1 // SPDX-License-Identifier: GPL-2.0-only
3 * Ram backed block device driver.
5 * Copyright (C) 2007 Nick Piggin
6 * Copyright (C) 2007 Novell Inc.
8 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
9 * of their respective owners.
12 #include <linux/init.h>
13 #include <linux/initrd.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/major.h>
17 #include <linux/blkdev.h>
18 #include <linux/bio.h>
19 #include <linux/highmem.h>
20 #include <linux/mutex.h>
21 #include <linux/radix-tree.h>
23 #include <linux/slab.h>
24 #include <linux/backing-dev.h>
26 #include <linux/uaccess.h>
28 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
29 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
32 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
33 * the pages containing the block device's contents. A brd page's ->index is
34 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
35 * with, the kernel's pagecache or buffer cache (which sit above our block
41 struct request_queue
*brd_queue
;
42 struct gendisk
*brd_disk
;
43 struct list_head brd_list
;
46 * Backing store of pages and lock to protect it. This is the contents
47 * of the block device.
50 struct radix_tree_root brd_pages
;
54 * Look up and return a brd's page for a given sector.
56 static struct page
*brd_lookup_page(struct brd_device
*brd
, sector_t sector
)
62 * The page lifetime is protected by the fact that we have opened the
63 * device node -- brd pages will never be deleted under us, so we
64 * don't need any further locking or refcounting.
66 * This is strictly true for the radix-tree nodes as well (ie. we
67 * don't actually need the rcu_read_lock()), however that is not a
68 * documented feature of the radix-tree API so it is better to be
69 * safe here (we don't have total exclusion from radix tree updates
70 * here, only deletes).
73 idx
= sector
>> PAGE_SECTORS_SHIFT
; /* sector to page index */
74 page
= radix_tree_lookup(&brd
->brd_pages
, idx
);
77 BUG_ON(page
&& page
->index
!= idx
);
83 * Look up and return a brd's page for a given sector.
84 * If one does not exist, allocate an empty page, and insert that. Then
87 static struct page
*brd_insert_page(struct brd_device
*brd
, sector_t sector
)
93 page
= brd_lookup_page(brd
, sector
);
98 * Must use NOIO because we don't want to recurse back into the
99 * block or filesystem layers from page reclaim.
101 gfp_flags
= GFP_NOIO
| __GFP_ZERO
| __GFP_HIGHMEM
;
102 page
= alloc_page(gfp_flags
);
106 if (radix_tree_preload(GFP_NOIO
)) {
111 spin_lock(&brd
->brd_lock
);
112 idx
= sector
>> PAGE_SECTORS_SHIFT
;
114 if (radix_tree_insert(&brd
->brd_pages
, idx
, page
)) {
116 page
= radix_tree_lookup(&brd
->brd_pages
, idx
);
118 BUG_ON(page
->index
!= idx
);
120 spin_unlock(&brd
->brd_lock
);
122 radix_tree_preload_end();
128 * Free all backing store pages and radix tree. This must only be called when
129 * there are no other users of the device.
131 #define FREE_BATCH 16
132 static void brd_free_pages(struct brd_device
*brd
)
134 unsigned long pos
= 0;
135 struct page
*pages
[FREE_BATCH
];
141 nr_pages
= radix_tree_gang_lookup(&brd
->brd_pages
,
142 (void **)pages
, pos
, FREE_BATCH
);
144 for (i
= 0; i
< nr_pages
; i
++) {
147 BUG_ON(pages
[i
]->index
< pos
);
148 pos
= pages
[i
]->index
;
149 ret
= radix_tree_delete(&brd
->brd_pages
, pos
);
150 BUG_ON(!ret
|| ret
!= pages
[i
]);
151 __free_page(pages
[i
]);
157 * It takes 3.4 seconds to remove 80GiB ramdisk.
158 * So, we need cond_resched to avoid stalling the CPU.
163 * This assumes radix_tree_gang_lookup always returns as
164 * many pages as possible. If the radix-tree code changes,
165 * so will this have to.
167 } while (nr_pages
== FREE_BATCH
);
171 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
173 static int copy_to_brd_setup(struct brd_device
*brd
, sector_t sector
, size_t n
)
175 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
178 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
179 if (!brd_insert_page(brd
, sector
))
182 sector
+= copy
>> SECTOR_SHIFT
;
183 if (!brd_insert_page(brd
, sector
))
190 * Copy n bytes from src to the brd starting at sector. Does not sleep.
