2 * Compaq Hot Plug Controller Driver
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 * Send feedback to <greg@kroah.com>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/wait.h>
37 #include <linux/pci.h>
38 #include <linux/pci_hotplug.h>
39 #include <linux/kthread.h>
42 static u32
configure_new_device(struct controller
*ctrl
, struct pci_func
*func
,
43 u8 behind_bridge
, struct resource_lists
*resources
);
44 static int configure_new_function(struct controller
*ctrl
, struct pci_func
*func
,
45 u8 behind_bridge
, struct resource_lists
*resources
);
46 static void interrupt_event_handler(struct controller
*ctrl
);
49 static struct task_struct
*cpqhp_event_thread
;
50 static unsigned long pushbutton_pending
; /* = 0 */
52 /* delay is in jiffies to wait for */
53 static void long_delay(int delay
)
56 * XXX(hch): if someone is bored please convert all callers
57 * to call msleep_interruptible directly. They really want
58 * to specify timeouts in natural units and spend a lot of
59 * effort converting them to jiffies..
61 msleep_interruptible(jiffies_to_msecs(delay
));
65 /* FIXME: The following line needs to be somewhere else... */
66 #define WRONG_BUS_FREQUENCY 0x07
67 static u8
handle_switch_change(u8 change
, struct controller
*ctrl
)
72 struct pci_func
*func
;
73 struct event_info
*taskInfo
;
79 dbg("cpqsbd: Switch interrupt received.\n");
81 for (hp_slot
= 0; hp_slot
< 6; hp_slot
++) {
82 if (change
& (0x1L
<< hp_slot
)) {
86 func
= cpqhp_slot_find(ctrl
->bus
,
87 (hp_slot
+ ctrl
->slot_device_offset
), 0);
89 /* this is the structure that tells the worker thread
92 taskInfo
= &(ctrl
->event_queue
[ctrl
->next_event
]);
93 ctrl
->next_event
= (ctrl
->next_event
+ 1) % 10;
94 taskInfo
->hp_slot
= hp_slot
;
98 temp_word
= ctrl
->ctrl_int_comp
>> 16;
99 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
100 func
->presence_save
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
102 if (ctrl
->ctrl_int_comp
& (0x1L
<< hp_slot
)) {
107 func
->switch_save
= 0;
109 taskInfo
->event_type
= INT_SWITCH_OPEN
;
115 func
->switch_save
= 0x10;
117 taskInfo
->event_type
= INT_SWITCH_CLOSE
;
126 * cpqhp_find_slot - find the struct slot of given device
127 * @ctrl: scan lots of this controller
128 * @device: the device id to find
130 static struct slot
*cpqhp_find_slot(struct controller
*ctrl
, u8 device
)
132 struct slot
*slot
= ctrl
->slot
;
134 while (slot
&& (slot
->device
!= device
))
141 static u8
handle_presence_change(u16 change
, struct controller
*ctrl
)
147 struct pci_func
*func
;
148 struct event_info
*taskInfo
;
157 dbg("cpqsbd: Presence/Notify input change.\n");
158 dbg(" Changed bits are 0x%4.4x\n", change
);
160 for (hp_slot
= 0; hp_slot
< 6; hp_slot
++) {
161 if (change
& (0x0101 << hp_slot
)) {
165 func
= cpqhp_slot_find(ctrl
->bus
,
166 (hp_slot
+ ctrl
->slot_device_offset
), 0);
168 taskInfo
= &(ctrl
->event_queue
[ctrl
->next_event
]);
169 ctrl
->next_event
= (ctrl
->next_event
+ 1) % 10;
170 taskInfo
->hp_slot
= hp_slot
;
174 p_slot
= cpqhp_find_slot(ctrl
, hp_slot
+ (readb(ctrl
->hpc_reg
+ SLOT_MASK
) >> 4));
178 /* If the switch closed, must be a button
179 * If not in button mode, nevermind
181 if (func
->switch_save
&& (ctrl
->push_button
== 1)) {
182 temp_word
= ctrl
->ctrl_int_comp
>> 16;
183 temp_byte
= (temp_word
>> hp_slot
) & 0x01;
184 temp_byte
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
186 if (temp_byte
!= func
->presence_save
) {
188 * button Pressed (doesn't do anything)
190 dbg("hp_slot %d button pressed\n", hp_slot
);
191 taskInfo
->event_type
= INT_BUTTON_PRESS
;
194 * button Released - TAKE ACTION!!!!
196 dbg("hp_slot %d button released\n", hp_slot
);
197 taskInfo
->event_type
= INT_BUTTON_RELEASE
;
199 /* Cancel if we are still blinking */
200 if ((p_slot
->state
== BLINKINGON_STATE
)
201 || (p_slot
->state
== BLINKINGOFF_STATE
)) {
202 taskInfo
->event_type
= INT_BUTTON_CANCEL
;
203 dbg("hp_slot %d button cancel\n", hp_slot
);
204 } else if ((p_slot
->state
== POWERON_STATE
)
205 || (p_slot
->state
== POWEROFF_STATE
)) {
206 /* info(msg_button_ignore, p_slot->number); */
207 taskInfo
->event_type
= INT_BUTTON_IGNORE
;
208 dbg("hp_slot %d button ignore\n", hp_slot
);
212 /* Switch is open, assume a presence change
213 * Save the presence state
215 temp_word
= ctrl
->ctrl_int_comp
>> 16;
216 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
217 func
->presence_save
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
219 if ((!(ctrl
->ctrl_int_comp
& (0x010000 << hp_slot
))) ||
220 (!(ctrl
->ctrl_int_comp
& (0x01000000 << hp_slot
)))) {
222 taskInfo
->event_type
= INT_PRESENCE_ON
;
225 taskInfo
->event_type
= INT_PRESENCE_OFF
;
235 static u8
handle_power_fault(u8 change
, struct controller
*ctrl
)
239 struct pci_func
*func
;
240 struct event_info
*taskInfo
;
249 info("power fault interrupt\n");
251 for (hp_slot
= 0; hp_slot
< 6; hp_slot
++) {
252 if (change
& (0x01 << hp_slot
)) {
256 func
= cpqhp_slot_find(ctrl
->bus
,
257 (hp_slot
+ ctrl
->slot_device_offset
), 0);
259 taskInfo
= &(ctrl
->event_queue
[ctrl
->next_event
]);
260 ctrl
->next_event
= (ctrl
->next_event
+ 1) % 10;
261 taskInfo
->hp_slot
= hp_slot
;
265 if (ctrl
->ctrl_int_comp
& (0x00000100 << hp_slot
)) {
267 * power fault Cleared
271 taskInfo
->event_type
= INT_POWER_FAULT_CLEAR
;
276 taskInfo
->event_type
= INT_POWER_FAULT
;
279 amber_LED_on(ctrl
, hp_slot
);
280 green_LED_off(ctrl
, hp_slot
);
283 /* this is a fatal condition, we want
284 * to crash the machine to protect from
285 * data corruption. simulated_NMI
286 * shouldn't ever return */
288 simulated_NMI(hp_slot, ctrl); */
290 /* The following code causes a software
291 * crash just in case simulated_NMI did
294 panic(msg_power_fault); */
296 /* set power fault status for this board */
298 info("power fault bit %x set\n", hp_slot
);
309 * sort_by_size - sort nodes on the list by their length, smallest first.
310 * @head: list to sort
312 static int sort_by_size(struct pci_resource
**head
)
314 struct pci_resource
*current_res
;
315 struct pci_resource
*next_res
;
316 int out_of_order
= 1;
321 if (!((*head
)->next
))
324 while (out_of_order
) {
327 /* Special case for swapping list head */
328 if (((*head
)->next
) &&
329 ((*head
)->length
> (*head
)->next
->length
)) {
332 *head
= (*head
)->next
;
333 current_res
->next
= (*head
)->next
;
334 (*head
)->next
= current_res
;
339 while (current_res
->next
&& current_res
->next
->next
) {
340 if (current_res
->next
->length
> current_res
->next
->next
->length
) {
342 next_res
= current_res
->next
;
343 current_res
->next
= current_res
->next
->next
;
344 current_res
= current_res
->next
;
345 next_res
->next
= current_res
->next
;
346 current_res
->next
= next_res
;
348 current_res
= current_res
->next
;
350 } /* End of out_of_order loop */
357 * sort_by_max_size - sort nodes on the list by their length, largest first.
358 * @head: list to sort
360 static int sort_by_max_size(struct pci_resource
**head
)
362 struct pci_resource
*current_res
;
363 struct pci_resource
*next_res
;
364 int out_of_order
= 1;
369 if (!((*head
)->next
))
372 while (out_of_order
) {
375 /* Special case for swapping list head */
376 if (((*head
)->next
) &&
377 ((*head
)->length
< (*head
)->next
->length
)) {
380 *head
= (*head
)->next
;
381 current_res
->next
= (*head
)->next
;
382 (*head
)->next
= current_res
;
387 while (current_res
->next
&& current_res
->next
->next
) {
388 if (current_res
->next
->length
< current_res
->next
->next
->length
) {
390 next_res
= current_res
->next
;
391 current_res
->next
= current_res
->next
->next
;
392 current_res
= current_res
->next
;
393 next_res
->next
= current_res
->next
;
394 current_res
->next
= next_res
;
396 current_res
= current_res
->next
;
398 } /* End of out_of_order loop */
405 * do_pre_bridge_resource_split - find node of resources that are unused
406 * @head: new list head
407 * @orig_head: original list head
408 * @alignment: max node size (?)
410 static struct pci_resource
*do_pre_bridge_resource_split(struct pci_resource
**head
,
411 struct pci_resource
**orig_head
, u32 alignment
)
413 struct pci_resource
*prevnode
= NULL
;
414 struct pci_resource
*node
;
415 struct pci_resource
*split_node
;
418 dbg("do_pre_bridge_resource_split\n");
420 if (!(*head
) || !(*orig_head
))
423 rc
= cpqhp_resource_sort_and_combine(head
);
428 if ((*head
)->base
!= (*orig_head
)->base
)
431 if ((*head
)->length
== (*orig_head
)->length
)
435 /* If we got here, there the bridge requires some of the resource, but
436 * we may be able to split some off of the front
441 if (node
->length
& (alignment
- 1)) {
442 /* this one isn't an aligned length, so we'll make a new entry
445 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
450 temp_dword
= (node
->length
| (alignment
-1)) + 1 - alignment
;
452 split_node
->base
= node
->base
;
453 split_node
->length
= temp_dword
;
455 node
->length
-= temp_dword
;
456 node
->base
+= split_node
->length
;
458 /* Put it in the list */
460 split_node
->next
= node
;
463 if (node
->length
< alignment
)
471 while (prevnode
->next
!= node
)
472 prevnode
= prevnode
->next
;
474 prevnode
->next
= node
->next
;
483 * do_bridge_resource_split - find one node of resources that aren't in use
485 * @alignment: max node size (?)
