2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
8 #include <linux/slab.h>
10 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
12 struct rt_bandwidth def_rt_bandwidth
;
14 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
16 struct rt_bandwidth
*rt_b
=
17 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
23 now
= hrtimer_cb_get_time(timer
);
24 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
29 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
32 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
35 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
37 rt_b
->rt_period
= ns_to_ktime(period
);
38 rt_b
->rt_runtime
= runtime
;
40 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
42 hrtimer_init(&rt_b
->rt_period_timer
,
43 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
44 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
47 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
49 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
52 if (hrtimer_active(&rt_b
->rt_period_timer
))
55 raw_spin_lock(&rt_b
->rt_runtime_lock
);
56 start_bandwidth_timer(&rt_b
->rt_period_timer
, rt_b
->rt_period
);
57 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
60 void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
62 struct rt_prio_array
*array
;
65 array
= &rt_rq
->active
;
66 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
67 INIT_LIST_HEAD(array
->queue
+ i
);
68 __clear_bit(i
, array
->bitmap
);
70 /* delimiter for bitsearch: */
71 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
73 #if defined CONFIG_SMP
74 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
75 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
76 rt_rq
->rt_nr_migratory
= 0;
77 rt_rq
->overloaded
= 0;
78 plist_head_init(&rt_rq
->pushable_tasks
);
82 rt_rq
->rt_throttled
= 0;
83 rt_rq
->rt_runtime
= 0;
84 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
87 #ifdef CONFIG_RT_GROUP_SCHED
88 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
90 hrtimer_cancel(&rt_b
->rt_period_timer
);
93 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
95 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
97 #ifdef CONFIG_SCHED_DEBUG
98 WARN_ON_ONCE(!rt_entity_is_task(rt_se
));
100 return container_of(rt_se
, struct task_struct
, rt
);
103 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
108 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
113 void free_rt_sched_group(struct task_group
*tg
)
118 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
120 for_each_possible_cpu(i
) {
131 void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
132 struct sched_rt_entity
*rt_se
, int cpu
,
133 struct sched_rt_entity
*parent
)
135 struct rq
*rq
= cpu_rq(cpu
);
137 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
138 rt_rq
->rt_nr_boosted
= 0;
142 tg
->rt_rq
[cpu
] = rt_rq
;
143 tg
->rt_se
[cpu
] = rt_se
;
149 rt_se
->rt_rq
= &rq
->rt
;
151 rt_se
->rt_rq
= parent
->my_q
;
154 rt_se
->parent
= parent
;
155 INIT_LIST_HEAD(&rt_se
->run_list
);
158 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
161 struct sched_rt_entity
*rt_se
;
164 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
167 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
171 init_rt_bandwidth(&tg
->rt_bandwidth
,
172 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
174 for_each_possible_cpu(i
) {
175 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
176 GFP_KERNEL
, cpu_to_node(i
));
180 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
181 GFP_KERNEL
, cpu_to_node(i
));
185 init_rt_rq(rt_rq
, cpu_rq(i
));
186 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
187 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
198 #else /* CONFIG_RT_GROUP_SCHED */
200 #define rt_entity_is_task(rt_se) (1)
202 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
204 return container_of(rt_se
, struct task_struct
, rt
);
207 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
209 return container_of(rt_rq
, struct rq
, rt
);
212 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
214 struct task_struct
*p
= rt_task_of(rt_se
);
215 struct rq
*rq
= task_rq(p
);
220 void free_rt_sched_group(struct task_group
*tg
) { }
222 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
226 #endif /* CONFIG_RT_GROUP_SCHED */
230 static inline int rt_overloaded(struct rq
*rq
)
232 return atomic_read(&rq
->rd
->rto_count
);
235 static inline void rt_set_overload(struct rq
*rq
)
240 cpumask_set_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
242 * Make sure the mask is visible before we set
243 * the overload count. That is checked to determine
244 * if we should look at the mask. It would be a shame
245 * if we looked at the mask, but the mask was not
249 atomic_inc(&rq
->rd
->rto_count
);
252 static inline void rt_clear_overload(struct rq
*rq
)
257 /* the order here really doesn't matter */
258 atomic_dec(&rq
->rd
->rto_count
);
259 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
262 static void update_rt_migration(struct rt_rq
*rt_rq
)
264 if (rt_rq
->rt_nr_migratory
&& rt_rq
->rt_nr_total
> 1) {
265 if (!rt_rq
->overloaded
) {
266 rt_set_overload(rq_of_rt_rq(rt_rq
));
267 rt_rq
->overloaded
= 1;
269 } else if (rt_rq
->overloaded
) {
270 rt_clear_overload(rq_of_rt_rq(rt_rq
));
271 rt_rq
->overloaded
= 0;
275 static void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
277 struct task_struct
*p
;
279 if (!rt_entity_is_task(rt_se
))
282 p
= rt_task_of(rt_se
);
283 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
285 rt_rq
->rt_nr_total
++;
286 if (p
->nr_cpus_allowed
> 1)
287 rt_rq
->rt_nr_migratory
++;
289 update_rt_migration(rt_rq
);
292 static void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
294 struct task_struct
*p
;
296 if (!rt_entity_is_task(rt_se
))
299 p
= rt_task_of(rt_se
);
300 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
302 rt_rq
->rt_nr_total
--;
303 if (p
->nr_cpus_allowed
> 1)
304 rt_rq
->rt_nr_migratory
--;
306 update_rt_migration(rt_rq
);
309 static inline int has_pushable_tasks(struct rq
*rq
)
311 return !plist_head_empty(&rq
->rt
.pushable_tasks
);
314 static void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
316 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
317 plist_node_init(&p
->pushable_tasks
, p
->prio
);
318 plist_add(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
320 /* Update the highest prio pushable task */
321 if (p
->prio
< rq
->rt
.highest_prio
.next
)
322 rq
->rt
.highest_prio
