2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
23 #include "transaction.h"
26 #define BTRFS_DELAYED_WRITEBACK 512
27 #define BTRFS_DELAYED_BACKGROUND 128
28 #define BTRFS_DELAYED_BATCH 16
30 static struct kmem_cache
*delayed_node_cache
;
32 int __init
btrfs_delayed_inode_init(void)
34 delayed_node_cache
= kmem_cache_create("btrfs_delayed_node",
35 sizeof(struct btrfs_delayed_node
),
37 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
39 if (!delayed_node_cache
)
44 void btrfs_delayed_inode_exit(void)
46 kmem_cache_destroy(delayed_node_cache
);
49 static inline void btrfs_init_delayed_node(
50 struct btrfs_delayed_node
*delayed_node
,
51 struct btrfs_root
*root
, u64 inode_id
)
53 delayed_node
->root
= root
;
54 delayed_node
->inode_id
= inode_id
;
55 atomic_set(&delayed_node
->refs
, 0);
56 delayed_node
->ins_root
= RB_ROOT
;
57 delayed_node
->del_root
= RB_ROOT
;
58 mutex_init(&delayed_node
->mutex
);
59 INIT_LIST_HEAD(&delayed_node
->n_list
);
60 INIT_LIST_HEAD(&delayed_node
->p_list
);
63 static inline int btrfs_is_continuous_delayed_item(
64 struct btrfs_delayed_item
*item1
,
65 struct btrfs_delayed_item
*item2
)
67 if (item1
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
68 item1
->key
.objectid
== item2
->key
.objectid
&&
69 item1
->key
.type
== item2
->key
.type
&&
70 item1
->key
.offset
+ 1 == item2
->key
.offset
)
75 static inline struct btrfs_delayed_root
*btrfs_get_delayed_root(
76 struct btrfs_root
*root
)
78 return root
->fs_info
->delayed_root
;
81 static struct btrfs_delayed_node
*btrfs_get_delayed_node(struct inode
*inode
)
83 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
84 struct btrfs_root
*root
= btrfs_inode
->root
;
85 u64 ino
= btrfs_ino(inode
);
86 struct btrfs_delayed_node
*node
;
88 node
= ACCESS_ONCE(btrfs_inode
->delayed_node
);
90 atomic_inc(&node
->refs
);
94 spin_lock(&root
->inode_lock
);
95 node
= radix_tree_lookup(&root
->delayed_nodes_tree
, ino
);
97 if (btrfs_inode
->delayed_node
) {
98 atomic_inc(&node
->refs
); /* can be accessed */
99 BUG_ON(btrfs_inode
->delayed_node
!= node
);
100 spin_unlock(&root
->inode_lock
);
103 btrfs_inode
->delayed_node
= node
;
104 /* can be accessed and cached in the inode */
105 atomic_add(2, &node
->refs
);
106 spin_unlock(&root
->inode_lock
);
109 spin_unlock(&root
->inode_lock
);
114 /* Will return either the node or PTR_ERR(-ENOMEM) */
115 static struct btrfs_delayed_node
*btrfs_get_or_create_delayed_node(
118 struct btrfs_delayed_node
*node
;
119 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
120 struct btrfs_root
*root
= btrfs_inode
->root
;
121 u64 ino
= btrfs_ino(inode
);
125 node
= btrfs_get_delayed_node(inode
);
129 node
= kmem_cache_zalloc(delayed_node_cache
, GFP_NOFS
);
131 return ERR_PTR(-ENOMEM
);
132 btrfs_init_delayed_node(node
, root
, ino
);
134 /* cached in the btrfs inode and can be accessed */
135 atomic_add(2, &node
->refs
);
137 ret
= radix_tree_preload(GFP_NOFS
);
139 kmem_cache_free(delayed_node_cache
, node
);
143 spin_lock(&root
->inode_lock
);
144 ret
= radix_tree_insert(&root
->delayed_nodes_tree
, ino
, node
);
145 if (ret
== -EEXIST
) {
146 spin_unlock(&root
->inode_lock
);
147 kmem_cache_free(delayed_node_cache
, node
);
148 radix_tree_preload_end();
151 btrfs_inode
->delayed_node
= node
;
152 spin_unlock(&root
->inode_lock
);
153 radix_tree_preload_end();
159 * Call it when holding delayed_node->mutex
161 * If mod = 1, add this node into the prepared list.
163 static void btrfs_queue_delayed_node(struct btrfs_delayed_root
*root
,
164 struct btrfs_delayed_node
*node
,
167 spin_lock(&root
->lock
);
168 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
)) {
169 if (!list_empty(&node
->p_list
))
170 list_move_tail(&node
->p_list
, &root
->prepare_list
);
172 list_add_tail(&node
->p_list
, &root
->prepare_list
);
174 list_add_tail(&node
->n_list
, &root
->node_list
);
175 list_add_tail(&node
->p_list
, &root
->prepare_list
);
176 atomic_inc(&node
->refs
); /* inserted into list */
178 set_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
);
180 spin_unlock(&root
->lock
);
183 /* Call it when holding delayed_node->mutex */
184 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root
*root
,
185 struct btrfs_delayed_node
*node
)
187 spin_lock(&root
->lock
);
188 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
)) {
190 atomic_dec(&node
->refs
); /* not in the list */
191 list_del_init(&node
->n_list
);
192 if (!list_empty(&node
->p_list
))
193 list_del_init(&node
->p_list
);
194 clear_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
);
196 spin_unlock(&root
->lock
);
199 static struct btrfs_delayed_node
*btrfs_first_delayed_node(
200 struct btrfs_delayed_root
*delayed_root
)
203 struct btrfs_delayed_node
*node
= NULL
;
205 spin_lock(&delayed_root
->lock
);
206 if (list_empty(&delayed_root
->node_list
))
209 p
= delayed_root
->node_list
.next
;
210 node
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
211 atomic_inc(&node
->refs
);
213 spin_unlock(&delayed_root
->lock
);
218 static struct btrfs_delayed_node
*btrfs_next_delayed_node(
219 struct btrfs_delayed_node
*node
)
221 struct btrfs_delayed_root
*delayed_root
;
223 struct btrfs_delayed_node
*next
= NULL
;
225 delayed_root
= node
->root
->fs_info
->delayed_root
;
226 spin_lock(&delayed_root
->lock
);
227 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
)) {
228 /* not in the list */
229 if (list_empty(&delayed_root
->node_list
))
231 p
= delayed_root
->node_list
.next
;
232 } else if (list_is_last(&node
->n_list
, &delayed_root
->node_list
))
235 p
= node
->n_list
.next
;
237 next
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
238 atomic_inc(&next
->refs
);
240 spin_unlock(&delayed_root
->lock
);
245 static void __btrfs_release_delayed_node(
246 struct btrfs_delayed_node
*delayed_node
,
249 struct btrfs_delayed_root
*delayed_root
;
254 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
256 mutex_lock(&delayed_node
->mutex
);
257 if (delayed_node
->count
)
258 btrfs_queue_delayed_node(delayed_root
, delayed_node
, mod
);
260 btrfs_dequeue_delayed_node(delayed_root
, delayed_node
);
261 mutex_unlock(&delayed_node
->mutex
);
263 if (atomic_dec_and_test(&delayed_node
->refs
)) {
265 struct btrfs_root
*root
= delayed_node
->root
;
266 spin_lock(&root
->inode_lock
);
267 if (atomic_read(&delayed_node
->refs
) == 0) {
268 radix_tree_delete(&root
->delayed_nodes_tree
,
269 delayed_node
->inode_id
);
272 spin_unlock(&root
->inode_lock
);
274 kmem_cache_free(delayed_node_cache
, delayed_node
);