487 static struct pci_resource
*do_bridge_resource_split(struct pci_resource
**head
, u32 alignment
)
489 struct pci_resource
*prevnode
= NULL
;
490 struct pci_resource
*node
;
494 rc
= cpqhp_resource_sort_and_combine(head
);
507 if (node
->length
< alignment
)
510 if (node
->base
& (alignment
- 1)) {
511 /* Short circuit if adjusted size is too small */
512 temp_dword
= (node
->base
| (alignment
-1)) + 1;
513 if ((node
->length
- (temp_dword
- node
->base
)) < alignment
)
516 node
->length
-= (temp_dword
- node
->base
);
517 node
->base
= temp_dword
;
520 if (node
->length
& (alignment
- 1))
521 /* There's stuff in use after this node */
532 * get_io_resource - find first node of given size not in ISA aliasing window.
533 * @head: list to search
534 * @size: size of node to find, must be a power of two.
536 * Description: This function sorts the resource list by size and then returns
537 * returns the first node of "size" length that is not in the ISA aliasing
538 * window. If it finds a node larger than "size" it will split it up.
540 static struct pci_resource
*get_io_resource(struct pci_resource
**head
, u32 size
)
542 struct pci_resource
*prevnode
;
543 struct pci_resource
*node
;
544 struct pci_resource
*split_node
;
550 if (cpqhp_resource_sort_and_combine(head
))
553 if (sort_by_size(head
))
556 for (node
= *head
; node
; node
= node
->next
) {
557 if (node
->length
< size
)
560 if (node
->base
& (size
- 1)) {
561 /* this one isn't base aligned properly
562 * so we'll make a new entry and split it up
564 temp_dword
= (node
->base
| (size
-1)) + 1;
566 /* Short circuit if adjusted size is too small */
567 if ((node
->length
- (temp_dword
- node
->base
)) < size
)
570 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
575 split_node
->base
= node
->base
;
576 split_node
->length
= temp_dword
- node
->base
;
577 node
->base
= temp_dword
;
578 node
->length
-= split_node
->length
;
580 /* Put it in the list */
581 split_node
->next
= node
->next
;
582 node
->next
= split_node
;
583 } /* End of non-aligned base */
585 /* Don't need to check if too small since we already did */
586 if (node
->length
> size
) {
587 /* this one is longer than we need
588 * so we'll make a new entry and split it up
590 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
595 split_node
->base
= node
->base
+ size
;
596 split_node
->length
= node
->length
- size
;
599 /* Put it in the list */
600 split_node
->next
= node
->next
;
601 node
->next
= split_node
;
602 } /* End of too big on top end */
604 /* For IO make sure it's not in the ISA aliasing space */
605 if (node
->base
& 0x300L
)
608 /* If we got here, then it is the right size
609 * Now take it out of the list and break
615 while (prevnode
->next
!= node
)
616 prevnode
= prevnode
->next
;
618 prevnode
->next
= node
->next
;
629 * get_max_resource - get largest node which has at least the given size.
630 * @head: the list to search the node in
631 * @size: the minimum size of the node to find
633 * Description: Gets the largest node that is at least "size" big from the
634 * list pointed to by head. It aligns the node on top and bottom
635 * to "size" alignment before returning it.
637 static struct pci_resource
*get_max_resource(struct pci_resource
**head
, u32 size
)
639 struct pci_resource
*max
;
640 struct pci_resource
*temp
;
641 struct pci_resource
*split_node
;
644 if (cpqhp_resource_sort_and_combine(head
))
647 if (sort_by_max_size(head
))
650 for (max
= *head
; max
; max
= max
->next
) {
651 /* If not big enough we could probably just bail,
652 * instead we'll continue to the next.
654 if (max
->length
< size
)
657 if (max
->base
& (size
- 1)) {
658 /* this one isn't base aligned properly
659 * so we'll make a new entry and split it up
661 temp_dword
= (max
->base
| (size
-1)) + 1;
663 /* Short circuit if adjusted size is too small */
664 if ((max
->length
- (temp_dword
- max
->base
)) < size
)
667 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
672 split_node
->base
= max
->base
;
673 split_node
->length
= temp_dword
- max
->base
;
674 max
->base
= temp_dword
;
675 max
->length
-= split_node
->length
;
677 split_node
->next
= max
->next
;
678 max
->next
= split_node
;
681 if ((max
->base
+ max
->length
) & (size
- 1)) {
682 /* this one isn't end aligned properly at the top
683 * so we'll make a new entry and split it up
685 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
689 temp_dword
= ((max
->base
+ max
->length
) & ~(size
- 1));
690 split_node
->base
= temp_dword
;
691 split_node
->length
= max
->length
+ max
->base
693 max
->length
-= split_node
->length
;
695 split_node
->next
= max
->next
;
696 max
->next
= split_node
;
699 /* Make sure it didn't shrink too much when we aligned it */
700 if (max
->length
< size
)
703 /* Now take it out of the list */
708 while (temp
&& temp
->next
!= max
)
712 temp
->next
= max
->next
;
724 * get_resource - find resource of given size and split up larger ones.
725 * @head: the list to search for resources
726 * @size: the size limit to use
728 * Description: This function sorts the resource list by size and then
729 * returns the first node of "size" length. If it finds a node
730 * larger than "size" it will split it up.
732 * size must be a power of two.
734 static struct pci_resource
*get_resource(struct pci_resource
**head
, u32 size
)
736 struct pci_resource
*prevnode
;
737 struct pci_resource
*node
;
738 struct pci_resource
*split_node
;
741 if (cpqhp_resource_sort_and_combine(head
))
744 if (sort_by_size(head
))
747 for (node
= *head
; node
; node
= node
->next
) {
748 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
749 __func__
, size
, node
, node
->base
, node
->length
);
750 if (node
->length
< size
)
753 if (node
->base
& (size
- 1)) {
754 dbg("%s: not aligned\n", __func__
);
755 /* this one isn't base aligned properly
756 * so we'll make a new entry and split it up
758 temp_dword
= (node
->base
| (size
-1)) + 1;
760 /* Short circuit if adjusted size is too small */
761 if ((node
->length
- (temp_dword
- node
->base
)) < size
)
764 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
769 split_node
->base
= node
->base
;
770 split_node
->length
= temp_dword
- node
->base
;
771 node
->base
= temp_dword
;
772 node
->length
-= split_node
->length
;
774 split_node
->next
= node
->next
;
775 node
->next
= split_node
;
776 } /* End of non-aligned base */
778 /* Don't need to check if too small since we already did */
779 if (node
->length
> size
) {
780 dbg("%s: too big\n", __func__
);
781 /* this one is longer than we need
782 * so we'll make a new entry and split it up
784 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
789 split_node
->base
= node
->base
+ size
;
790 split_node
->length
= node
->length
- size
;
793 /* Put it in the list */
794 split_node
->next
= node
->next
;
795 node
->next
= split_node
;
796 } /* End of too big on top end */
798 dbg("%s: got one!!!\n", __func__
);
799 /* If we got here, then it is the right size
800 * Now take it out of the list */
805 while (prevnode
->next
!= node
)
806 prevnode
= prevnode
->next
;
808 prevnode
->next
= node
->next
;
818 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
819 * @head: the list to sort and clean up
821 * Description: Sorts all of the nodes in the list in ascending order by
822 * their base addresses. Also does garbage collection by
823 * combining adjacent nodes.
825 * Returns %0 if success.
827 int cpqhp_resource_sort_and_combine(struct pci_resource
**head
)
829 struct pci_resource
*node1
;
830 struct pci_resource
*node2
;
831 int out_of_order
= 1;
833 dbg("%s: head = %p, *head = %p\n", __func__
, head
, *head
);
838 dbg("*head->next = %p\n", (*head
)->next
);
841 return 0; /* only one item on the list, already sorted! */
843 dbg("*head->base = 0x%x\n", (*head
)->base
);
844 dbg("*head->next->base = 0x%x\n", (*head
)->next
->base
);
845 while (out_of_order
) {
848 /* Special case for swapping list head */
849 if (((*head
)->next
) &&
850 ((*head
)->base
> (*head
)->next
->base
)) {
852 (*head
) = (*head
)->next
;
853 node1
->next
= (*head
)->next
;
854 (*head
)->next
= node1
;
860 while (node1
->next
&& node1
->next
->next
) {
861 if (node1
->next
->base
> node1
->next
->next
->base
) {
864 node1
->next
= node1
->next
->next
;
866 node2
->next
= node1
->next
;
871 } /* End of out_of_order loop */
875 while (node1
&& node1
->next
) {
876 if ((node1
->base
+ node1
->length
) == node1
->next
->base
) {
879 node1
->length
+= node1
->next
->length
;
881 node1
->next
= node1
->next
->next
;
891 irqreturn_t
cpqhp_ctrl_intr(int IRQ
, void *data
)
893 struct controller
*ctrl
= data
;
894 u8 schedule_flag
= 0;
901 misc
= readw(ctrl
->hpc_reg
+ MISC
);
903 * Check to see if it was our interrupt
905 if (!(misc
& 0x000C))
910 * Serial Output interrupt Pending
913 /* Clear the interrupt */
915 writew(misc
, ctrl
->hpc_reg
+ MISC
);
917 /* Read to clear posted writes */
918 misc
= readw(ctrl
->hpc_reg
+ MISC
);
920 dbg("%s - waking up\n", __func__
);
921 wake_up_interruptible(&ctrl
->queue
);
925 /* General-interrupt-input interrupt Pending */
926 Diff
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
) ^ ctrl
->ctrl_int_comp
;
928 ctrl
->ctrl_int_comp
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
930 /* Clear the interrupt */
931 writel(Diff
, ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
933 /* Read it back to clear any posted writes */
934 temp_dword
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
937 /* Clear all interrupts */
938 writel(0xFFFFFFFF, ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
940 schedule_flag
+= handle_switch_change((u8
)(Diff
& 0xFFL
), ctrl
);
941 schedule_flag
+= handle_presence_change((u16
)((Diff
& 0xFFFF0000L
) >> 16), ctrl
);
942 schedule_flag
+= handle_power_fault((u8
)((Diff
& 0xFF00L
) >> 8), ctrl
);
945 reset
= readb(ctrl
->hpc_reg
+ RESET_FREQ_MODE
);
947 /* Bus reset has completed */
949 writeb(reset
, ctrl
->hpc_reg
+ RESET_FREQ_MODE
);
950 reset
= readb(ctrl
->hpc_reg
+ RESET_FREQ_MODE
);
951 wake_up_interruptible(&ctrl
->queue
);
955 wake_up_process(cpqhp_event_thread
);
956 dbg("Waking even thread");
963 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
964 * @busnumber: bus where new node is to be located
966 * Returns pointer to the new node or %NULL if unsuccessful.
