Merge branch 'r6040-next'
[linux/fpc-iii.git] / drivers / pci / hotplug / cpqphp_ctrl.c
bloba55653b54eeddc5b53ac33bbd03f6e7d3f7dac79
1 /*
2 * Compaq Hot Plug Controller Driver
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
8 * All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
19 * details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 * Send feedback to <greg@kroah.com>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/wait.h>
37 #include <linux/pci.h>
38 #include <linux/pci_hotplug.h>
39 #include <linux/kthread.h>
40 #include "cpqphp.h"
42 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
43 u8 behind_bridge, struct resource_lists *resources);
44 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
45 u8 behind_bridge, struct resource_lists *resources);
46 static void interrupt_event_handler(struct controller *ctrl);
49 static struct task_struct *cpqhp_event_thread;
50 static unsigned long pushbutton_pending; /* = 0 */
52 /* delay is in jiffies to wait for */
53 static void long_delay(int delay)
56 * XXX(hch): if someone is bored please convert all callers
57 * to call msleep_interruptible directly. They really want
58 * to specify timeouts in natural units and spend a lot of
59 * effort converting them to jiffies..
61 msleep_interruptible(jiffies_to_msecs(delay));
65 /* FIXME: The following line needs to be somewhere else... */
66 #define WRONG_BUS_FREQUENCY 0x07
67 static u8 handle_switch_change(u8 change, struct controller *ctrl)
69 int hp_slot;
70 u8 rc = 0;
71 u16 temp_word;
72 struct pci_func *func;
73 struct event_info *taskInfo;
75 if (!change)
76 return 0;
78 /* Switch Change */
79 dbg("cpqsbd: Switch interrupt received.\n");
81 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
82 if (change & (0x1L << hp_slot)) {
84 * this one changed.
86 func = cpqhp_slot_find(ctrl->bus,
87 (hp_slot + ctrl->slot_device_offset), 0);
89 /* this is the structure that tells the worker thread
90 * what to do
92 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
93 ctrl->next_event = (ctrl->next_event + 1) % 10;
94 taskInfo->hp_slot = hp_slot;
96 rc++;
98 temp_word = ctrl->ctrl_int_comp >> 16;
99 func->presence_save = (temp_word >> hp_slot) & 0x01;
100 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
102 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
104 * Switch opened
107 func->switch_save = 0;
109 taskInfo->event_type = INT_SWITCH_OPEN;
110 } else {
112 * Switch closed
115 func->switch_save = 0x10;
117 taskInfo->event_type = INT_SWITCH_CLOSE;
122 return rc;
126 * cpqhp_find_slot - find the struct slot of given device
127 * @ctrl: scan lots of this controller
128 * @device: the device id to find
130 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
132 struct slot *slot = ctrl->slot;
134 while (slot && (slot->device != device))
135 slot = slot->next;
137 return slot;
141 static u8 handle_presence_change(u16 change, struct controller *ctrl)
143 int hp_slot;
144 u8 rc = 0;
145 u8 temp_byte;
146 u16 temp_word;
147 struct pci_func *func;
148 struct event_info *taskInfo;
149 struct slot *p_slot;
151 if (!change)
152 return 0;
155 * Presence Change
157 dbg("cpqsbd: Presence/Notify input change.\n");
158 dbg(" Changed bits are 0x%4.4x\n", change);
160 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
161 if (change & (0x0101 << hp_slot)) {
163 * this one changed.
165 func = cpqhp_slot_find(ctrl->bus,
166 (hp_slot + ctrl->slot_device_offset), 0);
168 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
169 ctrl->next_event = (ctrl->next_event + 1) % 10;
170 taskInfo->hp_slot = hp_slot;
172 rc++;
174 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
175 if (!p_slot)
176 return 0;
178 /* If the switch closed, must be a button
179 * If not in button mode, nevermind
181 if (func->switch_save && (ctrl->push_button == 1)) {
182 temp_word = ctrl->ctrl_int_comp >> 16;
183 temp_byte = (temp_word >> hp_slot) & 0x01;
184 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
186 if (temp_byte != func->presence_save) {
188 * button Pressed (doesn't do anything)
190 dbg("hp_slot %d button pressed\n", hp_slot);
191 taskInfo->event_type = INT_BUTTON_PRESS;
192 } else {
194 * button Released - TAKE ACTION!!!!
196 dbg("hp_slot %d button released\n", hp_slot);
197 taskInfo->event_type = INT_BUTTON_RELEASE;
199 /* Cancel if we are still blinking */
200 if ((p_slot->state == BLINKINGON_STATE)
201 || (p_slot->state == BLINKINGOFF_STATE)) {
202 taskInfo->event_type = INT_BUTTON_CANCEL;
203 dbg("hp_slot %d button cancel\n", hp_slot);
204 } else if ((p_slot->state == POWERON_STATE)
205 || (p_slot->state == POWEROFF_STATE)) {
206 /* info(msg_button_ignore, p_slot->number); */
207 taskInfo->event_type = INT_BUTTON_IGNORE;
208 dbg("hp_slot %d button ignore\n", hp_slot);
211 } else {
212 /* Switch is open, assume a presence change
213 * Save the presence state
215 temp_word = ctrl->ctrl_int_comp >> 16;
216 func->presence_save = (temp_word >> hp_slot) & 0x01;
217 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
219 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
220 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
221 /* Present */
222 taskInfo->event_type = INT_PRESENCE_ON;
223 } else {
224 /* Not Present */
225 taskInfo->event_type = INT_PRESENCE_OFF;
231 return rc;
235 static u8 handle_power_fault(u8 change, struct controller *ctrl)
237 int hp_slot;
238 u8 rc = 0;
239 struct pci_func *func;
240 struct event_info *taskInfo;
242 if (!change)
243 return 0;
246 * power fault
249 info("power fault interrupt\n");
251 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
252 if (change & (0x01 << hp_slot)) {
254 * this one changed.
256 func = cpqhp_slot_find(ctrl->bus,
257 (hp_slot + ctrl->slot_device_offset), 0);
259 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
260 ctrl->next_event = (ctrl->next_event + 1) % 10;
261 taskInfo->hp_slot = hp_slot;
263 rc++;
265 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
267 * power fault Cleared
269 func->status = 0x00;
271 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
272 } else {
274 * power fault
276 taskInfo->event_type = INT_POWER_FAULT;
278 if (ctrl->rev < 4) {
279 amber_LED_on(ctrl, hp_slot);
280 green_LED_off(ctrl, hp_slot);
281 set_SOGO(ctrl);
283 /* this is a fatal condition, we want
284 * to crash the machine to protect from
285 * data corruption. simulated_NMI
286 * shouldn't ever return */
287 /* FIXME
288 simulated_NMI(hp_slot, ctrl); */
290 /* The following code causes a software
291 * crash just in case simulated_NMI did
292 * return */
293 /*FIXME
294 panic(msg_power_fault); */
295 } else {
296 /* set power fault status for this board */
297 func->status = 0xFF;
298 info("power fault bit %x set\n", hp_slot);
304 return rc;
309 * sort_by_size - sort nodes on the list by their length, smallest first.
310 * @head: list to sort
312 static int sort_by_size(struct pci_resource **head)
314 struct pci_resource *current_res;
315 struct pci_resource *next_res;
316 int out_of_order = 1;
318 if (!(*head))
319 return 1;
321 if (!((*head)->next))
322 return 0;
324 while (out_of_order) {
325 out_of_order = 0;
327 /* Special case for swapping list head */
328 if (((*head)->next) &&
329 ((*head)->length > (*head)->next->length)) {
330 out_of_order++;
331 current_res = *head;
332 *head = (*head)->next;
333 current_res->next = (*head)->next;
334 (*head)->next = current_res;
337 current_res = *head;
339 while (current_res->next && current_res->next->next) {
340 if (current_res->next->length > current_res->next->next->length) {
341 out_of_order++;
342 next_res = current_res->next;
343 current_res->next = current_res->next->next;
344 current_res = current_res->next;
345 next_res->next = current_res->next;
346 current_res->next = next_res;
347 } else
348 current_res = current_res->next;
350 } /* End of out_of_order loop */
352 return 0;
357 * sort_by_max_size - sort nodes on the list by their length, largest first.
358 * @head: list to sort
360 static int sort_by_max_size(struct pci_resource **head)
362 struct pci_resource *current_res;
363 struct pci_resource *next_res;
364 int out_of_order = 1;
366 if (!(*head))
367 return 1;
369 if (!((*head)->next))
370 return 0;
372 while (out_of_order) {
373 out_of_order = 0;
375 /* Special case for swapping list head */
376 if (((*head)->next) &&
377 ((*head)->length < (*head)->next->length)) {
378 out_of_order++;
379 current_res = *head;
380 *head = (*head)->next;
381 current_res->next = (*head)->next;
382 (*head)->next = current_res;
385 current_res = *head;
387 while (current_res->next && current_res->next->next) {
388 if (current_res->next->length < current_res->next->next->length) {
389 out_of_order++;
390 next_res = current_res->next;
391 current_res->next = current_res->next->next;
392 current_res = current_res->next;
393 next_res->next = current_res->next;
394 current_res->next = next_res;
395 } else
396 current_res = current_res->next;
398 } /* End of out_of_order loop */
400 return 0;
405 * do_pre_bridge_resource_split - find node of resources that are unused
406 * @head: new list head
407 * @orig_head: original list head
408 * @alignment: max node size (?)
