2 * intel_pstate.c: Native P state management for Intel processors
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
34 #include <asm/div64.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
39 #define ATOM_RATIOS 0x66a
40 #define ATOM_VIDS 0x66b
41 #define ATOM_TURBO_RATIOS 0x66c
42 #define ATOM_TURBO_VIDS 0x66d
45 #include <acpi/processor.h>
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
53 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 static inline int32_t mul_fp(int32_t x
, int32_t y
)
57 return ((int64_t)x
* (int64_t)y
) >> FRAC_BITS
;
60 static inline int32_t div_fp(s64 x
, s64 y
)
62 return div64_s64((int64_t)x
<< FRAC_BITS
, y
);
65 static inline int ceiling_fp(int32_t x
)
70 mask
= (1 << FRAC_BITS
) - 1;
76 static inline u64
mul_ext_fp(u64 x
, u64 y
)
78 return (x
* y
) >> EXT_FRAC_BITS
;
81 static inline u64
div_ext_fp(u64 x
, u64 y
)
83 return div64_u64(x
<< EXT_FRAC_BITS
, y
);
87 * struct sample - Store performance sample
88 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
89 * performance during last sample period
90 * @busy_scaled: Scaled busy value which is used to calculate next
91 * P state. This can be different than core_avg_perf
92 * to account for cpu idle period
93 * @aperf: Difference of actual performance frequency clock count
94 * read from APERF MSR between last and current sample
95 * @mperf: Difference of maximum performance frequency clock count
96 * read from MPERF MSR between last and current sample
97 * @tsc: Difference of time stamp counter between last and
99 * @freq: Effective frequency calculated from APERF/MPERF
100 * @time: Current time from scheduler
102 * This structure is used in the cpudata structure to store performance sample
103 * data for choosing next P State.
106 int32_t core_avg_perf
;
116 * struct pstate_data - Store P state data
117 * @current_pstate: Current requested P state
118 * @min_pstate: Min P state possible for this platform
119 * @max_pstate: Max P state possible for this platform
120 * @max_pstate_physical:This is physical Max P state for a processor
121 * This can be higher than the max_pstate which can
122 * be limited by platform thermal design power limits
123 * @scaling: Scaling factor to convert frequency to cpufreq
125 * @turbo_pstate: Max Turbo P state possible for this platform
127 * Stores the per cpu model P state limits and current P state.
133 int max_pstate_physical
;
139 * struct vid_data - Stores voltage information data
140 * @min: VID data for this platform corresponding to
142 * @max: VID data corresponding to the highest P State.
143 * @turbo: VID data for turbo P state
144 * @ratio: Ratio of (vid max - vid min) /
145 * (max P state - Min P State)
147 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
148 * This data is used in Atom platforms, where in addition to target P state,
149 * the voltage data needs to be specified to select next P State.
159 * struct _pid - Stores PID data
160 * @setpoint: Target set point for busyness or performance
161 * @integral: Storage for accumulated error values
162 * @p_gain: PID proportional gain
163 * @i_gain: PID integral gain
164 * @d_gain: PID derivative gain
165 * @deadband: PID deadband
166 * @last_err: Last error storage for integral part of PID calculation
168 * Stores PID coefficients and last error for PID controller.
181 * struct cpudata - Per CPU instance data storage
182 * @cpu: CPU number for this instance data
183 * @update_util: CPUFreq utility callback information
184 * @update_util_set: CPUFreq utility callback is set
185 * @pstate: Stores P state limits for this CPU
186 * @vid: Stores VID limits for this CPU
187 * @pid: Stores PID parameters for this CPU
188 * @last_sample_time: Last Sample time
189 * @prev_aperf: Last APERF value read from APERF MSR
190 * @prev_mperf: Last MPERF value read from MPERF MSR
191 * @prev_tsc: Last timestamp counter (TSC) value
192 * @prev_cummulative_iowait: IO Wait time difference from last and
194 * @sample: Storage for storing last Sample data
195 * @acpi_perf_data: Stores ACPI perf information read from _PSS
196 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
198 * This structure stores per CPU instance data for all CPUs.
203 struct update_util_data update_util
;
204 bool update_util_set
;
206 struct pstate_data pstate
;
210 u64 last_sample_time
;
214 u64 prev_cummulative_iowait
;
215 struct sample sample
;
217 struct acpi_processor_performance acpi_perf_data
;
218 bool valid_pss_table
;
222 static struct cpudata
**all_cpu_data
;
225 * struct pid_adjust_policy - Stores static PID configuration data
226 * @sample_rate_ms: PID calculation sample rate in ms
227 * @sample_rate_ns: Sample rate calculation in ns
228 * @deadband: PID deadband
229 * @setpoint: PID Setpoint
230 * @p_gain_pct: PID proportional gain
231 * @i_gain_pct: PID integral gain
232 * @d_gain_pct: PID derivative gain
234 * Stores per CPU model static PID configuration data.
236 struct pstate_adjust_policy
{
247 * struct pstate_funcs - Per CPU model specific callbacks
248 * @get_max: Callback to get maximum non turbo effective P state
249 * @get_max_physical: Callback to get maximum non turbo physical P state
250 * @get_min: Callback to get minimum P state
251 * @get_turbo: Callback to get turbo P state
252 * @get_scaling: Callback to get frequency scaling factor
253 * @get_val: Callback to convert P state to actual MSR write value
254 * @get_vid: Callback to get VID data for Atom platforms
255 * @get_target_pstate: Callback to a function to calculate next P state to use
257 * Core and Atom CPU models have different way to get P State limits. This
258 * structure is used to store those callbacks.
260 struct pstate_funcs
{
261 int (*get_max
)(void);
262 int (*get_max_physical
)(void);
263 int (*get_min
)(void);
264 int (*get_turbo
)(void);
265 int (*get_scaling
)(void);
266 u64 (*get_val
)(struct cpudata
*, int pstate
);
267 void (*get_vid
)(struct cpudata
*);
268 int32_t (*get_target_pstate
)(struct cpudata
*);
272 * struct cpu_defaults- Per CPU model default config data
273 * @pid_policy: PID config data
274 * @funcs: Callback function data
276 struct cpu_defaults
{
277 struct pstate_adjust_policy pid_policy
;
278 struct pstate_funcs funcs
;
281 static inline int32_t get_target_pstate_use_performance(struct cpudata
*cpu
);
282 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata
*cpu
);
284 static struct pstate_adjust_policy pid_params
;
285 static struct pstate_funcs pstate_funcs
;
286 static int hwp_active
;
289 static bool acpi_ppc
;
293 * struct perf_limits - Store user and policy limits
294 * @no_turbo: User requested turbo state from intel_pstate sysfs
295 * @turbo_disabled: Platform turbo status either from msr
296 * MSR_IA32_MISC_ENABLE or when maximum available pstate
297 * matches the maximum turbo pstate
298 * @max_perf_pct: Effective maximum performance limit in percentage, this
299 * is minimum of either limits enforced by cpufreq policy
300 * or limits from user set limits via intel_pstate sysfs
301 * @min_perf_pct: Effective minimum performance limit in percentage, this
302 * is maximum of either limits enforced by cpufreq policy
303 * or limits from user set limits via intel_pstate sysfs
304 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
305 * This value is used to limit max pstate
306 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
307 * This value is used to limit min pstate
308 * @max_policy_pct: The maximum performance in percentage enforced by
309 * cpufreq setpolicy interface
310 * @max_sysfs_pct: The maximum performance in percentage enforced by
311 * intel pstate sysfs interface
312 * @min_policy_pct: The minimum performance in percentage enforced by
313 * cpufreq setpolicy interface
314 * @min_sysfs_pct: The minimum performance in percentage enforced by
315 * intel pstate sysfs interface
317 * Storage for user and policy defined limits.
