1 // SPDX-License-Identifier: GPL-2.0
3 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
6 * Copyright (C) 2005, Intec Automation Inc.
7 * Copyright (C) 2014, Freescale Semiconductor, Inc.
10 #include <linux/err.h>
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/mutex.h>
15 #include <linux/math64.h>
16 #include <linux/sizes.h>
17 #include <linux/slab.h>
18 #include <linux/sort.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/of_platform.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/spi/flash.h>
24 #include <linux/mtd/spi-nor.h>
26 /* Define max times to check status register before we give up. */
29 * For everything but full-chip erase; probably could be much smaller, but kept
30 * around for safety for now
32 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
35 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
38 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
40 #define SPI_NOR_MAX_ID_LEN 6
41 #define SPI_NOR_MAX_ADDR_WIDTH 4
43 struct sfdp_parameter_header
{
47 u8 length
; /* in double words */
48 u8 parameter_table_pointer
[3]; /* byte address */
52 #define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb)
53 #define SFDP_PARAM_HEADER_PTP(p) \
54 (((p)->parameter_table_pointer[2] << 16) | \
55 ((p)->parameter_table_pointer[1] << 8) | \
56 ((p)->parameter_table_pointer[0] << 0))
58 #define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */
59 #define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */
60 #define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */
62 #define SFDP_SIGNATURE 0x50444653U
63 #define SFDP_JESD216_MAJOR 1
64 #define SFDP_JESD216_MINOR 0
65 #define SFDP_JESD216A_MINOR 5
66 #define SFDP_JESD216B_MINOR 6
69 u32 signature
; /* Ox50444653U <=> "SFDP" */
72 u8 nph
; /* 0-base number of parameter headers */
75 /* Basic Flash Parameter Table. */
76 struct sfdp_parameter_header bfpt_header
;
79 /* Basic Flash Parameter Table */
82 * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs.
83 * They are indexed from 1 but C arrays are indexed from 0.
85 #define BFPT_DWORD(i) ((i) - 1)
86 #define BFPT_DWORD_MAX 16
88 /* The first version of JESB216 defined only 9 DWORDs. */
89 #define BFPT_DWORD_MAX_JESD216 9
92 #define BFPT_DWORD1_FAST_READ_1_1_2 BIT(16)
93 #define BFPT_DWORD1_ADDRESS_BYTES_MASK GENMASK(18, 17)
94 #define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY (0x0UL << 17)
95 #define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4 (0x1UL << 17)
96 #define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY (0x2UL << 17)
97 #define BFPT_DWORD1_DTR BIT(19)
98 #define BFPT_DWORD1_FAST_READ_1_2_2 BIT(20)
99 #define BFPT_DWORD1_FAST_READ_1_4_4 BIT(21)
100 #define BFPT_DWORD1_FAST_READ_1_1_4 BIT(22)
103 #define BFPT_DWORD5_FAST_READ_2_2_2 BIT(0)
104 #define BFPT_DWORD5_FAST_READ_4_4_4 BIT(4)
107 #define BFPT_DWORD11_PAGE_SIZE_SHIFT 4
108 #define BFPT_DWORD11_PAGE_SIZE_MASK GENMASK(7, 4)
113 * (from JESD216 rev B)
114 * Quad Enable Requirements (QER):
115 * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
116 * reads based on instruction. DQ3/HOLD# functions are hold during
118 * - 001b: QE is bit 1 of status register 2. It is set via Write Status with
119 * two data bytes where bit 1 of the second byte is one.
121 * Writing only one byte to the status register has the side-effect of
122 * clearing status register 2, including the QE bit. The 100b code is
123 * used if writing one byte to the status register does not modify
125 * - 010b: QE is bit 6 of status register 1. It is set via Write Status with
126 * one data byte where bit 6 is one.
128 * - 011b: QE is bit 7 of status register 2. It is set via Write status
129 * register 2 instruction 3Eh with one data byte where bit 7 is one.
131 * The status register 2 is read using instruction 3Fh.
132 * - 100b: QE is bit 1 of status register 2. It is set via Write Status with
133 * two data bytes where bit 1 of the second byte is one.
135 * In contrast to the 001b code, writing one byte to the status
136 * register does not modify status register 2.
137 * - 101b: QE is bit 1 of status register 2. Status register 1 is read using
138 * Read Status instruction 05h. Status register2 is read using
139 * instruction 35h. QE is set via Write Status instruction 01h with
140 * two data bytes where bit 1 of the second byte is one.
143 #define BFPT_DWORD15_QER_MASK GENMASK(22, 20)
144 #define BFPT_DWORD15_QER_NONE (0x0UL << 20) /* Micron */
145 #define BFPT_DWORD15_QER_SR2_BIT1_BUGGY (0x1UL << 20)
146 #define BFPT_DWORD15_QER_SR1_BIT6 (0x2UL << 20) /* Macronix */
147 #define BFPT_DWORD15_QER_SR2_BIT7 (0x3UL << 20)
148 #define BFPT_DWORD15_QER_SR2_BIT1_NO_RD (0x4UL << 20)
149 #define BFPT_DWORD15_QER_SR2_BIT1 (0x5UL << 20) /* Spansion */
152 u32 dwords
[BFPT_DWORD_MAX
];
156 * struct spi_nor_fixups - SPI NOR fixup hooks
157 * @default_init: called after default flash parameters init. Used to tweak
158 * flash parameters when information provided by the flash_info
159 * table is incomplete or wrong.
160 * @post_bfpt: called after the BFPT table has been parsed
161 * @post_sfdp: called after SFDP has been parsed (is also called for SPI NORs
162 * that do not support RDSFDP). Typically used to tweak various
163 * parameters that could not be extracted by other means (i.e.
164 * when information provided by the SFDP/flash_info tables are
165 * incomplete or wrong).
167 * Those hooks can be used to tweak the SPI NOR configuration when the SFDP
168 * table is broken or not available.
170 struct spi_nor_fixups
{
171 void (*default_init
)(struct spi_nor
*nor
);
172 int (*post_bfpt
)(struct spi_nor
*nor
,
173 const struct sfdp_parameter_header
*bfpt_header
,
174 const struct sfdp_bfpt
*bfpt
,
175 struct spi_nor_flash_parameter
*params
);
176 void (*post_sfdp
)(struct spi_nor
*nor
);
183 * This array stores the ID bytes.
184 * The first three bytes are the JEDIC ID.
185 * JEDEC ID zero means "no ID" (mostly older chips).
187 u8 id
[SPI_NOR_MAX_ID_LEN
];
190 /* The size listed here is what works with SPINOR_OP_SE, which isn't
191 * necessarily called a "sector" by the vendor.
193 unsigned sector_size
;
200 #define SECT_4K BIT(0) /* SPINOR_OP_BE_4K works uniformly */
201 #define SPI_NOR_NO_ERASE BIT(1) /* No erase command needed */
202 #define SST_WRITE BIT(2) /* use SST byte programming */
203 #define SPI_NOR_NO_FR BIT(3) /* Can't do fastread */
204 #define SECT_4K_PMC BIT(4) /* SPINOR_OP_BE_4K_PMC works uniformly */
205 #define SPI_NOR_DUAL_READ BIT(5) /* Flash supports Dual Read */
206 #define SPI_NOR_QUAD_READ BIT(6) /* Flash supports Quad Read */
207 #define USE_FSR BIT(7) /* use flag status register */
208 #define SPI_NOR_HAS_LOCK BIT(8) /* Flash supports lock/unlock via SR */
209 #define SPI_NOR_HAS_TB BIT(9) /*
210 * Flash SR has Top/Bottom (TB) protect
211 * bit. Must be used with
214 #define SPI_NOR_XSR_RDY BIT(10) /*
215 * S3AN flashes have specific opcode to
216 * read the status register.
217 * Flags SPI_NOR_XSR_RDY and SPI_S3AN
218 * use the same bit as one implies the
219 * other, but we will get rid of
222 #define SPI_S3AN BIT(10) /*
223 * Xilinx Spartan 3AN In-System Flash
224 * (MFR cannot be used for probing
225 * because it has the same value as
228 #define SPI_NOR_4B_OPCODES BIT(11) /*
229 * Use dedicated 4byte address op codes
230 * to support memory size above 128Mib.
232 #define NO_CHIP_ERASE BIT(12) /* Chip does not support chip erase */
233 #define SPI_NOR_SKIP_SFDP BIT(13) /* Skip parsing of SFDP tables */
234 #define USE_CLSR BIT(14) /* use CLSR command */
235 #define SPI_NOR_OCTAL_READ BIT(15) /* Flash supports Octal Read */
237 /* Part specific fixup hooks. */
238 const struct spi_nor_fixups
*fixups
;
241 #define JEDEC_MFR(info) ((info)->id[0])
244 * spi_nor_spimem_xfer_data() - helper function to read/write data to
245 * flash's memory region
246 * @nor: pointer to 'struct spi_nor'
247 * @op: pointer to 'struct spi_mem_op' template for transfer
249 * Return: number of bytes transferred on success, -errno otherwise
251 static ssize_t
spi_nor_spimem_xfer_data(struct spi_nor
*nor
,
252 struct spi_mem_op
*op
)
254 bool usebouncebuf
= false;
259 if (op
->data
.dir
== SPI_MEM_DATA_IN
)
260 buf
= op
->data
.buf
.in
;
262 buf
= op
->data
.buf
.out
;
264 if (object_is_on_stack(buf
) || !virt_addr_valid(buf
))
268 if (op
->data
.nbytes
> nor
->bouncebuf_size
)
269 op
->data
.nbytes
= nor
->bouncebuf_size
;
271 if (op
->data
.dir
== SPI_MEM_DATA_IN
) {
272 rdbuf
= op
->data
.buf
.in
;
273 op
->data
.buf
.in
= nor
->bouncebuf
;
275 op
->data
.buf
.out
= nor
->bouncebuf
;
276 memcpy(nor
->bouncebuf
, buf
,
281 ret
= spi_mem_adjust_op_size(nor
->spimem
, op
);
285 ret
= spi_mem_exec_op(nor
->spimem
, op
);
289 if (usebouncebuf
&& op
->data
.dir
== SPI_MEM_DATA_IN
)
290 memcpy(rdbuf
, nor
->bouncebuf
, op
->data
.nbytes
);
292 return op
->data
.nbytes
;
296 * spi_nor_spimem_read_data() - read data from flash's memory region via
298 * @nor: pointer to 'struct spi_nor'
299 * @from: offset to read from
300 * @len: number of bytes to read
301 * @buf: pointer to dst buffer
303 * Return: number of bytes read successfully, -errno otherwise
305 static ssize_t
spi_nor_spimem_read_data(struct spi_nor
*nor
, loff_t from
,
308 struct spi_mem_op op
=
309 SPI_MEM_OP(SPI_MEM_OP_CMD(nor
->read_opcode
, 1),
310 SPI_MEM_OP_ADDR(nor
->addr_width
, from
, 1),
311 SPI_MEM_OP_DUMMY(nor
->read_dummy
, 1),
312 SPI_MEM_OP_DATA_IN(len
, buf
, 1));
314 /* get transfer protocols. */
315 op
.cmd
.buswidth
= spi_nor_get_protocol_inst_nbits(nor
->read_proto
);
316 op
.addr
.buswidth
= spi_nor_get_protocol_addr_nbits(nor
->read_proto
);
317 op
.dummy
.buswidth
= op
.addr
.buswidth
;
318 op
.data
.buswidth
= spi_nor_get_protocol_data_nbits(nor
->read_proto
);
320 /* convert the dummy cycles to the number of bytes */
321 op
.dummy
.nbytes
= (nor
->read_dummy
* op
.dummy
.buswidth
) / 8;
323 return spi_nor_spimem_xfer_data(nor
, &op
);
327 * spi_nor_read_data() - read data from flash memory
328 * @nor: pointer to 'struct spi_nor'
329 * @from: offset to read from
330 * @len: number of bytes to read
331 * @buf: pointer to dst buffer
333 * Return: number of bytes read successfully, -errno otherwise
335 static ssize_t
spi_nor_read_data(struct spi_nor
*nor
, loff_t from
, size_t len
,
339 return spi_nor_spimem_read_data(nor
, from
, len
, buf
);
341 return nor
->read(nor
, from
, len
, buf
);
345 * spi_nor_spimem_write_data() - write data to flash memory via
347 * @nor: pointer to 'struct spi_nor'
348 * @to: offset to write to
349 * @len: number of bytes to write
350 * @buf: pointer to src buffer
352 * Return: number of bytes written successfully, -errno otherwise
354 static ssize_t
spi_nor_spimem_write_data(struct spi_nor
*nor
, loff_t to
,
355 size_t len
, const u8
*buf
)
357 struct spi_mem_op op
=
358 SPI_MEM_OP(SPI_MEM_OP_CMD(nor
->program_opcode
, 1),
359 SPI_MEM_OP_ADDR(nor
->addr_width
, to
, 1),
361 SPI_MEM_OP_DATA_OUT(len
, buf
, 1));
363 op
.cmd
.buswidth
= spi_nor_get_protocol_inst_nbits(nor
->write_proto
);
364 op
.addr
.buswidth
= spi_nor_get_protocol_addr_nbits(nor
->write_proto
);
365 op
.data
.buswidth
= spi_nor_get_protocol_data_nbits(nor
->write_proto
);
367 if (nor
->program_opcode
== SPINOR_OP_AAI_WP
&& nor
->sst_write_second
)
370 return spi_nor_spimem_xfer_data(nor
, &op
);
374 * spi_nor_write_data() - write data to flash memory
375 * @nor: pointer to 'struct spi_nor'
376 * @to: offset to write to
377 * @len: number of bytes to write
378 * @buf: pointer to src buffer
380 * Return: number of bytes written successfully, -errno otherwise
382 static ssize_t
spi_nor_write_data(struct spi_nor
*nor
, loff_t to
, size_t len
,
386 return spi_nor_spimem_write_data(nor
, to
, len
, buf
);
388 return nor
->write(nor
, to
, len
, buf
);
392 * Read the status register, returning its value in the location
393 * Return the status register value.
394 * Returns negative if error occurred.
396 static int read_sr(struct spi_nor
*nor
)
401 struct spi_mem_op op
=
402 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR
, 1),
405 SPI_MEM_OP_DATA_IN(1, nor
->bouncebuf
, 1));
407 ret
= spi_mem_exec_op(nor
->spimem
, &op
);
409 ret
= nor
->read_reg(nor
, SPINOR_OP_RDSR
, nor
->bouncebuf
, 1);
413 pr_err("error %d reading SR\n", (int) ret
);
417 return nor
->bouncebuf
[0];
421 * Read the flag status register, returning its value in the location
422 * Return the status register value.
423 * Returns negative if error occurred.
425 static int read_fsr(struct spi_nor
*nor
)
430 struct spi_mem_op op
=
431 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR
, 1),
434 SPI_MEM_OP_DATA_IN(1, nor
->bouncebuf
, 1));
436 ret
= spi_mem_exec_op(nor
->spimem
, &op
);
438 ret
= nor
->read_reg(nor
, SPINOR_OP_RDFSR
, nor
->bouncebuf
, 1);
442 pr_err("error %d reading FSR\n", ret
);
446 return nor
->bouncebuf
[0];
450 * Read configuration register, returning its value in the
451 * location. Return the configuration register value.
452 * Returns negative if error occurred.
454 static int read_cr(struct spi_nor
*nor
)
459 struct spi_mem_op op
=
460 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR
, 1),
463 SPI_MEM_OP_DATA_IN(1, nor
->bouncebuf
, 1));
465 ret
= spi_mem_exec_op(nor
->spimem
, &op
);
467 ret
= nor
->read_reg(nor
, SPINOR_OP_RDCR
, nor
->bouncebuf
, 1);
471 dev_err(nor
->dev
, "error %d reading CR\n", ret
);
475 return nor
->bouncebuf
[0];
479 * Write status register 1 byte
480 * Returns negative if error occurred.
482 static int write_sr(struct spi_nor
*nor
, u8 val
)
484 nor
->bouncebuf
[0] = val
;
486 struct spi_mem_op op
=
487 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR
, 1),
490 SPI_MEM_OP_DATA_OUT(1, nor
->bouncebuf
, 1));
492 return spi_mem_exec_op(nor
->spimem
, &op
);
495 return nor
->write_reg(nor
, SPINOR_OP_WRSR
, nor
->bouncebuf
, 1);
499 * Set write enable latch with Write Enable command.
500 * Returns negative if error occurred.
502 static int write_enable(struct spi_nor
*nor
)
505 struct spi_mem_op op
=
506 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN
, 1),
511 return spi_mem_exec_op(nor
->spimem
, &op
);
514 return nor
->write_reg(nor
, SPINOR_OP_WREN
, NULL
, 0);
518 * Send write disable instruction to the chip.
520 static int write_disable(struct spi_nor
*nor
)
523 struct spi_mem_op op
=
524 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI
, 1),
529 return spi_mem_exec_op(nor
->spimem
, &op
);
532 return nor
->write_reg(nor
, SPINOR_OP_WRDI
, NULL
, 0);
535 static struct spi_nor
*mtd_to_spi_nor(struct mtd_info
*mtd
)
541 static u8
spi_nor_convert_opcode(u8 opcode
, const u8 table
[][2], size_t size
)
545 for (i
= 0; i
< size
; i
++)
546 if (table
[i
][0] == opcode
)
549 /* No conversion found, keep input op code. */
553 static u8
spi_nor_convert_3to4_read(u8 opcode
)
555 static const u8 spi_nor_3to4_read
[][2] = {
556 { SPINOR_OP_READ
, SPINOR_OP_READ_4B
},
557 { SPINOR_OP_READ_FAST
, SPINOR_OP_READ_FAST_4B
},
558 { SPINOR_OP_READ_1_1_2
, SPINOR_OP_READ_1_1_2_4B
},
559 { SPINOR_OP_READ_1_2_2
, SPINOR_OP_READ_1_2_2_4B
},
560 { SPINOR_OP_READ_1_1_4
, SPINOR_OP_READ_1_1_4_4B
},
561 { SPINOR_OP_READ_1_4_4
, SPINOR_OP_READ_1_4_4_4B
},
562 { SPINOR_OP_READ_1_1_8
, SPINOR_OP_READ_1_1_8_4B
},
563 { SPINOR_OP_READ_1_8_8
, SPINOR_OP_READ_1_8_8_4B
},
565 { SPINOR_OP_READ_1_1_1_DTR
, SPINOR_OP_READ_1_1_1_DTR_4B
},
566 { SPINOR_OP_READ_1_2_2_DTR
, SPINOR_OP_READ_1_2_2_DTR_4B
},
567 { SPINOR_OP_READ_1_4_4_DTR
, SPINOR_OP_READ_1_4_4_DTR_4B
},
570 return spi_nor_convert_opcode(opcode
, spi_nor_3to4_read
,
571 ARRAY_SIZE(spi_nor_3to4_read
));
574 static u8
spi_nor_convert_3to4_program(u8 opcode
)
576 static const u8 spi_nor_3to4_program
[][2] = {
577 { SPINOR_OP_PP
, SPINOR_OP_PP_4B
},
578 { SPINOR_OP_PP_1_1_4
, SPINOR_OP_PP_1_1_4_4B
},
579 { SPINOR_OP_PP_1_4_4
, SPINOR_OP_PP_1_4_4_4B
},
580 { SPINOR_OP_PP_1_1_8
, SPINOR_OP_PP_1_1_8_4B
},
581 { SPINOR_OP_PP_1_8_8
, SPINOR_OP_PP_1_8_8_4B
},
584 return spi_nor_convert_opcode(opcode
, spi_nor_3to4_program
,
585 ARRAY_SIZE(spi_nor_3to4_program
));
588 static u8
spi_nor_convert_3to4_erase(u8 opcode
)
590 static const u8 spi_nor_3to4_erase
[][2] = {
591 { SPINOR_OP_BE_4K
, SPINOR_OP_BE_4K_4B
},
592 { SPINOR_OP_BE_32K
, SPINOR_OP_BE_32K_4B
},
593 { SPINOR_OP_SE
, SPINOR_OP_SE_4B
},
596 return spi_nor_convert_opcode(opcode
, spi_nor_3to4_erase
,
597 ARRAY_SIZE(spi_nor_3to4_erase
));
600 static void spi_nor_set_4byte_opcodes(struct spi_nor
*nor
)
602 nor
->read_opcode
= spi_nor_convert_3to4_read(nor
->read_opcode
);
603 nor
->program_opcode
= spi_nor_convert_3to4_program(nor
->program_opcode
);
604 nor
->erase_opcode
= spi_nor_convert_3to4_erase(nor
->erase_opcode
);
606 if (!spi_nor_has_uniform_erase(nor
)) {
607 struct spi_nor_erase_map
*map
= &nor
->params
.erase_map
;
608 struct spi_nor_erase_type
*erase
;
611 for (i
= 0; i
< SNOR_ERASE_TYPE_MAX
; i
++) {
612 erase
= &map
->erase_type
[i
];
614 spi_nor_convert_3to4_erase(erase
->opcode
);
619 static int macronix_set_4byte(struct spi_nor
*nor
, bool enable
)
622 struct spi_mem_op op
=
623 SPI_MEM_OP(SPI_MEM_OP_CMD(enable
?