410 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
411 struct pci_resource **orig_head, u32 alignment)
413 struct pci_resource *prevnode = NULL;
414 struct pci_resource *node;
415 struct pci_resource *split_node;
416 u32 rc;
417 u32 temp_dword;
418 dbg("do_pre_bridge_resource_split\n");
420 if (!(*head) || !(*orig_head))
421 return NULL;
423 rc = cpqhp_resource_sort_and_combine(head);
425 if (rc)
426 return NULL;
428 if ((*head)->base != (*orig_head)->base)
429 return NULL;
431 if ((*head)->length == (*orig_head)->length)
432 return NULL;
435 /* If we got here, there the bridge requires some of the resource, but
436 * we may be able to split some off of the front
439 node = *head;
441 if (node->length & (alignment - 1)) {
442 /* this one isn't an aligned length, so we'll make a new entry
443 * and split it up.
445 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
447 if (!split_node)
448 return NULL;
450 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
452 split_node->base = node->base;
453 split_node->length = temp_dword;
455 node->length -= temp_dword;
456 node->base += split_node->length;
458 /* Put it in the list */
459 *head = split_node;
460 split_node->next = node;
463 if (node->length < alignment)
464 return NULL;
466 /* Now unlink it */
467 if (*head == node) {
468 *head = node->next;
469 } else {
470 prevnode = *head;
471 while (prevnode->next != node)
472 prevnode = prevnode->next;
474 prevnode->next = node->next;
476 node->next = NULL;
478 return node;
483 * do_bridge_resource_split - find one node of resources that aren't in use
484 * @head: list head
485 * @alignment: max node size (?)
487 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
489 struct pci_resource *prevnode = NULL;
490 struct pci_resource *node;
491 u32 rc;
492 u32 temp_dword;
494 rc = cpqhp_resource_sort_and_combine(head);
496 if (rc)
497 return NULL;
499 node = *head;
501 while (node->next) {
502 prevnode = node;
503 node = node->next;
504 kfree(prevnode);
507 if (node->length < alignment)
508 goto error;
510 if (node->base & (alignment - 1)) {
511 /* Short circuit if adjusted size is too small */
512 temp_dword = (node->base | (alignment-1)) + 1;
513 if ((node->length - (temp_dword - node->base)) < alignment)
514 goto error;
516 node->length -= (temp_dword - node->base);
517 node->base = temp_dword;
520 if (node->length & (alignment - 1))
521 /* There's stuff in use after this node */
522 goto error;
524 return node;
525 error:
526 kfree(node);
527 return NULL;
532 * get_io_resource - find first node of given size not in ISA aliasing window.
533 * @head: list to search
534 * @size: size of node to find, must be a power of two.
536 * Description: This function sorts the resource list by size and then returns
537 * returns the first node of "size" length that is not in the ISA aliasing
538 * window. If it finds a node larger than "size" it will split it up.
540 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
542 struct pci_resource *prevnode;
543 struct pci_resource *node;
544 struct pci_resource *split_node;
545 u32 temp_dword;
547 if (!(*head))
548 return NULL;
550 if (cpqhp_resource_sort_and_combine(head))
551 return NULL;
553 if (sort_by_size(head))
554 return NULL;
556 for (node = *head; node; node = node->next) {
557 if (node->length < size)
558 continue;
560 if (node->base & (size - 1)) {
561 /* this one isn't base aligned properly
562 * so we'll make a new entry and split it up
564 temp_dword = (node->base | (size-1)) + 1;
566 /* Short circuit if adjusted size is too small */
567 if ((node->length - (temp_dword - node->base)) < size)
568 continue;
570 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
572 if (!split_node)
573 return NULL;
575 split_node->base = node->base;
576 split_node->length = temp_dword - node->base;
577 node->base = temp_dword;
578 node->length -= split_node->length;
580 /* Put it in the list */
581 split_node->next = node->next;
582 node->next = split_node;
583 } /* End of non-aligned base */
585 /* Don't need to check if too small since we already did */
586 if (node->length > size) {
587 /* this one is longer than we need
588 * so we'll make a new entry and split it up
590 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
592 if (!split_node)
593 return NULL;
595 split_node->base = node->base + size;
596 split_node->length = node->length - size;
597 node->length = size;
599 /* Put it in the list */
600 split_node->next = node->next;
601 node->next = split_node;
602 } /* End of too big on top end */
604 /* For IO make sure it's not in the ISA aliasing space */
605 if (node->base & 0x300L)
606 continue;
608 /* If we got here, then it is the right size
609 * Now take it out of the list and break
611 if (*head == node) {
612 *head = node->next;
613 } else {
614 prevnode = *head;
615 while (prevnode->next != node)
616 prevnode = prevnode->next;
618 prevnode->next = node->next;
620 node->next = NULL;
621 break;
624 return node;
629 * get_max_resource - get largest node which has at least the given size.
630 * @head: the list to search the node in
631 * @size: the minimum size of the node to find
633 * Description: Gets the largest node that is at least "size" big from the
634 * list pointed to by head. It aligns the node on top and bottom
635 * to "size" alignment before returning it.
637 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
639 struct pci_resource *max;
640 struct pci_resource *temp;
641 struct pci_resource *split_node;
642 u32 temp_dword;
644 if (cpqhp_resource_sort_and_combine(head))
645 return NULL;
647 if (sort_by_max_size(head))
648 return NULL;
650 for (max = *head; max; max = max->next) {
651 /* If not big enough we could probably just bail,
652 * instead we'll continue to the next.
654 if (max->length < size)
655 continue;
657 if (max->base & (size - 1)) {
658 /* this one isn't base aligned properly
659 * so we'll make a new entry and split it up
661 temp_dword = (max->base | (size-1)) + 1;
663 /* Short circuit if adjusted size is too small */
664 if ((max->length - (temp_dword - max->base)) < size)
665 continue;
667 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
669 if (!split_node)
670 return NULL;
672 split_node->base = max->base;
673 split_node->length = temp_dword - max->base;
674 max->base = temp_dword;
675 max->length -= split_node->length;
677 split_node->next = max->next;
678 max->next = split_node;
681 if ((max->base + max->length) & (size - 1)) {
682 /* this one isn't end aligned properly at the top
683 * so we'll make a new entry and split it up
685 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
687 if (!split_node)
688 return NULL;
689 temp_dword = ((max->base + max->length) & ~(size - 1));
690 split_node->base = temp_dword;
691 split_node->length = max->length + max->base
692 - split_node->base;
693 max->length -= split_node->length;
695 split_node->next = max->next;
696 max->next = split_node;
699 /* Make sure it didn't shrink too much when we aligned it */
700 if (max->length < size)
701 continue;
703 /* Now take it out of the list */
704 temp = *head;
705 if (temp == max) {
706 *head = max->next;
707 } else {
708 while (temp && temp->next != max)
709 temp = temp->next;
711 if (temp)
712 temp->next = max->next;
715 max->next = NULL;
716 break;
719 return max;
724 * get_resource - find resource of given size and split up larger ones.
725 * @head: the list to search for resources
726 * @size: the size limit to use
728 * Description: This function sorts the resource list by size and then
729 * returns the first node of "size" length. If it finds a node
730 * larger than "size" it will split it up.
732 * size must be a power of two.
734 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
736 struct pci_resource *prevnode;
737 struct pci_resource *node;
738 struct pci_resource *split_node;
739 u32 temp_dword;
741 if (cpqhp_resource_sort_and_combine(head))
742 return NULL;
744 if (sort_by_size(head))
745 return NULL;
747 for (node = *head; node; node = node->next) {
748 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
749 __func__, size, node, node->base, node->length);
750 if (node->length < size)
751 continue;
753 if (node->base & (size - 1)) {
754 dbg("%s: not aligned\n", __func__);
755 /* this one isn't base aligned properly
756 * so we'll make a new entry and split it up
758 temp_dword = (node->base | (size-1)) + 1;
760 /* Short circuit if adjusted size is too small */
761 if ((node->length - (temp_dword - node->base)) < size)
762 continue;
764 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
766 if (!split_node)
767 return NULL;
769 split_node->base = node->base;
770 split_node->length = temp_dword - node->base;
771 node->base = temp_dword;
772 node->length -= split_node->length;
774 split_node->next = node->next;
775 node->next = split_node;
776 } /* End of non-aligned base */
778 /* Don't need to check if too small since we already did */
779 if (node->length > size) {
780 dbg("%s: too big\n", __func__);
781 /* this one is longer than we need
782 * so we'll make a new entry and split it up
784 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
786 if (!split_node)
787 return NULL;
789 split_node->base = node->base + size;
790 split_node->length = node->length - size;
791 node->length = size;
793 /* Put it in the list */
794 split_node->next = node->next;
795 node->next = split_node;
796 } /* End of too big on top end */
798 dbg("%s: got one!!!\n", __func__);
799 /* If we got here, then it is the right size
800 * Now take it out of the list */
801 if (*head == node) {
802 *head = node->next;
803 } else {
804 prevnode = *head;
805 while (prevnode->next != node)
806 prevnode = prevnode->next;
808 prevnode->next = node->next;
810 node->next = NULL;
811 break;
813 return node;
818 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
819 * @head: the list to sort and clean up
821 * Description: Sorts all of the nodes in the list in ascending order by
822 * their base addresses. Also does garbage collection by
823 * combining adjacent nodes.
825 * Returns %0 if success.
