net: DCB: Validate DCB_ATTR_DCB_BUFFER argument
[linux/fpc-iii.git] / drivers / mtd / spi-nor / spi-nor.c
blobf417fb680cd800d91256d3ca37407e995a222be6
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
6 * Copyright (C) 2005, Intec Automation Inc.
7 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 */
10 #include <linux/err.h>
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/mutex.h>
15 #include <linux/math64.h>
16 #include <linux/sizes.h>
17 #include <linux/slab.h>
18 #include <linux/sort.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/of_platform.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/spi/flash.h>
24 #include <linux/mtd/spi-nor.h>
26 /* Define max times to check status register before we give up. */
29 * For everything but full-chip erase; probably could be much smaller, but kept
30 * around for safety for now
32 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
35 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
36 * for larger flash
38 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
40 #define SPI_NOR_MAX_ID_LEN 6
41 #define SPI_NOR_MAX_ADDR_WIDTH 4
43 struct sfdp_parameter_header {
44 u8 id_lsb;
45 u8 minor;
46 u8 major;
47 u8 length; /* in double words */
48 u8 parameter_table_pointer[3]; /* byte address */
49 u8 id_msb;
52 #define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb)
53 #define SFDP_PARAM_HEADER_PTP(p) \
54 (((p)->parameter_table_pointer[2] << 16) | \
55 ((p)->parameter_table_pointer[1] << 8) | \
56 ((p)->parameter_table_pointer[0] << 0))
58 #define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */
59 #define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */
60 #define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */
62 #define SFDP_SIGNATURE 0x50444653U
63 #define SFDP_JESD216_MAJOR 1
64 #define SFDP_JESD216_MINOR 0
65 #define SFDP_JESD216A_MINOR 5
66 #define SFDP_JESD216B_MINOR 6
68 struct sfdp_header {
69 u32 signature; /* Ox50444653U <=> "SFDP" */
70 u8 minor;
71 u8 major;
72 u8 nph; /* 0-base number of parameter headers */
73 u8 unused;
75 /* Basic Flash Parameter Table. */
76 struct sfdp_parameter_header bfpt_header;
79 /* Basic Flash Parameter Table */
82 * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs.
83 * They are indexed from 1 but C arrays are indexed from 0.
85 #define BFPT_DWORD(i) ((i) - 1)
86 #define BFPT_DWORD_MAX 16
88 /* The first version of JESB216 defined only 9 DWORDs. */
89 #define BFPT_DWORD_MAX_JESD216 9
91 /* 1st DWORD. */
92 #define BFPT_DWORD1_FAST_READ_1_1_2 BIT(16)
93 #define BFPT_DWORD1_ADDRESS_BYTES_MASK GENMASK(18, 17)
94 #define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY (0x0UL << 17)
95 #define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4 (0x1UL << 17)
96 #define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY (0x2UL << 17)
97 #define BFPT_DWORD1_DTR BIT(19)
98 #define BFPT_DWORD1_FAST_READ_1_2_2 BIT(20)
99 #define BFPT_DWORD1_FAST_READ_1_4_4 BIT(21)
100 #define BFPT_DWORD1_FAST_READ_1_1_4 BIT(22)
102 /* 5th DWORD. */
103 #define BFPT_DWORD5_FAST_READ_2_2_2 BIT(0)
104 #define BFPT_DWORD5_FAST_READ_4_4_4 BIT(4)
106 /* 11th DWORD. */
107 #define BFPT_DWORD11_PAGE_SIZE_SHIFT 4
108 #define BFPT_DWORD11_PAGE_SIZE_MASK GENMASK(7, 4)
110 /* 15th DWORD. */
113 * (from JESD216 rev B)
114 * Quad Enable Requirements (QER):
115 * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
116 * reads based on instruction. DQ3/HOLD# functions are hold during
117 * instruction phase.
118 * - 001b: QE is bit 1 of status register 2. It is set via Write Status with
119 * two data bytes where bit 1 of the second byte is one.
120 * [...]
121 * Writing only one byte to the status register has the side-effect of
122 * clearing status register 2, including the QE bit. The 100b code is
123 * used if writing one byte to the status register does not modify
124 * status register 2.
125 * - 010b: QE is bit 6 of status register 1. It is set via Write Status with
126 * one data byte where bit 6 is one.
127 * [...]
128 * - 011b: QE is bit 7 of status register 2. It is set via Write status
129 * register 2 instruction 3Eh with one data byte where bit 7 is one.
130 * [...]
131 * The status register 2 is read using instruction 3Fh.
132 * - 100b: QE is bit 1 of status register 2. It is set via Write Status with
133 * two data bytes where bit 1 of the second byte is one.
134 * [...]
135 * In contrast to the 001b code, writing one byte to the status
136 * register does not modify status register 2.
137 * - 101b: QE is bit 1 of status register 2. Status register 1 is read using
138 * Read Status instruction 05h. Status register2 is read using
139 * instruction 35h. QE is set via Write Status instruction 01h with
140 * two data bytes where bit 1 of the second byte is one.
141 * [...]
