net: DCB: Validate DCB_ATTR_DCB_BUFFER argument
[linux/fpc-iii.git] / drivers / base / regmap / regmap.c
blob927ebde1607be825482e9daa17fb0b3acbdab444
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/of.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
25 #include "internal.h"
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
33 #undef LOG_DEVICE
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
60 bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
64 const struct regmap_range *r;
65 int i;
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
92 if (map->max_register && reg > map->max_register)
93 return false;
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
101 return true;
104 bool regmap_cached(struct regmap *map, unsigned int reg)
106 int ret;
107 unsigned int val;
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
112 if (!map->cache_ops)
113 return false;
115 if (map->max_register && reg > map->max_register)
116 return false;
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
124 return true;
127 bool regmap_readable(struct regmap *map, unsigned int reg)
129 if (!map->reg_read)
130 return false;
132 if (map->max_register && reg > map->max_register)
133 return false;
135 if (map->format.format_write)
136 return false;
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
144 return true;
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
164 bool regmap_precious(struct regmap *map, unsigned int reg)
166 if (!regmap_readable(map, reg))
167 return false;
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
175 return false;
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
186 return true;
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
197 return true;
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
203 unsigned int i;
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
209 return true;
212 static void regmap_format_2_6_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
215 u8 *out = map->work_buf;
217 *out = (reg << 6) | val;
220 static void regmap_format_4_12_write(struct regmap *map,
221 unsigned int reg, unsigned int val)
223 __be16 *out = map->work_buf;
224 *out = cpu_to_be16((reg << 12) | val);
227 static void regmap_format_7_9_write(struct regmap *map,
228 unsigned int reg, unsigned int val)
230 __be16 *out = map->work_buf;
231 *out = cpu_to_be16((reg << 9) | val);
234 static void regmap_format_10_14_write(struct regmap *map,
235 unsigned int reg, unsigned int val)
237 u8 *out = map->work_buf;
239 out[2] = val;
240 out[1] = (val >> 8) | (reg << 6);
241 out[0] = reg >> 2;
244 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
246 u8 *b = buf;
248 b[0] = val << shift;
251 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
253 put_unaligned_be16(val << shift, buf);
256 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
258 put_unaligned_le16(val << shift, buf);
261 static void regmap_format_16_native(void *buf, unsigned int val,
262 unsigned int shift)
264 u16 v = val << shift;
266 memcpy(buf, &v, sizeof(v));
269 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
271 u8 *b = buf;
273 val <<= shift;
275 b[0] = val >> 16;
276 b[1] = val >> 8;
277 b[2] = val;
280 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
282 put_unaligned_be32(val << shift, buf);
285 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
287 put_unaligned_le32(val << shift, buf);
290 static void regmap_format_32_native(void *buf, unsigned int val,
291 unsigned int shift)
293 u32 v = val << shift;
295 memcpy(buf, &v, sizeof(v));
298 #ifdef CONFIG_64BIT
299 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
301 put_unaligned_be64((u64) val << shift, buf);
304 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
306 put_unaligned_le64((u64) val << shift, buf);
309 static void regmap_format_64_native(void *buf, unsigned int val,
310 unsigned int shift)
312 u64 v = (u64) val << shift;
314 memcpy(buf, &v, sizeof(v));
316 #endif
318 static void regmap_parse_inplace_noop(void *buf)
322 static unsigned int regmap_parse_8(const void *buf)
324 const u8 *b = buf;
326 return b[0];
329 static unsigned int regmap_parse_16_be(const void *buf)
331 return get_unaligned_be16(buf);
334 static unsigned int regmap_parse_16_le(const void *buf)
336 return get_unaligned_le16(buf);
339 static void regmap_parse_16_be_inplace(void *buf)
341 u16 v = get_unaligned_be16(buf);
343 memcpy(buf, &v, sizeof(v));
346 static void regmap_parse_16_le_inplace(void *buf)
348 u16 v = get_unaligned_le16(buf);
350 memcpy(buf, &v, sizeof(v));
353 static unsigned int regmap_parse_16_native(const void *buf)
355 u16 v;
357 memcpy(&v, buf, sizeof(v));
358 return v;
361 static unsigned int regmap_parse_24(const void *buf)
363 const u8 *b = buf;
364 unsigned int ret = b[2];
365 ret |= ((unsigned int)b[1]) << 8;
366 ret |= ((unsigned int)b[0]) << 16;
368 return ret;
371 static unsigned int regmap_parse_32_be(const void *buf)
373 return get_unaligned_be32(buf);
376 static unsigned int regmap_parse_32_le(const void *buf)
378 return get_unaligned_le32(buf);
381 static void regmap_parse_32_be_inplace(void *buf)
383 u32 v = get_unaligned_be32(buf);
385 memcpy(buf, &v, sizeof(v));
388 static void regmap_parse_32_le_inplace(void *buf)
390 u32 v = get_unaligned_le32(buf);
392 memcpy(buf, &v, sizeof(v));
395 static unsigned int regmap_parse_32_native(const void *buf)
397 u32 v;
399 memcpy(&v, buf, sizeof(v));
400 return v;
403 #ifdef CONFIG_64BIT
404 static unsigned int regmap_parse_64_be(const void *buf)
406 return get_unaligned_be64(buf);
409 static unsigned int regmap_parse_64_le(const void *buf)
411 return get_unaligned_le64(buf);
414 static void regmap_parse_64_be_inplace(void *buf)
416 u64 v = get_unaligned_be64(buf);
418 memcpy(buf, &v, sizeof(v));
421 static void regmap_parse_64_le_inplace(void *buf)
423 u64 v = get_unaligned_le64(buf);
425 memcpy(buf, &v, sizeof(v));
428 static unsigned int regmap_parse_64_native(const void *buf)
430 u64 v;
432 memcpy(&v, buf, sizeof(v));
433 return v;
435 #endif
437 static void regmap_lock_hwlock(void *__map)
439 struct regmap *map = __map;
441 hwspin_lock_timeout(map->hwlock, UINT_MAX);
444 static void regmap_lock_hwlock_irq(void *__map)
446 struct regmap *map = __map;
448 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
451 static void regmap_lock_hwlock_irqsave(void *__map)
453 struct regmap *map = __map;
455 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
456 &map->spinlock_flags);
459 static void regmap_unlock_hwlock(void *__map)
461 struct regmap *map = __map;
463 hwspin_unlock(map->hwlock);
466 static void regmap_unlock_hwlock_irq(void *__map)
468 struct regmap *map = __map;
470 hwspin_unlock_irq(map->hwlock);
473 static void regmap_unlock_hwlock_irqrestore(void *__map)
475 struct regmap *map = __map;
477 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
480 static void regmap_lock_unlock_none(void *__map)
485 static void regmap_lock_mutex(void *__map)
487 struct regmap *map = __map;
488 mutex_lock(&map->mutex);
491 static void regmap_unlock_mutex(void *__map)
493 struct regmap *map = __map;
494 mutex_unlock(&map->mutex);
497 static void regmap_lock_spinlock(void *__map)
498 __acquires(&map->spinlock)
500 struct regmap *map = __map;
501 unsigned long flags;
503 spin_lock_irqsave(&map->spinlock, flags);
504 map->spinlock_flags = flags;
507 static void regmap_unlock_spinlock(void *__map)
508 __releases(&map->spinlock)
510 struct regmap *map = __map;
511 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
514 static void dev_get_regmap_release(struct device *dev, void *res)
517 * We don't actually have anything to do here; the goal here
518 * is not to manage the regmap but to provide a simple way to
519 * get the regmap back given a struct device.