827 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
829 struct pci_resource *node1;
830 struct pci_resource *node2;
831 int out_of_order = 1;
833 dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
835 if (!(*head))
836 return 1;
838 dbg("*head->next = %p\n", (*head)->next);
840 if (!(*head)->next)
841 return 0; /* only one item on the list, already sorted! */
843 dbg("*head->base = 0x%x\n", (*head)->base);
844 dbg("*head->next->base = 0x%x\n", (*head)->next->base);
845 while (out_of_order) {
846 out_of_order = 0;
848 /* Special case for swapping list head */
849 if (((*head)->next) &&
850 ((*head)->base > (*head)->next->base)) {
851 node1 = *head;
852 (*head) = (*head)->next;
853 node1->next = (*head)->next;
854 (*head)->next = node1;
855 out_of_order++;
858 node1 = (*head);
860 while (node1->next && node1->next->next) {
861 if (node1->next->base > node1->next->next->base) {
862 out_of_order++;
863 node2 = node1->next;
864 node1->next = node1->next->next;
865 node1 = node1->next;
866 node2->next = node1->next;
867 node1->next = node2;
868 } else
869 node1 = node1->next;
871 } /* End of out_of_order loop */
873 node1 = *head;
875 while (node1 && node1->next) {
876 if ((node1->base + node1->length) == node1->next->base) {
877 /* Combine */
878 dbg("8..\n");
879 node1->length += node1->next->length;
880 node2 = node1->next;
881 node1->next = node1->next->next;
882 kfree(node2);
883 } else
884 node1 = node1->next;
887 return 0;
891 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
893 struct controller *ctrl = data;
894 u8 schedule_flag = 0;
895 u8 reset;
896 u16 misc;
897 u32 Diff;
898 u32 temp_dword;
901 misc = readw(ctrl->hpc_reg + MISC);
903 * Check to see if it was our interrupt
905 if (!(misc & 0x000C))
906 return IRQ_NONE;
908 if (misc & 0x0004) {
910 * Serial Output interrupt Pending
913 /* Clear the interrupt */
914 misc |= 0x0004;
915 writew(misc, ctrl->hpc_reg + MISC);
917 /* Read to clear posted writes */
918 misc = readw(ctrl->hpc_reg + MISC);
920 dbg("%s - waking up\n", __func__);
921 wake_up_interruptible(&ctrl->queue);
924 if (misc & 0x0008) {
925 /* General-interrupt-input interrupt Pending */
926 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
928 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
930 /* Clear the interrupt */
931 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
933 /* Read it back to clear any posted writes */
934 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
936 if (!Diff)
937 /* Clear all interrupts */
938 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
940 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
941 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
942 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
945 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
946 if (reset & 0x40) {
947 /* Bus reset has completed */
948 reset &= 0xCF;
949 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
950 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
951 wake_up_interruptible(&ctrl->queue);
954 if (schedule_flag) {
955 wake_up_process(cpqhp_event_thread);
956 dbg("Waking even thread");
958 return IRQ_HANDLED;
963 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
964 * @busnumber: bus where new node is to be located
966 * Returns pointer to the new node or %NULL if unsuccessful.
968 struct pci_func *cpqhp_slot_create(u8 busnumber)
970 struct pci_func *new_slot;
971 struct pci_func *next;
973 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
974 if (new_slot == NULL)
975 return new_slot;
977 new_slot->next = NULL;
978 new_slot->configured = 1;
980 if (cpqhp_slot_list[busnumber] == NULL) {
981 cpqhp_slot_list[busnumber] = new_slot;
982 } else {
983 next = cpqhp_slot_list[busnumber];
984 while (next->next != NULL)
985 next = next->next;
986 next->next = new_slot;
988 return new_slot;
993 * slot_remove - Removes a node from the linked list of slots.
994 * @old_slot: slot to remove
996 * Returns %0 if successful, !0 otherwise.
998 static int slot_remove(struct pci_func *old_slot)
1000 struct pci_func *next;
1002 if (old_slot == NULL)
1003 return 1;
1005 next = cpqhp_slot_list[old_slot->bus];
1006 if (next == NULL)
1007 return 1;
1009 if (next == old_slot) {
1010 cpqhp_slot_list[old_slot->bus] = old_slot->next;
1011 cpqhp_destroy_board_resources(old_slot);
1012 kfree(old_slot);
1013 return 0;
1016 while ((next->next != old_slot) && (next->next != NULL))
1017 next = next->next;
1019 if (next->next == old_slot) {
1020 next->next = old_slot->next;
1021 cpqhp_destroy_board_resources(old_slot);
1022 kfree(old_slot);
1023 return 0;
1024 } else
1025 return 2;
1030 * bridge_slot_remove - Removes a node from the linked list of slots.
1031 * @bridge: bridge to remove
1033 * Returns %0 if successful, !0 otherwise.
1035 static int bridge_slot_remove(struct pci_func *bridge)
1037 u8 subordinateBus, secondaryBus;
1038 u8 tempBus;
1039 struct pci_func *next;
1041 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1042 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1044 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1045 next = cpqhp_slot_list[tempBus];
1047 while (!slot_remove(next))
1048 next = cpqhp_slot_list[tempBus];
1051 next = cpqhp_slot_list[bridge->bus];
1053 if (next == NULL)
1054 return 1;
1056 if (next == bridge) {
1057 cpqhp_slot_list[bridge->bus] = bridge->next;
1058 goto out;
1061 while ((next->next != bridge) && (next->next != NULL))
1062 next = next->next;
1064 if (next->next != bridge)
1065 return 2;
1066 next->next = bridge->next;
1067 out:
1068 kfree(bridge);
1069 return 0;
1074 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1075 * @bus: bus to find
1076 * @device: device to find
1077 * @index: is %0 for first function found, %1 for the second...
1079 * Returns pointer to the node if successful, %NULL otherwise.
1081 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1083 int found = -1;
1084 struct pci_func *func;
1086 func = cpqhp_slot_list[bus];
1088 if ((func == NULL) || ((func->device == device) && (index == 0)))
1089 return func;
1091 if (func->device == device)
1092 found++;
1094 while (func->next != NULL) {
1095 func = func->next;
1097 if (func->device == device)
1098 found++;
1100 if (found == index)
1101 return func;
1104 return NULL;
1108 /* DJZ: I don't think is_bridge will work as is.
1109 * FIXME */
1110 static int is_bridge(struct pci_func *func)
1112 /* Check the header type */
1113 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1114 return 1;
1115 else
1116 return 0;
1121 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1122 * @ctrl: controller to change frequency/mode for.
1123 * @adapter_speed: the speed of the adapter we want to match.
1124 * @hp_slot: the slot number where the adapter is installed.
1126 * Returns %0 if we successfully change frequency and/or mode to match the
1127 * adapter speed.
1129 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1131 struct slot *slot;
1132 struct pci_bus *bus = ctrl->pci_bus;
1133 u8 reg;
1134 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1135 u16 reg16;
1136 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1138 if (bus->cur_bus_speed == adapter_speed)
1139 return 0;
1141 /* We don't allow freq/mode changes if we find another adapter running
1142 * in another slot on this controller
1144 for (slot = ctrl->slot; slot; slot = slot->next) {
1145 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1146 continue;
1147 if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1148 continue;
1149 if (slot->hotplug_slot->info->adapter_status == 0)
1150 continue;
1151 /* If another adapter is running on the same segment but at a
1152 * lower speed/mode, we allow the new adapter to function at
1153 * this rate if supported
1155 if (bus->cur_bus_speed < adapter_speed)
1156 return 0;
1158 return 1;
1161 /* If the controller doesn't support freq/mode changes and the
1162 * controller is running at a higher mode, we bail
1164 if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1165 return 1;
1167 /* But we allow the adapter to run at a lower rate if possible */
1168 if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1169 return 0;
1171 /* We try to set the max speed supported by both the adapter and
1172 * controller
1174 if (bus->max_bus_speed < adapter_speed) {
1175 if (bus->cur_bus_speed == bus->max_bus_speed)
1176 return 0;
1177 adapter_speed = bus->max_bus_speed;
1180 writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1181 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1183 set_SOGO(ctrl);
1184 wait_for_ctrl_irq(ctrl);
1186 if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1187 reg = 0xF5;
1188 else
1189 reg = 0xF4;
1190 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1192 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1193 reg16 &= ~0x000F;
1194 switch (adapter_speed) {
1195 case(PCI_SPEED_133MHz_PCIX):
1196 reg = 0x75;
1197 reg16 |= 0xB;
1198 break;
1199 case(PCI_SPEED_100MHz_PCIX):
1200 reg = 0x74;
1201 reg16 |= 0xA;
1202 break;
1203 case(PCI_SPEED_66MHz_PCIX):
1204 reg = 0x73;
1205 reg16 |= 0x9;
1206 break;
1207 case(PCI_SPEED_66MHz):
1208 reg = 0x73;
1209 reg16 |= 0x1;
1210 break;
1211 default: /* 33MHz PCI 2.2 */
1212 reg = 0x71;
1213 break;
1216 reg16 |= 0xB << 12;
1217 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1219 mdelay(5);
1221 /* Reenable interrupts */
1222 writel(0, ctrl->hpc_reg + INT_MASK);
1224 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1226 /* Restart state machine */
1227 reg = ~0xF;
1228 pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1229 pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1231 /* Only if mode change...*/
1232 if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1233 ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1234 set_SOGO(ctrl);
1236 wait_for_ctrl_irq(ctrl);
1237 mdelay(1100);
1239 /* Restore LED/Slot state */
1240 writel(leds, ctrl->hpc_reg + LED_CONTROL);
1241 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1243 set_SOGO(ctrl);
1244 wait_for_ctrl_irq(ctrl);
1246 bus->cur_bus_speed = adapter_speed;
1247 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1249 info("Successfully changed frequency/mode for adapter in slot %d\n",
1250 slot->number);
1251 return 0;
1254 /* the following routines constitute the bulk of the
1255 * hotplug controller logic
1260 * board_replaced - Called after a board has been replaced in the system.
1261 * @func: PCI device/function information
1262 * @ctrl: hotplug controller
1264 * This is only used if we don't have resources for hot add.
1265 * Turns power on for the board.
1266 * Checks to see if board is the same.
1267 * If board is same, reconfigures it.
1268 * If board isn't same, turns it back off.