143 #define BFPT_DWORD15_QER_MASK GENMASK(22, 20)
144 #define BFPT_DWORD15_QER_NONE (0x0UL << 20) /* Micron */
145 #define BFPT_DWORD15_QER_SR2_BIT1_BUGGY (0x1UL << 20)
146 #define BFPT_DWORD15_QER_SR1_BIT6 (0x2UL << 20) /* Macronix */
147 #define BFPT_DWORD15_QER_SR2_BIT7 (0x3UL << 20)
148 #define BFPT_DWORD15_QER_SR2_BIT1_NO_RD (0x4UL << 20)
149 #define BFPT_DWORD15_QER_SR2_BIT1 (0x5UL << 20) /* Spansion */
151 struct sfdp_bfpt {
152 u32 dwords[BFPT_DWORD_MAX];
156 * struct spi_nor_fixups - SPI NOR fixup hooks
157 * @default_init: called after default flash parameters init. Used to tweak
158 * flash parameters when information provided by the flash_info
159 * table is incomplete or wrong.
160 * @post_bfpt: called after the BFPT table has been parsed
161 * @post_sfdp: called after SFDP has been parsed (is also called for SPI NORs
162 * that do not support RDSFDP). Typically used to tweak various
163 * parameters that could not be extracted by other means (i.e.
164 * when information provided by the SFDP/flash_info tables are
165 * incomplete or wrong).
167 * Those hooks can be used to tweak the SPI NOR configuration when the SFDP
168 * table is broken or not available.
170 struct spi_nor_fixups {
171 void (*default_init)(struct spi_nor *nor);
172 int (*post_bfpt)(struct spi_nor *nor,
173 const struct sfdp_parameter_header *bfpt_header,
174 const struct sfdp_bfpt *bfpt,
175 struct spi_nor_flash_parameter *params);
176 void (*post_sfdp)(struct spi_nor *nor);
179 struct flash_info {
180 char *name;
183 * This array stores the ID bytes.
184 * The first three bytes are the JEDIC ID.
185 * JEDEC ID zero means "no ID" (mostly older chips).
187 u8 id[SPI_NOR_MAX_ID_LEN];
188 u8 id_len;
190 /* The size listed here is what works with SPINOR_OP_SE, which isn't
191 * necessarily called a "sector" by the vendor.
193 unsigned sector_size;
194 u16 n_sectors;
196 u16 page_size;
197 u16 addr_width;
199 u16 flags;
200 #define SECT_4K BIT(0) /* SPINOR_OP_BE_4K works uniformly */
201 #define SPI_NOR_NO_ERASE BIT(1) /* No erase command needed */
202 #define SST_WRITE BIT(2) /* use SST byte programming */
203 #define SPI_NOR_NO_FR BIT(3) /* Can't do fastread */
204 #define SECT_4K_PMC BIT(4) /* SPINOR_OP_BE_4K_PMC works uniformly */
205 #define SPI_NOR_DUAL_READ BIT(5) /* Flash supports Dual Read */
206 #define SPI_NOR_QUAD_READ BIT(6) /* Flash supports Quad Read */
207 #define USE_FSR BIT(7) /* use flag status register */
208 #define SPI_NOR_HAS_LOCK BIT(8) /* Flash supports lock/unlock via SR */
209 #define SPI_NOR_HAS_TB BIT(9) /*
210 * Flash SR has Top/Bottom (TB) protect
211 * bit. Must be used with
212 * SPI_NOR_HAS_LOCK.
214 #define SPI_NOR_XSR_RDY BIT(10) /*
215 * S3AN flashes have specific opcode to
216 * read the status register.
217 * Flags SPI_NOR_XSR_RDY and SPI_S3AN
218 * use the same bit as one implies the
219 * other, but we will get rid of
220 * SPI_S3AN soon.
222 #define SPI_S3AN BIT(10) /*
223 * Xilinx Spartan 3AN In-System Flash
224 * (MFR cannot be used for probing
225 * because it has the same value as
226 * ATMEL flashes)
228 #define SPI_NOR_4B_OPCODES BIT(11) /*
229 * Use dedicated 4byte address op codes
230 * to support memory size above 128Mib.
