1 // SPDX-License-Identifier: GPL-2.0
3 // Register map access API
5 // Copyright 2011 Wolfson Microelectronics plc
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
22 #define CREATE_TRACE_POINTS
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
36 static inline bool regmap_should_log(struct regmap
*map
)
38 return (map
->dev
&& strcmp(dev_name(map
->dev
), LOG_DEVICE
) == 0);
41 static inline bool regmap_should_log(struct regmap
*map
) { return false; }
45 static int _regmap_update_bits(struct regmap
*map
, unsigned int reg
,
46 unsigned int mask
, unsigned int val
,
47 bool *change
, bool force_write
);
49 static int _regmap_bus_reg_read(void *context
, unsigned int reg
,
51 static int _regmap_bus_read(void *context
, unsigned int reg
,
53 static int _regmap_bus_formatted_write(void *context
, unsigned int reg
,
55 static int _regmap_bus_reg_write(void *context
, unsigned int reg
,
57 static int _regmap_bus_raw_write(void *context
, unsigned int reg
,
60 bool regmap_reg_in_ranges(unsigned int reg
,
61 const struct regmap_range
*ranges
,
64 const struct regmap_range
*r
;
67 for (i
= 0, r
= ranges
; i
< nranges
; i
++, r
++)
68 if (regmap_reg_in_range(reg
, r
))
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges
);
74 bool regmap_check_range_table(struct regmap
*map
, unsigned int reg
,
75 const struct regmap_access_table
*table
)
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg
, table
->no_ranges
, table
->n_no_ranges
))
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table
->n_yes_ranges
)
85 return regmap_reg_in_ranges(reg
, table
->yes_ranges
,
88 EXPORT_SYMBOL_GPL(regmap_check_range_table
);
90 bool regmap_writeable(struct regmap
*map
, unsigned int reg
)
92 if (map
->max_register
&& reg
> map
->max_register
)
95 if (map
->writeable_reg
)
96 return map
->writeable_reg(map
->dev
, reg
);
99 return regmap_check_range_table(map
, reg
, map
->wr_table
);
104 bool regmap_cached(struct regmap
*map
, unsigned int reg
)
109 if (map
->cache_type
== REGCACHE_NONE
)
115 if (map
->max_register
&& reg
> map
->max_register
)
118 map
->lock(map
->lock_arg
);
119 ret
= regcache_read(map
, reg
, &val
);
120 map
->unlock(map
->lock_arg
);
127 bool regmap_readable(struct regmap
*map
, unsigned int reg
)
132 if (map
->max_register
&& reg
> map
->max_register
)
135 if (map
->format
.format_write
)
138 if (map
->readable_reg
)
139 return map
->readable_reg(map
->dev
, reg
);
142 return regmap_check_range_table(map
, reg
, map
->rd_table
);
147 bool regmap_volatile(struct regmap
*map
, unsigned int reg
)
149 if (!map
->format
.format_write
&& !regmap_readable(map
, reg
))
152 if (map
->volatile_reg
)
153 return map
->volatile_reg(map
->dev
, reg
);
155 if (map
->volatile_table
)
156 return regmap_check_range_table(map
, reg
, map
->volatile_table
);
164 bool regmap_precious(struct regmap
*map
, unsigned int reg
)
166 if (!regmap_readable(map
, reg
))
169 if (map
->precious_reg
)
170 return map
->precious_reg(map
->dev
, reg
);
172 if (map
->precious_table
)
173 return regmap_check_range_table(map
, reg
, map
->precious_table
);
178 bool regmap_writeable_noinc(struct regmap
*map
, unsigned int reg
)
180 if (map
->writeable_noinc_reg
)
181 return map
->writeable_noinc_reg(map
->dev
, reg
);
183 if (map
->wr_noinc_table
)
184 return regmap_check_range_table(map
, reg
, map
->wr_noinc_table
);
189 bool regmap_readable_noinc(struct regmap
*map
, unsigned int reg
)
191 if (map
->readable_noinc_reg
)
192 return map
->readable_noinc_reg(map
->dev
, reg
);
194 if (map
->rd_noinc_table
)
195 return regmap_check_range_table(map
, reg
, map
->rd_noinc_table
);
200 static bool regmap_volatile_range(struct regmap
*map
, unsigned int reg
,
205 for (i
= 0; i
< num
; i
++)
206 if (!regmap_volatile(map
, reg
+ regmap_get_offset(map
, i
)))
212 static void regmap_format_2_6_write(struct regmap
*map
,
213 unsigned int reg
, unsigned int val
)
215 u8
*out
= map
->work_buf
;
217 *out
= (reg
<< 6) | val
;
220 static void regmap_format_4_12_write(struct regmap
*map
,
221 unsigned int reg
, unsigned int val
)
223 __be16
*out
= map
->work_buf
;
224 *out
= cpu_to_be16((reg
<< 12) | val
);
227 static void regmap_format_7_9_write(struct regmap
*map
,
228 unsigned int reg
, unsigned int val
)
230 __be16
*out
= map
->work_buf
;
231 *out
= cpu_to_be16((reg
<< 9) | val
);
234 static void regmap_format_10_14_write(struct regmap
*map
,
235 unsigned int reg
, unsigned int val
)
237 u8
*out
= map
->work_buf
;
240 out
[1] = (val
>> 8) | (reg
<< 6);
244 static void regmap_format_8(void *buf
, unsigned int val
, unsigned int shift
)
251 static void regmap_format_16_be(void *buf
, unsigned int val
, unsigned int shift
)
253 put_unaligned_be16(val
<< shift
, buf
);
256 static void regmap_format_16_le(void *buf
, unsigned int val
, unsigned int shift
)
258 put_unaligned_le16(val
<< shift
, buf
);
261 static void regmap_format_16_native(void *buf
, unsigned int val
,
264 u16 v
= val
<< shift
;
266 memcpy(buf
, &v
, sizeof(v
));
269 static void regmap_format_24(void *buf
, unsigned int val
, unsigned int shift
)
280 static void regmap_format_32_be(void *buf
, unsigned int val
, unsigned int shift
)
282 put_unaligned_be32(val
<< shift
, buf
);
285 static void regmap_format_32_le(void *buf
, unsigned int val
, unsigned int shift
)
287 put_unaligned_le32(val
<< shift
, buf
);
290 static void regmap_format_32_native(void *buf
, unsigned int val
,
293 u32 v
= val
<< shift
;
295 memcpy(buf
, &v
, sizeof(v
));
299 static void regmap_format_64_be(void *buf
, unsigned int val
, unsigned int shift
)
301 put_unaligned_be64((u64
) val
<< shift
, buf
);
304 static void regmap_format_64_le(void *buf
, unsigned int val
, unsigned int shift
)
306 put_unaligned_le64((u64
) val
<< shift
, buf
);
309 static void regmap_format_64_native(void *buf
, unsigned int val
,
312 u64 v
= (u64
) val
<< shift
;
314 memcpy(buf
, &v
, sizeof(v
));
318 static void regmap_parse_inplace_noop(void *buf
)
322 static unsigned int regmap_parse_8(const void *buf
)
329 static unsigned int regmap_parse_16_be(const void *buf
)
331 return get_unaligned_be16(buf
);
334 static unsigned int regmap_parse_16_le(const void *buf
)
336 return get_unaligned_le16(buf
);
339 static void regmap_parse_16_be_inplace(void *buf
)
341 u16 v
= get_unaligned_be16(buf
);
343 memcpy(buf
, &v
, sizeof(v
));
346 static void regmap_parse_16_le_inplace(void *buf
)
348 u16 v
= get_unaligned_le16(buf
);
350 memcpy(buf
, &v
, sizeof(v
));
353 static unsigned int regmap_parse_16_native(const void *buf
)
357 memcpy(&v
, buf
, sizeof(v
));
361 static unsigned int regmap_parse_24(const void *buf
)
364 unsigned int ret
= b
[2];
365 ret
|= ((unsigned int)b
[1]) << 8;
366 ret
|= ((unsigned int)b
[0]) << 16;
371 static unsigned int regmap_parse_32_be(const void *buf
)
373 return get_unaligned_be32(buf
);
376 static unsigned int regmap_parse_32_le(const void *buf
)
378 return get_unaligned_le32(buf
);
381 static void regmap_parse_32_be_inplace(void *buf
)
383 u32 v
= get_unaligned_be32(buf
);
385 memcpy(buf
, &v
, sizeof(v
));
388 static void regmap_parse_32_le_inplace(void *buf
)
390 u32 v
= get_unaligned_le32(buf
);
392 memcpy(buf
, &v
, sizeof(v
));
395 static unsigned int regmap_parse_32_native(const void *buf
)
399 memcpy(&v
, buf
, sizeof(v
));
404 static unsigned int regmap_parse_64_be(const void *buf
)
406 return get_unaligned_be64(buf
);
409 static unsigned int regmap_parse_64_le(const void *buf
)
411 return get_unaligned_le64(buf
);
414 static void regmap_parse_64_be_inplace(void *buf
)
416 u64 v
= get_unaligned_be64(buf
);
418 memcpy(buf
, &v
, sizeof(v
));
421 static void regmap_parse_64_le_inplace(void *buf
)
423 u64 v
= get_unaligned_le64(buf
);
425 memcpy(buf
, &v
, sizeof(v
));
428 static unsigned int regmap_parse_64_native(const void *buf
)
432 memcpy(&v
, buf
, sizeof(v
));
437 static void regmap_lock_hwlock(void *__map
)
439 struct regmap
*map
= __map
;
441 hwspin_lock_timeout(map
->hwlock
, UINT_MAX
);
444 static void regmap_lock_hwlock_irq(void *__map
)
446 struct regmap
*map
= __map
;
448 hwspin_lock_timeout_irq(map
->hwlock
, UINT_MAX
);
451 static void regmap_lock_hwlock_irqsave(void *__map
)
453 struct regmap
*map
= __map
;
455 hwspin_lock_timeout_irqsave(map
->hwlock
, UINT_MAX
,
456 &map
->spinlock_flags
);
459 static void regmap_unlock_hwlock(void *__map
)
461 struct regmap
*map
= __map
;
463 hwspin_unlock(map
->hwlock
);
466 static void regmap_unlock_hwlock_irq(void *__map
)
468 struct regmap
*map
= __map
;
470 hwspin_unlock_irq(map
->hwlock
);
473 static void regmap_unlock_hwlock_irqrestore(void *__map
)
475 struct regmap
*map
= __map
;
477 hwspin_unlock_irqrestore(map
->hwlock
, &map
->spinlock_flags
);
480 static void regmap_lock_unlock_none(void *__map
)
485 static void regmap_lock_mutex(void *__map
)
487 struct regmap
*map
= __map
;
488 mutex_lock(&map
->mutex
);
491 static void regmap_unlock_mutex(void *__map
)
493 struct regmap
*map
= __map
;
494 mutex_unlock(&map
->mutex
);
497 static void regmap_lock_spinlock(void *__map
)
498 __acquires(&map
->spinlock
)
500 struct regmap
*map
= __map
;
503 spin_lock_irqsave(&map
->spinlock
, flags
);
504 map
->spinlock_flags
= flags
;
507 static void regmap_unlock_spinlock(void *__map
)
508 __releases(&map
->spinlock
)
510 struct regmap
*map
= __map
;
511 spin_unlock_irqrestore(&map
->spinlock
, map
->spinlock_flags
);
514 static void dev_get_regmap_release(struct device
*dev
, void *res
)
517 * We don't actually have anything to do here; the goal here
518 * is not to manage the regmap but to provide a simple way to
519 * get the regmap back given a struct device.