192 static void copy_to_brd(struct brd_device
*brd
, const void *src
,
193 sector_t sector
, size_t n
)
197 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
200 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
201 page
= brd_lookup_page(brd
, sector
);
204 dst
= kmap_atomic(page
);
205 memcpy(dst
+ offset
, src
, copy
);
210 sector
+= copy
>> SECTOR_SHIFT
;
212 page
= brd_lookup_page(brd
, sector
);
215 dst
= kmap_atomic(page
);
216 memcpy(dst
, src
, copy
);
222 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
224 static void copy_from_brd(void *dst
, struct brd_device
*brd
,
225 sector_t sector
, size_t n
)
229 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
232 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
233 page
= brd_lookup_page(brd
, sector
);
235 src
= kmap_atomic(page
);
236 memcpy(dst
, src
+ offset
, copy
);
239 memset(dst
, 0, copy
);
243 sector
+= copy
>> SECTOR_SHIFT
;
245 page
= brd_lookup_page(brd
, sector
);
247 src
= kmap_atomic(page
);
248 memcpy(dst
, src
, copy
);
251 memset(dst
, 0, copy
);
256 * Process a single bvec of a bio.
258 static int brd_do_bvec(struct brd_device
*brd
, struct page
*page
,
259 unsigned int len
, unsigned int off
, unsigned int op
,
265 if (op_is_write(op
)) {
266 err
= copy_to_brd_setup(brd
, sector
, len
);
271 mem
= kmap_atomic(page
);
272 if (!op_is_write(op
)) {
273 copy_from_brd(mem
+ off
, brd
, sector
, len
);
274 flush_dcache_page(page
);
276 flush_dcache_page(page
);
277 copy_to_brd(brd
, mem
+ off
, sector
, len
);
285 static blk_qc_t
brd_make_request(struct request_queue
*q
, struct bio
*bio
)
287 struct brd_device
*brd
= bio
->bi_disk
->private_data
;
290 struct bvec_iter iter
;
292 sector
= bio
->bi_iter
.bi_sector
;
293 if (bio_end_sector(bio
) > get_capacity(bio
->bi_disk
))
296 bio_for_each_segment(bvec
, bio
, iter
) {
297 unsigned int len
= bvec
.bv_len
;
300 err
= brd_do_bvec(brd
, bvec
.bv_page
, len
, bvec
.bv_offset
,
301 bio_op(bio
), sector
);
304 sector
+= len
>> SECTOR_SHIFT
;
308 return BLK_QC_T_NONE
;
311 return BLK_QC_T_NONE
;
314 static int brd_rw_page(struct block_device
*bdev
, sector_t sector
,
315 struct page
*page
, unsigned int op
)
317 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
320 if (PageTransHuge(page
))
322 err
= brd_do_bvec(brd
, page
, PAGE_SIZE
, 0, op
, sector
);
323 page_endio(page
, op_is_write(op
), err
);
327 static const struct block_device_operations brd_fops
= {
328 .owner
= THIS_MODULE
,
329 .rw_page
= brd_rw_page
,
333 * And now the modules code and kernel interface.
335 static int rd_nr
= CONFIG_BLK_DEV_RAM_COUNT
;
336 module_param(rd_nr
, int, 0444);
337 MODULE_PARM_DESC(rd_nr
, "Maximum number of brd devices");
339 unsigned long rd_size
= CONFIG_BLK_DEV_RAM_SIZE
;
340 module_param(rd_size
, ulong
, 0444);
341 MODULE_PARM_DESC(rd_size
, "Size of each RAM disk in kbytes.");
343 static int max_part
= 1;
344 module_param(max_part
, int, 0444);
345 MODULE_PARM_DESC(max_part
, "Num Minors to reserve between devices");
347 MODULE_LICENSE("GPL");
348 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR
);
352 /* Legacy boot options - nonmodular */
353 static int __init
ramdisk_size(char *str
)
355 rd_size
= simple_strtol(str
, NULL
, 0);
358 __setup("ramdisk_size=", ramdisk_size
);
362 * The device scheme is derived from loop.c. Keep them in synch where possible
363 * (should share code eventually).
