2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
15 * Called after updating RLIMIT_CPU to run cpu timer and update
16 * tsk->signal->cputime_expires expiration cache if necessary. Needs
17 * siglock protection since other code may update expiration cache as
20 void update_rlimit_cpu(struct task_struct
*task
, unsigned long rlim_new
)
22 cputime_t cputime
= secs_to_cputime(rlim_new
);
24 spin_lock_irq(&task
->sighand
->siglock
);
25 set_process_cpu_timer(task
, CPUCLOCK_PROF
, &cputime
, NULL
);
26 spin_unlock_irq(&task
->sighand
->siglock
);
29 static int check_clock(const clockid_t which_clock
)
32 struct task_struct
*p
;
33 const pid_t pid
= CPUCLOCK_PID(which_clock
);
35 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
42 p
= find_task_by_vpid(pid
);
43 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
44 same_thread_group(p
, current
) : has_group_leader_pid(p
))) {
52 static inline union cpu_time_count
53 timespec_to_sample(const clockid_t which_clock
, const struct timespec
*tp
)
55 union cpu_time_count ret
;
56 ret
.sched
= 0; /* high half always zero when .cpu used */
57 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
58 ret
.sched
= (unsigned long long)tp
->tv_sec
* NSEC_PER_SEC
+ tp
->tv_nsec
;
60 ret
.cpu
= timespec_to_cputime(tp
);
65 static void sample_to_timespec(const clockid_t which_clock
,
66 union cpu_time_count cpu
,
69 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
)
70 *tp
= ns_to_timespec(cpu
.sched
);
72 cputime_to_timespec(cpu
.cpu
, tp
);
75 static inline int cpu_time_before(const clockid_t which_clock
,
76 union cpu_time_count now
,
77 union cpu_time_count then
)
79 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
80 return now
.sched
< then
.sched
;
82 return now
.cpu
< then
.cpu
;
85 static inline void cpu_time_add(const clockid_t which_clock
,
86 union cpu_time_count
*acc
,
87 union cpu_time_count val
)
89 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
90 acc
->sched
+= val
.sched
;
95 static inline union cpu_time_count
cpu_time_sub(const clockid_t which_clock
,
96 union cpu_time_count a
,
97 union cpu_time_count b
)
99 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
108 * Update expiry time from increment, and increase overrun count,
109 * given the current clock sample.
111 static void bump_cpu_timer(struct k_itimer
*timer
,
112 union cpu_time_count now
)
116 if (timer
->it
.cpu
.incr
.sched
== 0)
119 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
120 unsigned long long delta
, incr
;
122 if (now
.sched
< timer
->it
.cpu
.expires
.sched
)
124 incr
= timer
->it
.cpu
.incr
.sched
;
125 delta
= now
.sched
+ incr
- timer
->it
.cpu
.expires
.sched
;
126 /* Don't use (incr*2 < delta), incr*2 might overflow. */
127 for (i
= 0; incr
< delta
- incr
; i
++)
129 for (; i
>= 0; incr
>>= 1, i
--) {
132 timer
->it
.cpu
.expires
.sched
+= incr
;
133 timer
->it_overrun
+= 1 << i
;
137 cputime_t delta
, incr
;
139 if (now
.cpu
< timer
->it
.cpu
.expires
.cpu
)
141 incr
= timer
->it
.cpu
.incr
.cpu
;
142 delta
= now
.cpu
+ incr
- timer
->it
.cpu
.expires
.cpu
;
143 /* Don't use (incr*2 < delta), incr*2 might overflow. */
144 for (i
= 0; incr
< delta
- incr
; i
++)
146 for (; i
>= 0; incr
= incr
>> 1, i
--) {
149 timer
->it
.cpu
.expires
.cpu
+= incr
;
150 timer
->it_overrun
+= 1 << i
;
156 static inline cputime_t
prof_ticks(struct task_struct
*p
)
158 return p
->utime
+ p
->stime
;
160 static inline cputime_t
virt_ticks(struct task_struct
*p
)
166 posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
168 int error
= check_clock(which_clock
);
171 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
172 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
174 * If sched_clock is using a cycle counter, we
175 * don't have any idea of its true resolution
176 * exported, but it is much more than 1s/HZ.
185 posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
188 * You can never reset a CPU clock, but we check for other errors
189 * in the call before failing with EPERM.
191 int error
= check_clock(which_clock
);
200 * Sample a per-thread clock for the given task.
202 static int cpu_clock_sample(const clockid_t which_clock
, struct task_struct
*p
,
203 union cpu_time_count
*cpu
)
205 switch (CPUCLOCK_WHICH(which_clock
)) {
209 cpu
->cpu
= prof_ticks(p
);
212 cpu
->cpu
= virt_ticks(p
);
215 cpu
->sched
= task_sched_runtime(p
);
221 static void update_gt_cputime(struct task_cputime
*a
, struct task_cputime
*b
)
223 if (b
->utime
> a
->utime
)
226 if (b
->stime
> a
->stime
)
229 if (b
->sum_exec_runtime
> a
->sum_exec_runtime
)
230 a
->sum_exec_runtime
= b
->sum_exec_runtime
;
233 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
)
235 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
236 struct task_cputime sum
;
239 if (!cputimer
->running
) {
241 * The POSIX timer interface allows for absolute time expiry
242 * values through the TIMER_ABSTIME flag, therefore we have
243 * to synchronize the timer to the clock every time we start
246 thread_group_cputime(tsk
, &sum
);
247 raw_spin_lock_irqsave(&cputimer
->lock
, flags
);
248 cputimer
->running
= 1;
249 update_gt_cputime(&cputimer
->cputime
, &sum
);
251 raw_spin_lock_irqsave(&cputimer
->lock
, flags
);
252 *times
= cputimer
->cputime
;
253 raw_spin_unlock_irqrestore(&cputimer
->lock
, flags
);
257 * Sample a process (thread group) clock for the given group_leader task.
