, depth);
1105 break;
1108 /* Go read the buffer for the next level down */
1109 bh = sb_bread(inode->i_sb, nr);
1112 * A read failure? Report error and clear slot
1113 * (should be rare).
1115 if (!bh) {
1116 EXT4_ERROR_INODE_BLOCK(inode, nr,
1117 "Read failure");
1118 continue;
1121 /* This zaps the entire block. Bottom up. */
1122 BUFFER_TRACE(bh, "free child branches");
1123 ext4_free_branches(handle, inode, bh,
1124 (__le32 *) bh->b_data,
1125 (__le32 *) bh->b_data + addr_per_block,
1126 depth);
1127 brelse(bh);
1130 * Everything below this this pointer has been
1131 * released. Now let this top-of-subtree go.
1133 * We want the freeing of this indirect block to be
1134 * atomic in the journal with the updating of the
1135 * bitmap block which owns it. So make some room in
1136 * the journal.
1138 * We zero the parent pointer *after* freeing its
1139 * pointee in the bitmaps, so if extend_transaction()
1140 * for some reason fails to put the bitmap changes and
1141 * the release into the same transaction, recovery
1142 * will merely complain about releasing a free block,
1143 * rather than leaking blocks.
1145 if (ext4_handle_is_aborted(handle))
1146 return;
1147 if (try_to_extend_transaction(handle, inode)) {
1148 ext4_mark_inode_dirty(handle, inode);
1149 ext4_truncate_restart_trans(handle, inode,
1150 ext4_blocks_for_truncate(inode));
1154 * The forget flag here is critical because if
1155 * we are journaling (and not doing data
1156 * journaling), we have to make sure a revoke
1157 * record is written to prevent the journal
1158 * replay from overwriting the (former)
1159 * indirect block if it gets reallocated as a
1160 * data block. This must happen in the same
1161 * transaction where the data blocks are
1162 * actually freed.
1164 ext4_free_blocks(handle, inode, NULL, nr, 1,
1165 EXT4_FREE_BLOCKS_METADATA|
1166 EXT4_FREE_BLOCKS_FORGET);
1168 if (parent_bh) {
1170 * The block which we have just freed is
1171 * pointed to by an indirect block: journal it
1173 BUFFER_TRACE(parent_bh, "get_write_access");
1174 if (!ext4_journal_get_write_access(handle,
1175 parent_bh)){
1176 *p = 0;
1177 BUFFER_TRACE(parent_bh,
1178 "call ext4_handle_dirty_metadata");
1179 ext4_handle_dirty_metadata(handle,
1180 inode,
1181 parent_bh);
1185 } else {
1186 /* We have reached the bottom of the tree. */
1187 BUFFER_TRACE(parent_bh, "free data blocks");
1188 ext4_free_data(handle, inode, parent_bh, first, last);
1192 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1194 struct ext4_inode_info *ei = EXT4_I(inode);
1195 __le32 *i_data = ei->i_data;
1196 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1197 ext4_lblk_t offsets[4];
1198 Indirect chain[4];
1199 Indirect *partial;
1200 __le32 nr = 0;
1201 int n = 0;
1202 ext4_lblk_t last_block, max_block;
1203 unsigned blocksize = inode->i_sb->s_blocksize;
1205 last_block = (inode->i_size + blocksize-1)
1206 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1207 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1208 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1210 if (last_block != max_block) {
1211 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1212 if (n == 0)
1213 return;
1216 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1219 * The orphan list entry will now protect us from any crash which
1220 * occurs before the truncate completes, so it is now safe to propagate
1221 * the new, shorter inode size (held for now in i_size) into the
1222 * on-disk inode. We do this via i_disksize, which is the value which
1223 * ext4 *really* writes onto the disk inode.
1225 ei->i_disksize = inode->i_size;
1227 if (last_block == max_block) {
1229 * It is unnecessary to free any data blocks if last_block is
1230 * equal to the indirect block limit.
1232 return;
1233 } else if (n == 1) { /* direct blocks */
1234 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1235 i_data + EXT4_NDIR_BLOCKS);
1236 goto do_indirects;
1239 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1240 /* Kill the top of shared branch (not detached) */
1241 if (nr) {
1242 if (partial == chain) {
1243 /* Shared branch grows from the inode */
1244 ext4_free_branches(handle, inode, NULL,
1245 &nr, &nr+1, (chain+n-1) - partial);
1246 *partial->p = 0;
1248 * We mark the inode dirty prior to restart,
1249 * and prior to stop. No need for it here.