968 struct pci_func
*cpqhp_slot_create(u8 busnumber
)
970 struct pci_func
*new_slot
;
971 struct pci_func
*next
;
973 new_slot
= kzalloc(sizeof(*new_slot
), GFP_KERNEL
);
974 if (new_slot
== NULL
)
977 new_slot
->next
= NULL
;
978 new_slot
->configured
= 1;
980 if (cpqhp_slot_list
[busnumber
] == NULL
) {
981 cpqhp_slot_list
[busnumber
] = new_slot
;
983 next
= cpqhp_slot_list
[busnumber
];
984 while (next
->next
!= NULL
)
986 next
->next
= new_slot
;
993 * slot_remove - Removes a node from the linked list of slots.
994 * @old_slot: slot to remove
996 * Returns %0 if successful, !0 otherwise.
998 static int slot_remove(struct pci_func
*old_slot
)
1000 struct pci_func
*next
;
1002 if (old_slot
== NULL
)
1005 next
= cpqhp_slot_list
[old_slot
->bus
];
1009 if (next
== old_slot
) {
1010 cpqhp_slot_list
[old_slot
->bus
] = old_slot
->next
;
1011 cpqhp_destroy_board_resources(old_slot
);
1016 while ((next
->next
!= old_slot
) && (next
->next
!= NULL
))
1019 if (next
->next
== old_slot
) {
1020 next
->next
= old_slot
->next
;
1021 cpqhp_destroy_board_resources(old_slot
);
1030 * bridge_slot_remove - Removes a node from the linked list of slots.
1031 * @bridge: bridge to remove
1033 * Returns %0 if successful, !0 otherwise.
1035 static int bridge_slot_remove(struct pci_func
*bridge
)
1037 u8 subordinateBus
, secondaryBus
;
1039 struct pci_func
*next
;
1041 secondaryBus
= (bridge
->config_space
[0x06] >> 8) & 0xFF;
1042 subordinateBus
= (bridge
->config_space
[0x06] >> 16) & 0xFF;
1044 for (tempBus
= secondaryBus
; tempBus
<= subordinateBus
; tempBus
++) {
1045 next
= cpqhp_slot_list
[tempBus
];
1047 while (!slot_remove(next
))
1048 next
= cpqhp_slot_list
[tempBus
];
1051 next
= cpqhp_slot_list
[bridge
->bus
];
1056 if (next
== bridge
) {
1057 cpqhp_slot_list
[bridge
->bus
] = bridge
->next
;
1061 while ((next
->next
!= bridge
) && (next
->next
!= NULL
))
1064 if (next
->next
!= bridge
)
1066 next
->next
= bridge
->next
;
1074 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1076 * @device: device to find
1077 * @index: is %0 for first function found, %1 for the second...
1079 * Returns pointer to the node if successful, %NULL otherwise.
1081 struct pci_func
*cpqhp_slot_find(u8 bus
, u8 device
, u8 index
)
1084 struct pci_func
*func
;
1086 func
= cpqhp_slot_list
[bus
];
1088 if ((func
== NULL
) || ((func
->device
== device
) && (index
== 0)))
1091 if (func
->device
== device
)
1094 while (func
->next
!= NULL
) {
1097 if (func
->device
== device
)
1108 /* DJZ: I don't think is_bridge will work as is.
1110 static int is_bridge(struct pci_func
*func
)
1112 /* Check the header type */
1113 if (((func
->config_space
[0x03] >> 16) & 0xFF) == 0x01)
1121 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1122 * @ctrl: controller to change frequency/mode for.
1123 * @adapter_speed: the speed of the adapter we want to match.
1124 * @hp_slot: the slot number where the adapter is installed.
1126 * Returns %0 if we successfully change frequency and/or mode to match the
1129 static u8
set_controller_speed(struct controller
*ctrl
, u8 adapter_speed
, u8 hp_slot
)
1132 struct pci_bus
*bus
= ctrl
->pci_bus
;
1134 u8 slot_power
= readb(ctrl
->hpc_reg
+ SLOT_POWER
);
1136 u32 leds
= readl(ctrl
->hpc_reg
+ LED_CONTROL
);
1138 if (bus
->cur_bus_speed
== adapter_speed
)
1141 /* We don't allow freq/mode changes if we find another adapter running
1142 * in another slot on this controller
1144 for (slot
= ctrl
->slot
; slot
; slot
= slot
->next
) {
1145 if (slot
->device
== (hp_slot
+ ctrl
->slot_device_offset
))
1147 if (!slot
->hotplug_slot
|| !slot
->hotplug_slot
->info
)
1149 if (slot
->hotplug_slot
->info
->adapter_status
== 0)
1151 /* If another adapter is running on the same segment but at a
1152 * lower speed/mode, we allow the new adapter to function at
1153 * this rate if supported
1155 if (bus
->cur_bus_speed
< adapter_speed
)
1161 /* If the controller doesn't support freq/mode changes and the
1162 * controller is running at a higher mode, we bail
1164 if ((bus
->cur_bus_speed
> adapter_speed
) && (!ctrl
->pcix_speed_capability
))
1167 /* But we allow the adapter to run at a lower rate if possible */
1168 if ((bus
->cur_bus_speed
< adapter_speed
) && (!ctrl
->pcix_speed_capability
))
1171 /* We try to set the max speed supported by both the adapter and
1174 if (bus
->max_bus_speed
< adapter_speed
) {
1175 if (bus
->cur_bus_speed
== bus
->max_bus_speed
)
1177 adapter_speed
= bus
->max_bus_speed
;
1180 writel(0x0L
, ctrl
->hpc_reg
+ LED_CONTROL
);
1181 writeb(0x00, ctrl
->hpc_reg
+ SLOT_ENABLE
);
1184 wait_for_ctrl_irq(ctrl
);
1186 if (adapter_speed
!= PCI_SPEED_133MHz_PCIX
)
1190 pci_write_config_byte(ctrl
->pci_dev
, 0x41, reg
);
1192 reg16
= readw(ctrl
->hpc_reg
+ NEXT_CURR_FREQ
);
1194 switch (adapter_speed
) {
1195 case(PCI_SPEED_133MHz_PCIX
):
1199 case(PCI_SPEED_100MHz_PCIX
):
1203 case(PCI_SPEED_66MHz_PCIX
):
1207 case(PCI_SPEED_66MHz
):
1211 default: /* 33MHz PCI 2.2 */
1217 writew(reg16
, ctrl
->hpc_reg
+ NEXT_CURR_FREQ
);
1221 /* Reenable interrupts */
1222 writel(0, ctrl
->hpc_reg
+ INT_MASK
);
1224 pci_write_config_byte(ctrl
->pci_dev
, 0x41, reg
);
1226 /* Restart state machine */
1228 pci_read_config_byte(ctrl
->pci_dev
, 0x43, ®
);
1229 pci_write_config_byte(ctrl
->pci_dev
, 0x43, reg
);
1231 /* Only if mode change...*/
1232 if (((bus
->cur_bus_speed
== PCI_SPEED_66MHz
) && (adapter_speed
== PCI_SPEED_66MHz_PCIX
)) ||
1233 ((bus
->cur_bus_speed
== PCI_SPEED_66MHz_PCIX
) && (adapter_speed
== PCI_SPEED_66MHz
)))
1236 wait_for_ctrl_irq(ctrl
);
1239 /* Restore LED/Slot state */
1240 writel(leds
, ctrl
->hpc_reg
+ LED_CONTROL
);
1241 writeb(slot_power
, ctrl
->hpc_reg
+ SLOT_ENABLE
);
1244 wait_for_ctrl_irq(ctrl
);
1246 bus
->cur_bus_speed
= adapter_speed
;
1247 slot
= cpqhp_find_slot(ctrl
, hp_slot
+ ctrl
->slot_device_offset
);
1249 info("Successfully changed frequency/mode for adapter in slot %d\n",
1254 /* the following routines constitute the bulk of the
1255 * hotplug controller logic
1260 * board_replaced - Called after a board has been replaced in the system.
1261 * @func: PCI device/function information
1262 * @ctrl: hotplug controller
1264 * This is only used if we don't have resources for hot add.
1265 * Turns power on for the board.
1266 * Checks to see if board is the same.
1267 * If board is same, reconfigures it.
1268 * If board isn't same, turns it back off.
1270 static u32
board_replaced(struct pci_func
*func
, struct controller
*ctrl
)
1272 struct pci_bus
*bus
= ctrl
->pci_bus
;
1278 hp_slot
= func
->device
- ctrl
->slot_device_offset
;
1281 * The switch is open.