232 #define NO_CHIP_ERASE BIT(12) /* Chip does not support chip erase */
233 #define SPI_NOR_SKIP_SFDP BIT(13) /* Skip parsing of SFDP tables */
234 #define USE_CLSR BIT(14) /* use CLSR command */
235 #define SPI_NOR_OCTAL_READ BIT(15) /* Flash supports Octal Read */
237 /* Part specific fixup hooks. */
238 const struct spi_nor_fixups *fixups;
241 #define JEDEC_MFR(info) ((info)->id[0])
244 * spi_nor_spimem_xfer_data() - helper function to read/write data to
245 * flash's memory region
246 * @nor: pointer to 'struct spi_nor'
247 * @op: pointer to 'struct spi_mem_op' template for transfer
249 * Return: number of bytes transferred on success, -errno otherwise
251 static ssize_t spi_nor_spimem_xfer_data(struct spi_nor *nor,
252 struct spi_mem_op *op)
254 bool usebouncebuf = false;
255 void *rdbuf = NULL;
256 const void *buf;
257 int ret;
259 if (op->data.dir == SPI_MEM_DATA_IN)
260 buf = op->data.buf.in;
261 else
262 buf = op->data.buf.out;
264 if (object_is_on_stack(buf) || !virt_addr_valid(buf))
265 usebouncebuf = true;
267 if (usebouncebuf) {
268 if (op->data.nbytes > nor->bouncebuf_size)
269 op->data.nbytes = nor->bouncebuf_size;
271 if (op->data.dir == SPI_MEM_DATA_IN) {
272 rdbuf = op->data.buf.in;
273 op->data.buf.in = nor->bouncebuf;
274 } else {
275 op->data.buf.out = nor->bouncebuf;
276 memcpy(nor->bouncebuf, buf,
277 op->data.nbytes);
281 ret = spi_mem_adjust_op_size(nor->spimem, op);
282 if (ret)
283 return ret;
285 ret = spi_mem_exec_op(nor->spimem, op);
286 if (ret)
287 return ret;
289 if (usebouncebuf && op->data.dir == SPI_MEM_DATA_IN)
290 memcpy(rdbuf, nor->bouncebuf, op->data.nbytes);
292 return op->data.nbytes;
296 * spi_nor_spimem_read_data() - read data from flash's memory region via
297 * spi-mem
298 * @nor: pointer to 'struct spi_nor'
299 * @from: offset to read from
300 * @len: number of bytes to read
301 * @buf: pointer to dst buffer
303 * Return: number of bytes read successfully, -errno otherwise
305 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
306 size_t len, u8 *buf)
308 struct spi_mem_op op =
309 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
310 SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
311 SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
312 SPI_MEM_OP_DATA_IN(len, buf, 1));
314 /* get transfer protocols. */
315 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
316 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
317 op.dummy.buswidth = op.addr.buswidth;
318 op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
320 /* convert the dummy cycles to the number of bytes */
321 op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
323 return spi_nor_spimem_xfer_data(nor, &op);
327 * spi_nor_read_data() - read data from flash memory
328 * @nor: pointer to 'struct spi_nor'
329 * @from: offset to read from
330 * @len: number of bytes to read
331 * @buf: pointer to dst buffer
333 * Return: number of bytes read successfully, -errno otherwise
335 static ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len,
336 u8 *buf)
338 if (nor->spimem)
339 return spi_nor_spimem_read_data(nor, from, len, buf);
341 return nor->read(nor, from, len, buf);
345 * spi_nor_spimem_write_data() - write data to flash memory via
346 * spi-mem
347 * @nor: pointer to 'struct spi_nor'
348 * @to: offset to write to
349 * @len: number of bytes to write
350 * @buf: pointer to src buffer
352 * Return: number of bytes written successfully, -errno otherwise
354 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
355 size_t len, const u8 *buf)
357 struct spi_mem_op op =
358 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
359 SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
360 SPI_MEM_OP_NO_DUMMY,
361 SPI_MEM_OP_DATA_OUT(len, buf, 1));
363 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
364 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
365 op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
367 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
368 op.addr.nbytes = 0;
370 return spi_nor_spimem_xfer_data(nor, &op);
374 * spi_nor_write_data() - write data to flash memory
375 * @nor: pointer to 'struct spi_nor'
376 * @to: offset to write to
377 * @len: number of bytes to write
378 * @buf: pointer to src buffer
380 * Return: number of bytes written successfully, -errno otherwise
382 static ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
383 const u8 *buf)
385 if (nor->spimem)
386 return spi_nor_spimem_write_data(nor, to, len, buf);
388 return nor->write(nor, to, len, buf);
392 * Read the status register, returning its value in the location
393 * Return the status register value.
394 * Returns negative if error occurred.
396 static int read_sr(struct spi_nor *nor)
398 int ret;
400 if (nor->spimem) {
401 struct spi_mem_op op =
402 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),
403 SPI_MEM_OP_NO_ADDR,
404 SPI_MEM_OP_NO_DUMMY,
405 SPI_MEM_OP_DATA_IN(1, nor->bouncebuf, 1));
407 ret = spi_mem_exec_op(nor->spimem, &op);
408 } else {
409 ret = nor->read_reg(nor, SPINOR_OP_RDSR, nor->bouncebuf, 1);
412 if (ret < 0) {
413 pr_err("error %d reading SR\n", (int) ret);
414 return ret;
417 return nor->bouncebuf[0];
421 * Read the flag status register, returning its value in the location
422 * Return the status register value.
423 * Returns negative if error occurred.
425 static int read_fsr(struct spi_nor *nor)
427 int ret;
429 if (nor->spimem) {
430 struct spi_mem_op op =
431 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 1),
432 SPI_MEM_OP_NO_ADDR,
433 SPI_MEM_OP_NO_DUMMY,
434 SPI_MEM_OP_DATA_IN(1, nor->bouncebuf, 1));
436 ret = spi_mem_exec_op(nor->spimem, &op);
437 } else {
438 ret = nor->read_reg(nor, SPINOR_OP_RDFSR, nor->bouncebuf, 1);
441 if (ret < 0) {
442 pr_err("error %d reading FSR\n", ret);
443 return ret;
446 return nor->bouncebuf[0];
450 * Read configuration register, returning its value in the
451 * location. Return the configuration register value.
452 * Returns negative if error occurred.
454 static int read_cr(struct spi_nor *nor)
456 int ret;
458 if (nor->spimem) {
459 struct spi_mem_op op =
460 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 1),
461 SPI_MEM_OP_NO_ADDR,
462 SPI_MEM_OP_NO_DUMMY,
463 SPI_MEM_OP_DATA_IN(1, nor->bouncebuf, 1));
465 ret = spi_mem_exec_op(nor->spimem, &op);
466 } else {
467 ret = nor->read_reg(nor, SPINOR_OP_RDCR, nor->bouncebuf, 1);
470 if (ret < 0) {
471 dev_err(nor->dev, "error %d reading CR\n", ret);
472 return ret;
475 return nor->bouncebuf[0];
479 * Write status register 1 byte
480 * Returns negative if error occurred.