365 static LIST_HEAD(brd_devices
);
366 static DEFINE_MUTEX(brd_devices_mutex
);
368 static struct brd_device
*brd_alloc(int i
)
370 struct brd_device
*brd
;
371 struct gendisk
*disk
;
373 brd
= kzalloc(sizeof(*brd
), GFP_KERNEL
);
377 spin_lock_init(&brd
->brd_lock
);
378 INIT_RADIX_TREE(&brd
->brd_pages
, GFP_ATOMIC
);
380 brd
->brd_queue
= blk_alloc_queue(GFP_KERNEL
);
384 blk_queue_make_request(brd
->brd_queue
, brd_make_request
);
385 blk_queue_max_hw_sectors(brd
->brd_queue
, 1024);
387 /* This is so fdisk will align partitions on 4k, because of
388 * direct_access API needing 4k alignment, returning a PFN
389 * (This is only a problem on very small devices <= 4M,
390 * otherwise fdisk will align on 1M. Regardless this call
393 blk_queue_physical_block_size(brd
->brd_queue
, PAGE_SIZE
);
394 disk
= brd
->brd_disk
= alloc_disk(max_part
);
397 disk
->major
= RAMDISK_MAJOR
;
398 disk
->first_minor
= i
* max_part
;
399 disk
->fops
= &brd_fops
;
400 disk
->private_data
= brd
;
401 disk
->flags
= GENHD_FL_EXT_DEVT
;
402 sprintf(disk
->disk_name
, "ram%d", i
);
403 set_capacity(disk
, rd_size
* 2);
404 brd
->brd_queue
->backing_dev_info
->capabilities
|= BDI_CAP_SYNCHRONOUS_IO
;
406 /* Tell the block layer that this is not a rotational device */
407 blk_queue_flag_set(QUEUE_FLAG_NONROT
, brd
->brd_queue
);
408 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM
, brd
->brd_queue
);
413 blk_cleanup_queue(brd
->brd_queue
);
420 static void brd_free(struct brd_device
*brd
)
422 put_disk(brd
->brd_disk
);
423 blk_cleanup_queue(brd
->brd_queue
);
428 static struct brd_device
*brd_init_one(int i
, bool *new)
430 struct brd_device
*brd
;
433 list_for_each_entry(brd
, &brd_devices
, brd_list
) {
434 if (brd
->brd_number
== i
)
440 brd
->brd_disk
->queue
= brd
->brd_queue
;
441 add_disk(brd
->brd_disk
);
442 list_add_tail(&brd
->brd_list
, &brd_devices
);
449 static void brd_del_one(struct brd_device
*brd
)
451 list_del(&brd
->brd_list
);
452 del_gendisk(brd
->brd_disk
);
456 static struct kobject
*brd_probe(dev_t dev
, int *part
, void *data
)
458 struct brd_device
*brd
;
459 struct kobject
*kobj
;
462 mutex_lock(&brd_devices_mutex
);
463 brd
= brd_init_one(MINOR(dev
) / max_part
, &new);
464 kobj
= brd
? get_disk_and_module(brd
->brd_disk
) : NULL
;
465 mutex_unlock(&brd_devices_mutex
);
473 static inline void brd_check_and_reset_par(void)
475 if (unlikely(!max_part
))
479 * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
480 * otherwise, it is possiable to get same dev_t when adding partitions.
482 if ((1U << MINORBITS
) % max_part
!= 0)
483 max_part
= 1UL << fls(max_part
);
485 if (max_part
> DISK_MAX_PARTS
) {
486 pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
487 DISK_MAX_PARTS
, DISK_MAX_PARTS
);
488 max_part
= DISK_MAX_PARTS
;
492 static int __init
brd_init(void)
494 struct brd_device
*brd
, *next
;
498 * brd module now has a feature to instantiate underlying device
499 * structure on-demand, provided that there is an access dev node.
501 * (1) if rd_nr is specified, create that many upfront. else
502 * it defaults to CONFIG_BLK_DEV_RAM_COUNT
503 * (2) User can further extend brd devices by create dev node themselves
504 * and have kernel automatically instantiate actual device
505 * on-demand. Example:
506 * mknod /path/devnod_name b 1 X # 1 is the rd major
507 * fdisk -l /path/devnod_name
508 * If (X / max_part) was not already created it will be created
512 if (register_blkdev(RAMDISK_MAJOR
, "ramdisk"))
515 brd_check_and_reset_par();
517 for (i
= 0; i
< rd_nr
; i
++) {
521 list_add_tail(&brd
->brd_list
, &brd_devices
);
524 /* point of no return */
526 list_for_each_entry(brd
, &brd_devices
, brd_list
) {
528 * associate with queue just before adding disk for
529 * avoiding to mess up failure path
531 brd
->brd_disk
->queue
= brd
->brd_queue
;
532 add_disk(brd
->brd_disk
);
535 blk_register_region(MKDEV(RAMDISK_MAJOR
, 0), 1UL << MINORBITS
,
536 THIS_MODULE
, brd_probe
, NULL
, NULL
);
538 pr_info("brd: module loaded\n");
542 list_for_each_entry_safe(brd
, next
, &brd_devices
, brd_list
) {
543 list_del(&brd
->brd_list
);
546 unregister_blkdev(RAMDISK_MAJOR
, "ramdisk");
548 pr_info("brd: module NOT loaded !!!\n");
552 static void __exit
brd_exit(void)
554 struct brd_device
*brd
, *next
;
556 list_for_each_entry_safe(brd
, next
, &brd_devices
, brd_list
)
559 blk_unregister_region(MKDEV(RAMDISK_MAJOR
, 0), 1UL << MINORBITS
);
560 unregister_blkdev(RAMDISK_MAJOR
, "ramdisk");
562 pr_info("brd: module unloaded\n");
565 module_init(brd_init
);
566 module_exit(brd_exit
);