278 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node
*node
)
280 __btrfs_release_delayed_node(node
, 0);
283 static struct btrfs_delayed_node
*btrfs_first_prepared_delayed_node(
284 struct btrfs_delayed_root
*delayed_root
)
287 struct btrfs_delayed_node
*node
= NULL
;
289 spin_lock(&delayed_root
->lock
);
290 if (list_empty(&delayed_root
->prepare_list
))
293 p
= delayed_root
->prepare_list
.next
;
295 node
= list_entry(p
, struct btrfs_delayed_node
, p_list
);
296 atomic_inc(&node
->refs
);
298 spin_unlock(&delayed_root
->lock
);
303 static inline void btrfs_release_prepared_delayed_node(
304 struct btrfs_delayed_node
*node
)
306 __btrfs_release_delayed_node(node
, 1);
309 static struct btrfs_delayed_item
*btrfs_alloc_delayed_item(u32 data_len
)
311 struct btrfs_delayed_item
*item
;
312 item
= kmalloc(sizeof(*item
) + data_len
, GFP_NOFS
);
314 item
->data_len
= data_len
;
315 item
->ins_or_del
= 0;
316 item
->bytes_reserved
= 0;
317 item
->delayed_node
= NULL
;
318 atomic_set(&item
->refs
, 1);
324 * __btrfs_lookup_delayed_item - look up the delayed item by key
325 * @delayed_node: pointer to the delayed node
326 * @key: the key to look up
327 * @prev: used to store the prev item if the right item isn't found
328 * @next: used to store the next item if the right item isn't found
330 * Note: if we don't find the right item, we will return the prev item and
333 static struct btrfs_delayed_item
*__btrfs_lookup_delayed_item(
334 struct rb_root
*root
,
335 struct btrfs_key
*key
,
336 struct btrfs_delayed_item
**prev
,
337 struct btrfs_delayed_item
**next
)
339 struct rb_node
*node
, *prev_node
= NULL
;
340 struct btrfs_delayed_item
*delayed_item
= NULL
;
343 node
= root
->rb_node
;
346 delayed_item
= rb_entry(node
, struct btrfs_delayed_item
,
349 ret
= btrfs_comp_cpu_keys(&delayed_item
->key
, key
);
351 node
= node
->rb_right
;
353 node
= node
->rb_left
;
362 *prev
= delayed_item
;
363 else if ((node
= rb_prev(prev_node
)) != NULL
) {
364 *prev
= rb_entry(node
, struct btrfs_delayed_item
,
374 *next
= delayed_item
;
375 else if ((node
= rb_next(prev_node
)) != NULL
) {
376 *next
= rb_entry(node
, struct btrfs_delayed_item
,
384 static struct btrfs_delayed_item
*__btrfs_lookup_delayed_insertion_item(
385 struct btrfs_delayed_node
*delayed_node
,
386 struct btrfs_key
*key
)
388 struct btrfs_delayed_item
*item
;
390 item
= __btrfs_lookup_delayed_item(&delayed_node
->ins_root
, key
,
395 static int __btrfs_add_delayed_item(struct btrfs_delayed_node
*delayed_node
,
396 struct btrfs_delayed_item
*ins
,
399 struct rb_node
**p
, *node
;
400 struct rb_node
*parent_node
= NULL
;
401 struct rb_root
*root
;
402 struct btrfs_delayed_item
*item
;
405 if (action
== BTRFS_DELAYED_INSERTION_ITEM
)
406 root
= &delayed_node
->ins_root
;
407 else if (action
== BTRFS_DELAYED_DELETION_ITEM
)
408 root
= &delayed_node
->del_root
;
412 node
= &ins
->rb_node
;
416 item
= rb_entry(parent_node
, struct btrfs_delayed_item
,
419 cmp
= btrfs_comp_cpu_keys(&item
->key
, &ins
->key
);
428 rb_link_node(node
, parent_node
, p
);
429 rb_insert_color(node
, root
);
430 ins
->delayed_node
= delayed_node
;
431 ins
->ins_or_del
= action
;
433 if (ins
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
434 action
== BTRFS_DELAYED_INSERTION_ITEM
&&
435 ins
->key
.offset
>= delayed_node
->index_cnt
)
436 delayed_node
->index_cnt
= ins
->key
.offset
+ 1;
438 delayed_node
->count
++;
439 atomic_inc(&delayed_node
->root
->fs_info
->delayed_root
->items
);
443 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node
*node
,
444 struct btrfs_delayed_item
*item
)
446 return __btrfs_add_delayed_item(node
, item
,
447 BTRFS_DELAYED_INSERTION_ITEM
);
450 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node
*node
,
451 struct btrfs_delayed_item
*item
)
453 return __btrfs_add_delayed_item(node
, item
,
454 BTRFS_DELAYED_DELETION_ITEM
);
457 static void finish_one_item(struct btrfs_delayed_root
*delayed_root
)
459 int seq
= atomic_inc_return(&delayed_root
->items_seq
);
462 * atomic_dec_return implies a barrier for waitqueue_active
464 if ((atomic_dec_return(&delayed_root
->items
) <
465 BTRFS_DELAYED_BACKGROUND
|| seq
% BTRFS_DELAYED_BATCH
== 0) &&
466 waitqueue_active(&delayed_root
->wait
))
467 wake_up(&delayed_root
->wait
);
470 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item
*delayed_item
)
472 struct rb_root
*root
;
473 struct btrfs_delayed_root
*delayed_root
;
475 delayed_root
= delayed_item
->delayed_node
->root
->fs_info
->delayed_root
;
477 BUG_ON(!delayed_root
);
478 BUG_ON(delayed_item
->ins_or_del
!= BTRFS_DELAYED_DELETION_ITEM
&&
479 delayed_item
->ins_or_del
!= BTRFS_DELAYED_INSERTION_ITEM
);
481 if (delayed_item
->ins_or_del
== BTRFS_DELAYED_INSERTION_ITEM
)
482 root
= &delayed_item
->delayed_node
->ins_root
;
484 root
= &delayed_item
->delayed_node
->del_root
;
486 rb_erase(&delayed_item
->rb_node
, root
);
487 delayed_item
->delayed_node
->count
--;
489 finish_one_item(delayed_root
);
492 static void btrfs_release_delayed_item(struct btrfs_delayed_item
*item
)
495 __btrfs_remove_delayed_item(item
);
496 if (atomic_dec_and_test(&item
->refs
))
501 static struct btrfs_delayed_item
*__btrfs_first_delayed_insertion_item(
502 struct btrfs_delayed_node
*delayed_node
)
505 struct btrfs_delayed_item
*item
= NULL
;
507 p
= rb_first(&delayed_node
->ins_root
);
509 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
514 static struct btrfs_delayed_item
*__btrfs_first_delayed_deletion_item(
515 struct btrfs_delayed_node
*delayed_node
)
518 struct btrfs_delayed_item
*item
= NULL
;
520 p
= rb_first(&delayed_node
->del_root
);
522 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
527 static struct btrfs_delayed_item
*__btrfs_next_delayed_item(
528 struct btrfs_delayed_item
*item
)
531 struct btrfs_delayed_item
*next
= NULL
;
533 p
= rb_next(&item
->rb_node
);
535 next
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
540 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle
*trans
,
541 struct btrfs_root
*root
,
542 struct btrfs_delayed_item
*item
)
544 struct btrfs_block_rsv
*src_rsv
;
545 struct btrfs_block_rsv
*dst_rsv
;
549 if (!trans
->bytes_reserved
)
552 src_rsv
= trans
->block_rsv
;
553 dst_rsv
= &root
->fs_info
->delayed_block_rsv
;
555 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
556 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
558 trace_btrfs_space_reservation(root
->fs_info
, "delayed_item",
561 item
->bytes_reserved
= num_bytes
;
567 static void btrfs_delayed_item_release_metadata(struct btrfs_root