523 static bool _regmap_range_add(struct regmap
*map
,
524 struct regmap_range_node
*data
)
526 struct rb_root
*root
= &map
->range_tree
;
527 struct rb_node
**new = &(root
->rb_node
), *parent
= NULL
;
530 struct regmap_range_node
*this =
531 rb_entry(*new, struct regmap_range_node
, node
);
534 if (data
->range_max
< this->range_min
)
535 new = &((*new)->rb_left
);
536 else if (data
->range_min
> this->range_max
)
537 new = &((*new)->rb_right
);
542 rb_link_node(&data
->node
, parent
, new);
543 rb_insert_color(&data
->node
, root
);
548 static struct regmap_range_node
*_regmap_range_lookup(struct regmap
*map
,
551 struct rb_node
*node
= map
->range_tree
.rb_node
;
554 struct regmap_range_node
*this =
555 rb_entry(node
, struct regmap_range_node
, node
);
557 if (reg
< this->range_min
)
558 node
= node
->rb_left
;
559 else if (reg
> this->range_max
)
560 node
= node
->rb_right
;
568 static void regmap_range_exit(struct regmap
*map
)
570 struct rb_node
*next
;
571 struct regmap_range_node
*range_node
;
573 next
= rb_first(&map
->range_tree
);
575 range_node
= rb_entry(next
, struct regmap_range_node
, node
);
576 next
= rb_next(&range_node
->node
);
577 rb_erase(&range_node
->node
, &map
->range_tree
);
581 kfree(map
->selector_work_buf
);
584 int regmap_attach_dev(struct device
*dev
, struct regmap
*map
,
585 const struct regmap_config
*config
)
591 regmap_debugfs_init(map
, config
->name
);
593 /* Add a devres resource for dev_get_regmap() */
594 m
= devres_alloc(dev_get_regmap_release
, sizeof(*m
), GFP_KERNEL
);
596 regmap_debugfs_exit(map
);
604 EXPORT_SYMBOL_GPL(regmap_attach_dev
);
606 static enum regmap_endian
regmap_get_reg_endian(const struct regmap_bus
*bus
,
607 const struct regmap_config
*config
)
609 enum regmap_endian endian
;
611 /* Retrieve the endianness specification from the regmap config */
612 endian
= config
->reg_format_endian
;
614 /* If the regmap config specified a non-default value, use that */
615 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
618 /* Retrieve the endianness specification from the bus config */
619 if (bus
&& bus
->reg_format_endian_default
)
620 endian
= bus
->reg_format_endian_default
;
622 /* If the bus specified a non-default value, use that */
623 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
626 /* Use this if no other value was found */
627 return REGMAP_ENDIAN_BIG
;
630 enum regmap_endian
regmap_get_val_endian(struct device
*dev
,
631 const struct regmap_bus
*bus
,
632 const struct regmap_config
*config
)
634 struct device_node
*np
;
635 enum regmap_endian endian
;
637 /* Retrieve the endianness specification from the regmap config */
638 endian
= config
->val_format_endian
;
640 /* If the regmap config specified a non-default value, use that */
641 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
644 /* If the dev and dev->of_node exist try to get endianness from DT */
645 if (dev
&& dev
->of_node
) {
648 /* Parse the device's DT node for an endianness specification */
649 if (of_property_read_bool(np
, "big-endian"))
650 endian
= REGMAP_ENDIAN_BIG
;
651 else if (of_property_read_bool(np
, "little-endian"))
652 endian
= REGMAP_ENDIAN_LITTLE
;
653 else if (of_property_read_bool(np
, "native-endian"))
654 endian
= REGMAP_ENDIAN_NATIVE
;
656 /* If the endianness was specified in DT, use that */
657 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
661 /* Retrieve the endianness specification from the bus config */
662 if (bus
&& bus
->val_format_endian_default
)
663 endian
= bus
->val_format_endian_default
;
665 /* If the bus specified a non-default value, use that */
666 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
669 /* Use this if no other value was found */
670 return REGMAP_ENDIAN_BIG
;
672 EXPORT_SYMBOL_GPL(regmap_get_val_endian
);
674 struct regmap
*__regmap_init(struct device
*dev
,
675 const struct regmap_bus
*bus
,
677 const struct regmap_config
*config
,
678 struct lock_class_key
*lock_key
,
679 const char *lock_name
)
683 enum regmap_endian reg_endian
, val_endian
;
689 map
= kzalloc(sizeof(*map
), GFP_KERNEL
);
696 map
->name
= kstrdup_const(config
->name
, GFP_KERNEL
);
703 if (config
->disable_locking
) {
704 map
->lock
= map
->unlock
= regmap_lock_unlock_none
;
705 regmap_debugfs_disable(map
);
706 } else if (config
->lock
&& config
->unlock
) {
707 map
->lock
= config
->lock
;
708 map
->unlock
= config
->unlock
;
709 map
->lock_arg
= config
->lock_arg
;
710 } else if (config
->use_hwlock
) {
711 map
->hwlock
= hwspin_lock_request_specific(config
->hwlock_id
);
717 switch (config
->hwlock_mode
) {
718 case HWLOCK_IRQSTATE
:
719 map
->lock
= regmap_lock_hwlock_irqsave
;
720 map
->unlock
= regmap_unlock_hwlock_irqrestore
;
723 map
->lock
= regmap_lock_hwlock_irq
;
724 map
->unlock
= regmap_unlock_hwlock_irq
;
727 map
->lock
= regmap_lock_hwlock
;
728 map
->unlock
= regmap_unlock_hwlock
;
734 if ((bus
&& bus
->fast_io
) ||
736 spin_lock_init(&map
->spinlock
);
737 map
->lock
= regmap_lock_spinlock
;
738 map
->unlock
= regmap_unlock_spinlock
;
739 lockdep_set_class_and_name(&map
->spinlock
,
740 lock_key
, lock_name
);
742 mutex_init(&map
->mutex
);
743 map
->lock
= regmap_lock_mutex
;
744 map
->unlock
= regmap_unlock_mutex
;
745 lockdep_set_class_and_name(&map
->mutex
,
746 lock_key
, lock_name
);
752 * When we write in fast-paths with regmap_bulk_write() don't allocate
753 * scratch buffers with sleeping allocations.