1270 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1272 struct pci_bus *bus = ctrl->pci_bus;
1273 u8 hp_slot;
1274 u8 temp_byte;
1275 u8 adapter_speed;
1276 u32 rc = 0;
1278 hp_slot = func->device - ctrl->slot_device_offset;
1281 * The switch is open.
1283 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1284 rc = INTERLOCK_OPEN;
1286 * The board is already on
1288 else if (is_slot_enabled(ctrl, hp_slot))
1289 rc = CARD_FUNCTIONING;
1290 else {
1291 mutex_lock(&ctrl->crit_sect);
1293 /* turn on board without attaching to the bus */
1294 enable_slot_power(ctrl, hp_slot);
1296 set_SOGO(ctrl);
1298 /* Wait for SOBS to be unset */
1299 wait_for_ctrl_irq(ctrl);
1301 /* Change bits in slot power register to force another shift out
1302 * NOTE: this is to work around the timer bug */
1303 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1304 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1305 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1307 set_SOGO(ctrl);
1309 /* Wait for SOBS to be unset */
1310 wait_for_ctrl_irq(ctrl);
1312 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1313 if (bus->cur_bus_speed != adapter_speed)
1314 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1315 rc = WRONG_BUS_FREQUENCY;
1317 /* turn off board without attaching to the bus */
1318 disable_slot_power(ctrl, hp_slot);
1320 set_SOGO(ctrl);
1322 /* Wait for SOBS to be unset */
1323 wait_for_ctrl_irq(ctrl);
1325 mutex_unlock(&ctrl->crit_sect);
1327 if (rc)
1328 return rc;
1330 mutex_lock(&ctrl->crit_sect);
1332 slot_enable(ctrl, hp_slot);
1333 green_LED_blink(ctrl, hp_slot);
1335 amber_LED_off(ctrl, hp_slot);
1337 set_SOGO(ctrl);
1339 /* Wait for SOBS to be unset */
1340 wait_for_ctrl_irq(ctrl);
1342 mutex_unlock(&ctrl->crit_sect);
1344 /* Wait for ~1 second because of hot plug spec */
1345 long_delay(1*HZ);
1347 /* Check for a power fault */
1348 if (func->status == 0xFF) {
1349 /* power fault occurred, but it was benign */
1350 rc = POWER_FAILURE;
1351 func->status = 0;
1352 } else
1353 rc = cpqhp_valid_replace(ctrl, func);
1355 if (!rc) {
1356 /* It must be the same board */
1358 rc = cpqhp_configure_board(ctrl, func);
1360 /* If configuration fails, turn it off
1361 * Get slot won't work for devices behind
1362 * bridges, but in this case it will always be
1363 * called for the "base" bus/dev/func of an
1364 * adapter.
1367 mutex_lock(&ctrl->crit_sect);
1369 amber_LED_on(ctrl, hp_slot);
1370 green_LED_off(ctrl, hp_slot);
1371 slot_disable(ctrl, hp_slot);
1373 set_SOGO(ctrl);
1375 /* Wait for SOBS to be unset */
1376 wait_for_ctrl_irq(ctrl);
1378 mutex_unlock(&ctrl->crit_sect);
1380 if (rc)
1381 return rc;
1382 else
1383 return 1;
1385 } else {
1386 /* Something is wrong
1388 * Get slot won't work for devices behind bridges, but
1389 * in this case it will always be called for the "base"
1390 * bus/dev/func of an adapter.
1393 mutex_lock(&ctrl->crit_sect);
1395 amber_LED_on(ctrl, hp_slot);
1396 green_LED_off(ctrl, hp_slot);
1397 slot_disable(ctrl, hp_slot);
1399 set_SOGO(ctrl);
1401 /* Wait for SOBS to be unset */
1402 wait_for_ctrl_irq(ctrl);
1404 mutex_unlock(&ctrl->crit_sect);
1408 return rc;
1414 * board_added - Called after a board has been added to the system.
1415 * @func: PCI device/function info
1416 * @ctrl: hotplug controller
1418 * Turns power on for the board.
1419 * Configures board.
1421 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1423 u8 hp_slot;
1424 u8 temp_byte;
1425 u8 adapter_speed;
1426 int index;
1427 u32 temp_register = 0xFFFFFFFF;
1428 u32 rc = 0;
1429 struct pci_func *new_slot = NULL;
1430 struct pci_bus *bus = ctrl->pci_bus;
1431 struct slot *p_slot;
1432 struct resource_lists res_lists;
1434 hp_slot = func->device - ctrl->slot_device_offset;
1435 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1436 __func__, func->device, ctrl->slot_device_offset, hp_slot);
1438 mutex_lock(&ctrl->crit_sect);
1440 /* turn on board without attaching to the bus */
1441 enable_slot_power(ctrl, hp_slot);
1443 set_SOGO(ctrl);
1445 /* Wait for SOBS to be unset */
1446 wait_for_ctrl_irq(ctrl);
1448 /* Change bits in slot power register to force another shift out
1449 * NOTE: this is to work around the timer bug
1451 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1452 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1453 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1455 set_SOGO(ctrl);
1457 /* Wait for SOBS to be unset */
1458 wait_for_ctrl_irq(ctrl);
1460 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1461 if (bus->cur_bus_speed != adapter_speed)
1462 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1463 rc = WRONG_BUS_FREQUENCY;
1465 /* turn off board without attaching to the bus */
1466 disable_slot_power(ctrl, hp_slot);
1468 set_SOGO(ctrl);
1470 /* Wait for SOBS to be unset */
1471 wait_for_ctrl_irq(ctrl);
1473 mutex_unlock(&ctrl->crit_sect);
1475 if (rc)
1476 return rc;
1478 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1480 /* turn on board and blink green LED */
1482 dbg("%s: before down\n", __func__);
1483 mutex_lock(&ctrl->crit_sect);
1484 dbg("%s: after down\n", __func__);
1486 dbg("%s: before slot_enable\n", __func__);
1487 slot_enable(ctrl, hp_slot);
1489 dbg("%s: before green_LED_blink\n", __func__);
1490 green_LED_blink(ctrl, hp_slot);
1492 dbg("%s: before amber_LED_blink\n", __func__);
1493 amber_LED_off(ctrl, hp_slot);
1495 dbg("%s: before set_SOGO\n", __func__);
1496 set_SOGO(ctrl);
1498 /* Wait for SOBS to be unset */
1499 dbg("%s: before wait_for_ctrl_irq\n", __func__);
1500 wait_for_ctrl_irq(ctrl);
1501 dbg("%s: after wait_for_ctrl_irq\n", __func__);
1503 dbg("%s: before up\n", __func__);
1504 mutex_unlock(&ctrl->crit_sect);
1505 dbg("%s: after up\n", __func__);
1507 /* Wait for ~1 second because of hot plug spec */
1508 dbg("%s: before long_delay\n", __func__);
1509 long_delay(1*HZ);
1510 dbg("%s: after long_delay\n", __func__);
1512 dbg("%s: func status = %x\n", __func__, func->status);
1513 /* Check for a power fault */
1514 if (func->status == 0xFF) {
1515 /* power fault occurred, but it was benign */
1516 temp_register = 0xFFFFFFFF;
1517 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1518 rc = POWER_FAILURE;
1519 func->status = 0;
1520 } else {
1521 /* Get vendor/device ID u32 */
1522 ctrl->pci_bus->number = func->bus;
1523 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1524 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1525 dbg("%s: temp_register is %x\n", __func__, temp_register);
1527 if (rc != 0) {
1528 /* Something's wrong here */
1529 temp_register = 0xFFFFFFFF;
1530 dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1532 /* Preset return code. It will be changed later if things go okay. */
1533 rc = NO_ADAPTER_PRESENT;
1536 /* All F's is an empty slot or an invalid board */
1537 if (temp_register != 0xFFFFFFFF) {
1538 res_lists.io_head = ctrl->io_head;
1539 res_lists.mem_head = ctrl->mem_head;
1540 res_lists.p_mem_head = ctrl->p_mem_head;
1541 res_lists.bus_head = ctrl->bus_head;
1542 res_lists.irqs = NULL;
1544 rc = configure_new_device(ctrl, func, 0, &res_lists);
1546 dbg("%s: back from configure_new_device\n", __func__);
1547 ctrl->io_head = res_lists.io_head;
1548 ctrl->mem_head = res_lists.mem_head;
1549 ctrl->p_mem_head = res_lists.p_mem_head;
1550 ctrl->bus_head = res_lists.bus_head;
1552 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1553 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1554 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1555 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1557 if (rc) {
1558 mutex_lock(&ctrl->crit_sect);
1560 amber_LED_on(ctrl, hp_slot);
1561 green_LED_off(ctrl, hp_slot);
1562 slot_disable(ctrl, hp_slot);
1564 set_SOGO(ctrl);
1566 /* Wait for SOBS to be unset */
1567 wait_for_ctrl_irq(ctrl);
1569 mutex_unlock(&ctrl->crit_sect);
1570 return rc;
1571 } else {
1572 cpqhp_save_slot_config(ctrl, func);
1576 func->status = 0;
1577 func->switch_save = 0x10;
1578 func->is_a_board = 0x01;
1580 /* next, we will instantiate the linux pci_dev structures (with
1581 * appropriate driver notification, if already present) */
1582 dbg("%s: configure linux pci_dev structure\n", __func__);
1583 index = 0;
1584 do {
1585 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1586 if (new_slot && !new_slot->pci_dev)
1587 cpqhp_configure_device(ctrl, new_slot);
1588 } while (new_slot);
1590 mutex_lock(&ctrl->crit_sect);
1592 green_LED_on(ctrl, hp_slot);
1594 set_SOGO(ctrl);
1596 /* Wait for SOBS to be unset */
1597 wait_for_ctrl_irq(ctrl);
1599 mutex_unlock(&ctrl->crit_sect);
1600 } else {
1601 mutex_lock(&ctrl->crit_sect);
1603 amber_LED_on(ctrl, hp_slot);
1604 green_LED_off(ctrl, hp_slot);
1605 slot_disable(ctrl, hp_slot);
1607 set_SOGO(ctrl);
1609 /* Wait for SOBS to be unset */
1610 wait_for_ctrl_irq(ctrl);
1612 mutex_unlock(&ctrl->crit_sect);
1614 return rc;
1616 return 0;
1621 * remove_board - Turns off slot and LEDs
1622 * @func: PCI device/function info
1623 * @replace_flag: whether replacing or adding a new device
1624 * @ctrl: target controller
1626 static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
1628 int index;
1629 u8 skip = 0;
1630 u8 device;
1631 u8 hp_slot;
1632 u8 temp_byte;
1633 u32 rc;
1634 struct resource_lists res_lists;
1635 struct pci_func *temp_func;
1637 if (cpqhp_unconfigure_device(func))
1638 return 1;
1640 device = func->device;
1642 hp_slot = func->device - ctrl->slot_device_offset;
1643 dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1645 /* When we get here, it is safe to change base address registers.