523 static bool _regmap_range_add(struct regmap *map,
524 struct regmap_range_node *data)
526 struct rb_root *root = &map->range_tree;
527 struct rb_node **new = &(root->rb_node), *parent = NULL;
529 while (*new) {
530 struct regmap_range_node *this =
531 rb_entry(*new, struct regmap_range_node, node);
533 parent = *new;
534 if (data->range_max < this->range_min)
535 new = &((*new)->rb_left);
536 else if (data->range_min > this->range_max)
537 new = &((*new)->rb_right);
538 else
539 return false;
542 rb_link_node(&data->node, parent, new);
543 rb_insert_color(&data->node, root);
545 return true;
548 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
549 unsigned int reg)
551 struct rb_node *node = map->range_tree.rb_node;
553 while (node) {
554 struct regmap_range_node *this =
555 rb_entry(node, struct regmap_range_node, node);
557 if (reg < this->range_min)
558 node = node->rb_left;
559 else if (reg > this->range_max)
560 node = node->rb_right;
561 else
562 return this;
565 return NULL;
568 static void regmap_range_exit(struct regmap *map)
570 struct rb_node *next;
571 struct regmap_range_node *range_node;
573 next = rb_first(&map->range_tree);
574 while (next) {
575 range_node = rb_entry(next, struct regmap_range_node, node);
576 next = rb_next(&range_node->node);
577 rb_erase(&range_node->node, &map->range_tree);
578 kfree(range_node);
581 kfree(map->selector_work_buf);
584 int regmap_attach_dev(struct device *dev, struct regmap *map,
585 const struct regmap_config *config)
587 struct regmap **m;
589 map->dev = dev;
591 regmap_debugfs_init(map, config->name);
593 /* Add a devres resource for dev_get_regmap() */
594 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
595 if (!m) {
596 regmap_debugfs_exit(map);
597 return -ENOMEM;
599 *m = map;
600 devres_add(dev, m);
602 return 0;
604 EXPORT_SYMBOL_GPL(regmap_attach_dev);
606 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
607 const struct regmap_config *config)
609 enum regmap_endian endian;
611 /* Retrieve the endianness specification from the regmap config */
612 endian = config->reg_format_endian;
614 /* If the regmap config specified a non-default value, use that */
615 if (endian != REGMAP_ENDIAN_DEFAULT)
616 return endian;
618 /* Retrieve the endianness specification from the bus config */
619 if (bus && bus->reg_format_endian_default)
620 endian = bus->reg_format_endian_default;
622 /* If the bus specified a non-default value, use that */
623 if (endian != REGMAP_ENDIAN_DEFAULT)
624 return endian;
626 /* Use this if no other value was found */
627 return REGMAP_ENDIAN_BIG;
630 enum regmap_endian regmap_get_val_endian(struct device *dev,
631 const struct regmap_bus *bus,
632 const struct regmap_config *config)
634 struct device_node *np;
635 enum regmap_endian endian;
637 /* Retrieve the endianness specification from the regmap config */
638 endian = config->val_format_endian;
640 /* If the regmap config specified a non-default value, use that */
641 if (endian != REGMAP_ENDIAN_DEFAULT)
642 return endian;
644 /* If the dev and dev->of_node exist try to get endianness from DT */
645 if (dev && dev->of_node) {
646 np = dev->of_node;
648 /* Parse the device's DT node for an endianness specification */
649 if (of_property_read_bool(np, "big-endian"))
650 endian = REGMAP_ENDIAN_BIG;
651 else if (of_property_read_bool(np, "little-endian"))
652 endian = REGMAP_ENDIAN_LITTLE;
653 else if (of_property_read_bool(np, "native-endian"))
654 endian = REGMAP_ENDIAN_NATIVE;
656 /* If the endianness was specified in DT, use that */
657 if (endian != REGMAP_ENDIAN_DEFAULT)
658 return endian;
661 /* Retrieve the endianness specification from the bus config */
662 if (bus && bus->val_format_endian_default)
663 endian = bus->val_format_endian_default;
665 /* If the bus specified a non-default value, use that */
666 if (endian != REGMAP_ENDIAN_DEFAULT)
667 return endian;
669 /* Use this if no other value was found */
670 return REGMAP_ENDIAN_BIG;
672 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
674 struct regmap *__regmap_init(struct device *dev,
675 const struct regmap_bus *bus,
676 void *bus_context,
677 const struct regmap_config *config,
678 struct lock_class_key *lock_key,
679 const char *lock_name)
681 struct regmap *map;
682 int ret = -EINVAL;
683 enum regmap_endian reg_endian, val_endian;
684 int i, j;
686 if (!config)
687 goto err;
689 map = kzalloc(sizeof(*map), GFP_KERNEL);
690 if (map == NULL) {
691 ret = -ENOMEM;
692 goto err;
695 if (config->name) {
696 map->name = kstrdup_const(config->name, GFP_KERNEL);
697 if (!map->name) {
698 ret = -ENOMEM;
699 goto err_map;
703 if (config->disable_locking) {
704 map->lock = map->unlock = regmap_lock_unlock_none;
705 regmap_debugfs_disable(map);
706 } else if (config->lock && config->unlock) {
707 map->lock = config->lock;
708 map->unlock = config->unlock;
709 map->lock_arg = config->lock_arg;
710 } else if (config->use_hwlock) {
711 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
712 if (!map->hwlock) {
713 ret = -ENXIO;
714 goto err_name;
717 switch (config->hwlock_mode) {
718 case HWLOCK_IRQSTATE:
719 map->lock = regmap_lock_hwlock_irqsave;
720 map->unlock = regmap_unlock_hwlock_irqrestore;
721 break;
722 case HWLOCK_IRQ:
723 map->lock = regmap_lock_hwlock_irq;
724 map->unlock = regmap_unlock_hwlock_irq;
725 break;
726 default:
727 map->lock = regmap_lock_hwlock;
728 map->unlock = regmap_unlock_hwlock;
729 break;
732 map->lock_arg = map;
733 } else {
734 if ((bus && bus->fast_io) ||
735 config->fast_io) {
736 spin_lock_init(&map->spinlock);
737 map->lock = regmap_lock_spinlock;
738 map->unlock = regmap_unlock_spinlock;
739 lockdep_set_class_and_name(&map->spinlock,
740 lock_key, lock_name);
741 } else {
742 mutex_init(&map->mutex);
743 map->lock = regmap_lock_mutex;
744 map->unlock = regmap_unlock_mutex;
745 lockdep_set_class_and_name(&map->mutex,
746 lock_key, lock_name);
748 map->lock_arg = map;
752 * When we write in fast-paths with regmap_bulk_write() don't allocate
753 * scratch buffers with sleeping allocations.
755 if ((bus && bus->fast_io) || config->fast_io)
756 map->alloc_flags = GFP_ATOMIC;
757 else
758 map->alloc_flags = GFP_KERNEL;
760 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
761 map->format.pad_bytes = config->pad_bits / 8;
762 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
763 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
764 config->val_bits + config->pad_bits, 8);
765 map->reg_shift = config->pad_bits % 8;
766 if (config->reg_stride)
767 map->reg_stride = config->reg_stride;
768 else
769 map->reg_stride = 1;
770 if (is_power_of_2(map->reg_stride))
771 map->reg_stride_order = ilog2(map->reg_stride);
772 else
773 map->reg_stride_order = -1;
774 map->use_single_read = config->use_single_read || !bus || !bus->read;
775 map->use_single_write = config->use_single_write || !bus || !bus->write;
776 map->can_multi_write = config->can_multi_write && bus && bus->write;
777 if (bus) {
778 map->max_raw_read = bus->max_raw_read;
779 map->max_raw_write = bus->max_raw_write;
781 map->dev = dev;
782 map->bus = bus;
783 map->bus_context = bus_context;
784 map->max_register = config->max_register;
785 map->wr_table = config->wr_table;
786 map->rd_table = config->rd_table;
787 map->volatile_table = config->volatile_table;
788 map->precious_table = config->precious_table;
789 map->wr_noinc_table = config->wr_noinc_table;
790 map->rd_noinc_table = config->rd_noinc_table;
791 map->writeable_reg = config->writeable_reg;
792 map->readable_reg = config->readable_reg;
793 map->volatile_reg = config->volatile_reg;
794 map->precious_reg = config->precious_reg;
795 map->writeable_noinc_reg = config->writeable_noinc_reg;
796 map->readable_noinc_reg = config->readable_noinc_reg;
797 map->cache_type = config->cache_type;
799 spin_lock_init(&map->async_lock);
800 INIT_LIST_HEAD(&map->async_list);
801 INIT_LIST_HEAD(&map->async_free);
802 init_waitqueue_head(&map->async_waitq);
804 if (config->read_flag_mask ||
805 config->write_flag_mask ||
806 config->zero_flag_mask) {
807 map->read_flag_mask = config->read_flag_mask;
808 map->write_flag_mask = config->write_flag_mask;
809 } else if (bus) {
810 map->read_flag_mask = bus->read_flag_mask;
813 if (!bus) {
814 map->reg_read = config->reg_read;
815 map->reg_write = config->reg_write;
817 map->defer_caching = false;
818 goto skip_format_initialization;
819 } else if (!bus->read || !bus->write) {
820 map->reg_read = _regmap_bus_reg_read;
821 map->reg_write = _regmap_bus_reg_write;
823 map->defer_caching = false;
824 goto skip_format_initialization;
825 } else {
826 map->reg_read = _regmap_bus_read;
827 map->reg_update_bits = bus->reg_update_bits;
830 reg_endian = regmap_get_reg_endian(bus, config);
831 val_endian = regmap_get_val_endian(dev, bus, config);
833 switch (config->reg_bits + map->reg_shift) {
834 case 2:
835 switch (config->val_bits) {
836 case 6:
837 map->format.format_write = regmap_format_2_6_write;
838 break;
839 default:
840 goto err_hwlock;
842 break;
844 case 4:
845 switch (config->val_bits) {
846 case 12:
847 map->format.format_write = regmap_format_4_12_write;
848 break;
849 default:
850 goto err_hwlock;
852 break;
854 case 7:
855 switch (config->val_bits) {
856 case 9:
857 map->format.format_write = regmap_format_7_9_write;
858 break;
859 default:
860 goto err_hwlock;
862 break;
864 case 10:
865 switch (config->val_bits) {
866 case 14:
867 map->format.format_write = regmap_format_10_14_write;
868 break;
869 default:
870 goto err_hwlock;
872 break;
874 case 8:
875 map->format.format_reg = regmap_format_8;
876 break;
878 case 16:
879 switch (reg_endian) {
880 case REGMAP_ENDIAN_BIG:
881 map->format.format_reg = regmap_format_16_be;
882 break;
883 case REGMAP_ENDIAN_LITTLE:
884 map->format.format_reg = regmap_format_16_le;
885 break;
886 case REGMAP_ENDIAN_NATIVE:
887 map->format.format_reg = regmap_format_16_native;
888 break;
889 default:
890 goto err_hwlock;
892 break;
894 case 24:
895 if (reg_endian != REGMAP_ENDIAN_BIG)
896 goto err_hwlock;
897 map->format.format_reg = regmap_format_24;
898 break;
900 case 32:
901 switch (reg_endian) {
902 case REGMAP_ENDIAN_BIG:
903 map->format.format_reg = regmap_format_32_be;
904 break;
905 case REGMAP_ENDIAN_LITTLE:
906 map->format.format_reg = regmap_format_32_le;
907 break;
908 case REGMAP_ENDIAN_NATIVE:
909 map->format.format_reg = regmap_format_32_native;
910 break;
911 default:
912 goto err_hwlock;
914 break;
916 #ifdef CONFIG_64BIT
917 case 64:
918 switch (reg_endian) {
919 case REGMAP_ENDIAN_BIG:
920 map->format.format_reg = regmap_format_64_be;
921 break;
922 case REGMAP_ENDIAN_LITTLE:
923 map->format.format_reg = regmap_format_64_le;
924 break;
925 case REGMAP_ENDIAN_NATIVE:
926 map->format.format_reg = regmap_format_64_native;
927 break;
928 default:
929 goto err_hwlock;
931 break;
932 #endif
934 default:
935 goto err_hwlock;
938 if (val_endian == REGMAP_ENDIAN_NATIVE)
939 map->format.parse_inplace = regmap_parse_inplace_noop;
941 switch (config->val_bits) {
942 case 8:
943 map->format.format_val = regmap_format_8;
944 map->format.parse_val = regmap_parse_8;
945 map->format.parse_inplace = regmap_parse_inplace_noop;
946 break;
947 case 16:
948 switch (val_endian) {
949 case REGMAP_ENDIAN_BIG:
950 map->format.format_val = regmap_format_16_be;
951 map->format.parse_val = regmap_parse_16_be;
952 map->format.parse_inplace = regmap_parse_16_be_inplace;
953 break;
954 case REGMAP_ENDIAN_LITTLE:
955 map->format.format_val = regmap_format_16_le;
956 map->format.parse_val = regmap_parse_16_le;
957 map->format.parse_inplace = regmap_parse_16_le_inplace;
958 break;
959 case REGMAP_ENDIAN_NATIVE:
960 map->format.format_val = regmap_format_16_native;
961 map->format.parse_val = regmap_parse_16_native;
962 break;
963 default:
964 goto err_hwlock;
966 break;
967 case 24:
968 if (val_endian != REGMAP_ENDIAN_BIG)
969 goto err_hwlock;
970 map->format.format_val = regmap_format_24;
971 map->format.parse_val = regmap_parse_24;
972 break;
973 case 32:
974 switch (val_endian) {
975 case REGMAP_ENDIAN_BIG:
976 map->format.format_val = regmap_format_32_be;
977 map->format.parse_val = regmap_parse_32_be;
978 map->format.parse_inplace = regmap_parse_32_be_inplace;
979 break;
980 case REGMAP_ENDIAN_LITTLE:
981 map->format.format_val = regmap_format_32_le;
982 map->format.parse_val = regmap_parse_32_le;
983 map->format.parse_inplace = regmap_parse_32_le_inplace;
984 break;
985 case REGMAP_ENDIAN_NATIVE:
986 map->format.format_val = regmap_format_32_native;
987 map->format.parse_val = regmap_parse_32_native;
988 break;
989 default:
990 goto err_hwlock;
992 break;
993 #ifdef CONFIG_64BIT
994 case 64:
995 switch (val_endian) {
996 case REGMAP_ENDIAN_BIG:
997 map->format.format_val = regmap_format_64_be;
998 map->format.parse_val = regmap_parse_64_be;
999 map->format.parse_inplace = regmap_parse_64_be_inplace;
1000 break;
1001 case REGMAP_ENDIAN_LITTLE:
1002 map->format.format_val = regmap_format_64_le;
1003 map->format.parse_val = regmap_parse_64_le;
1004 map->format.parse_inplace = regmap_parse_64_le_inplace;
1005 break;
1006 case REGMAP_ENDIAN_NATIVE:
1007 map->format.format_val = regmap_format_64_native;
1008 map->format.parse_val = regmap_parse_64_native;
1009 break;
1010 default:
1011 goto err_hwlock;
1013 break;
1014 #endif
1017 if (map->format.format_write) {
1018 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1019 (val_endian != REGMAP_ENDIAN_BIG))
1020 goto err_hwlock;
1021 map->use_single_write = true;
1024 if (!map->format.format_write &&
1025 !(map->format.format_reg && map->format.format_val))
1026 goto err_hwlock;
1028 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1029 if (map->work_buf == NULL) {
1030 ret = -ENOMEM;
1031 goto err_hwlock;
1034 if (map->format.format_write) {
1035 map->defer_caching = false;
1036 map->reg_write = _regmap_bus_formatted_write;
1037 } else if (map->format.format_val) {
1038 map->defer_caching = true;
1039 map->reg_write = _regmap_bus_raw_write;
1042 skip_format_initialization:
1044 map->range_tree = RB_ROOT;
1045 for (i = 0; i < config->num_ranges; i++) {
1046 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1047 struct regmap_range_node *new;
1049 /* Sanity check */
1050 if (range_cfg->range_max < range_cfg->range_min) {
1051 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1052 range_cfg->range_max, range_cfg->range_min);
1053 goto err_range;
1056 if (range_cfg->range_max > map->max_register) {
1057 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1058 range_cfg->range_max, map->max_register);
1059 goto err_range;
1062 if (range_cfg->selector_reg > map->max_register) {
1063 dev_err(map->dev,
1064 "Invalid range %d: selector out of map\n", i);
1065 goto err_range;
1068 if (range_cfg->window_len == 0) {
1069 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1071 goto err_range;
1074 /* Make sure, that this register range has no selector
1075 or data window within its boundary */
1076 for (j = 0; j < config->num_ranges; j++) {
1077 unsigned sel_reg = config->ranges[j].selector_reg;
1078 unsigned win_min = config->ranges[j].window_start;
1079 unsigned win_max = win_min +
1080 config->ranges[j].window_len - 1;
1082 /* Allow data window inside its own virtual range */
1083 if (j == i)
1084 continue;
1086 if (range_cfg->range_min <= sel_reg &&
1087 sel_reg <= range_cfg->range_max) {
1088 dev_err(map->dev,
1089 "Range %d: selector for %d in window\n",
1090 i, j);
1091 goto err_range;
1094 if (!(win_max < range_cfg->range_min ||
1095 win_min > range_cfg->range_max)) {
1096 dev_err(map->dev,
1097 "Range %d: window for %d in window\n",
1098 i, j);
1099 goto err_range;
1103 new = kzalloc(sizeof(*new), GFP_KERNEL);
1104 if (new == NULL) {
1105 ret = -ENOMEM;
1106 goto err_range;
1109 new->map = map;
1110 new->name = range_cfg->name;
1111 new->range_min = range_cfg->range_min;
1112 new->range_max = range_cfg->range_max;
1113 new->selector_reg = range_cfg->selector_reg;
1114 new->selector_mask = range_cfg->selector_mask;
1115 new->selector_shift = range_cfg->selector_shift;
1116 new->window_start = range_cfg->window_start;
1117 new->window_len = range_cfg->window_len;
1119 if (!_regmap_range_add(map, new)) {
1120 dev_err(map->dev, "Failed to add range %d\n", i);
1121 kfree(new);
1122 goto err_range;
1125 if (map->selector_work_buf == NULL) {
1126 map->selector_work_buf =
1127 kzalloc(map->format.buf_size, GFP_KERNEL);
1128 if (map->selector_work_buf == NULL) {
1129 ret = -ENOMEM;
1130 goto err_range;
1135 ret = regcache_init(map, config);
1136 if (ret != 0)
1137 goto err_range;
1139 if (dev) {
1140 ret = regmap_attach_dev(dev, map, config);
1141 if (ret != 0)
1142 goto err_regcache;
1143 } else {
1144 regmap_debugfs_init(map, config->name);
1147 return map;
1149 err_regcache:
1150 regcache_exit(map);
1151 err_range:
1152 regmap_range_exit(map);
1153 kfree(map->work_buf);
1154 err_hwlock:
1155 if (map->hwlock)
1156 hwspin_lock_free(map->hwlock);
1157 err_name:
1158 kfree_const(map->name);
1159 err_map:
1160 kfree(map);
1161 err:
1162 return ERR_PTR(ret);
1164 EXPORT_SYMBOL_GPL(__regmap_init);
1166 static void devm_regmap_release(struct device *dev, void *res)
1168 regmap_exit(*(struct regmap **)res);
1171 struct regmap *__devm_regmap_init(struct device *dev,
1172 const struct regmap_bus *bus,
1173 void *bus_context,
1174 const struct regmap_config *config,
1175 struct lock_class_key *lock_key,
1176 const char *lock_name)
1178 struct regmap **ptr, *regmap;
1180 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1181 if (!ptr)
1182 return ERR_PTR(-ENOMEM);
1184 regmap = __regmap_init(dev, bus, bus_context, config,
1185 lock_key, lock_name);
1186 if (!IS_ERR(regmap)) {
1187 *ptr = regmap;
1188 devres_add(dev, ptr);
1189 } else {
1190 devres_free(ptr);
1193 return regmap;
1195 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1197 static void regmap_field_init(struct regmap_field *rm_field,
1198 struct regmap *regmap, struct reg_field reg_field)
1200 rm_field->regmap = regmap;
1201 rm_field->reg = reg_field.reg;
1202 rm_field->shift = reg_field.lsb;
1203 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1204 rm_field->id_size = reg_field.id_size;
1205 rm_field->id_offset = reg_field.id_offset;
1209 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1211 * @dev: Device that will be interacted with
1212 * @regmap: regmap bank in which this register field is located.
1213 * @reg_field: Register field with in the bank.
1215 * The return value will be an ERR_PTR() on error or a valid pointer
1216 * to a struct regmap_field. The regmap_field will be automatically freed
1217 * by the device management code.
1219 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1220 struct regmap *regmap, struct reg_field reg_field)
1222 struct regmap_field *rm_field = devm_kzalloc(dev,
1223 sizeof(*rm_field), GFP_KERNEL);
1224 if (!rm_field)
1225 return ERR_PTR(-ENOMEM);
1227 regmap_field_init(rm_field, regmap, reg_field);
1229 return rm_field;
1232 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1235 * devm_regmap_field_free() - Free a register field allocated using
1236 * devm_regmap_field_alloc.
1238 * @dev: Device that will be interacted with
1239 * @field: regmap field which should be freed.