755 if ((bus
&& bus
->fast_io
) || config
->fast_io
)
756 map
->alloc_flags
= GFP_ATOMIC
;
758 map
->alloc_flags
= GFP_KERNEL
;
760 map
->format
.reg_bytes
= DIV_ROUND_UP(config
->reg_bits
, 8);
761 map
->format
.pad_bytes
= config
->pad_bits
/ 8;
762 map
->format
.val_bytes
= DIV_ROUND_UP(config
->val_bits
, 8);
763 map
->format
.buf_size
= DIV_ROUND_UP(config
->reg_bits
+
764 config
->val_bits
+ config
->pad_bits
, 8);
765 map
->reg_shift
= config
->pad_bits
% 8;
766 if (config
->reg_stride
)
767 map
->reg_stride
= config
->reg_stride
;
770 if (is_power_of_2(map
->reg_stride
))
771 map
->reg_stride_order
= ilog2(map
->reg_stride
);
773 map
->reg_stride_order
= -1;
774 map
->use_single_read
= config
->use_single_read
|| !bus
|| !bus
->read
;
775 map
->use_single_write
= config
->use_single_write
|| !bus
|| !bus
->write
;
776 map
->can_multi_write
= config
->can_multi_write
&& bus
&& bus
->write
;
778 map
->max_raw_read
= bus
->max_raw_read
;
779 map
->max_raw_write
= bus
->max_raw_write
;
783 map
->bus_context
= bus_context
;
784 map
->max_register
= config
->max_register
;
785 map
->wr_table
= config
->wr_table
;
786 map
->rd_table
= config
->rd_table
;
787 map
->volatile_table
= config
->volatile_table
;
788 map
->precious_table
= config
->precious_table
;
789 map
->wr_noinc_table
= config
->wr_noinc_table
;
790 map
->rd_noinc_table
= config
->rd_noinc_table
;
791 map
->writeable_reg
= config
->writeable_reg
;
792 map
->readable_reg
= config
->readable_reg
;
793 map
->volatile_reg
= config
->volatile_reg
;
794 map
->precious_reg
= config
->precious_reg
;
795 map
->writeable_noinc_reg
= config
->writeable_noinc_reg
;
796 map
->readable_noinc_reg
= config
->readable_noinc_reg
;
797 map
->cache_type
= config
->cache_type
;
799 spin_lock_init(&map
->async_lock
);
800 INIT_LIST_HEAD(&map
->async_list
);
801 INIT_LIST_HEAD(&map
->async_free
);
802 init_waitqueue_head(&map
->async_waitq
);
804 if (config
->read_flag_mask
||
805 config
->write_flag_mask
||
806 config
->zero_flag_mask
) {
807 map
->read_flag_mask
= config
->read_flag_mask
;
808 map
->write_flag_mask
= config
->write_flag_mask
;
810 map
->read_flag_mask
= bus
->read_flag_mask
;
814 map
->reg_read
= config
->reg_read
;
815 map
->reg_write
= config
->reg_write
;
817 map
->defer_caching
= false;
818 goto skip_format_initialization
;
819 } else if (!bus
->read
|| !bus
->write
) {
820 map
->reg_read
= _regmap_bus_reg_read
;
821 map
->reg_write
= _regmap_bus_reg_write
;
823 map
->defer_caching
= false;
824 goto skip_format_initialization
;
826 map
->reg_read
= _regmap_bus_read
;
827 map
->reg_update_bits
= bus
->reg_update_bits
;
830 reg_endian
= regmap_get_reg_endian(bus
, config
);
831 val_endian
= regmap_get_val_endian(dev
, bus
, config
);
833 switch (config
->reg_bits
+ map
->reg_shift
) {
835 switch (config
->val_bits
) {
837 map
->format
.format_write
= regmap_format_2_6_write
;
845 switch (config
->val_bits
) {
847 map
->format
.format_write
= regmap_format_4_12_write
;
855 switch (config
->val_bits
) {
857 map
->format
.format_write
= regmap_format_7_9_write
;
865 switch (config
->val_bits
) {
867 map
->format
.format_write
= regmap_format_10_14_write
;
875 map
->format
.format_reg
= regmap_format_8
;
879 switch (reg_endian
) {
880 case REGMAP_ENDIAN_BIG
:
881 map
->format
.format_reg
= regmap_format_16_be
;
883 case REGMAP_ENDIAN_LITTLE
:
884 map
->format
.format_reg
= regmap_format_16_le
;
886 case REGMAP_ENDIAN_NATIVE
:
887 map
->format
.format_reg
= regmap_format_16_native
;
895 if (reg_endian
!= REGMAP_ENDIAN_BIG
)
897 map
->format
.format_reg
= regmap_format_24
;
901 switch (reg_endian
) {
902 case REGMAP_ENDIAN_BIG
:
903 map
->format
.format_reg
= regmap_format_32_be
;
905 case REGMAP_ENDIAN_LITTLE
:
906 map
->format
.format_reg
= regmap_format_32_le
;
908 case REGMAP_ENDIAN_NATIVE
:
909 map
->format
.format_reg
= regmap_format_32_native
;
918 switch (reg_endian
) {
919 case REGMAP_ENDIAN_BIG
:
920 map
->format
.format_reg
= regmap_format_64_be
;
922 case REGMAP_ENDIAN_LITTLE
:
923 map
->format
.format_reg
= regmap_format_64_le
;
925 case REGMAP_ENDIAN_NATIVE
:
926 map
->format
.format_reg
= regmap_format_64_native
;
938 if (val_endian
== REGMAP_ENDIAN_NATIVE
)
939 map
->format
.parse_inplace
= regmap_parse_inplace_noop
;
941 switch (config
->val_bits
) {
943 map
->format
.format_val
= regmap_format_8
;
944 map
->format
.parse_val
= regmap_parse_8
;
945 map
->format
.parse_inplace
= regmap_parse_inplace_noop
;
948 switch (val_endian
) {
949 case REGMAP_ENDIAN_BIG
:
950 map
->format
.format_val
= regmap_format_16_be
;
951 map
->format
.parse_val
= regmap_parse_16_be
;
952 map
->format
.parse_inplace
= regmap_parse_16_be_inplace
;
954 case REGMAP_ENDIAN_LITTLE
:
955 map
->format
.format_val
= regmap_format_16_le
;
956 map
->format
.parse_val
= regmap_parse_16_le
;
957 map
->format
.parse_inplace
= regmap_parse_16_le_inplace
;
959 case REGMAP_ENDIAN_NATIVE
:
960 map
->format
.format_val
= regmap_format_16_native
;
961 map
->format
.parse_val
= regmap_parse_16_native
;
968 if (val_endian
!= REGMAP_ENDIAN_BIG
)
970 map
->format
.format_val
= regmap_format_24
;
971 map
->format
.parse_val
= regmap_parse_24
;
974 switch (val_endian
) {
975 case REGMAP_ENDIAN_BIG
:
976 map
->format
.format_val
= regmap_format_32_be
;
977 map
->format
.parse_val
= regmap_parse_32_be
;
978 map
->format
.parse_inplace
= regmap_parse_32_be_inplace
;
980 case REGMAP_ENDIAN_LITTLE
:
981 map
->format
.format_val
= regmap_format_32_le
;
982 map
->format
.parse_val
= regmap_parse_32_le
;
983 map
->format
.parse_inplace
= regmap_parse_32_le_inplace
;
985 case REGMAP_ENDIAN_NATIVE
:
986 map
->format
.format_val
= regmap_format_32_native
;
987 map
->format
.parse_val
= regmap_parse_32_native
;
995 switch (val_endian
) {
996 case REGMAP_ENDIAN_BIG
:
997 map
->format
.format_val
= regmap_format_64_be
;
998 map
->format
.parse_val
= regmap_parse_64_be
;
999 map
->format
.parse_inplace
= regmap_parse_64_be_inplace
;
1001 case REGMAP_ENDIAN_LITTLE
:
1002 map
->format
.format_val
= regmap_format_64_le
;
1003 map
->format
.parse_val
= regmap_parse_64_le
;
1004 map
->format
.parse_inplace
= regmap_parse_64_le_inplace
;
1006 case REGMAP_ENDIAN_NATIVE
:
1007 map
->format
.format_val
= regmap_format_64_native
;
1008 map
->format
.parse_val
= regmap_parse_64_native
;
1017 if (map
->format
.format_write
) {
1018 if ((reg_endian
!= REGMAP_ENDIAN_BIG
) ||
1019 (val_endian
!= REGMAP_ENDIAN_BIG
))
1021 map
->use_single_write
= true;
1024 if (!map
->format
.format_write
&&
1025 !(map
->format
.format_reg
&& map
->format
.format_val
))
1028 map
->work_buf
= kzalloc(map
->format
.buf_size
, GFP_KERNEL
);
1029 if (map
->work_buf
== NULL
) {
1034 if (map
->format
.format_write
) {
1035 map
->defer_caching
= false;
1036 map
->reg_write
= _regmap_bus_formatted_write
;
1037 } else if (map
->format
.format_val
) {
1038 map
->defer_caching
= true;
1039 map
->reg_write
= _regmap_bus_raw_write
;
1042 skip_format_initialization
:
1044 map
->range_tree
= RB_ROOT
;
1045 for (i
= 0; i
< config
->num_ranges
; i
++) {
1046 const struct regmap_range_cfg
*range_cfg
= &config
->ranges
[i
];
1047 struct regmap_range_node
*new;
1050 if (range_cfg
->range_max
< range_cfg
->range_min
) {
1051 dev_err(map
->dev
, "Invalid range %d: %d < %d\n", i
,
1052 range_cfg
->range_max
, range_cfg
->range_min
);
1056 if (range_cfg
->range_max
> map
->max_register
) {
1057 dev_err(map
->dev
, "Invalid range %d: %d > %d\n", i
,
1058 range_cfg
->range_max
, map
->max_register
);
1062 if (range_cfg
->selector_reg
> map
->max_register
) {
1064 "Invalid range %d: selector out of map\n", i
);
1068 if (range_cfg
->window_len
== 0) {
1069 dev_err(map
->dev
, "Invalid range %d: window_len 0\n",
1074 /* Make sure, that this register range has no selector
1075 or data window within its boundary */
1076 for (j
= 0; j
< config
->num_ranges
; j
++) {
1077 unsigned sel_reg
= config
->ranges
[j
].selector_reg
;
1078 unsigned win_min
= config
->ranges
[j
].window_start
;
1079 unsigned win_max
= win_min
+
1080 config
->ranges
[j
].window_len
- 1;
1082 /* Allow data window inside its own virtual range */
1086 if (range_cfg
->range_min
<= sel_reg
&&
1087 sel_reg
<= range_cfg
->range_max
) {
1089 "Range %d: selector for %d in window\n",
1094 if (!(win_max
< range_cfg
->range_min
||
1095 win_min
> range_cfg
->range_max
)) {
1097 "Range %d: window for %d in window\n",
1103 new = kzalloc(sizeof(*new), GFP_KERNEL
);
1110 new->name
= range_cfg
->name
;
1111 new->range_min
= range_cfg
->range_min
;
1112 new->range_max
= range_cfg
->range_max
;
1113 new->selector_reg
= range_cfg
->selector_reg
;
1114 new->selector_mask
= range_cfg
->selector_mask
;
1115 new->selector_shift
= range_cfg
->selector_shift
;
1116 new->window_start
= range_cfg
->window_start
;
1117 new->window_len
= range_cfg
->window_len
;
1119 if (!_regmap_range_add(map
, new)) {
1120 dev_err(map
->dev
, "Failed to add range %d\n", i
);
1125 if (map
->selector_work_buf
== NULL
) {
1126 map
->selector_work_buf
=
1127 kzalloc(map
->format
.buf_size
, GFP_KERNEL
);
1128 if (map
->selector_work_buf
== NULL
) {
1135 ret
= regcache_init(map
, config
);
1140 ret
= regmap_attach_dev(dev
, map
, config
);
1144 regmap_debugfs_init(map
, config
->name
);
1152 regmap_range_exit(map
);
1153 kfree(map
->work_buf
);
1156 hwspin_lock_free(map
->hwlock
);
1158 kfree_const(map
->name
);
1162 return ERR_PTR(ret
);
1164 EXPORT_SYMBOL_GPL(__regmap_init
);
1166 static void devm_regmap_release(struct device
*dev
, void *res
)
1168 regmap_exit(*(struct regmap
**)res
);
1171 struct regmap
*__devm_regmap_init(struct device
*dev
,
1172 const struct regmap_bus
*bus
,
1174 const struct regmap_config
*config
,
1175 struct lock_class_key
*lock_key
,
1176 const char *lock_name
)
1178 struct regmap
**ptr
, *regmap
;
1180 ptr
= devres_alloc(devm_regmap_release
, sizeof(*ptr
), GFP_KERNEL
);
1182 return ERR_PTR(-ENOMEM
);
1184 regmap
= __regmap_init(dev
, bus
, bus_context
, config
,
1185 lock_key
, lock_name
);
1186 if (!IS_ERR(regmap
)) {
1188 devres_add(dev
, ptr
);
1195 EXPORT_SYMBOL_GPL(__devm_regmap_init
);
1197 static void regmap_field_init(struct regmap_field
*rm_field
,
1198 struct regmap
*regmap
, struct reg_field reg_field
)
1200 rm_field
->regmap
= regmap
;
1201 rm_field
->reg
= reg_field
.reg
;
1202 rm_field
->shift
= reg_field
.lsb
;
1203 rm_field
->mask
= GENMASK(reg_field
.msb
, reg_field
.lsb
);
1204 rm_field
->id_size
= reg_field
.id_size
;
1205 rm_field
->id_offset
= reg_field
.id_offset
;
1209 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1211 * @dev: Device that will be interacted with
1212 * @regmap: regmap bank in which this register field is located.