332 static struct perf_limits performance_limits
= {
336 .max_perf
= int_tofp(1),
338 .min_perf
= int_tofp(1),
339 .max_policy_pct
= 100,
340 .max_sysfs_pct
= 100,
345 static struct perf_limits powersave_limits
= {
349 .max_perf
= int_tofp(1),
352 .max_policy_pct
= 100,
353 .max_sysfs_pct
= 100,
358 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
359 static struct perf_limits
*limits
= &performance_limits
;
361 static struct perf_limits
*limits
= &powersave_limits
;
366 static bool intel_pstate_get_ppc_enable_status(void)
368 if (acpi_gbl_FADT
.preferred_profile
== PM_ENTERPRISE_SERVER
||
369 acpi_gbl_FADT
.preferred_profile
== PM_PERFORMANCE_SERVER
)
375 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy
*policy
)
384 if (!intel_pstate_get_ppc_enable_status())
387 cpu
= all_cpu_data
[policy
->cpu
];
389 ret
= acpi_processor_register_performance(&cpu
->acpi_perf_data
,
395 * Check if the control value in _PSS is for PERF_CTL MSR, which should
396 * guarantee that the states returned by it map to the states in our
399 if (cpu
->acpi_perf_data
.control_register
.space_id
!=
400 ACPI_ADR_SPACE_FIXED_HARDWARE
)
404 * If there is only one entry _PSS, simply ignore _PSS and continue as
405 * usual without taking _PSS into account
407 if (cpu
->acpi_perf_data
.state_count
< 2)
410 pr_debug("CPU%u - ACPI _PSS perf data\n", policy
->cpu
);
411 for (i
= 0; i
< cpu
->acpi_perf_data
.state_count
; i
++) {
412 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
413 (i
== cpu
->acpi_perf_data
.state
? '*' : ' '), i
,
414 (u32
) cpu
->acpi_perf_data
.states
[i
].core_frequency
,
415 (u32
) cpu
->acpi_perf_data
.states
[i
].power
,
416 (u32
) cpu
->acpi_perf_data
.states
[i
].control
);
420 * The _PSS table doesn't contain whole turbo frequency range.
421 * This just contains +1 MHZ above the max non turbo frequency,
422 * with control value corresponding to max turbo ratio. But
423 * when cpufreq set policy is called, it will call with this
424 * max frequency, which will cause a reduced performance as
425 * this driver uses real max turbo frequency as the max
426 * frequency. So correct this frequency in _PSS table to
427 * correct max turbo frequency based on the turbo state.
428 * Also need to convert to MHz as _PSS freq is in MHz.
430 if (!limits
->turbo_disabled
)
431 cpu
->acpi_perf_data
.states
[0].core_frequency
=
432 policy
->cpuinfo
.max_freq
/ 1000;
433 cpu
->valid_pss_table
= true;
434 pr_debug("_PPC limits will be enforced\n");
439 cpu
->valid_pss_table
= false;
440 acpi_processor_unregister_performance(policy
->cpu
);
443 static void intel_pstate_exit_perf_limits(struct cpufreq_policy
*policy
)
447 cpu
= all_cpu_data
[policy
->cpu
];
448 if (!cpu
->valid_pss_table
)
451 acpi_processor_unregister_performance(policy
->cpu
);
455 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy
*policy
)
459 static void intel_pstate_exit_perf_limits(struct cpufreq_policy
*policy
)
464 static inline void pid_reset(struct _pid
*pid
, int setpoint
, int busy
,
465 int deadband
, int integral
) {
466 pid
->setpoint
= int_tofp(setpoint
);
467 pid
->deadband
= int_tofp(deadband
);
468 pid
->integral
= int_tofp(integral
);
469 pid
->last_err
= int_tofp(setpoint
) - int_tofp(busy
);
472 static inline void pid_p_gain_set(struct _pid
*pid
, int percent
)
474 pid
->p_gain
= div_fp(percent
, 100);
477 static inline void pid_i_gain_set(struct _pid
*pid
, int percent
)
479 pid
->i_gain
= div_fp(percent
, 100);
482 static inline void pid_d_gain_set(struct _pid
*pid
, int percent
)
484 pid
->d_gain
= div_fp(percent
, 100);
487 static signed int pid_calc(struct _pid
*pid
, int32_t busy
)
490 int32_t pterm
, dterm
, fp_error
;
491 int32_t integral_limit
;
493 fp_error
= pid
->setpoint
- busy
;
495 if (abs(fp_error
) <= pid
->deadband
)
498 pterm
= mul_fp(pid
->p_gain
, fp_error
);
500 pid
->integral
+= fp_error
;
503 * We limit the integral here so that it will never
504 * get higher than 30. This prevents it from becoming
505 * too large an input over long periods of time and allows
506 * it to get factored out sooner.
508 * The value of 30 was chosen through experimentation.