258 * Must be called with tasklist_lock held for reading.
260 static int cpu_clock_sample_group(const clockid_t which_clock
,
261 struct task_struct
*p
,
262 union cpu_time_count
*cpu
)
264 struct task_cputime cputime
;
266 switch (CPUCLOCK_WHICH(which_clock
)) {
270 thread_group_cputime(p
, &cputime
);
271 cpu
->cpu
= cputime
.utime
+ cputime
.stime
;
274 thread_group_cputime(p
, &cputime
);
275 cpu
->cpu
= cputime
.utime
;
278 thread_group_cputime(p
, &cputime
);
279 cpu
->sched
= cputime
.sum_exec_runtime
;
286 static int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
288 const pid_t pid
= CPUCLOCK_PID(which_clock
);
290 union cpu_time_count rtn
;
294 * Special case constant value for our own clocks.
295 * We don't have to do any lookup to find ourselves.
297 if (CPUCLOCK_PERTHREAD(which_clock
)) {
299 * Sampling just ourselves we can do with no locking.
301 error
= cpu_clock_sample(which_clock
,
304 read_lock(&tasklist_lock
);
305 error
= cpu_clock_sample_group(which_clock
,
307 read_unlock(&tasklist_lock
);
311 * Find the given PID, and validate that the caller
312 * should be able to see it.
314 struct task_struct
*p
;
316 p
= find_task_by_vpid(pid
);
318 if (CPUCLOCK_PERTHREAD(which_clock
)) {
319 if (same_thread_group(p
, current
)) {
320 error
= cpu_clock_sample(which_clock
,
324 read_lock(&tasklist_lock
);
325 if (thread_group_leader(p
) && p
->sighand
) {
327 cpu_clock_sample_group(which_clock
,
330 read_unlock(&tasklist_lock
);
338 sample_to_timespec(which_clock
, rtn
, tp
);
344 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
345 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
346 * new timer already all-zeros initialized.
348 static int posix_cpu_timer_create(struct k_itimer
*new_timer
)
351 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
352 struct task_struct
*p
;
354 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
357 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
360 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
364 p
= find_task_by_vpid(pid
);
365 if (p
&& !same_thread_group(p
, current
))
370 p
= current
->group_leader
;
372 p
= find_task_by_vpid(pid
);
373 if (p
&& !has_group_leader_pid(p
))
377 new_timer
->it
.cpu
.task
= p
;
389 * Clean up a CPU-clock timer that is about to be destroyed.
390 * This is called from timer deletion with the timer already locked.
391 * If we return TIMER_RETRY, it's necessary to release the timer's lock
392 * and try again. (This happens when the timer is in the middle of firing.)
394 static int posix_cpu_timer_del(struct k_itimer
*timer
)
396 struct task_struct
*p
= timer
->it
.cpu
.task
;
399 if (likely(p
!= NULL
)) {
400 read_lock(&tasklist_lock
);
401 if (unlikely(p
->sighand
== NULL
)) {
403 * We raced with the reaping of the task.
404 * The deletion should have cleared us off the list.
406 BUG_ON(!list_empty(&timer
->it
.cpu
.entry
));
408 spin_lock(&p
->sighand
->siglock
);
409 if (timer
->it
.cpu
.firing
)
412 list_del(&timer
->it
.cpu
.entry
);
413 spin_unlock(&p
->sighand
->siglock
);
415 read_unlock(&tasklist_lock
);
425 * Clean out CPU timers still ticking when a thread exited. The task
426 * pointer is cleared, and the expiry time is replaced with the residual
427 * time for later timer_gettime calls to return.
428 * This must be called with the siglock held.