1283 if (readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
) & (0x01L
<< hp_slot
))
1284 rc
= INTERLOCK_OPEN
;
1286 * The board is already on
1288 else if (is_slot_enabled(ctrl
, hp_slot
))
1289 rc
= CARD_FUNCTIONING
;
1291 mutex_lock(&ctrl
->crit_sect
);
1293 /* turn on board without attaching to the bus */
1294 enable_slot_power(ctrl
, hp_slot
);
1298 /* Wait for SOBS to be unset */
1299 wait_for_ctrl_irq(ctrl
);
1301 /* Change bits in slot power register to force another shift out
1302 * NOTE: this is to work around the timer bug */
1303 temp_byte
= readb(ctrl
->hpc_reg
+ SLOT_POWER
);
1304 writeb(0x00, ctrl
->hpc_reg
+ SLOT_POWER
);
1305 writeb(temp_byte
, ctrl
->hpc_reg
+ SLOT_POWER
);
1309 /* Wait for SOBS to be unset */
1310 wait_for_ctrl_irq(ctrl
);
1312 adapter_speed
= get_adapter_speed(ctrl
, hp_slot
);
1313 if (bus
->cur_bus_speed
!= adapter_speed
)
1314 if (set_controller_speed(ctrl
, adapter_speed
, hp_slot
))
1315 rc
= WRONG_BUS_FREQUENCY
;
1317 /* turn off board without attaching to the bus */
1318 disable_slot_power(ctrl
, hp_slot
);
1322 /* Wait for SOBS to be unset */
1323 wait_for_ctrl_irq(ctrl
);
1325 mutex_unlock(&ctrl
->crit_sect
);
1330 mutex_lock(&ctrl
->crit_sect
);
1332 slot_enable(ctrl
, hp_slot
);
1333 green_LED_blink(ctrl
, hp_slot
);
1335 amber_LED_off(ctrl
, hp_slot
);
1339 /* Wait for SOBS to be unset */
1340 wait_for_ctrl_irq(ctrl
);
1342 mutex_unlock(&ctrl
->crit_sect
);
1344 /* Wait for ~1 second because of hot plug spec */
1347 /* Check for a power fault */
1348 if (func
->status
== 0xFF) {
1349 /* power fault occurred, but it was benign */
1353 rc
= cpqhp_valid_replace(ctrl
, func
);
1356 /* It must be the same board */
1358 rc
= cpqhp_configure_board(ctrl
, func
);
1360 /* If configuration fails, turn it off
1361 * Get slot won't work for devices behind
1362 * bridges, but in this case it will always be
1363 * called for the "base" bus/dev/func of an
1367 mutex_lock(&ctrl
->crit_sect
);
1369 amber_LED_on(ctrl
, hp_slot
);
1370 green_LED_off(ctrl
, hp_slot
);
1371 slot_disable(ctrl
, hp_slot
);
1375 /* Wait for SOBS to be unset */
1376 wait_for_ctrl_irq(ctrl
);
1378 mutex_unlock(&ctrl
->crit_sect
);
1386 /* Something is wrong
1388 * Get slot won't work for devices behind bridges, but
1389 * in this case it will always be called for the "base"
1390 * bus/dev/func of an adapter.
1393 mutex_lock(&ctrl
->crit_sect
);
1395 amber_LED_on(ctrl
, hp_slot
);
1396 green_LED_off(ctrl
, hp_slot
);
1397 slot_disable(ctrl
, hp_slot
);
1401 /* Wait for SOBS to be unset */
1402 wait_for_ctrl_irq(ctrl
);
1404 mutex_unlock(&ctrl
->crit_sect
);
1414 * board_added - Called after a board has been added to the system.
1415 * @func: PCI device/function info
1416 * @ctrl: hotplug controller
1418 * Turns power on for the board.
1421 static u32
board_added(struct pci_func
*func
, struct controller
*ctrl
)
1427 u32 temp_register
= 0xFFFFFFFF;
1429 struct pci_func
*new_slot
= NULL
;
1430 struct pci_bus
*bus
= ctrl
->pci_bus
;
1431 struct slot
*p_slot
;
1432 struct resource_lists res_lists
;
1434 hp_slot
= func
->device
- ctrl
->slot_device_offset
;
1435 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1436 __func__
, func
->device
, ctrl
->slot_device_offset
, hp_slot
);
1438 mutex_lock(&ctrl
->crit_sect
);
1440 /* turn on board without attaching to the bus */
1441 enable_slot_power(ctrl
, hp_slot
);
1445 /* Wait for SOBS to be unset */
1446 wait_for_ctrl_irq(ctrl
);
1448 /* Change bits in slot power register to force another shift out
1449 * NOTE: this is to work around the timer bug
1451 temp_byte
= readb(ctrl
->hpc_reg
+ SLOT_POWER
);
1452 writeb(0x00, ctrl
->hpc_reg
+ SLOT_POWER
);
1453 writeb(temp_byte
, ctrl
->hpc_reg
+ SLOT_POWER
);
1457 /* Wait for SOBS to be unset */
1458 wait_for_ctrl_irq(ctrl
);
1460 adapter_speed
= get_adapter_speed(ctrl
, hp_slot
);
1461 if (bus
->cur_bus_speed
!= adapter_speed
)
1462 if (set_controller_speed(ctrl
, adapter_speed
, hp_slot
))
1463 rc
= WRONG_BUS_FREQUENCY
;
1465 /* turn off board without attaching to the bus */
1466 disable_slot_power(ctrl
, hp_slot
);
1470 /* Wait for SOBS to be unset */
1471 wait_for_ctrl_irq(ctrl
);
1473 mutex_unlock(&ctrl
->crit_sect
);
1478 p_slot
= cpqhp_find_slot(ctrl
, hp_slot
+ ctrl
->slot_device_offset
);
1480 /* turn on board and blink green LED */
1482 dbg("%s: before down\n", __func__
);
1483 mutex_lock(&ctrl
->crit_sect
);
1484 dbg("%s: after down\n", __func__
);
1486 dbg("%s: before slot_enable\n", __func__
);
1487 slot_enable(ctrl
, hp_slot
);
1489 dbg("%s: before green_LED_blink\n", __func__
);
1490 green_LED_blink(ctrl
, hp_slot
);
1492 dbg("%s: before amber_LED_blink\n", __func__
);
1493 amber_LED_off(ctrl
, hp_slot
);
1495 dbg("%s: before set_SOGO\n", __func__
);
1498 /* Wait for SOBS to be unset */
1499 dbg("%s: before wait_for_ctrl_irq\n", __func__
);
1500 wait_for_ctrl_irq(ctrl
);
1501 dbg("%s: after wait_for_ctrl_irq\n", __func__
);
1503 dbg("%s: before up\n", __func__
);
1504 mutex_unlock(&ctrl
->crit_sect
);
1505 dbg("%s: after up\n", __func__
);
1507 /* Wait for ~1 second because of hot plug spec */
1508 dbg("%s: before long_delay\n", __func__
);
1510 dbg("%s: after long_delay\n", __func__
);
1512 dbg("%s: func status = %x\n", __func__
, func
->status
);
1513 /* Check for a power fault */
1514 if (func
->status
== 0xFF) {
1515 /* power fault occurred, but it was benign */
1516 temp_register
= 0xFFFFFFFF;
1517 dbg("%s: temp register set to %x by power fault\n", __func__
, temp_register
);
1521 /* Get vendor/device ID u32 */
1522 ctrl
->pci_bus
->number
= func
->bus
;
1523 rc
= pci_bus_read_config_dword(ctrl
->pci_bus
, PCI_DEVFN(func
->device
, func
->function
), PCI_VENDOR_ID
, &temp_register
);
1524 dbg("%s: pci_read_config_dword returns %d\n", __func__
, rc
);
1525 dbg("%s: temp_register is %x\n", __func__
, temp_register
);
1528 /* Something's wrong here */
1529 temp_register
= 0xFFFFFFFF;
1530 dbg("%s: temp register set to %x by error\n", __func__
, temp_register
);
1532 /* Preset return code. It will be changed later if things go okay. */
1533 rc
= NO_ADAPTER_PRESENT
;
1536 /* All F's is an empty slot or an invalid board */
1537 if (temp_register
!= 0xFFFFFFFF) {
1538 res_lists
.io_head
= ctrl
->io_head
;
1539 res_lists
.mem_head
= ctrl
->mem_head
;
1540 res_lists
.p_mem_head
= ctrl
->p_mem_head
;
1541 res_lists
.bus_head
= ctrl
->bus_head
;
1542 res_lists
.irqs
= NULL
;
1544 rc
= configure_new_device(ctrl
, func
, 0, &res_lists
);
1546 dbg("%s: back from configure_new_device\n", __func__
);
1547 ctrl
->io_head
= res_lists
.io_head
;
1548 ctrl
->mem_head
= res_lists
.mem_head
;
1549 ctrl
->p_mem_head
= res_lists
.p_mem_head
;
1550 ctrl
->bus_head
= res_lists
.bus_head
;
1552 cpqhp_resource_sort_and_combine(&(ctrl
->mem_head
));
1553 cpqhp_resource_sort_and_combine(&(ctrl
->p_mem_head
));
1554 cpqhp_resource_sort_and_combine(&(ctrl
->io_head
));
1555 cpqhp_resource_sort_and_combine(&(ctrl
->bus_head
));
1558 mutex_lock(&ctrl
->crit_sect
);
1560 amber_LED_on(ctrl
, hp_slot
);
1561 green_LED_off(ctrl
, hp_slot
);
1562 slot_disable(ctrl
, hp_slot
);
1566 /* Wait for SOBS to be unset */
1567 wait_for_ctrl_irq(ctrl
);
1569 mutex_unlock(&ctrl
->crit_sect
);
1572 cpqhp_save_slot_config(ctrl
, func
);
1577 func
->switch_save
= 0x10;
1578 func
->is_a_board
= 0x01;
1580 /* next, we will instantiate the linux pci_dev structures (with
1581 * appropriate driver notification, if already present) */
1582 dbg("%s: configure linux pci_dev structure\n", __func__
);
1585 new_slot
= cpqhp_slot_find(ctrl
->bus
, func
->device
, index
++);
1586 if (new_slot
&& !new_slot
->pci_dev
)
1587 cpqhp_configure_device(ctrl
, new_slot
);
1590 mutex_lock(&ctrl
->crit_sect
);
1592 green_LED_on(ctrl
, hp_slot
);
1596 /* Wait for SOBS to be unset */
1597 wait_for_ctrl_irq(ctrl
);
1599 mutex_unlock(&ctrl
->crit_sect
);
1601 mutex_lock(&ctrl
->crit_sect
);
1603 amber_LED_on(ctrl
, hp_slot
);
1604 green_LED_off(ctrl
, hp_slot
);
1605 slot_disable(ctrl
, hp_slot
);
1609 /* Wait for SOBS to be unset */
1610 wait_for_ctrl_irq(ctrl
);
1612 mutex_unlock(&ctrl
->crit_sect
);
1621 * remove_board - Turns off slot and LEDs
1622 * @func: PCI device/function info
1623 * @replace_flag: whether replacing or adding a new device
1624 * @ctrl: target controller
1626 static u32
remove_board(struct pci_func
*func
, u32 replace_flag
, struct controller
*ctrl
)
1634 struct resource_lists res_lists
;
1635 struct pci_func
*temp_func
;
1637 if (cpqhp_unconfigure_device(func
))
1640 device
= func
->device
;
1642 hp_slot
= func
->device
- ctrl
->slot_device_offset
;
1643 dbg("In %s, hp_slot = %d\n", __func__
, hp_slot
);
1645 /* When we get here, it is safe to change base address registers.