631 return spi_mem_exec_op(nor
->spimem
, &op
);
634 return nor
->write_reg(nor
, enable
? SPINOR_OP_EN4B
: SPINOR_OP_EX4B
,
638 static int st_micron_set_4byte(struct spi_nor
*nor
, bool enable
)
643 ret
= macronix_set_4byte(nor
, enable
);
649 static int spansion_set_4byte(struct spi_nor
*nor
, bool enable
)
651 nor
->bouncebuf
[0] = enable
<< 7;
654 struct spi_mem_op op
=
655 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR
, 1),
658 SPI_MEM_OP_DATA_OUT(1, nor
->bouncebuf
, 1));
660 return spi_mem_exec_op(nor
->spimem
, &op
);
663 return nor
->write_reg(nor
, SPINOR_OP_BRWR
, nor
->bouncebuf
, 1);
666 static int spi_nor_write_ear(struct spi_nor
*nor
, u8 ear
)
668 nor
->bouncebuf
[0] = ear
;
671 struct spi_mem_op op
=
672 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR
, 1),
675 SPI_MEM_OP_DATA_OUT(1, nor
->bouncebuf
, 1));
677 return spi_mem_exec_op(nor
->spimem
, &op
);
680 return nor
->write_reg(nor
, SPINOR_OP_WREAR
, nor
->bouncebuf
, 1);
683 static int winbond_set_4byte(struct spi_nor
*nor
, bool enable
)
687 ret
= macronix_set_4byte(nor
, enable
);
692 * On Winbond W25Q256FV, leaving 4byte mode causes the Extended Address
693 * Register to be set to 1, so all 3-byte-address reads come from the
694 * second 16M. We must clear the register to enable normal behavior.
697 ret
= spi_nor_write_ear(nor
, 0);
703 static int spi_nor_xread_sr(struct spi_nor
*nor
, u8
*sr
)
706 struct spi_mem_op op
=
707 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR
, 1),
710 SPI_MEM_OP_DATA_IN(1, sr
, 1));
712 return spi_mem_exec_op(nor
->spimem
, &op
);
715 return nor
->read_reg(nor
, SPINOR_OP_XRDSR
, sr
, 1);
718 static int s3an_sr_ready(struct spi_nor
*nor
)
722 ret
= spi_nor_xread_sr(nor
, nor
->bouncebuf
);
724 dev_err(nor
->dev
, "error %d reading XRDSR\n", (int) ret
);
728 return !!(nor
->bouncebuf
[0] & XSR_RDY
);
731 static int spi_nor_clear_sr(struct spi_nor
*nor
)
734 struct spi_mem_op op
=
735 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR
, 1),
740 return spi_mem_exec_op(nor
->spimem
, &op
);
743 return nor
->write_reg(nor
, SPINOR_OP_CLSR
, NULL
, 0);
746 static int spi_nor_sr_ready(struct spi_nor
*nor
)
748 int sr
= read_sr(nor
);
752 if (nor
->flags
& SNOR_F_USE_CLSR
&& sr
& (SR_E_ERR
| SR_P_ERR
)) {
754 dev_err(nor
->dev
, "Erase Error occurred\n");
756 dev_err(nor
->dev
, "Programming Error occurred\n");
758 spi_nor_clear_sr(nor
);
762 return !(sr
& SR_WIP
);
765 static int spi_nor_clear_fsr(struct spi_nor
*nor
)
768 struct spi_mem_op op
=
769 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR
, 1),
774 return spi_mem_exec_op(nor
->spimem
, &op
);
777 return nor
->write_reg(nor
, SPINOR_OP_CLFSR
, NULL
, 0);
780 static int spi_nor_fsr_ready(struct spi_nor
*nor
)
782 int fsr
= read_fsr(nor
);
786 if (fsr
& (FSR_E_ERR
| FSR_P_ERR
)) {
788 dev_err(nor
->dev
, "Erase operation failed.\n");
790 dev_err(nor
->dev
, "Program operation failed.\n");
792 if (fsr
& FSR_PT_ERR
)
794 "Attempted to modify a protected sector.\n");
796 spi_nor_clear_fsr(nor
);
800 return fsr
& FSR_READY
;
803 static int spi_nor_ready(struct spi_nor
*nor
)
807 if (nor
->flags
& SNOR_F_READY_XSR_RDY
)
808 sr
= s3an_sr_ready(nor
);
810 sr
= spi_nor_sr_ready(nor
);
813 fsr
= nor
->flags
& SNOR_F_USE_FSR
? spi_nor_fsr_ready(nor
) : 1;
820 * Service routine to read status register until ready, or timeout occurs.
821 * Returns non-zero if error.
823 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor
*nor
,
824 unsigned long timeout_jiffies
)
826 unsigned long deadline
;
827 int timeout
= 0, ret
;
829 deadline
= jiffies
+ timeout_jiffies
;
832 if (time_after_eq(jiffies
, deadline
))
835 ret
= spi_nor_ready(nor
);
844 dev_err(nor
->dev
, "flash operation timed out\n");
849 static int spi_nor_wait_till_ready(struct spi_nor
*nor
)
851 return spi_nor_wait_till_ready_with_timeout(nor
,
852 DEFAULT_READY_WAIT_JIFFIES
);
856 * Erase the whole flash memory
858 * Returns 0 if successful, non-zero otherwise.
860 static int erase_chip(struct spi_nor
*nor
)
862 dev_dbg(nor
->dev
, " %lldKiB\n", (long long)(nor
->mtd
.size
>> 10));
865 struct spi_mem_op op
=
866 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE
, 1),
871 return spi_mem_exec_op(nor
->spimem
, &op
);
874 return nor
->write_reg(nor
, SPINOR_OP_CHIP_ERASE
, NULL
, 0);
877 static int spi_nor_lock_and_prep(struct spi_nor
*nor
, enum spi_nor_ops ops
)
881 mutex_lock(&nor
->lock
);
884 ret
= nor
->prepare(nor
, ops
);
886 dev_err(nor
->dev
, "failed in the preparation.\n");
887 mutex_unlock(&nor
->lock
);
894 static void spi_nor_unlock_and_unprep(struct spi_nor
*nor
, enum spi_nor_ops ops
)
897 nor
->unprepare(nor
, ops
);
898 mutex_unlock(&nor
->lock
);
902 * This code converts an address to the Default Address Mode, that has non
903 * power of two page sizes. We must support this mode because it is the default
904 * mode supported by Xilinx tools, it can access the whole flash area and
905 * changing over to the Power-of-two mode is irreversible and corrupts the
907 * Addr can safely be unsigned int, the biggest S3AN device is smaller than
910 static u32
s3an_convert_addr(struct spi_nor
*nor
, u32 addr
)
914 offset
= addr
% nor
->page_size
;
915 page
= addr
/ nor
->page_size
;
916 page
<<= (nor
->page_size
> 512) ? 10 : 9;
918 return page
| offset
;
921 static u32
spi_nor_convert_addr(struct spi_nor
*nor
, loff_t addr
)
923 if (!nor
->params
.convert_addr
)
926 return nor
->params
.convert_addr(nor
, addr
);
930 * Initiate the erasure of a single sector
932 static int spi_nor_erase_sector(struct spi_nor
*nor
, u32 addr
)
936 addr
= spi_nor_convert_addr(nor
, addr
);
939 return nor
->erase(nor
, addr
);
942 struct spi_mem_op op
=
943 SPI_MEM_OP(SPI_MEM_OP_CMD(nor
->erase_opcode
, 1),
944 SPI_MEM_OP_ADDR(nor
->addr_width
, addr
, 1),
948 return spi_mem_exec_op(nor
->spimem
, &op
);
952 * Default implementation, if driver doesn't have a specialized HW
955 for (i
= nor
->addr_width
- 1; i
>= 0; i
--) {
956 nor
->bouncebuf
[i
] = addr
& 0xff;
960 return nor
->write_reg(nor
, nor
->erase_opcode
, nor
->bouncebuf
,
965 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
966 * @erase: pointer to a structure that describes a SPI NOR erase type
967 * @dividend: dividend value
968 * @remainder: pointer to u32 remainder (will be updated)
970 * Return: the result of the division
972 static u64
spi_nor_div_by_erase_size(const struct spi_nor_erase_type
*erase
,
973 u64 dividend
, u32
*remainder
)
975 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
976 *remainder
= (u32
)dividend
& erase
->size_mask
;
977 return dividend
>> erase
->size_shift
;
981 * spi_nor_find_best_erase_type() - find the best erase type for the given
982 * offset in the serial flash memory and the
983 * number of bytes to erase. The region in
984 * which the address fits is expected to be
986 * @map: the erase map of the SPI NOR
987 * @region: pointer to a structure that describes a SPI NOR erase region
988 * @addr: offset in the serial flash memory
989 * @len: number of bytes to erase
991 * Return: a pointer to the best fitted erase type, NULL otherwise.
993 static const struct spi_nor_erase_type
*
994 spi_nor_find_best_erase_type(const struct spi_nor_erase_map
*map
,
995 const struct spi_nor_erase_region
*region
,
998 const struct spi_nor_erase_type
*erase
;
1001 u8 erase_mask
= region
->offset
& SNOR_ERASE_TYPE_MASK
;
1004 * Erase types are ordered by size, with the smallest erase type at
1007 for (i
= SNOR_ERASE_TYPE_MAX
- 1; i
>= 0; i
--) {
1008 /* Does the erase region support the tested erase type? */
1009 if (!(erase_mask
& BIT(i
)))
1012 erase
= &map
->erase_type
[i
];
1014 /* Don't erase more than what the user has asked for. */
1015 if (erase
->size
> len
)
1018 /* Alignment is not mandatory for overlaid regions */
1019 if (region
->offset
& SNOR_OVERLAID_REGION
)
1022 spi_nor_div_by_erase_size(erase
, addr
, &rem
);
1033 * spi_nor_region_next() - get the next spi nor region
1034 * @region: pointer to a structure that describes a SPI NOR erase region
1036 * Return: the next spi nor region or NULL if last region.
1038 static struct spi_nor_erase_region
*
1039 spi_nor_region_next(struct spi_nor_erase_region
*region
)
1041 if (spi_nor_region_is_last(region
))
1048 * spi_nor_find_erase_region() - find the region of the serial flash memory in
1049 * which the offset fits
1050 * @map: the erase map of the SPI NOR
1051 * @addr: offset in the serial flash memory
1053 * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
1056 static struct spi_nor_erase_region
*
1057 spi_nor_find_erase_region(const struct spi_nor_erase_map
*map
, u64 addr
)
1059 struct spi_nor_erase_region
*region
= map
->regions
;
1060 u64 region_start
= region
->offset
& ~SNOR_ERASE_FLAGS_MASK
;
1061 u64 region_end
= region_start
+ region
->size
;
1063 while (addr
< region_start
|| addr
>= region_end
) {
1064 region
= spi_nor_region_next(region
);
1066 return ERR_PTR(-EINVAL
);
1068 region_start
= region
->offset
& ~SNOR_ERASE_FLAGS_MASK
;
1069 region_end
= region_start
+ region
->size
;
1076 * spi_nor_init_erase_cmd() - initialize an erase command
1077 * @region: pointer to a structure that describes a SPI NOR erase region
1078 * @erase: pointer to a structure that describes a SPI NOR erase type
1080 * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1083 static struct spi_nor_erase_command
*
1084 spi_nor_init_erase_cmd(const struct spi_nor_erase_region
*region
,
1085 const struct spi_nor_erase_type
*erase
)
1087 struct spi_nor_erase_command
*cmd
;
1089 cmd
= kmalloc(sizeof(*cmd
), GFP_KERNEL
);
1091 return ERR_PTR(-ENOMEM
);
1093 INIT_LIST_HEAD(&cmd
->list
);
1094 cmd
->opcode
= erase
->opcode
;
1097 if (region
->offset
& SNOR_OVERLAID_REGION
)
1098 cmd
->size
= region
->size
;
1100 cmd
->size
= erase
->size
;
1106 * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1107 * @erase_list: list of erase commands
1109 static void spi_nor_destroy_erase_cmd_list(struct list_head
*erase_list
)
1111 struct spi_nor_erase_command
*cmd
, *next
;
1113 list_for_each_entry_safe(cmd
, next
, erase_list
, list
) {
1114 list_del(&cmd
->list
);
1120 * spi_nor_init_erase_cmd_list() - initialize erase command list
1121 * @nor: pointer to a 'struct spi_nor'
1122 * @erase_list: list of erase commands to be executed once we validate that the
1123 * erase can be performed
1124 * @addr: offset in the serial flash memory
1125 * @len: number of bytes to erase
1127 * Builds the list of best fitted erase commands and verifies if the erase can
1130 * Return: 0 on success, -errno otherwise.
1132 static int spi_nor_init_erase_cmd_list(struct spi_nor
*nor
,
1133 struct list_head
*erase_list
,
1136 const struct spi_nor_erase_map
*map
= &nor
->params
.erase_map
;
1137 const struct spi_nor_erase_type
*erase
, *prev_erase
= NULL
;
1138 struct spi_nor_erase_region
*region
;
1139 struct spi_nor_erase_command
*cmd
= NULL
;
1143 region
= spi_nor_find_erase_region(map
, addr
);
1145 return PTR_ERR(region
);
1147 region_end
= spi_nor_region_end(region
);
1150 erase
= spi_nor_find_best_erase_type(map
, region
, addr
, len
);
1152 goto destroy_erase_cmd_list
;
1154 if (prev_erase
!= erase
||
1155 region
->offset
& SNOR_OVERLAID_REGION
) {
1156 cmd
= spi_nor_init_erase_cmd(region
, erase
);
1159 goto destroy_erase_cmd_list
;
1162 list_add_tail(&cmd
->list
, erase_list
);
1170 if (len
&& addr
>= region_end
) {
1171 region
= spi_nor_region_next(region
);
1173 goto destroy_erase_cmd_list
;
1174 region_end
= spi_nor_region_end(region
);
1182 destroy_erase_cmd_list
:
1183 spi_nor_destroy_erase_cmd_list(erase_list
);
1188 * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1189 * @nor: pointer to a 'struct spi_nor'
1190 * @addr: offset in the serial flash memory
1191 * @len: number of bytes to erase
1193 * Build a list of best fitted erase commands and execute it once we validate
1194 * that the erase can be performed.
1196 * Return: 0 on success, -errno otherwise.
1198 static int spi_nor_erase_multi_sectors(struct spi_nor
*nor
, u64 addr
, u32 len
)
1200 LIST_HEAD(erase_list
);
1201 struct spi_nor_erase_command
*cmd
, *next
;
1204 ret
= spi_nor_init_erase_cmd_list(nor
, &erase_list
, addr
, len
);
1208 list_for_each_entry_safe(cmd
, next
, &erase_list
, list
) {
1209 nor
->erase_opcode
= cmd
->opcode
;
1210 while (cmd
->count
) {
1213 ret
= spi_nor_erase_sector(nor
, addr
);
1215 goto destroy_erase_cmd_list
;
1220 ret
= spi_nor_wait_till_ready(nor
);
1222 goto destroy_erase_cmd_list
;
1224 list_del(&cmd
->list
);
1230 destroy_erase_cmd_list
:
1231 spi_nor_destroy_erase_cmd_list(&erase_list
);
1236 * Erase an address range on the nor chip. The address range may extend
1237 * one or more erase sectors. Return an error is there is a problem erasing.
1239 static int spi_nor_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
1241 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
1246 dev_dbg(nor
->dev
, "at 0x%llx, len %lld\n", (long long)instr
->addr
,
1247 (long long)instr
->len
);
1249 if (spi_nor_has_uniform_erase(nor
)) {
1250 div_u64_rem(instr
->len
, mtd
->erasesize
, &rem
);
1258 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_ERASE
);
1262 /* whole-chip erase? */
1263 if (len
== mtd
->size
&& !(nor
->flags
& SNOR_F_NO_OP_CHIP_ERASE
)) {
1264 unsigned long timeout
;
1268 if (erase_chip(nor
)) {
1274 * Scale the timeout linearly with the size of the flash, with
1275 * a minimum calibrated to an old 2MB flash. We could try to
1276 * pull these from CFI/SFDP, but these values should be good
1279 timeout
= max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES
,
1280 CHIP_ERASE_2MB_READY_WAIT_JIFFIES
*
1281 (unsigned long)(mtd
->size
/ SZ_2M
));
1282 ret
= spi_nor_wait_till_ready_with_timeout(nor
, timeout
);
1286 /* REVISIT in some cases we could speed up erasing large regions
1287 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
1288 * to use "small sector erase", but that's not always optimal.
1291 /* "sector"-at-a-time erase */
1292 } else if (spi_nor_has_uniform_erase(nor
)) {
1296 ret
= spi_nor_erase_sector(nor
, addr
);
1300 addr
+= mtd
->erasesize
;
1301 len
-= mtd
->erasesize
;
1303 ret
= spi_nor_wait_till_ready(nor
);
1308 /* erase multiple sectors */
1310 ret
= spi_nor_erase_multi_sectors(nor
, addr
, len
);
1318 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_ERASE
);
1323 /* Write status register and ensure bits in mask match written values */
1324 static int write_sr_and_check(struct spi_nor
*nor
, u8 status_new
, u8 mask
)
1329 ret
= write_sr(nor
, status_new
);
1333 ret
= spi_nor_wait_till_ready(nor
);
1341 return ((ret
& mask
) != (status_new
& mask
)) ? -EIO
: 0;
1344 static void stm_get_locked_range(struct spi_nor
*nor
, u8 sr
, loff_t
*ofs
,
1347 struct mtd_info
*mtd
= &nor
->mtd
;
1348 u8 mask
= SR_BP2
| SR_BP1
| SR_BP0
;
1349 int shift
= ffs(mask
) - 1;
1357 pow
= ((sr
& mask
) ^ mask
) >> shift
;
1358 *len
= mtd
->size
>> pow
;
1359 if (nor
->flags
& SNOR_F_HAS_SR_TB
&& sr
& SR_TB
)
1362 *ofs
= mtd
->size
- *len
;
1367 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
1368 * @locked is false); 0 otherwise
1370 static int stm_check_lock_status_sr(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
,
1379 stm_get_locked_range(nor
, sr
, &lock_offs
, &lock_len
);
1382 /* Requested range is a sub-range of locked range */
1383 return (ofs
+ len
<= lock_offs
+ lock_len
) && (ofs
>= lock_offs
);
1385 /* Requested range does not overlap with locked range */
1386 return (ofs
>= lock_offs
+ lock_len
) || (ofs
+ len
<= lock_offs
);
1389 static int stm_is_locked_sr(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
,
1392 return stm_check_lock_status_sr(nor
, ofs
, len
, sr
, true);
1395 static int stm_is_unlocked_sr(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
,
1398 return stm_check_lock_status_sr(nor
, ofs
, len
, sr
, false);
1402 * Lock a region of the flash. Compatible with ST Micro and similar flash.