430 static void cleanup_timers(struct list_head
*head
,
431 cputime_t utime
, cputime_t stime
,
432 unsigned long long sum_exec_runtime
)
434 struct cpu_timer_list
*timer
, *next
;
435 cputime_t ptime
= utime
+ stime
;
437 list_for_each_entry_safe(timer
, next
, head
, entry
) {
438 list_del_init(&timer
->entry
);
439 if (timer
->expires
.cpu
< ptime
) {
440 timer
->expires
.cpu
= 0;
442 timer
->expires
.cpu
-= ptime
;
447 list_for_each_entry_safe(timer
, next
, head
, entry
) {
448 list_del_init(&timer
->entry
);
449 if (timer
->expires
.cpu
< utime
) {
450 timer
->expires
.cpu
= 0;
452 timer
->expires
.cpu
-= utime
;
457 list_for_each_entry_safe(timer
, next
, head
, entry
) {
458 list_del_init(&timer
->entry
);
459 if (timer
->expires
.sched
< sum_exec_runtime
) {
460 timer
->expires
.sched
= 0;
462 timer
->expires
.sched
-= sum_exec_runtime
;
468 * These are both called with the siglock held, when the current thread
469 * is being reaped. When the final (leader) thread in the group is reaped,
470 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
472 void posix_cpu_timers_exit(struct task_struct
*tsk
)
474 add_device_randomness((const void*) &tsk
->se
.sum_exec_runtime
,
475 sizeof(unsigned long long));
476 cleanup_timers(tsk
->cpu_timers
,
477 tsk
->utime
, tsk
->stime
, tsk
->se
.sum_exec_runtime
);
480 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
482 struct signal_struct
*const sig
= tsk
->signal
;
484 cleanup_timers(tsk
->signal
->cpu_timers
,
485 tsk
->utime
+ sig
->utime
, tsk
->stime
+ sig
->stime
,
486 tsk
->se
.sum_exec_runtime
+ sig
->sum_sched_runtime
);
489 static void clear_dead_task(struct k_itimer
*timer
, union cpu_time_count now
)
492 * That's all for this thread or process.
493 * We leave our residual in expires to be reported.
495 put_task_struct(timer
->it
.cpu
.task
);
496 timer
->it
.cpu
.task
= NULL
;
497 timer
->it
.cpu
.expires
= cpu_time_sub(timer
->it_clock
,
498 timer
->it
.cpu
.expires
,
502 static inline int expires_gt(cputime_t expires
, cputime_t new_exp
)
504 return expires
== 0 || expires
> new_exp
;
508 * Insert the timer on the appropriate list before any timers that
509 * expire later. This must be called with the tasklist_lock held
510 * for reading, interrupts disabled and p->sighand->siglock taken.
512 static void arm_timer(struct k_itimer
*timer
)
514 struct task_struct
*p
= timer
->it
.cpu
.task
;
515 struct list_head
*head
, *listpos
;
516 struct task_cputime
*cputime_expires
;
517 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
518 struct cpu_timer_list
*next
;
520 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
521 head
= p
->cpu_timers
;
522 cputime_expires
= &p
->cputime_expires
;
524 head
= p
->signal
->cpu_timers
;
525 cputime_expires
= &p
->signal
->cputime_expires
;
527 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
530 list_for_each_entry(next
, head
, entry
) {
531 if (cpu_time_before(timer
->it_clock
, nt
->expires
, next
->expires
))
533 listpos
= &next
->entry
;
535 list_add(&nt
->entry
, listpos
);
537 if (listpos
== head
) {
538 union cpu_time_count
*exp
= &nt
->expires
;
541 * We are the new earliest-expiring POSIX 1.b timer, hence
542 * need to update expiration cache. Take into account that
543 * for process timers we share expiration cache with itimers
544 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
547 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
549 if (expires_gt(cputime_expires
->prof_exp
, exp
->cpu
))
550 cputime_expires
->prof_exp
= exp
->cpu
;
553 if (expires_gt(cputime_expires
->virt_exp
, exp
->cpu
))
554 cputime_expires
->virt_exp
= exp
->cpu
;
557 if (cputime_expires
->sched_exp
== 0 ||
558 cputime_expires
->sched_exp
> exp
->sched
)
559 cputime_expires
->sched_exp
= exp
->sched
;
566 * The timer is locked, fire it and arrange for its reload.
568 static void cpu_timer_fire(struct k_itimer
*timer
)
570 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
572 * User don't want any signal.
574 timer
->it
.cpu
.expires
.sched
= 0;
575 } else if (unlikely(timer
->sigq
== NULL
)) {
577 * This a special case for clock_nanosleep,
578 * not a normal timer from sys_timer_create.
580 wake_up_process(timer
->it_process
);
581 timer
->it
.cpu
.expires
.sched
= 0;
582 } else if (timer
->it
.cpu
.incr
.sched
== 0) {
584 * One-shot timer. Clear it as soon as it's fired.
586 posix_timer_event(timer
, 0);
587 timer
->it
.cpu
.expires
.sched
= 0;
588 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
590 * The signal did not get queued because the signal
591 * was ignored, so we won't get any callback to
592 * reload the timer. But we need to keep it
593 * ticking in case the signal is deliverable next time.
595 posix_cpu_timer_schedule(timer
);
600 * Sample a process (thread group) timer for the given group_leader task.
601 * Must be called with tasklist_lock held for reading.
603 static int cpu_timer_sample_group(const clockid_t which_clock
,
604 struct task_struct
*p
,
605 union cpu_time_count
*cpu
)
607 struct task_cputime cputime
;
609 thread_group_cputimer(p
, &cputime
);
610 switch (CPUCLOCK_WHICH(which_clock
)) {
614 cpu
->cpu
= cputime
.utime
+ cputime
.stime
;
617 cpu
->cpu
= cputime
.utime
;
620 cpu
->sched
= cputime
.sum_exec_runtime
+ task_delta_exec(p
);
627 * Guts of sys_timer_settime for CPU timers.
628 * This is called with the timer locked and interrupts disabled.
629 * If we return TIMER_RETRY, it's necessary to release the timer's lock
630 * and try again. (This happens when the timer is in the middle of firing.)