*root
,
568 struct btrfs_delayed_item
*item
)
570 struct btrfs_block_rsv
*rsv
;
572 if (!item
->bytes_reserved
)
575 rsv
= &root
->fs_info
->delayed_block_rsv
;
576 trace_btrfs_space_reservation(root
->fs_info
, "delayed_item",
577 item
->key
.objectid
, item
->bytes_reserved
,
579 btrfs_block_rsv_release(root
, rsv
,
580 item
->bytes_reserved
);
583 static int btrfs_delayed_inode_reserve_metadata(
584 struct btrfs_trans_handle
*trans
,
585 struct btrfs_root
*root
,
587 struct btrfs_delayed_node
*node
)
589 struct btrfs_block_rsv
*src_rsv
;
590 struct btrfs_block_rsv
*dst_rsv
;
593 bool release
= false;
595 src_rsv
= trans
->block_rsv
;
596 dst_rsv
= &root
->fs_info
->delayed_block_rsv
;
598 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
601 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
602 * which doesn't reserve space for speed. This is a problem since we
603 * still need to reserve space for this update, so try to reserve the
606 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
607 * we're accounted for.
609 if (!src_rsv
|| (!trans
->bytes_reserved
&&
610 src_rsv
->type
!= BTRFS_BLOCK_RSV_DELALLOC
)) {
611 ret
= btrfs_block_rsv_add(root
, dst_rsv
, num_bytes
,
612 BTRFS_RESERVE_NO_FLUSH
);
614 * Since we're under a transaction reserve_metadata_bytes could
615 * try to commit the transaction which will make it return
616 * EAGAIN to make us stop the transaction we have, so return
617 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
622 node
->bytes_reserved
= num_bytes
;
623 trace_btrfs_space_reservation(root
->fs_info
,
629 } else if (src_rsv
->type
== BTRFS_BLOCK_RSV_DELALLOC
) {
630 spin_lock(&BTRFS_I(inode
)->lock
);
631 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
632 &BTRFS_I(inode
)->runtime_flags
)) {
633 spin_unlock(&BTRFS_I(inode
)->lock
);
637 spin_unlock(&BTRFS_I(inode
)->lock
);
639 /* Ok we didn't have space pre-reserved. This shouldn't happen
640 * too often but it can happen if we do delalloc to an existing
641 * inode which gets dirtied because of the time update, and then
642 * isn't touched again until after the transaction commits and
643 * then we try to write out the data. First try to be nice and
644 * reserve something strictly for us. If not be a pain and try
645 * to steal from the delalloc block rsv.
647 ret
= btrfs_block_rsv_add(root
, dst_rsv
, num_bytes
,
648 BTRFS_RESERVE_NO_FLUSH
);
652 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
656 if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
657 btrfs_debug(root
->fs_info
,
658 "block rsv migrate returned %d", ret
);
662 * Ok this is a problem, let's just steal from the global rsv
663 * since this really shouldn't happen that often.
665 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->global_block_rsv
,
671 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
675 * Migrate only takes a reservation, it doesn't touch the size of the
676 * block_rsv. This is to simplify people who don't normally have things
677 * migrated from their block rsv. If they go to release their
678 * reservation, that will decrease the size as well, so if migrate
679 * reduced size we'd end up with a negative size. But for the
680 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
681 * but we could in fact do this reserve/migrate dance several times
682 * between the time we did the original reservation and we'd clean it
683 * up. So to take care of this, release the space for the meta
684 * reservation here. I think it may be time for a documentation page on
685 * how block rsvs. work.
688 trace_btrfs_space_reservation(root
->fs_info
, "delayed_inode",
689 btrfs_ino(inode
), num_bytes
, 1);
690 node
->bytes_reserved
= num_bytes
;
694 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
695 btrfs_ino(inode
), num_bytes
, 0);
696 btrfs_block_rsv_release(root
, src_rsv
, num_bytes
);
702 static void btrfs_delayed_inode_release_metadata(struct btrfs_root
*root
,
703 struct btrfs_delayed_node
*node
)
705 struct btrfs_block_rsv
*rsv
;
707 if (!node
->bytes_reserved
)
710 rsv
= &root
->fs_info
->delayed_block_rsv
;
711 trace_btrfs_space_reservation(root
->fs_info
, "delayed_inode",
712 node
->inode_id
, node
->bytes_reserved
, 0);
713 btrfs_block_rsv_release(root
, rsv
,
714 node
->bytes_reserved
);
715 node
->bytes_reserved
= 0;
719 * This helper will insert some continuous items into the same leaf according
720 * to the free space of the leaf.
722 static int btrfs_batch_insert_items(struct btrfs_root
*root
,
723 struct btrfs_path
*path
,
724 struct btrfs_delayed_item
*item
)
726 struct btrfs_delayed_item
*curr
, *next
;
728 int total_data_size
= 0, total_size
= 0;
729 struct extent_buffer
*leaf
;
731 struct btrfs_key
*keys
;
733 struct list_head head
;
739 BUG_ON(!path
->nodes
[0]);
741 leaf
= path
->nodes
[0];
742 free_space
= btrfs_leaf_free_space(root
, leaf
);
743 INIT_LIST_HEAD(&head
);
749 * count the number of the continuous items that we can insert in batch
751 while (total_size
+ next
->data_len
+ sizeof(struct btrfs_item
) <=
753 total_data_size
+= next
->data_len
;
754 total_size
+= next
->data_len
+ sizeof(struct btrfs_item
);
755 list_add_tail(&next
->tree_list
, &head
);
759 next
= __btrfs_next_delayed_item(curr
);
763 if (!btrfs_is_continuous_delayed_item(curr
, next
))
773 * we need allocate some memory space, but it might cause the task
774 * to sleep, so we set all locked nodes in the path to blocking locks
777 btrfs_set_path_blocking(path
);
779 keys
= kmalloc_array(nitems
, sizeof(struct btrfs_key
), GFP_NOFS
);
785 data_size
= kmalloc_array(nitems
, sizeof(u32
), GFP_NOFS
);
791 /* get keys of all the delayed items */
793 list_for_each_entry(next
, &head
, tree_list
) {
795 data_size
[i
] = next
->data_len
;
799 /* reset all the locked nodes in the patch to spinning locks. */
800 btrfs_clear_path_blocking(path
, NULL
, 0);
802 /* insert the keys of the items */
803 setup_items_for_insert(root
, path
, keys
, data_size
,
804 total_data_size
, total_size
, nitems
);
806 /* insert the dir index items */
807 slot
= path
->slots
[0];
808 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
809 data_ptr
= btrfs_item_ptr(leaf
, slot
, char);
810 write_extent_buffer(leaf
, &curr
->data
,
811 (unsigned long)data_ptr
,
815 btrfs_delayed_item_release_metadata(root
, curr
);
817 list_del(&curr
->tree_list
);
818 btrfs_release_delayed_item(curr
);
829 * This helper can just do simple insertion that needn't extend item for new
830 * data, such as directory name index insertion, inode insertion.