482 static int write_sr(struct spi_nor *nor, u8 val)
484 nor->bouncebuf[0] = val;
485 if (nor->spimem) {
486 struct spi_mem_op op =
487 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),
488 SPI_MEM_OP_NO_ADDR,
489 SPI_MEM_OP_NO_DUMMY,
490 SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
492 return spi_mem_exec_op(nor->spimem, &op);
495 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->bouncebuf, 1);
499 * Set write enable latch with Write Enable command.
500 * Returns negative if error occurred.
502 static int write_enable(struct spi_nor *nor)
504 if (nor->spimem) {
505 struct spi_mem_op op =
506 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),
507 SPI_MEM_OP_NO_ADDR,
508 SPI_MEM_OP_NO_DUMMY,
509 SPI_MEM_OP_NO_DATA);
511 return spi_mem_exec_op(nor->spimem, &op);
514 return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
518 * Send write disable instruction to the chip.
520 static int write_disable(struct spi_nor *nor)
522 if (nor->spimem) {
523 struct spi_mem_op op =
524 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),
525 SPI_MEM_OP_NO_ADDR,
526 SPI_MEM_OP_NO_DUMMY,
527 SPI_MEM_OP_NO_DATA);
529 return spi_mem_exec_op(nor->spimem, &op);
532 return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
535 static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
537 return mtd->priv;
541 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
543 size_t i;
545 for (i = 0; i < size; i++)
546 if (table[i][0] == opcode)
547 return table[i][1];
549 /* No conversion found, keep input op code. */
550 return opcode;
553 static u8 spi_nor_convert_3to4_read(u8 opcode)
555 static const u8 spi_nor_3to4_read[][2] = {
556 { SPINOR_OP_READ, SPINOR_OP_READ_4B },
557 { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
558 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
559 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
560 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
561 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
562 { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
563 { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
565 { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
566 { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
567 { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
570 return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
571 ARRAY_SIZE(spi_nor_3to4_read));
574 static u8 spi_nor_convert_3to4_program(u8 opcode)
576 static const u8 spi_nor_3to4_program[][2] = {
577 { SPINOR_OP_PP, SPINOR_OP_PP_4B },
578 { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
579 { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
580 { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
581 { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
584 return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
585 ARRAY_SIZE(spi_nor_3to4_program));
588 static u8 spi_nor_convert_3to4_erase(u8 opcode)
590 static const u8 spi_nor_3to4_erase[][2] = {
591 { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
592 { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
593 { SPINOR_OP_SE, SPINOR_OP_SE_4B },
596 return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
597 ARRAY_SIZE(spi_nor_3to4_erase));
600 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
602 nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
603 nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
604 nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
606 if (!spi_nor_has_uniform_erase(nor)) {
607 struct spi_nor_erase_map *map = &nor->params.erase_map;
608 struct spi_nor_erase_type *erase;
609 int i;
611 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
612 erase = &map->erase_type[i];
613 erase->opcode =
614 spi_nor_convert_3to4_erase(erase->opcode);
619 static int macronix_set_4byte(struct spi_nor *nor, bool enable)
621 if (nor->spimem) {
622 struct spi_mem_op op =
623 SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
624 SPINOR_OP_EN4B :
625 SPINOR_OP_EX4B,
627 SPI_MEM_OP_NO_ADDR,
628 SPI_MEM_OP_NO_DUMMY,
629 SPI_MEM_OP_NO_DATA);
631 return spi_mem_exec_op(nor->spimem, &op);
634 return nor->write_reg(nor, enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B,
635 NULL, 0);
638 static int st_micron_set_4byte(struct spi_nor *nor, bool enable)
640 int ret;
642 write_enable(nor);
643 ret = macronix_set_4byte(nor, enable);
644 write_disable(nor);
646 return ret;
649 static int spansion_set_4byte(struct spi_nor *nor, bool enable)
651 nor->bouncebuf[0] = enable << 7;
653 if (nor->spimem) {
654 struct spi_mem_op op =
655 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 1),
656 SPI_MEM_OP_NO_ADDR,
657 SPI_MEM_OP_NO_DUMMY,
658 SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
660 return spi_mem_exec_op(nor->spimem, &op);
663 return nor->write_reg(nor, SPINOR_OP_BRWR, nor->bouncebuf, 1);
666 static int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
668 nor->bouncebuf[0] = ear;
670 if (nor->spimem) {
671 struct spi_mem_op op =
672 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 1),
673 SPI_MEM_OP_NO_ADDR,
674 SPI_MEM_OP_NO_DUMMY,
675 SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
677 return spi_mem_exec_op(nor->spimem, &op);
680 return nor->write_reg(nor, SPINOR_OP_WREAR, nor->bouncebuf, 1);
683 static int winbond_set_4byte(struct spi_nor *nor, bool enable)
685 int ret;
687 ret = macronix_set_4byte(nor, enable);
688 if (ret || enable)
689 return ret;
692 * On Winbond W25Q256FV, leaving 4byte mode causes the Extended Address
693 * Register to be set to 1, so all 3-byte-address reads come from the
694 * second 16M. We must clear the register to enable normal behavior.