1213 * @reg_field: Register field with in the bank.
1215 * The return value will be an ERR_PTR() on error or a valid pointer
1216 * to a struct regmap_field. The regmap_field will be automatically freed
1217 * by the device management code.
1219 struct regmap_field
*devm_regmap_field_alloc(struct device
*dev
,
1220 struct regmap
*regmap
, struct reg_field reg_field
)
1222 struct regmap_field
*rm_field
= devm_kzalloc(dev
,
1223 sizeof(*rm_field
), GFP_KERNEL
);
1225 return ERR_PTR(-ENOMEM
);
1227 regmap_field_init(rm_field
, regmap
, reg_field
);
1232 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc
);
1235 * devm_regmap_field_free() - Free a register field allocated using
1236 * devm_regmap_field_alloc.
1238 * @dev: Device that will be interacted with
1239 * @field: regmap field which should be freed.
1241 * Free register field allocated using devm_regmap_field_alloc(). Usually
1242 * drivers need not call this function, as the memory allocated via devm
1243 * will be freed as per device-driver life-cyle.
1245 void devm_regmap_field_free(struct device
*dev
,
1246 struct regmap_field
*field
)
1248 devm_kfree(dev
, field
);
1250 EXPORT_SYMBOL_GPL(devm_regmap_field_free
);
1253 * regmap_field_alloc() - Allocate and initialise a register field.
1255 * @regmap: regmap bank in which this register field is located.
1256 * @reg_field: Register field with in the bank.
1258 * The return value will be an ERR_PTR() on error or a valid pointer
1259 * to a struct regmap_field. The regmap_field should be freed by the
1260 * user once its finished working with it using regmap_field_free().
1262 struct regmap_field
*regmap_field_alloc(struct regmap
*regmap
,
1263 struct reg_field reg_field
)
1265 struct regmap_field
*rm_field
= kzalloc(sizeof(*rm_field
), GFP_KERNEL
);
1268 return ERR_PTR(-ENOMEM
);
1270 regmap_field_init(rm_field
, regmap
, reg_field
);
1274 EXPORT_SYMBOL_GPL(regmap_field_alloc
);
1277 * regmap_field_free() - Free register field allocated using
1278 * regmap_field_alloc.
1280 * @field: regmap field which should be freed.
1282 void regmap_field_free(struct regmap_field
*field
)
1286 EXPORT_SYMBOL_GPL(regmap_field_free
);
1289 * regmap_reinit_cache() - Reinitialise the current register cache
1291 * @map: Register map to operate on.
1292 * @config: New configuration. Only the cache data will be used.
1294 * Discard any existing register cache for the map and initialize a
1295 * new cache. This can be used to restore the cache to defaults or to
1296 * update the cache configuration to reflect runtime discovery of the
1299 * No explicit locking is done here, the user needs to ensure that
1300 * this function will not race with other calls to regmap.
1302 int regmap_reinit_cache(struct regmap
*map
, const struct regmap_config
*config
)
1305 regmap_debugfs_exit(map
);
1307 map
->max_register
= config
->max_register
;
1308 map
->writeable_reg
= config
->writeable_reg
;
1309 map
->readable_reg
= config
->readable_reg
;
1310 map
->volatile_reg
= config
->volatile_reg
;
1311 map
->precious_reg
= config
->precious_reg
;
1312 map
->writeable_noinc_reg
= config
->writeable_noinc_reg
;
1313 map
->readable_noinc_reg
= config
->readable_noinc_reg
;
1314 map
->cache_type
= config
->cache_type
;
1316 regmap_debugfs_init(map
, config
->name
);
1318 map
->cache_bypass
= false;
1319 map
->cache_only
= false;
1321 return regcache_init(map
, config
);
1323 EXPORT_SYMBOL_GPL(regmap_reinit_cache
);
1326 * regmap_exit() - Free a previously allocated register map
1328 * @map: Register map to operate on.
1330 void regmap_exit(struct regmap
*map
)
1332 struct regmap_async
*async
;
1335 regmap_debugfs_exit(map
);
1336 regmap_range_exit(map
);
1337 if (map
->bus
&& map
->bus
->free_context
)
1338 map
->bus
->free_context(map
->bus_context
);
1339 kfree(map
->work_buf
);
1340 while (!list_empty(&map
->async_free
)) {
1341 async
= list_first_entry_or_null(&map
->async_free
,
1342 struct regmap_async
,
1344 list_del(&async
->list
);
1345 kfree(async
->work_buf
);
1349 hwspin_lock_free(map
->hwlock
);
1350 kfree_const(map
->name
);
1354 EXPORT_SYMBOL_GPL(regmap_exit
);
1356 static int dev_get_regmap_match(struct device
*dev
, void *res
, void *data
)
1358 struct regmap
**r
= res
;
1364 /* If the user didn't specify a name match any */
1366 return !strcmp((*r
)->name
, data
);
1372 * dev_get_regmap() - Obtain the regmap (if any) for a device
1374 * @dev: Device to retrieve the map for
1375 * @name: Optional name for the register map, usually NULL.
1377 * Returns the regmap for the device if one is present, or NULL. If
1378 * name is specified then it must match the name specified when
1379 * registering the device, if it is NULL then the first regmap found
1380 * will be used. Devices with multiple register maps are very rare,
1381 * generic code should normally not need to specify a name.
1383 struct regmap
*dev_get_regmap(struct device
*dev
, const char *name
)
1385 struct regmap
**r
= devres_find(dev
, dev_get_regmap_release
,
1386 dev_get_regmap_match
, (void *)name
);
1392 EXPORT_SYMBOL_GPL(dev_get_regmap
);
1395 * regmap_get_device() - Obtain the device from a regmap
1397 * @map: Register map to operate on.
1399 * Returns the underlying device that the regmap has been created for.
1401 struct device
*regmap_get_device(struct regmap
*map
)
1405 EXPORT_SYMBOL_GPL(regmap_get_device
);
1407 static int _regmap_select_page(struct regmap
*map
, unsigned int *reg
,
1408 struct regmap_range_node
*range
,
1409 unsigned int val_num
)
1411 void *orig_work_buf
;
1412 unsigned int win_offset
;
1413 unsigned int win_page
;
1417 win_offset
= (*reg
- range
->range_min
) % range
->window_len
;
1418 win_page
= (*reg
- range
->range_min
) / range
->window_len
;
1421 /* Bulk write shouldn't cross range boundary */
1422 if (*reg
+ val_num
- 1 > range
->range_max
)
1425 /* ... or single page boundary */
1426 if (val_num
> range
->window_len
- win_offset
)
1430 /* It is possible to have selector register inside data window.
1431 In that case, selector register is located on every page and
1432 it needs no page switching, when accessed alone. */
1434 range
->window_start
+ win_offset
!= range
->selector_reg
) {
1435 /* Use separate work_buf during page switching */
1436 orig_work_buf
= map
->work_buf
;
1437 map
->work_buf
= map
->selector_work_buf
;
1439 ret
= _regmap_update_bits(map
, range
->selector_reg
,
1440 range
->selector_mask
,
1441 win_page
<< range
->selector_shift
,
1444 map
->work_buf
= orig_work_buf
;
1450 *reg
= range
->window_start
+ win_offset
;
1455 static void regmap_set_work_buf_flag_mask(struct regmap
*map
, int max_bytes
,
1461 if (!mask
|| !map
->work_buf
)
1464 buf
= map
->work_buf
;
1466 for (i
= 0; i
< max_bytes
; i
++)
1467 buf
[i
] |= (mask
>> (8 * i
)) & 0xff;
1470 static int _regmap_raw_write_impl(struct regmap
*map
, unsigned int reg
,
1471 const void *val
, size_t val_len
)
1473 struct regmap_range_node
*range
;
1474 unsigned long flags
;
1475 void *work_val
= map
->work_buf
+ map
->format
.reg_bytes
+
1476 map
->format
.pad_bytes
;
1478 int ret
= -ENOTSUPP
;
1484 /* Check for unwritable or noinc registers in range
1487 if (!regmap_writeable_noinc(map
, reg
)) {
1488 for (i
= 0; i
< val_len
/ map
->format
.val_bytes
; i
++) {
1489 unsigned int element
=
1490 reg
+ regmap_get_offset(map
, i
);
1491 if (!regmap_writeable(map
, element
) ||
1492 regmap_writeable_noinc(map
, element
))
1497 if (!map
->cache_bypass
&& map
->format
.parse_val
) {
1499 int val_bytes
= map
->format
.val_bytes
;
1500 for (i
= 0; i
< val_len
/ val_bytes
; i
++) {
1501 ival
= map
->format
.parse_val(val
+ (i
* val_bytes
));
1502 ret
= regcache_write(map
,
1503 reg
+ regmap_get_offset(map
, i
),
1507 "Error in caching of register: %x ret: %d\n",
1512 if (map
->cache_only
) {
1513 map
->cache_dirty
= true;
1518 range
= _regmap_range_lookup(map
, reg
);
1520 int val_num
= val_len
/ map
->format
.val_bytes
;
1521 int win_offset
= (reg
- range
->range_min
) % range
->window_len
;
1522 int win_residue
= range
->window_len
- win_offset
;
1524 /* If the write goes beyond the end of the window split it */
1525 while (val_num
> win_residue
) {
1526 dev_dbg(map
->dev
, "Writing window %d/%zu\n",
1527 win_residue
, val_len
/ map
->format
.val_bytes
);
1528 ret
= _regmap_raw_write_impl(map
, reg
, val
,
1530 map
->format
.val_bytes
);
1535 val_num
-= win_residue
;
1536 val
+= win_residue
* map
->format
.val_bytes
;
1537 val_len
-= win_residue
* map
->format
.val_bytes
;
1539 win_offset
= (reg
- range
->range_min
) %
1541 win_residue
= range
->window_len
- win_offset
;
1544 ret
= _regmap_select_page(map
, ®
, range
, val_num
);
1549 map
->format
.format_reg(map
->work_buf
, reg
, map
->reg_shift
);
1550 regmap_set_work_buf_flag_mask(map
, map
->format
.reg_bytes
,
1551 map
->write_flag_mask
);
1554 * Essentially all I/O mechanisms will be faster with a single
1555 * buffer to write. Since register syncs often generate raw
1556 * writes of single registers optimise that case.