832 static int btrfs_insert_delayed_item(struct btrfs_trans_handle
*trans
,
833 struct btrfs_root
*root
,
834 struct btrfs_path
*path
,
835 struct btrfs_delayed_item
*delayed_item
)
837 struct extent_buffer
*leaf
;
841 ret
= btrfs_insert_empty_item(trans
, root
, path
, &delayed_item
->key
,
842 delayed_item
->data_len
);
843 if (ret
< 0 && ret
!= -EEXIST
)
846 leaf
= path
->nodes
[0];
848 ptr
= btrfs_item_ptr(leaf
, path
->slots
[0], char);
850 write_extent_buffer(leaf
, delayed_item
->data
, (unsigned long)ptr
,
851 delayed_item
->data_len
);
852 btrfs_mark_buffer_dirty(leaf
);
854 btrfs_delayed_item_release_metadata(root
, delayed_item
);
859 * we insert an item first, then if there are some continuous items, we try
860 * to insert those items into the same leaf.
862 static int btrfs_insert_delayed_items(struct btrfs_trans_handle
*trans
,
863 struct btrfs_path
*path
,
864 struct btrfs_root
*root
,
865 struct btrfs_delayed_node
*node
)
867 struct btrfs_delayed_item
*curr
, *prev
;
871 mutex_lock(&node
->mutex
);
872 curr
= __btrfs_first_delayed_insertion_item(node
);
876 ret
= btrfs_insert_delayed_item(trans
, root
, path
, curr
);
878 btrfs_release_path(path
);
883 curr
= __btrfs_next_delayed_item(prev
);
884 if (curr
&& btrfs_is_continuous_delayed_item(prev
, curr
)) {
885 /* insert the continuous items into the same leaf */
887 btrfs_batch_insert_items(root
, path
, curr
);
889 btrfs_release_delayed_item(prev
);
890 btrfs_mark_buffer_dirty(path
->nodes
[0]);
892 btrfs_release_path(path
);
893 mutex_unlock(&node
->mutex
);
897 mutex_unlock(&node
->mutex
);
901 static int btrfs_batch_delete_items(struct btrfs_trans_handle
*trans
,
902 struct btrfs_root
*root
,
903 struct btrfs_path
*path
,
904 struct btrfs_delayed_item
*item
)
906 struct btrfs_delayed_item
*curr
, *next
;
907 struct extent_buffer
*leaf
;
908 struct btrfs_key key
;
909 struct list_head head
;
910 int nitems
, i
, last_item
;
913 BUG_ON(!path
->nodes
[0]);
915 leaf
= path
->nodes
[0];
918 last_item
= btrfs_header_nritems(leaf
) - 1;
920 return -ENOENT
; /* FIXME: Is errno suitable? */
923 INIT_LIST_HEAD(&head
);
924 btrfs_item_key_to_cpu(leaf
, &key
, i
);
927 * count the number of the dir index items that we can delete in batch
929 while (btrfs_comp_cpu_keys(&next
->key
, &key
) == 0) {
930 list_add_tail(&next
->tree_list
, &head
);
934 next
= __btrfs_next_delayed_item(curr
);
938 if (!btrfs_is_continuous_delayed_item(curr
, next
))
944 btrfs_item_key_to_cpu(leaf
, &key
, i
);
950 ret
= btrfs_del_items(trans
, root
, path
, path
->slots
[0], nitems
);
954 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
955 btrfs_delayed_item_release_metadata(root
, curr
);
956 list_del(&curr
->tree_list
);
957 btrfs_release_delayed_item(curr
);
964 static int btrfs_delete_delayed_items(struct btrfs_trans_handle
*trans
,
965 struct btrfs_path
*path
,
966 struct btrfs_root
*root
,
967 struct btrfs_delayed_node
*node
)
969 struct btrfs_delayed_item
*curr
, *prev
;
973 mutex_lock(&node
->mutex
);
974 curr
= __btrfs_first_delayed_deletion_item(node
);
978 ret
= btrfs_search_slot(trans
, root
, &curr
->key
, path
, -1, 1);
983 * can't find the item which the node points to, so this node
984 * is invalid, just drop it.
987 curr
= __btrfs_next_delayed_item(prev
);
988 btrfs_release_delayed_item(prev
);
990 btrfs_release_path(path
);
992 mutex_unlock(&node
->mutex
);
998 btrfs_batch_delete_items(trans
, root
, path
, curr
);
999 btrfs_release_path(path
);
1000 mutex_unlock(&node
->mutex
);
1004 btrfs_release_path(path
);
1005 mutex_unlock(&node
->mutex
);
1009 static void btrfs_release_delayed_inode(struct btrfs_delayed_node
*delayed_node
)
1011 struct btrfs_delayed_root
*delayed_root
;
1014 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1015 BUG_ON(!delayed_node
->root
);
1016 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
);
1017 delayed_node
->count
--;
1019 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
1020 finish_one_item(delayed_root
);
1024 static void btrfs_release_delayed_iref(struct btrfs_delayed_node
*delayed_node
)
1026 struct btrfs_delayed_root
*delayed_root
;
1028 ASSERT(delayed_node
->root
);
1029 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
);
1030 delayed_node
->count
--;
1032 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
1033 finish_one_item(delayed_root
);
1036 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle
*trans
,
1037 struct btrfs_root
*root
,
1038 struct btrfs_path
*path
,
1039 struct btrfs_delayed_node
*node
)
1041 struct btrfs_key key
;
1042 struct btrfs_inode_item
*inode_item
;
1043 struct extent_buffer
*leaf
;
1047 key
.objectid
= node
->inode_id
;
1048 key
.type
= BTRFS_INODE_ITEM_KEY
;
1051 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &node
->flags
))
1056 ret
= btrfs_lookup_inode(trans
, root
, path
, &key
, mod
);
1058 btrfs_release_path(path
);
1060 } else if (ret
< 0) {
1064 leaf
= path
->nodes
[0];
1065 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1066 struct btrfs_inode_item
);
1067 write_extent_buffer(leaf
, &node
->inode_item
, (unsigned long)inode_item
,
1068 sizeof(struct btrfs_inode_item
));
1069 btrfs_mark_buffer_dirty(leaf
);
1071 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &node
->flags
))
1075 if (path
->slots
[0] >= btrfs_header_nritems(leaf
))
1078 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1079 if (key
.objectid
!= node
->inode_id
)
1082 if (key
.type
!= BTRFS_INODE_REF_KEY
&&
1083 key
.type
!= BTRFS_INODE_EXTREF_KEY
)
1087 * Delayed iref deletion is for the inode who has only one link,
1088 * so there is only one iref. The case that several irefs are
1089 * in the same item doesn't exist.