1241 * Free register field allocated using devm_regmap_field_alloc(). Usually
1242 * drivers need not call this function, as the memory allocated via devm
1243 * will be freed as per device-driver life-cyle.
1245 void devm_regmap_field_free(struct device *dev,
1246 struct regmap_field *field)
1248 devm_kfree(dev, field);
1250 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1253 * regmap_field_alloc() - Allocate and initialise a register field.
1255 * @regmap: regmap bank in which this register field is located.
1256 * @reg_field: Register field with in the bank.
1258 * The return value will be an ERR_PTR() on error or a valid pointer
1259 * to a struct regmap_field. The regmap_field should be freed by the
1260 * user once its finished working with it using regmap_field_free().
1262 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1263 struct reg_field reg_field)
1265 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1267 if (!rm_field)
1268 return ERR_PTR(-ENOMEM);
1270 regmap_field_init(rm_field, regmap, reg_field);
1272 return rm_field;
1274 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1277 * regmap_field_free() - Free register field allocated using
1278 * regmap_field_alloc.
1280 * @field: regmap field which should be freed.
1282 void regmap_field_free(struct regmap_field *field)
1284 kfree(field);
1286 EXPORT_SYMBOL_GPL(regmap_field_free);
1289 * regmap_reinit_cache() - Reinitialise the current register cache
1291 * @map: Register map to operate on.
1292 * @config: New configuration. Only the cache data will be used.
1294 * Discard any existing register cache for the map and initialize a
1295 * new cache. This can be used to restore the cache to defaults or to
1296 * update the cache configuration to reflect runtime discovery of the
1297 * hardware.
1299 * No explicit locking is done here, the user needs to ensure that
1300 * this function will not race with other calls to regmap.
1302 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1304 regcache_exit(map);
1305 regmap_debugfs_exit(map);
1307 map->max_register = config->max_register;
1308 map->writeable_reg = config->writeable_reg;
1309 map->readable_reg = config->readable_reg;
1310 map->volatile_reg = config->volatile_reg;
1311 map->precious_reg = config->precious_reg;
1312 map->writeable_noinc_reg = config->writeable_noinc_reg;
1313 map->readable_noinc_reg = config->readable_noinc_reg;
1314 map->cache_type = config->cache_type;
1316 regmap_debugfs_init(map, config->name);
1318 map->cache_bypass = false;
1319 map->cache_only = false;
1321 return regcache_init(map, config);
1323 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1326 * regmap_exit() - Free a previously allocated register map
1328 * @map: Register map to operate on.
1330 void regmap_exit(struct regmap *map)
1332 struct regmap_async *async;
1334 regcache_exit(map);
1335 regmap_debugfs_exit(map);
1336 regmap_range_exit(map);
1337 if (map->bus && map->bus->free_context)
1338 map->bus->free_context(map->bus_context);
1339 kfree(map->work_buf);
1340 while (!list_empty(&map->async_free)) {
1341 async = list_first_entry_or_null(&map->async_free,
1342 struct regmap_async,
1343 list);
1344 list_del(&async->list);
1345 kfree(async->work_buf);
1346 kfree(async);
1348 if (map->hwlock)
1349 hwspin_lock_free(map->hwlock);
1350 kfree_const(map->name);
1351 kfree(map->patch);
1352 kfree(map);
1354 EXPORT_SYMBOL_GPL(regmap_exit);
1356 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1358 struct regmap **r = res;
1359 if (!r || !*r) {
1360 WARN_ON(!r || !*r);
1361 return 0;
1364 /* If the user didn't specify a name match any */
1365 if (data)
1366 return !strcmp((*r)->name, data);
1367 else
1368 return 1;
1372 * dev_get_regmap() - Obtain the regmap (if any) for a device
1374 * @dev: Device to retrieve the map for
1375 * @name: Optional name for the register map, usually NULL.
1377 * Returns the regmap for the device if one is present, or NULL. If
1378 * name is specified then it must match the name specified when
1379 * registering the device, if it is NULL then the first regmap found
1380 * will be used. Devices with multiple register maps are very rare,
1381 * generic code should normally not need to specify a name.
1383 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1385 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1386 dev_get_regmap_match, (void *)name);
1388 if (!r)
1389 return NULL;
1390 return *r;
1392 EXPORT_SYMBOL_GPL(dev_get_regmap);
1395 * regmap_get_device() - Obtain the device from a regmap
1397 * @map: Register map to operate on.
1399 * Returns the underlying device that the regmap has been created for.
1401 struct device *regmap_get_device(struct regmap *map)
1403 return map->dev;
1405 EXPORT_SYMBOL_GPL(regmap_get_device);
1407 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1408 struct regmap_range_node *range,
1409 unsigned int val_num)
1411 void *orig_work_buf;
1412 unsigned int win_offset;
1413 unsigned int win_page;
1414 bool page_chg;
1415 int ret;
1417 win_offset = (*reg - range->range_min) % range->window_len;
1418 win_page = (*reg - range->range_min) / range->window_len;
1420 if (val_num > 1) {
1421 /* Bulk write shouldn't cross range boundary */
1422 if (*reg + val_num - 1 > range->range_max)
1423 return -EINVAL;
1425 /* ... or single page boundary */
1426 if (val_num > range->window_len - win_offset)
1427 return -EINVAL;
1430 /* It is possible to have selector register inside data window.
1431 In that case, selector register is located on every page and
1432 it needs no page switching, when accessed alone. */
1433 if (val_num > 1 ||
1434 range->window_start + win_offset != range->selector_reg) {
1435 /* Use separate work_buf during page switching */
1436 orig_work_buf = map->work_buf;
1437 map->work_buf = map->selector_work_buf;
1439 ret = _regmap_update_bits(map, range->selector_reg,
1440 range->selector_mask,
1441 win_page << range->selector_shift,
1442 &page_chg, false);
1444 map->work_buf = orig_work_buf;
1446 if (ret != 0)
1447 return ret;
1450 *reg = range->window_start + win_offset;
1452 return 0;
1455 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1456 unsigned long mask)
1458 u8 *buf;
1459 int i;
1461 if (!mask || !map->work_buf)
1462 return;
1464 buf = map->work_buf;
1466 for (i = 0; i < max_bytes; i++)
1467 buf[i] |= (mask >> (8 * i)) & 0xff;
1470 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1471 const void *val, size_t val_len)
1473 struct regmap_range_node *range;
1474 unsigned long flags;
1475 void *work_val = map->work_buf + map->format.reg_bytes +
1476 map->format.pad_bytes;
1477 void *buf;
1478 int ret = -ENOTSUPP;
1479 size_t len;
1480 int i;
1482 WARN_ON(!map->bus);
1484 /* Check for unwritable or noinc registers in range
1485 * before we start
1487 if (!regmap_writeable_noinc(map, reg)) {
1488 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1489 unsigned int element =
1490 reg + regmap_get_offset(map, i);
1491 if (!regmap_writeable(map, element) ||
1492 regmap_writeable_noinc(map, element))
1493 return -EINVAL;
1497 if (!map->cache_bypass && map->format.parse_val) {
1498 unsigned int ival;
1499 int val_bytes = map->format.val_bytes;
1500 for (i = 0; i < val_len / val_bytes; i++) {
1501 ival = map->format.parse_val(val + (i * val_bytes));
1502 ret = regcache_write(map,
1503 reg + regmap_get_offset(map, i),
1504 ival);
1505 if (ret) {
1506 dev_err(map->dev,
1507 "Error in caching of register: %x ret: %d\n",
1508 reg + i, ret);
1509 return ret;
1512 if (map->cache_only) {
1513 map->cache_dirty = true;
1514 return 0;
1518 range = _regmap_range_lookup(map, reg);
1519 if (range) {
1520 int val_num = val_len / map->format.val_bytes;
1521 int win_offset = (reg - range->range_min) % range->window_len;
1522 int win_residue = range->window_len - win_offset;
1524 /* If the write goes beyond the end of the window split it */
1525 while (val_num > win_residue) {
1526 dev_dbg(map->dev, "Writing window %d/%zu\n",
1527 win_residue, val_len / map->format.val_bytes);
1528 ret = _regmap_raw_write_impl(map, reg, val,
1529 win_residue *
1530 map->format.val_bytes);
1531 if (ret != 0)
1532 return ret;
1534 reg += win_residue;
1535 val_num -= win_residue;
1536 val += win_residue * map->format.val_bytes;
1537 val_len -= win_residue * map->format.val_bytes;
1539 win_offset = (reg - range->range_min) %
1540 range->window_len;
1541 win_residue = range->window_len - win_offset;
1544 ret = _regmap_select_page(map, &reg, range, val_num);
1545 if (ret != 0)
1546 return ret;
1549 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1550 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1551 map->write_flag_mask);
1554 * Essentially all I/O mechanisms will be faster with a single
1555 * buffer to write. Since register syncs often generate raw
1556 * writes of single registers optimise that case.