1558 if (val
!= work_val
&& val_len
== map
->format
.val_bytes
) {
1559 memcpy(work_val
, val
, map
->format
.val_bytes
);
1563 if (map
->async
&& map
->bus
->async_write
) {
1564 struct regmap_async
*async
;
1566 trace_regmap_async_write_start(map
, reg
, val_len
);
1568 spin_lock_irqsave(&map
->async_lock
, flags
);
1569 async
= list_first_entry_or_null(&map
->async_free
,
1570 struct regmap_async
,
1573 list_del(&async
->list
);
1574 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1577 async
= map
->bus
->async_alloc();
1581 async
->work_buf
= kzalloc(map
->format
.buf_size
,
1582 GFP_KERNEL
| GFP_DMA
);
1583 if (!async
->work_buf
) {
1591 /* If the caller supplied the value we can use it safely. */
1592 memcpy(async
->work_buf
, map
->work_buf
, map
->format
.pad_bytes
+
1593 map
->format
.reg_bytes
+ map
->format
.val_bytes
);
1595 spin_lock_irqsave(&map
->async_lock
, flags
);
1596 list_add_tail(&async
->list
, &map
->async_list
);
1597 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1599 if (val
!= work_val
)
1600 ret
= map
->bus
->async_write(map
->bus_context
,
1602 map
->format
.reg_bytes
+
1603 map
->format
.pad_bytes
,
1604 val
, val_len
, async
);
1606 ret
= map
->bus
->async_write(map
->bus_context
,
1608 map
->format
.reg_bytes
+
1609 map
->format
.pad_bytes
+
1610 val_len
, NULL
, 0, async
);
1613 dev_err(map
->dev
, "Failed to schedule write: %d\n",
1616 spin_lock_irqsave(&map
->async_lock
, flags
);
1617 list_move(&async
->list
, &map
->async_free
);
1618 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1624 trace_regmap_hw_write_start(map
, reg
, val_len
/ map
->format
.val_bytes
);
1626 /* If we're doing a single register write we can probably just
1627 * send the work_buf directly, otherwise try to do a gather
1630 if (val
== work_val
)
1631 ret
= map
->bus
->write(map
->bus_context
, map
->work_buf
,
1632 map
->format
.reg_bytes
+
1633 map
->format
.pad_bytes
+
1635 else if (map
->bus
->gather_write
)
1636 ret
= map
->bus
->gather_write(map
->bus_context
, map
->work_buf
,
1637 map
->format
.reg_bytes
+
1638 map
->format
.pad_bytes
,
1643 /* If that didn't work fall back on linearising by hand. */
1644 if (ret
== -ENOTSUPP
) {
1645 len
= map
->format
.reg_bytes
+ map
->format
.pad_bytes
+ val_len
;
1646 buf
= kzalloc(len
, GFP_KERNEL
);
1650 memcpy(buf
, map
->work_buf
, map
->format
.reg_bytes
);
1651 memcpy(buf
+ map
->format
.reg_bytes
+ map
->format
.pad_bytes
,
1653 ret
= map
->bus
->write(map
->bus_context
, buf
, len
);
1656 } else if (ret
!= 0 && !map
->cache_bypass
&& map
->format
.parse_val
) {
1657 /* regcache_drop_region() takes lock that we already have,
1658 * thus call map->cache_ops->drop() directly
1660 if (map
->cache_ops
&& map
->cache_ops
->drop
)
1661 map
->cache_ops
->drop(map
, reg
, reg
+ 1);
1664 trace_regmap_hw_write_done(map
, reg
, val_len
/ map
->format
.val_bytes
);
1670 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1672 * @map: Map to check.
1674 bool regmap_can_raw_write(struct regmap
*map
)
1676 return map
->bus
&& map
->bus
->write
&& map
->format
.format_val
&&
1677 map
->format
.format_reg
;
1679 EXPORT_SYMBOL_GPL(regmap_can_raw_write
);
1682 * regmap_get_raw_read_max - Get the maximum size we can read
1684 * @map: Map to check.
1686 size_t regmap_get_raw_read_max(struct regmap
*map
)
1688 return map
->max_raw_read
;
1690 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max
);
1693 * regmap_get_raw_write_max - Get the maximum size we can read
1695 * @map: Map to check.
1697 size_t regmap_get_raw_write_max(struct regmap
*map
)
1699 return map
->max_raw_write
;
1701 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max
);
1703 static int _regmap_bus_formatted_write(void *context
, unsigned int reg
,
1707 struct regmap_range_node
*range
;
1708 struct regmap
*map
= context
;
1710 WARN_ON(!map
->bus
|| !map
->format
.format_write
);
1712 range
= _regmap_range_lookup(map
, reg
);
1714 ret
= _regmap_select_page(map
, ®
, range
, 1);
1719 map
->format
.format_write(map
, reg
, val
);
1721 trace_regmap_hw_write_start(map
, reg
, 1);
1723 ret
= map
->bus
->write(map
->bus_context
, map
->work_buf
,
1724 map
->format
.buf_size
);
1726 trace_regmap_hw_write_done(map
, reg
, 1);
1731 static int _regmap_bus_reg_write(void *context
, unsigned int reg
,
1734 struct regmap
*map
= context
;
1736 return map
->bus
->reg_write(map
->bus_context
, reg
, val
);
1739 static int _regmap_bus_raw_write(void *context
, unsigned int reg
,
1742 struct regmap
*map
= context
;
1744 WARN_ON(!map
->bus
|| !map
->format
.format_val
);
1746 map
->format
.format_val(map
->work_buf
+ map
->format
.reg_bytes
1747 + map
->format
.pad_bytes
, val
, 0);
1748 return _regmap_raw_write_impl(map
, reg
,
1750 map
->format
.reg_bytes
+
1751 map
->format
.pad_bytes
,
1752 map
->format
.val_bytes
);
1755 static inline void *_regmap_map_get_context(struct regmap
*map
)
1757 return (map
->bus
) ? map
: map
->bus_context
;
1760 int _regmap_write(struct regmap
*map
, unsigned int reg
,
1764 void *context
= _regmap_map_get_context(map
);
1766 if (!regmap_writeable(map
, reg
))
1769 if (!map
->cache_bypass
&& !map
->defer_caching
) {
1770 ret
= regcache_write(map
, reg
, val
);
1773 if (map
->cache_only
) {
1774 map
->cache_dirty
= true;
1779 if (regmap_should_log(map
))
1780 dev_info(map
->dev
, "%x <= %x\n", reg
, val
);
1782 trace_regmap_reg_write(map
, reg
, val
);
1784 return map
->reg_write(context
, reg
, val
);
1788 * regmap_write() - Write a value to a single register
1790 * @map: Register map to write to
1791 * @reg: Register to write to
1792 * @val: Value to be written
1794 * A value of zero will be returned on success, a negative errno will
1795 * be returned in error cases.
1797 int regmap_write(struct regmap
*map
, unsigned int reg
, unsigned int val
)
1801 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1804 map
->lock(map
->lock_arg
);
1806 ret
= _regmap_write(map
, reg
, val
);
1808 map
->unlock(map
->lock_arg
);
1812 EXPORT_SYMBOL_GPL(regmap_write
);
1815 * regmap_write_async() - Write a value to a single register asynchronously
1817 * @map: Register map to write to
1818 * @reg: Register to write to
1819 * @val: Value to be written
1821 * A value of zero will be returned on success, a negative errno will
1822 * be returned in error cases.
1824 int regmap_write_async(struct regmap
*map
, unsigned int reg
, unsigned int val
)
1828 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1831 map
->lock(map
->lock_arg
);
1835 ret
= _regmap_write(map
, reg
, val
);
1839 map
->unlock(map
->lock_arg
);
1843 EXPORT_SYMBOL_GPL(regmap_write_async
);
1845 int _regmap_raw_write(struct regmap
*map
, unsigned int reg
,
1846 const void *val
, size_t val_len
)
1848 size_t val_bytes
= map
->format
.val_bytes
;
1849 size_t val_count
= val_len
/ val_bytes
;
1850 size_t chunk_count
, chunk_bytes
;
1851 size_t chunk_regs
= val_count
;
1857 if (map
->use_single_write
)
1859 else if (map
->max_raw_write
&& val_len
> map
->max_raw_write
)
1860 chunk_regs
= map
->max_raw_write
/ val_bytes
;
1862 chunk_count
= val_count
/ chunk_regs
;
1863 chunk_bytes
= chunk_regs
* val_bytes
;
1865 /* Write as many bytes as possible with chunk_size */
1866 for (i
= 0; i
< chunk_count
; i
++) {
1867 ret
= _regmap_raw_write_impl(map
, reg
, val
, chunk_bytes
);
1871 reg
+= regmap_get_offset(map
, chunk_regs
);
1873 val_len
-= chunk_bytes
;
1876 /* Write remaining bytes */
1878 ret
= _regmap_raw_write_impl(map
, reg
, val
, val_len
);
1884 * regmap_raw_write() - Write raw values to one or more registers
1886 * @map: Register map to write to
1887 * @reg: Initial register to write to
1888 * @val: Block of data to be written, laid out for direct transmission to the
1890 * @val_len: Length of data pointed to by val.