1091 btrfs_del_item(trans
, root
, path
);
1093 btrfs_release_delayed_iref(node
);
1095 btrfs_release_path(path
);
1097 btrfs_delayed_inode_release_metadata(root
, node
);
1098 btrfs_release_delayed_inode(node
);
1103 btrfs_release_path(path
);
1105 key
.type
= BTRFS_INODE_EXTREF_KEY
;
1107 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1113 leaf
= path
->nodes
[0];
1118 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle
*trans
,
1119 struct btrfs_root
*root
,
1120 struct btrfs_path
*path
,
1121 struct btrfs_delayed_node
*node
)
1125 mutex_lock(&node
->mutex
);
1126 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &node
->flags
)) {
1127 mutex_unlock(&node
->mutex
);
1131 ret
= __btrfs_update_delayed_inode(trans
, root
, path
, node
);
1132 mutex_unlock(&node
->mutex
);
1137 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1138 struct btrfs_path
*path
,
1139 struct btrfs_delayed_node
*node
)
1143 ret
= btrfs_insert_delayed_items(trans
, path
, node
->root
, node
);
1147 ret
= btrfs_delete_delayed_items(trans
, path
, node
->root
, node
);
1151 ret
= btrfs_update_delayed_inode(trans
, node
->root
, path
, node
);
1156 * Called when committing the transaction.
1157 * Returns 0 on success.
1158 * Returns < 0 on error and returns with an aborted transaction with any
1159 * outstanding delayed items cleaned up.
1161 static int __btrfs_run_delayed_items(struct btrfs_trans_handle
*trans
,
1162 struct btrfs_root
*root
, int nr
)
1164 struct btrfs_delayed_root
*delayed_root
;
1165 struct btrfs_delayed_node
*curr_node
, *prev_node
;
1166 struct btrfs_path
*path
;
1167 struct btrfs_block_rsv
*block_rsv
;
1169 bool count
= (nr
> 0);
1174 path
= btrfs_alloc_path();
1177 path
->leave_spinning
= 1;
1179 block_rsv
= trans
->block_rsv
;
1180 trans
->block_rsv
= &root
->fs_info
->delayed_block_rsv
;
1182 delayed_root
= btrfs_get_delayed_root(root
);
1184 curr_node
= btrfs_first_delayed_node(delayed_root
);
1185 while (curr_node
&& (!count
|| (count
&& nr
--))) {
1186 ret
= __btrfs_commit_inode_delayed_items(trans
, path
,
1189 btrfs_release_delayed_node(curr_node
);
1191 btrfs_abort_transaction(trans
, root
, ret
);
1195 prev_node
= curr_node
;
1196 curr_node
= btrfs_next_delayed_node(curr_node
);
1197 btrfs_release_delayed_node(prev_node
);
1201 btrfs_release_delayed_node(curr_node
);
1202 btrfs_free_path(path
);
1203 trans
->block_rsv
= block_rsv
;
1208 int btrfs_run_delayed_items(struct btrfs_trans_handle
*trans
,
1209 struct btrfs_root
*root
)
1211 return __btrfs_run_delayed_items(trans
, root
, -1);
1214 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle
*trans
,
1215 struct btrfs_root
*root
, int nr
)
1217 return __btrfs_run_delayed_items(trans
, root
, nr
);
1220 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1221 struct inode
*inode
)
1223 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1224 struct btrfs_path
*path
;
1225 struct btrfs_block_rsv
*block_rsv
;
1231 mutex_lock(&delayed_node
->mutex
);
1232 if (!delayed_node
->count
) {
1233 mutex_unlock(&delayed_node
->mutex
);
1234 btrfs_release_delayed_node(delayed_node
);
1237 mutex_unlock(&delayed_node
->mutex
);
1239 path
= btrfs_alloc_path();
1241 btrfs_release_delayed_node(delayed_node
);
1244 path
->leave_spinning
= 1;
1246 block_rsv
= trans
->block_rsv
;
1247 trans
->block_rsv
= &delayed_node
->root
->fs_info
->delayed_block_rsv
;
1249 ret
= __btrfs_commit_inode_delayed_items(trans
, path
, delayed_node
);
1251 btrfs_release_delayed_node(delayed_node
);
1252 btrfs_free_path(path
);
1253 trans
->block_rsv
= block_rsv
;
1258 int btrfs_commit_inode_delayed_inode(struct inode
*inode
)
1260 struct btrfs_trans_handle
*trans
;
1261 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1262 struct btrfs_path
*path
;
1263 struct btrfs_block_rsv
*block_rsv
;
1269 mutex_lock(&delayed_node
->mutex
);
1270 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1271 mutex_unlock(&delayed_node
->mutex
);
1272 btrfs_release_delayed_node(delayed_node
);
1275 mutex_unlock(&delayed_node
->mutex
);
1277 trans
= btrfs_join_transaction(delayed_node
->root
);
1278 if (IS_ERR(trans
)) {
1279 ret
= PTR_ERR(trans
);
1283 path
= btrfs_alloc_path();
1288 path
->leave_spinning
= 1;
1290 block_rsv
= trans
->block_rsv
;
1291 trans
->block_rsv
= &delayed_node
->root
->fs_info
->delayed_block_rsv
;
1293 mutex_lock(&delayed_node
->mutex
);
1294 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
))
1295 ret
= __btrfs_update_delayed_inode(trans
, delayed_node
->root
,
1296 path
, delayed_node
);
1299 mutex_unlock(&delayed_node
->mutex
);
1301 btrfs_free_path(path
);
1302 trans
->block_rsv
= block_rsv
;
1304 btrfs_end_transaction(trans
, delayed_node
->root
);
1305 btrfs_btree_balance_dirty(delayed_node
->root
);
1307 btrfs_release_delayed_node(delayed_node
);
1312 void btrfs_remove_delayed_node(struct inode
*inode
)
1314 struct btrfs_delayed_node
*delayed_node
;
1316 delayed_node
= ACCESS_ONCE(BTRFS_I(inode
)->delayed_node
);
1320 BTRFS_I(inode
)->delayed_node
= NULL
;
1321 btrfs_release_delayed_node(delayed_node
);
1324 struct btrfs_async_delayed_work
{
1325 struct btrfs_delayed_root
*delayed_root
;
1327 struct btrfs_work work
;
1330 static void btrfs_async_run_delayed_root(struct btrfs_work
*work
)
1332 struct btrfs_async_delayed_work
*async_work
;
1333 struct btrfs_delayed_root
*delayed_root
;
1334 struct btrfs_trans_handle
*trans
;
1335 struct btrfs_path
*path
;
1336 struct btrfs_delayed_node
*delayed_node
= NULL
;
1337 struct btrfs_root
*root
;
1338 struct btrfs_block_rsv
*block_rsv
;
1341 async_work
= container_of(work
, struct btrfs_async_delayed_work
, work
);
1342 delayed_root
= async_work
->delayed_root
;
1344 path
= btrfs_alloc_path();
1349 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
/ 2)
1352 delayed_node
= btrfs_first_prepared_delayed_node(delayed_root
);
1356 path
->leave_spinning
= 1;
1357 root
= delayed_node
->root
;
1359 trans
= btrfs_join_transaction(root
);
1363 block_rsv
= trans
->block_rsv