1403 * Supports the block protection bits BP{0,1,2} in the status register
1404 * (SR). Does not support these features found in newer SR bitfields:
1405 * - SEC: sector/block protect - only handle SEC=0 (block protect)
1406 * - CMP: complement protect - only support CMP=0 (range is not complemented)
1408 * Support for the following is provided conditionally for some flash:
1409 * - TB: top/bottom protect
1411 * Sample table portion for 8MB flash (Winbond w25q64fw):
1413 * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
1414 * --------------------------------------------------------------------------
1415 * X | X | 0 | 0 | 0 | NONE | NONE
1416 * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
1417 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
1418 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
1419 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
1420 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
1421 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
1422 * X | X | 1 | 1 | 1 | 8 MB | ALL
1423 * ------|-------|-------|-------|-------|---------------|-------------------
1424 * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
1425 * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
1426 * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
1427 * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
1428 * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
1429 * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
1431 * Returns negative on errors, 0 on success.
1433 static int stm_lock(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
)
1435 struct mtd_info
*mtd
= &nor
->mtd
;
1436 int status_old
, status_new
;
1437 u8 mask
= SR_BP2
| SR_BP1
| SR_BP0
;
1438 u8 shift
= ffs(mask
) - 1, pow
, val
;
1440 bool can_be_top
= true, can_be_bottom
= nor
->flags
& SNOR_F_HAS_SR_TB
;
1443 status_old
= read_sr(nor
);
1447 /* If nothing in our range is unlocked, we don't need to do anything */
1448 if (stm_is_locked_sr(nor
, ofs
, len
, status_old
))
1451 /* If anything below us is unlocked, we can't use 'bottom' protection */
1452 if (!stm_is_locked_sr(nor
, 0, ofs
, status_old
))
1453 can_be_bottom
= false;
1455 /* If anything above us is unlocked, we can't use 'top' protection */
1456 if (!stm_is_locked_sr(nor
, ofs
+ len
, mtd
->size
- (ofs
+ len
),
1460 if (!can_be_bottom
&& !can_be_top
)
1463 /* Prefer top, if both are valid */
1464 use_top
= can_be_top
;
1466 /* lock_len: length of region that should end up locked */
1468 lock_len
= mtd
->size
- ofs
;
1470 lock_len
= ofs
+ len
;
1473 * Need smallest pow such that:
1475 * 1 / (2^pow) <= (len / size)
1477 * so (assuming power-of-2 size) we do:
1479 * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
1481 pow
= ilog2(mtd
->size
) - ilog2(lock_len
);
1482 val
= mask
- (pow
<< shift
);
1485 /* Don't "lock" with no region! */
1489 status_new
= (status_old
& ~mask
& ~SR_TB
) | val
;
1491 /* Disallow further writes if WP pin is asserted */
1492 status_new
|= SR_SRWD
;
1495 status_new
|= SR_TB
;
1497 /* Don't bother if they're the same */
1498 if (status_new
== status_old
)
1501 /* Only modify protection if it will not unlock other areas */
1502 if ((status_new
& mask
) < (status_old
& mask
))
1505 return write_sr_and_check(nor
, status_new
, mask
);
1509 * Unlock a region of the flash. See stm_lock() for more info
1511 * Returns negative on errors, 0 on success.
1513 static int stm_unlock(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
)
1515 struct mtd_info
*mtd
= &nor
->mtd
;
1516 int status_old
, status_new
;
1517 u8 mask
= SR_BP2
| SR_BP1
| SR_BP0
;
1518 u8 shift
= ffs(mask
) - 1, pow
, val
;
1520 bool can_be_top
= true, can_be_bottom
= nor
->flags
& SNOR_F_HAS_SR_TB
;
1523 status_old
= read_sr(nor
);
1527 /* If nothing in our range is locked, we don't need to do anything */
1528 if (stm_is_unlocked_sr(nor
, ofs
, len
, status_old
))
1531 /* If anything below us is locked, we can't use 'top' protection */
1532 if (!stm_is_unlocked_sr(nor
, 0, ofs
, status_old
))
1535 /* If anything above us is locked, we can't use 'bottom' protection */
1536 if (!stm_is_unlocked_sr(nor
, ofs
+ len
, mtd
->size
- (ofs
+ len
),
1538 can_be_bottom
= false;
1540 if (!can_be_bottom
&& !can_be_top
)
1543 /* Prefer top, if both are valid */
1544 use_top
= can_be_top
;
1546 /* lock_len: length of region that should remain locked */
1548 lock_len
= mtd
->size
- (ofs
+ len
);
1553 * Need largest pow such that:
1555 * 1 / (2^pow) >= (len / size)
1557 * so (assuming power-of-2 size) we do:
1559 * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
1561 pow
= ilog2(mtd
->size
) - order_base_2(lock_len
);
1562 if (lock_len
== 0) {
1563 val
= 0; /* fully unlocked */
1565 val
= mask
- (pow
<< shift
);
1566 /* Some power-of-two sizes are not supported */
1571 status_new
= (status_old
& ~mask
& ~SR_TB
) | val
;
1573 /* Don't protect status register if we're fully unlocked */
1575 status_new
&= ~SR_SRWD
;
1578 status_new
|= SR_TB
;
1580 /* Don't bother if they're the same */
1581 if (status_new
== status_old
)
1584 /* Only modify protection if it will not lock other areas */
1585 if ((status_new
& mask
) > (status_old
& mask
))
1588 return write_sr_and_check(nor
, status_new
, mask
);
1592 * Check if a region of the flash is (completely) locked. See stm_lock() for
1595 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
1596 * negative on errors.
1598 static int stm_is_locked(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
)
1602 status
= read_sr(nor
);
1606 return stm_is_locked_sr(nor
, ofs
, len
, status
);
1609 static const struct spi_nor_locking_ops stm_locking_ops
= {
1611 .unlock
= stm_unlock
,
1612 .is_locked
= stm_is_locked
,
1615 static int spi_nor_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1617 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
1620 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_LOCK
);
1624 ret
= nor
->params
.locking_ops
->lock(nor
, ofs
, len
);
1626 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_UNLOCK
);
1630 static int spi_nor_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1632 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
1635 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_UNLOCK
);
1639 ret
= nor
->params
.locking_ops
->unlock(nor
, ofs
, len
);
1641 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_LOCK
);
1645 static int spi_nor_is_locked(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1647 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
1650 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_UNLOCK
);
1654 ret
= nor
->params
.locking_ops
->is_locked(nor
, ofs
, len
);
1656 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_LOCK
);
1661 * Write status Register and configuration register with 2 bytes
1662 * The first byte will be written to the status register, while the
1663 * second byte will be written to the configuration register.
1664 * Return negative if error occurred.
1666 static int write_sr_cr(struct spi_nor
*nor
, u8
*sr_cr
)
1673 struct spi_mem_op op
=
1674 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR
, 1),
1676 SPI_MEM_OP_NO_DUMMY
,
1677 SPI_MEM_OP_DATA_OUT(2, sr_cr
, 1));
1679 ret
= spi_mem_exec_op(nor
->spimem
, &op
);
1681 ret
= nor
->write_reg(nor
, SPINOR_OP_WRSR
, sr_cr
, 2);
1686 "error while writing configuration register\n");
1690 ret
= spi_nor_wait_till_ready(nor
);
1693 "timeout while writing configuration register\n");
1701 * macronix_quad_enable() - set QE bit in Status Register.
1702 * @nor: pointer to a 'struct spi_nor'
1704 * Set the Quad Enable (QE) bit in the Status Register.
1706 * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
1708 * Return: 0 on success, -errno otherwise.
1710 static int macronix_quad_enable(struct spi_nor
*nor
)
1717 if (val
& SR_QUAD_EN_MX
)
1722 write_sr(nor
, val
| SR_QUAD_EN_MX
);
1724 ret
= spi_nor_wait_till_ready(nor
);
1729 if (!(ret
> 0 && (ret
& SR_QUAD_EN_MX
))) {
1730 dev_err(nor
->dev
, "Macronix Quad bit not set\n");
1738 * spansion_quad_enable() - set QE bit in Configuraiton Register.
1739 * @nor: pointer to a 'struct spi_nor'
1741 * Set the Quad Enable (QE) bit in the Configuration Register.
1742 * This function is kept for legacy purpose because it has been used for a
1743 * long time without anybody complaining but it should be considered as
1744 * deprecated and maybe buggy.
1745 * First, this function doesn't care about the previous values of the Status
1746 * and Configuration Registers when it sets the QE bit (bit 1) in the
1747 * Configuration Register: all other bits are cleared, which may have unwanted
1748 * side effects like removing some block protections.
1749 * Secondly, it uses the Read Configuration Register (35h) instruction though
1750 * some very old and few memories don't support this instruction. If a pull-up
1751 * resistor is present on the MISO/IO1 line, we might still be able to pass the
1752 * "read back" test because the QSPI memory doesn't recognize the command,
1753 * so leaves the MISO/IO1 line state unchanged, hence read_cr() returns 0xFF.
1755 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1758 * Return: 0 on success, -errno otherwise.
1760 static int spansion_quad_enable(struct spi_nor
*nor
)
1762 u8
*sr_cr
= nor
->bouncebuf
;
1766 sr_cr
[1] = CR_QUAD_EN_SPAN
;
1767 ret
= write_sr_cr(nor
, sr_cr
);
1771 /* read back and check it */
1773 if (!(ret
> 0 && (ret
& CR_QUAD_EN_SPAN
))) {
1774 dev_err(nor
->dev
, "Spansion Quad bit not set\n");
1782 * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
1783 * @nor: pointer to a 'struct spi_nor'
1785 * Set the Quad Enable (QE) bit in the Configuration Register.
1786 * This function should be used with QSPI memories not supporting the Read
1787 * Configuration Register (35h) instruction.
1789 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1792 * Return: 0 on success, -errno otherwise.
1794 static int spansion_no_read_cr_quad_enable(struct spi_nor
*nor
)
1796 u8
*sr_cr
= nor
->bouncebuf
;
1799 /* Keep the current value of the Status Register. */
1802 dev_err(nor
->dev
, "error while reading status register\n");
1806 sr_cr
[1] = CR_QUAD_EN_SPAN
;
1808 return write_sr_cr(nor
, sr_cr
);
1812 * spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
1813 * @nor: pointer to a 'struct spi_nor'
1815 * Set the Quad Enable (QE) bit in the Configuration Register.
1816 * This function should be used with QSPI memories supporting the Read
1817 * Configuration Register (35h) instruction.
1819 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1822 * Return: 0 on success, -errno otherwise.
1824 static int spansion_read_cr_quad_enable(struct spi_nor
*nor
)
1826 struct device
*dev
= nor
->dev
;
1827 u8
*sr_cr
= nor
->bouncebuf
;
1830 /* Check current Quad Enable bit value. */
1833 dev_err(dev
, "error while reading configuration register\n");
1837 if (ret
& CR_QUAD_EN_SPAN
)
1840 sr_cr
[1] = ret
| CR_QUAD_EN_SPAN
;
1842 /* Keep the current value of the Status Register. */
1845 dev_err(dev
, "error while reading status register\n");
1850 ret
= write_sr_cr(nor
, sr_cr
);
1854 /* Read back and check it. */
1856 if (!(ret
> 0 && (ret
& CR_QUAD_EN_SPAN
))) {
1857 dev_err(nor
->dev
, "Spansion Quad bit not set\n");
1864 static int spi_nor_write_sr2(struct spi_nor
*nor
, u8
*sr2
)
1867 struct spi_mem_op op
=
1868 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2
, 1),
1870 SPI_MEM_OP_NO_DUMMY
,
1871 SPI_MEM_OP_DATA_OUT(1, sr2
, 1));
1873 return spi_mem_exec_op(nor
->spimem
, &op
);
1876 return nor
->write_reg(nor
, SPINOR_OP_WRSR2
, sr2
, 1);
1879 static int spi_nor_read_sr2(struct spi_nor
*nor
, u8
*sr2
)
1882 struct spi_mem_op op
=
1883 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2
, 1),
1885 SPI_MEM_OP_NO_DUMMY
,
1886 SPI_MEM_OP_DATA_IN(1, sr2
, 1));
1888 return spi_mem_exec_op(nor
->spimem
, &op
);
1891 return nor
->read_reg(nor
, SPINOR_OP_RDSR2
, sr2
, 1);
1895 * sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1896 * @nor: pointer to a 'struct spi_nor'
1898 * Set the Quad Enable (QE) bit in the Status Register 2.
1900 * This is one of the procedures to set the QE bit described in the SFDP
1901 * (JESD216 rev B) specification but no manufacturer using this procedure has
1902 * been identified yet, hence the name of the function.
1904 * Return: 0 on success, -errno otherwise.
1906 static int sr2_bit7_quad_enable(struct spi_nor
*nor
)
1908 u8
*sr2
= nor
->bouncebuf
;
1911 /* Check current Quad Enable bit value. */
1912 ret
= spi_nor_read_sr2(nor
, sr2
);
1915 if (*sr2
& SR2_QUAD_EN_BIT7
)
1918 /* Update the Quad Enable bit. */
1919 *sr2
|= SR2_QUAD_EN_BIT7
;
1923 ret
= spi_nor_write_sr2(nor
, sr2
);
1925 dev_err(nor
->dev
, "error while writing status register 2\n");
1929 ret
= spi_nor_wait_till_ready(nor
);
1931 dev_err(nor
->dev
, "timeout while writing status register 2\n");
1935 /* Read back and check it. */
1936 ret
= spi_nor_read_sr2(nor
, sr2
);
1937 if (!(ret
> 0 && (*sr2
& SR2_QUAD_EN_BIT7
))) {
1938 dev_err(nor
->dev
, "SR2 Quad bit not set\n");
1946 * spi_nor_clear_sr_bp() - clear the Status Register Block Protection bits.
1947 * @nor: pointer to a 'struct spi_nor'
1949 * Read-modify-write function that clears the Block Protection bits from the
1950 * Status Register without affecting other bits.
1952 * Return: 0 on success, -errno otherwise.
1954 static int spi_nor_clear_sr_bp(struct spi_nor
*nor
)
1957 u8 mask
= SR_BP2
| SR_BP1
| SR_BP0
;
1961 dev_err(nor
->dev
, "error while reading status register\n");
1967 ret
= write_sr(nor
, ret
& ~mask
);
1969 dev_err(nor
->dev
, "write to status register failed\n");
1973 ret
= spi_nor_wait_till_ready(nor
);
1975 dev_err(nor
->dev
, "timeout while writing status register\n");
1980 * spi_nor_spansion_clear_sr_bp() - clear the Status Register Block Protection
1981 * bits on spansion flashes.
1982 * @nor: pointer to a 'struct spi_nor'
1984 * Read-modify-write function that clears the Block Protection bits from the
1985 * Status Register without affecting other bits. The function is tightly
1986 * coupled with the spansion_quad_enable() function. Both assume that the Write
1987 * Register with 16 bits, together with the Read Configuration Register (35h)
1988 * instructions are supported.
1990 * Return: 0 on success, -errno otherwise.
1992 static int spi_nor_spansion_clear_sr_bp(struct spi_nor
*nor
)
1995 u8 mask
= SR_BP2
| SR_BP1
| SR_BP0
;
1996 u8
*sr_cr
= nor
->bouncebuf
;
1998 /* Check current Quad Enable bit value. */
2002 "error while reading configuration register\n");
2007 * When the configuration register Quad Enable bit is one, only the
2008 * Write Status (01h) command with two data bytes may be used.
2010 if (ret
& CR_QUAD_EN_SPAN
) {
2016 "error while reading status register\n");
2019 sr_cr
[0] = ret
& ~mask
;
2021 ret
= write_sr_cr(nor
, sr_cr
);
2023 dev_err(nor
->dev
, "16-bit write register failed\n");
2028 * If the Quad Enable bit is zero, use the Write Status (01h) command
2029 * with one data byte.
2031 return spi_nor_clear_sr_bp(nor
);
2034 /* Used when the "_ext_id" is two bytes at most */
2035 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
2037 ((_jedec_id) >> 16) & 0xff, \
2038 ((_jedec_id) >> 8) & 0xff, \
2039 (_jedec_id) & 0xff, \
2040 ((_ext_id) >> 8) & 0xff, \
2043 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
2044 .sector_size = (_sector_size), \
2045 .n_sectors = (_n_sectors), \
2049 #define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
2051 ((_jedec_id) >> 16) & 0xff, \
2052 ((_jedec_id) >> 8) & 0xff, \
2053 (_jedec_id) & 0xff, \
2054 ((_ext_id) >> 16) & 0xff, \
2055 ((_ext_id) >> 8) & 0xff, \
2059 .sector_size = (_sector_size), \
2060 .n_sectors = (_n_sectors), \
2064 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
2065 .sector_size = (_sector_size), \
2066 .n_sectors = (_n_sectors), \
2067 .page_size = (_page_size), \
2068 .addr_width = (_addr_width), \
2071 #define S3AN_INFO(_jedec_id, _n_sectors, _page_size) \
2073 ((_jedec_id) >> 16) & 0xff, \
2074 ((_jedec_id) >> 8) & 0xff, \
2075 (_jedec_id) & 0xff \
2078 .sector_size = (8*_page_size), \
2079 .n_sectors = (_n_sectors), \
2080 .page_size = _page_size, \
2082 .flags = SPI_NOR_NO_FR | SPI_S3AN,
2085 is25lp256_post_bfpt_fixups(struct spi_nor
*nor
,
2086 const struct sfdp_parameter_header
*bfpt_header
,
2087 const struct sfdp_bfpt
*bfpt
,
2088 struct spi_nor_flash_parameter
*params
)
2091 * IS25LP256 supports 4B opcodes, but the BFPT advertises a
2092 * BFPT_DWORD1_ADDRESS_BYTES_3_ONLY address width.
2093 * Overwrite the address width advertised by the BFPT.
2095 if ((bfpt
->dwords
[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK
) ==
2096 BFPT_DWORD1_ADDRESS_BYTES_3_ONLY
)
2097 nor
->addr_width
= 4;
2102 static struct spi_nor_fixups is25lp256_fixups
= {
2103 .post_bfpt
= is25lp256_post_bfpt_fixups
,
2107 mx25l25635_post_bfpt_fixups(struct spi_nor
*nor
,
2108 const struct sfdp_parameter_header
*bfpt_header
,
2109 const struct sfdp_bfpt
*bfpt
,
2110 struct spi_nor_flash_parameter
*params
)
2113 * MX25L25635F supports 4B opcodes but MX25L25635E does not.
2114 * Unfortunately, Macronix has re-used the same JEDEC ID for both
2115 * variants which prevents us from defining a new entry in the parts
2117 * We need a way to differentiate MX25L25635E and MX25L25635F, and it
2118 * seems that the F version advertises support for Fast Read 4-4-4 in
2121 if (bfpt
->dwords
[BFPT_DWORD(5)] & BFPT_DWORD5_FAST_READ_4_4_4
)
2122 nor
->flags
|= SNOR_F_4B_OPCODES
;
2127 static struct spi_nor_fixups mx25l25635_fixups
= {
2128 .post_bfpt
= mx25l25635_post_bfpt_fixups
,
2131 static void gd25q256_default_init(struct spi_nor
*nor
)
2134 * Some manufacturer like GigaDevice may use different
2135 * bit to set QE on different memories, so the MFR can't
2136 * indicate the quad_enable method for this case, we need
2137 * to set it in the default_init fixup hook.
2139 nor
->params
.quad_enable
= macronix_quad_enable
;
2142 static struct spi_nor_fixups gd25q256_fixups
= {
2143 .default_init
= gd25q256_default_init
,
2146 /* NOTE: double check command sets and memory organization when you add
2147 * more nor chips. This current list focusses on newer chips, which
2148 * have been converging on command sets which including JEDEC ID.
2150 * All newly added entries should describe *hardware* and should use SECT_4K
2151 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
2152 * scenarios excluding small sectors there is config option that can be
2153 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
2154 * For historical (and compatibility) reasons (before we got above config) some
2155 * old entries may be missing 4K flag.