696 write_enable(nor);
697 ret = spi_nor_write_ear(nor, 0);
698 write_disable(nor);
700 return ret;
703 static int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr)
705 if (nor->spimem) {
706 struct spi_mem_op op =
707 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 1),
708 SPI_MEM_OP_NO_ADDR,
709 SPI_MEM_OP_NO_DUMMY,
710 SPI_MEM_OP_DATA_IN(1, sr, 1));
712 return spi_mem_exec_op(nor->spimem, &op);
715 return nor->read_reg(nor, SPINOR_OP_XRDSR, sr, 1);
718 static int s3an_sr_ready(struct spi_nor *nor)
720 int ret;
722 ret = spi_nor_xread_sr(nor, nor->bouncebuf);
723 if (ret < 0) {
724 dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
725 return ret;
728 return !!(nor->bouncebuf[0] & XSR_RDY);
731 static int spi_nor_clear_sr(struct spi_nor *nor)
733 if (nor->spimem) {
734 struct spi_mem_op op =
735 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 1),
736 SPI_MEM_OP_NO_ADDR,
737 SPI_MEM_OP_NO_DUMMY,
738 SPI_MEM_OP_NO_DATA);
740 return spi_mem_exec_op(nor->spimem, &op);
743 return nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
746 static int spi_nor_sr_ready(struct spi_nor *nor)
748 int sr = read_sr(nor);
749 if (sr < 0)
750 return sr;
752 if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
753 if (sr & SR_E_ERR)
754 dev_err(nor->dev, "Erase Error occurred\n");
755 else
756 dev_err(nor->dev, "Programming Error occurred\n");
758 spi_nor_clear_sr(nor);
759 return -EIO;
762 return !(sr & SR_WIP);
765 static int spi_nor_clear_fsr(struct spi_nor *nor)
767 if (nor->spimem) {
768 struct spi_mem_op op =
769 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 1),
770 SPI_MEM_OP_NO_ADDR,
771 SPI_MEM_OP_NO_DUMMY,
772 SPI_MEM_OP_NO_DATA);
774 return spi_mem_exec_op(nor->spimem, &op);
777 return nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0);
780 static int spi_nor_fsr_ready(struct spi_nor *nor)
782 int fsr = read_fsr(nor);
783 if (fsr < 0)
784 return fsr;
786 if (fsr & (FSR_E_ERR | FSR_P_ERR)) {
787 if (fsr & FSR_E_ERR)
788 dev_err(nor->dev, "Erase operation failed.\n");
789 else
790 dev_err(nor->dev, "Program operation failed.\n");
792 if (fsr & FSR_PT_ERR)
793 dev_err(nor->dev,
794 "Attempted to modify a protected sector.\n");
796 spi_nor_clear_fsr(nor);
797 return -EIO;
800 return fsr & FSR_READY;
803 static int spi_nor_ready(struct spi_nor *nor)
805 int sr, fsr;
807 if (nor->flags & SNOR_F_READY_XSR_RDY)
808 sr = s3an_sr_ready(nor);
809 else
810 sr = spi_nor_sr_ready(nor);
811 if (sr < 0)
812 return sr;
813 fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
814 if (fsr < 0)
815 return fsr;
816 return sr && fsr;
820 * Service routine to read status register until ready, or timeout occurs.
821 * Returns non-zero if error.
823 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
824 unsigned long timeout_jiffies)
826 unsigned long deadline;
827 int timeout = 0, ret;
829 deadline = jiffies + timeout_jiffies;
831 while (!timeout) {
832 if (time_after_eq(jiffies, deadline))
833 timeout = 1;
835 ret = spi_nor_ready(nor);
836 if (ret < 0)
837 return ret;
838 if (ret)
839 return 0;
841 cond_resched();
844 dev_err(nor->dev, "flash operation timed out\n");
846 return -ETIMEDOUT;
849 static int spi_nor_wait_till_ready(struct spi_nor *nor)
851 return spi_nor_wait_till_ready_with_timeout(nor,
852 DEFAULT_READY_WAIT_JIFFIES);
856 * Erase the whole flash memory
858 * Returns 0 if successful, non-zero otherwise.
860 static int erase_chip(struct spi_nor *nor)
862 dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
864 if (nor->spimem) {
865 struct spi_mem_op op =
866 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 1),
867 SPI_MEM_OP_NO_ADDR,
868 SPI_MEM_OP_NO_DUMMY,
869 SPI_MEM_OP_NO_DATA);
871 return spi_mem_exec_op(nor->spimem, &op);
874 return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
877 static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
879 int ret = 0;
881 mutex_lock(&nor->lock);
883 if (nor->prepare) {
884 ret = nor->prepare(nor, ops);
885 if (ret) {
886 dev_err(nor->dev, "failed in the preparation.\n");
887 mutex_unlock(&nor->lock);
888 return ret;
891 return ret;
894 static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
896 if (nor->unprepare)
897 nor->unprepare(nor, ops);
898 mutex_unlock(&nor->lock);
902 * This code converts an address to the Default Address Mode, that has non
903 * power of two page sizes. We must support this mode because it is the default
904 * mode supported by Xilinx tools, it can access the whole flash area and
905 * changing over to the Power-of-two mode is irreversible and corrupts the
906 * original data.
907 * Addr can safely be unsigned int, the biggest S3AN device is smaller than
908 * 4 MiB.