;
1364 trans
->block_rsv
= &root
->fs_info
->delayed_block_rsv
;
1366 __btrfs_commit_inode_delayed_items(trans
, path
, delayed_node
);
1368 trans
->block_rsv
= block_rsv
;
1369 btrfs_end_transaction(trans
, root
);
1370 btrfs_btree_balance_dirty_nodelay(root
);
1373 btrfs_release_path(path
);
1376 btrfs_release_prepared_delayed_node(delayed_node
);
1377 if (async_work
->nr
== 0 || total_done
< async_work
->nr
)
1381 btrfs_free_path(path
);
1383 wake_up(&delayed_root
->wait
);
1388 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root
*delayed_root
,
1389 struct btrfs_fs_info
*fs_info
, int nr
)
1391 struct btrfs_async_delayed_work
*async_work
;
1393 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1396 async_work
= kmalloc(sizeof(*async_work
), GFP_NOFS
);
1400 async_work
->delayed_root
= delayed_root
;
1401 btrfs_init_work(&async_work
->work
, btrfs_delayed_meta_helper
,
1402 btrfs_async_run_delayed_root
, NULL
, NULL
);
1403 async_work
->nr
= nr
;
1405 btrfs_queue_work(fs_info
->delayed_workers
, &async_work
->work
);
1409 void btrfs_assert_delayed_root_empty(struct btrfs_root
*root
)
1411 struct btrfs_delayed_root
*delayed_root
;
1412 delayed_root
= btrfs_get_delayed_root(root
);
1413 WARN_ON(btrfs_first_delayed_node(delayed_root
));
1416 static int could_end_wait(struct btrfs_delayed_root
*delayed_root
, int seq
)
1418 int val
= atomic_read(&delayed_root
->items_seq
);
1420 if (val
< seq
|| val
>= seq
+ BTRFS_DELAYED_BATCH
)
1423 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1429 void btrfs_balance_delayed_items(struct btrfs_root
*root
)
1431 struct btrfs_delayed_root
*delayed_root
;
1432 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1434 delayed_root
= btrfs_get_delayed_root(root
);
1436 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1439 if (atomic_read(&delayed_root
->items
) >= BTRFS_DELAYED_WRITEBACK
) {
1443 seq
= atomic_read(&delayed_root
->items_seq
);
1445 ret
= btrfs_wq_run_delayed_node(delayed_root
, fs_info
, 0);
1449 wait_event_interruptible(delayed_root
->wait
,
1450 could_end_wait(delayed_root
, seq
));
1454 btrfs_wq_run_delayed_node(delayed_root
, fs_info
, BTRFS_DELAYED_BATCH
);
1457 /* Will return 0 or -ENOMEM */
1458 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1459 struct btrfs_root
*root
, const char *name
,
1460 int name_len
, struct inode
*dir
,
1461 struct btrfs_disk_key
*disk_key
, u8 type
,
1464 struct btrfs_delayed_node
*delayed_node
;
1465 struct btrfs_delayed_item
*delayed_item
;
1466 struct btrfs_dir_item
*dir_item
;
1469 delayed_node
= btrfs_get_or_create_delayed_node(dir
);
1470 if (IS_ERR(delayed_node
))
1471 return PTR_ERR(delayed_node
);
1473 delayed_item
= btrfs_alloc_delayed_item(sizeof(*dir_item
) + name_len
);
1474 if (!delayed_item
) {
1479 delayed_item
->key
.objectid
= btrfs_ino(dir
);
1480 delayed_item
->key
.type
= BTRFS_DIR_INDEX_KEY
;
1481 delayed_item
->key
.offset
= index
;
1483 dir_item
= (struct btrfs_dir_item
*)delayed_item
->data
;
1484 dir_item
->location
= *disk_key
;
1485 btrfs_set_stack_dir_transid(dir_item
, trans
->transid
);
1486 btrfs_set_stack_dir_data_len(dir_item
, 0);
1487 btrfs_set_stack_dir_name_len(dir_item
, name_len
);
1488 btrfs_set_stack_dir_type(dir_item
, type
);
1489 memcpy((char *)(dir_item
+ 1), name
, name_len
);
1491 ret
= btrfs_delayed_item_reserve_metadata(trans
, root
, delayed_item
);
1493 * we have reserved enough space when we start a new transaction,
1494 * so reserving metadata failure is impossible
1499 mutex_lock(&delayed_node
->mutex
);
1500 ret
= __btrfs_add_delayed_insertion_item(delayed_node
, delayed_item
);
1501 if (unlikely(ret
)) {
1502 btrfs_err(root
->fs_info
, "err add delayed dir index item(name: %.*s) "
1503 "into the insertion tree of the delayed node"
1504 "(root id: %llu, inode id: %llu, errno: %d)",
1505 name_len
, name
, delayed_node
->root
->objectid
,
1506 delayed_node
->inode_id
, ret
);
1509 mutex_unlock(&delayed_node
->mutex
);
1512 btrfs_release_delayed_node(delayed_node
);
1516 static int btrfs_delete_delayed_insertion_item(struct btrfs_root
*root
,
1517 struct btrfs_delayed_node
*node
,
1518 struct btrfs_key
*key
)
1520 struct btrfs_delayed_item
*item
;
1522 mutex_lock(&node
->mutex
);
1523 item
= __btrfs_lookup_delayed_insertion_item(node
, key
);
1525 mutex_unlock(&node
->mutex
);
1529 btrfs_delayed_item_release_metadata(root
, item
);
1530 btrfs_release_delayed_item(item
);
1531 mutex_unlock(&node
->mutex
);
1535 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1536 struct btrfs_root
*root
, struct inode
*dir
,
1539 struct btrfs_delayed_node
*node
;
1540 struct btrfs_delayed_item
*item
;
1541 struct btrfs_key item_key
;
1544 node
= btrfs_get_or_create_delayed_node(dir
);
1546 return PTR_ERR(node
);
1548 item_key
.objectid
= btrfs_ino(dir
);
1549 item_key
.type
= BTRFS_DIR_INDEX_KEY
;
1550 item_key
.offset
= index
;
1552 ret
= btrfs_delete_delayed_insertion_item(root
, node
, &item_key
);
1556 item
= btrfs_alloc_delayed_item(0);
1562 item
->key
= item_key
;
1564 ret
= btrfs_delayed_item_reserve_metadata(trans
, root
, item
);
1566 * we have reserved enough space when we start a new transaction,
1567 * so reserving metadata failure is impossible.
1571 mutex_lock(&node
->mutex
);
1572 ret
= __btrfs_add_delayed_deletion_item(node
, item
);
1573 if (unlikely(ret
)) {
1574 btrfs_err(root
->fs_info
, "err add delayed dir index item(index: %llu) "
1575 "into the deletion tree of the delayed node"
1576 "(root id: %llu, inode id: %llu, errno: %d)",
1577 index
, node
->root
->objectid
, node
->inode_id
,
1581 mutex_unlock(&node
->mutex
);
1583 btrfs_release_delayed_node(node
);
1587 int btrfs_inode_delayed_dir_index_count(struct inode
*inode
)
1589 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1595 * Since we have held i_mutex of this directory, it is impossible that
1596 * a new directory index is added into the delayed node and index_cnt
1597 * is updated now. So we needn't lock the delayed node.