510 integral_limit
= int_tofp(30);
511 if (pid
->integral
> integral_limit
)
512 pid
->integral
= integral_limit
;
513 if (pid
->integral
< -integral_limit
)
514 pid
->integral
= -integral_limit
;
516 dterm
= mul_fp(pid
->d_gain
, fp_error
- pid
->last_err
);
517 pid
->last_err
= fp_error
;
519 result
= pterm
+ mul_fp(pid
->integral
, pid
->i_gain
) + dterm
;
520 result
= result
+ (1 << (FRAC_BITS
-1));
521 return (signed int)fp_toint(result
);
524 static inline void intel_pstate_busy_pid_reset(struct cpudata
*cpu
)
526 pid_p_gain_set(&cpu
->pid
, pid_params
.p_gain_pct
);
527 pid_d_gain_set(&cpu
->pid
, pid_params
.d_gain_pct
);
528 pid_i_gain_set(&cpu
->pid
, pid_params
.i_gain_pct
);
530 pid_reset(&cpu
->pid
, pid_params
.setpoint
, 100, pid_params
.deadband
, 0);
533 static inline void intel_pstate_reset_all_pid(void)
537 for_each_online_cpu(cpu
) {
538 if (all_cpu_data
[cpu
])
539 intel_pstate_busy_pid_reset(all_cpu_data
[cpu
]);
543 static inline void update_turbo_state(void)
548 cpu
= all_cpu_data
[0];
549 rdmsrl(MSR_IA32_MISC_ENABLE
, misc_en
);
550 limits
->turbo_disabled
=
551 (misc_en
& MSR_IA32_MISC_ENABLE_TURBO_DISABLE
||
552 cpu
->pstate
.max_pstate
== cpu
->pstate
.turbo_pstate
);
555 static void intel_pstate_hwp_set(const struct cpumask
*cpumask
)
557 int min
, hw_min
, max
, hw_max
, cpu
, range
, adj_range
;
560 rdmsrl(MSR_HWP_CAPABILITIES
, cap
);
561 hw_min
= HWP_LOWEST_PERF(cap
);
562 hw_max
= HWP_HIGHEST_PERF(cap
);
563 range
= hw_max
- hw_min
;
565 for_each_cpu(cpu
, cpumask
) {
566 rdmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, &value
);
567 adj_range
= limits
->min_perf_pct
* range
/ 100;
568 min
= hw_min
+ adj_range
;
569 value
&= ~HWP_MIN_PERF(~0L);
570 value
|= HWP_MIN_PERF(min
);
572 adj_range
= limits
->max_perf_pct
* range
/ 100;
573 max
= hw_min
+ adj_range
;
574 if (limits
->no_turbo
) {
575 hw_max
= HWP_GUARANTEED_PERF(cap
);
580 value
&= ~HWP_MAX_PERF(~0L);
581 value
|= HWP_MAX_PERF(max
);
582 wrmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, value
);
586 static int intel_pstate_hwp_set_policy(struct cpufreq_policy
*policy
)
589 intel_pstate_hwp_set(policy
->cpus
);
594 static void intel_pstate_hwp_set_online_cpus(void)
597 intel_pstate_hwp_set(cpu_online_mask
);
601 /************************** debugfs begin ************************/
602 static int pid_param_set(void *data
, u64 val
)
605 intel_pstate_reset_all_pid();
609 static int pid_param_get(void *data
, u64
*val
)
614 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param
, pid_param_get
, pid_param_set
, "%llu\n");
621 static struct pid_param pid_files
[] = {
622 {"sample_rate_ms", &pid_params
.sample_rate_ms
},
623 {"d_gain_pct", &pid_params
.d_gain_pct
},
624 {"i_gain_pct", &pid_params
.i_gain_pct
},
625 {"deadband", &pid_params
.deadband
},
626 {"setpoint", &pid_params
.setpoint
},
627 {"p_gain_pct", &pid_params
.p_gain_pct
},
631 static void __init
intel_pstate_debug_expose_params(void)
633 struct dentry
*debugfs_parent
;
638 debugfs_parent
= debugfs_create_dir("pstate_snb", NULL
);
639 if (IS_ERR_OR_NULL(debugfs_parent
))
641 while (pid_files
[i
].name
) {
642 debugfs_create_file(pid_files
[i
].name
, 0660,
643 debugfs_parent
, pid_files
[i
].value
,
649 /************************** debugfs end ************************/
651 /************************** sysfs begin ************************/
652 #define show_one(file_name, object) \
653 static ssize_t show_##file_name \
654 (struct kobject *kobj, struct attribute *attr, char *buf) \
656 return sprintf(buf, "%u\n", limits->object); \
659 static ssize_t
show_turbo_pct(struct kobject
*kobj
,
660 struct attribute
*attr
, char *buf
)
663 int total
, no_turbo
, turbo_pct
;
666 cpu
= all_cpu_data
[0];
668 total
= cpu
->pstate
.turbo_pstate
- cpu
->pstate
.min_pstate
+ 1;
669 no_turbo
= cpu
->pstate
.max_pstate
- cpu
->pstate
.min_pstate
+ 1;
670 turbo_fp
= div_fp(no_turbo
, total
);
671 turbo_pct
= 100 - fp_toint(mul_fp(turbo_fp
, int_tofp(100)));
672 return sprintf(buf
, "%u\n", turbo_pct
);
675 static ssize_t
show_num_pstates(struct kobject
*kobj
,
676 struct attribute
*attr
, char *buf
)
681 cpu
= all_cpu_data
[0];
682 total
= cpu
->pstate
.turbo_pstate
- cpu
->pstate
.min_pstate
+ 1;
683 return sprintf(buf
, "%u\n", total
);
686 static ssize_t
show_no_turbo(struct kobject
*kobj
,
687 struct attribute
*attr
, char *buf
)
691 update_turbo_state();
692 if (limits
->turbo_disabled
)
693 ret
= sprintf(buf
, "%u\n", limits
->turbo_disabled
);
695 ret
= sprintf(buf
, "%u\n", limits
->no_turbo
);
700 static ssize_t
store_no_turbo(struct kobject
*a
, struct attribute
*b
,
701 const char *buf
, size_t count
)
706 ret
= sscanf(buf
, "%u", &input
);
710 update_turbo_state();
711 if (limits
->turbo_disabled
) {
712 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
716 limits
->no_turbo
= clamp_t(int, input
, 0, 1);
719 intel_pstate_hwp_set_online_cpus();
724 static ssize_t
store_max_perf_pct(struct kobject
*a
, struct attribute
*b
,
725 const char *buf
, size_t count
)
730 ret
= sscanf(buf
, "%u", &input
);
734 limits
->max_sysfs_pct
= clamp_t(int, input
, 0 , 100);
735 limits
->max_perf_pct
= min(limits
->max_policy_pct
,
736 limits
->max_sysfs_pct
);
737 limits
->max_perf_pct
= max(limits
->min_policy_pct
,
738 limits
->max_perf_pct
);
739 limits
->max_perf_pct
= max(limits
->min_perf_pct
,
740 limits
->max_perf_pct
);
741 limits
->max_perf
= div_fp(limits
->max_perf_pct
, 100);