1646 * We will attempt to save the base address register lengths */
1647 if (replace_flag || !ctrl->add_support)
1648 rc = cpqhp_save_base_addr_length(ctrl, func);
1649 else if (!func->bus_head && !func->mem_head &&
1650 !func->p_mem_head && !func->io_head) {
1651 /* Here we check to see if we've saved any of the board's
1652 * resources already. If so, we'll skip the attempt to
1653 * determine what's being used. */
1654 index = 0;
1655 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1656 while (temp_func) {
1657 if (temp_func->bus_head || temp_func->mem_head
1658 || temp_func->p_mem_head || temp_func->io_head) {
1659 skip = 1;
1660 break;
1662 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1665 if (!skip)
1666 rc = cpqhp_save_used_resources(ctrl, func);
1668 /* Change status to shutdown */
1669 if (func->is_a_board)
1670 func->status = 0x01;
1671 func->configured = 0;
1673 mutex_lock(&ctrl->crit_sect);
1675 green_LED_off(ctrl, hp_slot);
1676 slot_disable(ctrl, hp_slot);
1678 set_SOGO(ctrl);
1680 /* turn off SERR for slot */
1681 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1682 temp_byte &= ~(0x01 << hp_slot);
1683 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1685 /* Wait for SOBS to be unset */
1686 wait_for_ctrl_irq(ctrl);
1688 mutex_unlock(&ctrl->crit_sect);
1690 if (!replace_flag && ctrl->add_support) {
1691 while (func) {
1692 res_lists.io_head = ctrl->io_head;
1693 res_lists.mem_head = ctrl->mem_head;
1694 res_lists.p_mem_head = ctrl->p_mem_head;
1695 res_lists.bus_head = ctrl->bus_head;
1697 cpqhp_return_board_resources(func, &res_lists);
1699 ctrl->io_head = res_lists.io_head;
1700 ctrl->mem_head = res_lists.mem_head;
1701 ctrl->p_mem_head = res_lists.p_mem_head;
1702 ctrl->bus_head = res_lists.bus_head;
1704 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1705 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1706 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1707 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1709 if (is_bridge(func)) {
1710 bridge_slot_remove(func);
1711 } else
1712 slot_remove(func);
1714 func = cpqhp_slot_find(ctrl->bus, device, 0);
1717 /* Setup slot structure with entry for empty slot */
1718 func = cpqhp_slot_create(ctrl->bus);
1720 if (func == NULL)
1721 return 1;
1723 func->bus = ctrl->bus;
1724 func->device = device;
1725 func->function = 0;
1726 func->configured = 0;
1727 func->switch_save = 0x10;
1728 func->is_a_board = 0;
1729 func->p_task_event = NULL;
1732 return 0;
1735 static void pushbutton_helper_thread(unsigned long data)
1737 pushbutton_pending = data;
1738 wake_up_process(cpqhp_event_thread);
1742 /* this is the main worker thread */
1743 static int event_thread(void *data)
1745 struct controller *ctrl;
1747 while (1) {
1748 dbg("!!!!event_thread sleeping\n");
1749 set_current_state(TASK_INTERRUPTIBLE);
1750 schedule();
1752 if (kthread_should_stop())
1753 break;
1754 /* Do stuff here */
1755 if (pushbutton_pending)
1756 cpqhp_pushbutton_thread(pushbutton_pending);
1757 else
1758 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next)
1759 interrupt_event_handler(ctrl);
1761 dbg("event_thread signals exit\n");
1762 return 0;
1765 int cpqhp_event_start_thread(void)
1767 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1768 if (IS_ERR(cpqhp_event_thread)) {
1769 err("Can't start up our event thread\n");
1770 return PTR_ERR(cpqhp_event_thread);
1773 return 0;
1777 void cpqhp_event_stop_thread(void)
1779 kthread_stop(cpqhp_event_thread);
1783 static int update_slot_info(struct controller *ctrl, struct slot *slot)
1785 struct hotplug_slot_info *info;
1786 int result;
1788 info = kmalloc(sizeof(*info), GFP_KERNEL);
1789 if (!info)
1790 return -ENOMEM;
1792 info->power_status = get_slot_enabled(ctrl, slot);
1793 info->attention_status = cpq_get_attention_status(ctrl, slot);
1794 info->latch_status = cpq_get_latch_status(ctrl, slot);
1795 info->adapter_status = get_presence_status(ctrl, slot);
1796 result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1797 kfree(info);
1798 return result;
1801 static void interrupt_event_handler(struct controller *ctrl)
1803 int loop = 0;
1804 int change = 1;
1805 struct pci_func *func;
1806 u8 hp_slot;
1807 struct slot *p_slot;
1809 while (change) {
1810 change = 0;
1812 for (loop = 0; loop < 10; loop++) {
1813 /* dbg("loop %d\n", loop); */
1814 if (ctrl->event_queue[loop].event_type != 0) {
1815 hp_slot = ctrl->event_queue[loop].hp_slot;
1817 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1818 if (!func)
1819 return;
1821 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1822 if (!p_slot)
1823 return;
1825 dbg("hp_slot %d, func %p, p_slot %p\n",
1826 hp_slot, func, p_slot);
1828 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1829 dbg("button pressed\n");
1830 } else if (ctrl->event_queue[loop].event_type ==
1831 INT_BUTTON_CANCEL) {
1832 dbg("button cancel\n");
1833 del_timer(&p_slot->task_event);
1835 mutex_lock(&ctrl->crit_sect);
1837 if (p_slot->state == BLINKINGOFF_STATE) {
1838 /* slot is on */
1839 dbg("turn on green LED\n");
1840 green_LED_on(ctrl, hp_slot);
1841 } else if (p_slot->state == BLINKINGON_STATE) {
1842 /* slot is off */
1843 dbg("turn off green LED\n");
1844 green_LED_off(ctrl, hp_slot);
1847 info(msg_button_cancel, p_slot->number);
1849 p_slot->state = STATIC_STATE;
1851 amber_LED_off(ctrl, hp_slot);
1853 set_SOGO(ctrl);
1855 /* Wait for SOBS to be unset */
1856 wait_for_ctrl_irq(ctrl);
1858 mutex_unlock(&ctrl->crit_sect);
1860 /*** button Released (No action on press...) */
1861 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1862 dbg("button release\n");
1864 if (is_slot_enabled(ctrl, hp_slot)) {
1865 dbg("slot is on\n");
1866 p_slot->state = BLINKINGOFF_STATE;
1867 info(msg_button_off, p_slot->number);
1868 } else {
1869 dbg("slot is off\n");
1870 p_slot->state = BLINKINGON_STATE;
1871 info(msg_button_on, p_slot->number);
1873 mutex_lock(&ctrl->crit_sect);
1875 dbg("blink green LED and turn off amber\n");
1877 amber_LED_off(ctrl, hp_slot);
1878 green_LED_blink(ctrl, hp_slot);
1880 set_SOGO(ctrl);
1882 /* Wait for SOBS to be unset */
1883 wait_for_ctrl_irq(ctrl);
1885 mutex_unlock(&ctrl->crit_sect);
1886 init_timer(&p_slot->task_event);
1887 p_slot->hp_slot = hp_slot;
1888 p_slot->ctrl = ctrl;
1889 /* p_slot->physical_slot = physical_slot; */
1890 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
1891 p_slot->task_event.function = pushbutton_helper_thread;
1892 p_slot->task_event.data = (u32) p_slot;
1894 dbg("add_timer p_slot = %p\n", p_slot);
1895 add_timer(&p_slot->task_event);
1897 /***********POWER FAULT */
1898 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1899 dbg("power fault\n");
1900 } else {
1901 /* refresh notification */
1902 update_slot_info(ctrl, p_slot);
1905 ctrl->event_queue[loop].event_type = 0;
1907 change = 1;
1909 } /* End of FOR loop */
1912 return;
1917 * cpqhp_pushbutton_thread - handle pushbutton events
1918 * @slot: target slot (struct)
1920 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1921 * Handles all pending events and exits.