632 static int posix_cpu_timer_set(struct k_itimer
*timer
, int flags
,
633 struct itimerspec
*new, struct itimerspec
*old
)
635 struct task_struct
*p
= timer
->it
.cpu
.task
;
636 union cpu_time_count old_expires
, new_expires
, old_incr
, val
;
639 if (unlikely(p
== NULL
)) {
641 * Timer refers to a dead task's clock.
646 new_expires
= timespec_to_sample(timer
->it_clock
, &new->it_value
);
648 read_lock(&tasklist_lock
);
650 * We need the tasklist_lock to protect against reaping that
651 * clears p->sighand. If p has just been reaped, we can no
652 * longer get any information about it at all.
654 if (unlikely(p
->sighand
== NULL
)) {
655 read_unlock(&tasklist_lock
);
657 timer
->it
.cpu
.task
= NULL
;
662 * Disarm any old timer after extracting its expiry time.
664 BUG_ON(!irqs_disabled());
667 old_incr
= timer
->it
.cpu
.incr
;
668 spin_lock(&p
->sighand
->siglock
);
669 old_expires
= timer
->it
.cpu
.expires
;
670 if (unlikely(timer
->it
.cpu
.firing
)) {
671 timer
->it
.cpu
.firing
= -1;
674 list_del_init(&timer
->it
.cpu
.entry
);
677 * We need to sample the current value to convert the new
678 * value from to relative and absolute, and to convert the
679 * old value from absolute to relative. To set a process
680 * timer, we need a sample to balance the thread expiry
681 * times (in arm_timer). With an absolute time, we must
682 * check if it's already passed. In short, we need a sample.
684 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
685 cpu_clock_sample(timer
->it_clock
, p
, &val
);
687 cpu_timer_sample_group(timer
->it_clock
, p
, &val
);
691 if (old_expires
.sched
== 0) {
692 old
->it_value
.tv_sec
= 0;
693 old
->it_value
.tv_nsec
= 0;
696 * Update the timer in case it has
697 * overrun already. If it has,
698 * we'll report it as having overrun
699 * and with the next reloaded timer
700 * already ticking, though we are
701 * swallowing that pending
702 * notification here to install the
705 bump_cpu_timer(timer
, val
);
706 if (cpu_time_before(timer
->it_clock
, val
,
707 timer
->it
.cpu
.expires
)) {
708 old_expires
= cpu_time_sub(
710 timer
->it
.cpu
.expires
, val
);
711 sample_to_timespec(timer
->it_clock
,
715 old
->it_value
.tv_nsec
= 1;
716 old
->it_value
.tv_sec
= 0;
723 * We are colliding with the timer actually firing.
724 * Punt after filling in the timer's old value, and
725 * disable this firing since we are already reporting
726 * it as an overrun (thanks to bump_cpu_timer above).
728 spin_unlock(&p
->sighand
->siglock
);
729 read_unlock(&tasklist_lock
);
733 if (new_expires
.sched
!= 0 && !(flags
& TIMER_ABSTIME
)) {
734 cpu_time_add(timer
->it_clock
, &new_expires
, val
);
738 * Install the new expiry time (or zero).
739 * For a timer with no notification action, we don't actually
740 * arm the timer (we'll just fake it for timer_gettime).
742 timer
->it
.cpu
.expires
= new_expires
;
743 if (new_expires
.sched
!= 0 &&
744 cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
748 spin_unlock(&p
->sighand
->siglock
);
749 read_unlock(&tasklist_lock
);
752 * Install the new reload setting, and
753 * set up the signal and overrun bookkeeping.
755 timer
->it
.cpu
.incr
= timespec_to_sample(timer
->it_clock
,
759 * This acts as a modification timestamp for the timer,
760 * so any automatic reload attempt will punt on seeing
761 * that we have reset the timer manually.
763 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
765 timer
->it_overrun_last
= 0;
766 timer
->it_overrun
= -1;
768 if (new_expires
.sched
!= 0 &&
769 !cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
771 * The designated time already passed, so we notify
772 * immediately, even if the thread never runs to
773 * accumulate more time on this clock.
775 cpu_timer_fire(timer
);
781 sample_to_timespec(timer
->it_clock
,
782 old_incr
, &old
->it_interval
);
787 static void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
789 union cpu_time_count now
;
790 struct task_struct
*p
= timer
->it
.cpu
.task
;
794 * Easy part: convert the reload time.
796 sample_to_timespec(timer
->it_clock
,
797 timer
->it
.cpu
.incr
, &itp
->it_interval
);
799 if (timer
->it
.cpu
.expires
.sched
== 0) { /* Timer not armed at all. */
800 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
804 if (unlikely(p
== NULL
)) {
806 * This task already died and the timer will never fire.
807 * In this case, expires is actually the dead value.
810 sample_to_timespec(timer
->it_clock
, timer
->it
.cpu
.expires
,
816 * Sample the clock to take the difference with the expiry time.
818 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
819 cpu_clock_sample(timer
->it_clock
, p
, &now
);
820 clear_dead
= p
->exit_state
;
822 read_lock(&tasklist_lock
);
823 if (unlikely(p
->sighand
== NULL
)) {
825 * The process has been reaped.
826 * We can't even collect a sample any more.
827 * Call the timer disarmed, nothing else to do.