744 intel_pstate_hwp_set_online_cpus();
748 static ssize_t
store_min_perf_pct(struct kobject
*a
, struct attribute
*b
,
749 const char *buf
, size_t count
)
754 ret
= sscanf(buf
, "%u", &input
);
758 limits
->min_sysfs_pct
= clamp_t(int, input
, 0 , 100);
759 limits
->min_perf_pct
= max(limits
->min_policy_pct
,
760 limits
->min_sysfs_pct
);
761 limits
->min_perf_pct
= min(limits
->max_policy_pct
,
762 limits
->min_perf_pct
);
763 limits
->min_perf_pct
= min(limits
->max_perf_pct
,
764 limits
->min_perf_pct
);
765 limits
->min_perf
= div_fp(limits
->min_perf_pct
, 100);
768 intel_pstate_hwp_set_online_cpus();
772 show_one(max_perf_pct
, max_perf_pct
);
773 show_one(min_perf_pct
, min_perf_pct
);
775 define_one_global_rw(no_turbo
);
776 define_one_global_rw(max_perf_pct
);
777 define_one_global_rw(min_perf_pct
);
778 define_one_global_ro(turbo_pct
);
779 define_one_global_ro(num_pstates
);
781 static struct attribute
*intel_pstate_attributes
[] = {
790 static struct attribute_group intel_pstate_attr_group
= {
791 .attrs
= intel_pstate_attributes
,
794 static void __init
intel_pstate_sysfs_expose_params(void)
796 struct kobject
*intel_pstate_kobject
;
799 intel_pstate_kobject
= kobject_create_and_add("intel_pstate",
800 &cpu_subsys
.dev_root
->kobj
);
801 BUG_ON(!intel_pstate_kobject
);
802 rc
= sysfs_create_group(intel_pstate_kobject
, &intel_pstate_attr_group
);
805 /************************** sysfs end ************************/
807 static void intel_pstate_hwp_enable(struct cpudata
*cpudata
)
809 /* First disable HWP notification interrupt as we don't process them */
810 wrmsrl_on_cpu(cpudata
->cpu
, MSR_HWP_INTERRUPT
, 0x00);
812 wrmsrl_on_cpu(cpudata
->cpu
, MSR_PM_ENABLE
, 0x1);
815 static int atom_get_min_pstate(void)
819 rdmsrl(ATOM_RATIOS
, value
);
820 return (value
>> 8) & 0x7F;
823 static int atom_get_max_pstate(void)
827 rdmsrl(ATOM_RATIOS
, value
);
828 return (value
>> 16) & 0x7F;
831 static int atom_get_turbo_pstate(void)
835 rdmsrl(ATOM_TURBO_RATIOS
, value
);
839 static u64
atom_get_val(struct cpudata
*cpudata
, int pstate
)
845 val
= (u64
)pstate
<< 8;
846 if (limits
->no_turbo
&& !limits
->turbo_disabled
)
849 vid_fp
= cpudata
->vid
.min
+ mul_fp(
850 int_tofp(pstate
- cpudata
->pstate
.min_pstate
),
853 vid_fp
= clamp_t(int32_t, vid_fp
, cpudata
->vid
.min
, cpudata
->vid
.max
);
854 vid
= ceiling_fp(vid_fp
);
856 if (pstate
> cpudata
->pstate
.max_pstate
)
857 vid
= cpudata
->vid
.turbo
;
862 static int silvermont_get_scaling(void)
866 /* Defined in Table 35-6 from SDM (Sept 2015) */
867 static int silvermont_freq_table
[] = {
868 83300, 100000, 133300, 116700, 80000};
870 rdmsrl(MSR_FSB_FREQ
, value
);
874 return silvermont_freq_table
[i
];
877 static int airmont_get_scaling(void)
881 /* Defined in Table 35-10 from SDM (Sept 2015) */
882 static int airmont_freq_table
[] = {
883 83300, 100000, 133300, 116700, 80000,
884 93300, 90000, 88900, 87500};
886 rdmsrl(MSR_FSB_FREQ
, value
);
890 return airmont_freq_table
[i
];
893 static void atom_get_vid(struct cpudata
*cpudata
)
897 rdmsrl(ATOM_VIDS
, value
);
898 cpudata
->vid
.min
= int_tofp((value
>> 8) & 0x7f);
899 cpudata
->vid
.max
= int_tofp((value
>> 16) & 0x7f);
900 cpudata
->vid
.ratio
= div_fp(
901 cpudata
->vid
.max
- cpudata
->vid
.min
,
902 int_tofp(cpudata
->pstate
.max_pstate
-
903 cpudata
->pstate
.min_pstate
));
905 rdmsrl(ATOM_TURBO_VIDS
, value
);
906 cpudata
->vid
.turbo
= value
& 0x7f;
909 static int core_get_min_pstate(void)
913 rdmsrl(MSR_PLATFORM_INFO
, value
);
914 return (value
>> 40) & 0xFF;
917 static int core_get_max_pstate_physical(void)
921 rdmsrl(MSR_PLATFORM_INFO
, value
);
922 return (value
>> 8) & 0xFF;
925 static int core_get_max_pstate(void)
932 rdmsrl(MSR_PLATFORM_INFO
, plat_info
);
933 max_pstate
= (plat_info
>> 8) & 0xFF;
935 err
= rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO
, &tar
);
937 /* Do some sanity checking for safety */
938 if (plat_info
& 0x600000000) {
943 err
= rdmsrl_safe(MSR_CONFIG_TDP_CONTROL
, &tdp_ctrl
);
947 tdp_msr
= MSR_CONFIG_TDP_NOMINAL
+ tdp_ctrl
;
948 err
= rdmsrl_safe(tdp_msr
, &tdp_ratio
);
952 /* For level 1 and 2, bits[23:16] contain the ratio */
956 tdp_ratio
&= 0xff; /* ratios are only 8 bits long */
957 if (tdp_ratio
- 1 == tar
) {
959 pr_debug("max_pstate=TAC %x\n", max_pstate
);
970 static int core_get_turbo_pstate(void)
975 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT
, value
);
976 nont
= core_get_max_pstate();
983 static inline int core_get_scaling(void)
988 static u64
core_get_val(struct cpudata
*cpudata
, int pstate
)
992 val
= (u64
)pstate
<< 8;
993 if (limits
->no_turbo
&& !limits
->turbo_disabled
)
999 static int knl_get_turbo_pstate(void)
1004 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT
, value
);
1005 nont
= core_get_max_pstate();
1006 ret
= (((value
) >> 8) & 0xFF);
1012 static struct cpu_defaults core_params
= {
1014 .sample_rate_ms
= 10,
1022 .get_max
= core_get_max_pstate
,
1023 .get_max_physical
= core_get_max_pstate_physical
,
1024 .get_min
= core_get_min_pstate
,
1025 .get_turbo
= core_get_turbo_pstate
,
1026 .get_scaling
= core_get_scaling
,
1027 .get_val
= core_get_val
,
1028 .get_target_pstate
= get_target_pstate_use_performance
,
1032 static struct cpu_defaults silvermont_params
= {
1034 .sample_rate_ms
= 10,
1042 .get_max
= atom_get_max_pstate
,
1043 .get_max_physical
= atom_get_max_pstate
,
1044 .get_min
= atom_get_min_pstate
,
1045 .get_turbo
= atom_get_turbo_pstate
,
1046 .get_val