1892 * This function is intended to be used for things like firmware
1893 * download where a large block of data needs to be transferred to the
1894 * device. No formatting will be done on the data provided.
1896 * A value of zero will be returned on success, a negative errno will
1897 * be returned in error cases.
1899 int regmap_raw_write(struct regmap
*map
, unsigned int reg
,
1900 const void *val
, size_t val_len
)
1904 if (!regmap_can_raw_write(map
))
1906 if (val_len
% map
->format
.val_bytes
)
1909 map
->lock(map
->lock_arg
);
1911 ret
= _regmap_raw_write(map
, reg
, val
, val_len
);
1913 map
->unlock(map
->lock_arg
);
1917 EXPORT_SYMBOL_GPL(regmap_raw_write
);
1920 * regmap_noinc_write(): Write data from a register without incrementing the
1923 * @map: Register map to write to
1924 * @reg: Register to write to
1925 * @val: Pointer to data buffer
1926 * @val_len: Length of output buffer in bytes.
1928 * The regmap API usually assumes that bulk bus write operations will write a
1929 * range of registers. Some devices have certain registers for which a write
1930 * operation can write to an internal FIFO.
1932 * The target register must be volatile but registers after it can be
1933 * completely unrelated cacheable registers.
1935 * This will attempt multiple writes as required to write val_len bytes.
1937 * A value of zero will be returned on success, a negative errno will be
1938 * returned in error cases.
1940 int regmap_noinc_write(struct regmap
*map
, unsigned int reg
,
1941 const void *val
, size_t val_len
)
1948 if (!map
->bus
->write
)
1950 if (val_len
% map
->format
.val_bytes
)
1952 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1957 map
->lock(map
->lock_arg
);
1959 if (!regmap_volatile(map
, reg
) || !regmap_writeable_noinc(map
, reg
)) {
1965 if (map
->max_raw_write
&& map
->max_raw_write
< val_len
)
1966 write_len
= map
->max_raw_write
;
1968 write_len
= val_len
;
1969 ret
= _regmap_raw_write(map
, reg
, val
, write_len
);
1972 val
= ((u8
*)val
) + write_len
;
1973 val_len
-= write_len
;
1977 map
->unlock(map
->lock_arg
);
1980 EXPORT_SYMBOL_GPL(regmap_noinc_write
);
1983 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1986 * @field: Register field to write to
1987 * @mask: Bitmask to change
1988 * @val: Value to be written
1989 * @change: Boolean indicating if a write was done
1990 * @async: Boolean indicating asynchronously
1991 * @force: Boolean indicating use force update
1993 * Perform a read/modify/write cycle on the register field with change,
1994 * async, force option.
1996 * A value of zero will be returned on success, a negative errno will
1997 * be returned in error cases.
1999 int regmap_field_update_bits_base(struct regmap_field
*field
,
2000 unsigned int mask
, unsigned int val
,
2001 bool *change
, bool async
, bool force
)
2003 mask
= (mask
<< field
->shift
) & field
->mask
;
2005 return regmap_update_bits_base(field
->regmap
, field
->reg
,
2006 mask
, val
<< field
->shift
,
2007 change
, async
, force
);
2009 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base
);
2012 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2013 * register field with port ID
2015 * @field: Register field to write to
2017 * @mask: Bitmask to change
2018 * @val: Value to be written
2019 * @change: Boolean indicating if a write was done
2020 * @async: Boolean indicating asynchronously
2021 * @force: Boolean indicating use force update
2023 * A value of zero will be returned on success, a negative errno will
2024 * be returned in error cases.
2026 int regmap_fields_update_bits_base(struct regmap_field
*field
, unsigned int id
,
2027 unsigned int mask
, unsigned int val
,
2028 bool *change
, bool async
, bool force
)
2030 if (id
>= field
->id_size
)
2033 mask
= (mask
<< field
->shift
) & field
->mask
;
2035 return regmap_update_bits_base(field
->regmap
,
2036 field
->reg
+ (field
->id_offset
* id
),
2037 mask
, val
<< field
->shift
,
2038 change
, async
, force
);
2040 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base
);
2043 * regmap_bulk_write() - Write multiple registers to the device
2045 * @map: Register map to write to
2046 * @reg: First register to be write from
2047 * @val: Block of data to be written, in native register size for device
2048 * @val_count: Number of registers to write
2050 * This function is intended to be used for writing a large block of
2051 * data to the device either in single transfer or multiple transfer.
2053 * A value of zero will be returned on success, a negative errno will
2054 * be returned in error cases.
2056 int regmap_bulk_write(struct regmap
*map
, unsigned int reg
, const void *val
,
2060 size_t val_bytes
= map
->format
.val_bytes
;
2062 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2066 * Some devices don't support bulk write, for them we have a series of
2067 * single write operations.
2069 if (!map
->bus
|| !map
->format
.parse_inplace
) {
2070 map
->lock(map
->lock_arg
);
2071 for (i
= 0; i
< val_count
; i
++) {
2074 switch (val_bytes
) {
2076 ival
= *(u8
*)(val
+ (i
* val_bytes
));
2079 ival
= *(u16
*)(val
+ (i
* val_bytes
));
2082 ival
= *(u32
*)(val
+ (i
* val_bytes
));
2086 ival
= *(u64
*)(val
+ (i
* val_bytes
));
2094 ret
= _regmap_write(map
,
2095 reg
+ regmap_get_offset(map
, i
),
2101 map
->unlock(map
->lock_arg
);
2105 wval
= kmemdup(val
, val_count
* val_bytes
, map
->alloc_flags
);
2109 for (i
= 0; i
< val_count
* val_bytes
; i
+= val_bytes
)
2110 map
->format
.parse_inplace(wval
+ i
);
2112 ret
= regmap_raw_write(map
, reg
, wval
, val_bytes
* val_count
);
2118 EXPORT_SYMBOL_GPL(regmap_bulk_write
);
2121 * _regmap_raw_multi_reg_write()
2123 * the (register,newvalue) pairs in regs have not been formatted, but
2124 * they are all in the same page and have been changed to being page
2125 * relative. The page register has been written if that was necessary.
2127 static int _regmap_raw_multi_reg_write(struct regmap
*map
,
2128 const struct reg_sequence
*regs
,
2135 size_t val_bytes
= map
->format
.val_bytes
;
2136 size_t reg_bytes
= map
->format
.reg_bytes
;
2137 size_t pad_bytes
= map
->format
.pad_bytes
;
2138 size_t pair_size
= reg_bytes
+ pad_bytes
+ val_bytes
;
2139 size_t len
= pair_size
* num_regs
;
2144 buf
= kzalloc(len
, GFP_KERNEL
);
2148 /* We have to linearise by hand. */
2152 for (i
= 0; i
< num_regs
; i
++) {
2153 unsigned int reg
= regs
[i
].reg
;
2154 unsigned int val
= regs
[i
].def
;
2155 trace_regmap_hw_write_start(map
, reg
, 1);
2156 map
->format
.format_reg(u8
, reg
, map
->reg_shift
);
2157 u8
+= reg_bytes
+ pad_bytes
;
2158 map
->format
.format_val(u8
, val
, 0);
2162 *u8
|= map
->write_flag_mask
;
2164 ret
= map
->bus
->write(map
->bus_context
, buf
, len
);
2168 for (i
= 0; i
< num_regs
; i
++) {
2169 int reg
= regs
[i
].reg
;
2170 trace_regmap_hw_write_done(map
, reg
, 1);
2175 static unsigned int _regmap_register_page(struct regmap
*map
,
2177 struct regmap_range_node
*range
)
2179 unsigned int win_page
= (reg
- range
->range_min
) / range
->window_len
;
2184 static int _regmap_range_multi_paged_reg_write(struct regmap
*map
,
2185 struct reg_sequence
*regs
,
2190 struct reg_sequence
*base
;
2191 unsigned int this_page
= 0;
2192 unsigned int page_change
= 0;
2194 * the set of registers are not neccessarily in order, but
2195 * since the order of write must be preserved this algorithm
2196 * chops the set each time the page changes. This also applies
2197 * if there is a delay required at any point in the sequence.