910 static u32 s3an_convert_addr(struct spi_nor *nor, u32 addr)
912 u32 offset, page;
914 offset = addr % nor->page_size;
915 page = addr / nor->page_size;
916 page <<= (nor->page_size > 512) ? 10 : 9;
918 return page | offset;
921 static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
923 if (!nor->params.convert_addr)
924 return addr;
926 return nor->params.convert_addr(nor, addr);
930 * Initiate the erasure of a single sector
932 static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
934 int i;
936 addr = spi_nor_convert_addr(nor, addr);
938 if (nor->erase)
939 return nor->erase(nor, addr);
941 if (nor->spimem) {
942 struct spi_mem_op op =
943 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
944 SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
945 SPI_MEM_OP_NO_DUMMY,
946 SPI_MEM_OP_NO_DATA);
948 return spi_mem_exec_op(nor->spimem, &op);
952 * Default implementation, if driver doesn't have a specialized HW
953 * control
955 for (i = nor->addr_width - 1; i >= 0; i--) {
956 nor->bouncebuf[i] = addr & 0xff;
957 addr >>= 8;
960 return nor->write_reg(nor, nor->erase_opcode, nor->bouncebuf,
961 nor->addr_width);
965 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
966 * @erase: pointer to a structure that describes a SPI NOR erase type
967 * @dividend: dividend value
968 * @remainder: pointer to u32 remainder (will be updated)
970 * Return: the result of the division
972 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
973 u64 dividend, u32 *remainder)
975 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
976 *remainder = (u32)dividend & erase->size_mask;
977 return dividend >> erase->size_shift;
981 * spi_nor_find_best_erase_type() - find the best erase type for the given
982 * offset in the serial flash memory and the
983 * number of bytes to erase. The region in
984 * which the address fits is expected to be
985 * provided.
986 * @map: the erase map of the SPI NOR
987 * @region: pointer to a structure that describes a SPI NOR erase region
988 * @addr: offset in the serial flash memory
989 * @len: number of bytes to erase
991 * Return: a pointer to the best fitted erase type, NULL otherwise.
993 static const struct spi_nor_erase_type *
994 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
995 const struct spi_nor_erase_region *region,
996 u64 addr, u32 len)
998 const struct spi_nor_erase_type *erase;
999 u32 rem;
1000 int i;
1001 u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
1004 * Erase types are ordered by size, with the smallest erase type at
1005 * index 0.
1007 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1008 /* Does the erase region support the tested erase type? */
1009 if (!(erase_mask & BIT(i)))
1010 continue;
1012 erase = &map->erase_type[i];
1014 /* Don't erase more than what the user has asked for. */
1015 if (erase->size > len)
1016 continue;
1018 /* Alignment is not mandatory for overlaid regions */
1019 if (region->offset & SNOR_OVERLAID_REGION)
1020 return erase;
1022 spi_nor_div_by_erase_size(erase, addr, &rem);
1023 if (rem)
1024 continue;
1025 else
1026 return erase;
1029 return NULL;
1033 * spi_nor_region_next() - get the next spi nor region
1034 * @region: pointer to a structure that describes a SPI NOR erase region
1036 * Return: the next spi nor region or NULL if last region.
1038 static struct spi_nor_erase_region *
1039 spi_nor_region_next(struct spi_nor_erase_region *region)
1041 if (spi_nor_region_is_last(region))
1042 return NULL;
1043 region++;
1044 return region;
1048 * spi_nor_find_erase_region() - find the region of the serial flash memory in
1049 * which the offset fits
1050 * @map: the erase map of the SPI NOR
1051 * @addr: offset in the serial flash memory
1053 * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
1054 * otherwise.
1056 static struct spi_nor_erase_region *
1057 spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
1059 struct spi_nor_erase_region *region = map->regions;
1060 u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1061 u64 region_end = region_start + region->size;
1063 while (addr < region_start || addr >= region_end) {
1064 region = spi_nor_region_next(region);
1065 if (!region)
1066 return ERR_PTR(-EINVAL);
1068 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1069 region_end = region_start + region->size;
1072 return region;
1076 * spi_nor_init_erase_cmd() - initialize an erase command
1077 * @region: pointer to a structure that describes a SPI NOR erase region
1078 * @erase: pointer to a structure that describes a SPI NOR erase type
1080 * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1081 * otherwise.
1083 static struct spi_nor_erase_command *
1084 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1085 const struct spi_nor_erase_type *erase)
1087 struct spi_nor_erase_command *cmd;
1089 cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1090 if (!cmd)
1091 return ERR_PTR(-ENOMEM);
1093 INIT_LIST_HEAD(&cmd->list);
1094 cmd->opcode = erase->opcode;
1095 cmd->count = 1;
1097 if (region->offset & SNOR_OVERLAID_REGION)
1098 cmd->size = region->size;
1099 else
1100 cmd->size = erase->size;
1102 return cmd;
1106 * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1107 * @erase_list: list of erase commands
1109 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1111 struct spi_nor_erase_command *cmd, *next;
1113 list_for_each_entry_safe(cmd, next, erase_list, list) {
1114 list_del(&cmd->list);
1115 kfree(cmd);
1120 * spi_nor_init_erase_cmd_list() - initialize erase command list
1121 * @nor: pointer to a 'struct spi_nor'
1122 * @erase_list: list of erase commands to be executed once we validate that the
1123 * erase can be performed
1124 * @addr: offset in the serial flash memory
1125 * @len: number of bytes to erase
1127 * Builds the list of best fitted erase commands and verifies if the erase can
1128 * be performed.
1130 * Return: 0 on success, -errno otherwise.