2157 static const struct flash_info spi_nor_ids
[] = {
2158 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
2159 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K
) },
2160 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K
) },
2162 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K
) },
2163 { "at25df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K
) },
2164 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K
) },
2165 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K
) },
2167 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K
) },
2168 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K
) },
2169 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K
) },
2170 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K
) },
2172 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K
) },
2174 /* EON -- en25xxx */
2175 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K
) },
2176 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
2177 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
2178 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
2179 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K
) },
2180 { "en25q80a", INFO(0x1c3014, 0, 64 * 1024, 16,
2181 SECT_4K
| SPI_NOR_DUAL_READ
) },
2182 { "en25qh32", INFO(0x1c7016, 0, 64 * 1024, 64, 0) },
2183 { "en25qh64", INFO(0x1c7017, 0, 64 * 1024, 128,
2184 SECT_4K
| SPI_NOR_DUAL_READ
) },
2185 { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
2186 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
2187 { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K
) },
2190 { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K
| SPI_NOR_HAS_LOCK
) },
2191 { "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K
| SPI_NOR_HAS_LOCK
) },
2192 { "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K
| SPI_NOR_HAS_LOCK
) },
2195 { "mr25h128", CAT25_INFO( 16 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
2196 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
2197 { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
2198 { "mr25h40", CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
2201 { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE
) },
2205 "gd25q16", INFO(0xc84015, 0, 64 * 1024, 32,
2206 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
2207 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
2210 "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64,
2211 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
2212 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
2215 "gd25lq32", INFO(0xc86016, 0, 64 * 1024, 64,
2216 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
2217 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
2220 "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
2221 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
2222 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
2225 "gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
2226 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
2227 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
2230 "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
2231 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
2232 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
2235 "gd25q256", INFO(0xc84019, 0, 64 * 1024, 512,
2236 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
2237 SPI_NOR_4B_OPCODES
| SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
2238 .fixups
= &gd25q256_fixups
,
2241 /* Intel/Numonyx -- xxxs33b */
2242 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
2243 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
2244 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
2247 { "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K
) },
2248 { "is25lq040b", INFO(0x9d4013, 0, 64 * 1024, 8,
2249 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2250 { "is25lp016d", INFO(0x9d6015, 0, 64 * 1024, 32,
2251 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2252 { "is25lp080d", INFO(0x9d6014, 0, 64 * 1024, 16,
2253 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2254 { "is25lp032", INFO(0x9d6016, 0, 64 * 1024, 64,
2255 SECT_4K
| SPI_NOR_DUAL_READ
) },
2256 { "is25lp064", INFO(0x9d6017, 0, 64 * 1024, 128,
2257 SECT_4K
| SPI_NOR_DUAL_READ
) },
2258 { "is25lp128", INFO(0x9d6018, 0, 64 * 1024, 256,
2259 SECT_4K
| SPI_NOR_DUAL_READ
) },
2260 { "is25lp256", INFO(0x9d6019, 0, 64 * 1024, 512,
2261 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
2263 .fixups
= &is25lp256_fixups
},
2264 { "is25wp032", INFO(0x9d7016, 0, 64 * 1024, 64,
2265 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2266 { "is25wp064", INFO(0x9d7017, 0, 64 * 1024, 128,
2267 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2268 { "is25wp128", INFO(0x9d7018, 0, 64 * 1024, 256,
2269 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2272 { "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K
) },
2273 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K
) },
2274 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K
) },
2275 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
2276 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K
) },
2277 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K
) },
2278 { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K
) },
2279 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K
) },
2280 { "mx25u2033e", INFO(0xc22532, 0, 64 * 1024, 4, SECT_4K
) },
2281 { "mx25u3235f", INFO(0xc22536, 0, 64 * 1024, 64,
2282 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2283 { "mx25u4035", INFO(0xc22533, 0, 64 * 1024, 8, SECT_4K
) },
2284 { "mx25u8035", INFO(0xc22534, 0, 64 * 1024, 16, SECT_4K
) },
2285 { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K
) },
2286 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
2287 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
2288 { "mx25u12835f", INFO(0xc22538, 0, 64 * 1024, 256,
2289 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2290 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512,
2291 SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
)
2292 .fixups
= &mx25l25635_fixups
},
2293 { "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K
| SPI_NOR_4B_OPCODES
) },
2294 { "mx25v8035f", INFO(0xc22314, 0, 64 * 1024, 16,
2295 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2296 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
2297 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| SPI_NOR_4B_OPCODES
) },
2298 { "mx66u51235f", INFO(0xc2253a, 0, 64 * 1024, 1024, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| SPI_NOR_4B_OPCODES
) },
2299 { "mx66l1g45g", INFO(0xc2201b, 0, 64 * 1024, 2048, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2300 { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ
) },
2302 /* Micron <--> ST Micro */
2303 { "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32, SECT_4K
| SPI_NOR_QUAD_READ
) },
2304 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ
) },
2305 { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ
) },
2306 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K
| SPI_NOR_QUAD_READ
) },
2307 { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K
| SPI_NOR_QUAD_READ
) },
2308 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SECT_4K
| SPI_NOR_QUAD_READ
) },
2309 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SECT_4K
| SPI_NOR_QUAD_READ
) },
2310 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2311 { "n25q256ax1", INFO(0x20bb19, 0, 64 * 1024, 512, SECT_4K
| SPI_NOR_QUAD_READ
) },
2312 { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K
| USE_FSR
| SPI_NOR_QUAD_READ
) },
2313 { "mt25qu512a", INFO6(0x20bb20, 0x104400, 64 * 1024, 1024,
2314 SECT_4K
| USE_FSR
| SPI_NOR_DUAL_READ
|
2315 SPI_NOR_QUAD_READ
| SPI_NOR_4B_OPCODES
) },
2316 { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K
|
2317 SPI_NOR_QUAD_READ
) },
2318 { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K
| USE_FSR
| SPI_NOR_QUAD_READ
| NO_CHIP_ERASE
) },
2319 { "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K
| USE_FSR
| SPI_NOR_QUAD_READ
| NO_CHIP_ERASE
) },
2320 { "mt25ql02g", INFO(0x20ba22, 0, 64 * 1024, 4096,
2321 SECT_4K
| USE_FSR
| SPI_NOR_QUAD_READ
|
2323 { "mt25qu02g", INFO(0x20bb22, 0, 64 * 1024, 4096, SECT_4K
| USE_FSR
| SPI_NOR_QUAD_READ
| NO_CHIP_ERASE
) },
2327 "mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512,
2328 SECT_4K
| USE_FSR
| SPI_NOR_OCTAL_READ
|
2331 { "mt35xu02g", INFO(0x2c5b1c, 0, 128 * 1024, 2048,
2332 SECT_4K
| USE_FSR
| SPI_NOR_OCTAL_READ
|
2333 SPI_NOR_4B_OPCODES
) },
2336 { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC
) },
2337 { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC
) },
2338 { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K
) },
2340 /* Spansion/Cypress -- single (large) sector size only, at least
2341 * for the chips listed here (without boot sectors).
2343 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2344 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2345 { "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64,
2346 SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| USE_CLSR
) },
2347 { "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256,
2348 SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| USE_CLSR
) },
2349 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, USE_CLSR
) },
2350 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| USE_CLSR
) },
2351 { "s25fl512s", INFO6(0x010220, 0x4d0080, 256 * 1024, 256,
2352 SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
2353 SPI_NOR_HAS_LOCK
| USE_CLSR
) },
2354 { "s25fs512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| USE_CLSR
) },
2355 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
2356 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
2357 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
2358 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| USE_CLSR
) },
2359 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| USE_CLSR
) },
2360 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
2361 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
2362 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
2363 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
2364 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
2365 { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2366 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2367 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2368 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
2369 { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2370 { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K
) },
2371 { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K
) },
2372 { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K
| SPI_NOR_DUAL_READ
) },
2373 { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16, SECT_4K
| SPI_NOR_DUAL_READ
) },
2374 { "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| SPI_NOR_4B_OPCODES
) },
2375 { "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| SPI_NOR_4B_OPCODES
) },
2376 { "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
| SPI_NOR_4B_OPCODES
) },
2378 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
2379 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K
| SST_WRITE
) },
2380 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K
| SST_WRITE
) },
2381 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K
| SST_WRITE
) },
2382 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K
| SST_WRITE
) },
2383 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K
) },
2384 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K
| SST_WRITE
) },
2385 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K
| SST_WRITE
) },
2386 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K
| SST_WRITE
) },
2387 { "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K
) },
2388 { "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K
) },
2389 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K
| SST_WRITE
) },
2390 { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K
| SST_WRITE
) },
2391 { "sst26wf016b", INFO(0xbf2651, 0, 64 * 1024, 32, SECT_4K
|
2392 SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2393 { "sst26vf064b", INFO(0xbf2643, 0, 64 * 1024, 128, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2395 /* ST Microelectronics -- newer production may have feature updates */
2396 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
2397 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
2398 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
2399 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
2400 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
2401 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
2402 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
2403 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
2404 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
2406 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
2407 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
2408 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
2409 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
2410 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
2411 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
2412 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
2413 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
2414 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
2416 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
2417 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
2418 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
2420 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
2421 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
2422 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K
) },
2424 { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K
) },
2425 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K
) },
2426 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K
) },
2427 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K
) },
2428 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
2429 { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
2431 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
2432 { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K
) },
2433 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K
) },
2434 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K
) },
2435 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K
) },
2436 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K
) },
2437 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K
) },
2439 "w25q16dw", INFO(0xef6015, 0, 64 * 1024, 32,
2440 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
2441 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
2443 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K
) },
2445 "w25q16jv-im/jm", INFO(0xef7015, 0, 64 * 1024, 32,
2446 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
2447 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
2449 { "w25q20cl", INFO(0xef4012, 0, 64 * 1024, 4, SECT_4K
) },
2450 { "w25q20bw", INFO(0xef5012, 0, 64 * 1024, 4, SECT_4K
) },
2451 { "w25q20ew", INFO(0xef6012, 0, 64 * 1024, 4, SECT_4K
) },
2452 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K
) },
2454 "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64,
2455 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
2456 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
2459 "w25q32jv", INFO(0xef7016, 0, 64 * 1024, 64,
2460 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
2461 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
2463 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K
) },
2464 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
2466 "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
2467 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
2468 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
2471 "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
2472 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
2473 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
2476 "w25q128jv", INFO(0xef7018, 0, 64 * 1024, 256,
2477 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
|
2478 SPI_NOR_HAS_LOCK
| SPI_NOR_HAS_TB
)
2480 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K
) },
2481 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K
) },
2482 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K
) },
2483 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2484 { "w25q256jvm", INFO(0xef7019, 0, 64 * 1024, 512,
2485 SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2486 { "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024,
2487 SECT_4K
| SPI_NOR_QUAD_READ
| SPI_NOR_DUAL_READ
) },
2489 /* Catalyst / On Semiconductor -- non-JEDEC */
2490 { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
2491 { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
2492 { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
2493 { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
2494 { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
2496 /* Xilinx S3AN Internal Flash */
2497 { "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
2498 { "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
2499 { "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
2500 { "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
2501 { "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
2503 /* XMC (Wuhan Xinxin Semiconductor Manufacturing Corp.) */
2504 { "XM25QH64A", INFO(0x207017, 0, 64 * 1024, 128, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2505 { "XM25QH128A", INFO(0x207018, 0, 64 * 1024, 256, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
2509 static const struct flash_info
*spi_nor_read_id(struct spi_nor
*nor
)
2512 u8
*id
= nor
->bouncebuf
;
2513 const struct flash_info
*info
;
2516 struct spi_mem_op op
=
2517 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID
, 1),
2519 SPI_MEM_OP_NO_DUMMY
,
2520 SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN
, id
, 1));
2522 tmp
= spi_mem_exec_op(nor
->spimem
, &op
);
2524 tmp
= nor
->read_reg(nor
, SPINOR_OP_RDID
, id
,
2525 SPI_NOR_MAX_ID_LEN
);
2528 dev_err(nor
->dev
, "error %d reading JEDEC ID\n", tmp
);
2529 return ERR_PTR(tmp
);
2532 for (tmp
= 0; tmp
< ARRAY_SIZE(spi_nor_ids
) - 1; tmp
++) {
2533 info
= &spi_nor_ids
[tmp
];
2535 if (!memcmp(info
->id
, id
, info
->id_len
))
2536 return &spi_nor_ids
[tmp
];
2539 dev_err(nor
->dev
, "unrecognized JEDEC id bytes: %*ph\n",
2540 SPI_NOR_MAX_ID_LEN
, id
);
2541 return ERR_PTR(-ENODEV
);
2544 static int spi_nor_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
2545 size_t *retlen
, u_char
*buf
)
2547 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
2550 dev_dbg(nor
->dev
, "from 0x%08x, len %zd\n", (u32
)from
, len
);
2552 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_READ
);
2559 addr
= spi_nor_convert_addr(nor
, addr
);
2561 ret
= spi_nor_read_data(nor
, addr
, len
, buf
);
2563 /* We shouldn't see 0-length reads */
2579 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_READ
);
2583 static int sst_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2584 size_t *retlen
, const u_char
*buf
)
2586 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
2590 dev_dbg(nor
->dev
, "to 0x%08x, len %zd\n", (u32
)to
, len
);
2592 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_WRITE
);
2598 nor
->sst_write_second
= false;
2601 /* Start write from odd address. */
2603 nor
->program_opcode
= SPINOR_OP_BP
;
2605 /* write one byte. */
2606 ret
= spi_nor_write_data(nor
, to
, 1, buf
);
2609 WARN(ret
!= 1, "While writing 1 byte written %i bytes\n",
2611 ret
= spi_nor_wait_till_ready(nor
);
2617 /* Write out most of the data here. */
2618 for (; actual
< len
- 1; actual
+= 2) {
2619 nor
->program_opcode
= SPINOR_OP_AAI_WP
;
2621 /* write two bytes. */
2622 ret
= spi_nor_write_data(nor
, to
, 2, buf
+ actual
);
2625 WARN(ret
!= 2, "While writing 2 bytes written %i bytes\n",
2627 ret
= spi_nor_wait_till_ready(nor
);
2631 nor
->sst_write_second
= true;
2633 nor
->sst_write_second
= false;
2636 ret
= spi_nor_wait_till_ready(nor
);
2640 /* Write out trailing byte if it exists. */
2641 if (actual
!= len
) {
2644 nor
->program_opcode
= SPINOR_OP_BP
;
2645 ret
= spi_nor_write_data(nor
, to
, 1, buf
+ actual
);
2648 WARN(ret
!= 1, "While writing 1 byte written %i bytes\n",
2650 ret
= spi_nor_wait_till_ready(nor
);
2658 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_WRITE
);
2663 * Write an address range to the nor chip. Data must be written in
2664 * FLASH_PAGESIZE chunks. The address range may be any size provided
2665 * it is within the physical boundaries.
2667 static int spi_nor_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2668 size_t *retlen
, const u_char
*buf
)
2670 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
2671 size_t page_offset
, page_remain
, i
;
2674 dev_dbg(nor
->dev
, "to 0x%08x, len %zd\n", (u32
)to
, len
);
2676 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_WRITE
);
2680 for (i
= 0; i
< len
; ) {
2682 loff_t addr
= to
+ i
;
2685 * If page_size is a power of two, the offset can be quickly
2686 * calculated with an AND operation. On the other cases we
2687 * need to do a modulus operation (more expensive).
2688 * Power of two numbers have only one bit set and we can use
2689 * the instruction hweight32 to detect if we need to do a
2690 * modulus (do_div()) or not.
2692 if (hweight32(nor
->page_size
) == 1) {
2693 page_offset
= addr
& (nor
->page_size
- 1);
2695 uint64_t aux
= addr
;
2697 page_offset
= do_div(aux
, nor
->page_size
);
2699 /* the size of data remaining on the first page */
2700 page_remain
= min_t(size_t,
2701 nor
->page_size
- page_offset
, len
- i
);
2703 addr
= spi_nor_convert_addr(nor
, addr
);
2706 ret
= spi_nor_write_data(nor
, addr
, page_remain
, buf
+ i
);
2711 ret
= spi_nor_wait_till_ready(nor
);
2719 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_WRITE
);
2723 static int spi_nor_check(struct spi_nor
*nor
)
2727 (!nor
->read
|| !nor
->write
|| !nor
->read_reg
||
2728 !nor
->write_reg
))) {
2729 pr_err("spi-nor: please fill all the necessary fields!\n");
2736 static int s3an_nor_setup(struct spi_nor
*nor
,
2737 const struct spi_nor_hwcaps
*hwcaps
)
2741 ret
= spi_nor_xread_sr(nor
, nor
->bouncebuf
);
2743 dev_err(nor
->dev
, "error %d reading XRDSR\n", (int) ret
);
2747 nor
->erase_opcode
= SPINOR_OP_XSE
;
2748 nor
->program_opcode
= SPINOR_OP_XPP
;
2749 nor
->read_opcode
= SPINOR_OP_READ
;
2750 nor
->flags
|= SNOR_F_NO_OP_CHIP_ERASE
;
2753 * This flashes have a page size of 264 or 528 bytes (known as
2754 * Default addressing mode). It can be changed to a more standard
2755 * Power of two mode where the page size is 256/512. This comes
2756 * with a price: there is 3% less of space, the data is corrupted
2757 * and the page size cannot be changed back to default addressing
2760 * The current addressing mode can be read from the XRDSR register
2761 * and should not be changed, because is a destructive operation.
2763 if (nor
->bouncebuf
[0] & XSR_PAGESIZE
) {
2764 /* Flash in Power of 2 mode */
2765 nor
->page_size
= (nor
->page_size
== 264) ? 256 : 512;
2766 nor
->mtd
.writebufsize
= nor
->page_size
;
2767 nor
->mtd
.size
= 8 * nor
->page_size
* nor
->info
->n_sectors
;
2768 nor
->mtd
.erasesize
= 8 * nor
->page_size
;
2770 /* Flash in Default addressing mode */
2771 nor
->params
.convert_addr
= s3an_convert_addr
;
2772 nor
->mtd
.erasesize
= nor
->info
->sector_size
;
2779 spi_nor_set_read_settings(struct spi_nor_read_command
*read
,
2783 enum spi_nor_protocol proto
)
2785 read
->num_mode_clocks
= num_mode_clocks
;
2786 read
->num_wait_states
= num_wait_states
;
2787 read
->opcode
= opcode
;
2788 read
->proto
= proto
;
2792 spi_nor_set_pp_settings(struct spi_nor_pp_command
*pp
,
2794 enum spi_nor_protocol proto
)
2796 pp
->opcode
= opcode
;
2800 static int spi_nor_hwcaps2cmd(u32 hwcaps
, const int table
[][2], size_t size
)
2804 for (i
= 0; i
< size
; i
++)
2805 if (table
[i
][0] == (int)hwcaps
)
2811 static int spi_nor_hwcaps_read2cmd(u32 hwcaps
)
2813 static const int hwcaps_read2cmd
[][2] = {
2814 { SNOR_HWCAPS_READ
, SNOR_CMD_READ
},
2815 { SNOR_HWCAPS_READ_FAST
, SNOR_CMD_READ_FAST
},
2816 { SNOR_HWCAPS_READ_1_1_1_DTR
, SNOR_CMD_READ_1_1_1_DTR
},
2817 { SNOR_HWCAPS_READ_1_1_2
, SNOR_CMD_READ_1_1_2
},
2818 { SNOR_HWCAPS_READ_1_2_2
, SNOR_CMD_READ_1_2_2
},
2819 { SNOR_HWCAPS_READ_2_2_2
, SNOR_CMD_READ_2_2_2
},
2820 { SNOR_HWCAPS_READ_1_2_2_DTR
, SNOR_CMD_READ_1_2_2_DTR
},
2821 { SNOR_HWCAPS_READ_1_1_4
, SNOR_CMD_READ_1_1_4
},
2822 { SNOR_HWCAPS_READ_1_4_4
, SNOR_CMD_READ_1_4_4
},
2823 { SNOR_HWCAPS_READ_4_4_4
, SNOR_CMD_READ_4_4_4
},
2824 { SNOR_HWCAPS_READ_1_4_4_DTR
, SNOR_CMD_READ_1_4_4_DTR
},
2825 { SNOR_HWCAPS_READ_1_1_8
, SNOR_CMD_READ_1_1_8
},
2826 { SNOR_HWCAPS_READ_1_8_8
, SNOR_CMD_READ_1_8_8
},
2827 { SNOR_HWCAPS_READ_8_8_8
, SNOR_CMD_READ_8_8_8
},
2828 { SNOR_HWCAPS_READ_1_8_8_DTR
, SNOR_CMD_READ_1_8_8_DTR
},
2831 return spi_nor_hwcaps2cmd(hwcaps
, hwcaps_read2cmd
,
2832 ARRAY_SIZE(hwcaps_read2cmd
));
2835 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps
)
2837 static const int hwcaps_pp2cmd
[][2] = {
2838 { SNOR_HWCAPS_PP
, SNOR_CMD_PP
},
2839 { SNOR_HWCAPS_PP_1_1_4
, SNOR_CMD_PP_1_1_4
},
2840 { SNOR_HWCAPS_PP_1_4_4
, SNOR_CMD_PP_1_4_4
},
2841 { SNOR_HWCAPS_PP_4_4_4
, SNOR_CMD_PP_4_4_4
},
2842 { SNOR_HWCAPS_PP_1_1_8
, SNOR_CMD_PP_1_1_8
},
2843 { SNOR_HWCAPS_PP_1_8_8
, SNOR_CMD_PP_1_8_8
},
2844 { SNOR_HWCAPS_PP_8_8_8
, SNOR_CMD_PP_8_8_8
},
2847 return spi_nor_hwcaps2cmd(hwcaps
, hwcaps_pp2cmd
,
2848 ARRAY_SIZE(hwcaps_pp2cmd
));
2852 * Serial Flash Discoverable Parameters (SFDP) parsing.