.next
= p
->prio
;
325 static void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
327 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
329 /* Update the new highest prio pushable task */
330 if (has_pushable_tasks(rq
)) {
331 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
332 struct task_struct
, pushable_tasks
);
333 rq
->rt
.highest_prio
.next
= p
->prio
;
335 rq
->rt
.highest_prio
.next
= MAX_RT_PRIO
;
340 static inline void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
344 static inline void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
349 void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
354 void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
358 #endif /* CONFIG_SMP */
360 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
362 return !list_empty(&rt_se
->run_list
);
365 #ifdef CONFIG_RT_GROUP_SCHED
367 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
372 return rt_rq
->rt_runtime
;
375 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
377 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
380 typedef struct task_group
*rt_rq_iter_t
;
382 static inline struct task_group
*next_task_group(struct task_group
*tg
)
385 tg
= list_entry_rcu(tg
->list
.next
,
386 typeof(struct task_group
), list
);
387 } while (&tg
->list
!= &task_groups
&& task_group_is_autogroup(tg
));
389 if (&tg
->list
== &task_groups
)
395 #define for_each_rt_rq(rt_rq, iter, rq) \
396 for (iter = container_of(&task_groups, typeof(*iter), list); \
397 (iter = next_task_group(iter)) && \
398 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
400 static inline void list_add_leaf_rt_rq(struct rt_rq
*rt_rq
)
402 list_add_rcu(&rt_rq
->leaf_rt_rq_list
,
403 &rq_of_rt_rq(rt_rq
)->leaf_rt_rq_list
);
406 static inline void list_del_leaf_rt_rq(struct rt_rq
*rt_rq
)
408 list_del_rcu(&rt_rq
->leaf_rt_rq_list
);
411 #define for_each_leaf_rt_rq(rt_rq, rq) \
412 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
414 #define for_each_sched_rt_entity(rt_se) \
415 for (; rt_se; rt_se = rt_se->parent)
417 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
422 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
);
423 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
);
425 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
427 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
428 struct sched_rt_entity
*rt_se
;
430 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
432 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
434 if (rt_rq
->rt_nr_running
) {
435 if (rt_se
&& !on_rt_rq(rt_se
))
436 enqueue_rt_entity(rt_se
, false);
437 if (rt_rq
->highest_prio
.curr
< curr
->prio
)
442 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
444 struct sched_rt_entity
*rt_se
;
445 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
447 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
449 if (rt_se
&& on_rt_rq(rt_se
))
450 dequeue_rt_entity(rt_se
);
453 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
455 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
458 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
460 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
461 struct task_struct
*p
;
464 return !!rt_rq
->rt_nr_boosted
;
466 p
= rt_task_of(rt_se
);
467 return p
->prio
!= p
->normal_prio
;
471 static inline const struct cpumask
*sched_rt_period_mask(void)
473 return cpu_rq(smp_processor_id())->rd
->span
;
476 static inline const struct cpumask
*sched_rt_period_mask(void)
478 return cpu_online_mask
;
483 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
485 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
488 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
490 return &rt_rq
->tg
->rt_bandwidth
;
493 #else /* !CONFIG_RT_GROUP_SCHED */
495 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
497 return rt_rq
->rt_runtime
;
500 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
502 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
505 typedef struct rt_rq
*rt_rq_iter_t
;
507 #define for_each_rt_rq(rt_rq, iter, rq) \
508 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
510 static inline void list_add_leaf_rt_rq(struct rt_rq
*rt_rq
)
514 static inline void list_del_leaf_rt_rq(struct rt_rq
*rt_rq
)
518 #define for_each_leaf_rt_rq(rt_rq, rq) \
519 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
521 #define for_each_sched_rt_entity(rt_se) \
522 for (; rt_se; rt_se = NULL)
524 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
529 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
531 if (rt_rq
->rt_nr_running
)
532 resched_task(rq_of_rt_rq(rt_rq
)->curr
);
535 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
539 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
541 return rt_rq
->rt_throttled
;
544 static inline const struct cpumask
*sched_rt_period_mask(void)
546 return cpu_online_mask
;
550 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
552 return &cpu_rq(cpu
)->rt
;
555 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
557 return &def_rt_bandwidth
;
560 #endif /* CONFIG_RT_GROUP_SCHED */
564 * We ran out of runtime, see if we can borrow some from our neighbours.
566 static int do_balance_runtime(struct rt_rq
*rt_rq
)
568 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
569 struct root_domain
*rd
= rq_of_rt_rq(rt_rq
)->rd
;
570 int i
, weight
, more
= 0;
573 weight
= cpumask_weight(rd
->span
);
575 raw_spin_lock(&rt_b
->rt_runtime_lock
);
576 rt_period
= ktime_to_ns(rt_b
->rt_period
);
577 for_each_cpu(i
, rd
->span
) {
578 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
584 raw_spin_lock(&iter
->rt_runtime_lock
);
586 * Either all rqs have inf runtime and there's nothing to steal
587 * or __disable_runtime() below sets a specific rq to inf to
588 * indicate its been disabled and disalow stealing.
590 if (iter
->rt_runtime
== RUNTIME_INF
)
594 * From runqueues with spare time, take 1/n part of their
595 * spare time, but no more than our period.
597 diff
= iter
->rt_runtime
- iter
->rt_time
;
599 diff
= div_u64((u64
)diff
, weight
);
600 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
601 diff
= rt_period
- rt_rq
->rt_runtime
;
602 iter
->rt_runtime
-= diff
;
603 rt_rq
->rt_runtime
+= diff
;
605 if (rt_rq
->rt_runtime
== rt_period
) {
606 raw_spin_unlock(&iter
->rt_runtime_lock
);
611 raw_spin_unlock(&iter
->rt_runtime_lock
);
613 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
619 * Ensure this RQ takes back all the runtime it lend to its neighbours.