1558 if (val != work_val && val_len == map->format.val_bytes) {
1559 memcpy(work_val, val, map->format.val_bytes);
1560 val = work_val;
1563 if (map->async && map->bus->async_write) {
1564 struct regmap_async *async;
1566 trace_regmap_async_write_start(map, reg, val_len);
1568 spin_lock_irqsave(&map->async_lock, flags);
1569 async = list_first_entry_or_null(&map->async_free,
1570 struct regmap_async,
1571 list);
1572 if (async)
1573 list_del(&async->list);
1574 spin_unlock_irqrestore(&map->async_lock, flags);
1576 if (!async) {
1577 async = map->bus->async_alloc();
1578 if (!async)
1579 return -ENOMEM;
1581 async->work_buf = kzalloc(map->format.buf_size,
1582 GFP_KERNEL | GFP_DMA);
1583 if (!async->work_buf) {
1584 kfree(async);
1585 return -ENOMEM;
1589 async->map = map;
1591 /* If the caller supplied the value we can use it safely. */
1592 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1593 map->format.reg_bytes + map->format.val_bytes);
1595 spin_lock_irqsave(&map->async_lock, flags);
1596 list_add_tail(&async->list, &map->async_list);
1597 spin_unlock_irqrestore(&map->async_lock, flags);
1599 if (val != work_val)
1600 ret = map->bus->async_write(map->bus_context,
1601 async->work_buf,
1602 map->format.reg_bytes +
1603 map->format.pad_bytes,
1604 val, val_len, async);
1605 else
1606 ret = map->bus->async_write(map->bus_context,
1607 async->work_buf,
1608 map->format.reg_bytes +
1609 map->format.pad_bytes +
1610 val_len, NULL, 0, async);
1612 if (ret != 0) {
1613 dev_err(map->dev, "Failed to schedule write: %d\n",
1614 ret);
1616 spin_lock_irqsave(&map->async_lock, flags);
1617 list_move(&async->list, &map->async_free);
1618 spin_unlock_irqrestore(&map->async_lock, flags);
1621 return ret;
1624 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1626 /* If we're doing a single register write we can probably just
1627 * send the work_buf directly, otherwise try to do a gather
1628 * write.
1630 if (val == work_val)
1631 ret = map->bus->write(map->bus_context, map->work_buf,
1632 map->format.reg_bytes +
1633 map->format.pad_bytes +
1634 val_len);
1635 else if (map->bus->gather_write)
1636 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1637 map->format.reg_bytes +
1638 map->format.pad_bytes,
1639 val, val_len);
1640 else
1641 ret = -ENOTSUPP;
1643 /* If that didn't work fall back on linearising by hand. */
1644 if (ret == -ENOTSUPP) {
1645 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1646 buf = kzalloc(len, GFP_KERNEL);
1647 if (!buf)
1648 return -ENOMEM;
1650 memcpy(buf, map->work_buf, map->format.reg_bytes);
1651 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1652 val, val_len);
1653 ret = map->bus->write(map->bus_context, buf, len);
1655 kfree(buf);
1656 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1657 /* regcache_drop_region() takes lock that we already have,
1658 * thus call map->cache_ops->drop() directly
1660 if (map->cache_ops && map->cache_ops->drop)
1661 map->cache_ops->drop(map, reg, reg + 1);
1664 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1666 return ret;
1670 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1672 * @map: Map to check.
1674 bool regmap_can_raw_write(struct regmap *map)
1676 return map->bus && map->bus->write && map->format.format_val &&
1677 map->format.format_reg;
1679 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1682 * regmap_get_raw_read_max - Get the maximum size we can read
1684 * @map: Map to check.
1686 size_t regmap_get_raw_read_max(struct regmap *map)
1688 return map->max_raw_read;
1690 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1693 * regmap_get_raw_write_max - Get the maximum size we can read
1695 * @map: Map to check.
1697 size_t regmap_get_raw_write_max(struct regmap *map)
1699 return map->max_raw_write;
1701 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1703 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1704 unsigned int val)
1706 int ret;
1707 struct regmap_range_node *range;
1708 struct regmap *map = context;
1710 WARN_ON(!map->bus || !map->format.format_write);
1712 range = _regmap_range_lookup(map, reg);
1713 if (range) {
1714 ret = _regmap_select_page(map, &reg, range, 1);
1715 if (ret != 0)
1716 return ret;
1719 map->format.format_write(map, reg, val);
1721 trace_regmap_hw_write_start(map, reg, 1);
1723 ret = map->bus->write(map->bus_context, map->work_buf,
1724 map->format.buf_size);
1726 trace_regmap_hw_write_done(map, reg, 1);
1728 return ret;
1731 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1732 unsigned int val)
1734 struct regmap *map = context;
1736 return map->bus->reg_write(map->bus_context, reg, val);
1739 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1740 unsigned int val)
1742 struct regmap *map = context;
1744 WARN_ON(!map->bus || !map->format.format_val);
1746 map->format.format_val(map->work_buf + map->format.reg_bytes
1747 + map->format.pad_bytes, val, 0);
1748 return _regmap_raw_write_impl(map, reg,
1749 map->work_buf +
1750 map->format.reg_bytes +
1751 map->format.pad_bytes,
1752 map->format.val_bytes);
1755 static inline void *_regmap_map_get_context(struct regmap *map)
1757 return (map->bus) ? map : map->bus_context;
1760 int _regmap_write(struct regmap *map, unsigned int reg,
1761 unsigned int val)
1763 int ret;
1764 void *context = _regmap_map_get_context(map);
1766 if (!regmap_writeable(map, reg))
1767 return -EIO;
1769 if (!map->cache_bypass && !map->defer_caching) {
1770 ret = regcache_write(map, reg, val);
1771 if (ret != 0)
1772 return ret;
1773 if (map->cache_only) {
1774 map->cache_dirty = true;
1775 return 0;
1779 if (regmap_should_log(map))
1780 dev_info(map->dev, "%x <= %x\n", reg, val);
1782 trace_regmap_reg_write(map, reg, val);
1784 return map->reg_write(context, reg, val);
1788 * regmap_write() - Write a value to a single register
1790 * @map: Register map to write to
1791 * @reg: Register to write to
1792 * @val: Value to be written
1794 * A value of zero will be returned on success, a negative errno will
1795 * be returned in error cases.
1797 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1799 int ret;
1801 if (!IS_ALIGNED(reg, map->reg_stride))
1802 return -EINVAL;
1804 map->lock(map->lock_arg);
1806 ret = _regmap_write(map, reg, val);
1808 map->unlock(map->lock_arg);
1810 return ret;
1812 EXPORT_SYMBOL_GPL(regmap_write);
1815 * regmap_write_async() - Write a value to a single register asynchronously
1817 * @map: Register map to write to
1818 * @reg: Register to write to
1819 * @val: Value to be written
1821 * A value of zero will be returned on success, a negative errno will
1822 * be returned in error cases.
1824 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1826 int ret;
1828 if (!IS_ALIGNED(reg, map->reg_stride))
1829 return -EINVAL;
1831 map->lock(map->lock_arg);
1833 map->async = true;
1835 ret = _regmap_write(map, reg, val);
1837 map->async = false;
1839 map->unlock(map->lock_arg);
1841 return ret;
1843 EXPORT_SYMBOL_GPL(regmap_write_async);
1845 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1846 const void *val, size_t val_len)
1848 size_t val_bytes = map->format.val_bytes;
1849 size_t val_count = val_len / val_bytes;
1850 size_t chunk_count, chunk_bytes;
1851 size_t chunk_regs = val_count;
1852 int ret, i;
1854 if (!val_count)
1855 return -EINVAL;
1857 if (map->use_single_write)
1858 chunk_regs = 1;
1859 else if (map->max_raw_write && val_len > map->max_raw_write)
1860 chunk_regs = map->max_raw_write / val_bytes;
1862 chunk_count = val_count / chunk_regs;
1863 chunk_bytes = chunk_regs * val_bytes;
1865 /* Write as many bytes as possible with chunk_size */
1866 for (i = 0; i < chunk_count; i++) {
1867 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1868 if (ret)
1869 return ret;
1871 reg += regmap_get_offset(map, chunk_regs);
1872 val += chunk_bytes;
1873 val_len -= chunk_bytes;
1876 /* Write remaining bytes */
1877 if (val_len)
1878 ret = _regmap_raw_write_impl(map, reg, val, val_len);
1880 return ret;
1884 * regmap_raw_write() - Write raw values to one or more registers
1886 * @map: Register map to write to
1887 * @reg: Initial register to write to
1888 * @val: Block of data to be written, laid out for direct transmission to the
1889 * device
1890 * @val_len: Length of data pointed to by val.
1892 * This function is intended to be used for things like firmware
1893 * download where a large block of data needs to be transferred to the
1894 * device. No formatting will be done on the data provided.
1896 * A value of zero will be returned on success, a negative errno will
1897 * be returned in error cases.
1899 int regmap_raw_write(struct regmap *map, unsigned int reg,
1900 const void *val, size_t val_len)
1902 int ret;
1904 if (!regmap_can_raw_write(map))
1905 return -EINVAL;
1906 if (val_len % map->format.val_bytes)
1907 return -EINVAL;
1909 map->lock(map->lock_arg);
1911 ret = _regmap_raw_write(map, reg, val, val_len);
1913 map->unlock(map->lock_arg);
1915 return ret;
1917 EXPORT_SYMBOL_GPL(regmap_raw_write);
1920 * regmap_noinc_write(): Write data from a register without incrementing the
1921 * register number
1923 * @map: Register map to write to
1924 * @reg: Register to write to
1925 * @val: Pointer to data buffer
1926 * @val_len: Length of output buffer in bytes.
1928 * The regmap API usually assumes that bulk bus write operations will write a
1929 * range of registers. Some devices have certain registers for which a write
1930 * operation can write to an internal FIFO.
1932 * The target register must be volatile but registers after it can be
1933 * completely unrelated cacheable registers.
1935 * This will attempt multiple writes as required to write val_len bytes.
1937 * A value of zero will be returned on success, a negative errno will be
1938 * returned in error cases.