1132 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1133 struct list_head *erase_list,
1134 u64 addr, u32 len)
1136 const struct spi_nor_erase_map *map = &nor->params.erase_map;
1137 const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1138 struct spi_nor_erase_region *region;
1139 struct spi_nor_erase_command *cmd = NULL;
1140 u64 region_end;
1141 int ret = -EINVAL;
1143 region = spi_nor_find_erase_region(map, addr);
1144 if (IS_ERR(region))
1145 return PTR_ERR(region);
1147 region_end = spi_nor_region_end(region);
1149 while (len) {
1150 erase = spi_nor_find_best_erase_type(map, region, addr, len);
1151 if (!erase)
1152 goto destroy_erase_cmd_list;
1154 if (prev_erase != erase ||
1155 region->offset & SNOR_OVERLAID_REGION) {
1156 cmd = spi_nor_init_erase_cmd(region, erase);
1157 if (IS_ERR(cmd)) {
1158 ret = PTR_ERR(cmd);
1159 goto destroy_erase_cmd_list;
1162 list_add_tail(&cmd->list, erase_list);
1163 } else {
1164 cmd->count++;
1167 addr += cmd->size;
1168 len -= cmd->size;
1170 if (len && addr >= region_end) {
1171 region = spi_nor_region_next(region);
1172 if (!region)
1173 goto destroy_erase_cmd_list;
1174 region_end = spi_nor_region_end(region);
1177 prev_erase = erase;
1180 return 0;
1182 destroy_erase_cmd_list:
1183 spi_nor_destroy_erase_cmd_list(erase_list);
1184 return ret;
1188 * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1189 * @nor: pointer to a 'struct spi_nor'
1190 * @addr: offset in the serial flash memory
1191 * @len: number of bytes to erase
1193 * Build a list of best fitted erase commands and execute it once we validate
1194 * that the erase can be performed.
1196 * Return: 0 on success, -errno otherwise.
1198 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1200 LIST_HEAD(erase_list);
1201 struct spi_nor_erase_command *cmd, *next;
1202 int ret;
1204 ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1205 if (ret)
1206 return ret;
1208 list_for_each_entry_safe(cmd, next, &erase_list, list) {
1209 nor->erase_opcode = cmd->opcode;
1210 while (cmd->count) {
1211 write_enable(nor);
1213 ret = spi_nor_erase_sector(nor, addr);
1214 if (ret)
1215 goto destroy_erase_cmd_list;
1217 addr += cmd->size;
1218 cmd->count--;
1220 ret = spi_nor_wait_till_ready(nor);
1221 if (ret)
1222 goto destroy_erase_cmd_list;
1224 list_del(&cmd->list);
1225 kfree(cmd);
1228 return 0;
1230 destroy_erase_cmd_list:
1231 spi_nor_destroy_erase_cmd_list(&erase_list);
1232 return ret;
1236 * Erase an address range on the nor chip. The address range may extend
1237 * one or more erase sectors. Return an error is there is a problem erasing.
1239 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1241 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1242 u32 addr, len;
1243 uint32_t rem;
1244 int ret;
1246 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1247 (long long)instr->len);
1249 if (spi_nor_has_uniform_erase(nor)) {
1250 div_u64_rem(instr->len, mtd->erasesize, &rem);
1251 if (rem)
1252 return -EINVAL;
1255 addr = instr->addr;
1256 len = instr->len;
1258 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
1259 if (ret)
1260 return ret;
1262 /* whole-chip erase? */
1263 if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
1264 unsigned long timeout;
1266 write_enable(nor);
1268 if (erase_chip(nor)) {
1269 ret = -EIO;
1270 goto erase_err;
1274 * Scale the timeout linearly with the size of the flash, with
1275 * a minimum calibrated to an old 2MB flash. We could try to
1276 * pull these from CFI/SFDP, but these values should be good
1277 * enough for now.
1279 timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1280 CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1281 (unsigned long)(mtd->size / SZ_2M));
1282 ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1283 if (ret)
1284 goto erase_err;
1286 /* REVISIT in some cases we could speed up erasing large regions
1287 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
1288 * to use "small sector erase", but that's not always optimal.
1291 /* "sector"-at-a-time erase */
1292 } else if (spi_nor_has_uniform_erase(nor)) {
1293 while (len) {
1294 write_enable(nor);
1296 ret = spi_nor_erase_sector(nor, addr);
1297 if (ret)
1298 goto erase_err;
1300 addr += mtd->erasesize;
1301 len -= mtd->erasesize;
1303 ret = spi_nor_wait_till_ready(nor);
1304 if (ret)
1305 goto erase_err;
1308 /* erase multiple sectors */
1309 } else {
1310 ret = spi_nor_erase_multi_sectors(nor, addr, len);
1311 if (ret)
1312 goto erase_err;
1315 write_disable(nor);
1317 erase_err:
1318 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
1320 return ret;
1323 /* Write status register and ensure bits in mask match written values */
1324 static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask)
1326 int ret;
1328 write_enable(nor);
1329 ret = write_sr(nor, status_new);
1330 if (ret)
1331 return ret;
1333 ret = spi_nor_wait_till_ready(nor);
1334 if (ret)
1335 return ret;
1337 ret = read_sr(nor);
1338 if (ret < 0)
1339 return ret;
1341 return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
1344 static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
1345 uint64_t *len)
1347 struct mtd_info *mtd = &nor->mtd;
1348 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1349 int shift = ffs(mask) - 1;
1350 int pow;
1352 if (!(sr & mask)) {
1353 /* No protection */
1354 *ofs = 0;
1355 *len = 0;
1356 } else {
1357 pow = ((sr & mask) ^ mask) >> shift;
1358 *len = mtd->size >> pow;
1359 if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
1360 *ofs = 0;
1361 else
1362 *ofs = mtd->size - *len;
1367 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
1368 * @locked is false); 0 otherwise
1370 static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1371 u8 sr, bool locked)
1373 loff_t lock_offs;
1374 uint64_t lock_len;
1376 if (!len)
1377 return 1;
1379 stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
1381 if (locked)
1382 /* Requested range is a sub-range of locked range */
1383 return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
1384 else
1385 /* Requested range does not overlap with locked range */
1386 return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
1389 static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1390 u8 sr)
1392 return stm_check_lock_status_sr(nor, ofs, len, sr, true);
1395 static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1396 u8 sr)
1398 return stm_check_lock_status_sr(nor, ofs, len, sr, false);
1402 * Lock a region of the flash. Compatible with ST Micro and similar flash.