1599 if (!delayed_node
->index_cnt
) {
1600 btrfs_release_delayed_node(delayed_node
);
1604 BTRFS_I(inode
)->index_cnt
= delayed_node
->index_cnt
;
1605 btrfs_release_delayed_node(delayed_node
);
1609 void btrfs_get_delayed_items(struct inode
*inode
, struct list_head
*ins_list
,
1610 struct list_head
*del_list
)
1612 struct btrfs_delayed_node
*delayed_node
;
1613 struct btrfs_delayed_item
*item
;
1615 delayed_node
= btrfs_get_delayed_node(inode
);
1619 mutex_lock(&delayed_node
->mutex
);
1620 item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1622 atomic_inc(&item
->refs
);
1623 list_add_tail(&item
->readdir_list
, ins_list
);
1624 item
= __btrfs_next_delayed_item(item
);
1627 item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1629 atomic_inc(&item
->refs
);
1630 list_add_tail(&item
->readdir_list
, del_list
);
1631 item
= __btrfs_next_delayed_item(item
);
1633 mutex_unlock(&delayed_node
->mutex
);
1635 * This delayed node is still cached in the btrfs inode, so refs
1636 * must be > 1 now, and we needn't check it is going to be freed
1639 * Besides that, this function is used to read dir, we do not
1640 * insert/delete delayed items in this period. So we also needn't
1641 * requeue or dequeue this delayed node.
1643 atomic_dec(&delayed_node
->refs
);
1646 void btrfs_put_delayed_items(struct list_head
*ins_list
,
1647 struct list_head
*del_list
)
1649 struct btrfs_delayed_item
*curr
, *next
;
1651 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1652 list_del(&curr
->readdir_list
);
1653 if (atomic_dec_and_test(&curr
->refs
))
1657 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1658 list_del(&curr
->readdir_list
);
1659 if (atomic_dec_and_test(&curr
->refs
))
1664 int btrfs_should_delete_dir_index(struct list_head
*del_list
,
1667 struct btrfs_delayed_item
*curr
, *next
;
1670 if (list_empty(del_list
))
1673 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1674 if (curr
->key
.offset
> index
)
1677 list_del(&curr
->readdir_list
);
1678 ret
= (curr
->key
.offset
== index
);
1680 if (atomic_dec_and_test(&curr
->refs
))
1692 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1695 int btrfs_readdir_delayed_dir_index(struct dir_context
*ctx
,
1696 struct list_head
*ins_list
, bool *emitted
)
1698 struct btrfs_dir_item
*di
;
1699 struct btrfs_delayed_item
*curr
, *next
;
1700 struct btrfs_key location
;
1704 unsigned char d_type
;
1706 if (list_empty(ins_list
))
1710 * Changing the data of the delayed item is impossible. So
1711 * we needn't lock them. And we have held i_mutex of the
1712 * directory, nobody can delete any directory indexes now.
1714 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1715 list_del(&curr
->readdir_list
);
1717 if (curr
->key
.offset
< ctx
->pos
) {
1718 if (atomic_dec_and_test(&curr
->refs
))
1723 ctx
->pos
= curr
->key
.offset
;
1725 di
= (struct btrfs_dir_item
*)curr
->data
;
1726 name
= (char *)(di
+ 1);
1727 name_len
= btrfs_stack_dir_name_len(di
);
1729 d_type
= btrfs_filetype_table
[di
->type
];
1730 btrfs_disk_key_to_cpu(&location
, &di
->location
);
1732 over
= !dir_emit(ctx
, name
, name_len
,
1733 location
.objectid
, d_type
);
1735 if (atomic_dec_and_test(&curr
->refs
))
1745 static void fill_stack_inode_item(struct btrfs_trans_handle
*trans
,
1746 struct btrfs_inode_item
*inode_item
,
1747 struct inode
*inode
)
1749 btrfs_set_stack_inode_uid(inode_item
, i_uid_read(inode
));
1750 btrfs_set_stack_inode_gid(inode_item
, i_gid_read(inode
));
1751 btrfs_set_stack_inode_size(inode_item
, BTRFS_I(inode
)->disk_i_size
);
1752 btrfs_set_stack_inode_mode(inode_item
, inode
->i_mode
);
1753 btrfs_set_stack_inode_nlink(inode_item
, inode
->i_nlink
);
1754 btrfs_set_stack_inode_nbytes(inode_item
, inode_get_bytes(inode
));
1755 btrfs_set_stack_inode_generation(inode_item
,
1756 BTRFS_I(inode
)->generation
);
1757 btrfs_set_stack_inode_sequence(inode_item
, inode
->i_version
);
1758 btrfs_set_stack_inode_transid(inode_item
, trans
->transid
);
1759 btrfs_set_stack_inode_rdev(inode_item
, inode
->i_rdev
);
1760 btrfs_set_stack_inode_flags(inode_item
, BTRFS_I(inode
)->flags
);
1761 btrfs_set_stack_inode_block_group(inode_item
, 0);
1763 btrfs_set_stack_timespec_sec(&inode_item
->atime
,
1764 inode
->i_atime
.tv_sec
);
1765 btrfs_set_stack_timespec_nsec(&inode_item
->atime
,
1766 inode
->i_atime
.tv_nsec
);
1768 btrfs_set_stack_timespec_sec(&inode_item
->mtime
,
1769 inode
->i_mtime
.tv_sec
);
1770 btrfs_set_stack_timespec_nsec(&inode_item
->mtime
,
1771 inode
->i_mtime
.tv_nsec
);
1773 btrfs_set_stack_timespec_sec(&inode_item
->ctime
,
1774 inode
->i_ctime
.tv_sec
);
1775 btrfs_set_stack_timespec_nsec(&inode_item
->ctime
,
1776 inode
->i_ctime
.tv_nsec
);
1778 btrfs_set_stack_timespec_sec(&inode_item
->otime
,
1779 BTRFS_I(inode
)->i_otime
.tv_sec
);
1780 btrfs_set_stack_timespec_nsec(&inode_item
->otime
,
1781 BTRFS_I(inode
)->i_otime
.tv_nsec
);
1784 int btrfs_fill_inode(struct inode
*inode
, u32
*rdev
)
1786 struct btrfs_delayed_node
*delayed_node
;
1787 struct btrfs_inode_item
*inode_item
;
1789 delayed_node
= btrfs_get_delayed_node(inode
);
1793 mutex_lock(&delayed_node
->mutex
);
1794 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1795 mutex_unlock(&delayed_node
->mutex
);
1796 btrfs_release_delayed_node(delayed_node
);
1800 inode_item
= &delayed_node
->inode_item
;
1802 i_uid_write(inode
, btrfs_stack_inode_uid(inode_item
));
1803 i_gid_write(inode
, btrfs_stack_inode_gid(inode_item
));
1804 btrfs_i_size_write(inode
, btrfs_stack_inode_size(inode_item
));
1805 inode
->i_mode
= btrfs_stack_inode_mode(inode_item
);
1806 set_nlink(inode
, btrfs_stack_inode_nlink(inode_item
));
1807 inode_set_bytes(inode
, btrfs_stack_inode_nbytes(inode_item
));
1808 BTRFS_I(inode
)->generation
= btrfs_stack_inode_generation(inode_item
);
1809 BTRFS_I(inode
)->last_trans
= btrfs_stack_inode_transid(inode_item
);
1811 inode