2856 * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
2857 * addr_width and read_dummy members of the struct spi_nor
2858 * should be previously
2860 * @nor: pointer to a 'struct spi_nor'
2861 * @addr: offset in the serial flash memory
2862 * @len: number of bytes to read
2863 * @buf: buffer where the data is copied into (dma-safe memory)
2865 * Return: 0 on success, -errno otherwise.
2867 static int spi_nor_read_raw(struct spi_nor
*nor
, u32 addr
, size_t len
, u8
*buf
)
2872 ret
= spi_nor_read_data(nor
, addr
, len
, buf
);
2875 if (!ret
|| ret
> len
)
2886 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
2887 * @nor: pointer to a 'struct spi_nor'
2888 * @addr: offset in the SFDP area to start reading data from
2889 * @len: number of bytes to read
2890 * @buf: buffer where the SFDP data are copied into (dma-safe memory)
2892 * Whatever the actual numbers of bytes for address and dummy cycles are
2893 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
2894 * followed by a 3-byte address and 8 dummy clock cycles.
2896 * Return: 0 on success, -errno otherwise.
2898 static int spi_nor_read_sfdp(struct spi_nor
*nor
, u32 addr
,
2899 size_t len
, void *buf
)
2901 u8 addr_width
, read_opcode
, read_dummy
;
2904 read_opcode
= nor
->read_opcode
;
2905 addr_width
= nor
->addr_width
;
2906 read_dummy
= nor
->read_dummy
;
2908 nor
->read_opcode
= SPINOR_OP_RDSFDP
;
2909 nor
->addr_width
= 3;
2910 nor
->read_dummy
= 8;
2912 ret
= spi_nor_read_raw(nor
, addr
, len
, buf
);
2914 nor
->read_opcode
= read_opcode
;
2915 nor
->addr_width
= addr_width
;
2916 nor
->read_dummy
= read_dummy
;
2922 * spi_nor_spimem_check_op - check if the operation is supported
2924 *@nor: pointer to a 'struct spi_nor'
2925 *@op: pointer to op template to be checked
2927 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2929 static int spi_nor_spimem_check_op(struct spi_nor
*nor
,
2930 struct spi_mem_op
*op
)
2933 * First test with 4 address bytes. The opcode itself might
2934 * be a 3B addressing opcode but we don't care, because
2935 * SPI controller implementation should not check the opcode,
2936 * but just the sequence.
2938 op
->addr
.nbytes
= 4;
2939 if (!spi_mem_supports_op(nor
->spimem
, op
)) {
2940 if (nor
->mtd
.size
> SZ_16M
)
2943 /* If flash size <= 16MB, 3 address bytes are sufficient */
2944 op
->addr
.nbytes
= 3;
2945 if (!spi_mem_supports_op(nor
->spimem
, op
))
2953 * spi_nor_spimem_check_readop - check if the read op is supported
2955 *@nor: pointer to a 'struct spi_nor'
2956 *@read: pointer to op template to be checked
2958 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2960 static int spi_nor_spimem_check_readop(struct spi_nor
*nor
,
2961 const struct spi_nor_read_command
*read
)
2963 struct spi_mem_op op
= SPI_MEM_OP(SPI_MEM_OP_CMD(read
->opcode
, 1),
2964 SPI_MEM_OP_ADDR(3, 0, 1),
2965 SPI_MEM_OP_DUMMY(0, 1),
2966 SPI_MEM_OP_DATA_IN(0, NULL
, 1));
2968 op
.cmd
.buswidth
= spi_nor_get_protocol_inst_nbits(read
->proto
);
2969 op
.addr
.buswidth
= spi_nor_get_protocol_addr_nbits(read
->proto
);
2970 op
.data
.buswidth
= spi_nor_get_protocol_data_nbits(read
->proto
);
2971 op
.dummy
.buswidth
= op
.addr
.buswidth
;
2972 op
.dummy
.nbytes
= (read
->num_mode_clocks
+ read
->num_wait_states
) *
2973 op
.dummy
.buswidth
/ 8;
2975 return spi_nor_spimem_check_op(nor
, &op
);
2979 * spi_nor_spimem_check_pp - check if the page program op is supported
2981 *@nor: pointer to a 'struct spi_nor'
2982 *@pp: pointer to op template to be checked
2984 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2986 static int spi_nor_spimem_check_pp(struct spi_nor
*nor
,
2987 const struct spi_nor_pp_command
*pp
)
2989 struct spi_mem_op op
= SPI_MEM_OP(SPI_MEM_OP_CMD(pp
->opcode
, 1),
2990 SPI_MEM_OP_ADDR(3, 0, 1),
2991 SPI_MEM_OP_NO_DUMMY
,
2992 SPI_MEM_OP_DATA_OUT(0, NULL
, 1));
2994 op
.cmd
.buswidth
= spi_nor_get_protocol_inst_nbits(pp
->proto
);
2995 op
.addr
.buswidth
= spi_nor_get_protocol_addr_nbits(pp
->proto
);
2996 op
.data
.buswidth
= spi_nor_get_protocol_data_nbits(pp
->proto
);
2998 return spi_nor_spimem_check_op(nor
, &op
);
3002 * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
3003 * based on SPI controller capabilities
3004 * @nor: pointer to a 'struct spi_nor'
3005 * @hwcaps: pointer to resulting capabilities after adjusting
3006 * according to controller and flash's capability
3009 spi_nor_spimem_adjust_hwcaps(struct spi_nor
*nor
, u32
*hwcaps
)
3011 struct spi_nor_flash_parameter
*params
= &nor
->params
;
3014 /* DTR modes are not supported yet, mask them all. */
3015 *hwcaps
&= ~SNOR_HWCAPS_DTR
;
3017 /* X-X-X modes are not supported yet, mask them all. */
3018 *hwcaps
&= ~SNOR_HWCAPS_X_X_X
;
3020 for (cap
= 0; cap
< sizeof(*hwcaps
) * BITS_PER_BYTE
; cap
++) {
3023 if (!(*hwcaps
& BIT(cap
)))
3026 rdidx
= spi_nor_hwcaps_read2cmd(BIT(cap
));
3028 spi_nor_spimem_check_readop(nor
, ¶ms
->reads
[rdidx
]))
3029 *hwcaps
&= ~BIT(cap
);
3031 ppidx
= spi_nor_hwcaps_pp2cmd(BIT(cap
));
3035 if (spi_nor_spimem_check_pp(nor
,
3036 ¶ms
->page_programs
[ppidx
]))
3037 *hwcaps
&= ~BIT(cap
);
3042 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
3043 * @nor: pointer to a 'struct spi_nor'
3044 * @addr: offset in the SFDP area to start reading data from
3045 * @len: number of bytes to read
3046 * @buf: buffer where the SFDP data are copied into
3048 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
3049 * guaranteed to be dma-safe.
3051 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
3054 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor
*nor
, u32 addr
,
3055 size_t len
, void *buf
)
3060 dma_safe_buf
= kmalloc(len
, GFP_KERNEL
);
3064 ret
= spi_nor_read_sfdp(nor
, addr
, len
, dma_safe_buf
);
3065 memcpy(buf
, dma_safe_buf
, len
);
3066 kfree(dma_safe_buf
);
3071 /* Fast Read settings. */
3074 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command
*read
,
3076 enum spi_nor_protocol proto
)
3078 read
->num_mode_clocks
= (half
>> 5) & 0x07;
3079 read
->num_wait_states
= (half
>> 0) & 0x1f;
3080 read
->opcode
= (half
>> 8) & 0xff;
3081 read
->proto
= proto
;
3084 struct sfdp_bfpt_read
{
3085 /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
3089 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
3090 * whether the Fast Read x-y-z command is supported.
3092 u32 supported_dword
;
3096 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
3097 * encodes the op code, the number of mode clocks and the number of wait
3098 * states to be used by Fast Read x-y-z command.
3103 /* The SPI protocol for this Fast Read x-y-z command. */
3104 enum spi_nor_protocol proto
;
3107 static const struct sfdp_bfpt_read sfdp_bfpt_reads
[] = {
3108 /* Fast Read 1-1-2 */
3110 SNOR_HWCAPS_READ_1_1_2
,
3111 BFPT_DWORD(1), BIT(16), /* Supported bit */
3112 BFPT_DWORD(4), 0, /* Settings */
3116 /* Fast Read 1-2-2 */
3118 SNOR_HWCAPS_READ_1_2_2
,
3119 BFPT_DWORD(1), BIT(20), /* Supported bit */
3120 BFPT_DWORD(4), 16, /* Settings */
3124 /* Fast Read 2-2-2 */
3126 SNOR_HWCAPS_READ_2_2_2
,
3127 BFPT_DWORD(5), BIT(0), /* Supported bit */
3128 BFPT_DWORD(6), 16, /* Settings */
3132 /* Fast Read 1-1-4 */
3134 SNOR_HWCAPS_READ_1_1_4
,
3135 BFPT_DWORD(1), BIT(22), /* Supported bit */
3136 BFPT_DWORD(3), 16, /* Settings */
3140 /* Fast Read 1-4-4 */
3142 SNOR_HWCAPS_READ_1_4_4
,
3143 BFPT_DWORD(1), BIT(21), /* Supported bit */
3144 BFPT_DWORD(3), 0, /* Settings */
3148 /* Fast Read 4-4-4 */
3150 SNOR_HWCAPS_READ_4_4_4
,
3151 BFPT_DWORD(5), BIT(4), /* Supported bit */
3152 BFPT_DWORD(7), 16, /* Settings */
3157 struct sfdp_bfpt_erase
{
3159 * The half-word at offset <shift> in DWORD <dwoard> encodes the
3160 * op code and erase sector size to be used by Sector Erase commands.
3166 static const struct sfdp_bfpt_erase sfdp_bfpt_erases
[] = {
3167 /* Erase Type 1 in DWORD8 bits[15:0] */
3170 /* Erase Type 2 in DWORD8 bits[31:16] */
3171 {BFPT_DWORD(8), 16},
3173 /* Erase Type 3 in DWORD9 bits[15:0] */
3176 /* Erase Type 4 in DWORD9 bits[31:16] */
3177 {BFPT_DWORD(9), 16},
3181 * spi_nor_set_erase_type() - set a SPI NOR erase type
3182 * @erase: pointer to a structure that describes a SPI NOR erase type
3183 * @size: the size of the sector/block erased by the erase type
3184 * @opcode: the SPI command op code to erase the sector/block
3186 static void spi_nor_set_erase_type(struct spi_nor_erase_type
*erase
,
3187 u32 size
, u8 opcode
)
3190 erase
->opcode
= opcode
;
3191 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
3192 erase
->size_shift
= ffs(erase
->size
) - 1;
3193 erase
->size_mask
= (1 << erase
->size_shift
) - 1;
3197 * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
3198 * @erase: pointer to a structure that describes a SPI NOR erase type
3199 * @size: the size of the sector/block erased by the erase type
3200 * @opcode: the SPI command op code to erase the sector/block
3201 * @i: erase type index as sorted in the Basic Flash Parameter Table
3203 * The supported Erase Types will be sorted at init in ascending order, with
3204 * the smallest Erase Type size being the first member in the erase_type array
3205 * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
3206 * the Basic Flash Parameter Table since it will be used later on to
3207 * synchronize with the supported Erase Types defined in SFDP optional tables.
3210 spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type
*erase
,
3211 u32 size
, u8 opcode
, u8 i
)
3214 spi_nor_set_erase_type(erase
, size
, opcode
);
3218 * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
3219 * @l: member in the left half of the map's erase_type array
3220 * @r: member in the right half of the map's erase_type array
3222 * Comparison function used in the sort() call to sort in ascending order the
3223 * map's erase types, the smallest erase type size being the first member in the
3224 * sorted erase_type array.
3226 * Return: the result of @l->size - @r->size
3228 static int spi_nor_map_cmp_erase_type(const void *l
, const void *r
)
3230 const struct spi_nor_erase_type
*left
= l
, *right
= r
;
3232 return left
->size
- right
->size
;
3236 * spi_nor_sort_erase_mask() - sort erase mask
3237 * @map: the erase map of the SPI NOR
3238 * @erase_mask: the erase type mask to be sorted
3240 * Replicate the sort done for the map's erase types in BFPT: sort the erase
3241 * mask in ascending order with the smallest erase type size starting from
3242 * BIT(0) in the sorted erase mask.
3244 * Return: sorted erase mask.
3246 static u8
spi_nor_sort_erase_mask(struct spi_nor_erase_map
*map
, u8 erase_mask
)
3248 struct spi_nor_erase_type
*erase_type
= map
->erase_type
;
3250 u8 sorted_erase_mask
= 0;
3255 /* Replicate the sort done for the map's erase types. */
3256 for (i
= 0; i
< SNOR_ERASE_TYPE_MAX
; i
++)
3257 if (erase_type
[i
].size
&& erase_mask
& BIT(erase_type
[i
].idx
))
3258 sorted_erase_mask
|= BIT(i
);
3260 return sorted_erase_mask
;
3264 * spi_nor_regions_sort_erase_types() - sort erase types in each region
3265 * @map: the erase map of the SPI NOR
3267 * Function assumes that the erase types defined in the erase map are already
3268 * sorted in ascending order, with the smallest erase type size being the first
3269 * member in the erase_type array. It replicates the sort done for the map's
3270 * erase types. Each region's erase bitmask will indicate which erase types are
3271 * supported from the sorted erase types defined in the erase map.
3272 * Sort the all region's erase type at init in order to speed up the process of
3273 * finding the best erase command at runtime.
3275 static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map
*map
)
3277 struct spi_nor_erase_region
*region
= map
->regions
;
3278 u8 region_erase_mask
, sorted_erase_mask
;
3281 region_erase_mask
= region
->offset
& SNOR_ERASE_TYPE_MASK
;
3283 sorted_erase_mask
= spi_nor_sort_erase_mask(map
,
3286 /* Overwrite erase mask. */
3287 region
->offset
= (region
->offset
& ~SNOR_ERASE_TYPE_MASK
) |
3290 region
= spi_nor_region_next(region
);
3295 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
3296 * @map: the erase map of the SPI NOR
3297 * @erase_mask: bitmask encoding erase types that can erase the entire
3299 * @flash_size: the spi nor flash memory size
3301 static void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map
*map
,
3302 u8 erase_mask
, u64 flash_size
)
3304 /* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
3305 map
->uniform_region
.offset
= (erase_mask
& SNOR_ERASE_TYPE_MASK
) |
3307 map
->uniform_region
.size
= flash_size
;
3308 map
->regions
= &map
->uniform_region
;
3309 map
->uniform_erase_type
= erase_mask
;
3313 spi_nor_post_bfpt_fixups(struct spi_nor
*nor
,
3314 const struct sfdp_parameter_header
*bfpt_header
,
3315 const struct sfdp_bfpt
*bfpt
,
3316 struct spi_nor_flash_parameter
*params
)
3318 if (nor
->info
->fixups
&& nor
->info
->fixups
->post_bfpt
)
3319 return nor
->info
->fixups
->post_bfpt(nor
, bfpt_header
, bfpt
,
3326 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
3327 * @nor: pointer to a 'struct spi_nor'
3328 * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing
3329 * the Basic Flash Parameter Table length and version
3330 * @params: pointer to the 'struct spi_nor_flash_parameter' to be
3333 * The Basic Flash Parameter Table is the main and only mandatory table as
3334 * defined by the SFDP (JESD216) specification.
3335 * It provides us with the total size (memory density) of the data array and
3336 * the number of address bytes for Fast Read, Page Program and Sector Erase
3338 * For Fast READ commands, it also gives the number of mode clock cycles and
3339 * wait states (regrouped in the number of dummy clock cycles) for each
3340 * supported instruction op code.
3341 * For Page Program, the page size is now available since JESD216 rev A, however
3342 * the supported instruction op codes are still not provided.
3343 * For Sector Erase commands, this table stores the supported instruction op
3344 * codes and the associated sector sizes.
3345 * Finally, the Quad Enable Requirements (QER) are also available since JESD216
3346 * rev A. The QER bits encode the manufacturer dependent procedure to be
3347 * executed to set the Quad Enable (QE) bit in some internal register of the
3348 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
3349 * sending any Quad SPI command to the memory. Actually, setting the QE bit
3350 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
3351 * and IO3 hence enabling 4 (Quad) I/O lines.
3353 * Return: 0 on success, -errno otherwise.
3355 static int spi_nor_parse_bfpt(struct spi_nor
*nor
,
3356 const struct sfdp_parameter_header
*bfpt_header
,
3357 struct spi_nor_flash_parameter
*params
)
3359 struct spi_nor_erase_map
*map
= ¶ms
->erase_map
;
3360 struct spi_nor_erase_type
*erase_type
= map
->erase_type
;
3361 struct sfdp_bfpt bfpt
;
3368 /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
3369 if (bfpt_header
->length
< BFPT_DWORD_MAX_JESD216
)
3372 /* Read the Basic Flash Parameter Table. */
3373 len
= min_t(size_t, sizeof(bfpt
),
3374 bfpt_header
->length
* sizeof(u32
));
3375 addr
= SFDP_PARAM_HEADER_PTP(bfpt_header
);
3376 memset(&bfpt
, 0, sizeof(bfpt
));
3377 err
= spi_nor_read_sfdp_dma_unsafe(nor
, addr
, len
, &bfpt
);
3381 /* Fix endianness of the BFPT DWORDs. */
3382 for (i
= 0; i
< BFPT_DWORD_MAX
; i
++)
3383 bfpt
.dwords
[i
] = le32_to_cpu(bfpt
.dwords
[i
]);
3385 /* Number of address bytes. */
3386 switch (bfpt
.dwords
[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK
) {
3387 case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY
:
3388 nor
->addr_width
= 3;
3391 case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY
:
3392 nor
->addr_width
= 4;
3399 /* Flash Memory Density (in bits). */
3400 params
->size
= bfpt
.dwords
[BFPT_DWORD(2)];
3401 if (params
->size
& BIT(31)) {
3402 params
->size
&= ~BIT(31);
3405 * Prevent overflows on params->size. Anyway, a NOR of 2^64
3406 * bits is unlikely to exist so this error probably means
3407 * the BFPT we are reading is corrupted/wrong.