1923 void cpqhp_pushbutton_thread(unsigned long slot)
1925 u8 hp_slot;
1926 u8 device;
1927 struct pci_func *func;
1928 struct slot *p_slot = (struct slot *) slot;
1929 struct controller *ctrl = (struct controller *) p_slot->ctrl;
1931 pushbutton_pending = 0;
1932 hp_slot = p_slot->hp_slot;
1934 device = p_slot->device;
1936 if (is_slot_enabled(ctrl, hp_slot)) {
1937 p_slot->state = POWEROFF_STATE;
1938 /* power Down board */
1939 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1940 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1941 if (!func) {
1942 dbg("Error! func NULL in %s\n", __func__);
1943 return;
1946 if (cpqhp_process_SS(ctrl, func) != 0) {
1947 amber_LED_on(ctrl, hp_slot);
1948 green_LED_on(ctrl, hp_slot);
1950 set_SOGO(ctrl);
1952 /* Wait for SOBS to be unset */
1953 wait_for_ctrl_irq(ctrl);
1956 p_slot->state = STATIC_STATE;
1957 } else {
1958 p_slot->state = POWERON_STATE;
1959 /* slot is off */
1961 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1962 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1963 if (!func) {
1964 dbg("Error! func NULL in %s\n", __func__);
1965 return;
1968 if (ctrl != NULL) {
1969 if (cpqhp_process_SI(ctrl, func) != 0) {
1970 amber_LED_on(ctrl, hp_slot);
1971 green_LED_off(ctrl, hp_slot);
1973 set_SOGO(ctrl);
1975 /* Wait for SOBS to be unset */
1976 wait_for_ctrl_irq(ctrl);
1980 p_slot->state = STATIC_STATE;
1983 return;
1987 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1989 u8 device, hp_slot;
1990 u16 temp_word;
1991 u32 tempdword;
1992 int rc;
1993 struct slot *p_slot;
1994 int physical_slot = 0;
1996 tempdword = 0;
1998 device = func->device;
1999 hp_slot = device - ctrl->slot_device_offset;
2000 p_slot = cpqhp_find_slot(ctrl, device);
2001 if (p_slot)
2002 physical_slot = p_slot->number;
2004 /* Check to see if the interlock is closed */
2005 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2007 if (tempdword & (0x01 << hp_slot))
2008 return 1;
2010 if (func->is_a_board) {
2011 rc = board_replaced(func, ctrl);
2012 } else {
2013 /* add board */
2014 slot_remove(func);
2016 func = cpqhp_slot_create(ctrl->bus);
2017 if (func == NULL)
2018 return 1;
2020 func->bus = ctrl->bus;
2021 func->device = device;
2022 func->function = 0;
2023 func->configured = 0;
2024 func->is_a_board = 1;
2026 /* We have to save the presence info for these slots */
2027 temp_word = ctrl->ctrl_int_comp >> 16;
2028 func->presence_save = (temp_word >> hp_slot) & 0x01;
2029 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2031 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2032 func->switch_save = 0;
2033 } else {
2034 func->switch_save = 0x10;
2037 rc = board_added(func, ctrl);
2038 if (rc) {
2039 if (is_bridge(func)) {
2040 bridge_slot_remove(func);
2041 } else
2042 slot_remove(func);
2044 /* Setup slot structure with entry for empty slot */
2045 func = cpqhp_slot_create(ctrl->bus);
2047 if (func == NULL)
2048 return 1;
2050 func->bus = ctrl->bus;
2051 func->device = device;
2052 func->function = 0;
2053 func->configured = 0;
2054 func->is_a_board = 0;
2056 /* We have to save the presence info for these slots */
2057 temp_word = ctrl->ctrl_int_comp >> 16;
2058 func->presence_save = (temp_word >> hp_slot) & 0x01;
2059 func->presence_save |=
2060 (temp_word >> (hp_slot + 7)) & 0x02;
2062 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2063 func->switch_save = 0;
2064 } else {
2065 func->switch_save = 0x10;
2070 if (rc)
2071 dbg("%s: rc = %d\n", __func__, rc);
2073 if (p_slot)
2074 update_slot_info(ctrl, p_slot);
2076 return rc;
2080 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2082 u8 device, class_code, header_type, BCR;
2083 u8 index = 0;
2084 u8 replace_flag;
2085 u32 rc = 0;
2086 unsigned int devfn;
2087 struct slot *p_slot;
2088 struct pci_bus *pci_bus = ctrl->pci_bus;
2089 int physical_slot = 0;
2091 device = func->device;
2092 func = cpqhp_slot_find(ctrl->bus, device, index++);
2093 p_slot = cpqhp_find_slot(ctrl, device);
2094 if (p_slot)
2095 physical_slot = p_slot->number;
2097 /* Make sure there are no video controllers here */
2098 while (func && !rc) {
2099 pci_bus->number = func->bus;
2100 devfn = PCI_DEVFN(func->device, func->function);
2102 /* Check the Class Code */
2103 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2104 if (rc)
2105 return rc;
2107 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2108 /* Display/Video adapter (not supported) */
2109 rc = REMOVE_NOT_SUPPORTED;
2110 } else {
2111 /* See if it's a bridge */
2112 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2113 if (rc)
2114 return rc;
2116 /* If it's a bridge, check the VGA Enable bit */
2117 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2118 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2119 if (rc)
2120 return rc;
2122 /* If the VGA Enable bit is set, remove isn't
2123 * supported */
2124 if (BCR & PCI_BRIDGE_CTL_VGA)
2125 rc = REMOVE_NOT_SUPPORTED;
2129 func = cpqhp_slot_find(ctrl->bus, device, index++);
2132 func = cpqhp_slot_find(ctrl->bus, device, 0);
2133 if ((func != NULL) && !rc) {
2134 /* FIXME: Replace flag should be passed into process_SS */
2135 replace_flag = !(ctrl->add_support);
2136 rc = remove_board(func, replace_flag, ctrl);
2137 } else if (!rc) {
2138 rc = 1;
2141 if (p_slot)
2142 update_slot_info(ctrl, p_slot);
2144 return rc;
2148 * switch_leds - switch the leds, go from one site to the other.
2149 * @ctrl: controller to use
2150 * @num_of_slots: number of slots to use
2151 * @work_LED: LED control value
2152 * @direction: 1 to start from the left side, 0 to start right.
2154 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2155 u32 *work_LED, const int direction)
2157 int loop;
2159 for (loop = 0; loop < num_of_slots; loop++) {
2160 if (direction)
2161 *work_LED = *work_LED >> 1;
2162 else
2163 *work_LED = *work_LED << 1;
2164 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2166 set_SOGO(ctrl);
2168 /* Wait for SOGO interrupt */
2169 wait_for_ctrl_irq(ctrl);
2171 /* Get ready for next iteration */
2172 long_delay((2*HZ)/10);
2177 * cpqhp_hardware_test - runs hardware tests
2178 * @ctrl: target controller
2179 * @test_num: the number written to the "test" file in sysfs.
2181 * For hot plug ctrl folks to play with.
2183 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2185 u32 save_LED;
2186 u32 work_LED;
2187 int loop;
2188 int num_of_slots;
2190 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2192 switch (test_num) {
2193 case 1:
2194 /* Do stuff here! */
2196 /* Do that funky LED thing */
2197 /* so we can restore them later */
2198 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2199 work_LED = 0x01010101;
2200 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2201 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2202 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2203 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2205 work_LED = 0x01010000;
2206 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2207 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2208 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2209 work_LED = 0x00000101;
2210 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2211 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2212 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2214 work_LED = 0x01010000;
2215 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2216 for (loop = 0; loop < num_of_slots; loop++) {
2217 set_SOGO(ctrl);
2219 /* Wait for SOGO interrupt */
2220 wait_for_ctrl_irq(ctrl);
2222 /* Get ready for next iteration */
2223 long_delay((3*HZ)/10);
2224 work_LED = work_LED >> 16;
2225 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2227 set_SOGO(ctrl);
2229 /* Wait for SOGO interrupt */
2230 wait_for_ctrl_irq(ctrl);
2232 /* Get ready for next iteration */
2233 long_delay((3*HZ)/10);
2234 work_LED = work_LED << 16;
2235 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2236 work_LED = work_LED << 1;
2237 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2240 /* put it back the way it was */
2241 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2243 set_SOGO(ctrl);
2245 /* Wait for SOBS to be unset */
2246 wait_for_ctrl_irq(ctrl);
2247 break;
2248 case 2:
2249 /* Do other stuff here! */
2250 break;
2251 case 3:
2252 /* and more... */
2253 break;
2255 return 0;
2260 * configure_new_device - Configures the PCI header information of one board.
2261 * @ctrl: pointer to controller structure
2262 * @func: pointer to function structure
2263 * @behind_bridge: 1 if this is a recursive call, 0 if not
2264 * @resources: pointer to set of resource lists
2266 * Returns 0 if success.
2268 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
2269 u8 behind_bridge, struct resource_lists *resources)
2271 u8 temp_byte, function, max_functions, stop_it;
2272 int rc;
2273 u32 ID;
2274 struct pci_func *new_slot;
2275 int index;
2277 new_slot = func;
2279 dbg("%s\n", __func__);
2280 /* Check for Multi-function device */
2281 ctrl->pci_bus->number = func->bus;
2282 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2283 if (rc) {
2284 dbg("%s: rc = %d\n", __func__, rc);
2285 return rc;
2288 if (temp_byte & 0x80) /* Multi-function device */
2289 max_functions = 8;
2290 else
2291 max_functions = 1;
2293 function = 0;
2295 do {
2296 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2298 if (rc) {
2299 dbg("configure_new_function failed %d\n", rc);
2300 index = 0;
2302 while (new_slot) {
2303 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2305 if (new_slot)
2306 cpqhp_return_board_resources(new_slot, resources);
2309 return rc;
2312 function++;
2314 stop_it = 0;
2316 /* The following loop skips to the next present function
2317 * and creates a board structure */
2319 while ((function < max_functions) && (!stop_it)) {
2320 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2322 if (ID == 0xFFFFFFFF) {
2323 function++;
2324 } else {
2325 /* Setup slot structure. */
2326 new_slot = cpqhp_slot_create(func->bus);
2328 if (new_slot == NULL)
2329 return 1;
2331 new_slot->bus = func->bus;
2332 new_slot->device = func->device;
2333 new_slot->function = function;
2334 new_slot->is_a_board = 1;
2335 new_slot->status = 0;
2337 stop_it++;
2341 } while (function < max_functions);
2342 dbg("returning from configure_new_device\n");
2344 return 0;
2349 * Configuration logic that involves the hotplug data structures and
2350 * their bookkeeping
2355 * configure_new_function - Configures the PCI header information of one device
2356 * @ctrl: pointer to controller structure
2357 * @func: pointer to function structure
2358 * @behind_bridge: 1 if this is a recursive call, 0 if not
2359 * @resources: pointer to set of resource lists
2361 * Calls itself recursively for bridged devices.