->i_version
= btrfs_stack_inode_sequence(inode_item
);
1813 *rdev
= btrfs_stack_inode_rdev(inode_item
);
1814 BTRFS_I(inode
)->flags
= btrfs_stack_inode_flags(inode_item
);
1816 inode
->i_atime
.tv_sec
= btrfs_stack_timespec_sec(&inode_item
->atime
);
1817 inode
->i_atime
.tv_nsec
= btrfs_stack_timespec_nsec(&inode_item
->atime
);
1819 inode
->i_mtime
.tv_sec
= btrfs_stack_timespec_sec(&inode_item
->mtime
);
1820 inode
->i_mtime
.tv_nsec
= btrfs_stack_timespec_nsec(&inode_item
->mtime
);
1822 inode
->i_ctime
.tv_sec
= btrfs_stack_timespec_sec(&inode_item
->ctime
);
1823 inode
->i_ctime
.tv_nsec
= btrfs_stack_timespec_nsec(&inode_item
->ctime
);
1825 BTRFS_I(inode
)->i_otime
.tv_sec
=
1826 btrfs_stack_timespec_sec(&inode_item
->otime
);
1827 BTRFS_I(inode
)->i_otime
.tv_nsec
=
1828 btrfs_stack_timespec_nsec(&inode_item
->otime
);
1830 inode
->i_generation
= BTRFS_I(inode
)->generation
;
1831 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1833 mutex_unlock(&delayed_node
->mutex
);
1834 btrfs_release_delayed_node(delayed_node
);
1838 int btrfs_delayed_update_inode(struct btrfs_trans_handle
*trans
,
1839 struct btrfs_root
*root
, struct inode
*inode
)
1841 struct btrfs_delayed_node
*delayed_node
;
1844 delayed_node
= btrfs_get_or_create_delayed_node(inode
);
1845 if (IS_ERR(delayed_node
))
1846 return PTR_ERR(delayed_node
);
1848 mutex_lock(&delayed_node
->mutex
);
1849 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1850 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, inode
);
1854 ret
= btrfs_delayed_inode_reserve_metadata(trans
, root
, inode
,
1859 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, inode
);
1860 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
);
1861 delayed_node
->count
++;
1862 atomic_inc(&root
->fs_info
->delayed_root
->items
);
1864 mutex_unlock(&delayed_node
->mutex
);
1865 btrfs_release_delayed_node(delayed_node
);
1869 int btrfs_delayed_delete_inode_ref(struct inode
*inode
)
1871 struct btrfs_delayed_node
*delayed_node
;
1874 * we don't do delayed inode updates during log recovery because it
1875 * leads to enospc problems. This means we also can't do
1876 * delayed inode refs
1878 if (BTRFS_I(inode
)->root
->fs_info
->log_root_recovering
)
1881 delayed_node
= btrfs_get_or_create_delayed_node(inode
);
1882 if (IS_ERR(delayed_node
))
1883 return PTR_ERR(delayed_node
);
1886 * We don't reserve space for inode ref deletion is because:
1887 * - We ONLY do async inode ref deletion for the inode who has only
1888 * one link(i_nlink == 1), it means there is only one inode ref.
1889 * And in most case, the inode ref and the inode item are in the
1890 * same leaf, and we will deal with them at the same time.
1891 * Since we are sure we will reserve the space for the inode item,
1892 * it is unnecessary to reserve space for inode ref deletion.
1893 * - If the inode ref and the inode item are not in the same leaf,
1894 * We also needn't worry about enospc problem, because we reserve
1895 * much more space for the inode update than it needs.
1896 * - At the worst, we can steal some space from the global reservation.
1899 mutex_lock(&delayed_node
->mutex
);
1900 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
))
1903 set_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
);
1904 delayed_node
->count
++;
1905 atomic_inc(&BTRFS_I(inode
)->root
->fs_info
->delayed_root
->items
);
1907 mutex_unlock(&delayed_node
->mutex
);
1908 btrfs_release_delayed_node(delayed_node
);
1912 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node
*delayed_node
)
1914 struct btrfs_root
*root
= delayed_node
->root
;
1915 struct btrfs_delayed_item
*curr_item
, *prev_item
;
1917 mutex_lock(&delayed_node
->mutex
);
1918 curr_item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1920 btrfs_delayed_item_release_metadata(root
, curr_item
);
1921 prev_item
= curr_item
;
1922 curr_item
= __btrfs_next_delayed_item(prev_item
);
1923 btrfs_release_delayed_item(prev_item
);
1926 curr_item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1928 btrfs_delayed_item_release_metadata(root
, curr_item
);
1929 prev_item
= curr_item
;
1930 curr_item
= __btrfs_next_delayed_item(prev_item
);
1931 btrfs_release_delayed_item(prev_item
);
1934 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
))
1935 btrfs_release_delayed_iref(delayed_node
);
1937 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1938 btrfs_delayed_inode_release_metadata(root
, delayed_node
);
1939 btrfs_release_delayed_inode(delayed_node
);
1941 mutex_unlock(&delayed_node
->mutex
);
1944 void btrfs_kill_delayed_inode_items(struct inode
*inode
)
1946 struct btrfs_delayed_node
*delayed_node
;
1948 delayed_node
= btrfs_get_delayed_node(inode
);
1952 __btrfs_kill_delayed_node(delayed_node
);
1953 btrfs_release_delayed_node(delayed_node
);
1956 void btrfs_kill_all_delayed_nodes(struct btrfs_root
*root
)
1959 struct btrfs_delayed_node
*delayed_nodes
[8];
1963 spin_lock(&root
->inode_lock
);
1964 n
= radix_tree_gang_lookup(&root
->delayed_nodes_tree
,
1965 (void **)delayed_nodes
, inode_id
,
1966 ARRAY_SIZE(delayed_nodes
));
1968 spin_unlock(&root
->inode_lock
);
1972 inode_id
= delayed_nodes
[n
- 1]->inode_id
+ 1;
1974 for (i
= 0; i
< n
; i
++)
1975 atomic_inc(&delayed_nodes
[i
]->refs
);
1976 spin_unlock(&root
->inode_lock
);
1978 for (i
= 0; i
< n
; i
++) {
1979 __btrfs_kill_delayed_node(delayed_nodes
[i
]);
1980 btrfs_release_delayed_node(delayed_nodes
[i
]);
1985 void btrfs_destroy_delayed_inodes(struct btrfs_root
*root
)
1987 struct btrfs_delayed_root
*delayed_root
;
1988 struct btrfs_delayed_node
*curr_node
, *prev_node
;
1990 delayed_root
= btrfs_get_delayed_root(root
);
1992 curr_node
= btrfs_first_delayed_node(delayed_root
);
1994 __btrfs_kill_delayed_node(curr_node
);
1996 prev_node
= curr_node
;
1997 curr_node
= btrfs_next_delayed_node(curr_node
);
1998 btrfs_release_delayed_node(prev_node
);