830 timer
->it
.cpu
.task
= NULL
;
831 timer
->it
.cpu
.expires
.sched
= 0;
832 read_unlock(&tasklist_lock
);
835 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
836 clear_dead
= (unlikely(p
->exit_state
) &&
837 thread_group_empty(p
));
839 read_unlock(&tasklist_lock
);
842 if (unlikely(clear_dead
)) {
844 * We've noticed that the thread is dead, but
845 * not yet reaped. Take this opportunity to
848 clear_dead_task(timer
, now
);
852 if (cpu_time_before(timer
->it_clock
, now
, timer
->it
.cpu
.expires
)) {
853 sample_to_timespec(timer
->it_clock
,
854 cpu_time_sub(timer
->it_clock
,
855 timer
->it
.cpu
.expires
, now
),
859 * The timer should have expired already, but the firing
860 * hasn't taken place yet. Say it's just about to expire.
862 itp
->it_value
.tv_nsec
= 1;
863 itp
->it_value
.tv_sec
= 0;
868 * Check for any per-thread CPU timers that have fired and move them off
869 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
870 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
872 static void check_thread_timers(struct task_struct
*tsk
,
873 struct list_head
*firing
)
876 struct list_head
*timers
= tsk
->cpu_timers
;
877 struct signal_struct
*const sig
= tsk
->signal
;
881 tsk
->cputime_expires
.prof_exp
= 0;
882 while (!list_empty(timers
)) {
883 struct cpu_timer_list
*t
= list_first_entry(timers
,
884 struct cpu_timer_list
,
886 if (!--maxfire
|| prof_ticks(tsk
) < t
->expires
.cpu
) {
887 tsk
->cputime_expires
.prof_exp
= t
->expires
.cpu
;
891 list_move_tail(&t
->entry
, firing
);
896 tsk
->cputime_expires
.virt_exp
= 0;
897 while (!list_empty(timers
)) {
898 struct cpu_timer_list
*t
= list_first_entry(timers
,
899 struct cpu_timer_list
,
901 if (!--maxfire
|| virt_ticks(tsk
) < t
->expires
.cpu
) {
902 tsk
->cputime_expires
.virt_exp
= t
->expires
.cpu
;
906 list_move_tail(&t
->entry
, firing
);
911 tsk
->cputime_expires
.sched_exp
= 0;
912 while (!list_empty(timers
)) {
913 struct cpu_timer_list
*t
= list_first_entry(timers
,
914 struct cpu_timer_list
,
916 if (!--maxfire
|| tsk
->se
.sum_exec_runtime
< t
->expires
.sched
) {
917 tsk
->cputime_expires
.sched_exp
= t
->expires
.sched
;
921 list_move_tail(&t
->entry
, firing
);
925 * Check for the special case thread timers.
927 soft
= ACCESS_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
);
928 if (soft
!= RLIM_INFINITY
) {
930 ACCESS_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_max
);
932 if (hard
!= RLIM_INFINITY
&&
933 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
935 * At the hard limit, we just die.
936 * No need to calculate anything else now.
938 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
941 if (tsk
->rt
.timeout
> DIV_ROUND_UP(soft
, USEC_PER_SEC
/HZ
)) {
943 * At the soft limit, send a SIGXCPU every second.
946 soft
+= USEC_PER_SEC
;
947 sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
= soft
;
950 "RT Watchdog Timeout: %s[%d]\n",
951 tsk
->comm
, task_pid_nr(tsk
));
952 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
957 static void stop_process_timers(struct signal_struct
*sig
)
959 struct thread_group_cputimer
*cputimer
= &sig
->cputimer
;
962 raw_spin_lock_irqsave(&cputimer
->lock
, flags
);
963 cputimer
->running
= 0;
964 raw_spin_unlock_irqrestore(&cputimer
->lock
, flags
);
967 static u32 onecputick
;
969 static void check_cpu_itimer(struct task_struct
*tsk
, struct cpu_itimer
*it
,
970 cputime_t
*expires
, cputime_t cur_time
, int signo
)
975 if (cur_time
>= it
->expires
) {
977 it
->expires
+= it
->incr
;
978 it
->error
+= it
->incr_error
;
979 if (it
->error
>= onecputick
) {
980 it
->expires
-= cputime_one_jiffy
;
981 it
->error
-= onecputick
;
987 trace_itimer_expire(signo
== SIGPROF
?
988 ITIMER_PROF
: ITIMER_VIRTUAL
,
989 tsk
->signal
->leader_pid
, cur_time
);
990 __group_send_sig_info(signo
, SEND_SIG_PRIV
, tsk
);
993 if (it
->expires
&& (!*expires
|| it
->expires
< *expires
)) {
994 *expires
= it
->expires
;
999 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1001 * @cputime: The struct to compare.
1003 * Checks @cputime to see if all fields are zero. Returns true if all fields
1004 * are zero, false if any field is nonzero.
1006 static inline int task_cputime_zero(const struct task_cputime
*cputime
)
1008 if (!cputime
->utime
&& !cputime
->stime
&& !cputime
->sum_exec_runtime
)
1014 * Check for any per-thread CPU timers that have fired and move them
1015 * off the tsk->*_timers list onto the firing list. Per-thread timers
1016 * have already been taken off.