621 static void __disable_runtime(struct rq
*rq
)
623 struct root_domain
*rd
= rq
->rd
;
627 if (unlikely(!scheduler_running
))
630 for_each_rt_rq(rt_rq
, iter
, rq
) {
631 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
635 raw_spin_lock(&rt_b
->rt_runtime_lock
);
636 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
638 * Either we're all inf and nobody needs to borrow, or we're
639 * already disabled and thus have nothing to do, or we have
640 * exactly the right amount of runtime to take out.
642 if (rt_rq
->rt_runtime
== RUNTIME_INF
||
643 rt_rq
->rt_runtime
== rt_b
->rt_runtime
)
645 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
648 * Calculate the difference between what we started out with
649 * and what we current have, that's the amount of runtime
650 * we lend and now have to reclaim.
652 want
= rt_b
->rt_runtime
- rt_rq
->rt_runtime
;
655 * Greedy reclaim, take back as much as we can.
657 for_each_cpu(i
, rd
->span
) {
658 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
662 * Can't reclaim from ourselves or disabled runqueues.
664 if (iter
== rt_rq
|| iter
->rt_runtime
== RUNTIME_INF
)
667 raw_spin_lock(&iter
->rt_runtime_lock
);
669 diff
= min_t(s64
, iter
->rt_runtime
, want
);
670 iter
->rt_runtime
-= diff
;
673 iter
->rt_runtime
-= want
;
676 raw_spin_unlock(&iter
->rt_runtime_lock
);
682 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
684 * We cannot be left wanting - that would mean some runtime
685 * leaked out of the system.
690 * Disable all the borrow logic by pretending we have inf
691 * runtime - in which case borrowing doesn't make sense.
693 rt_rq
->rt_runtime
= RUNTIME_INF
;
694 rt_rq
->rt_throttled
= 0;
695 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
696 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
700 static void disable_runtime(struct rq
*rq
)
704 raw_spin_lock_irqsave(&rq
->lock
, flags
);
705 __disable_runtime(rq
);
706 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
709 static void __enable_runtime(struct rq
*rq
)
714 if (unlikely(!scheduler_running
))
718 * Reset each runqueue's bandwidth settings
720 for_each_rt_rq(rt_rq
, iter
, rq
) {
721 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
723 raw_spin_lock(&rt_b
->rt_runtime_lock
);
724 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
725 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
727 rt_rq
->rt_throttled
= 0;
728 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
729 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
733 static void enable_runtime(struct rq
*rq
)
737 raw_spin_lock_irqsave(&rq
->lock
, flags
);
738 __enable_runtime(rq
);
739 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
742 int update_runtime(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
744 int cpu
= (int)(long)hcpu
;
747 case CPU_DOWN_PREPARE
:
748 case CPU_DOWN_PREPARE_FROZEN
:
749 disable_runtime(cpu_rq(cpu
));
752 case CPU_DOWN_FAILED
:
753 case CPU_DOWN_FAILED_FROZEN
:
755 case CPU_ONLINE_FROZEN
:
756 enable_runtime(cpu_rq(cpu
));
764 static int balance_runtime(struct rt_rq
*rt_rq
)
768 if (!sched_feat(RT_RUNTIME_SHARE
))
771 if (rt_rq
->rt_time
> rt_rq
->rt_runtime
) {
772 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
773 more
= do_balance_runtime(rt_rq
);
774 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
779 #else /* !CONFIG_SMP */
780 static inline int balance_runtime(struct rt_rq
*rt_rq
)
784 #endif /* CONFIG_SMP */
786 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
788 int i
, idle
= 1, throttled
= 0;
789 const struct cpumask
*span
;
791 span
= sched_rt_period_mask();
792 #ifdef CONFIG_RT_GROUP_SCHED
794 * FIXME: isolated CPUs should really leave the root task group,
795 * whether they are isolcpus or were isolated via cpusets, lest
796 * the timer run on a CPU which does not service all runqueues,
797 * potentially leaving other CPUs indefinitely throttled. If
798 * isolation is really required, the user will turn the throttle
799 * off to kill the perturbations it causes anyway. Meanwhile,
800 * this maintains functionality for boot and/or troubleshooting.
802 if (rt_b
== &root_task_group
.rt_bandwidth
)
803 span
= cpu_online_mask
;
805 for_each_cpu(i
, span
) {
807 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
808 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
810 raw_spin_lock(&rq
->lock
);
811 if (rt_rq
->rt_time
) {
814 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
815 if (rt_rq
->rt_throttled
)
816 balance_runtime(rt_rq
);
817 runtime
= rt_rq
->rt_runtime
;
818 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
819 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
820 rt_rq
->rt_throttled
= 0;
824 * Force a clock update if the CPU was idle,
825 * lest wakeup -> unthrottle time accumulate.
827 if (rt_rq
->rt_nr_running
&& rq
->curr
== rq
->idle
)
828 rq
->skip_clock_update
= -1;
830 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
832 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
833 } else if (rt_rq
->rt_nr_running
) {
835 if (!rt_rq_throttled(rt_rq
))
838 if (rt_rq
->rt_throttled
)
842 sched_rt_rq_enqueue(rt_rq
);
843 raw_spin_unlock(&rq
->lock
);
846 if (!throttled
&& (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
))
852 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
854 #ifdef CONFIG_RT_GROUP_SCHED
855 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
858 return rt_rq
->highest_prio
.curr
;
861 return rt_task_of(rt_se
)->prio
;
864 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
866 u64 runtime
= sched_rt_runtime(rt_rq
);
868 if (rt_rq
->rt_throttled
)
869 return rt_rq_throttled(rt_rq
);
871 if (runtime
>= sched_rt_period(rt_rq
))
874 balance_runtime(rt_rq
);
875 runtime
= sched_rt_runtime(rt_rq
);
876 if (runtime
== RUNTIME_INF
)
879 if (rt_rq
->rt_time
> runtime
) {
880 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
883 * Don't actually throttle groups that have no runtime assigned
884 * but accrue some time due to boosting.