3409 if (params
->size
> 63)
3412 params
->size
= 1ULL << params
->size
;
3416 params
->size
>>= 3; /* Convert to bytes. */
3418 /* Fast Read settings. */
3419 for (i
= 0; i
< ARRAY_SIZE(sfdp_bfpt_reads
); i
++) {
3420 const struct sfdp_bfpt_read
*rd
= &sfdp_bfpt_reads
[i
];
3421 struct spi_nor_read_command
*read
;
3423 if (!(bfpt
.dwords
[rd
->supported_dword
] & rd
->supported_bit
)) {
3424 params
->hwcaps
.mask
&= ~rd
->hwcaps
;
3428 params
->hwcaps
.mask
|= rd
->hwcaps
;
3429 cmd
= spi_nor_hwcaps_read2cmd(rd
->hwcaps
);
3430 read
= ¶ms
->reads
[cmd
];
3431 half
= bfpt
.dwords
[rd
->settings_dword
] >> rd
->settings_shift
;
3432 spi_nor_set_read_settings_from_bfpt(read
, half
, rd
->proto
);
3436 * Sector Erase settings. Reinitialize the uniform erase map using the
3437 * Erase Types defined in the bfpt table.
3440 memset(¶ms
->erase_map
, 0, sizeof(params
->erase_map
));
3441 for (i
= 0; i
< ARRAY_SIZE(sfdp_bfpt_erases
); i
++) {
3442 const struct sfdp_bfpt_erase
*er
= &sfdp_bfpt_erases
[i
];
3446 half
= bfpt
.dwords
[er
->dword
] >> er
->shift
;
3447 erasesize
= half
& 0xff;
3449 /* erasesize == 0 means this Erase Type is not supported. */
3453 erasesize
= 1U << erasesize
;
3454 opcode
= (half
>> 8) & 0xff;
3455 erase_mask
|= BIT(i
);
3456 spi_nor_set_erase_settings_from_bfpt(&erase_type
[i
], erasesize
,
3459 spi_nor_init_uniform_erase_map(map
, erase_mask
, params
->size
);
3461 * Sort all the map's Erase Types in ascending order with the smallest
3462 * erase size being the first member in the erase_type array.
3464 sort(erase_type
, SNOR_ERASE_TYPE_MAX
, sizeof(erase_type
[0]),
3465 spi_nor_map_cmp_erase_type
, NULL
);
3467 * Sort the erase types in the uniform region in order to update the
3468 * uniform_erase_type bitmask. The bitmask will be used later on when
3469 * selecting the uniform erase.
3471 spi_nor_regions_sort_erase_types(map
);
3472 map
->uniform_erase_type
= map
->uniform_region
.offset
&
3473 SNOR_ERASE_TYPE_MASK
;
3475 /* Stop here if not JESD216 rev A or later. */
3476 if (bfpt_header
->length
< BFPT_DWORD_MAX
)
3477 return spi_nor_post_bfpt_fixups(nor
, bfpt_header
, &bfpt
,
3480 /* Page size: this field specifies 'N' so the page size = 2^N bytes. */
3481 params
->page_size
= bfpt
.dwords
[BFPT_DWORD(11)];
3482 params
->page_size
&= BFPT_DWORD11_PAGE_SIZE_MASK
;
3483 params
->page_size
>>= BFPT_DWORD11_PAGE_SIZE_SHIFT
;
3484 params
->page_size
= 1U << params
->page_size
;
3486 /* Quad Enable Requirements. */
3487 switch (bfpt
.dwords
[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK
) {
3488 case BFPT_DWORD15_QER_NONE
:
3489 params
->quad_enable
= NULL
;
3492 case BFPT_DWORD15_QER_SR2_BIT1_BUGGY
:
3493 case BFPT_DWORD15_QER_SR2_BIT1_NO_RD
:
3494 params
->quad_enable
= spansion_no_read_cr_quad_enable
;
3497 case BFPT_DWORD15_QER_SR1_BIT6
:
3498 params
->quad_enable
= macronix_quad_enable
;
3501 case BFPT_DWORD15_QER_SR2_BIT7
:
3502 params
->quad_enable
= sr2_bit7_quad_enable
;
3505 case BFPT_DWORD15_QER_SR2_BIT1
:
3506 params
->quad_enable
= spansion_read_cr_quad_enable
;
3513 return spi_nor_post_bfpt_fixups(nor
, bfpt_header
, &bfpt
, params
);
3516 #define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22)
3517 #define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22)
3518 #define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22)
3519 #define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22)
3520 #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22)
3522 #define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16)
3523 #define SMPT_CMD_READ_DUMMY_SHIFT 16
3524 #define SMPT_CMD_READ_DUMMY(_cmd) \
3525 (((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
3526 #define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL
3528 #define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24)
3529 #define SMPT_CMD_READ_DATA_SHIFT 24
3530 #define SMPT_CMD_READ_DATA(_cmd) \
3531 (((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
3533 #define SMPT_CMD_OPCODE_MASK GENMASK(15, 8)
3534 #define SMPT_CMD_OPCODE_SHIFT 8
3535 #define SMPT_CMD_OPCODE(_cmd) \
3536 (((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
3538 #define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16)
3539 #define SMPT_MAP_REGION_COUNT_SHIFT 16
3540 #define SMPT_MAP_REGION_COUNT(_header) \
3541 ((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
3542 SMPT_MAP_REGION_COUNT_SHIFT) + 1)
3544 #define SMPT_MAP_ID_MASK GENMASK(15, 8)
3545 #define SMPT_MAP_ID_SHIFT 8
3546 #define SMPT_MAP_ID(_header) \
3547 (((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
3549 #define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8)
3550 #define SMPT_MAP_REGION_SIZE_SHIFT 8
3551 #define SMPT_MAP_REGION_SIZE(_region) \
3552 (((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
3553 SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
3555 #define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0)
3556 #define SMPT_MAP_REGION_ERASE_TYPE(_region) \
3557 ((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
3559 #define SMPT_DESC_TYPE_MAP BIT(1)
3560 #define SMPT_DESC_END BIT(0)
3563 * spi_nor_smpt_addr_width() - return the address width used in the
3564 * configuration detection command.
3565 * @nor: pointer to a 'struct spi_nor'
3566 * @settings: configuration detection command descriptor, dword1
3568 static u8
spi_nor_smpt_addr_width(const struct spi_nor
*nor
, const u32 settings
)
3570 switch (settings
& SMPT_CMD_ADDRESS_LEN_MASK
) {
3571 case SMPT_CMD_ADDRESS_LEN_0
:
3573 case SMPT_CMD_ADDRESS_LEN_3
:
3575 case SMPT_CMD_ADDRESS_LEN_4
:
3577 case SMPT_CMD_ADDRESS_LEN_USE_CURRENT
:
3580 return nor
->addr_width
;
3585 * spi_nor_smpt_read_dummy() - return the configuration detection command read
3586 * latency, in clock cycles.
3587 * @nor: pointer to a 'struct spi_nor'
3588 * @settings: configuration detection command descriptor, dword1
3590 * Return: the number of dummy cycles for an SMPT read
3592 static u8
spi_nor_smpt_read_dummy(const struct spi_nor
*nor
, const u32 settings
)
3594 u8 read_dummy
= SMPT_CMD_READ_DUMMY(settings
);
3596 if (read_dummy
== SMPT_CMD_READ_DUMMY_IS_VARIABLE
)
3597 return nor
->read_dummy
;
3602 * spi_nor_get_map_in_use() - get the configuration map in use
3603 * @nor: pointer to a 'struct spi_nor'
3604 * @smpt: pointer to the sector map parameter table
3605 * @smpt_len: sector map parameter table length
3607 * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
3609 static const u32
*spi_nor_get_map_in_use(struct spi_nor
*nor
, const u32
*smpt
,
3617 u8 addr_width
, read_opcode
, read_dummy
;
3618 u8 read_data_mask
, map_id
;
3620 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
3621 buf
= kmalloc(sizeof(*buf
), GFP_KERNEL
);
3623 return ERR_PTR(-ENOMEM
);
3625 addr_width
= nor
->addr_width
;
3626 read_dummy
= nor
->read_dummy
;
3627 read_opcode
= nor
->read_opcode
;
3630 /* Determine if there are any optional Detection Command Descriptors */
3631 for (i
= 0; i
< smpt_len
; i
+= 2) {
3632 if (smpt
[i
] & SMPT_DESC_TYPE_MAP
)
3635 read_data_mask
= SMPT_CMD_READ_DATA(smpt
[i
]);
3636 nor
->addr_width
= spi_nor_smpt_addr_width(nor
, smpt
[i
]);
3637 nor
->read_dummy
= spi_nor_smpt_read_dummy(nor
, smpt
[i
]);
3638 nor
->read_opcode
= SMPT_CMD_OPCODE(smpt
[i
]);
3641 err
= spi_nor_read_raw(nor
, addr
, 1, buf
);
3648 * Build an index value that is used to select the Sector Map
3649 * Configuration that is currently in use.
3651 map_id
= map_id
<< 1 | !!(*buf
& read_data_mask
);
3655 * If command descriptors are provided, they always precede map
3656 * descriptors in the table. There is no need to start the iteration
3657 * over smpt array all over again.
3659 * Find the matching configuration map.
3661 ret
= ERR_PTR(-EINVAL
);
3662 while (i
< smpt_len
) {
3663 if (SMPT_MAP_ID(smpt
[i
]) == map_id
) {
3669 * If there are no more configuration map descriptors and no
3670 * configuration ID matched the configuration identifier, the
3671 * sector address map is unknown.
3673 if (smpt
[i
] & SMPT_DESC_END
)
3676 /* increment the table index to the next map */
3677 i
+= SMPT_MAP_REGION_COUNT(smpt
[i
]) + 1;
3683 nor
->addr_width
= addr_width
;
3684 nor
->read_dummy
= read_dummy
;
3685 nor
->read_opcode
= read_opcode
;
3690 * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
3691 * @region: pointer to a structure that describes a SPI NOR erase region
3692 * @erase: pointer to a structure that describes a SPI NOR erase type
3693 * @erase_type: erase type bitmask
3696 spi_nor_region_check_overlay(struct spi_nor_erase_region
*region
,
3697 const struct spi_nor_erase_type
*erase
,
3698 const u8 erase_type
)
3702 for (i
= 0; i
< SNOR_ERASE_TYPE_MAX
; i
++) {
3703 if (!(erase_type
& BIT(i
)))
3705 if (region
->size
& erase
[i
].size_mask
) {
3706 spi_nor_region_mark_overlay(region
);
3713 * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
3714 * @nor: pointer to a 'struct spi_nor'
3715 * @params: pointer to a duplicate 'struct spi_nor_flash_parameter' that is
3716 * used for storing SFDP parsed data
3717 * @smpt: pointer to the sector map parameter table
3719 * Return: 0 on success, -errno otherwise.
3722 spi_nor_init_non_uniform_erase_map(struct spi_nor
*nor
,
3723 struct spi_nor_flash_parameter
*params
,
3726 struct spi_nor_erase_map
*map
= ¶ms
->erase_map
;
3727 struct spi_nor_erase_type
*erase
= map
->erase_type
;
3728 struct spi_nor_erase_region
*region
;
3732 u8 uniform_erase_type
, save_uniform_erase_type
;
3733 u8 erase_type
, regions_erase_type
;
3735 region_count
= SMPT_MAP_REGION_COUNT(*smpt
);
3737 * The regions will be freed when the driver detaches from the
3740 region
= devm_kcalloc(nor
->dev
, region_count
, sizeof(*region
),
3744 map
->regions
= region
;
3746 uniform_erase_type
= 0xff;
3747 regions_erase_type
= 0;
3749 /* Populate regions. */
3750 for (i
= 0; i
< region_count
; i
++) {
3751 j
= i
+ 1; /* index for the region dword */
3752 region
[i
].size
= SMPT_MAP_REGION_SIZE(smpt
[j
]);
3753 erase_type
= SMPT_MAP_REGION_ERASE_TYPE(smpt
[j
]);
3754 region
[i
].offset
= offset
| erase_type
;
3756 spi_nor_region_check_overlay(®ion
[i
], erase
, erase_type
);
3759 * Save the erase types that are supported in all regions and
3760 * can erase the entire flash memory.
3762 uniform_erase_type
&= erase_type
;
3765 * regions_erase_type mask will indicate all the erase types
3766 * supported in this configuration map.
3768 regions_erase_type
|= erase_type
;
3770 offset
= (region
[i
].offset
& ~SNOR_ERASE_FLAGS_MASK
) +
3774 save_uniform_erase_type
= map
->uniform_erase_type
;
3775 map
->uniform_erase_type
= spi_nor_sort_erase_mask(map
,
3776 uniform_erase_type
);
3778 if (!regions_erase_type
) {
3780 * Roll back to the previous uniform_erase_type mask, SMPT is
3783 map
->uniform_erase_type
= save_uniform_erase_type
;
3788 * BFPT advertises all the erase types supported by all the possible
3789 * map configurations. Mask out the erase types that are not supported
3790 * by the current map configuration.
3792 for (i
= 0; i
< SNOR_ERASE_TYPE_MAX
; i
++)
3793 if (!(regions_erase_type
& BIT(erase
[i
].idx
)))
3794 spi_nor_set_erase_type(&erase
[i
], 0, 0xFF);
3796 spi_nor_region_mark_end(®ion
[i
- 1]);
3802 * spi_nor_parse_smpt() - parse Sector Map Parameter Table
3803 * @nor: pointer to a 'struct spi_nor'
3804 * @smpt_header: sector map parameter table header
3805 * @params: pointer to a duplicate 'struct spi_nor_flash_parameter'
3806 * that is used for storing SFDP parsed data
3808 * This table is optional, but when available, we parse it to identify the
3809 * location and size of sectors within the main data array of the flash memory
3810 * device and to identify which Erase Types are supported by each sector.
3812 * Return: 0 on success, -errno otherwise.
3814 static int spi_nor_parse_smpt(struct spi_nor
*nor
,
3815 const struct sfdp_parameter_header
*smpt_header
,
3816 struct spi_nor_flash_parameter
*params
)
3818 const u32
*sector_map
;
3824 /* Read the Sector Map Parameter Table. */
3825 len
= smpt_header
->length
* sizeof(*smpt
);
3826 smpt
= kmalloc(len
, GFP_KERNEL
);
3830 addr
= SFDP_PARAM_HEADER_PTP(smpt_header
);
3831 ret
= spi_nor_read_sfdp(nor
, addr
, len
, smpt
);
3835 /* Fix endianness of the SMPT DWORDs. */
3836 for (i
= 0; i
< smpt_header
->length
; i
++)
3837 smpt
[i
] = le32_to_cpu(smpt
[i
]);
3839 sector_map
= spi_nor_get_map_in_use(nor
, smpt
, smpt_header
->length
);
3840 if (IS_ERR(sector_map
)) {
3841 ret
= PTR_ERR(sector_map
);
3845 ret
= spi_nor_init_non_uniform_erase_map(nor
, params
, sector_map
);
3849 spi_nor_regions_sort_erase_types(¶ms
->erase_map
);
3856 #define SFDP_4BAIT_DWORD_MAX 2
3859 /* The hardware capability. */
3863 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
3864 * the associated 4-byte address op code is supported.
3870 * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
3871 * @nor: pointer to a 'struct spi_nor'.
3872 * @param_header: pointer to the 'struct sfdp_parameter_header' describing
3873 * the 4-Byte Address Instruction Table length and version.
3874 * @params: pointer to the 'struct spi_nor_flash_parameter' to be.
3876 * Return: 0 on success, -errno otherwise.
3878 static int spi_nor_parse_4bait(struct spi_nor
*nor
,
3879 const struct sfdp_parameter_header
*param_header
,
3880 struct spi_nor_flash_parameter
*params
)
3882 static const struct sfdp_4bait reads
[] = {
3883 { SNOR_HWCAPS_READ
, BIT(0) },
3884 { SNOR_HWCAPS_READ_FAST
, BIT(1) },
3885 { SNOR_HWCAPS_READ_1_1_2
, BIT(2) },
3886 { SNOR_HWCAPS_READ_1_2_2
, BIT(3) },
3887 { SNOR_HWCAPS_READ_1_1_4
, BIT(4) },
3888 { SNOR_HWCAPS_READ_1_4_4
, BIT(5) },
3889 { SNOR_HWCAPS_READ_1_1_1_DTR
, BIT(13) },
3890 { SNOR_HWCAPS_READ_1_2_2_DTR
, BIT(14) },
3891 { SNOR_HWCAPS_READ_1_4_4_DTR
, BIT(15) },
3893 static const struct sfdp_4bait programs
[] = {
3894 { SNOR_HWCAPS_PP
, BIT(6) },
3895 { SNOR_HWCAPS_PP_1_1_4
, BIT(7) },
3896 { SNOR_HWCAPS_PP_1_4_4
, BIT(8) },
3898 static const struct sfdp_4bait erases
[SNOR_ERASE_TYPE_MAX
] = {
3899 { 0u /* not used */, BIT(9) },
3900 { 0u /* not used */, BIT(10) },
3901 { 0u /* not used */, BIT(11) },
3902 { 0u /* not used */, BIT(12) },
3904 struct spi_nor_pp_command
*params_pp
= params
->page_programs
;
3905 struct spi_nor_erase_map
*map
= ¶ms
->erase_map
;
3906 struct spi_nor_erase_type
*erase_type
= map
->erase_type
;
3909 u32 addr
, discard_hwcaps
, read_hwcaps
, pp_hwcaps
, erase_mask
;
3912 if (param_header
->major
!= SFDP_JESD216_MAJOR
||
3913 param_header
->length
< SFDP_4BAIT_DWORD_MAX
)
3916 /* Read the 4-byte Address Instruction Table. */
3917 len
= sizeof(*dwords
) * SFDP_4BAIT_DWORD_MAX
;
3919 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
3920 dwords
= kmalloc(len
, GFP_KERNEL
);
3924 addr
= SFDP_PARAM_HEADER_PTP(param_header
);
3925 ret
= spi_nor_read_sfdp(nor
, addr
, len
, dwords
);
3929 /* Fix endianness of the 4BAIT DWORDs. */
3930 for (i
= 0; i
< SFDP_4BAIT_DWORD_MAX
; i
++)
3931 dwords
[i
] = le32_to_cpu(dwords
[i
]);
3934 * Compute the subset of (Fast) Read commands for which the 4-byte
3935 * version is supported.
3939 for (i
= 0; i
< ARRAY_SIZE(reads
); i
++) {
3940 const struct sfdp_4bait
*read
= &reads
[i
];
3942 discard_hwcaps
|= read
->hwcaps
;
3943 if ((params
->hwcaps
.mask
& read
->hwcaps
) &&
3944 (dwords
[0] & read
->supported_bit
))
3945 read_hwcaps
|= read
->hwcaps
;
3949 * Compute the subset of Page Program commands for which the 4-byte
3950 * version is supported.
3953 for (i
= 0; i
< ARRAY_SIZE(programs
); i
++) {
3954 const struct sfdp_4bait
*program
= &programs
[i
];
3957 * The 4 Byte Address Instruction (Optional) Table is the only
3958 * SFDP table that indicates support for Page Program Commands.
3959 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
3960 * authority for specifying Page Program support.
3962 discard_hwcaps
|= program
->hwcaps
;
3963 if (dwords
[0] & program
->supported_bit
)
3964 pp_hwcaps
|= program
->hwcaps
;
3968 * Compute the subset of Sector Erase commands for which the 4-byte
3969 * version is supported.
3972 for (i
= 0; i
< SNOR_ERASE_TYPE_MAX
; i
++) {
3973 const struct sfdp_4bait
*erase
= &erases
[i
];
3975 if (dwords
[0] & erase
->supported_bit
)
3976 erase_mask
|= BIT(i
);
3979 /* Replicate the sort done for the map's erase types in BFPT. */
3980 erase_mask
= spi_nor_sort_erase_mask(map
, erase_mask
);
3983 * We need at least one 4-byte op code per read, program and erase
3984 * operation; the .read(), .write() and .erase() hooks share the
3985 * nor->addr_width value.