1018 static void check_process_timers(struct task_struct
*tsk
,
1019 struct list_head
*firing
)
1022 struct signal_struct
*const sig
= tsk
->signal
;
1023 cputime_t utime
, ptime
, virt_expires
, prof_expires
;
1024 unsigned long long sum_sched_runtime
, sched_expires
;
1025 struct list_head
*timers
= sig
->cpu_timers
;
1026 struct task_cputime cputime
;
1030 * Collect the current process totals.
1032 thread_group_cputimer(tsk
, &cputime
);
1033 utime
= cputime
.utime
;
1034 ptime
= utime
+ cputime
.stime
;
1035 sum_sched_runtime
= cputime
.sum_exec_runtime
;
1038 while (!list_empty(timers
)) {
1039 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1040 struct cpu_timer_list
,
1042 if (!--maxfire
|| ptime
< tl
->expires
.cpu
) {
1043 prof_expires
= tl
->expires
.cpu
;
1047 list_move_tail(&tl
->entry
, firing
);
1053 while (!list_empty(timers
)) {
1054 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1055 struct cpu_timer_list
,
1057 if (!--maxfire
|| utime
< tl
->expires
.cpu
) {
1058 virt_expires
= tl
->expires
.cpu
;
1062 list_move_tail(&tl
->entry
, firing
);
1068 while (!list_empty(timers
)) {
1069 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1070 struct cpu_timer_list
,
1072 if (!--maxfire
|| sum_sched_runtime
< tl
->expires
.sched
) {
1073 sched_expires
= tl
->expires
.sched
;
1077 list_move_tail(&tl
->entry
, firing
);
1081 * Check for the special case process timers.
1083 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_PROF
], &prof_expires
, ptime
,
1085 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_VIRT
], &virt_expires
, utime
,
1087 soft
= ACCESS_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1088 if (soft
!= RLIM_INFINITY
) {
1089 unsigned long psecs
= cputime_to_secs(ptime
);
1090 unsigned long hard
=
1091 ACCESS_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_max
);
1093 if (psecs
>= hard
) {
1095 * At the hard limit, we just die.
1096 * No need to calculate anything else now.
1098 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1101 if (psecs
>= soft
) {
1103 * At the soft limit, send a SIGXCPU every second.
1105 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1108 sig
->rlim
[RLIMIT_CPU
].rlim_cur
= soft
;
1111 x
= secs_to_cputime(soft
);
1112 if (!prof_expires
|| x
< prof_expires
) {
1117 sig
->cputime_expires
.prof_exp
= prof_expires
;
1118 sig
->cputime_expires
.virt_exp
= virt_expires
;
1119 sig
->cputime_expires
.sched_exp
= sched_expires
;
1120 if (task_cputime_zero(&sig
->cputime_expires
))
1121 stop_process_timers(sig
);
1125 * This is called from the signal code (via do_schedule_next_timer)
1126 * when the last timer signal was delivered and we have to reload the timer.
1128 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
1130 struct task_struct
*p
= timer
->it
.cpu
.task
;
1131 union cpu_time_count now
;
1133 if (unlikely(p
== NULL
))
1135 * The task was cleaned up already, no future firings.
1140 * Fetch the current sample and update the timer's expiry time.
1142 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1143 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1144 bump_cpu_timer(timer
, now
);
1145 if (unlikely(p
->exit_state
)) {
1146 clear_dead_task(timer
, now
);
1149 read_lock(&tasklist_lock
); /* arm_timer needs it. */
1150 spin_lock(&p
->sighand
->siglock
);
1152 read_lock(&tasklist_lock
);
1153 if (unlikely(p
->sighand
== NULL
)) {
1155 * The process has been reaped.
1156 * We can't even collect a sample any more.
1159 timer
->it
.cpu
.task
= p
= NULL
;
1160 timer
->it
.cpu
.expires
.sched
= 0;
1162 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1164 * We've noticed that the thread is dead, but
1165 * not yet reaped. Take this opportunity to
1166 * drop our task ref.
1168 clear_dead_task(timer
, now
);
1171 spin_lock(&p
->sighand
->siglock
);
1172 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
1173 bump_cpu_timer(timer
, now
);
1174 /* Leave the tasklist_lock locked for the call below. */
1178 * Now re-arm for the new expiry time.
1180 BUG_ON(!irqs_disabled());
1182 spin_unlock(&p
->sighand
->siglock
);
1185 read_unlock(&tasklist_lock
);
1188 timer
->it_overrun_last
= timer
->it_overrun
;
1189 timer
->it_overrun
= -1;
1190 ++timer
->it_requeue_pending
;
1194 * task_cputime_expired - Compare two task_cputime entities.
1196 * @sample: The task_cputime structure to be checked for expiration.
1197 * @expires: Expiration times, against which @sample will be checked.
1199 * Checks @sample against @expires to see if any field of @sample has expired.
1200 * Returns true if any field of the former is greater than the corresponding
1201 * field of the latter if the latter field is set. Otherwise returns false.
1203 static inline int task_cputime_expired(const struct task_cputime
*sample
,
1204 const struct task_cputime
*expires
)
1206 if (expires
->utime
&& sample
->utime
>= expires
->utime
)
1208 if (expires
->stime
&& sample
->utime
+ sample
->stime
>= expires
->stime
)
1210 if (expires
->sum_exec_runtime
!= 0 &&
1211 sample
->sum_exec_runtime
>= expires
->sum_exec_runtime
)
1217 * fastpath_timer_check - POSIX CPU timers fast path.