886 if (likely(rt_b
->rt_runtime
)) {
887 static bool once
= false;
889 rt_rq
->rt_throttled
= 1;
893 printk_sched("sched: RT throttling activated\n");
897 * In case we did anyway, make it go away,
898 * replenishment is a joke, since it will replenish us
904 if (rt_rq_throttled(rt_rq
)) {
905 sched_rt_rq_dequeue(rt_rq
);
914 * Update the current task's runtime statistics. Skip current tasks that
915 * are not in our scheduling class.
917 static void update_curr_rt(struct rq
*rq
)
919 struct task_struct
*curr
= rq
->curr
;
920 struct sched_rt_entity
*rt_se
= &curr
->rt
;
921 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
924 if (curr
->sched_class
!= &rt_sched_class
)
927 delta_exec
= rq
->clock_task
- curr
->se
.exec_start
;
928 if (unlikely((s64
)delta_exec
< 0))
931 schedstat_set(curr
->se
.statistics
.exec_max
,
932 max(curr
->se
.statistics
.exec_max
, delta_exec
));
934 curr
->se
.sum_exec_runtime
+= delta_exec
;
935 account_group_exec_runtime(curr
, delta_exec
);
937 curr
->se
.exec_start
= rq
->clock_task
;
938 cpuacct_charge(curr
, delta_exec
);
940 sched_rt_avg_update(rq
, delta_exec
);
942 if (!rt_bandwidth_enabled())
945 for_each_sched_rt_entity(rt_se
) {
946 rt_rq
= rt_rq_of_se(rt_se
);
948 if (sched_rt_runtime(rt_rq
) != RUNTIME_INF
) {
949 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
950 rt_rq
->rt_time
+= delta_exec
;
951 if (sched_rt_runtime_exceeded(rt_rq
))
953 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
958 #if defined CONFIG_SMP
961 inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
963 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
965 if (rq
->online
&& prio
< prev_prio
)
966 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, prio
);
970 dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
972 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
974 if (rq
->online
&& rt_rq
->highest_prio
.curr
!= prev_prio
)
975 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rt_rq
->highest_prio
.curr
);
978 #else /* CONFIG_SMP */
981 void inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
983 void dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
985 #endif /* CONFIG_SMP */
987 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
989 inc_rt_prio(struct rt_rq
*rt_rq
, int prio
)
991 int prev_prio
= rt_rq
->highest_prio
.curr
;
993 if (prio
< prev_prio
)
994 rt_rq
->highest_prio
.curr
= prio
;
996 inc_rt_prio_smp(rt_rq
, prio
, prev_prio
);
1000 dec_rt_prio(struct rt_rq
*rt_rq
, int prio
)
1002 int prev_prio
= rt_rq
->highest_prio
.curr
;
1004 if (rt_rq
->rt_nr_running
) {
1006 WARN_ON(prio
< prev_prio
);
1009 * This may have been our highest task, and therefore
1010 * we may have some recomputation to do
1012 if (prio
== prev_prio
) {
1013 struct rt_prio_array
*array
= &rt_rq
->active
;
1015 rt_rq
->highest_prio
.curr
=
1016 sched_find_first_bit(array
->bitmap
);
1020 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
1022 dec_rt_prio_smp(rt_rq
, prio
, prev_prio
);
1027 static inline void inc_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
1028 static inline void dec_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
1030 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1032 #ifdef CONFIG_RT_GROUP_SCHED
1035 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1037 if (rt_se_boosted(rt_se
))
1038 rt_rq
->rt_nr_boosted
++;
1041 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
1045 dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1047 if (rt_se_boosted(rt_se
))
1048 rt_rq
->rt_nr_boosted
--;
1050 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
1053 #else /* CONFIG_RT_GROUP_SCHED */
1056 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1058 start_rt_bandwidth(&def_rt_bandwidth
);
1062 void dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
) {}
1064 #endif /* CONFIG_RT_GROUP_SCHED */
1067 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1069 int prio
= rt_se_prio(rt_se
);
1071 WARN_ON(!rt_prio(prio
));
1072 rt_rq
->rt_nr_running
++;
1074 inc_rt_prio(rt_rq
, prio
);
1075 inc_rt_migration(rt_se
, rt_rq
);
1076 inc_rt_group(rt_se
, rt_rq
);
1080 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1082 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
1083 WARN_ON(!rt_rq
->rt_nr_running
);
1084 rt_rq
->rt_nr_running
--;
1086 dec_rt_prio(rt_rq
, rt_se_prio(rt_se
));
1087 dec_rt_migration(rt_se
, rt_rq
);
1088 dec_rt_group(rt_se
, rt_rq
);
1091 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
)
1093 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1094 struct rt_prio_array
*array
= &rt_rq
->active
;
1095 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1096 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1099 * Don't enqueue the group if its throttled, or when empty.
1100 * The latter is a consequence of the former when a child group
1101 * get throttled and the current group doesn't have any other
1104 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
))
1107 if (!rt_rq
->rt_nr_running
)
1108 list_add_leaf_rt_rq(rt_rq
);
1111 list_add(&rt_se
->run_list
, queue
);
1113 list_add_tail(&rt_se
->run_list
, queue
);
1114 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
1116 inc_rt_tasks(rt_se
, rt_rq
);
1119 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
1121 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1122 struct rt_prio_array
*array
= &rt_rq
->active
;
1124 list_del_init(&rt_se
->run_list
);
1125 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
1126 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
1128 dec_rt_tasks(rt_se
, rt_rq
);
1129 if (!rt_rq
->rt_nr_running
)
1130 list_del_leaf_rt_rq(rt_rq
);
1134 * Because the prio of an upper entry depends on the lower
1135 * entries, we must remove entries top - down.
