net: DCB: Validate DCB_ATTR_DCB_BUFFER argument
[linux/fpc-iii.git] / drivers / block / brd.c
blob79f18cfa7049f1e83a90f24342ee21ce9f41b98d
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Ram backed block device driver.
5 * Copyright (C) 2007 Nick Piggin
6 * Copyright (C) 2007 Novell Inc.
8 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
9 * of their respective owners.
12 #include <linux/init.h>
13 #include <linux/initrd.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/major.h>
17 #include <linux/blkdev.h>
18 #include <linux/bio.h>
19 #include <linux/highmem.h>
20 #include <linux/mutex.h>
21 #include <linux/radix-tree.h>
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/backing-dev.h>
26 #include <linux/uaccess.h>
28 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
29 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
32 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
33 * the pages containing the block device's contents. A brd page's ->index is
34 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
35 * with, the kernel's pagecache or buffer cache (which sit above our block
36 * device).
38 struct brd_device {
39 int brd_number;
41 struct request_queue *brd_queue;
42 struct gendisk *brd_disk;
43 struct list_head brd_list;
46 * Backing store of pages and lock to protect it. This is the contents
47 * of the block device.
49 spinlock_t brd_lock;
50 struct radix_tree_root brd_pages;
54 * Look up and return a brd's page for a given sector.
56 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
58 pgoff_t idx;
59 struct page *page;
62 * The page lifetime is protected by the fact that we have opened the
63 * device node -- brd pages will never be deleted under us, so we
64 * don't need any further locking or refcounting.
66 * This is strictly true for the radix-tree nodes as well (ie. we
67 * don't actually need the rcu_read_lock()), however that is not a
68 * documented feature of the radix-tree API so it is better to be
69 * safe here (we don't have total exclusion from radix tree updates
70 * here, only deletes).
72 rcu_read_lock();
73 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
74 page = radix_tree_lookup(&brd->brd_pages, idx);
75 rcu_read_unlock();
77 BUG_ON(page && page->index != idx);
79 return page;
83 * Look up and return a brd's page for a given sector.
84 * If one does not exist, allocate an empty page, and insert that. Then
85 * return it.
87 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
89 pgoff_t idx;
90 struct page *page;
91 gfp_t gfp_flags;
93 page = brd_lookup_page(brd, sector);
94 if (page)
95 return page;
98 * Must use NOIO because we don't want to recurse back into the
99 * block or filesystem layers from page reclaim.
101 gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM;
102 page = alloc_page(gfp_flags);
103 if (!page)
104 return NULL;
106 if (radix_tree_preload(GFP_NOIO)) {
107 __free_page(page);
108 return NULL;
111 spin_lock(&brd->brd_lock);
112 idx = sector >> PAGE_SECTORS_SHIFT;
113 page->index = idx;
114 if (radix_tree_insert(&brd->brd_pages, idx, page)) {
115 __free_page(page);
116 page = radix_tree_lookup(&brd->brd_pages, idx);
117 BUG_ON(!page);
118 BUG_ON(page->index != idx);
120 spin_unlock(&brd->brd_lock);
122 radix_tree_preload_end();
124 return page;
128 * Free all backing store pages and radix tree. This must only be called when
129 * there are no other users of the device.
131 #define FREE_BATCH 16
132 static void brd_free_pages(struct brd_device *brd)
134 unsigned long pos = 0;
135 struct page *pages[FREE_BATCH];
136 int nr_pages;
138 do {
139 int i;
141 nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
142 (void **)pages, pos, FREE_BATCH);
144 for (i = 0; i < nr_pages; i++) {
145 void *ret;
147 BUG_ON(pages[i]->index < pos);
148 pos = pages[i]->index;
149 ret = radix_tree_delete(&brd->brd_pages, pos);
150 BUG_ON(!ret || ret != pages[i]);
151 __free_page(pages[i]);
154 pos++;
157 * It takes 3.4 seconds to remove 80GiB ramdisk.
158 * So, we need cond_resched to avoid stalling the CPU.
160 cond_resched();
163 * This assumes radix_tree_gang_lookup always returns as
164 * many pages as possible. If the radix-tree code changes,
165 * so will this have to.
167 } while (nr_pages == FREE_BATCH);
171 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
173 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
175 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
176 size_t copy;
178 copy = min_t(size_t, n, PAGE_SIZE - offset);
179 if (!brd_insert_page(brd, sector))
180 return -ENOSPC;
181 if (copy < n) {
182 sector += copy >> SECTOR_SHIFT;
183 if (!brd_insert_page(brd, sector))
184 return -ENOSPC;
186 return 0;
190 * Copy n bytes from src to the brd starting at sector. Does not sleep.