= atom_get_val
,
1047 .get_scaling
= silvermont_get_scaling
,
1048 .get_vid
= atom_get_vid
,
1049 .get_target_pstate
= get_target_pstate_use_cpu_load
,
1053 static struct cpu_defaults airmont_params
= {
1055 .sample_rate_ms
= 10,
1063 .get_max
= atom_get_max_pstate
,
1064 .get_max_physical
= atom_get_max_pstate
,
1065 .get_min
= atom_get_min_pstate
,
1066 .get_turbo
= atom_get_turbo_pstate
,
1067 .get_val
= atom_get_val
,
1068 .get_scaling
= airmont_get_scaling
,
1069 .get_vid
= atom_get_vid
,
1070 .get_target_pstate
= get_target_pstate_use_cpu_load
,
1074 static struct cpu_defaults knl_params
= {
1076 .sample_rate_ms
= 10,
1084 .get_max
= core_get_max_pstate
,
1085 .get_max_physical
= core_get_max_pstate_physical
,
1086 .get_min
= core_get_min_pstate
,
1087 .get_turbo
= knl_get_turbo_pstate
,
1088 .get_scaling
= core_get_scaling
,
1089 .get_val
= core_get_val
,
1090 .get_target_pstate
= get_target_pstate_use_performance
,
1094 static void intel_pstate_get_min_max(struct cpudata
*cpu
, int *min
, int *max
)
1096 int max_perf
= cpu
->pstate
.turbo_pstate
;
1100 if (limits
->no_turbo
|| limits
->turbo_disabled
)
1101 max_perf
= cpu
->pstate
.max_pstate
;
1104 * performance can be limited by user through sysfs, by cpufreq
1105 * policy, or by cpu specific default values determined through
1108 max_perf_adj
= fp_toint(max_perf
* limits
->max_perf
);
1109 *max
= clamp_t(int, max_perf_adj
,
1110 cpu
->pstate
.min_pstate
, cpu
->pstate
.turbo_pstate
);
1112 min_perf
= fp_toint(max_perf
* limits
->min_perf
);
1113 *min
= clamp_t(int, min_perf
, cpu
->pstate
.min_pstate
, max_perf
);
1116 static inline void intel_pstate_record_pstate(struct cpudata
*cpu
, int pstate
)
1118 trace_cpu_frequency(pstate
* cpu
->pstate
.scaling
, cpu
->cpu
);
1119 cpu
->pstate
.current_pstate
= pstate
;
1122 static void intel_pstate_set_min_pstate(struct cpudata
*cpu
)
1124 int pstate
= cpu
->pstate
.min_pstate
;
1126 intel_pstate_record_pstate(cpu
, pstate
);
1128 * Generally, there is no guarantee that this code will always run on
1129 * the CPU being updated, so force the register update to run on the
1132 wrmsrl_on_cpu(cpu
->cpu
, MSR_IA32_PERF_CTL
,
1133 pstate_funcs
.get_val(cpu
, pstate
));
1136 static void intel_pstate_get_cpu_pstates(struct cpudata
*cpu
)
1138 cpu
->pstate
.min_pstate
= pstate_funcs
.get_min();
1139 cpu
->pstate
.max_pstate
= pstate_funcs
.get_max();
1140 cpu
->pstate
.max_pstate_physical
= pstate_funcs
.get_max_physical();
1141 cpu
->pstate
.turbo_pstate
= pstate_funcs
.get_turbo();
1142 cpu
->pstate
.scaling
= pstate_funcs
.get_scaling();
1144 if (pstate_funcs
.get_vid
)
1145 pstate_funcs
.get_vid(cpu
);
1147 intel_pstate_set_min_pstate(cpu
);
1150 static inline void intel_pstate_calc_avg_perf(struct cpudata
*cpu
)
1152 struct sample
*sample
= &cpu
->sample
;
1154 sample
->core_avg_perf
= div_ext_fp(sample
->aperf
, sample
->mperf
);
1157 static inline bool intel_pstate_sample(struct cpudata
*cpu
, u64 time
)
1160 unsigned long flags
;
1163 local_irq_save(flags
);
1164 rdmsrl(MSR_IA32_APERF
, aperf
);
1165 rdmsrl(MSR_IA32_MPERF
, mperf
);
1167 if (cpu
->prev_mperf
== mperf
|| cpu
->prev_tsc
== tsc
) {
1168 local_irq_restore(flags
);
1171 local_irq_restore(flags
);
1173 cpu
->last_sample_time
= cpu
->sample
.time
;
1174 cpu
->sample
.time
= time
;
1175 cpu
->sample
.aperf
= aperf
;
1176 cpu
->sample
.mperf
= mperf
;
1177 cpu
->sample
.tsc
= tsc
;
1178 cpu
->sample
.aperf
-= cpu
->prev_aperf
;
1179 cpu
->sample
.mperf
-= cpu
->prev_mperf
;
1180 cpu
->sample
.tsc
-= cpu
->prev_tsc
;
1182 cpu
->prev_aperf
= aperf
;
1183 cpu
->prev_mperf
= mperf
;
1184 cpu
->prev_tsc
= tsc
;
1186 * First time this function is invoked in a given cycle, all of the
1187 * previous sample data fields are equal to zero or stale and they must
1188 * be populated with meaningful numbers for things to work, so assume
1189 * that sample.time will always be reset before setting the utilization
1190 * update hook and make the caller skip the sample then.
1192 return !!cpu
->last_sample_time
;
1195 static inline int32_t get_avg_frequency(struct cpudata
*cpu
)
1197 return mul_ext_fp(cpu
->sample
.core_avg_perf
,
1198 cpu
->pstate
.max_pstate_physical
* cpu
->pstate
.scaling
);
1201 static inline int32_t get_avg_pstate(struct cpudata
*cpu
)
1203 return mul_ext_fp(cpu
->pstate
.max_pstate_physical
,
1204 cpu
->sample
.core_avg_perf
);
1207 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata
*cpu
)
1209 struct sample
*sample
= &cpu
->sample
;
1210 u64 cummulative_iowait
, delta_iowait_us
;
1211 u64 delta_iowait_mperf
;
1215 cummulative_iowait
= get_cpu_iowait_time_us(cpu
->cpu
, &now
);
1218 * Convert iowait time into number of IO cycles spent at max_freq.
1219 * IO is considered as busy only for the cpu_load algorithm. For
1220 * performance this is not needed since we always try to reach the
1221 * maximum P-State, so we are already boosting the IOs.
1223 delta_iowait_us
= cummulative_iowait
- cpu
->prev_cummulative_iowait
;
1224 delta_iowait_mperf
= div64_u64(delta_iowait_us
* cpu
->pstate
.scaling
*
1225 cpu
->pstate
.max_pstate
, MSEC_PER_SEC
);
1227 mperf
= cpu
->sample
.mperf
+ delta_iowait_mperf
;
1228 cpu
->prev_cummulative_iowait
= cummulative_iowait
;
1231 * The load can be estimated as the ratio of the mperf counter
1232 * running at a constant frequency during active periods
1233 * (C0) and the time stamp counter running at the same frequency
1234 * also during C-states.