1137 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
)
1139 struct sched_rt_entity
*back
= NULL
;
1141 for_each_sched_rt_entity(rt_se
) {
1146 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
1147 if (on_rt_rq(rt_se
))
1148 __dequeue_rt_entity(rt_se
);
1152 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
)
1154 dequeue_rt_stack(rt_se
);
1155 for_each_sched_rt_entity(rt_se
)
1156 __enqueue_rt_entity(rt_se
, head
);
1159 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
1161 dequeue_rt_stack(rt_se
);
1163 for_each_sched_rt_entity(rt_se
) {
1164 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
1166 if (rt_rq
&& rt_rq
->rt_nr_running
)
1167 __enqueue_rt_entity(rt_se
, false);
1172 * Adding/removing a task to/from a priority array:
1175 enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1177 struct sched_rt_entity
*rt_se
= &p
->rt
;
1179 if (flags
& ENQUEUE_WAKEUP
)
1182 enqueue_rt_entity(rt_se
, flags
& ENQUEUE_HEAD
);
1184 if (!task_current(rq
, p
) && p
->nr_cpus_allowed
> 1)
1185 enqueue_pushable_task(rq
, p
);
1190 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1192 struct sched_rt_entity
*rt_se
= &p
->rt
;
1195 dequeue_rt_entity(rt_se
);
1197 dequeue_pushable_task(rq
, p
);
1203 * Put task to the head or the end of the run list without the overhead of
1204 * dequeue followed by enqueue.
1207 requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
, int head
)
1209 if (on_rt_rq(rt_se
)) {
1210 struct rt_prio_array
*array
= &rt_rq
->active
;
1211 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1214 list_move(&rt_se
->run_list
, queue
);
1216 list_move_tail(&rt_se
->run_list
, queue
);
1220 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int head
)
1222 struct sched_rt_entity
*rt_se
= &p
->rt
;
1223 struct rt_rq
*rt_rq
;
1225 for_each_sched_rt_entity(rt_se
) {
1226 rt_rq
= rt_rq_of_se(rt_se
);
1227 requeue_rt_entity(rt_rq
, rt_se
, head
);
1231 static void yield_task_rt(struct rq
*rq
)
1233 requeue_task_rt(rq
, rq
->curr
, 0);
1237 static int find_lowest_rq(struct task_struct
*task
);
1240 select_task_rq_rt(struct task_struct
*p
, int sd_flag
, int flags
)
1242 struct task_struct
*curr
;
1248 if (p
->nr_cpus_allowed
== 1)
1251 /* For anything but wake ups, just return the task_cpu */
1252 if (sd_flag
!= SD_BALANCE_WAKE
&& sd_flag
!= SD_BALANCE_FORK
)
1258 curr
= ACCESS_ONCE(rq
->curr
); /* unlocked access */
1261 * If the current task on @p's runqueue is an RT task, then
1262 * try to see if we can wake this RT task up on another
1263 * runqueue. Otherwise simply start this RT task
1264 * on its current runqueue.
1266 * We want to avoid overloading runqueues. If the woken
1267 * task is a higher priority, then it will stay on this CPU
1268 * and the lower prio task should be moved to another CPU.
1269 * Even though this will probably make the lower prio task
1270 * lose its cache, we do not want to bounce a higher task
1271 * around just because it gave up its CPU, perhaps for a
1274 * For equal prio tasks, we just let the scheduler sort it out.
1276 * Otherwise, just let it ride on the affined RQ and the
1277 * post-schedule router will push the preempted task away
1279 * This test is optimistic, if we get it wrong the load-balancer
1280 * will have to sort it out.
1282 if (curr
&& unlikely(rt_task(curr
)) &&
1283 (curr
->nr_cpus_allowed
< 2 ||
1284 curr
->prio
<= p
->prio
) &&
1285 (p
->nr_cpus_allowed
> 1)) {
1286 int target
= find_lowest_rq(p
);
1297 static void check_preempt_equal_prio(struct rq
*rq
, struct task_struct
*p
)
1299 if (rq
->curr
->nr_cpus_allowed
== 1)
1302 if (p
->nr_cpus_allowed
!= 1
1303 && cpupri_find(&rq
->rd
->cpupri
, p
, NULL
))
1306 if (!cpupri_find(&rq
->rd
->cpupri
, rq
->curr
, NULL
))
1310 * There appears to be other cpus that can accept
1311 * current and none to run 'p', so lets reschedule
1312 * to try and push current away:
1314 requeue_task_rt(rq
, p
, 1);
1315 resched_task(rq
->curr
);
1318 #endif /* CONFIG_SMP */
1321 * Preempt the current task with a newly woken task if needed:
1323 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1325 if (p
->prio
< rq
->curr
->prio
) {
1326 resched_task(rq
->curr
);
1334 * - the newly woken task is of equal priority to the current task
1335 * - the newly woken task is non-migratable while current is migratable
1336 * - current will be preempted on the next reschedule
1338 * we should check to see if current can readily move to a different
1339 * cpu. If so, we will reschedule to allow the push logic to try
1340 * to move current somewhere else, making room for our non-migratable
1343 if (p
->prio
== rq
->curr
->prio
&& !test_tsk_need_resched(rq
->curr
))
1344 check_preempt_equal_prio(rq
, p
);
1348 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
1349 struct rt_rq
*rt_rq
)
1351 struct rt_prio_array
*array
= &rt_rq
->active
;
1352 struct sched_rt_entity
*next
= NULL
;
1353 struct list_head
*queue
;
1356 idx
= sched_find_first_bit(array
->bitmap
);
1357 BUG_ON(idx
>= MAX_RT_PRIO
);
1359 queue
= array
->queue
+ idx
;
1360 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
1365 static struct task_struct
*_pick_next_task_rt(struct rq
*rq
)
1367 struct sched_rt_entity
*rt_se
;
1368 struct task_struct
*p
;
1369 struct rt_rq
*rt_rq
;
1373 if (!rt_rq
->rt_nr_running
)
1376 if (rt_rq_throttled(rt_rq
))
1380 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