192 static void copy_to_brd(struct brd_device *brd, const void *src,
193 sector_t sector, size_t n)
195 struct page *page;
196 void *dst;
197 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
198 size_t copy;
200 copy = min_t(size_t, n, PAGE_SIZE - offset);
201 page = brd_lookup_page(brd, sector);
202 BUG_ON(!page);
204 dst = kmap_atomic(page);
205 memcpy(dst + offset, src, copy);
206 kunmap_atomic(dst);
208 if (copy < n) {
209 src += copy;
210 sector += copy >> SECTOR_SHIFT;
211 copy = n - copy;
212 page = brd_lookup_page(brd, sector);
213 BUG_ON(!page);
215 dst = kmap_atomic(page);
216 memcpy(dst, src, copy);
217 kunmap_atomic(dst);
222 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
224 static void copy_from_brd(void *dst, struct brd_device *brd,
225 sector_t sector, size_t n)
227 struct page *page;
228 void *src;
229 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
230 size_t copy;
232 copy = min_t(size_t, n, PAGE_SIZE - offset);
233 page = brd_lookup_page(brd, sector);
234 if (page) {
235 src = kmap_atomic(page);
236 memcpy(dst, src + offset, copy);
237 kunmap_atomic(src);
238 } else
239 memset(dst, 0, copy);
241 if (copy < n) {
242 dst += copy;
243 sector += copy >> SECTOR_SHIFT;
244 copy = n - copy;
245 page = brd_lookup_page(brd, sector);
246 if (page) {
247 src = kmap_atomic(page);
248 memcpy(dst, src, copy);
249 kunmap_atomic(src);
250 } else
251 memset(dst, 0, copy);
256 * Process a single bvec of a bio.
258 static int brd_do_bvec(struct brd_device *brd, struct page *page,
259 unsigned int len, unsigned int off, unsigned int op,
260 sector_t sector)
262 void *mem;
263 int err = 0;
265 if (op_is_write(op)) {
266 err = copy_to_brd_setup(brd, sector, len);
267 if (err)
268 goto out;
271 mem = kmap_atomic(page);
272 if (!op_is_write(op)) {
273 copy_from_brd(mem + off, brd, sector, len);
274 flush_dcache_page(page);
275 } else {
276 flush_dcache_page(page);
277 copy_to_brd(brd, mem + off, sector, len);
279 kunmap_atomic(mem);
281 out:
282 return err;
285 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
287 struct brd_device *brd = bio->bi_disk->private_data;
288 struct bio_vec bvec;
289 sector_t sector;
290 struct bvec_iter iter;
292 sector = bio->bi_iter.bi_sector;
293 if (bio_end_sector(bio) > get_capacity(bio->bi_disk))
294 goto io_error;
296 bio_for_each_segment(bvec, bio, iter) {
297 unsigned int len = bvec.bv_len;
298 int err;
300 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
301 bio_op(bio), sector);
302 if (err)
303 goto io_error;
304 sector += len >> SECTOR_SHIFT;
307 bio_endio(bio);
308 return BLK_QC_T_NONE;
309 io_error:
310 bio_io_error(bio);
311 return BLK_QC_T_NONE;
314 static int brd_rw_page(struct block_device *bdev, sector_t sector,
315 struct page *page, unsigned int op)
317 struct brd_device *brd = bdev->bd_disk->private_data;
318 int err;
320 if (PageTransHuge(page))
321 return -ENOTSUPP;
322 err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector);
323 page_endio(page, op_is_write(op), err);
324 return err;
327 static const struct block_device_operations brd_fops = {
328 .owner = THIS_MODULE,
329 .rw_page = brd_rw_page,
333 * And now the modules code and kernel interface.
335 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
336 module_param(rd_nr, int, 0444);
337 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
339 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
340 module_param(rd_size, ulong, 0444);
341 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
343 static int max_part = 1;
344 module_param(max_part, int, 0444);
345 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
347 MODULE_LICENSE("GPL");
348 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
349 MODULE_ALIAS("rd");
351 #ifndef MODULE
352 /* Legacy boot options - nonmodular */
353 static int __init ramdisk_size(char *str)
355 rd_size = simple_strtol(str, NULL, 0);
356 return 1;
358 __setup("ramdisk_size=", ramdisk_size);
359 #endif
362 * The device scheme is derived from loop.c. Keep them in synch where possible
363 * (should share code eventually).