3987 if (!read_hwcaps
|| !pp_hwcaps
|| !erase_mask
)
3991 * Discard all operations from the 4-byte instruction set which are
3992 * not supported by this memory.
3994 params
->hwcaps
.mask
&= ~discard_hwcaps
;
3995 params
->hwcaps
.mask
|= (read_hwcaps
| pp_hwcaps
);
3997 /* Use the 4-byte address instruction set. */
3998 for (i
= 0; i
< SNOR_CMD_READ_MAX
; i
++) {
3999 struct spi_nor_read_command
*read_cmd
= ¶ms
->reads
[i
];
4001 read_cmd
->opcode
= spi_nor_convert_3to4_read(read_cmd
->opcode
);
4004 /* 4BAIT is the only SFDP table that indicates page program support. */
4005 if (pp_hwcaps
& SNOR_HWCAPS_PP
)
4006 spi_nor_set_pp_settings(¶ms_pp
[SNOR_CMD_PP
],
4007 SPINOR_OP_PP_4B
, SNOR_PROTO_1_1_1
);
4008 if (pp_hwcaps
& SNOR_HWCAPS_PP_1_1_4
)
4009 spi_nor_set_pp_settings(¶ms_pp
[SNOR_CMD_PP_1_1_4
],
4010 SPINOR_OP_PP_1_1_4_4B
,
4012 if (pp_hwcaps
& SNOR_HWCAPS_PP_1_4_4
)
4013 spi_nor_set_pp_settings(¶ms_pp
[SNOR_CMD_PP_1_4_4
],
4014 SPINOR_OP_PP_1_4_4_4B
,
4017 for (i
= 0; i
< SNOR_ERASE_TYPE_MAX
; i
++) {
4018 if (erase_mask
& BIT(i
))
4019 erase_type
[i
].opcode
= (dwords
[1] >>
4020 erase_type
[i
].idx
* 8) & 0xFF;
4022 spi_nor_set_erase_type(&erase_type
[i
], 0u, 0xFF);
4026 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
4027 * later because we already did the conversion to 4byte opcodes. Also,
4028 * this latest function implements a legacy quirk for the erase size of
4029 * Spansion memory. However this quirk is no longer needed with new
4030 * SFDP compliant memories.
4032 nor
->addr_width
= 4;
4033 nor
->flags
|= SNOR_F_4B_OPCODES
| SNOR_F_HAS_4BAIT
;
4042 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
4043 * @nor: pointer to a 'struct spi_nor'
4044 * @params: pointer to the 'struct spi_nor_flash_parameter' to be
4047 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
4048 * specification. This is a standard which tends to supported by almost all
4049 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
4050 * runtime the main parameters needed to perform basic SPI flash operations such
4051 * as Fast Read, Page Program or Sector Erase commands.
4053 * Return: 0 on success, -errno otherwise.
4055 static int spi_nor_parse_sfdp(struct spi_nor
*nor
,
4056 struct spi_nor_flash_parameter
*params
)
4058 const struct sfdp_parameter_header
*param_header
, *bfpt_header
;
4059 struct sfdp_parameter_header
*param_headers
= NULL
;
4060 struct sfdp_header header
;
4061 struct device
*dev
= nor
->dev
;
4065 /* Get the SFDP header. */
4066 err
= spi_nor_read_sfdp_dma_unsafe(nor
, 0, sizeof(header
), &header
);
4070 /* Check the SFDP header version. */
4071 if (le32_to_cpu(header
.signature
) != SFDP_SIGNATURE
||
4072 header
.major
!= SFDP_JESD216_MAJOR
)
4076 * Verify that the first and only mandatory parameter header is a
4077 * Basic Flash Parameter Table header as specified in JESD216.
4079 bfpt_header
= &header
.bfpt_header
;
4080 if (SFDP_PARAM_HEADER_ID(bfpt_header
) != SFDP_BFPT_ID
||
4081 bfpt_header
->major
!= SFDP_JESD216_MAJOR
)
4085 * Allocate memory then read all parameter headers with a single
4086 * Read SFDP command. These parameter headers will actually be parsed
4087 * twice: a first time to get the latest revision of the basic flash
4088 * parameter table, then a second time to handle the supported optional
4090 * Hence we read the parameter headers once for all to reduce the
4091 * processing time. Also we use kmalloc() instead of devm_kmalloc()
4092 * because we don't need to keep these parameter headers: the allocated
4093 * memory is always released with kfree() before exiting this function.
4096 psize
= header
.nph
* sizeof(*param_headers
);
4098 param_headers
= kmalloc(psize
, GFP_KERNEL
);
4102 err
= spi_nor_read_sfdp(nor
, sizeof(header
),
4103 psize
, param_headers
);
4105 dev_err(dev
, "failed to read SFDP parameter headers\n");
4111 * Check other parameter headers to get the latest revision of
4112 * the basic flash parameter table.
4114 for (i
= 0; i
< header
.nph
; i
++) {
4115 param_header
= ¶m_headers
[i
];
4117 if (SFDP_PARAM_HEADER_ID(param_header
) == SFDP_BFPT_ID
&&
4118 param_header
->major
== SFDP_JESD216_MAJOR
&&
4119 (param_header
->minor
> bfpt_header
->minor
||
4120 (param_header
->minor
== bfpt_header
->minor
&&
4121 param_header
->length
> bfpt_header
->length
)))
4122 bfpt_header
= param_header
;
4125 err
= spi_nor_parse_bfpt(nor
, bfpt_header
, params
);
4129 /* Parse optional parameter tables. */
4130 for (i
= 0; i
< header
.nph
; i
++) {
4131 param_header
= ¶m_headers
[i
];
4133 switch (SFDP_PARAM_HEADER_ID(param_header
)) {
4134 case SFDP_SECTOR_MAP_ID
:
4135 err
= spi_nor_parse_smpt(nor
, param_header
, params
);
4139 err
= spi_nor_parse_4bait(nor
, param_header
, params
);
4147 dev_warn(dev
, "Failed to parse optional parameter table: %04x\n",
4148 SFDP_PARAM_HEADER_ID(param_header
));
4150 * Let's not drop all information we extracted so far
4151 * if optional table parsers fail. In case of failing,
4152 * each optional parser is responsible to roll back to
4153 * the previously known spi_nor data.
4160 kfree(param_headers
);
4164 static int spi_nor_select_read(struct spi_nor
*nor
,
4167 int cmd
, best_match
= fls(shared_hwcaps
& SNOR_HWCAPS_READ_MASK
) - 1;
4168 const struct spi_nor_read_command
*read
;
4173 cmd
= spi_nor_hwcaps_read2cmd(BIT(best_match
));
4177 read
= &nor
->params
.reads
[cmd
];
4178 nor
->read_opcode
= read
->opcode
;
4179 nor
->read_proto
= read
->proto
;
4182 * In the spi-nor framework, we don't need to make the difference
4183 * between mode clock cycles and wait state clock cycles.
4184 * Indeed, the value of the mode clock cycles is used by a QSPI
4185 * flash memory to know whether it should enter or leave its 0-4-4
4186 * (Continuous Read / XIP) mode.
4187 * eXecution In Place is out of the scope of the mtd sub-system.
4188 * Hence we choose to merge both mode and wait state clock cycles
4189 * into the so called dummy clock cycles.
4191 nor
->read_dummy
= read
->num_mode_clocks
+ read
->num_wait_states
;
4195 static int spi_nor_select_pp(struct spi_nor
*nor
,
4198 int cmd
, best_match
= fls(shared_hwcaps
& SNOR_HWCAPS_PP_MASK
) - 1;
4199 const struct spi_nor_pp_command
*pp
;
4204 cmd
= spi_nor_hwcaps_pp2cmd(BIT(best_match
));
4208 pp
= &nor
->params
.page_programs
[cmd
];
4209 nor
->program_opcode
= pp
->opcode
;
4210 nor
->write_proto
= pp
->proto
;
4215 * spi_nor_select_uniform_erase() - select optimum uniform erase type
4216 * @map: the erase map of the SPI NOR
4217 * @wanted_size: the erase type size to search for. Contains the value of
4218 * info->sector_size or of the "small sector" size in case
4219 * CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
4221 * Once the optimum uniform sector erase command is found, disable all the
4224 * Return: pointer to erase type on success, NULL otherwise.
4226 static const struct spi_nor_erase_type
*
4227 spi_nor_select_uniform_erase(struct spi_nor_erase_map
*map
,
4228 const u32 wanted_size
)
4230 const struct spi_nor_erase_type
*tested_erase
, *erase
= NULL
;
4232 u8 uniform_erase_type
= map
->uniform_erase_type
;
4234 for (i
= SNOR_ERASE_TYPE_MAX
- 1; i
>= 0; i
--) {
4235 if (!(uniform_erase_type
& BIT(i
)))
4238 tested_erase
= &map
->erase_type
[i
];
4241 * If the current erase size is the one, stop here:
4242 * we have found the right uniform Sector Erase command.
4244 if (tested_erase
->size
== wanted_size
) {
4245 erase
= tested_erase
;
4250 * Otherwise, the current erase size is still a valid canditate.
4251 * Select the biggest valid candidate.
4253 if (!erase
&& tested_erase
->size
)
4254 erase
= tested_erase
;
4255 /* keep iterating to find the wanted_size */
4261 /* Disable all other Sector Erase commands. */
4262 map
->uniform_erase_type
&= ~SNOR_ERASE_TYPE_MASK
;
4263 map
->uniform_erase_type
|= BIT(erase
- map
->erase_type
);
4267 static int spi_nor_select_erase(struct spi_nor
*nor
)
4269 struct spi_nor_erase_map
*map
= &nor
->params
.erase_map
;
4270 const struct spi_nor_erase_type
*erase
= NULL
;
4271 struct mtd_info
*mtd
= &nor
->mtd
;
4272 u32 wanted_size
= nor
->info
->sector_size
;
4276 * The previous implementation handling Sector Erase commands assumed
4277 * that the SPI flash memory has an uniform layout then used only one
4278 * of the supported erase sizes for all Sector Erase commands.
4279 * So to be backward compatible, the new implementation also tries to
4280 * manage the SPI flash memory as uniform with a single erase sector
4281 * size, when possible.
4283 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
4284 /* prefer "small sector" erase if possible */
4285 wanted_size
= 4096u;
4288 if (spi_nor_has_uniform_erase(nor
)) {
4289 erase
= spi_nor_select_uniform_erase(map
, wanted_size
);
4292 nor
->erase_opcode
= erase
->opcode
;
4293 mtd
->erasesize
= erase
->size
;
4298 * For non-uniform SPI flash memory, set mtd->erasesize to the
4299 * maximum erase sector size. No need to set nor->erase_opcode.
4301 for (i
= SNOR_ERASE_TYPE_MAX
- 1; i
>= 0; i
--) {
4302 if (map
->erase_type
[i
].size
) {
4303 erase
= &map
->erase_type
[i
];
4311 mtd
->erasesize
= erase
->size
;
4315 static int spi_nor_default_setup(struct spi_nor
*nor
,
4316 const struct spi_nor_hwcaps
*hwcaps
)
4318 struct spi_nor_flash_parameter
*params
= &nor
->params
;
4319 u32 ignored_mask
, shared_mask
;
4323 * Keep only the hardware capabilities supported by both the SPI
4324 * controller and the SPI flash memory.
4326 shared_mask
= hwcaps
->mask
& params
->hwcaps
.mask
;
4330 * When called from spi_nor_probe(), all caps are set and we
4331 * need to discard some of them based on what the SPI
4332 * controller actually supports (using spi_mem_supports_op()).
4334 spi_nor_spimem_adjust_hwcaps(nor
, &shared_mask
);
4337 * SPI n-n-n protocols are not supported when the SPI
4338 * controller directly implements the spi_nor interface.
4339 * Yet another reason to switch to spi-mem.
4341 ignored_mask
= SNOR_HWCAPS_X_X_X
;
4342 if (shared_mask
& ignored_mask
) {
4344 "SPI n-n-n protocols are not supported.\n");
4345 shared_mask
&= ~ignored_mask
;
4349 /* Select the (Fast) Read command. */
4350 err
= spi_nor_select_read(nor
, shared_mask
);
4353 "can't select read settings supported by both the SPI controller and memory.\n");
4357 /* Select the Page Program command. */
4358 err
= spi_nor_select_pp(nor
, shared_mask
);
4361 "can't select write settings supported by both the SPI controller and memory.\n");
4365 /* Select the Sector Erase command. */
4366 err
= spi_nor_select_erase(nor
);
4369 "can't select erase settings supported by both the SPI controller and memory.\n");
4376 static int spi_nor_setup(struct spi_nor
*nor
,
4377 const struct spi_nor_hwcaps
*hwcaps
)
4379 if (!nor
->params
.setup
)
4382 return nor
->params
.setup(nor
, hwcaps
);
4385 static void macronix_set_default_init(struct spi_nor
*nor
)
4387 nor
->params
.quad_enable
= macronix_quad_enable
;
4388 nor
->params
.set_4byte
= macronix_set_4byte
;
4391 static void st_micron_set_default_init(struct spi_nor
*nor
)
4393 nor
->flags
|= SNOR_F_HAS_LOCK
;
4394 nor
->params
.quad_enable
= NULL
;
4395 nor
->params
.set_4byte
= st_micron_set_4byte
;
4398 static void winbond_set_default_init(struct spi_nor
*nor
)
4400 nor
->params
.set_4byte
= winbond_set_4byte
;
4404 * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
4405 * settings based on MFR register and ->default_init() hook.
4406 * @nor: pointer to a 'struct spi-nor'.
4408 static void spi_nor_manufacturer_init_params(struct spi_nor
*nor
)
4410 /* Init flash parameters based on MFR */
4411 switch (JEDEC_MFR(nor
->info
)) {
4412 case SNOR_MFR_MACRONIX
:
4413 macronix_set_default_init(nor
);
4417 case SNOR_MFR_MICRON
:
4418 st_micron_set_default_init(nor
);
4421 case SNOR_MFR_WINBOND
:
4422 winbond_set_default_init(nor
);
4429 if (nor
->info
->fixups
&& nor
->info
->fixups
->default_init
)
4430 nor
->info
->fixups
->default_init(nor
);
4434 * spi_nor_sfdp_init_params() - Initialize the flash's parameters and settings
4435 * based on JESD216 SFDP standard.
4436 * @nor: pointer to a 'struct spi-nor'.
4438 * The method has a roll-back mechanism: in case the SFDP parsing fails, the
4439 * legacy flash parameters and settings will be restored.
4441 static void spi_nor_sfdp_init_params(struct spi_nor
*nor
)
4443 struct spi_nor_flash_parameter sfdp_params
;
4445 memcpy(&sfdp_params
, &nor
->params
, sizeof(sfdp_params
));
4447 if (spi_nor_parse_sfdp(nor
, &sfdp_params
)) {
4448 nor
->addr_width
= 0;
4449 nor
->flags
&= ~SNOR_F_4B_OPCODES
;
4451 memcpy(&nor
->params
, &sfdp_params
, sizeof(nor
->params
));
4456 * spi_nor_info_init_params() - Initialize the flash's parameters and settings
4457 * based on nor->info data.
4458 * @nor: pointer to a 'struct spi-nor'.
4460 static void spi_nor_info_init_params(struct spi_nor
*nor
)
4462 struct spi_nor_flash_parameter
*params
= &nor
->params
;
4463 struct spi_nor_erase_map
*map
= ¶ms
->erase_map
;
4464 const struct flash_info
*info
= nor
->info
;
4465 struct device_node
*np
= spi_nor_get_flash_node(nor
);
4468 /* Initialize legacy flash parameters and settings. */
4469 params
->quad_enable
= spansion_quad_enable
;
4470 params
->set_4byte
= spansion_set_4byte
;
4471 params
->setup
= spi_nor_default_setup
;
4473 /* Set SPI NOR sizes. */
4474 params
->size
= (u64
)info
->sector_size
* info
->n_sectors
;
4475 params
->page_size
= info
->page_size
;
4477 if (!(info
->flags
& SPI_NOR_NO_FR
)) {
4478 /* Default to Fast Read for DT and non-DT platform devices. */
4479 params
->hwcaps
.mask
|= SNOR_HWCAPS_READ_FAST
;
4481 /* Mask out Fast Read if not requested at DT instantiation. */
4482 if (np
&& !of_property_read_bool(np
, "m25p,fast-read"))
4483 params
->hwcaps
.mask
&= ~SNOR_HWCAPS_READ_FAST
;
4486 /* (Fast) Read settings. */
4487 params
->hwcaps
.mask
|= SNOR_HWCAPS_READ
;
4488 spi_nor_set_read_settings(¶ms
->reads
[SNOR_CMD_READ
],
4489 0, 0, SPINOR_OP_READ
,
4492 if (params
->hwcaps
.mask
& SNOR_HWCAPS_READ_FAST
)
4493 spi_nor_set_read_settings(¶ms
->reads
[SNOR_CMD_READ_FAST
],
4494 0, 8, SPINOR_OP_READ_FAST
,
4497 if (info
->flags
& SPI_NOR_DUAL_READ
) {
4498 params
->hwcaps
.mask
|= SNOR_HWCAPS_READ_1_1_2
;
4499 spi_nor_set_read_settings(¶ms
->reads
[SNOR_CMD_READ_1_1_2
],
4500 0, 8, SPINOR_OP_READ_1_1_2
,
4504 if (info
->flags
& SPI_NOR_QUAD_READ
) {
4505 params
->hwcaps
.mask
|= SNOR_HWCAPS_READ_1_1_4
;
4506 spi_nor_set_read_settings(¶ms
->reads
[SNOR_CMD_READ_1_1_4
],
4507 0, 8, SPINOR_OP_READ_1_1_4
,
4511 if (info
->flags
& SPI_NOR_OCTAL_READ
) {
4512 params
->hwcaps
.mask
|= SNOR_HWCAPS_READ_1_1_8
;
4513 spi_nor_set_read_settings(¶ms
->reads
[SNOR_CMD_READ_1_1_8
],
4514 0, 8, SPINOR_OP_READ_1_1_8
,
4518 /* Page Program settings. */
4519 params
->hwcaps
.mask
|= SNOR_HWCAPS_PP
;
4520 spi_nor_set_pp_settings(¶ms
->page_programs
[SNOR_CMD_PP
],
4521 SPINOR_OP_PP
, SNOR_PROTO_1_1_1
);
4524 * Sector Erase settings. Sort Erase Types in ascending order, with the
4525 * smallest erase size starting at BIT(0).
4529 if (info
->flags
& SECT_4K_PMC
) {
4530 erase_mask
|= BIT(i
);
4531 spi_nor_set_erase_type(&map
->erase_type
[i
], 4096u,
4532 SPINOR_OP_BE_4K_PMC
);
4534 } else if (info
->flags
& SECT_4K
) {
4535 erase_mask
|= BIT(i
);
4536 spi_nor_set_erase_type(&map
->erase_type
[i
], 4096u,
4540 erase_mask
|= BIT(i
);
4541 spi_nor_set_erase_type(&map
->erase_type
[i
], info
->sector_size
,
4543 spi_nor_init_uniform_erase_map(map
, erase_mask
, params
->size
);
4546 static void spansion_post_sfdp_fixups(struct spi_nor
*nor
)
4548 if (nor
->params
.size
<= SZ_16M
)
4551 nor
->flags
|= SNOR_F_4B_OPCODES
;
4552 /* No small sector erase for 4-byte command set */
4553 nor
->erase_opcode
= SPINOR_OP_SE
;
4554 nor
->mtd
.erasesize
= nor
->info
->sector_size
;
4557 static void s3an_post_sfdp_fixups(struct spi_nor
*nor
)
4559 nor
->params
.setup
= s3an_nor_setup
;
4563 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
4564 * after SFDP has been parsed (is also called for SPI NORs that do not
4566 * @nor: pointer to a 'struct spi_nor'
4568 * Typically used to tweak various parameters that could not be extracted by
4569 * other means (i.e. when information provided by the SFDP/flash_info tables
4570 * are incomplete or wrong).