2200 for (i
= 0, n
= 0; i
< num_regs
; i
++, n
++) {
2201 unsigned int reg
= regs
[i
].reg
;
2202 struct regmap_range_node
*range
;
2204 range
= _regmap_range_lookup(map
, reg
);
2206 unsigned int win_page
= _regmap_register_page(map
, reg
,
2210 this_page
= win_page
;
2211 if (win_page
!= this_page
) {
2212 this_page
= win_page
;
2217 /* If we have both a page change and a delay make sure to
2218 * write the regs and apply the delay before we change the
2222 if (page_change
|| regs
[i
].delay_us
) {
2224 /* For situations where the first write requires
2225 * a delay we need to make sure we don't call
2226 * raw_multi_reg_write with n=0
2227 * This can't occur with page breaks as we
2228 * never write on the first iteration
2230 if (regs
[i
].delay_us
&& i
== 0)
2233 ret
= _regmap_raw_multi_reg_write(map
, base
, n
);
2237 if (regs
[i
].delay_us
)
2238 udelay(regs
[i
].delay_us
);
2244 ret
= _regmap_select_page(map
,
2257 return _regmap_raw_multi_reg_write(map
, base
, n
);
2261 static int _regmap_multi_reg_write(struct regmap
*map
,
2262 const struct reg_sequence
*regs
,
2268 if (!map
->can_multi_write
) {
2269 for (i
= 0; i
< num_regs
; i
++) {
2270 ret
= _regmap_write(map
, regs
[i
].reg
, regs
[i
].def
);
2274 if (regs
[i
].delay_us
)
2275 udelay(regs
[i
].delay_us
);
2280 if (!map
->format
.parse_inplace
)
2283 if (map
->writeable_reg
)
2284 for (i
= 0; i
< num_regs
; i
++) {
2285 int reg
= regs
[i
].reg
;
2286 if (!map
->writeable_reg(map
->dev
, reg
))
2288 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2292 if (!map
->cache_bypass
) {
2293 for (i
= 0; i
< num_regs
; i
++) {
2294 unsigned int val
= regs
[i
].def
;
2295 unsigned int reg
= regs
[i
].reg
;
2296 ret
= regcache_write(map
, reg
, val
);
2299 "Error in caching of register: %x ret: %d\n",
2304 if (map
->cache_only
) {
2305 map
->cache_dirty
= true;
2312 for (i
= 0; i
< num_regs
; i
++) {
2313 unsigned int reg
= regs
[i
].reg
;
2314 struct regmap_range_node
*range
;
2316 /* Coalesce all the writes between a page break or a delay
2319 range
= _regmap_range_lookup(map
, reg
);
2320 if (range
|| regs
[i
].delay_us
) {
2321 size_t len
= sizeof(struct reg_sequence
)*num_regs
;
2322 struct reg_sequence
*base
= kmemdup(regs
, len
,
2326 ret
= _regmap_range_multi_paged_reg_write(map
, base
,
2333 return _regmap_raw_multi_reg_write(map
, regs
, num_regs
);
2337 * regmap_multi_reg_write() - Write multiple registers to the device
2339 * @map: Register map to write to
2340 * @regs: Array of structures containing register,value to be written
2341 * @num_regs: Number of registers to write
2343 * Write multiple registers to the device where the set of register, value
2344 * pairs are supplied in any order, possibly not all in a single range.
2346 * The 'normal' block write mode will send ultimately send data on the
2347 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2348 * addressed. However, this alternative block multi write mode will send
2349 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2350 * must of course support the mode.
2352 * A value of zero will be returned on success, a negative errno will be
2353 * returned in error cases.
2355 int regmap_multi_reg_write(struct regmap
*map
, const struct reg_sequence
*regs
,
2360 map
->lock(map
->lock_arg
);
2362 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2364 map
->unlock(map
->lock_arg
);
2368 EXPORT_SYMBOL_GPL(regmap_multi_reg_write
);
2371 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2372 * device but not the cache
2374 * @map: Register map to write to
2375 * @regs: Array of structures containing register,value to be written
2376 * @num_regs: Number of registers to write
2378 * Write multiple registers to the device but not the cache where the set
2379 * of register are supplied in any order.
2381 * This function is intended to be used for writing a large block of data
2382 * atomically to the device in single transfer for those I2C client devices
2383 * that implement this alternative block write mode.
2385 * A value of zero will be returned on success, a negative errno will
2386 * be returned in error cases.
2388 int regmap_multi_reg_write_bypassed(struct regmap
*map
,
2389 const struct reg_sequence
*regs
,
2395 map
->lock(map
->lock_arg
);
2397 bypass
= map
->cache_bypass
;
2398 map
->cache_bypass
= true;
2400 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2402 map
->cache_bypass
= bypass
;
2404 map
->unlock(map
->lock_arg
);
2408 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed
);
2411 * regmap_raw_write_async() - Write raw values to one or more registers
2414 * @map: Register map to write to
2415 * @reg: Initial register to write to
2416 * @val: Block of data to be written, laid out for direct transmission to the
2417 * device. Must be valid until regmap_async_complete() is called.
2418 * @val_len: Length of data pointed to by val.
2420 * This function is intended to be used for things like firmware
2421 * download where a large block of data needs to be transferred to the
2422 * device. No formatting will be done on the data provided.
2424 * If supported by the underlying bus the write will be scheduled
2425 * asynchronously, helping maximise I/O speed on higher speed buses
2426 * like SPI. regmap_async_complete() can be called to ensure that all
2427 * asynchrnous writes have been completed.
2429 * A value of zero will be returned on success, a negative errno will
2430 * be returned in error cases.
2432 int regmap_raw_write_async(struct regmap
*map
, unsigned int reg
,
2433 const void *val
, size_t val_len
)
2437 if (val_len
% map
->format
.val_bytes
)
2439 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2442 map
->lock(map
->lock_arg
);
2446 ret
= _regmap_raw_write(map
, reg
, val
, val_len
);
2450 map
->unlock(map
->lock_arg
);
2454 EXPORT_SYMBOL_GPL(regmap_raw_write_async
);
2456 static int _regmap_raw_read(struct regmap
*map
, unsigned int reg
, void *val
,
2457 unsigned int val_len
)
2459 struct regmap_range_node
*range
;
2464 if (!map
->bus
|| !map
->bus
->read
)
2467 range
= _regmap_range_lookup(map
, reg
);
2469 ret
= _regmap_select_page(map
, ®
, range
,
2470 val_len
/ map
->format
.val_bytes
);
2475 map
->format
.format_reg(map
->work_buf
, reg
, map
->reg_shift
);
2476 regmap_set_work_buf_flag_mask(map
, map
->format
.reg_bytes
,
2477 map
->read_flag_mask
);
2478 trace_regmap_hw_read_start(map
, reg
, val_len
/ map
->format
.val_bytes
);
2480 ret
= map
->bus
->read(map
->bus_context
, map
->work_buf
,
2481 map
->format
.reg_bytes
+ map
->format
.pad_bytes
,
2484 trace_regmap_hw_read_done(map
, reg
, val_len
/ map
->format
.val_bytes
);
2489 static int _regmap_bus_reg_read(void *context
, unsigned int reg
,
2492 struct regmap
*map
= context
;
2494 return map
->bus
->reg_read(map
->bus_context
, reg
, val
);
2497 static int _regmap_bus_read(void *context
, unsigned int reg
,
2501 struct regmap
*map
= context
;
2502 void *work_val
= map
->work_buf
+ map
->format
.reg_bytes
+
2503 map
->format
.pad_bytes
;
2505 if (!map
->format
.parse_val
)
2508 ret
= _regmap_raw_read(map
, reg
, work_val
, map
->format
.val_bytes
);
2510 *val
= map
->format
.parse_val(work_val
);
2515 static int _regmap_read(struct regmap
*map
, unsigned int reg
,
2519 void *context
= _regmap_map_get_context(map
);
2521 if (!map
->cache_bypass
) {
2522 ret
= regcache_read(map
, reg
, val
);
2527 if (map
->cache_only
)
2530 if (!regmap_readable(map
, reg
))
2533 ret
= map
->reg_read(context
, reg
, val
);
2535 if (regmap_should_log(map
))
2536 dev_info(map
->dev
, "%x => %x\n", reg
, *val
);
2538 trace_regmap_reg_read(map
, reg
, *val
);
2540 if (!map
->cache_bypass
)
2541 regcache_write(map
, reg
, *val
);
2548 * regmap_read() - Read a value from a single register
2550 * @map: Register map to read from
2551 * @reg: Register to be read from
2552 * @val: Pointer to store read value
2554 * A value of zero will be returned on success, a negative errno will
2555 * be returned in error cases.
2557 int regmap_read(struct regmap
*map
, unsigned int reg
, unsigned int *val
)
2561 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2564 map
->lock(map
->lock_arg
);
2566 ret
= _regmap_read(map
, reg
, val
);
2568 map
->unlock(map
->lock_arg
);
2572 EXPORT_SYMBOL_GPL(regmap_read
);
2575 * regmap_raw_read() - Read raw data from the device
2577 * @map: Register map to read from
2578 * @reg: First register to be read from
2579 * @val: Pointer to store read value
2580 * @val_len: Size of data to read
2582 * A value of zero will be returned on success, a negative errno will
2583 * be returned in error cases.
2585 int regmap_raw_read(struct regmap
*map
, unsigned int reg
, void *val
,
2588 size_t val_bytes
= map
->format
.val_bytes
;
2589 size_t val_count
= val_len
/ val_bytes
;
2595 if (val_len
% map
->format
.val_bytes
)
2597 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2602 map
->lock(map
->lock_arg
);
2604 if (regmap_volatile_range(map
, reg
, val_count
) || map
->cache_bypass
||
2605 map
->cache_type
== REGCACHE_NONE
) {
2606 size_t chunk_count
, chunk_bytes
;
2607 size_t chunk_regs
= val_count
;
2609 if (!map
->bus
->read
) {
2614 if (map
->use_single_read
)
2616 else if (map
->max_raw_read
&& val_len
> map
->max_raw_read
)
2617 chunk_regs
= map
->max_raw_read
/ val_bytes
;
2619 chunk_count
= val_count
/ chunk_regs
;
2620 chunk_bytes
= chunk_regs
* val_bytes
;
2622 /* Read bytes that fit into whole chunks */
2623 for (i
= 0; i
< chunk_count
; i
++) {
2624 ret
= _regmap_raw_read(map
, reg
, val
, chunk_bytes
);
2628 reg
+= regmap_get_offset(map
, chunk_regs
);
2630 val_len
-= chunk_bytes
;
2633 /* Read remaining bytes */
2635 ret
= _regmap_raw_read(map
, reg
, val
, val_len
);
2640 /* Otherwise go word by word for the cache; should be low
2641 * cost as we expect to hit the cache.
2643 for (i
= 0; i
< val_count
; i
++) {
2644 ret
= _regmap_read(map
, reg
+ regmap_get_offset(map
, i
),
2649 map
->format
.format_val(val
+ (i
* val_bytes
), v
, 0);
2654 map
->unlock(map
->lock_arg
);
2658 EXPORT_SYMBOL_GPL(regmap_raw_read
);
2661 * regmap_noinc_read(): Read data from a register without incrementing the
2664 * @map: Register map to read from
2665 * @reg: Register to read from
2666 * @val: Pointer to data buffer
2667 * @val_len: Length of output buffer in bytes.
2669 * The regmap API usually assumes that bulk bus read operations will read a
2670 * range of registers. Some devices have certain registers for which a read
2671 * operation read will read from an internal FIFO.
2673 * The target register must be volatile but registers after it can be
2674 * completely unrelated cacheable registers.