1251 } else {
1252 /* Shared branch grows from an indirect block */
1253 BUFFER_TRACE(partial->bh, "get_write_access");
1254 ext4_free_branches(handle, inode, partial->bh,
1255 partial->p,
1256 partial->p+1, (chain+n-1) - partial);
1259 /* Clear the ends of indirect blocks on the shared branch */
1260 while (partial > chain) {
1261 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1262 (__le32*)partial->bh->b_data+addr_per_block,
1263 (chain+n-1) - partial);
1264 BUFFER_TRACE(partial->bh, "call brelse");
1265 brelse(partial->bh);
1266 partial--;
1268 do_indirects:
1269 /* Kill the remaining (whole) subtrees */
1270 switch (offsets[0]) {
1271 default:
1272 nr = i_data[EXT4_IND_BLOCK];
1273 if (nr) {
1274 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1275 i_data[EXT4_IND_BLOCK] = 0;
1277 case EXT4_IND_BLOCK:
1278 nr = i_data[EXT4_DIND_BLOCK];
1279 if (nr) {
1280 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1281 i_data[EXT4_DIND_BLOCK] = 0;
1283 case EXT4_DIND_BLOCK:
1284 nr = i_data[EXT4_TIND_BLOCK];
1285 if (nr) {
1286 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1287 i_data[EXT4_TIND_BLOCK] = 0;
1289 case EXT4_TIND_BLOCK:
1294 static int free_hole_blocks(handle_t *handle, struct inode *inode,
1295 struct buffer_head *parent_bh, __le32 *i_data,
1296 int level, ext4_lblk_t first,
1297 ext4_lblk_t count, int max)
1299 struct buffer_head *bh = NULL;
1300 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1301 int ret = 0;
1302 int i, inc;
1303 ext4_lblk_t offset;
1304 __le32 blk;
1306 inc = 1 << ((EXT4_BLOCK_SIZE_BITS(inode->i_sb) - 2) * level);
1307 for (i = 0, offset = 0; i < max; i++, i_data++, offset += inc) {
1308 if (offset >= count + first)
1309 break;
1310 if (*i_data == 0 || (offset + inc) <= first)
1311 continue;
1312 blk = *i_data;
1313 if (level > 0) {
1314 ext4_lblk_t first2;
1315 bh = sb_bread(inode->i_sb, le32_to_cpu(blk));
1316 if (!bh) {
1317 EXT4_ERROR_INODE_BLOCK(inode, le32_to_cpu(blk),
1318 "Read failure");
1319 return -EIO;
1321 first2 = (first > offset) ? first - offset : 0;
1322 ret = free_hole_blocks(handle, inode, bh,
1323 (__le32 *)bh->b_data, level - 1,
1324 first2, count - offset,
1325 inode->i_sb->s_blocksize >> 2);
1326 if (ret) {
1327 brelse(bh);
1328 goto err;
1331 if (level == 0 ||
1332 (bh && all_zeroes((__le32 *)bh->b_data,
1333 (__le32 *)bh->b_data + addr_per_block))) {
1334 ext4_free_data(handle, inode, parent_bh, &blk, &blk+1);
1335 *i_data = 0;
1337 brelse(bh);
1338 bh = NULL;
1341 err:
1342 return ret;
1345 int ext4_free_hole_blocks(handle_t *handle, struct inode *inode,
1346 ext4_lblk_t first, ext4_lblk_t stop)
1348 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1349 int level, ret = 0;
1350 int num = EXT4_NDIR_BLOCKS;
1351 ext4_lblk_t count, max = EXT4_NDIR_BLOCKS;
1352 __le32 *i_data = EXT4_I(inode)->i_data;
1354 count = stop - first;
1355 for (level = 0; level < 4; level++, max *= addr_per_block) {
1356 if (first < max) {
1357 ret = free_hole_blocks(handle, inode, NULL, i_data,
1358 level, first, count, num);
1359 if (ret)
1360 goto err;
1361 if (count > max - first)
1362 count -= max - first;
1363 else
1364 break;
1365 first = 0;
1366 } else {
1367 first -= max;
1369 i_data += num;
1370 if (level == 0) {
1371 num = 1;
1372 max = 1;
1376 err:
1377 return ret;