2362 * Returns 0 if success.
2364 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2365 u8 behind_bridge,
2366 struct resource_lists *resources)
2368 int cloop;
2369 u8 IRQ = 0;
2370 u8 temp_byte;
2371 u8 device;
2372 u8 class_code;
2373 u16 command;
2374 u16 temp_word;
2375 u32 temp_dword;
2376 u32 rc;
2377 u32 temp_register;
2378 u32 base;
2379 u32 ID;
2380 unsigned int devfn;
2381 struct pci_resource *mem_node;
2382 struct pci_resource *p_mem_node;
2383 struct pci_resource *io_node;
2384 struct pci_resource *bus_node;
2385 struct pci_resource *hold_mem_node;
2386 struct pci_resource *hold_p_mem_node;
2387 struct pci_resource *hold_IO_node;
2388 struct pci_resource *hold_bus_node;
2389 struct irq_mapping irqs;
2390 struct pci_func *new_slot;
2391 struct pci_bus *pci_bus;
2392 struct resource_lists temp_resources;
2394 pci_bus = ctrl->pci_bus;
2395 pci_bus->number = func->bus;
2396 devfn = PCI_DEVFN(func->device, func->function);
2398 /* Check for Bridge */
2399 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2400 if (rc)
2401 return rc;
2403 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2404 /* set Primary bus */
2405 dbg("set Primary bus = %d\n", func->bus);
2406 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2407 if (rc)
2408 return rc;
2410 /* find range of buses to use */
2411 dbg("find ranges of buses to use\n");
2412 bus_node = get_max_resource(&(resources->bus_head), 1);
2414 /* If we don't have any buses to allocate, we can't continue */
2415 if (!bus_node)
2416 return -ENOMEM;
2418 /* set Secondary bus */
2419 temp_byte = bus_node->base;
2420 dbg("set Secondary bus = %d\n", bus_node->base);
2421 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2422 if (rc)
2423 return rc;
2425 /* set subordinate bus */
2426 temp_byte = bus_node->base + bus_node->length - 1;
2427 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2428 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2429 if (rc)
2430 return rc;
2432 /* set subordinate Latency Timer and base Latency Timer */
2433 temp_byte = 0x40;
2434 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2435 if (rc)
2436 return rc;
2437 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2438 if (rc)
2439 return rc;
2441 /* set Cache Line size */
2442 temp_byte = 0x08;
2443 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2444 if (rc)
2445 return rc;
2447 /* Setup the IO, memory, and prefetchable windows */
2448 io_node = get_max_resource(&(resources->io_head), 0x1000);
2449 if (!io_node)
2450 return -ENOMEM;
2451 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2452 if (!mem_node)
2453 return -ENOMEM;
2454 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2455 if (!p_mem_node)
2456 return -ENOMEM;
2457 dbg("Setup the IO, memory, and prefetchable windows\n");
2458 dbg("io_node\n");
2459 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2460 io_node->length, io_node->next);
2461 dbg("mem_node\n");
2462 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2463 mem_node->length, mem_node->next);
2464 dbg("p_mem_node\n");
2465 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2466 p_mem_node->length, p_mem_node->next);
2468 /* set up the IRQ info */
2469 if (!resources->irqs) {
2470 irqs.barber_pole = 0;
2471 irqs.interrupt[0] = 0;
2472 irqs.interrupt[1] = 0;
2473 irqs.interrupt[2] = 0;
2474 irqs.interrupt[3] = 0;
2475 irqs.valid_INT = 0;
2476 } else {
2477 irqs.barber_pole = resources->irqs->barber_pole;
2478 irqs.interrupt[0] = resources->irqs->interrupt[0];
2479 irqs.interrupt[1] = resources->irqs->interrupt[1];
2480 irqs.interrupt[2] = resources->irqs->interrupt[2];
2481 irqs.interrupt[3] = resources->irqs->interrupt[3];
2482 irqs.valid_INT = resources->irqs->valid_INT;
2485 /* set up resource lists that are now aligned on top and bottom
2486 * for anything behind the bridge. */
2487 temp_resources.bus_head = bus_node;
2488 temp_resources.io_head = io_node;
2489 temp_resources.mem_head = mem_node;
2490 temp_resources.p_mem_head = p_mem_node;
2491 temp_resources.irqs = &irqs;
2493 /* Make copies of the nodes we are going to pass down so that
2494 * if there is a problem,we can just use these to free resources
2496 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2497 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2498 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2499 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2501 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2502 kfree(hold_bus_node);
2503 kfree(hold_IO_node);
2504 kfree(hold_mem_node);
2505 kfree(hold_p_mem_node);
2507 return 1;
2510 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2512 bus_node->base += 1;
2513 bus_node->length -= 1;
2514 bus_node->next = NULL;
2516 /* If we have IO resources copy them and fill in the bridge's
2517 * IO range registers */
2518 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2519 io_node->next = NULL;
2521 /* set IO base and Limit registers */
2522 temp_byte = io_node->base >> 8;
2523 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2525 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2526 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2528 /* Copy the memory resources and fill in the bridge's memory
2529 * range registers.
2531 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2532 mem_node->next = NULL;
2534 /* set Mem base and Limit registers */
2535 temp_word = mem_node->base >> 16;
2536 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2538 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2539 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2541 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2542 p_mem_node->next = NULL;
2544 /* set Pre Mem base and Limit registers */
2545 temp_word = p_mem_node->base >> 16;
2546 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2548 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2549 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2551 /* Adjust this to compensate for extra adjustment in first loop
2553 irqs.barber_pole--;
2555 rc = 0;
2557 /* Here we actually find the devices and configure them */
2558 for (device = 0; (device <= 0x1F) && !rc; device++) {
2559 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2561 ID = 0xFFFFFFFF;
2562 pci_bus->number = hold_bus_node->base;
2563 pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2564 pci_bus->number = func->bus;
2566 if (ID != 0xFFFFFFFF) { /* device present */
2567 /* Setup slot structure. */
2568 new_slot = cpqhp_slot_create(hold_bus_node->base);
2570 if (new_slot == NULL) {
2571 rc = -ENOMEM;
2572 continue;
2575 new_slot->bus = hold_bus_node->base;
2576 new_slot->device = device;
2577 new_slot->function = 0;
2578 new_slot->is_a_board = 1;
2579 new_slot->status = 0;
2581 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2582 dbg("configure_new_device rc=0x%x\n", rc);
2583 } /* End of IF (device in slot?) */
2584 } /* End of FOR loop */
2586 if (rc)
2587 goto free_and_out;
2588 /* save the interrupt routing information */
2589 if (resources->irqs) {
2590 resources->irqs->interrupt[0] = irqs.interrupt[0];
2591 resources->irqs->interrupt[1] = irqs.interrupt[1];
2592 resources->irqs->interrupt[2] = irqs.interrupt[2];
2593 resources->irqs->interrupt[3] = irqs.interrupt[3];
2594 resources->irqs->valid_INT = irqs.valid_INT;
2595 } else if (!behind_bridge) {
2596 /* We need to hook up the interrupts here */
2597 for (cloop = 0; cloop < 4; cloop++) {
2598 if (irqs.valid_INT & (0x01 << cloop)) {
2599 rc = cpqhp_set_irq(func->bus, func->device,
2600 cloop + 1, irqs.interrupt[cloop]);
2601 if (rc)
2602 goto free_and_out;
2604 } /* end of for loop */
2606 /* Return unused bus resources
2607 * First use the temporary node to store information for
2608 * the board */
2609 if (bus_node && temp_resources.bus_head) {
2610 hold_bus_node->length = bus_node->base - hold_bus_node->base;
2612 hold_bus_node->next = func->bus_head;
2613 func->bus_head = hold_bus_node;
2615 temp_byte = temp_resources.bus_head->base - 1;
2617 /* set subordinate bus */
2618 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2620 if (temp_resources.bus_head->length == 0) {
2621 kfree(temp_resources.bus_head);
2622 temp_resources.bus_head = NULL;
2623 } else {
2624 return_resource(&(resources->bus_head), temp_resources.bus_head);
2628 /* If we have IO space available and there is some left,
2629 * return the unused portion */
2630 if (hold_IO_node && temp_resources.io_head) {
2631 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2632 &hold_IO_node, 0x1000);
2634 /* Check if we were able to split something off */
2635 if (io_node) {
2636 hold_IO_node->base = io_node->base + io_node->length;
2638 temp_byte = (hold_IO_node->base) >> 8;
2639 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2641 return_resource(&(resources->io_head), io_node);
2644 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2646 /* Check if we were able to split something off */
2647 if (io_node) {
2648 /* First use the temporary node to store
2649 * information for the board */
2650 hold_IO_node->length = io_node->base - hold_IO_node->base;
2652 /* If we used any, add it to the board's list */
2653 if (hold_IO_node->length) {
2654 hold_IO_node->next = func->io_head;
2655 func->io_head = hold_IO_node;
2657 temp_byte = (io_node->base - 1) >> 8;
2658 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2660 return_resource(&(resources->io_head), io_node);
2661 } else {
2662 /* it doesn't need any IO */
2663 temp_word = 0x0000;
2664 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2666 return_resource(&(resources->io_head), io_node);