1940 int regmap_noinc_write(struct regmap *map, unsigned int reg,
1941 const void *val, size_t val_len)
1943 size_t write_len;
1944 int ret;
1946 if (!map->bus)
1947 return -EINVAL;
1948 if (!map->bus->write)
1949 return -ENOTSUPP;
1950 if (val_len % map->format.val_bytes)
1951 return -EINVAL;
1952 if (!IS_ALIGNED(reg, map->reg_stride))
1953 return -EINVAL;
1954 if (val_len == 0)
1955 return -EINVAL;
1957 map->lock(map->lock_arg);
1959 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1960 ret = -EINVAL;
1961 goto out_unlock;
1964 while (val_len) {
1965 if (map->max_raw_write && map->max_raw_write < val_len)
1966 write_len = map->max_raw_write;
1967 else
1968 write_len = val_len;
1969 ret = _regmap_raw_write(map, reg, val, write_len);
1970 if (ret)
1971 goto out_unlock;
1972 val = ((u8 *)val) + write_len;
1973 val_len -= write_len;
1976 out_unlock:
1977 map->unlock(map->lock_arg);
1978 return ret;
1980 EXPORT_SYMBOL_GPL(regmap_noinc_write);
1983 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1984 * register field.
1986 * @field: Register field to write to
1987 * @mask: Bitmask to change
1988 * @val: Value to be written
1989 * @change: Boolean indicating if a write was done
1990 * @async: Boolean indicating asynchronously
1991 * @force: Boolean indicating use force update
1993 * Perform a read/modify/write cycle on the register field with change,
1994 * async, force option.
1996 * A value of zero will be returned on success, a negative errno will
1997 * be returned in error cases.
1999 int regmap_field_update_bits_base(struct regmap_field *field,
2000 unsigned int mask, unsigned int val,
2001 bool *change, bool async, bool force)
2003 mask = (mask << field->shift) & field->mask;
2005 return regmap_update_bits_base(field->regmap, field->reg,
2006 mask, val << field->shift,
2007 change, async, force);
2009 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2012 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2013 * register field with port ID
2015 * @field: Register field to write to
2016 * @id: port ID
2017 * @mask: Bitmask to change
2018 * @val: Value to be written
2019 * @change: Boolean indicating if a write was done
2020 * @async: Boolean indicating asynchronously
2021 * @force: Boolean indicating use force update
2023 * A value of zero will be returned on success, a negative errno will
2024 * be returned in error cases.
2026 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2027 unsigned int mask, unsigned int val,
2028 bool *change, bool async, bool force)
2030 if (id >= field->id_size)
2031 return -EINVAL;
2033 mask = (mask << field->shift) & field->mask;
2035 return regmap_update_bits_base(field->regmap,
2036 field->reg + (field->id_offset * id),
2037 mask, val << field->shift,
2038 change, async, force);
2040 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2043 * regmap_bulk_write() - Write multiple registers to the device
2045 * @map: Register map to write to
2046 * @reg: First register to be write from
2047 * @val: Block of data to be written, in native register size for device
2048 * @val_count: Number of registers to write
2050 * This function is intended to be used for writing a large block of
2051 * data to the device either in single transfer or multiple transfer.
2053 * A value of zero will be returned on success, a negative errno will
2054 * be returned in error cases.
2056 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2057 size_t val_count)
2059 int ret = 0, i;
2060 size_t val_bytes = map->format.val_bytes;
2062 if (!IS_ALIGNED(reg, map->reg_stride))
2063 return -EINVAL;
2066 * Some devices don't support bulk write, for them we have a series of
2067 * single write operations.
2069 if (!map->bus || !map->format.parse_inplace) {
2070 map->lock(map->lock_arg);
2071 for (i = 0; i < val_count; i++) {
2072 unsigned int ival;
2074 switch (val_bytes) {
2075 case 1:
2076 ival = *(u8 *)(val + (i * val_bytes));
2077 break;
2078 case 2:
2079 ival = *(u16 *)(val + (i * val_bytes));
2080 break;
2081 case 4:
2082 ival = *(u32 *)(val + (i * val_bytes));
2083 break;
2084 #ifdef CONFIG_64BIT
2085 case 8:
2086 ival = *(u64 *)(val + (i * val_bytes));
2087 break;
2088 #endif
2089 default:
2090 ret = -EINVAL;
2091 goto out;
2094 ret = _regmap_write(map,
2095 reg + regmap_get_offset(map, i),
2096 ival);
2097 if (ret != 0)
2098 goto out;
2100 out:
2101 map->unlock(map->lock_arg);
2102 } else {
2103 void *wval;
2105 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2106 if (!wval)
2107 return -ENOMEM;
2109 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2110 map->format.parse_inplace(wval + i);
2112 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2114 kfree(wval);
2116 return ret;
2118 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2121 * _regmap_raw_multi_reg_write()
2123 * the (register,newvalue) pairs in regs have not been formatted, but
2124 * they are all in the same page and have been changed to being page
2125 * relative. The page register has been written if that was necessary.
2127 static int _regmap_raw_multi_reg_write(struct regmap *map,
2128 const struct reg_sequence *regs,
2129 size_t num_regs)
2131 int ret;
2132 void *buf;
2133 int i;
2134 u8 *u8;
2135 size_t val_bytes = map->format.val_bytes;
2136 size_t reg_bytes = map->format.reg_bytes;
2137 size_t pad_bytes = map->format.pad_bytes;
2138 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2139 size_t len = pair_size * num_regs;
2141 if (!len)
2142 return -EINVAL;
2144 buf = kzalloc(len, GFP_KERNEL);
2145 if (!buf)
2146 return -ENOMEM;
2148 /* We have to linearise by hand. */
2150 u8 = buf;
2152 for (i = 0; i < num_regs; i++) {
2153 unsigned int reg = regs[i].reg;
2154 unsigned int val = regs[i].def;
2155 trace_regmap_hw_write_start(map, reg, 1);
2156 map->format.format_reg(u8, reg, map->reg_shift);
2157 u8 += reg_bytes + pad_bytes;
2158 map->format.format_val(u8, val, 0);
2159 u8 += val_bytes;
2161 u8 = buf;
2162 *u8 |= map->write_flag_mask;
2164 ret = map->bus->write(map->bus_context, buf, len);
2166 kfree(buf);
2168 for (i = 0; i < num_regs; i++) {
2169 int reg = regs[i].reg;
2170 trace_regmap_hw_write_done(map, reg, 1);
2172 return ret;
2175 static unsigned int _regmap_register_page(struct regmap *map,
2176 unsigned int reg,
2177 struct regmap_range_node *range)
2179 unsigned int win_page = (reg - range->range_min) / range->window_len;
2181 return win_page;
2184 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2185 struct reg_sequence *regs,
2186 size_t num_regs)
2188 int ret;
2189 int i, n;
2190 struct reg_sequence *base;
2191 unsigned int this_page = 0;
2192 unsigned int page_change = 0;
2194 * the set of registers are not neccessarily in order, but
2195 * since the order of write must be preserved this algorithm
2196 * chops the set each time the page changes. This also applies
2197 * if there is a delay required at any point in the sequence.
2199 base = regs;
2200 for (i = 0, n = 0; i < num_regs; i++, n++) {
2201 unsigned int reg = regs[i].reg;
2202 struct regmap_range_node *range;
2204 range = _regmap_range_lookup(map, reg);
2205 if (range) {
2206 unsigned int win_page = _regmap_register_page(map, reg,
2207 range);
2209 if (i == 0)
2210 this_page = win_page;
2211 if (win_page != this_page) {
2212 this_page = win_page;
2213 page_change = 1;
2217 /* If we have both a page change and a delay make sure to
2218 * write the regs and apply the delay before we change the
2219 * page.
2222 if (page_change || regs[i].delay_us) {
2224 /* For situations where the first write requires
2225 * a delay we need to make sure we don't call
2226 * raw_multi_reg_write with n=0
2227 * This can't occur with page breaks as we
2228 * never write on the first iteration
2230 if (regs[i].delay_us && i == 0)
2231 n = 1;
2233 ret = _regmap_raw_multi_reg_write(map, base, n);
2234 if (ret != 0)
2235 return ret;
2237 if (regs[i].delay_us)
2238 udelay(regs[i].delay_us);
2240 base += n;
2241 n = 0;
2243 if (page_change) {
2244 ret = _regmap_select_page(map,
2245 &base[n].reg,
2246 range, 1);
2247 if (ret != 0)
2248 return ret;
2250 page_change = 0;
2256 if (n > 0)
2257 return _regmap_raw_multi_reg_write(map, base, n);
2258 return 0;
2261 static int _regmap_multi_reg_write(struct regmap *map,
2262 const struct reg_sequence *regs,
2263 size_t num_regs)
2265 int i;
2266 int ret;
2268 if (!map->can_multi_write) {
2269 for (i = 0; i < num_regs; i++) {
2270 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2271 if (ret != 0)
2272 return ret;
2274 if (regs[i].delay_us)
2275 udelay(regs[i].delay_us);
2277 return 0;
2280 if (!map->format.parse_inplace)
2281 return -EINVAL;
2283 if (map->writeable_reg)
2284 for (i = 0; i < num_regs; i++) {
2285 int reg = regs[i].reg;
2286 if (!map->writeable_reg(map->dev, reg))
2287 return -EINVAL;
2288 if (!IS_ALIGNED(reg, map->reg_stride))
2289 return -EINVAL;
2292 if (!map->cache_bypass) {
2293 for (i = 0; i < num_regs; i++) {
2294 unsigned int val = regs[i].def;
2295 unsigned int reg = regs[i].reg;
2296 ret = regcache_write(map, reg, val);
2297 if (ret) {
2298 dev_err(map->dev,
2299 "Error in caching of register: %x ret: %d\n",
2300 reg, ret);
2301 return ret;
2304 if (map->cache_only) {
2305 map->cache_dirty = true;
2306 return 0;
2310 WARN_ON(!map->bus);
2312 for (i = 0; i < num_regs; i++) {
2313 unsigned int reg = regs[i].reg;
2314 struct regmap_range_node *range;
2316 /* Coalesce all the writes between a page break or a delay
2317 * in a sequence
2319 range = _regmap_range_lookup(map, reg);
2320 if (range || regs[i].delay_us) {
2321 size_t len = sizeof(struct reg_sequence)*num_regs;
2322 struct reg_sequence *base = kmemdup(regs, len,
2323 GFP_KERNEL);
2324 if (!base)
2325 return -ENOMEM;
2326 ret = _regmap_range_multi_paged_reg_write(map, base,
2327 num_regs);
2328 kfree(base);
2330 return ret;
2333 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2337 * regmap_multi_reg_write() - Write multiple registers to the device
2339 * @map: Register map to write to
2340 * @regs: Array of structures containing register,value to be written
2341 * @num_regs: Number of registers to write
2343 * Write multiple registers to the device where the set of register, value
2344 * pairs are supplied in any order, possibly not all in a single range.