1646 * We will attempt to save the base address register lengths */
1647 if (replace_flag
|| !ctrl
->add_support
)
1648 rc
= cpqhp_save_base_addr_length(ctrl
, func
);
1649 else if (!func
->bus_head
&& !func
->mem_head
&&
1650 !func
->p_mem_head
&& !func
->io_head
) {
1651 /* Here we check to see if we've saved any of the board's
1652 * resources already. If so, we'll skip the attempt to
1653 * determine what's being used. */
1655 temp_func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
1657 if (temp_func
->bus_head
|| temp_func
->mem_head
1658 || temp_func
->p_mem_head
|| temp_func
->io_head
) {
1662 temp_func
= cpqhp_slot_find(temp_func
->bus
, temp_func
->device
, index
++);
1666 rc
= cpqhp_save_used_resources(ctrl
, func
);
1668 /* Change status to shutdown */
1669 if (func
->is_a_board
)
1670 func
->status
= 0x01;
1671 func
->configured
= 0;
1673 mutex_lock(&ctrl
->crit_sect
);
1675 green_LED_off(ctrl
, hp_slot
);
1676 slot_disable(ctrl
, hp_slot
);
1680 /* turn off SERR for slot */
1681 temp_byte
= readb(ctrl
->hpc_reg
+ SLOT_SERR
);
1682 temp_byte
&= ~(0x01 << hp_slot
);
1683 writeb(temp_byte
, ctrl
->hpc_reg
+ SLOT_SERR
);
1685 /* Wait for SOBS to be unset */
1686 wait_for_ctrl_irq(ctrl
);
1688 mutex_unlock(&ctrl
->crit_sect
);
1690 if (!replace_flag
&& ctrl
->add_support
) {
1692 res_lists
.io_head
= ctrl
->io_head
;
1693 res_lists
.mem_head
= ctrl
->mem_head
;
1694 res_lists
.p_mem_head
= ctrl
->p_mem_head
;
1695 res_lists
.bus_head
= ctrl
->bus_head
;
1697 cpqhp_return_board_resources(func
, &res_lists
);
1699 ctrl
->io_head
= res_lists
.io_head
;
1700 ctrl
->mem_head
= res_lists
.mem_head
;
1701 ctrl
->p_mem_head
= res_lists
.p_mem_head
;
1702 ctrl
->bus_head
= res_lists
.bus_head
;
1704 cpqhp_resource_sort_and_combine(&(ctrl
->mem_head
));
1705 cpqhp_resource_sort_and_combine(&(ctrl
->p_mem_head
));
1706 cpqhp_resource_sort_and_combine(&(ctrl
->io_head
));
1707 cpqhp_resource_sort_and_combine(&(ctrl
->bus_head
));
1709 if (is_bridge(func
)) {
1710 bridge_slot_remove(func
);
1714 func
= cpqhp_slot_find(ctrl
->bus
, device
, 0);
1717 /* Setup slot structure with entry for empty slot */
1718 func
= cpqhp_slot_create(ctrl
->bus
);
1723 func
->bus
= ctrl
->bus
;
1724 func
->device
= device
;
1726 func
->configured
= 0;
1727 func
->switch_save
= 0x10;
1728 func
->is_a_board
= 0;
1729 func
->p_task_event
= NULL
;
1735 static void pushbutton_helper_thread(unsigned long data
)
1737 pushbutton_pending
= data
;
1738 wake_up_process(cpqhp_event_thread
);
1742 /* this is the main worker thread */
1743 static int event_thread(void *data
)
1745 struct controller
*ctrl
;
1748 dbg("!!!!event_thread sleeping\n");
1749 set_current_state(TASK_INTERRUPTIBLE
);
1752 if (kthread_should_stop())
1755 if (pushbutton_pending
)
1756 cpqhp_pushbutton_thread(pushbutton_pending
);
1758 for (ctrl
= cpqhp_ctrl_list
; ctrl
; ctrl
= ctrl
->next
)
1759 interrupt_event_handler(ctrl
);
1761 dbg("event_thread signals exit\n");
1765 int cpqhp_event_start_thread(void)
1767 cpqhp_event_thread
= kthread_run(event_thread
, NULL
, "phpd_event");
1768 if (IS_ERR(cpqhp_event_thread
)) {
1769 err("Can't start up our event thread\n");
1770 return PTR_ERR(cpqhp_event_thread
);
1777 void cpqhp_event_stop_thread(void)
1779 kthread_stop(cpqhp_event_thread
);
1783 static int update_slot_info(struct controller
*ctrl
, struct slot
*slot
)
1785 struct hotplug_slot_info
*info
;
1788 info
= kmalloc(sizeof(*info
), GFP_KERNEL
);
1792 info
->power_status
= get_slot_enabled(ctrl
, slot
);
1793 info
->attention_status
= cpq_get_attention_status(ctrl
, slot
);
1794 info
->latch_status
= cpq_get_latch_status(ctrl
, slot
);
1795 info
->adapter_status
= get_presence_status(ctrl
, slot
);
1796 result
= pci_hp_change_slot_info(slot
->hotplug_slot
, info
);
1801 static void interrupt_event_handler(struct controller
*ctrl
)
1805 struct pci_func
*func
;
1807 struct slot
*p_slot
;
1812 for (loop
= 0; loop
< 10; loop
++) {
1813 /* dbg("loop %d\n", loop); */
1814 if (ctrl
->event_queue
[loop
].event_type
!= 0) {
1815 hp_slot
= ctrl
->event_queue
[loop
].hp_slot
;
1817 func
= cpqhp_slot_find(ctrl
->bus
, (hp_slot
+ ctrl
->slot_device_offset
), 0);
1821 p_slot
= cpqhp_find_slot(ctrl
, hp_slot
+ ctrl
->slot_device_offset
);
1825 dbg("hp_slot %d, func %p, p_slot %p\n",
1826 hp_slot
, func
, p_slot
);
1828 if (ctrl
->event_queue
[loop
].event_type
== INT_BUTTON_PRESS
) {
1829 dbg("button pressed\n");
1830 } else if (ctrl
->event_queue
[loop
].event_type
==
1831 INT_BUTTON_CANCEL
) {
1832 dbg("button cancel\n");
1833 del_timer(&p_slot
->task_event
);
1835 mutex_lock(&ctrl
->crit_sect
);
1837 if (p_slot
->state
== BLINKINGOFF_STATE
) {
1839 dbg("turn on green LED\n");
1840 green_LED_on(ctrl
, hp_slot
);
1841 } else if (p_slot
->state
== BLINKINGON_STATE
) {
1843 dbg("turn off green LED\n");
1844 green_LED_off(ctrl
, hp_slot
);
1847 info(msg_button_cancel
, p_slot
->number
);
1849 p_slot
->state
= STATIC_STATE
;
1851 amber_LED_off(ctrl
, hp_slot
);
1855 /* Wait for SOBS to be unset */
1856 wait_for_ctrl_irq(ctrl
);
1858 mutex_unlock(&ctrl
->crit_sect
);
1860 /*** button Released (No action on press...) */
1861 else if (ctrl
->event_queue
[loop
].event_type
== INT_BUTTON_RELEASE
) {
1862 dbg("button release\n");
1864 if (is_slot_enabled(ctrl
, hp_slot
)) {
1865 dbg("slot is on\n");
1866 p_slot
->state
= BLINKINGOFF_STATE
;
1867 info(msg_button_off
, p_slot
->number
);
1869 dbg("slot is off\n");
1870 p_slot
->state
= BLINKINGON_STATE
;
1871 info(msg_button_on
, p_slot
->number
);
1873 mutex_lock(&ctrl
->crit_sect
);
1875 dbg("blink green LED and turn off amber\n");
1877 amber_LED_off(ctrl
, hp_slot
);
1878 green_LED_blink(ctrl
, hp_slot
);
1882 /* Wait for SOBS to be unset */
1883 wait_for_ctrl_irq(ctrl
);
1885 mutex_unlock(&ctrl
->crit_sect
);
1886 init_timer(&p_slot
->task_event
);
1887 p_slot
->hp_slot
= hp_slot
;
1888 p_slot
->ctrl
= ctrl
;
1889 /* p_slot->physical_slot = physical_slot; */
1890 p_slot
->task_event
.expires
= jiffies
+ 5 * HZ
; /* 5 second delay */
1891 p_slot
->task_event
.function
= pushbutton_helper_thread
;
1892 p_slot
->task_event
.data
= (u32
) p_slot
;
1894 dbg("add_timer p_slot = %p\n", p_slot
);
1895 add_timer(&p_slot
->task_event
);
1897 /***********POWER FAULT */
1898 else if (ctrl
->event_queue
[loop
].event_type
== INT_POWER_FAULT
) {
1899 dbg("power fault\n");
1901 /* refresh notification */
1902 update_slot_info(ctrl
, p_slot
);
1905 ctrl
->event_queue
[loop
].event_type
= 0;
1909 } /* End of FOR loop */
1917 * cpqhp_pushbutton_thread - handle pushbutton events
1918 * @slot: target slot (struct)
1920 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1921 * Handles all pending events and exits.