365 static LIST_HEAD(brd_devices);
366 static DEFINE_MUTEX(brd_devices_mutex);
368 static struct brd_device *brd_alloc(int i)
370 struct brd_device *brd;
371 struct gendisk *disk;
373 brd = kzalloc(sizeof(*brd), GFP_KERNEL);
374 if (!brd)
375 goto out;
376 brd->brd_number = i;
377 spin_lock_init(&brd->brd_lock);
378 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
380 brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
381 if (!brd->brd_queue)
382 goto out_free_dev;
384 blk_queue_make_request(brd->brd_queue, brd_make_request);
385 blk_queue_max_hw_sectors(brd->brd_queue, 1024);
387 /* This is so fdisk will align partitions on 4k, because of
388 * direct_access API needing 4k alignment, returning a PFN
389 * (This is only a problem on very small devices <= 4M,
390 * otherwise fdisk will align on 1M. Regardless this call
391 * is harmless)
393 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
394 disk = brd->brd_disk = alloc_disk(max_part);
395 if (!disk)
396 goto out_free_queue;
397 disk->major = RAMDISK_MAJOR;
398 disk->first_minor = i * max_part;
399 disk->fops = &brd_fops;
400 disk->private_data = brd;
401 disk->flags = GENHD_FL_EXT_DEVT;
402 sprintf(disk->disk_name, "ram%d", i);
403 set_capacity(disk, rd_size * 2);
404 brd->brd_queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
406 /* Tell the block layer that this is not a rotational device */
407 blk_queue_flag_set(QUEUE_FLAG_NONROT, brd->brd_queue);
408 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, brd->brd_queue);
410 return brd;
412 out_free_queue:
413 blk_cleanup_queue(brd->brd_queue);
414 out_free_dev:
415 kfree(brd);
416 out:
417 return NULL;
420 static void brd_free(struct brd_device *brd)
422 put_disk(brd->brd_disk);
423 blk_cleanup_queue(brd->brd_queue);
424 brd_free_pages(brd);
425 kfree(brd);
428 static struct brd_device *brd_init_one(int i, bool *new)
430 struct brd_device *brd;
432 *new = false;
433 list_for_each_entry(brd, &brd_devices, brd_list) {
434 if (brd->brd_number == i)
435 goto out;
438 brd = brd_alloc(i);
439 if (brd) {
440 brd->brd_disk->queue = brd->brd_queue;
441 add_disk(brd->brd_disk);
442 list_add_tail(&brd->brd_list, &brd_devices);
444 *new = true;
445 out:
446 return brd;
449 static void brd_del_one(struct brd_device *brd)
451 list_del(&brd->brd_list);
452 del_gendisk(brd->brd_disk);
453 brd_free(brd);
456 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
458 struct brd_device *brd;
459 struct kobject *kobj;
460 bool new;
462 mutex_lock(&brd_devices_mutex);
463 brd = brd_init_one(MINOR(dev) / max_part, &new);
464 kobj = brd ? get_disk_and_module(brd->brd_disk) : NULL;
465 mutex_unlock(&brd_devices_mutex);
467 if (new)
468 *part = 0;
470 return kobj;
473 static inline void brd_check_and_reset_par(void)
475 if (unlikely(!max_part))
476 max_part = 1;
479 * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
480 * otherwise, it is possiable to get same dev_t when adding partitions.
482 if ((1U << MINORBITS) % max_part != 0)
483 max_part = 1UL << fls(max_part);
485 if (max_part > DISK_MAX_PARTS) {
486 pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
487 DISK_MAX_PARTS, DISK_MAX_PARTS);
488 max_part = DISK_MAX_PARTS;
492 static int __init brd_init(void)
494 struct brd_device *brd, *next;
495 int i;
498 * brd module now has a feature to instantiate underlying device
499 * structure on-demand, provided that there is an access dev node.
501 * (1) if rd_nr is specified, create that many upfront. else
502 * it defaults to CONFIG_BLK_DEV_RAM_COUNT
503 * (2) User can further extend brd devices by create dev node themselves
504 * and have kernel automatically instantiate actual device
505 * on-demand. Example:
506 * mknod /path/devnod_name b 1 X # 1 is the rd major
507 * fdisk -l /path/devnod_name
508 * If (X / max_part) was not already created it will be created
509 * dynamically.
512 if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
513 return -EIO;
515 brd_check_and_reset_par();
517 for (i = 0; i < rd_nr; i++) {
518 brd = brd_alloc(i);
519 if (!brd)
520 goto out_free;
521 list_add_tail(&brd->brd_list, &brd_devices);
524 /* point of no return */
526 list_for_each_entry(brd, &brd_devices, brd_list) {
528 * associate with queue just before adding disk for
529 * avoiding to mess up failure path
531 brd->brd_disk->queue = brd->brd_queue;
532 add_disk(brd->brd_disk);
535 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
536 THIS_MODULE, brd_probe, NULL, NULL);
538 pr_info("brd: module loaded\n");
539 return 0;
541 out_free:
542 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
543 list_del(&brd->brd_list);
544 brd_free(brd);
546 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
548 pr_info("brd: module NOT loaded !!!\n");
549 return -ENOMEM;
552 static void __exit brd_exit(void)
554 struct brd_device *brd, *next;
556 list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
557 brd_del_one(brd);
559 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
560 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
562 pr_info("brd: module unloaded\n");
565 module_init(brd_init);
566 module_exit(brd_exit);