2346 * The 'normal' block write mode will send ultimately send data on the
2347 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2348 * addressed. However, this alternative block multi write mode will send
2349 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2350 * must of course support the mode.
2352 * A value of zero will be returned on success, a negative errno will be
2353 * returned in error cases.
2355 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2356 int num_regs)
2358 int ret;
2360 map->lock(map->lock_arg);
2362 ret = _regmap_multi_reg_write(map, regs, num_regs);
2364 map->unlock(map->lock_arg);
2366 return ret;
2368 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2371 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2372 * device but not the cache
2374 * @map: Register map to write to
2375 * @regs: Array of structures containing register,value to be written
2376 * @num_regs: Number of registers to write
2378 * Write multiple registers to the device but not the cache where the set
2379 * of register are supplied in any order.
2381 * This function is intended to be used for writing a large block of data
2382 * atomically to the device in single transfer for those I2C client devices
2383 * that implement this alternative block write mode.
2385 * A value of zero will be returned on success, a negative errno will
2386 * be returned in error cases.
2388 int regmap_multi_reg_write_bypassed(struct regmap *map,
2389 const struct reg_sequence *regs,
2390 int num_regs)
2392 int ret;
2393 bool bypass;
2395 map->lock(map->lock_arg);
2397 bypass = map->cache_bypass;
2398 map->cache_bypass = true;
2400 ret = _regmap_multi_reg_write(map, regs, num_regs);
2402 map->cache_bypass = bypass;
2404 map->unlock(map->lock_arg);
2406 return ret;
2408 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2411 * regmap_raw_write_async() - Write raw values to one or more registers
2412 * asynchronously
2414 * @map: Register map to write to
2415 * @reg: Initial register to write to
2416 * @val: Block of data to be written, laid out for direct transmission to the
2417 * device. Must be valid until regmap_async_complete() is called.
2418 * @val_len: Length of data pointed to by val.
2420 * This function is intended to be used for things like firmware
2421 * download where a large block of data needs to be transferred to the
2422 * device. No formatting will be done on the data provided.
2424 * If supported by the underlying bus the write will be scheduled
2425 * asynchronously, helping maximise I/O speed on higher speed buses
2426 * like SPI. regmap_async_complete() can be called to ensure that all
2427 * asynchrnous writes have been completed.
2429 * A value of zero will be returned on success, a negative errno will
2430 * be returned in error cases.
2432 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2433 const void *val, size_t val_len)
2435 int ret;
2437 if (val_len % map->format.val_bytes)
2438 return -EINVAL;
2439 if (!IS_ALIGNED(reg, map->reg_stride))
2440 return -EINVAL;
2442 map->lock(map->lock_arg);
2444 map->async = true;
2446 ret = _regmap_raw_write(map, reg, val, val_len);
2448 map->async = false;
2450 map->unlock(map->lock_arg);
2452 return ret;
2454 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2456 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2457 unsigned int val_len)
2459 struct regmap_range_node *range;
2460 int ret;
2462 WARN_ON(!map->bus);
2464 if (!map->bus || !map->bus->read)
2465 return -EINVAL;
2467 range = _regmap_range_lookup(map, reg);
2468 if (range) {
2469 ret = _regmap_select_page(map, &reg, range,
2470 val_len / map->format.val_bytes);
2471 if (ret != 0)
2472 return ret;
2475 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2476 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2477 map->read_flag_mask);
2478 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2480 ret = map->bus->read(map->bus_context, map->work_buf,
2481 map->format.reg_bytes + map->format.pad_bytes,
2482 val, val_len);
2484 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2486 return ret;
2489 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2490 unsigned int *val)
2492 struct regmap *map = context;
2494 return map->bus->reg_read(map->bus_context, reg, val);
2497 static int _regmap_bus_read(void *context, unsigned int reg,
2498 unsigned int *val)
2500 int ret;
2501 struct regmap *map = context;
2502 void *work_val = map->work_buf + map->format.reg_bytes +
2503 map->format.pad_bytes;
2505 if (!map->format.parse_val)
2506 return -EINVAL;
2508 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2509 if (ret == 0)
2510 *val = map->format.parse_val(work_val);
2512 return ret;
2515 static int _regmap_read(struct regmap *map, unsigned int reg,
2516 unsigned int *val)
2518 int ret;
2519 void *context = _regmap_map_get_context(map);
2521 if (!map->cache_bypass) {
2522 ret = regcache_read(map, reg, val);
2523 if (ret == 0)
2524 return 0;
2527 if (map->cache_only)
2528 return -EBUSY;
2530 if (!regmap_readable(map, reg))
2531 return -EIO;
2533 ret = map->reg_read(context, reg, val);
2534 if (ret == 0) {
2535 if (regmap_should_log(map))
2536 dev_info(map->dev, "%x => %x\n", reg, *val);
2538 trace_regmap_reg_read(map, reg, *val);
2540 if (!map->cache_bypass)
2541 regcache_write(map, reg, *val);
2544 return ret;
2548 * regmap_read() - Read a value from a single register
2550 * @map: Register map to read from
2551 * @reg: Register to be read from
2552 * @val: Pointer to store read value
2554 * A value of zero will be returned on success, a negative errno will
2555 * be returned in error cases.
2557 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2559 int ret;
2561 if (!IS_ALIGNED(reg, map->reg_stride))
2562 return -EINVAL;
2564 map->lock(map->lock_arg);
2566 ret = _regmap_read(map, reg, val);
2568 map->unlock(map->lock_arg);
2570 return ret;
2572 EXPORT_SYMBOL_GPL(regmap_read);
2575 * regmap_raw_read() - Read raw data from the device
2577 * @map: Register map to read from
2578 * @reg: First register to be read from
2579 * @val: Pointer to store read value
2580 * @val_len: Size of data to read
2582 * A value of zero will be returned on success, a negative errno will
2583 * be returned in error cases.
2585 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2586 size_t val_len)
2588 size_t val_bytes = map->format.val_bytes;
2589 size_t val_count = val_len / val_bytes;
2590 unsigned int v;
2591 int ret, i;
2593 if (!map->bus)
2594 return -EINVAL;
2595 if (val_len % map->format.val_bytes)
2596 return -EINVAL;
2597 if (!IS_ALIGNED(reg, map->reg_stride))
2598 return -EINVAL;
2599 if (val_count == 0)
2600 return -EINVAL;
2602 map->lock(map->lock_arg);
2604 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2605 map->cache_type == REGCACHE_NONE) {
2606 size_t chunk_count, chunk_bytes;
2607 size_t chunk_regs = val_count;
2609 if (!map->bus->read) {
2610 ret = -ENOTSUPP;
2611 goto out;
2614 if (map->use_single_read)
2615 chunk_regs = 1;
2616 else if (map->max_raw_read && val_len > map->max_raw_read)
2617 chunk_regs = map->max_raw_read / val_bytes;
2619 chunk_count = val_count / chunk_regs;
2620 chunk_bytes = chunk_regs * val_bytes;
2622 /* Read bytes that fit into whole chunks */
2623 for (i = 0; i < chunk_count; i++) {
2624 ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2625 if (ret != 0)
2626 goto out;
2628 reg += regmap_get_offset(map, chunk_regs);
2629 val += chunk_bytes;
2630 val_len -= chunk_bytes;
2633 /* Read remaining bytes */
2634 if (val_len) {
2635 ret = _regmap_raw_read(map, reg, val, val_len);
2636 if (ret != 0)
2637 goto out;
2639 } else {
2640 /* Otherwise go word by word for the cache; should be low
2641 * cost as we expect to hit the cache.
2643 for (i = 0; i < val_count; i++) {
2644 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2645 &v);
2646 if (ret != 0)
2647 goto out;
2649 map->format.format_val(val + (i * val_bytes), v, 0);
2653 out:
2654 map->unlock(map->lock_arg);
2656 return ret;
2658 EXPORT_SYMBOL_GPL(regmap_raw_read);
2661 * regmap_noinc_read(): Read data from a register without incrementing the
2662 * register number
2664 * @map: Register map to read from
2665 * @reg: Register to read from
2666 * @val: Pointer to data buffer
2667 * @val_len: Length of output buffer in bytes.
2669 * The regmap API usually assumes that bulk bus read operations will read a
2670 * range of registers. Some devices have certain registers for which a read
2671 * operation read will read from an internal FIFO.
2673 * The target register must be volatile but registers after it can be
2674 * completely unrelated cacheable registers.
2676 * This will attempt multiple reads as required to read val_len bytes.
2678 * A value of zero will be returned on success, a negative errno will be
2679 * returned in error cases.