1923 void cpqhp_pushbutton_thread(unsigned long slot
)
1927 struct pci_func
*func
;
1928 struct slot
*p_slot
= (struct slot
*) slot
;
1929 struct controller
*ctrl
= (struct controller
*) p_slot
->ctrl
;
1931 pushbutton_pending
= 0;
1932 hp_slot
= p_slot
->hp_slot
;
1934 device
= p_slot
->device
;
1936 if (is_slot_enabled(ctrl
, hp_slot
)) {
1937 p_slot
->state
= POWEROFF_STATE
;
1938 /* power Down board */
1939 func
= cpqhp_slot_find(p_slot
->bus
, p_slot
->device
, 0);
1940 dbg("In power_down_board, func = %p, ctrl = %p\n", func
, ctrl
);
1942 dbg("Error! func NULL in %s\n", __func__
);
1946 if (cpqhp_process_SS(ctrl
, func
) != 0) {
1947 amber_LED_on(ctrl
, hp_slot
);
1948 green_LED_on(ctrl
, hp_slot
);
1952 /* Wait for SOBS to be unset */
1953 wait_for_ctrl_irq(ctrl
);
1956 p_slot
->state
= STATIC_STATE
;
1958 p_slot
->state
= POWERON_STATE
;
1961 func
= cpqhp_slot_find(p_slot
->bus
, p_slot
->device
, 0);
1962 dbg("In add_board, func = %p, ctrl = %p\n", func
, ctrl
);
1964 dbg("Error! func NULL in %s\n", __func__
);
1969 if (cpqhp_process_SI(ctrl
, func
) != 0) {
1970 amber_LED_on(ctrl
, hp_slot
);
1971 green_LED_off(ctrl
, hp_slot
);
1975 /* Wait for SOBS to be unset */
1976 wait_for_ctrl_irq(ctrl
);
1980 p_slot
->state
= STATIC_STATE
;
1987 int cpqhp_process_SI(struct controller
*ctrl
, struct pci_func
*func
)
1993 struct slot
*p_slot
;
1994 int physical_slot
= 0;
1998 device
= func
->device
;
1999 hp_slot
= device
- ctrl
->slot_device_offset
;
2000 p_slot
= cpqhp_find_slot(ctrl
, device
);
2002 physical_slot
= p_slot
->number
;
2004 /* Check to see if the interlock is closed */
2005 tempdword
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
2007 if (tempdword
& (0x01 << hp_slot
))
2010 if (func
->is_a_board
) {
2011 rc
= board_replaced(func
, ctrl
);
2016 func
= cpqhp_slot_create(ctrl
->bus
);
2020 func
->bus
= ctrl
->bus
;
2021 func
->device
= device
;
2023 func
->configured
= 0;
2024 func
->is_a_board
= 1;
2026 /* We have to save the presence info for these slots */
2027 temp_word
= ctrl
->ctrl_int_comp
>> 16;
2028 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
2029 func
->presence_save
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
2031 if (ctrl
->ctrl_int_comp
& (0x1L
<< hp_slot
)) {
2032 func
->switch_save
= 0;
2034 func
->switch_save
= 0x10;
2037 rc
= board_added(func
, ctrl
);
2039 if (is_bridge(func
)) {
2040 bridge_slot_remove(func
);
2044 /* Setup slot structure with entry for empty slot */
2045 func
= cpqhp_slot_create(ctrl
->bus
);
2050 func
->bus
= ctrl
->bus
;
2051 func
->device
= device
;
2053 func
->configured
= 0;
2054 func
->is_a_board
= 0;
2056 /* We have to save the presence info for these slots */
2057 temp_word
= ctrl
->ctrl_int_comp
>> 16;
2058 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
2059 func
->presence_save
|=
2060 (temp_word
>> (hp_slot
+ 7)) & 0x02;
2062 if (ctrl
->ctrl_int_comp
& (0x1L
<< hp_slot
)) {
2063 func
->switch_save
= 0;
2065 func
->switch_save
= 0x10;
2071 dbg("%s: rc = %d\n", __func__
, rc
);
2074 update_slot_info(ctrl
, p_slot
);
2080 int cpqhp_process_SS(struct controller
*ctrl
, struct pci_func
*func
)
2082 u8 device
, class_code
, header_type
, BCR
;
2087 struct slot
*p_slot
;
2088 struct pci_bus
*pci_bus
= ctrl
->pci_bus
;
2089 int physical_slot
= 0;
2091 device
= func
->device
;
2092 func
= cpqhp_slot_find(ctrl
->bus
, device
, index
++);
2093 p_slot
= cpqhp_find_slot(ctrl
, device
);
2095 physical_slot
= p_slot
->number
;
2097 /* Make sure there are no video controllers here */
2098 while (func
&& !rc
) {
2099 pci_bus
->number
= func
->bus
;
2100 devfn
= PCI_DEVFN(func
->device
, func
->function
);
2102 /* Check the Class Code */
2103 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, 0x0B, &class_code
);
2107 if (class_code
== PCI_BASE_CLASS_DISPLAY
) {
2108 /* Display/Video adapter (not supported) */
2109 rc
= REMOVE_NOT_SUPPORTED
;
2111 /* See if it's a bridge */
2112 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, PCI_HEADER_TYPE
, &header_type
);
2116 /* If it's a bridge, check the VGA Enable bit */
2117 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
2118 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, PCI_BRIDGE_CONTROL
, &BCR
);
2122 /* If the VGA Enable bit is set, remove isn't
2124 if (BCR
& PCI_BRIDGE_CTL_VGA
)
2125 rc
= REMOVE_NOT_SUPPORTED
;
2129 func
= cpqhp_slot_find(ctrl
->bus
, device
, index
++);
2132 func
= cpqhp_slot_find(ctrl
->bus
, device
, 0);
2133 if ((func
!= NULL
) && !rc
) {
2134 /* FIXME: Replace flag should be passed into process_SS */
2135 replace_flag
= !(ctrl
->add_support
);
2136 rc
= remove_board(func
, replace_flag
, ctrl
);
2142 update_slot_info(ctrl
, p_slot
);
2148 * switch_leds - switch the leds, go from one site to the other.
2149 * @ctrl: controller to use
2150 * @num_of_slots: number of slots to use
2151 * @work_LED: LED control value
2152 * @direction: 1 to start from the left side, 0 to start right.
2154 static void switch_leds(struct controller
*ctrl
, const int num_of_slots
,
2155 u32
*work_LED
, const int direction
)
2159 for (loop
= 0; loop
< num_of_slots
; loop
++) {
2161 *work_LED
= *work_LED
>> 1;
2163 *work_LED
= *work_LED
<< 1;
2164 writel(*work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2168 /* Wait for SOGO interrupt */
2169 wait_for_ctrl_irq(ctrl
);
2171 /* Get ready for next iteration */
2172 long_delay((2*HZ
)/10);
2177 * cpqhp_hardware_test - runs hardware tests
2178 * @ctrl: target controller
2179 * @test_num: the number written to the "test" file in sysfs.
2181 * For hot plug ctrl folks to play with.
2183 int cpqhp_hardware_test(struct controller
*ctrl
, int test_num
)
2190 num_of_slots
= readb(ctrl
->hpc_reg
+ SLOT_MASK
) & 0x0f;
2194 /* Do stuff here! */
2196 /* Do that funky LED thing */
2197 /* so we can restore them later */
2198 save_LED
= readl(ctrl
->hpc_reg
+ LED_CONTROL
);
2199 work_LED
= 0x01010101;
2200 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2201 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2202 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2203 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2205 work_LED
= 0x01010000;
2206 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2207 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2208 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2209 work_LED
= 0x00000101;
2210 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2211 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2212 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2214 work_LED
= 0x01010000;
2215 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2216 for (loop
= 0; loop
< num_of_slots
; loop
++) {
2219 /* Wait for SOGO interrupt */
2220 wait_for_ctrl_irq(ctrl
);
2222 /* Get ready for next iteration */
2223 long_delay((3*HZ
)/10);
2224 work_LED
= work_LED
>> 16;
2225 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2229 /* Wait for SOGO interrupt */
2230 wait_for_ctrl_irq(ctrl
);
2232 /* Get ready for next iteration */
2233 long_delay((3*HZ
)/10);
2234 work_LED
= work_LED
<< 16;
2235 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2236 work_LED
= work_LED
<< 1;
2237 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2240 /* put it back the way it was */
2241 writel(save_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2245 /* Wait for SOBS to be unset */
2246 wait_for_ctrl_irq(ctrl
);
2249 /* Do other stuff here! */
2260 * configure_new_device - Configures the PCI header information of one board.
2261 * @ctrl: pointer to controller structure
2262 * @func: pointer to function structure
2263 * @behind_bridge: 1 if this is a recursive call, 0 if not
2264 * @resources: pointer to set of resource lists
2266 * Returns 0 if success.
2268 static u32
configure_new_device(struct controller
*ctrl
, struct pci_func
*func
,
2269 u8 behind_bridge
, struct resource_lists
*resources
)
2271 u8 temp_byte
, function
, max_functions
, stop_it
;
2274 struct pci_func
*new_slot
;
2279 dbg("%s\n", __func__
);
2280 /* Check for Multi-function device */
2281 ctrl
->pci_bus
->number
= func
->bus
;
2282 rc
= pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(func
->device
, func
->function
), 0x0E, &temp_byte
);
2284 dbg("%s: rc = %d\n", __func__
, rc
);
2288 if (temp_byte
& 0x80) /* Multi-function device */
2296 rc
= configure_new_function(ctrl
, new_slot
, behind_bridge
, resources
);
2299 dbg("configure_new_function failed %d\n", rc
);
2303 new_slot
= cpqhp_slot_find(new_slot
->bus
, new_slot
->device
, index
++);
2306 cpqhp_return_board_resources(new_slot
, resources
);
2316 /* The following loop skips to the next present function
2317 * and creates a board structure */
2319 while ((function
< max_functions
) && (!stop_it
)) {
2320 pci_bus_read_config_dword(ctrl
->pci_bus
, PCI_DEVFN(func
->device
, function
), 0x00, &ID
);
2322 if (ID
== 0xFFFFFFFF) {
2325 /* Setup slot structure. */
2326 new_slot
= cpqhp_slot_create(func
->bus
);
2328 if (new_slot
== NULL
)
2331 new_slot
->bus
= func
->bus
;
2332 new_slot
->device
= func
->device
;
2333 new_slot
->function
= function
;
2334 new_slot
->is_a_board
= 1;
2335 new_slot
->status
= 0;
2341 } while (function
< max_functions
);
2342 dbg("returning from configure_new_device\n");
2349 * Configuration logic that involves the hotplug data structures and
2355 * configure_new_function - Configures the PCI header information of one device
2356 * @ctrl: pointer to controller structure
2357 * @func: pointer to function structure
2358 * @behind_bridge: 1 if this is a recursive call, 0 if not
2359 * @resources: pointer to set of resource lists
2361 * Calls itself recursively for bridged devices.
2362 * Returns 0 if success.