1382 rt_rq
= group_rt_rq(rt_se
);
1385 p
= rt_task_of(rt_se
);
1386 p
->se
.exec_start
= rq
->clock_task
;
1391 static struct task_struct
*pick_next_task_rt(struct rq
*rq
)
1393 struct task_struct
*p
= _pick_next_task_rt(rq
);
1395 /* The running task is never eligible for pushing */
1397 dequeue_pushable_task(rq
, p
);
1401 * We detect this state here so that we can avoid taking the RQ
1402 * lock again later if there is no need to push
1404 rq
->post_schedule
= has_pushable_tasks(rq
);
1410 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
1415 * The previous task needs to be made eligible for pushing
1416 * if it is still active
1418 if (on_rt_rq(&p
->rt
) && p
->nr_cpus_allowed
> 1)
1419 enqueue_pushable_task(rq
, p
);
1424 /* Only try algorithms three times */
1425 #define RT_MAX_TRIES 3
1427 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1429 if (!task_running(rq
, p
) &&
1430 (cpu
< 0 || cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
))) &&
1431 (p
->nr_cpus_allowed
> 1))
1436 /* Return the second highest RT task, NULL otherwise */
1437 static struct task_struct
*pick_next_highest_task_rt(struct rq
*rq
, int cpu
)
1439 struct task_struct
*next
= NULL
;
1440 struct sched_rt_entity
*rt_se
;
1441 struct rt_prio_array
*array
;
1442 struct rt_rq
*rt_rq
;
1445 for_each_leaf_rt_rq(rt_rq
, rq
) {
1446 array
= &rt_rq
->active
;
1447 idx
= sched_find_first_bit(array
->bitmap
);
1449 if (idx
>= MAX_RT_PRIO
)
1451 if (next
&& next
->prio
<= idx
)
1453 list_for_each_entry(rt_se
, array
->queue
+ idx
, run_list
) {
1454 struct task_struct
*p
;
1456 if (!rt_entity_is_task(rt_se
))
1459 p
= rt_task_of(rt_se
);
1460 if (pick_rt_task(rq
, p
, cpu
)) {
1466 idx
= find_next_bit(array
->bitmap
, MAX_RT_PRIO
, idx
+1);
1474 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask
);
1476 static int find_lowest_rq(struct task_struct
*task
)
1478 struct sched_domain
*sd
;
1479 struct cpumask
*lowest_mask
= __get_cpu_var(local_cpu_mask
);
1480 int this_cpu
= smp_processor_id();
1481 int cpu
= task_cpu(task
);
1483 /* Make sure the mask is initialized first */
1484 if (unlikely(!lowest_mask
))
1487 if (task
->nr_cpus_allowed
== 1)
1488 return -1; /* No other targets possible */
1490 if (!cpupri_find(&task_rq(task
)->rd
->cpupri
, task
, lowest_mask
))
1491 return -1; /* No targets found */
1494 * At this point we have built a mask of cpus representing the
1495 * lowest priority tasks in the system. Now we want to elect
1496 * the best one based on our affinity and topology.
1498 * We prioritize the last cpu that the task executed on since
1499 * it is most likely cache-hot in that location.
1501 if (cpumask_test_cpu(cpu
, lowest_mask
))
1505 * Otherwise, we consult the sched_domains span maps to figure
1506 * out which cpu is logically closest to our hot cache data.
1508 if (!cpumask_test_cpu(this_cpu
, lowest_mask
))
1509 this_cpu
= -1; /* Skip this_cpu opt if not among lowest */
1512 for_each_domain(cpu
, sd
) {
1513 if (sd
->flags
& SD_WAKE_AFFINE
) {
1517 * "this_cpu" is cheaper to preempt than a
1520 if (this_cpu
!= -1 &&
1521 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1526 best_cpu
= cpumask_first_and(lowest_mask
,
1527 sched_domain_span(sd
));
1528 if (best_cpu
< nr_cpu_ids
) {
1537 * And finally, if there were no matches within the domains
1538 * just give the caller *something* to work with from the compatible
1544 cpu
= cpumask_any(lowest_mask
);
1545 if (cpu
< nr_cpu_ids
)
1550 /* Will lock the rq it finds */
1551 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
1553 struct rq
*lowest_rq
= NULL
;
1557 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
1558 cpu
= find_lowest_rq(task
);
1560 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1563 lowest_rq
= cpu_rq(cpu
);
1565 /* if the prio of this runqueue changed, try again */
1566 if (double_lock_balance(rq
, lowest_rq
)) {
1568 * We had to unlock the run queue. In
1569 * the mean time, task could have
1570 * migrated already or had its affinity changed.
1571 * Also make sure that it wasn't scheduled on its rq.
1573 if (unlikely(task_rq(task
) != rq
||
1574 !cpumask_test_cpu(lowest_rq
->cpu
,
1575 tsk_cpus_allowed(task
)) ||
1576 task_running(rq
, task
) ||
1579 double_unlock_balance(rq
, lowest_rq
);
1585 /* If this rq is still suitable use it. */
1586 if (lowest_rq
->rt
.highest_prio
.curr
> task
->prio
)
1590 double_unlock_balance(rq
, lowest_rq
);
1597 static struct task_struct
*pick_next_pushable_task(struct rq
*rq
)
1599 struct task_struct
*p
;
1601 if (!has_pushable_tasks(rq
))
1604 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
1605 struct task_struct
, pushable_tasks
);
1607 BUG_ON(rq
->cpu
!= task_cpu(p
));
1608 BUG_ON(task_current(rq
, p
));
1609 BUG_ON(p
->nr_cpus_allowed
<= 1);
1612 BUG_ON(!rt_task(p
));
1618 * If the current CPU has more than one RT task, see if the non
1619 * running task can migrate over to a CPU that is running a task
1620 * of lesser priority.
1622 static int push_rt_task(struct rq
*rq
)
1624 struct task_struct
*next_task
;
1625 struct rq
*lowest_rq
;
1628 if (!rq
->rt
.overloaded
)
1631 next_task
= pick_next_pushable_task(rq
);
1636 if (unlikely(next_task
== rq
->curr
)) {
1642 * It's possible that the next_task slipped in of
1643 * higher priority than current. If that's the case
1644 * just reschedule current.