1219 * @tsk: The task (thread) being checked.
1221 * Check the task and thread group timers. If both are zero (there are no
1222 * timers set) return false. Otherwise snapshot the task and thread group
1223 * timers and compare them with the corresponding expiration times. Return
1224 * true if a timer has expired, else return false.
1226 static inline int fastpath_timer_check(struct task_struct
*tsk
)
1228 struct signal_struct
*sig
;
1230 if (!task_cputime_zero(&tsk
->cputime_expires
)) {
1231 struct task_cputime task_sample
= {
1232 .utime
= tsk
->utime
,
1233 .stime
= tsk
->stime
,
1234 .sum_exec_runtime
= tsk
->se
.sum_exec_runtime
1237 if (task_cputime_expired(&task_sample
, &tsk
->cputime_expires
))
1242 if (sig
->cputimer
.running
) {
1243 struct task_cputime group_sample
;
1245 raw_spin_lock(&sig
->cputimer
.lock
);
1246 group_sample
= sig
->cputimer
.cputime
;
1247 raw_spin_unlock(&sig
->cputimer
.lock
);
1249 if (task_cputime_expired(&group_sample
, &sig
->cputime_expires
))
1257 * This is called from the timer interrupt handler. The irq handler has
1258 * already updated our counts. We need to check if any timers fire now.
1259 * Interrupts are disabled.
1261 void run_posix_cpu_timers(struct task_struct
*tsk
)
1264 struct k_itimer
*timer
, *next
;
1265 unsigned long flags
;
1267 BUG_ON(!irqs_disabled());
1270 * The fast path checks that there are no expired thread or thread
1271 * group timers. If that's so, just return.
1273 if (!fastpath_timer_check(tsk
))
1276 if (!lock_task_sighand(tsk
, &flags
))
1279 * Here we take off tsk->signal->cpu_timers[N] and
1280 * tsk->cpu_timers[N] all the timers that are firing, and
1281 * put them on the firing list.
1283 check_thread_timers(tsk
, &firing
);
1285 * If there are any active process wide timers (POSIX 1.b, itimers,
1286 * RLIMIT_CPU) cputimer must be running.
1288 if (tsk
->signal
->cputimer
.running
)
1289 check_process_timers(tsk
, &firing
);
1292 * We must release these locks before taking any timer's lock.
1293 * There is a potential race with timer deletion here, as the
1294 * siglock now protects our private firing list. We have set
1295 * the firing flag in each timer, so that a deletion attempt
1296 * that gets the timer lock before we do will give it up and
1297 * spin until we've taken care of that timer below.
1299 unlock_task_sighand(tsk
, &flags
);
1302 * Now that all the timers on our list have the firing flag,
1303 * no one will touch their list entries but us. We'll take
1304 * each timer's lock before clearing its firing flag, so no
1305 * timer call will interfere.
1307 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1310 spin_lock(&timer
->it_lock
);
1311 list_del_init(&timer
->it
.cpu
.entry
);
1312 cpu_firing
= timer
->it
.cpu
.firing
;
1313 timer
->it
.cpu
.firing
= 0;
1315 * The firing flag is -1 if we collided with a reset
1316 * of the timer, which already reported this
1317 * almost-firing as an overrun. So don't generate an event.
1319 if (likely(cpu_firing
>= 0))
1320 cpu_timer_fire(timer
);
1321 spin_unlock(&timer
->it_lock
);
1326 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1327 * The tsk->sighand->siglock must be held by the caller.
1329 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1330 cputime_t
*newval
, cputime_t
*oldval
)
1332 union cpu_time_count now
;
1334 BUG_ON(clock_idx
== CPUCLOCK_SCHED
);
1335 cpu_timer_sample_group(clock_idx
, tsk
, &now
);
1339 * We are setting itimer. The *oldval is absolute and we update
1340 * it to be relative, *newval argument is relative and we update
1341 * it to be absolute.
1344 if (*oldval
<= now
.cpu
) {
1345 /* Just about to fire. */
1346 *oldval
= cputime_one_jiffy
;
1358 * Update expiration cache if we are the earliest timer, or eventually
1359 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1361 switch (clock_idx
) {
1363 if (expires_gt(tsk
->signal
->cputime_expires
.prof_exp
, *newval
))
1364 tsk
->signal
->cputime_expires
.prof_exp
= *newval
;
1367 if (expires_gt(tsk
->signal
->cputime_expires
.virt_exp
, *newval
))
1368 tsk
->signal
->cputime_expires
.virt_exp
= *newval
;
1373 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1374 struct timespec
*rqtp
, struct itimerspec
*it
)
1376 struct k_itimer timer
;
1380 * Set up a temporary timer and then wait for it to go off.