4572 static void spi_nor_post_sfdp_fixups(struct spi_nor
*nor
)
4574 switch (JEDEC_MFR(nor
->info
)) {
4575 case SNOR_MFR_SPANSION
:
4576 spansion_post_sfdp_fixups(nor
);
4583 if (nor
->info
->flags
& SPI_S3AN
)
4584 s3an_post_sfdp_fixups(nor
);
4586 if (nor
->info
->fixups
&& nor
->info
->fixups
->post_sfdp
)
4587 nor
->info
->fixups
->post_sfdp(nor
);
4591 * spi_nor_late_init_params() - Late initialization of default flash parameters.
4592 * @nor: pointer to a 'struct spi_nor'
4594 * Used to set default flash parameters and settings when the ->default_init()
4595 * hook or the SFDP parser let voids.
4597 static void spi_nor_late_init_params(struct spi_nor
*nor
)
4600 * NOR protection support. When locking_ops are not provided, we pick
4603 if (nor
->flags
& SNOR_F_HAS_LOCK
&& !nor
->params
.locking_ops
)
4604 nor
->params
.locking_ops
= &stm_locking_ops
;
4608 * spi_nor_init_params() - Initialize the flash's parameters and settings.
4609 * @nor: pointer to a 'struct spi-nor'.
4611 * The flash parameters and settings are initialized based on a sequence of
4612 * calls that are ordered by priority:
4614 * 1/ Default flash parameters initialization. The initializations are done
4615 * based on nor->info data:
4616 * spi_nor_info_init_params()
4618 * which can be overwritten by:
4619 * 2/ Manufacturer flash parameters initialization. The initializations are
4620 * done based on MFR register, or when the decisions can not be done solely
4621 * based on MFR, by using specific flash_info tweeks, ->default_init():
4622 * spi_nor_manufacturer_init_params()
4624 * which can be overwritten by:
4625 * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
4626 * should be more accurate that the above.
4627 * spi_nor_sfdp_init_params()
4629 * Please note that there is a ->post_bfpt() fixup hook that can overwrite
4630 * the flash parameters and settings immediately after parsing the Basic
4631 * Flash Parameter Table.
4633 * which can be overwritten by:
4634 * 4/ Post SFDP flash parameters initialization. Used to tweak various
4635 * parameters that could not be extracted by other means (i.e. when
4636 * information provided by the SFDP/flash_info tables are incomplete or
4638 * spi_nor_post_sfdp_fixups()
4640 * 5/ Late default flash parameters initialization, used when the
4641 * ->default_init() hook or the SFDP parser do not set specific params.
4642 * spi_nor_late_init_params()
4644 static void spi_nor_init_params(struct spi_nor
*nor
)
4646 spi_nor_info_init_params(nor
);
4648 spi_nor_manufacturer_init_params(nor
);
4650 if ((nor
->info
->flags
& (SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
)) &&
4651 !(nor
->info
->flags
& SPI_NOR_SKIP_SFDP
))
4652 spi_nor_sfdp_init_params(nor
);
4654 spi_nor_post_sfdp_fixups(nor
);
4656 spi_nor_late_init_params(nor
);
4660 * spi_nor_quad_enable() - enable Quad I/O if needed.
4661 * @nor: pointer to a 'struct spi_nor'
4663 * Return: 0 on success, -errno otherwise.
4665 static int spi_nor_quad_enable(struct spi_nor
*nor
)
4667 if (!nor
->params
.quad_enable
)
4670 if (!(spi_nor_get_protocol_width(nor
->read_proto
) == 4 ||
4671 spi_nor_get_protocol_width(nor
->write_proto
) == 4))
4674 return nor
->params
.quad_enable(nor
);
4677 static int spi_nor_init(struct spi_nor
*nor
)
4681 if (nor
->clear_sr_bp
) {
4682 if (nor
->params
.quad_enable
== spansion_quad_enable
)
4683 nor
->clear_sr_bp
= spi_nor_spansion_clear_sr_bp
;
4685 err
= nor
->clear_sr_bp(nor
);
4688 "fail to clear block protection bits\n");
4693 err
= spi_nor_quad_enable(nor
);
4695 dev_err(nor
->dev
, "quad mode not supported\n");
4699 if (nor
->addr_width
== 4 && !(nor
->flags
& SNOR_F_4B_OPCODES
)) {
4701 * If the RESET# pin isn't hooked up properly, or the system
4702 * otherwise doesn't perform a reset command in the boot
4703 * sequence, it's impossible to 100% protect against unexpected
4704 * reboots (e.g., crashes). Warn the user (or hopefully, system
4705 * designer) that this is bad.
4707 WARN_ONCE(nor
->flags
& SNOR_F_BROKEN_RESET
,
4708 "enabling reset hack; may not recover from unexpected reboots\n");
4709 nor
->params
.set_4byte(nor
, true);
4715 /* mtd resume handler */
4716 static void spi_nor_resume(struct mtd_info
*mtd
)
4718 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
4719 struct device
*dev
= nor
->dev
;
4722 /* re-initialize the nor chip */
4723 ret
= spi_nor_init(nor
);
4725 dev_err(dev
, "resume() failed\n");
4728 void spi_nor_restore(struct spi_nor
*nor
)
4730 /* restore the addressing mode */
4731 if (nor
->addr_width
== 4 && !(nor
->flags
& SNOR_F_4B_OPCODES
) &&
4732 nor
->flags
& SNOR_F_BROKEN_RESET
)
4733 nor
->params
.set_4byte(nor
, false);
4735 EXPORT_SYMBOL_GPL(spi_nor_restore
);
4737 static const struct flash_info
*spi_nor_match_id(const char *name
)
4739 const struct flash_info
*id
= spi_nor_ids
;
4742 if (!strcmp(name
, id
->name
))
4749 static int spi_nor_set_addr_width(struct spi_nor
*nor
)
4751 if (nor
->addr_width
) {
4752 /* already configured from SFDP */
4753 } else if (nor
->info
->addr_width
) {
4754 nor
->addr_width
= nor
->info
->addr_width
;
4755 } else if (nor
->mtd
.size
> 0x1000000) {
4756 /* enable 4-byte addressing if the device exceeds 16MiB */
4757 nor
->addr_width
= 4;
4759 nor
->addr_width
= 3;
4762 if (nor
->addr_width
> SPI_NOR_MAX_ADDR_WIDTH
) {
4763 dev_err(nor
->dev
, "address width is too large: %u\n",
4768 /* Set 4byte opcodes when possible. */
4769 if (nor
->addr_width
== 4 && nor
->flags
& SNOR_F_4B_OPCODES
&&
4770 !(nor
->flags
& SNOR_F_HAS_4BAIT
))
4771 spi_nor_set_4byte_opcodes(nor
);
4776 static void spi_nor_debugfs_init(struct spi_nor
*nor
,
4777 const struct flash_info
*info
)
4779 struct mtd_info
*mtd
= &nor
->mtd
;
4781 mtd
->dbg
.partname
= info
->name
;
4782 mtd
->dbg
.partid
= devm_kasprintf(nor
->dev
, GFP_KERNEL
, "spi-nor:%*phN",
4783 info
->id_len
, info
->id
);
4786 static const struct flash_info
*spi_nor_get_flash_info(struct spi_nor
*nor
,
4789 const struct flash_info
*info
= NULL
;
4792 info
= spi_nor_match_id(name
);
4793 /* Try to auto-detect if chip name wasn't specified or not found */
4795 info
= spi_nor_read_id(nor
);
4796 if (IS_ERR_OR_NULL(info
))
4797 return ERR_PTR(-ENOENT
);
4800 * If caller has specified name of flash model that can normally be
4801 * detected using JEDEC, let's verify it.
4803 if (name
&& info
->id_len
) {
4804 const struct flash_info
*jinfo
;
4806 jinfo
= spi_nor_read_id(nor
);
4807 if (IS_ERR(jinfo
)) {
4809 } else if (jinfo
!= info
) {
4811 * JEDEC knows better, so overwrite platform ID. We
4812 * can't trust partitions any longer, but we'll let
4813 * mtd apply them anyway, since some partitions may be
4814 * marked read-only, and we don't want to lose that
4815 * information, even if it's not 100% accurate.
4817 dev_warn(nor
->dev
, "found %s, expected %s\n",
4818 jinfo
->name
, info
->name
);
4826 int spi_nor_scan(struct spi_nor
*nor
, const char *name
,
4827 const struct spi_nor_hwcaps
*hwcaps
)
4829 const struct flash_info
*info
;
4830 struct device
*dev
= nor
->dev
;
4831 struct mtd_info
*mtd
= &nor
->mtd
;
4832 struct device_node
*np
= spi_nor_get_flash_node(nor
);
4833 struct spi_nor_flash_parameter
*params
= &nor
->params
;
4837 ret
= spi_nor_check(nor
);
4841 /* Reset SPI protocol for all commands. */
4842 nor
->reg_proto
= SNOR_PROTO_1_1_1
;
4843 nor
->read_proto
= SNOR_PROTO_1_1_1
;
4844 nor
->write_proto
= SNOR_PROTO_1_1_1
;
4847 * We need the bounce buffer early to read/write registers when going
4848 * through the spi-mem layer (buffers have to be DMA-able).
4849 * For spi-mem drivers, we'll reallocate a new buffer if
4850 * nor->page_size turns out to be greater than PAGE_SIZE (which
4851 * shouldn't happen before long since NOR pages are usually less
4852 * than 1KB) after spi_nor_scan() returns.
4854 nor
->bouncebuf_size
= PAGE_SIZE
;
4855 nor
->bouncebuf
= devm_kmalloc(dev
, nor
->bouncebuf_size
,
4857 if (!nor
->bouncebuf
)
4860 info
= spi_nor_get_flash_info(nor
, name
);
4862 return PTR_ERR(info
);
4866 spi_nor_debugfs_init(nor
, info
);
4868 mutex_init(&nor
->lock
);
4871 * Make sure the XSR_RDY flag is set before calling
4872 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
4873 * with Atmel spi-nor
4875 if (info
->flags
& SPI_NOR_XSR_RDY
)
4876 nor
->flags
|= SNOR_F_READY_XSR_RDY
;
4878 if (info
->flags
& SPI_NOR_HAS_LOCK
)
4879 nor
->flags
|= SNOR_F_HAS_LOCK
;
4882 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
4883 * with the software protection bits set.
4885 if (JEDEC_MFR(nor
->info
) == SNOR_MFR_ATMEL
||
4886 JEDEC_MFR(nor
->info
) == SNOR_MFR_INTEL
||
4887 JEDEC_MFR(nor
->info
) == SNOR_MFR_SST
||
4888 nor
->info
->flags
& SPI_NOR_HAS_LOCK
)
4889 nor
->clear_sr_bp
= spi_nor_clear_sr_bp
;
4891 /* Init flash parameters based on flash_info struct and SFDP */
4892 spi_nor_init_params(nor
);
4895 mtd
->name
= dev_name(dev
);
4897 mtd
->type
= MTD_NORFLASH
;
4899 mtd
->flags
= MTD_CAP_NORFLASH
;
4900 mtd
->size
= params
->size
;
4901 mtd
->_erase
= spi_nor_erase
;
4902 mtd
->_read
= spi_nor_read
;
4903 mtd
->_resume
= spi_nor_resume
;
4905 if (nor
->params
.locking_ops
) {
4906 mtd
->_lock
= spi_nor_lock
;
4907 mtd
->_unlock
= spi_nor_unlock
;
4908 mtd
->_is_locked
= spi_nor_is_locked
;
4911 /* sst nor chips use AAI word program */
4912 if (info
->flags
& SST_WRITE
)
4913 mtd
->_write
= sst_write
;
4915 mtd
->_write
= spi_nor_write
;
4917 if (info
->flags
& USE_FSR
)
4918 nor
->flags
|= SNOR_F_USE_FSR
;
4919 if (info
->flags
& SPI_NOR_HAS_TB
)
4920 nor
->flags
|= SNOR_F_HAS_SR_TB
;
4921 if (info
->flags
& NO_CHIP_ERASE
)
4922 nor
->flags
|= SNOR_F_NO_OP_CHIP_ERASE
;
4923 if (info
->flags
& USE_CLSR
)
4924 nor
->flags
|= SNOR_F_USE_CLSR
;
4926 if (info
->flags
& SPI_NOR_NO_ERASE
)
4927 mtd
->flags
|= MTD_NO_ERASE
;
4929 mtd
->dev
.parent
= dev
;
4930 nor
->page_size
= params
->page_size
;
4931 mtd
->writebufsize
= nor
->page_size
;
4933 if (of_property_read_bool(np
, "broken-flash-reset"))
4934 nor
->flags
|= SNOR_F_BROKEN_RESET
;
4937 * Configure the SPI memory:
4938 * - select op codes for (Fast) Read, Page Program and Sector Erase.
4939 * - set the number of dummy cycles (mode cycles + wait states).
4940 * - set the SPI protocols for register and memory accesses.
4942 ret
= spi_nor_setup(nor
, hwcaps
);
4946 if (info
->flags
& SPI_NOR_4B_OPCODES
)
4947 nor
->flags
|= SNOR_F_4B_OPCODES
;
4949 ret
= spi_nor_set_addr_width(nor
);
4953 /* Send all the required SPI flash commands to initialize device */
4954 ret
= spi_nor_init(nor
);
4958 dev_info(dev
, "%s (%lld Kbytes)\n", info
->name
,
4959 (long long)mtd
->size
>> 10);
4962 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
4963 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
4964 mtd
->name
, (long long)mtd
->size
, (long long)(mtd
->size
>> 20),
4965 mtd
->erasesize
, mtd
->erasesize
/ 1024, mtd
->numeraseregions
);
4967 if (mtd
->numeraseregions
)
4968 for (i
= 0; i
< mtd
->numeraseregions
; i
++)
4970 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
4971 ".erasesize = 0x%.8x (%uKiB), "
4972 ".numblocks = %d }\n",
4973 i
, (long long)mtd
->eraseregions
[i
].offset
,
4974 mtd
->eraseregions
[i
].erasesize
,
4975 mtd
->eraseregions
[i
].erasesize
/ 1024,
4976 mtd
->eraseregions
[i
].numblocks
);
4979 EXPORT_SYMBOL_GPL(spi_nor_scan
);
4981 static int spi_nor_probe(struct spi_mem
*spimem
)
4983 struct spi_device
*spi
= spimem
->spi
;
4984 struct flash_platform_data
*data
= dev_get_platdata(&spi
->dev
);
4985 struct spi_nor
*nor
;
4987 * Enable all caps by default. The core will mask them after
4988 * checking what's really supported using spi_mem_supports_op().
4990 const struct spi_nor_hwcaps hwcaps
= { .mask
= SNOR_HWCAPS_ALL
};
4994 nor
= devm_kzalloc(&spi
->dev
, sizeof(*nor
), GFP_KERNEL
);
4998 nor
->spimem
= spimem
;
4999 nor
->dev
= &spi
->dev
;
5000 spi_nor_set_flash_node(nor
, spi
->dev
.of_node
);
5002 spi_mem_set_drvdata(spimem
, nor
);
5004 if (data
&& data
->name
)
5005 nor
->mtd
.name
= data
->name
;
5008 nor
->mtd
.name
= spi_mem_get_name(spimem
);
5011 * For some (historical?) reason many platforms provide two different
5012 * names in flash_platform_data: "name" and "type". Quite often name is
5013 * set to "m25p80" and then "type" provides a real chip name.
5014 * If that's the case, respect "type" and ignore a "name".
5016 if (data
&& data
->type
)
5017 flash_name
= data
->type
;
5018 else if (!strcmp(spi
->modalias
, "spi-nor"))
5019 flash_name
= NULL
; /* auto-detect */
5021 flash_name
= spi
->modalias
;
5023 ret
= spi_nor_scan(nor
, flash_name
, &hwcaps
);
5028 * None of the existing parts have > 512B pages, but let's play safe
5029 * and add this logic so that if anyone ever adds support for such
5030 * a NOR we don't end up with buffer overflows.
5032 if (nor
->page_size
> PAGE_SIZE
) {
5033 nor
->bouncebuf_size
= nor
->page_size
;
5034 devm_kfree(nor
->dev
, nor
->bouncebuf
);
5035 nor
->bouncebuf
= devm_kmalloc(nor
->dev
,
5036 nor
->bouncebuf_size
,
5038 if (!nor
->bouncebuf
)
5042 return mtd_device_register(&nor
->mtd
, data
? data
->parts
: NULL
,
5043 data
? data
->nr_parts
: 0);
5046 static int spi_nor_remove(struct spi_mem
*spimem
)
5048 struct spi_nor
*nor
= spi_mem_get_drvdata(spimem
);
5050 spi_nor_restore(nor
);
5052 /* Clean up MTD stuff. */
5053 return mtd_device_unregister(&nor
->mtd
);
5056 static void spi_nor_shutdown(struct spi_mem
*spimem
)
5058 struct spi_nor
*nor
= spi_mem_get_drvdata(spimem
);
5060 spi_nor_restore(nor
);
5064 * Do NOT add to this array without reading the following:
5066 * Historically, many flash devices are bound to this driver by their name. But
5067 * since most of these flash are compatible to some extent, and their
5068 * differences can often be differentiated by the JEDEC read-ID command, we
5069 * encourage new users to add support to the spi-nor library, and simply bind
5070 * against a generic string here (e.g., "jedec,spi-nor").
5072 * Many flash names are kept here in this list (as well as in spi-nor.c) to
5073 * keep them available as module aliases for existing platforms.
5075 static const struct spi_device_id spi_nor_dev_ids
[] = {
5077 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
5078 * hack around the fact that the SPI core does not provide uevent
5079 * matching for .of_match_table
5084 * Entries not used in DTs that should be safe to drop after replacing
5085 * them with "spi-nor" in platform data.
5087 {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"},
5090 * Entries that were used in DTs without "jedec,spi-nor" fallback and
5091 * should be kept for backward compatibility.
5093 {"at25df321a"}, {"at25df641"}, {"at26df081a"},
5094 {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
5095 {"mx25l25635e"},{"mx66l51235l"},
5096 {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
5097 {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
5099 {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
5100 {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"},
5101 {"m25p64"}, {"m25p128"},
5102 {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
5103 {"w25q80bl"}, {"w25q128"}, {"w25q256"},
5105 /* Flashes that can't be detected using JEDEC */
5106 {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"},
5107 {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"},
5108 {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"},
5110 /* Everspin MRAMs (non-JEDEC) */
5111 { "mr25h128" }, /* 128 Kib, 40 MHz */
5112 { "mr25h256" }, /* 256 Kib, 40 MHz */
5113 { "mr25h10" }, /* 1 Mib, 40 MHz */
5114 { "mr25h40" }, /* 4 Mib, 40 MHz */
5118 MODULE_DEVICE_TABLE(spi
, spi_nor_dev_ids
);
5120 static const struct of_device_id spi_nor_of_table
[] = {
5122 * Generic compatibility for SPI NOR that can be identified by the
5123 * JEDEC READ ID opcode (0x9F). Use this, if possible.
5125 { .compatible
= "jedec,spi-nor" },
5128 MODULE_DEVICE_TABLE(of
, spi_nor_of_table
);
5131 * REVISIT: many of these chips have deep power-down modes, which
5132 * should clearly be entered on suspend() to minimize power use.
5133 * And also when they're otherwise idle...
5135 static struct spi_mem_driver spi_nor_driver
= {
5139 .of_match_table
= spi_nor_of_table
,
5141 .id_table
= spi_nor_dev_ids
,
5143 .probe
= spi_nor_probe
,
5144 .remove
= spi_nor_remove
,
5145 .shutdown
= spi_nor_shutdown
,
5147 module_spi_mem_driver(spi_nor_driver
);
5149 MODULE_LICENSE("GPL v2");
5150 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
5151 MODULE_AUTHOR("Mike Lavender");
5152 MODULE_DESCRIPTION("framework for SPI NOR");