1646 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
1647 resched_task(rq
->curr
);
1651 /* We might release rq lock */
1652 get_task_struct(next_task
);
1654 /* find_lock_lowest_rq locks the rq if found */
1655 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
1657 struct task_struct
*task
;
1659 * find_lock_lowest_rq releases rq->lock
1660 * so it is possible that next_task has migrated.
1662 * We need to make sure that the task is still on the same
1663 * run-queue and is also still the next task eligible for
1666 task
= pick_next_pushable_task(rq
);
1667 if (task_cpu(next_task
) == rq
->cpu
&& task
== next_task
) {
1669 * The task hasn't migrated, and is still the next
1670 * eligible task, but we failed to find a run-queue
1671 * to push it to. Do not retry in this case, since
1672 * other cpus will pull from us when ready.
1678 /* No more tasks, just exit */
1682 * Something has shifted, try again.
1684 put_task_struct(next_task
);
1689 deactivate_task(rq
, next_task
, 0);
1690 set_task_cpu(next_task
, lowest_rq
->cpu
);
1691 activate_task(lowest_rq
, next_task
, 0);
1694 resched_task(lowest_rq
->curr
);
1696 double_unlock_balance(rq
, lowest_rq
);
1699 put_task_struct(next_task
);
1704 static void push_rt_tasks(struct rq
*rq
)
1706 /* push_rt_task will return true if it moved an RT */
1707 while (push_rt_task(rq
))
1711 static int pull_rt_task(struct rq
*this_rq
)
1713 int this_cpu
= this_rq
->cpu
, ret
= 0, cpu
;
1714 struct task_struct
*p
;
1717 if (likely(!rt_overloaded(this_rq
)))
1720 for_each_cpu(cpu
, this_rq
->rd
->rto_mask
) {
1721 if (this_cpu
== cpu
)
1724 src_rq
= cpu_rq(cpu
);
1727 * Don't bother taking the src_rq->lock if the next highest
1728 * task is known to be lower-priority than our current task.
1729 * This may look racy, but if this value is about to go
1730 * logically higher, the src_rq will push this task away.
1731 * And if its going logically lower, we do not care
1733 if (src_rq
->rt
.highest_prio
.next
>=
1734 this_rq
->rt
.highest_prio
.curr
)
1738 * We can potentially drop this_rq's lock in
1739 * double_lock_balance, and another CPU could
1742 double_lock_balance(this_rq
, src_rq
);
1745 * Are there still pullable RT tasks?
1747 if (src_rq
->rt
.rt_nr_running
<= 1)
1750 p
= pick_next_highest_task_rt(src_rq
, this_cpu
);
1753 * Do we have an RT task that preempts
1754 * the to-be-scheduled task?
1756 if (p
&& (p
->prio
< this_rq
->rt
.highest_prio
.curr
)) {
1757 WARN_ON(p
== src_rq
->curr
);
1761 * There's a chance that p is higher in priority
1762 * than what's currently running on its cpu.
1763 * This is just that p is wakeing up and hasn't
1764 * had a chance to schedule. We only pull
1765 * p if it is lower in priority than the
1766 * current task on the run queue
1768 if (p
->prio
< src_rq
->curr
->prio
)
1773 deactivate_task(src_rq
, p
, 0);
1774 set_task_cpu(p
, this_cpu
);
1775 activate_task(this_rq
, p
, 0);
1777 * We continue with the search, just in
1778 * case there's an even higher prio task
1779 * in another runqueue. (low likelihood
1784 double_unlock_balance(this_rq
, src_rq
);
1790 static void pre_schedule_rt(struct rq
*rq
, struct task_struct
*prev
)
1792 /* Try to pull RT tasks here if we lower this rq's prio */
1793 if (rq
->rt
.highest_prio
.curr
> prev
->prio
)
1797 static void post_schedule_rt(struct rq
*rq
)
1803 * If we are not running and we are not going to reschedule soon, we should
1804 * try to push tasks away now
1806 static void task_woken_rt(struct rq
*rq
, struct task_struct
*p
)
1808 if (!task_running(rq
, p
) &&
1809 !test_tsk_need_resched(rq
->curr
) &&
1810 has_pushable_tasks(rq
) &&
1811 p
->nr_cpus_allowed
> 1 &&
1812 rt_task(rq
->curr
) &&
1813 (rq
->curr
->nr_cpus_allowed
< 2 ||
1814 rq
->curr
->prio
<= p
->prio
))
1818 static void set_cpus_allowed_rt(struct task_struct
*p
,
1819 const struct cpumask
*new_mask
)
1824 BUG_ON(!rt_task(p
));
1829 weight
= cpumask_weight(new_mask
);
1832 * Only update if the process changes its state from whether it
1833 * can migrate or not.
1835 if ((p
->nr_cpus_allowed
> 1) == (weight
> 1))
1841 * The process used to be able to migrate OR it can now migrate
1844 if (!task_current(rq
, p
))
1845 dequeue_pushable_task(rq
, p
);
1846 BUG_ON(!rq
->rt
.rt_nr_migratory
);
1847 rq
->rt
.rt_nr_migratory
--;
1849 if (!task_current(rq
, p
))
1850 enqueue_pushable_task(rq
, p
);
1851 rq
->rt
.rt_nr_migratory
++;
1854 update_rt_migration(&rq
->rt
);
1857 /* Assumes rq->lock is held */
1858 static void rq_online_rt(struct rq
*rq
)
1860 if (rq
->rt
.overloaded
)
1861 rt_set_overload(rq
);
1863 __enable_runtime(rq
);
1865 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
.curr
);
1868 /* Assumes rq->lock is held */
1869 static void rq_offline_rt(struct rq
*rq
)
1871 if (rq
->rt
.overloaded
)
1872 rt_clear_overload(rq
);
1874 __disable_runtime(rq
);
1876 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_INVALID
);
1880 * When switch from the rt queue, we bring ourselves to a position
1881 * that we might want to pull RT tasks from other runqueues.