2364 static int configure_new_function(struct controller
*ctrl
, struct pci_func
*func
,
2366 struct resource_lists
*resources
)
2381 struct pci_resource
*mem_node
;
2382 struct pci_resource
*p_mem_node
;
2383 struct pci_resource
*io_node
;
2384 struct pci_resource
*bus_node
;
2385 struct pci_resource
*hold_mem_node
;
2386 struct pci_resource
*hold_p_mem_node
;
2387 struct pci_resource
*hold_IO_node
;
2388 struct pci_resource
*hold_bus_node
;
2389 struct irq_mapping irqs
;
2390 struct pci_func
*new_slot
;
2391 struct pci_bus
*pci_bus
;
2392 struct resource_lists temp_resources
;
2394 pci_bus
= ctrl
->pci_bus
;
2395 pci_bus
->number
= func
->bus
;
2396 devfn
= PCI_DEVFN(func
->device
, func
->function
);
2398 /* Check for Bridge */
2399 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, PCI_HEADER_TYPE
, &temp_byte
);
2403 if ((temp_byte
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
2404 /* set Primary bus */
2405 dbg("set Primary bus = %d\n", func
->bus
);
2406 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_PRIMARY_BUS
, func
->bus
);
2410 /* find range of buses to use */
2411 dbg("find ranges of buses to use\n");
2412 bus_node
= get_max_resource(&(resources
->bus_head
), 1);
2414 /* If we don't have any buses to allocate, we can't continue */
2418 /* set Secondary bus */
2419 temp_byte
= bus_node
->base
;
2420 dbg("set Secondary bus = %d\n", bus_node
->base
);
2421 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SECONDARY_BUS
, temp_byte
);
2425 /* set subordinate bus */
2426 temp_byte
= bus_node
->base
+ bus_node
->length
- 1;
2427 dbg("set subordinate bus = %d\n", bus_node
->base
+ bus_node
->length
- 1);
2428 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SUBORDINATE_BUS
, temp_byte
);
2432 /* set subordinate Latency Timer and base Latency Timer */
2434 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SEC_LATENCY_TIMER
, temp_byte
);
2437 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_LATENCY_TIMER
, temp_byte
);
2441 /* set Cache Line size */
2443 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_CACHE_LINE_SIZE
, temp_byte
);
2447 /* Setup the IO, memory, and prefetchable windows */
2448 io_node
= get_max_resource(&(resources
->io_head
), 0x1000);
2451 mem_node
= get_max_resource(&(resources
->mem_head
), 0x100000);
2454 p_mem_node
= get_max_resource(&(resources
->p_mem_head
), 0x100000);
2457 dbg("Setup the IO, memory, and prefetchable windows\n");
2459 dbg("(base, len, next) (%x, %x, %p)\n", io_node
->base
,
2460 io_node
->length
, io_node
->next
);
2462 dbg("(base, len, next) (%x, %x, %p)\n", mem_node
->base
,
2463 mem_node
->length
, mem_node
->next
);
2464 dbg("p_mem_node\n");
2465 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node
->base
,
2466 p_mem_node
->length
, p_mem_node
->next
);
2468 /* set up the IRQ info */
2469 if (!resources
->irqs
) {
2470 irqs
.barber_pole
= 0;
2471 irqs
.interrupt
[0] = 0;
2472 irqs
.interrupt
[1] = 0;
2473 irqs
.interrupt
[2] = 0;
2474 irqs
.interrupt
[3] = 0;
2477 irqs
.barber_pole
= resources
->irqs
->barber_pole
;
2478 irqs
.interrupt
[0] = resources
->irqs
->interrupt
[0];
2479 irqs
.interrupt
[1] = resources
->irqs
->interrupt
[1];
2480 irqs
.interrupt
[2] = resources
->irqs
->interrupt
[2];
2481 irqs
.interrupt
[3] = resources
->irqs
->interrupt
[3];
2482 irqs
.valid_INT
= resources
->irqs
->valid_INT
;
2485 /* set up resource lists that are now aligned on top and bottom
2486 * for anything behind the bridge. */
2487 temp_resources
.bus_head
= bus_node
;
2488 temp_resources
.io_head
= io_node
;
2489 temp_resources
.mem_head
= mem_node
;
2490 temp_resources
.p_mem_head
= p_mem_node
;
2491 temp_resources
.irqs
= &irqs
;
2493 /* Make copies of the nodes we are going to pass down so that
2494 * if there is a problem,we can just use these to free resources
2496 hold_bus_node
= kmalloc(sizeof(*hold_bus_node
), GFP_KERNEL
);
2497 hold_IO_node
= kmalloc(sizeof(*hold_IO_node
), GFP_KERNEL
);
2498 hold_mem_node
= kmalloc(sizeof(*hold_mem_node
), GFP_KERNEL
);
2499 hold_p_mem_node
= kmalloc(sizeof(*hold_p_mem_node
), GFP_KERNEL
);
2501 if (!hold_bus_node
|| !hold_IO_node
|| !hold_mem_node
|| !hold_p_mem_node
) {
2502 kfree(hold_bus_node
);
2503 kfree(hold_IO_node
);
2504 kfree(hold_mem_node
);
2505 kfree(hold_p_mem_node
);
2510 memcpy(hold_bus_node
, bus_node
, sizeof(struct pci_resource
));
2512 bus_node
->base
+= 1;
2513 bus_node
->length
-= 1;
2514 bus_node
->next
= NULL
;
2516 /* If we have IO resources copy them and fill in the bridge's
2517 * IO range registers */
2518 memcpy(hold_IO_node
, io_node
, sizeof(struct pci_resource
));
2519 io_node
->next
= NULL
;
2521 /* set IO base and Limit registers */
2522 temp_byte
= io_node
->base
>> 8;
2523 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_IO_BASE
, temp_byte
);
2525 temp_byte
= (io_node
->base
+ io_node
->length
- 1) >> 8;
2526 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_IO_LIMIT
, temp_byte
);
2528 /* Copy the memory resources and fill in the bridge's memory
2531 memcpy(hold_mem_node
, mem_node
, sizeof(struct pci_resource
));
2532 mem_node
->next
= NULL
;
2534 /* set Mem base and Limit registers */
2535 temp_word
= mem_node
->base
>> 16;
2536 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_BASE
, temp_word
);
2538 temp_word
= (mem_node
->base
+ mem_node
->length
- 1) >> 16;
2539 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2541 memcpy(hold_p_mem_node
, p_mem_node
, sizeof(struct pci_resource
));
2542 p_mem_node
->next
= NULL
;
2544 /* set Pre Mem base and Limit registers */
2545 temp_word
= p_mem_node
->base
>> 16;
2546 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_BASE
, temp_word
);
2548 temp_word
= (p_mem_node
->base
+ p_mem_node
->length
- 1) >> 16;
2549 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, temp_word
);
2551 /* Adjust this to compensate for extra adjustment in first loop
2557 /* Here we actually find the devices and configure them */
2558 for (device
= 0; (device
<= 0x1F) && !rc
; device
++) {
2559 irqs
.barber_pole
= (irqs
.barber_pole
+ 1) & 0x03;
2562 pci_bus
->number
= hold_bus_node
->base
;
2563 pci_bus_read_config_dword(pci_bus
, PCI_DEVFN(device
, 0), 0x00, &ID
);
2564 pci_bus
->number
= func
->bus
;
2566 if (ID
!= 0xFFFFFFFF) { /* device present */
2567 /* Setup slot structure. */
2568 new_slot
= cpqhp_slot_create(hold_bus_node
->base
);
2570 if (new_slot
== NULL
) {
2575 new_slot
->bus
= hold_bus_node
->base
;
2576 new_slot
->device
= device
;
2577 new_slot
->function
= 0;
2578 new_slot
->is_a_board
= 1;
2579 new_slot
->status
= 0;
2581 rc
= configure_new_device(ctrl
, new_slot
, 1, &temp_resources
);
2582 dbg("configure_new_device rc=0x%x\n", rc
);
2583 } /* End of IF (device in slot?) */
2584 } /* End of FOR loop */
2588 /* save the interrupt routing information */
2589 if (resources
->irqs
) {
2590 resources
->irqs
->interrupt
[0] = irqs
.interrupt
[0];
2591 resources
->irqs
->interrupt
[1] = irqs
.interrupt
[1];
2592 resources
->irqs
->interrupt
[2] = irqs
.interrupt
[2];
2593 resources
->irqs
->interrupt
[3] = irqs
.interrupt
[3];
2594 resources
->irqs
->valid_INT
= irqs
.valid_INT
;
2595 } else if (!behind_bridge
) {
2596 /* We need to hook up the interrupts here */
2597 for (cloop
= 0; cloop
< 4; cloop
++) {
2598 if (irqs
.valid_INT
& (0x01 << cloop
)) {
2599 rc
= cpqhp_set_irq(func
->bus
, func
->device
,
2600 cloop
+ 1, irqs
.interrupt
[cloop
]);
2604 } /* end of for loop */
2606 /* Return unused bus resources
2607 * First use the temporary node to store information for
2609 if (bus_node
&& temp_resources
.bus_head
) {
2610 hold_bus_node
->length
= bus_node
->base
- hold_bus_node
->base
;
2612 hold_bus_node
->next
= func
->bus_head
;
2613 func
->bus_head
= hold_bus_node
;
2615 temp_byte
= temp_resources
.bus_head
->base
- 1;
2617 /* set subordinate bus */
2618 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SUBORDINATE_BUS
, temp_byte
);
2620 if (temp_resources
.bus_head
->length
== 0) {
2621 kfree(temp_resources
.bus_head
);
2622 temp_resources
.bus_head
= NULL
;
2624 return_resource(&(resources
->bus_head
), temp_resources
.bus_head
);
2628 /* If we have IO space available and there is some left,
2629 * return the unused portion */
2630 if (hold_IO_node
&& temp_resources
.io_head
) {
2631 io_node
= do_pre_bridge_resource_split(&(temp_resources
.io_head
),
2632 &hold_IO_node
, 0x1000);
2634 /* Check if we were able to split something off */
2636 hold_IO_node
->base
= io_node
->base
+ io_node
->length
;
2638 temp_byte
= (hold_IO_node
->base
) >> 8;
2639 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_IO_BASE
, temp_byte
);
2641 return_resource(&(resources
->io_head
), io_node
);
2644 io_node
= do_bridge_resource_split(&(temp_resources
.io_head
), 0x1000);
2646 /* Check if we were able to split something off */
2648 /* First use the temporary node to store
2649 * information for the board */
2650 hold_IO_node
->length
= io_node
->base
- hold_IO_node
->base
;
2652 /* If we used any, add it to the board's list */
2653 if (hold_IO_node
->length
) {
2654 hold_IO_node
->next
= func
->io_head
;
2655 func
->io_head
= hold_IO_node
;
2657 temp_byte
= (io_node
->base
- 1) >> 8;
2658 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_IO_LIMIT
, temp_byte
);
2660 return_resource(&(resources
->io_head
), io_node
);
2662 /* it doesn't need any IO */
2664 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_IO_LIMIT
, temp_word
);
2666 return_resource(&(resources
->io_head
), io_node