1382 memset(&timer
, 0, sizeof timer
);
1383 spin_lock_init(&timer
.it_lock
);
1384 timer
.it_clock
= which_clock
;
1385 timer
.it_overrun
= -1;
1386 error
= posix_cpu_timer_create(&timer
);
1387 timer
.it_process
= current
;
1389 static struct itimerspec zero_it
;
1391 memset(it
, 0, sizeof *it
);
1392 it
->it_value
= *rqtp
;
1394 spin_lock_irq(&timer
.it_lock
);
1395 error
= posix_cpu_timer_set(&timer
, flags
, it
, NULL
);
1397 spin_unlock_irq(&timer
.it_lock
);
1401 while (!signal_pending(current
)) {
1402 if (timer
.it
.cpu
.expires
.sched
== 0) {
1404 * Our timer fired and was reset.
1406 spin_unlock_irq(&timer
.it_lock
);
1411 * Block until cpu_timer_fire (or a signal) wakes us.
1413 __set_current_state(TASK_INTERRUPTIBLE
);
1414 spin_unlock_irq(&timer
.it_lock
);
1416 spin_lock_irq(&timer
.it_lock
);
1420 * We were interrupted by a signal.
1422 sample_to_timespec(which_clock
, timer
.it
.cpu
.expires
, rqtp
);
1423 posix_cpu_timer_set(&timer
, 0, &zero_it
, it
);
1424 spin_unlock_irq(&timer
.it_lock
);
1426 if ((it
->it_value
.tv_sec
| it
->it_value
.tv_nsec
) == 0) {
1428 * It actually did fire already.
1433 error
= -ERESTART_RESTARTBLOCK
;
1439 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
);
1441 static int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1442 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1444 struct restart_block
*restart_block
=
1445 ¤t_thread_info()->restart_block
;
1446 struct itimerspec it
;
1450 * Diagnose required errors first.
1452 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1453 (CPUCLOCK_PID(which_clock
) == 0 ||
1454 CPUCLOCK_PID(which_clock
) == current
->pid
))
1457 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
, &it
);
1459 if (error
== -ERESTART_RESTARTBLOCK
) {
1461 if (flags
& TIMER_ABSTIME
)
1462 return -ERESTARTNOHAND
;
1464 * Report back to the user the time still remaining.
1466 if (rmtp
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1469 restart_block
->fn
= posix_cpu_nsleep_restart
;
1470 restart_block
->nanosleep
.clockid
= which_clock
;
1471 restart_block
->nanosleep
.rmtp
= rmtp
;
1472 restart_block
->nanosleep
.expires
= timespec_to_ns(rqtp
);
1477 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1479 clockid_t which_clock
= restart_block
->nanosleep
.clockid
;
1481 struct itimerspec it
;
1484 t
= ns_to_timespec(restart_block
->nanosleep
.expires
);
1486 error
= do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
, &it
);
1488 if (error
== -ERESTART_RESTARTBLOCK
) {
1489 struct timespec __user
*rmtp
= restart_block
->nanosleep
.rmtp
;
1491 * Report back to the user the time still remaining.
1493 if (rmtp
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1496 restart_block
->nanosleep
.expires
= timespec_to_ns(&t
);
1502 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1503 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1505 static int process_cpu_clock_getres(const clockid_t which_clock
,
1506 struct timespec
*tp
)
1508 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1510 static int process_cpu_clock_get(const clockid_t which_clock
,
1511 struct timespec
*tp
)
1513 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1515 static int process_cpu_timer_create(struct k_itimer
*timer
)
1517 timer
->it_clock
= PROCESS_CLOCK
;
1518 return posix_cpu_timer_create(timer
);
1520 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1521 struct timespec
*rqtp
,
1522 struct timespec __user
*rmtp
)
1524 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1526 static long process_cpu_nsleep_restart(struct restart_block
*restart_block
)
1530 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1531 struct timespec
*tp
)
1533 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1535 static int thread_cpu_clock_get(const clockid_t which_clock
,
1536 struct timespec
*tp
)
1538 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1540 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1542 timer
->it_clock
= THREAD_CLOCK
;
1543 return posix_cpu_timer_create(timer
);
1546 struct k_clock clock_posix_cpu
= {
1547 .clock_getres
= posix_cpu_clock_getres
,
1548 .clock_set
= posix_cpu_clock_set
,
1549 .clock_get
= posix_cpu_clock_get
,
1550 .timer_create
= posix_cpu_timer_create
,
1551 .nsleep
= posix_cpu_nsleep
,
1552 .nsleep_restart
= posix_cpu_nsleep_restart
,
1553 .timer_set
= posix_cpu_timer_set
,
1554 .timer_del
= posix_cpu_timer_del
,
1555 .timer_get
= posix_cpu_timer_get
,
1558 static __init
int init_posix_cpu_timers(void)
1560 struct k_clock process
= {
1561 .clock_getres
= process_cpu_clock_getres
,
1562 .clock_get
= process_cpu_clock_get
,
1563 .timer_create
= process_cpu_timer_create
,
1564 .nsleep
= process_cpu_nsleep
,
1565 .nsleep_restart
= process_cpu_nsleep_restart
,
1567 struct k_clock thread
= {
1568 .clock_getres
= thread_cpu_clock_getres
,
1569 .clock_get
= thread_cpu_clock_get
,
1570 .timer_create
= thread_cpu_timer_create
,
1574 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1575 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1577 cputime_to_timespec(cputime_one_jiffy
, &ts
);
1578 onecputick
= ts
.tv_nsec
;
1579 WARN_ON(ts
.tv_sec
!= 0);
1583 __initcall(init_posix_cpu_timers
);