2667 kfree(hold_IO_node);
2669 } else {
2670 /* it used most of the range */
2671 hold_IO_node->next = func->io_head;
2672 func->io_head = hold_IO_node;
2674 } else if (hold_IO_node) {
2675 /* it used the whole range */
2676 hold_IO_node->next = func->io_head;
2677 func->io_head = hold_IO_node;
2679 /* If we have memory space available and there is some left,
2680 * return the unused portion */
2681 if (hold_mem_node && temp_resources.mem_head) {
2682 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head),
2683 &hold_mem_node, 0x100000);
2685 /* Check if we were able to split something off */
2686 if (mem_node) {
2687 hold_mem_node->base = mem_node->base + mem_node->length;
2689 temp_word = (hold_mem_node->base) >> 16;
2690 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2692 return_resource(&(resources->mem_head), mem_node);
2695 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2697 /* Check if we were able to split something off */
2698 if (mem_node) {
2699 /* First use the temporary node to store
2700 * information for the board */
2701 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2703 if (hold_mem_node->length) {
2704 hold_mem_node->next = func->mem_head;
2705 func->mem_head = hold_mem_node;
2707 /* configure end address */
2708 temp_word = (mem_node->base - 1) >> 16;
2709 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2711 /* Return unused resources to the pool */
2712 return_resource(&(resources->mem_head), mem_node);
2713 } else {
2714 /* it doesn't need any Mem */
2715 temp_word = 0x0000;
2716 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2718 return_resource(&(resources->mem_head), mem_node);
2719 kfree(hold_mem_node);
2721 } else {
2722 /* it used most of the range */
2723 hold_mem_node->next = func->mem_head;
2724 func->mem_head = hold_mem_node;
2726 } else if (hold_mem_node) {
2727 /* it used the whole range */
2728 hold_mem_node->next = func->mem_head;
2729 func->mem_head = hold_mem_node;
2731 /* If we have prefetchable memory space available and there
2732 * is some left at the end, return the unused portion */
2733 if (temp_resources.p_mem_head) {
2734 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2735 &hold_p_mem_node, 0x100000);
2737 /* Check if we were able to split something off */
2738 if (p_mem_node) {
2739 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2741 temp_word = (hold_p_mem_node->base) >> 16;
2742 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2744 return_resource(&(resources->p_mem_head), p_mem_node);
2747 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2749 /* Check if we were able to split something off */
2750 if (p_mem_node) {
2751 /* First use the temporary node to store
2752 * information for the board */
2753 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2755 /* If we used any, add it to the board's list */
2756 if (hold_p_mem_node->length) {
2757 hold_p_mem_node->next = func->p_mem_head;
2758 func->p_mem_head = hold_p_mem_node;
2760 temp_word = (p_mem_node->base - 1) >> 16;
2761 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2763 return_resource(&(resources->p_mem_head), p_mem_node);
2764 } else {
2765 /* it doesn't need any PMem */
2766 temp_word = 0x0000;
2767 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2769 return_resource(&(resources->p_mem_head), p_mem_node);
2770 kfree(hold_p_mem_node);
2772 } else {
2773 /* it used the most of the range */
2774 hold_p_mem_node->next = func->p_mem_head;
2775 func->p_mem_head = hold_p_mem_node;
2777 } else if (hold_p_mem_node) {
2778 /* it used the whole range */
2779 hold_p_mem_node->next = func->p_mem_head;
2780 func->p_mem_head = hold_p_mem_node;
2782 /* We should be configuring an IRQ and the bridge's base address
2783 * registers if it needs them. Although we have never seen such
2784 * a device */
2786 /* enable card */
2787 command = 0x0157; /* = PCI_COMMAND_IO |
2788 * PCI_COMMAND_MEMORY |
2789 * PCI_COMMAND_MASTER |
2790 * PCI_COMMAND_INVALIDATE |
2791 * PCI_COMMAND_PARITY |
2792 * PCI_COMMAND_SERR */
2793 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
2795 /* set Bridge Control Register */
2796 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2797 * PCI_BRIDGE_CTL_SERR |
2798 * PCI_BRIDGE_CTL_NO_ISA */
2799 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2800 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2801 /* Standard device */
2802 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2804 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2805 /* Display (video) adapter (not supported) */
2806 return DEVICE_TYPE_NOT_SUPPORTED;
2808 /* Figure out IO and memory needs */
2809 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2810 temp_register = 0xFFFFFFFF;
2812 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2813 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
2815 rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
2816 dbg("CND: base = 0x%x\n", temp_register);
2818 if (temp_register) { /* If this register is implemented */
2819 if ((temp_register & 0x03L) == 0x01) {
2820 /* Map IO */
2822 /* set base = amount of IO space */
2823 base = temp_register & 0xFFFFFFFC;
2824 base = ~base + 1;
2826 dbg("CND: length = 0x%x\n", base);
2827 io_node = get_io_resource(&(resources->io_head), base);
2828 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2829 io_node->base, io_node->length, io_node->next);
2830 dbg("func (%p) io_head (%p)\n", func, func->io_head);
2832 /* allocate the resource to the board */
2833 if (io_node) {
2834 base = io_node->base;
2836 io_node->next = func->io_head;
2837 func->io_head = io_node;
2838 } else
2839 return -ENOMEM;
2840 } else if ((temp_register & 0x0BL) == 0x08) {
2841 /* Map prefetchable memory */
2842 base = temp_register & 0xFFFFFFF0;
2843 base = ~base + 1;
2845 dbg("CND: length = 0x%x\n", base);
2846 p_mem_node = get_resource(&(resources->p_mem_head), base);
2848 /* allocate the resource to the board */
2849 if (p_mem_node) {
2850 base = p_mem_node->base;
2852 p_mem_node->next = func->p_mem_head;
2853 func->p_mem_head = p_mem_node;
2854 } else
2855 return -ENOMEM;
2856 } else if ((temp_register & 0x0BL) == 0x00) {
2857 /* Map memory */
2858 base = temp_register & 0xFFFFFFF0;
2859 base = ~base + 1;
2861 dbg("CND: length = 0x%x\n", base);
2862 mem_node = get_resource(&(resources->mem_head), base);
2864 /* allocate the resource to the board */
2865 if (mem_node) {
2866 base = mem_node->base;
2868 mem_node->next = func->mem_head;
2869 func->mem_head = mem_node;
2870 } else
2871 return -ENOMEM;
2872 } else {
2873 /* Reserved bits or requesting space below 1M */
2874 return NOT_ENOUGH_RESOURCES;
2877 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2879 /* Check for 64-bit base */
2880 if ((temp_register & 0x07L) == 0x04) {
2881 cloop += 4;
2883 /* Upper 32 bits of address always zero
2884 * on today's systems */
2885 /* FIXME this is probably not true on
2886 * Alpha and ia64??? */
2887 base = 0;
2888 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2891 } /* End of base register loop */
2892 if (cpqhp_legacy_mode) {
2893 /* Figure out which interrupt pin this function uses */
2894 rc = pci_bus_read_config_byte(pci_bus, devfn,
2895 PCI_INTERRUPT_PIN, &temp_byte);
2897 /* If this function needs an interrupt and we are behind
2898 * a bridge and the pin is tied to something that's
2899 * already mapped, set this one the same */
2900 if (temp_byte && resources->irqs &&
2901 (resources->irqs->valid_INT &
2902 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2903 /* We have to share with something already set up */
2904 IRQ = resources->irqs->interrupt[(temp_byte +
2905 resources->irqs->barber_pole - 1) & 0x03];
2906 } else {
2907 /* Program IRQ based on card type */
2908 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2910 if (class_code == PCI_BASE_CLASS_STORAGE)
2911 IRQ = cpqhp_disk_irq;
2912 else
2913 IRQ = cpqhp_nic_irq;
2916 /* IRQ Line */
2917 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2920 if (!behind_bridge) {
2921 rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2922 if (rc)
2923 return 1;
2924 } else {
2925 /* TBD - this code may also belong in the other clause
2926 * of this If statement */
2927 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2928 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2931 /* Latency Timer */
2932 temp_byte = 0x40;
2933 rc = pci_bus_write_config_byte(pci_bus, devfn,
2934 PCI_LATENCY_TIMER, temp_byte);
2936 /* Cache Line size */
2937 temp_byte = 0x08;
2938 rc = pci_bus_write_config_byte(pci_bus, devfn,
2939 PCI_CACHE_LINE_SIZE, temp_byte);
2941 /* disable ROM base Address */
2942 temp_dword = 0x00L;
2943 rc = pci_bus_write_config_word(pci_bus, devfn,
2944 PCI_ROM_ADDRESS, temp_dword);
2946 /* enable card */
2947 temp_word = 0x0157; /* = PCI_COMMAND_IO |
2948 * PCI_COMMAND_MEMORY |
2949 * PCI_COMMAND_MASTER |
2950 * PCI_COMMAND_INVALIDATE |
2951 * PCI_COMMAND_PARITY |
2952 * PCI_COMMAND_SERR */
2953 rc = pci_bus_write_config_word(pci_bus, devfn,
2954 PCI_COMMAND, temp_word);
2955 } else { /* End of Not-A-Bridge else */
2956 /* It's some strange type of PCI adapter (Cardbus?) */
2957 return DEVICE_TYPE_NOT_SUPPORTED;
2960 func->configured = 1;
2962 return 0;
2963 free_and_out:
2964 cpqhp_destroy_resource_list(&temp_resources);
2966 return_resource(&(resources->bus_head), hold_bus_node);
2967 return_resource(&(resources->io_head), hold_IO_node);
2968 return_resource(&(resources->mem_head), hold_mem_node);
2969 return_resource(&(resources->p_mem_head), hold_p_mem_node);
2970 return rc;