);
2667 kfree(hold_IO_node
);
2670 /* it used most of the range */
2671 hold_IO_node
->next
= func
->io_head
;
2672 func
->io_head
= hold_IO_node
;
2674 } else if (hold_IO_node
) {
2675 /* it used the whole range */
2676 hold_IO_node
->next
= func
->io_head
;
2677 func
->io_head
= hold_IO_node
;
2679 /* If we have memory space available and there is some left,
2680 * return the unused portion */
2681 if (hold_mem_node
&& temp_resources
.mem_head
) {
2682 mem_node
= do_pre_bridge_resource_split(&(temp_resources
. mem_head
),
2683 &hold_mem_node
, 0x100000);
2685 /* Check if we were able to split something off */
2687 hold_mem_node
->base
= mem_node
->base
+ mem_node
->length
;
2689 temp_word
= (hold_mem_node
->base
) >> 16;
2690 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_BASE
, temp_word
);
2692 return_resource(&(resources
->mem_head
), mem_node
);
2695 mem_node
= do_bridge_resource_split(&(temp_resources
.mem_head
), 0x100000);
2697 /* Check if we were able to split something off */
2699 /* First use the temporary node to store
2700 * information for the board */
2701 hold_mem_node
->length
= mem_node
->base
- hold_mem_node
->base
;
2703 if (hold_mem_node
->length
) {
2704 hold_mem_node
->next
= func
->mem_head
;
2705 func
->mem_head
= hold_mem_node
;
2707 /* configure end address */
2708 temp_word
= (mem_node
->base
- 1) >> 16;
2709 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2711 /* Return unused resources to the pool */
2712 return_resource(&(resources
->mem_head
), mem_node
);
2714 /* it doesn't need any Mem */
2716 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2718 return_resource(&(resources
->mem_head
), mem_node
);
2719 kfree(hold_mem_node
);
2722 /* it used most of the range */
2723 hold_mem_node
->next
= func
->mem_head
;
2724 func
->mem_head
= hold_mem_node
;
2726 } else if (hold_mem_node
) {
2727 /* it used the whole range */
2728 hold_mem_node
->next
= func
->mem_head
;
2729 func
->mem_head
= hold_mem_node
;
2731 /* If we have prefetchable memory space available and there
2732 * is some left at the end, return the unused portion */
2733 if (temp_resources
.p_mem_head
) {
2734 p_mem_node
= do_pre_bridge_resource_split(&(temp_resources
.p_mem_head
),
2735 &hold_p_mem_node
, 0x100000);
2737 /* Check if we were able to split something off */
2739 hold_p_mem_node
->base
= p_mem_node
->base
+ p_mem_node
->length
;
2741 temp_word
= (hold_p_mem_node
->base
) >> 16;
2742 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_BASE
, temp_word
);
2744 return_resource(&(resources
->p_mem_head
), p_mem_node
);
2747 p_mem_node
= do_bridge_resource_split(&(temp_resources
.p_mem_head
), 0x100000);
2749 /* Check if we were able to split something off */
2751 /* First use the temporary node to store
2752 * information for the board */
2753 hold_p_mem_node
->length
= p_mem_node
->base
- hold_p_mem_node
->base
;
2755 /* If we used any, add it to the board's list */
2756 if (hold_p_mem_node
->length
) {
2757 hold_p_mem_node
->next
= func
->p_mem_head
;
2758 func
->p_mem_head
= hold_p_mem_node
;
2760 temp_word
= (p_mem_node
->base
- 1) >> 16;
2761 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, temp_word
);
2763 return_resource(&(resources
->p_mem_head
), p_mem_node
);
2765 /* it doesn't need any PMem */
2767 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, temp_word
);
2769 return_resource(&(resources
->p_mem_head
), p_mem_node
);
2770 kfree(hold_p_mem_node
);
2773 /* it used the most of the range */
2774 hold_p_mem_node
->next
= func
->p_mem_head
;
2775 func
->p_mem_head
= hold_p_mem_node
;
2777 } else if (hold_p_mem_node
) {
2778 /* it used the whole range */
2779 hold_p_mem_node
->next
= func
->p_mem_head
;
2780 func
->p_mem_head
= hold_p_mem_node
;
2782 /* We should be configuring an IRQ and the bridge's base address
2783 * registers if it needs them. Although we have never seen such
2787 command
= 0x0157; /* = PCI_COMMAND_IO |
2788 * PCI_COMMAND_MEMORY |
2789 * PCI_COMMAND_MASTER |
2790 * PCI_COMMAND_INVALIDATE |
2791 * PCI_COMMAND_PARITY |
2792 * PCI_COMMAND_SERR */
2793 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_COMMAND
, command
);
2795 /* set Bridge Control Register */
2796 command
= 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2797 * PCI_BRIDGE_CTL_SERR |
2798 * PCI_BRIDGE_CTL_NO_ISA */
2799 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_BRIDGE_CONTROL
, command
);
2800 } else if ((temp_byte
& 0x7F) == PCI_HEADER_TYPE_NORMAL
) {
2801 /* Standard device */
2802 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, 0x0B, &class_code
);
2804 if (class_code
== PCI_BASE_CLASS_DISPLAY
) {
2805 /* Display (video) adapter (not supported) */
2806 return DEVICE_TYPE_NOT_SUPPORTED
;
2808 /* Figure out IO and memory needs */
2809 for (cloop
= 0x10; cloop
<= 0x24; cloop
+= 4) {
2810 temp_register
= 0xFFFFFFFF;
2812 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus
->number
, devfn
, cloop
);
2813 rc
= pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, temp_register
);
2815 rc
= pci_bus_read_config_dword(pci_bus
, devfn
, cloop
, &temp_register
);
2816 dbg("CND: base = 0x%x\n", temp_register
);
2818 if (temp_register
) { /* If this register is implemented */
2819 if ((temp_register
& 0x03L
) == 0x01) {
2822 /* set base = amount of IO space */
2823 base
= temp_register
& 0xFFFFFFFC;
2826 dbg("CND: length = 0x%x\n", base
);
2827 io_node
= get_io_resource(&(resources
->io_head
), base
);
2828 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2829 io_node
->base
, io_node
->length
, io_node
->next
);
2830 dbg("func (%p) io_head (%p)\n", func
, func
->io_head
);
2832 /* allocate the resource to the board */
2834 base
= io_node
->base
;
2836 io_node
->next
= func
->io_head
;
2837 func
->io_head
= io_node
;
2840 } else if ((temp_register
& 0x0BL
) == 0x08) {
2841 /* Map prefetchable memory */
2842 base
= temp_register
& 0xFFFFFFF0;
2845 dbg("CND: length = 0x%x\n", base
);
2846 p_mem_node
= get_resource(&(resources
->p_mem_head
), base
);
2848 /* allocate the resource to the board */
2850 base
= p_mem_node
->base
;
2852 p_mem_node
->next
= func
->p_mem_head
;
2853 func
->p_mem_head
= p_mem_node
;
2856 } else if ((temp_register
& 0x0BL
) == 0x00) {
2858 base
= temp_register
& 0xFFFFFFF0;
2861 dbg("CND: length = 0x%x\n", base
);
2862 mem_node
= get_resource(&(resources
->mem_head
), base
);
2864 /* allocate the resource to the board */
2866 base
= mem_node
->base
;
2868 mem_node
->next
= func
->mem_head
;
2869 func
->mem_head
= mem_node
;
2873 /* Reserved bits or requesting space below 1M */
2874 return NOT_ENOUGH_RESOURCES
;
2877 rc
= pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, base
);
2879 /* Check for 64-bit base */
2880 if ((temp_register
& 0x07L
) == 0x04) {
2883 /* Upper 32 bits of address always zero
2884 * on today's systems */
2885 /* FIXME this is probably not true on
2886 * Alpha and ia64??? */
2888 rc
= pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, base
);
2891 } /* End of base register loop */
2892 if (cpqhp_legacy_mode
) {
2893 /* Figure out which interrupt pin this function uses */
2894 rc
= pci_bus_read_config_byte(pci_bus
, devfn
,
2895 PCI_INTERRUPT_PIN
, &temp_byte
);
2897 /* If this function needs an interrupt and we are behind
2898 * a bridge and the pin is tied to something that's
2899 * already mapped, set this one the same */
2900 if (temp_byte
&& resources
->irqs
&&
2901 (resources
->irqs
->valid_INT
&
2902 (0x01 << ((temp_byte
+ resources
->irqs
->barber_pole
- 1) & 0x03)))) {
2903 /* We have to share with something already set up */
2904 IRQ
= resources
->irqs
->interrupt
[(temp_byte
+
2905 resources
->irqs
->barber_pole
- 1) & 0x03];
2907 /* Program IRQ based on card type */
2908 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, 0x0B, &class_code
);
2910 if (class_code
== PCI_BASE_CLASS_STORAGE
)
2911 IRQ
= cpqhp_disk_irq
;
2913 IRQ
= cpqhp_nic_irq
;
2917 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_INTERRUPT_LINE
, IRQ
);
2920 if (!behind_bridge
) {
2921 rc
= cpqhp_set_irq(func
->bus
, func
->device
, temp_byte
, IRQ
);
2925 /* TBD - this code may also belong in the other clause
2926 * of this If statement */
2927 resources
->irqs
->interrupt
[(temp_byte
+ resources
->irqs
->barber_pole
- 1) & 0x03] = IRQ
;
2928 resources
->irqs
->valid_INT
|= 0x01 << (temp_byte
+ resources
->irqs
->barber_pole
- 1) & 0x03;
2933 rc
= pci_bus_write_config_byte(pci_bus
, devfn
,
2934 PCI_LATENCY_TIMER
, temp_byte
);
2936 /* Cache Line size */
2938 rc
= pci_bus_write_config_byte(pci_bus
, devfn
,
2939 PCI_CACHE_LINE_SIZE
, temp_byte
);
2941 /* disable ROM base Address */
2943 rc
= pci_bus_write_config_word(pci_bus
, devfn
,
2944 PCI_ROM_ADDRESS
, temp_dword
);
2947 temp_word
= 0x0157; /* = PCI_COMMAND_IO |
2948 * PCI_COMMAND_MEMORY |
2949 * PCI_COMMAND_MASTER |
2950 * PCI_COMMAND_INVALIDATE |
2951 * PCI_COMMAND_PARITY |
2952 * PCI_COMMAND_SERR */
2953 rc
= pci_bus_write_config_word(pci_bus
, devfn
,
2954 PCI_COMMAND
, temp_word
);
2955 } else { /* End of Not-A-Bridge else */
2956 /* It's some strange type of PCI adapter (Cardbus?) */
2957 return DEVICE_TYPE_NOT_SUPPORTED
;
2960 func
->configured
= 1;
2964 cpqhp_destroy_resource_list(&temp_resources
);
2966 return_resource(&(resources
->bus_head
), hold_bus_node
);
2967 return_resource(&(resources
->io_head
), hold_IO_node
);
2968 return_resource(&(resources
->mem_head
), hold_mem_node
);
2969 return_resource(&(resources
->p_mem_head
), hold_p_mem_node
);