1883 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
)
1886 * If there are other RT tasks then we will reschedule
1887 * and the scheduling of the other RT tasks will handle
1888 * the balancing. But if we are the last RT task
1889 * we may need to handle the pulling of RT tasks
1892 if (p
->on_rq
&& !rq
->rt
.rt_nr_running
)
1896 void init_sched_rt_class(void)
1900 for_each_possible_cpu(i
) {
1901 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask
, i
),
1902 GFP_KERNEL
, cpu_to_node(i
));
1905 #endif /* CONFIG_SMP */
1908 * When switching a task to RT, we may overload the runqueue
1909 * with RT tasks. In this case we try to push them off to
1912 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
)
1914 int check_resched
= 1;
1917 * If we are already running, then there's nothing
1918 * that needs to be done. But if we are not running
1919 * we may need to preempt the current running task.
1920 * If that current running task is also an RT task
1921 * then see if we can move to another run queue.
1923 if (p
->on_rq
&& rq
->curr
!= p
) {
1925 if (rq
->rt
.overloaded
&& push_rt_task(rq
) &&
1926 /* Don't resched if we changed runqueues */
1929 #endif /* CONFIG_SMP */
1930 if (check_resched
&& p
->prio
< rq
->curr
->prio
)
1931 resched_task(rq
->curr
);
1936 * Priority of the task has changed. This may cause
1937 * us to initiate a push or pull.
1940 prio_changed_rt(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
1945 if (rq
->curr
== p
) {
1948 * If our priority decreases while running, we
1949 * may need to pull tasks to this runqueue.
1951 if (oldprio
< p
->prio
)
1954 * If there's a higher priority task waiting to run
1955 * then reschedule. Note, the above pull_rt_task
1956 * can release the rq lock and p could migrate.
1957 * Only reschedule if p is still on the same runqueue.
1959 if (p
->prio
> rq
->rt
.highest_prio
.curr
&& rq
->curr
== p
)
1962 /* For UP simply resched on drop of prio */
1963 if (oldprio
< p
->prio
)
1965 #endif /* CONFIG_SMP */
1968 * This task is not running, but if it is
1969 * greater than the current running task
1972 if (p
->prio
< rq
->curr
->prio
)
1973 resched_task(rq
->curr
);
1977 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
1979 unsigned long soft
, hard
;
1981 /* max may change after cur was read, this will be fixed next tick */
1982 soft
= task_rlimit(p
, RLIMIT_RTTIME
);
1983 hard
= task_rlimit_max(p
, RLIMIT_RTTIME
);
1985 if (soft
!= RLIM_INFINITY
) {
1989 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
1990 if (p
->rt
.timeout
> next
)
1991 p
->cputime_expires
.sched_exp
= p
->se
.sum_exec_runtime
;
1995 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
1997 struct sched_rt_entity
*rt_se
= &p
->rt
;
2004 * RR tasks need a special form of timeslice management.
2005 * FIFO tasks have no timeslices.
2007 if (p
->policy
!= SCHED_RR
)
2010 if (--p
->rt
.time_slice
)
2013 p
->rt
.time_slice
= RR_TIMESLICE
;
2016 * Requeue to the end of queue if we (and all of our ancestors) are the
2017 * only element on the queue
2019 for_each_sched_rt_entity(rt_se
) {
2020 if (rt_se
->run_list
.prev
!= rt_se
->run_list
.next
) {
2021 requeue_task_rt(rq
, p
, 0);
2022 set_tsk_need_resched(p
);
2028 static void set_curr_task_rt(struct rq
*rq
)
2030 struct task_struct
*p
= rq
->curr
;
2032 p
->se
.exec_start
= rq
->clock_task
;
2034 /* The running task is never eligible for pushing */
2035 dequeue_pushable_task(rq
, p
);
2038 static unsigned int get_rr_interval_rt(struct rq
*rq
, struct task_struct
*task
)
2041 * Time slice is 0 for SCHED_FIFO tasks
2043 if (task
->policy
== SCHED_RR
)
2044 return RR_TIMESLICE
;
2049 const struct sched_class rt_sched_class
= {
2050 .next
= &fair_sched_class
,
2051 .enqueue_task
= enqueue_task_rt
,
2052 .dequeue_task
= dequeue_task_rt
,
2053 .yield_task
= yield_task_rt
,
2055 .check_preempt_curr
= check_preempt_curr_rt
,
2057 .pick_next_task
= pick_next_task_rt
,
2058 .put_prev_task
= put_prev_task_rt
,
2061 .select_task_rq
= select_task_rq_rt
,
2063 .set_cpus_allowed
= set_cpus_allowed_rt
,
2064 .rq_online
= rq_online_rt
,
2065 .rq_offline
= rq_offline_rt
,
2066 .pre_schedule
= pre_schedule_rt
,
2067 .post_schedule
= post_schedule_rt
,
2068 .task_woken
= task_woken_rt
,
2069 .switched_from
= switched_from_rt
,
2072 .set_curr_task
= set_curr_task_rt
,
2073 .task_tick
= task_tick_rt
,
2075 .get_rr_interval
= get_rr_interval_rt
,
2077 .prio_changed
= prio_changed_rt
,
2078 .switched_to
= switched_to_rt
,
2081 #ifdef CONFIG_SCHED_DEBUG
2082 extern void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
);
2084 void print_rt_stats(struct seq_file
*m
, int cpu
)
2087 struct rt_rq
*rt_rq
;
2090 for_each_rt_rq(rt_rq
, iter
, cpu_rq(cpu
))
2091 print_rt_rq(m
, cpu
, rt_rq
);
2094 #endif /* CONFIG_SCHED_DEBUG */