2681 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2682 void *val, size_t val_len)
2684 size_t read_len;
2685 int ret;
2687 if (!map->bus)
2688 return -EINVAL;
2689 if (!map->bus->read)
2690 return -ENOTSUPP;
2691 if (val_len % map->format.val_bytes)
2692 return -EINVAL;
2693 if (!IS_ALIGNED(reg, map->reg_stride))
2694 return -EINVAL;
2695 if (val_len == 0)
2696 return -EINVAL;
2698 map->lock(map->lock_arg);
2700 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2701 ret = -EINVAL;
2702 goto out_unlock;
2705 while (val_len) {
2706 if (map->max_raw_read && map->max_raw_read < val_len)
2707 read_len = map->max_raw_read;
2708 else
2709 read_len = val_len;
2710 ret = _regmap_raw_read(map, reg, val, read_len);
2711 if (ret)
2712 goto out_unlock;
2713 val = ((u8 *)val) + read_len;
2714 val_len -= read_len;
2717 out_unlock:
2718 map->unlock(map->lock_arg);
2719 return ret;
2721 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2724 * regmap_field_read(): Read a value to a single register field
2726 * @field: Register field to read from
2727 * @val: Pointer to store read value
2729 * A value of zero will be returned on success, a negative errno will
2730 * be returned in error cases.
2732 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2734 int ret;
2735 unsigned int reg_val;
2736 ret = regmap_read(field->regmap, field->reg, &reg_val);
2737 if (ret != 0)
2738 return ret;
2740 reg_val &= field->mask;
2741 reg_val >>= field->shift;
2742 *val = reg_val;
2744 return ret;
2746 EXPORT_SYMBOL_GPL(regmap_field_read);
2749 * regmap_fields_read() - Read a value to a single register field with port ID
2751 * @field: Register field to read from
2752 * @id: port ID
2753 * @val: Pointer to store read value
2755 * A value of zero will be returned on success, a negative errno will
2756 * be returned in error cases.
2758 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2759 unsigned int *val)
2761 int ret;
2762 unsigned int reg_val;
2764 if (id >= field->id_size)
2765 return -EINVAL;
2767 ret = regmap_read(field->regmap,
2768 field->reg + (field->id_offset * id),
2769 &reg_val);
2770 if (ret != 0)
2771 return ret;
2773 reg_val &= field->mask;
2774 reg_val >>= field->shift;
2775 *val = reg_val;
2777 return ret;
2779 EXPORT_SYMBOL_GPL(regmap_fields_read);
2782 * regmap_bulk_read() - Read multiple registers from the device
2784 * @map: Register map to read from
2785 * @reg: First register to be read from
2786 * @val: Pointer to store read value, in native register size for device
2787 * @val_count: Number of registers to read
2789 * A value of zero will be returned on success, a negative errno will
2790 * be returned in error cases.
2792 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2793 size_t val_count)
2795 int ret, i;
2796 size_t val_bytes = map->format.val_bytes;
2797 bool vol = regmap_volatile_range(map, reg, val_count);
2799 if (!IS_ALIGNED(reg, map->reg_stride))
2800 return -EINVAL;
2801 if (val_count == 0)
2802 return -EINVAL;
2804 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2805 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2806 if (ret != 0)
2807 return ret;
2809 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2810 map->format.parse_inplace(val + i);
2811 } else {
2812 #ifdef CONFIG_64BIT
2813 u64 *u64 = val;
2814 #endif
2815 u32 *u32 = val;
2816 u16 *u16 = val;
2817 u8 *u8 = val;
2819 map->lock(map->lock_arg);
2821 for (i = 0; i < val_count; i++) {
2822 unsigned int ival;
2824 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2825 &ival);
2826 if (ret != 0)
2827 goto out;
2829 switch (map->format.val_bytes) {
2830 #ifdef CONFIG_64BIT
2831 case 8:
2832 u64[i] = ival;
2833 break;
2834 #endif
2835 case 4:
2836 u32[i] = ival;
2837 break;
2838 case 2:
2839 u16[i] = ival;
2840 break;
2841 case 1:
2842 u8[i] = ival;
2843 break;
2844 default:
2845 ret = -EINVAL;
2846 goto out;
2850 out:
2851 map->unlock(map->lock_arg);
2854 return ret;
2856 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2858 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2859 unsigned int mask, unsigned int val,
2860 bool *change, bool force_write)
2862 int ret;
2863 unsigned int tmp, orig;
2865 if (change)
2866 *change = false;
2868 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2869 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2870 if (ret == 0 && change)
2871 *change = true;
2872 } else {
2873 ret = _regmap_read(map, reg, &orig);
2874 if (ret != 0)
2875 return ret;
2877 tmp = orig & ~mask;
2878 tmp |= val & mask;
2880 if (force_write || (tmp != orig)) {
2881 ret = _regmap_write(map, reg, tmp);
2882 if (ret == 0 && change)
2883 *change = true;
2887 return ret;
2891 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2893 * @map: Register map to update
2894 * @reg: Register to update
2895 * @mask: Bitmask to change
2896 * @val: New value for bitmask
2897 * @change: Boolean indicating if a write was done
2898 * @async: Boolean indicating asynchronously
2899 * @force: Boolean indicating use force update
2901 * Perform a read/modify/write cycle on a register map with change, async, force
2902 * options.
2904 * If async is true:
2906 * With most buses the read must be done synchronously so this is most useful
2907 * for devices with a cache which do not need to interact with the hardware to
2908 * determine the current register value.
2910 * Returns zero for success, a negative number on error.
2912 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2913 unsigned int mask, unsigned int val,
2914 bool *change, bool async, bool force)
2916 int ret;
2918 map->lock(map->lock_arg);
2920 map->async = async;
2922 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2924 map->async = false;
2926 map->unlock(map->lock_arg);
2928 return ret;
2930 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2932 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2934 struct regmap *map = async->map;
2935 bool wake;
2937 trace_regmap_async_io_complete(map);
2939 spin_lock(&map->async_lock);
2940 list_move(&async->list, &map->async_free);
2941 wake = list_empty(&map->async_list);
2943 if (ret != 0)
2944 map->async_ret = ret;
2946 spin_unlock(&map->async_lock);
2948 if (wake)
2949 wake_up(&map->async_waitq);
2951 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2953 static int regmap_async_is_done(struct regmap *map)
2955 unsigned long flags;
2956 int ret;
2958 spin_lock_irqsave(&map->async_lock, flags);
2959 ret = list_empty(&map->async_list);
2960 spin_unlock_irqrestore(&map->async_lock, flags);
2962 return ret;
2966 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2968 * @map: Map to operate on.
2970 * Blocks until any pending asynchronous I/O has completed. Returns
2971 * an error code for any failed I/O operations.
2973 int regmap_async_complete(struct regmap *map)
2975 unsigned long flags;
2976 int ret;
2978 /* Nothing to do with no async support */
2979 if (!map->bus || !map->bus->async_write)
2980 return 0;
2982 trace_regmap_async_complete_start(map);
2984 wait_event(map->async_waitq, regmap_async_is_done(map));
2986 spin_lock_irqsave(&map->async_lock, flags);
2987 ret = map->async_ret;
2988 map->async_ret = 0;
2989 spin_unlock_irqrestore(&map->async_lock, flags);
2991 trace_regmap_async_complete_done(map);
2993 return ret;
2995 EXPORT_SYMBOL_GPL(regmap_async_complete);
2998 * regmap_register_patch - Register and apply register updates to be applied
2999 * on device initialistion
3001 * @map: Register map to apply updates to.
3002 * @regs: Values to update.
3003 * @num_regs: Number of entries in regs.
3005 * Register a set of register updates to be applied to the device
3006 * whenever the device registers are synchronised with the cache and
3007 * apply them immediately. Typically this is used to apply
3008 * corrections to be applied to the device defaults on startup, such
3009 * as the updates some vendors provide to undocumented registers.
3011 * The caller must ensure that this function cannot be called
3012 * concurrently with either itself or regcache_sync().
3014 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3015 int num_regs)
3017 struct reg_sequence *p;
3018 int ret;
3019 bool bypass;
3021 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3022 num_regs))
3023 return 0;
3025 p = krealloc(map->patch,
3026 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3027 GFP_KERNEL);
3028 if (p) {
3029 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3030 map->patch = p;
3031 map->patch_regs += num_regs;
3032 } else {
3033 return -ENOMEM;
3036 map->lock(map->lock_arg);
3038 bypass = map->cache_bypass;
3040 map->cache_bypass = true;
3041 map->async = true;
3043 ret = _regmap_multi_reg_write(map, regs, num_regs);
3045 map->async = false;
3046 map->cache_bypass = bypass;
3048 map->unlock(map->lock_arg);
3050 regmap_async_complete(map);
3052 return ret;
3054 EXPORT_SYMBOL_GPL(regmap_register_patch);
3057 * regmap_get_val_bytes() - Report the size of a register value
3059 * @map: Register map to operate on.
3061 * Report the size of a register value, mainly intended to for use by
3062 * generic infrastructure built on top of regmap.
3064 int regmap_get_val_bytes(struct regmap *map)
3066 if (map->format.format_write)
3067 return -EINVAL;
3069 return map->format.val_bytes;
3071 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3074 * regmap_get_max_register() - Report the max register value
3076 * @map: Register map to operate on.
3078 * Report the max register value, mainly intended to for use by
3079 * generic infrastructure built on top of regmap.
3081 int regmap_get_max_register(struct regmap *map)
3083 return map->max_register ? map->max_register : -EINVAL;
3085 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3088 * regmap_get_reg_stride() - Report the register address stride
3090 * @map: Register map to operate on.
3092 * Report the register address stride, mainly intended to for use by
3093 * generic infrastructure built on top of regmap.
3095 int regmap_get_reg_stride(struct regmap *map)
3097 return map->reg_stride;
3099 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3101 int regmap_parse_val(struct regmap *map, const void *buf,
3102 unsigned int *val)
3104 if (!map->format.parse_val)
3105 return -EINVAL;
3107 *val = map->format.parse_val(buf);
3109 return 0;
3111 EXPORT_SYMBOL_GPL(regmap_parse_val);
3113 static int __init regmap_initcall(void)
3115 regmap_debugfs_initcall();
3117 return 0;
3119 postcore_initcall(regmap_initcall);