1236 cpu_load
= div64_u64(int_tofp(100) * mperf
, sample
->tsc
);
1237 cpu
->sample
.busy_scaled
= cpu_load
;
1239 return get_avg_pstate(cpu
) - pid_calc(&cpu
->pid
, cpu_load
);
1242 static inline int32_t get_target_pstate_use_performance(struct cpudata
*cpu
)
1244 int32_t perf_scaled
, max_pstate
, current_pstate
, sample_ratio
;
1248 * perf_scaled is the average performance during the last sampling
1249 * period scaled by the ratio of the maximum P-state to the P-state
1250 * requested last time (in percent). That measures the system's
1251 * response to the previous P-state selection.
1253 max_pstate
= cpu
->pstate
.max_pstate_physical
;
1254 current_pstate
= cpu
->pstate
.current_pstate
;
1255 perf_scaled
= mul_ext_fp(cpu
->sample
.core_avg_perf
,
1256 div_fp(100 * max_pstate
, current_pstate
));
1259 * Since our utilization update callback will not run unless we are
1260 * in C0, check if the actual elapsed time is significantly greater (3x)
1261 * than our sample interval. If it is, then we were idle for a long
1262 * enough period of time to adjust our performance metric.
1264 duration_ns
= cpu
->sample
.time
- cpu
->last_sample_time
;
1265 if ((s64
)duration_ns
> pid_params
.sample_rate_ns
* 3) {
1266 sample_ratio
= div_fp(pid_params
.sample_rate_ns
, duration_ns
);
1267 perf_scaled
= mul_fp(perf_scaled
, sample_ratio
);
1269 sample_ratio
= div_fp(100 * cpu
->sample
.mperf
, cpu
->sample
.tsc
);
1270 if (sample_ratio
< int_tofp(1))
1274 cpu
->sample
.busy_scaled
= perf_scaled
;
1275 return cpu
->pstate
.current_pstate
- pid_calc(&cpu
->pid
, perf_scaled
);
1278 static inline void intel_pstate_update_pstate(struct cpudata
*cpu
, int pstate
)
1280 int max_perf
, min_perf
;
1282 update_turbo_state();
1284 intel_pstate_get_min_max(cpu
, &min_perf
, &max_perf
);
1285 pstate
= clamp_t(int, pstate
, min_perf
, max_perf
);
1286 if (pstate
== cpu
->pstate
.current_pstate
)
1289 intel_pstate_record_pstate(cpu
, pstate
);
1290 wrmsrl(MSR_IA32_PERF_CTL
, pstate_funcs
.get_val(cpu
, pstate
));
1293 static inline void intel_pstate_adjust_busy_pstate(struct cpudata
*cpu
)
1295 int from
, target_pstate
;
1296 struct sample
*sample
;
1298 from
= cpu
->pstate
.current_pstate
;
1300 target_pstate
= pstate_funcs
.get_target_pstate(cpu
);
1302 intel_pstate_update_pstate(cpu
, target_pstate
);
1304 sample
= &cpu
->sample
;
1305 trace_pstate_sample(mul_ext_fp(100, sample
->core_avg_perf
),
1306 fp_toint(sample
->busy_scaled
),
1308 cpu
->pstate
.current_pstate
,
1312 get_avg_frequency(cpu
));
1315 static void intel_pstate_update_util(struct update_util_data
*data
, u64 time
,
1316 unsigned long util
, unsigned long max
)
1318 struct cpudata
*cpu
= container_of(data
, struct cpudata
, update_util
);
1319 u64 delta_ns
= time
- cpu
->sample
.time
;
1321 if ((s64
)delta_ns
>= pid_params
.sample_rate_ns
) {
1322 bool sample_taken
= intel_pstate_sample(cpu
, time
);
1325 intel_pstate_calc_avg_perf(cpu
);
1327 intel_pstate_adjust_busy_pstate(cpu
);
1332 #define ICPU(model, policy) \
1333 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1334 (unsigned long)&policy }
1336 static const struct x86_cpu_id intel_pstate_cpu_ids
[] = {
1337 ICPU(0x2a, core_params
),
1338 ICPU(0x2d, core_params
),
1339 ICPU(0x37, silvermont_params
),
1340 ICPU(0x3a, core_params
),
1341 ICPU(0x3c, core_params
),
1342 ICPU(0x3d, core_params
),
1343 ICPU(0x3e, core_params
),
1344 ICPU(0x3f, core_params
),
1345 ICPU(0x45, core_params
),
1346 ICPU(0x46, core_params
),
1347 ICPU(0x47, core_params
),
1348 ICPU(0x4c, airmont_params
),
1349 ICPU(0x4e, core_params
),
1350 ICPU(0x4f, core_params
),
1351 ICPU(0x5e, core_params
),
1352 ICPU(0x56, core_params
),
1353 ICPU(0x57, knl_params
),
1356 MODULE_DEVICE_TABLE(x86cpu
, intel_pstate_cpu_ids
);
1358 static const struct x86_cpu_id intel_pstate_cpu_oob_ids
[] = {
1359 ICPU(0x56, core_params
),
1363 static int intel_pstate_init_cpu(unsigned int cpunum
)
1365 struct cpudata
*cpu
;
1367 if (!all_cpu_data
[cpunum
])
1368 all_cpu_data
[cpunum
] = kzalloc(sizeof(struct cpudata
),
1370 if (!all_cpu_data
[cpunum
])
1373 cpu
= all_cpu_data
[cpunum
];
1378 intel_pstate_hwp_enable(cpu
);
1379 pid_params
.sample_rate_ms
= 50;
1380 pid_params
.sample_rate_ns
= 50 * NSEC_PER_MSEC
;
1383 intel_pstate_get_cpu_pstates(cpu
);
1385 intel_pstate_busy_pid_reset(cpu
);
1387 pr_debug("controlling: cpu %d\n", cpunum
);
1392 static unsigned int intel_pstate_get(unsigned int cpu_num
)
1394 struct cpudata
*cpu
= all_cpu_data