2676 * This will attempt multiple reads as required to read val_len bytes.
2678 * A value of zero will be returned on success, a negative errno will be
2679 * returned in error cases.
2681 int regmap_noinc_read(struct regmap
*map
, unsigned int reg
,
2682 void *val
, size_t val_len
)
2689 if (!map
->bus
->read
)
2691 if (val_len
% map
->format
.val_bytes
)
2693 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2698 map
->lock(map
->lock_arg
);
2700 if (!regmap_volatile(map
, reg
) || !regmap_readable_noinc(map
, reg
)) {
2706 if (map
->max_raw_read
&& map
->max_raw_read
< val_len
)
2707 read_len
= map
->max_raw_read
;
2710 ret
= _regmap_raw_read(map
, reg
, val
, read_len
);
2713 val
= ((u8
*)val
) + read_len
;
2714 val_len
-= read_len
;
2718 map
->unlock(map
->lock_arg
);
2721 EXPORT_SYMBOL_GPL(regmap_noinc_read
);
2724 * regmap_field_read(): Read a value to a single register field
2726 * @field: Register field to read from
2727 * @val: Pointer to store read value
2729 * A value of zero will be returned on success, a negative errno will
2730 * be returned in error cases.
2732 int regmap_field_read(struct regmap_field
*field
, unsigned int *val
)
2735 unsigned int reg_val
;
2736 ret
= regmap_read(field
->regmap
, field
->reg
, ®_val
);
2740 reg_val
&= field
->mask
;
2741 reg_val
>>= field
->shift
;
2746 EXPORT_SYMBOL_GPL(regmap_field_read
);
2749 * regmap_fields_read() - Read a value to a single register field with port ID
2751 * @field: Register field to read from
2753 * @val: Pointer to store read value
2755 * A value of zero will be returned on success, a negative errno will
2756 * be returned in error cases.
2758 int regmap_fields_read(struct regmap_field
*field
, unsigned int id
,
2762 unsigned int reg_val
;
2764 if (id
>= field
->id_size
)
2767 ret
= regmap_read(field
->regmap
,
2768 field
->reg
+ (field
->id_offset
* id
),
2773 reg_val
&= field
->mask
;
2774 reg_val
>>= field
->shift
;
2779 EXPORT_SYMBOL_GPL(regmap_fields_read
);
2782 * regmap_bulk_read() - Read multiple registers from the device
2784 * @map: Register map to read from
2785 * @reg: First register to be read from
2786 * @val: Pointer to store read value, in native register size for device
2787 * @val_count: Number of registers to read
2789 * A value of zero will be returned on success, a negative errno will
2790 * be returned in error cases.
2792 int regmap_bulk_read(struct regmap
*map
, unsigned int reg
, void *val
,
2796 size_t val_bytes
= map
->format
.val_bytes
;
2797 bool vol
= regmap_volatile_range(map
, reg
, val_count
);
2799 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2804 if (map
->bus
&& map
->format
.parse_inplace
&& (vol
|| map
->cache_type
== REGCACHE_NONE
)) {
2805 ret
= regmap_raw_read(map
, reg
, val
, val_bytes
* val_count
);
2809 for (i
= 0; i
< val_count
* val_bytes
; i
+= val_bytes
)
2810 map
->format
.parse_inplace(val
+ i
);
2819 map
->lock(map
->lock_arg
);
2821 for (i
= 0; i
< val_count
; i
++) {
2824 ret
= _regmap_read(map
, reg
+ regmap_get_offset(map
, i
),
2829 switch (map
->format
.val_bytes
) {
2851 map
->unlock(map
->lock_arg
);
2856 EXPORT_SYMBOL_GPL(regmap_bulk_read
);
2858 static int _regmap_update_bits(struct regmap
*map
, unsigned int reg
,
2859 unsigned int mask
, unsigned int val
,
2860 bool *change
, bool force_write
)
2863 unsigned int tmp
, orig
;
2868 if (regmap_volatile(map
, reg
) && map
->reg_update_bits
) {
2869 ret
= map
->reg_update_bits(map
->bus_context
, reg
, mask
, val
);
2870 if (ret
== 0 && change
)
2873 ret
= _regmap_read(map
, reg
, &orig
);
2880 if (force_write
|| (tmp
!= orig
)) {
2881 ret
= _regmap_write(map
, reg
, tmp
);
2882 if (ret
== 0 && change
)
2891 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2893 * @map: Register map to update
2894 * @reg: Register to update
2895 * @mask: Bitmask to change
2896 * @val: New value for bitmask
2897 * @change: Boolean indicating if a write was done
2898 * @async: Boolean indicating asynchronously
2899 * @force: Boolean indicating use force update
2901 * Perform a read/modify/write cycle on a register map with change, async, force
2906 * With most buses the read must be done synchronously so this is most useful
2907 * for devices with a cache which do not need to interact with the hardware to
2908 * determine the current register value.
2910 * Returns zero for success, a negative number on error.
2912 int regmap_update_bits_base(struct regmap
*map
, unsigned int reg
,
2913 unsigned int mask
, unsigned int val
,
2914 bool *change
, bool async
, bool force
)
2918 map
->lock(map
->lock_arg
);
2922 ret
= _regmap_update_bits(map
, reg
, mask
, val
, change
, force
);
2926 map
->unlock(map
->lock_arg
);
2930 EXPORT_SYMBOL_GPL(regmap_update_bits_base
);
2932 void regmap_async_complete_cb(struct regmap_async
*async
, int ret
)
2934 struct regmap
*map
= async
->map
;
2937 trace_regmap_async_io_complete(map
);
2939 spin_lock(&map
->async_lock
);
2940 list_move(&async
->list
, &map
->async_free
);
2941 wake
= list_empty(&map
->async_list
);
2944 map
->async_ret
= ret
;
2946 spin_unlock(&map
->async_lock
);
2949 wake_up(&map
->async_waitq
);
2951 EXPORT_SYMBOL_GPL(regmap_async_complete_cb
);
2953 static int regmap_async_is_done(struct regmap
*map
)
2955 unsigned long flags
;
2958 spin_lock_irqsave(&map
->async_lock
, flags
);
2959 ret
= list_empty(&map
->async_list
);
2960 spin_unlock_irqrestore(&map
->async_lock
, flags
);
2966 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2968 * @map: Map to operate on.
2970 * Blocks until any pending asynchronous I/O has completed. Returns
2971 * an error code for any failed I/O operations.
2973 int regmap_async_complete(struct regmap
*map
)
2975 unsigned long flags
;
2978 /* Nothing to do with no async support */
2979 if (!map
->bus
|| !map
->bus
->async_write
)
2982 trace_regmap_async_complete_start(map
);
2984 wait_event(map
->async_waitq
, regmap_async_is_done(map
));
2986 spin_lock_irqsave(&map
->async_lock
, flags
);
2987 ret
= map
->async_ret
;
2989 spin_unlock_irqrestore(&map
->async_lock
, flags
);
2991 trace_regmap_async_complete_done(map
);
2995 EXPORT_SYMBOL_GPL(regmap_async_complete
);
2998 * regmap_register_patch - Register and apply register updates to be applied
2999 * on device initialistion
3001 * @map: Register map to apply updates to.
3002 * @regs: Values to update.
3003 * @num_regs: Number of entries in regs.
3005 * Register a set of register updates to be applied to the device
3006 * whenever the device registers are synchronised with the cache and
3007 * apply them immediately. Typically this is used to apply
3008 * corrections to be applied to the device defaults on startup, such
3009 * as the updates some vendors provide to undocumented registers.
3011 * The caller must ensure that this function cannot be called
3012 * concurrently with either itself or regcache_sync().
3014 int regmap_register_patch(struct regmap
*map
, const struct reg_sequence
*regs
,
3017 struct reg_sequence
*p
;
3021 if (WARN_ONCE(num_regs
<= 0, "invalid registers number (%d)\n",
3025 p
= krealloc(map
->patch
,
3026 sizeof(struct reg_sequence
) * (map
->patch_regs
+ num_regs
),
3029 memcpy(p
+ map
->patch_regs
, regs
, num_regs
* sizeof(*regs
));
3031 map
->patch_regs
+= num_regs
;
3036 map
->lock(map
->lock_arg
);
3038 bypass
= map
->cache_bypass
;
3040 map
->cache_bypass
= true;
3043 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
3046 map
->cache_bypass
= bypass
;
3048 map
->unlock(map
->lock_arg
);
3050 regmap_async_complete(map
);
3054 EXPORT_SYMBOL_GPL(regmap_register_patch
);
3057 * regmap_get_val_bytes() - Report the size of a register value
3059 * @map: Register map to operate on.
3061 * Report the size of a register value, mainly intended to for use by
3062 * generic infrastructure built on top of regmap.
3064 int regmap_get_val_bytes(struct regmap
*map
)
3066 if (map
->format
.format_write
)
3069 return map
->format
.val_bytes
;
3071 EXPORT_SYMBOL_GPL(regmap_get_val_bytes
);
3074 * regmap_get_max_register() - Report the max register value
3076 * @map: Register map to operate on.
3078 * Report the max register value, mainly intended to for use by
3079 * generic infrastructure built on top of regmap.
3081 int regmap_get_max_register(struct regmap
*map
)
3083 return map
->max_register
? map
->max_register
: -EINVAL
;
3085 EXPORT_SYMBOL_GPL(regmap_get_max_register
);
3088 * regmap_get_reg_stride() - Report the register address stride
3090 * @map: Register map to operate on.
3092 * Report the register address stride, mainly intended to for use by
3093 * generic infrastructure built on top of regmap.
3095 int regmap_get_reg_stride(struct regmap
*map
)
3097 return map
->reg_stride
;
3099 EXPORT_SYMBOL_GPL(regmap_get_reg_stride
);
3101 int regmap_parse_val(struct regmap
*map
, const void *buf
,
3104 if (!map
->format
.parse_val
)
3107 *val
= map
->format
.parse_val(buf
);
3111 EXPORT_SYMBOL_GPL(regmap_parse_val
);
3113 static int __init
regmap_initcall(void)
3115 regmap_debugfs_initcall();
3119 postcore_initcall(regmap_initcall
);