[cpu_num
];
1396 return cpu
? get_avg_frequency(cpu
) : 0;
1399 static void intel_pstate_set_update_util_hook(unsigned int cpu_num
)
1401 struct cpudata
*cpu
= all_cpu_data
[cpu_num
];
1403 /* Prevent intel_pstate_update_util() from using stale data. */
1404 cpu
->sample
.time
= 0;
1405 cpufreq_add_update_util_hook(cpu_num
, &cpu
->update_util
,
1406 intel_pstate_update_util
);
1407 cpu
->update_util_set
= true;
1410 static void intel_pstate_clear_update_util_hook(unsigned int cpu
)
1412 struct cpudata
*cpu_data
= all_cpu_data
[cpu
];
1414 if (!cpu_data
->update_util_set
)
1417 cpufreq_remove_update_util_hook(cpu
);
1418 cpu_data
->update_util_set
= false;
1419 synchronize_sched();
1422 static void intel_pstate_set_performance_limits(struct perf_limits
*limits
)
1424 limits
->no_turbo
= 0;
1425 limits
->turbo_disabled
= 0;
1426 limits
->max_perf_pct
= 100;
1427 limits
->max_perf
= int_tofp(1);
1428 limits
->min_perf_pct
= 100;
1429 limits
->min_perf
= int_tofp(1);
1430 limits
->max_policy_pct
= 100;
1431 limits
->max_sysfs_pct
= 100;
1432 limits
->min_policy_pct
= 0;
1433 limits
->min_sysfs_pct
= 0;
1436 static int intel_pstate_set_policy(struct cpufreq_policy
*policy
)
1438 struct cpudata
*cpu
;
1440 if (!policy
->cpuinfo
.max_freq
)
1443 intel_pstate_clear_update_util_hook(policy
->cpu
);
1445 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1446 policy
->cpuinfo
.max_freq
, policy
->max
);
1448 cpu
= all_cpu_data
[0];
1449 if (cpu
->pstate
.max_pstate_physical
> cpu
->pstate
.max_pstate
&&
1450 policy
->max
< policy
->cpuinfo
.max_freq
&&
1451 policy
->max
> cpu
->pstate
.max_pstate
* cpu
->pstate
.scaling
) {
1452 pr_debug("policy->max > max non turbo frequency\n");
1453 policy
->max
= policy
->cpuinfo
.max_freq
;
1456 if (policy
->policy
== CPUFREQ_POLICY_PERFORMANCE
) {
1457 limits
= &performance_limits
;
1458 if (policy
->max
>= policy
->cpuinfo
.max_freq
) {
1459 pr_debug("set performance\n");
1460 intel_pstate_set_performance_limits(limits
);
1464 pr_debug("set powersave\n");
1465 limits
= &powersave_limits
;
1468 limits
->min_policy_pct
= (policy
->min
* 100) / policy
->cpuinfo
.max_freq
;
1469 limits
->min_policy_pct
= clamp_t(int, limits
->min_policy_pct
, 0 , 100);
1470 limits
->max_policy_pct
= DIV_ROUND_UP(policy
->max
* 100,
1471 policy
->cpuinfo
.max_freq
);
1472 limits
->max_policy_pct
= clamp_t(int, limits
->max_policy_pct
, 0 , 100);
1474 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1475 limits
->min_perf_pct
= max(limits
->min_policy_pct
,
1476 limits
->min_sysfs_pct
);
1477 limits
->min_perf_pct
= min(limits
->max_policy_pct
,
1478 limits
->min_perf_pct
);
1479 limits
->max_perf_pct
= min(limits
->max_policy_pct
,
1480 limits
->max_sysfs_pct
);
1481 limits
->max_perf_pct
= max(limits
->min_policy_pct
,
1482 limits
->max_perf_pct
);
1484 /* Make sure min_perf_pct <= max_perf_pct */
1485 limits
->min_perf_pct
= min(limits
->max_perf_pct
, limits
->min_perf_pct
);
1487 limits
->min_perf
= div_fp(limits
->min_perf_pct
, 100);
1488 limits
->max_perf
= div_fp(limits
->max_perf_pct
, 100);
1489 limits
->max_perf
= round_up(limits
->max_perf
, FRAC_BITS
);
1492 intel_pstate_set_update_util_hook(policy
->cpu
);
1494 intel_pstate_hwp_set_policy(policy
);
1499 static int intel_pstate_verify_policy(struct cpufreq_policy
*policy
)
1501 cpufreq_verify_within_cpu_limits(policy
);
1503 if (policy
->policy
!= CPUFREQ_POLICY_POWERSAVE
&&
1504 policy
->policy
!= CPUFREQ_POLICY_PERFORMANCE
)
1510 static void intel_pstate_stop_cpu(struct cpufreq_policy
*policy
)
1512 int cpu_num
= policy
->cpu
;
1513 struct cpudata
*cpu
= all_cpu_data
[cpu_num
];
1515 pr_debug("CPU %d exiting\n", cpu_num
);
1517 intel_pstate_clear_update_util_hook(cpu_num
);
1522 intel_pstate_set_min_pstate(cpu
);
1525 static int intel_pstate_cpu_init(struct cpufreq_policy
*policy
)
1527 struct cpudata
*cpu
;
1530 rc
= intel_pstate_init_cpu(policy
->cpu
);
1534 cpu
= all_cpu_data
[policy
->cpu
];
1536 if (limits
->min_perf_pct
== 100 && limits
->max_perf_pct
== 100)
1537 policy
->policy
= CPUFREQ_POLICY_PERFORMANCE
;
1539 policy
->policy
= CPUFREQ_POLICY_POWERSAVE
;
1541 policy
->min
= cpu
->pstate
.min_pstate
* cpu
->pstate
.scaling
;
1542 policy
->max
= cpu
->pstate
.turbo_pstate
* cpu
->pstate
.scaling
;
1544 /* cpuinfo and default policy values */
1545 policy
->cpuinfo
.min_freq
= cpu
->pstate
.min_pstate
* cpu
->pstate
.scaling
;
1546 update_turbo_state();
1547 policy
->cpuinfo
.max_freq
= limits
->turbo_disabled
?
1548 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
1549 policy
->cpuinfo
.max_freq
*= cpu
->pstate
.scaling
;
1551 intel_pstate_init_acpi_perf_limits(policy
);
1552 policy
->cpuinfo
.transition_latency
= CPUFREQ_ETERNAL
;
1553 cpumask_set_cpu(policy
->cpu
, policy
->cpus
);
1558 static int intel_pstate_cpu_exit(struct cpufreq_policy
*policy
)
1560 intel_pstate_exit_perf_limits(policy
);
1565 static struct cpufreq_driver intel_pstate_driver
= {
1566 .flags
= CPUFREQ_CONST_LOOPS
,
1567 .verify
= intel_pstate_verify_policy
,
1568 .setpolicy
= intel_pstate_set_policy
,
1569 .resume
= intel_pstate_hwp_set_policy
,
1570 .get
= intel_pstate_get
,
1571 .init
= intel_pstate_cpu_init
,
1572 .exit
= intel_pstate_cpu_exit
,
1573 .stop_cpu
= intel_pstate_stop_cpu
,
1574 .name
= "intel_pstate",
1577 static int __initdata no_load
;
1578 static int __initdata no_hwp
;
1579 static int __initdata hwp_only
;
1580 static unsigned int force_load
;
1582 static int intel_pstate_msrs_not_valid(void)
1584 if (!pstate_funcs
.get_max() ||
1585 !pstate_funcs
.get_min() ||
1586 !pstate_funcs
.get_turbo())
1592 static void copy_pid_params(struct pstate_adjust_policy
*policy
)
1594 pid_params
.sample_rate_ms
= policy
->sample_rate_ms
;
1595 pid_params
.sample_rate_ns
= pid_params
.sample_rate_ms
* NSEC_PER_MSEC
;
1596 pid_params
.p_gain_pct
= policy
->p_gain_pct
;
1597 pid_params
.i_gain_pct
= policy
->i_gain_pct
;
1598 pid_params
.d_gain_pct
= policy
->d_gain_pct
;
1599 pid_params
.deadband
= policy
->deadband
;
1600 pid_params
.setpoint
= policy
->setpoint
;
1603 static void copy_cpu_funcs(struct pstate_funcs
*funcs
)
1605 pstate_funcs
.get_max
= funcs
->get_max
;
1606 pstate_funcs
.get_max_physical
= funcs
->get_max_physical
;
1607 pstate_funcs
.get_min
= funcs
->get_min
;
1608 pstate_funcs
.get_turbo
= funcs
->get_turbo
;
1609 pstate_funcs
.get_scaling
= funcs
->get_scaling
;
1610 pstate_funcs
.get_val
= funcs
->get_val
;
1611 pstate_funcs
.get_vid
= funcs
->get_vid
;
1612 pstate_funcs
.get_target_pstate
= funcs
->get_target_pstate
;
1618 static bool intel_pstate_no_acpi_pss(void)
1622 for_each_possible_cpu(i
) {
1624 union acpi_object
*pss
;
1625 struct acpi_buffer buffer
= { ACPI_ALLOCATE_BUFFER
, NULL
};
1626 struct acpi_processor
*pr
= per_cpu(processors
, i
);
1631 status
= acpi_evaluate_object(pr
->handle
, "_PSS", NULL
, &buffer
);
1632 if (ACPI_FAILURE(status
))
1635 pss
= buffer
.pointer
;
1636 if (pss
&& pss
->type
== ACPI_TYPE_PACKAGE
) {
1647 static bool intel_pstate_has_acpi_ppc(void)
1651 for_each_possible_cpu(i
) {
1652 struct acpi_processor
*pr
= per_cpu(processors
, i
);
1656 if (acpi_has_method(pr
->handle
, "_PPC"))
1667 struct hw_vendor_info
{
1669 char oem_id
[ACPI_OEM_ID_SIZE
];
1670 char oem_table_id
[ACPI_OEM_TABLE_ID_SIZE
];
1674 /* Hardware vendor-specific info that has its own power management modes */
1675 static struct hw_vendor_info vendor_info
[] = {
1676 {1, "HP ", "ProLiant", PSS
},
1677 {1, "ORACLE", "X4-2 ", PPC
},
1678 {1, "ORACLE", "X4-2L ", PPC
},
1679 {1, "ORACLE", "X4-2B ", PPC
},
1680 {1, "ORACLE", "X3-2 ", PPC
},
1681 {1, "ORACLE", "X3-2L ", PPC
},
1682 {1, "ORACLE", "X3-2B ", PPC
},
1683 {1, "ORACLE", "X4470M2 ", PPC
},
1684 {1, "ORACLE", "X4270M3 ", PPC
},
1685 {1, "ORACLE", "X4270M2 ", PPC
},
1686 {1, "ORACLE", "X4170M2 ", PPC
},
1687 {1, "ORACLE", "X4170 M3", PPC
},
1688 {1, "ORACLE", "X4275 M3", PPC
},
1689 {1, "ORACLE", "X6-2 ", PPC
},
1690 {1, "ORACLE", "Sudbury ", PPC
},
1694 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1696 struct acpi_table_header hdr
;
1697 struct hw_vendor_info
*v_info
;
1698 const struct x86_cpu_id
*id
;
1701 id
= x86_match_cpu(intel_pstate_cpu_oob_ids
);
1703 rdmsrl(MSR_MISC_PWR_MGMT
, misc_pwr
);
1704 if ( misc_pwr
& (1 << 8))
1708 if (acpi_disabled
||
1709 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT
, 0, &hdr
)))
1712 for (v_info
= vendor_info
; v_info
->valid
; v_info
++) {
1713 if (!strncmp(hdr
.oem_id
, v_info
->oem_id
, ACPI_OEM_ID_SIZE
) &&
1714 !strncmp(hdr
.oem_table_id
, v_info
->oem_table_id
,
1715 ACPI_OEM_TABLE_ID_SIZE
))
1716 switch (v_info
->oem_pwr_table
) {
1718 return intel_pstate_no_acpi_pss();
1720 return intel_pstate_has_acpi_ppc() &&
1727 #else /* CONFIG_ACPI not enabled */
1728 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1729 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1730 #endif /* CONFIG_ACPI */
1732 static const struct x86_cpu_id hwp_support_ids
[] __initconst
= {
1733 { X86_VENDOR_INTEL
, 6, X86_MODEL_ANY
, X86_FEATURE_HWP
},
1737 static int __init
intel_pstate_init(void)
1740 const struct x86_cpu_id
*id
;
1741 struct cpu_defaults
*cpu_def
;
1746 if (x86_match_cpu(hwp_support_ids
) && !no_hwp
) {
1747 copy_cpu_funcs(&core_params
.funcs
);
1749 goto hwp_cpu_matched
;
1752 id
= x86_match_cpu(intel_pstate_cpu_ids
);
1756 cpu_def
= (struct cpu_defaults
*)id
->driver_data
;
1758 copy_pid_params(&cpu_def
->pid_policy
);
1759 copy_cpu_funcs(&cpu_def
->funcs
);
1761 if (intel_pstate_msrs_not_valid())
1766 * The Intel pstate driver will be ignored if the platform
1767 * firmware has its own power management modes.
1769 if (intel_pstate_platform_pwr_mgmt_exists())
1772 pr_info("Intel P-state driver initializing\n");
1774 all_cpu_data
= vzalloc(sizeof(void *) * num_possible_cpus());
1778 if (!hwp_active
&& hwp_only
)
1781 rc
= cpufreq_register_driver(&intel_pstate_driver
);
1785 intel_pstate_debug_expose_params();
1786 intel_pstate_sysfs_expose_params();
1789 pr_info("HWP enabled\n");
1794 for_each_online_cpu(cpu
) {
1795 if (all_cpu_data
[cpu
]) {
1796 intel_pstate_clear_update_util_hook(cpu
);
1797 kfree(all_cpu_data
[cpu
]);
1802 vfree(all_cpu_data
);
1805 device_initcall(intel_pstate_init
);
1807 static int __init
intel_pstate_setup(char *str
)
1812 if (!strcmp(str
, "disable"))
1814 if (!strcmp(str
, "no_hwp")) {
1815 pr_info("HWP disabled\n");
1818 if (!strcmp(str
, "force"))
1820 if (!strcmp(str
, "hwp_only"))
1824 if (!strcmp(str
, "support_acpi_ppc"))
1830 early_param("intel_pstate", intel_pstate_setup
);
1832 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1833 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1834 MODULE_LICENSE("GPL");