1403 * Supports the block protection bits BP{0,1,2} in the status register
1404 * (SR). Does not support these features found in newer SR bitfields:
1405 * - SEC: sector/block protect - only handle SEC=0 (block protect)
1406 * - CMP: complement protect - only support CMP=0 (range is not complemented)
1408 * Support for the following is provided conditionally for some flash:
1409 * - TB: top/bottom protect
1411 * Sample table portion for 8MB flash (Winbond w25q64fw):
1413 * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
1414 * --------------------------------------------------------------------------
1415 * X | X | 0 | 0 | 0 | NONE | NONE
1416 * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
1417 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
1418 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
1419 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
1420 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
1421 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
1422 * X | X | 1 | 1 | 1 | 8 MB | ALL
1423 * ------|-------|-------|-------|-------|---------------|-------------------
1424 * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
1425 * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
1426 * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
1427 * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
1428 * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
1429 * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
1431 * Returns negative on errors, 0 on success.
1433 static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1435 struct mtd_info *mtd = &nor->mtd;
1436 int status_old, status_new;
1437 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1438 u8 shift = ffs(mask) - 1, pow, val;
1439 loff_t lock_len;
1440 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1441 bool use_top;
1443 status_old = read_sr(nor);
1444 if (status_old < 0)
1445 return status_old;
1447 /* If nothing in our range is unlocked, we don't need to do anything */
1448 if (stm_is_locked_sr(nor, ofs, len, status_old))
1449 return 0;
1451 /* If anything below us is unlocked, we can't use 'bottom' protection */
1452 if (!stm_is_locked_sr(nor, 0, ofs, status_old))
1453 can_be_bottom = false;
1455 /* If anything above us is unlocked, we can't use 'top' protection */
1456 if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
1457 status_old))
1458 can_be_top = false;
1460 if (!can_be_bottom && !can_be_top)
1461 return -EINVAL;
1463 /* Prefer top, if both are valid */
1464 use_top = can_be_top;
1466 /* lock_len: length of region that should end up locked */
1467 if (use_top)
1468 lock_len = mtd->size - ofs;
1469 else
1470 lock_len = ofs + len;
1473 * Need smallest pow such that:
1475 * 1 / (2^pow) <= (len / size)
1477 * so (assuming power-of-2 size) we do:
1479 * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
1481 pow = ilog2(mtd->size) - ilog2(lock_len);
1482 val = mask - (pow << shift);
1483 if (val & ~mask)
1484 return -EINVAL;
1485 /* Don't "lock" with no region! */
1486 if (!(val & mask))
1487 return -EINVAL;
1489 status_new = (status_old & ~mask & ~SR_TB) | val;
1491 /* Disallow further writes if WP pin is asserted */
1492 status_new |= SR_SRWD;
1494 if (!use_top)
1495 status_new |= SR_TB;
1497 /* Don't bother if they're the same */
1498 if (status_new == status_old)
1499 return 0;
1501 /* Only modify protection if it will not unlock other areas */
1502 if ((status_new & mask) < (status_old & mask))
1503 return -EINVAL;
1505 return write_sr_and_check(nor, status_new, mask);
1509 * Unlock a region of the flash. See stm_lock() for more info
1511 * Returns negative on errors, 0 on success.
1513 static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1515 struct mtd_info *mtd = &nor->mtd;
1516 int status_old, status_new;
1517 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1518 u8 shift = ffs(mask) - 1, pow, val;
1519 loff_t lock_len;
1520 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1521 bool use_top;
1523 status_old = read_sr(nor);
1524 if (status_old < 0)
1525 return status_old;
1527 /* If nothing in our range is locked, we don't need to do anything */
1528 if (stm_is_unlocked_sr(nor, ofs, len, status_old))
1529 return 0;
1531 /* If anything below us is locked, we can't use 'top' protection */
1532 if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
1533 can_be_top = false;
1535 /* If anything above us is locked, we can't use 'bottom' protection */
1536 if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
1537 status_old))
1538 can_be_bottom = false;
1540 if (!can_be_bottom && !can_be_top)
1541 return -EINVAL;
1543 /* Prefer top, if both are valid */
1544 use_top = can_be_top;
1546 /* lock_len: length of region that should remain locked */
1547 if (use_top)
1548 lock_len = mtd->size - (ofs + len);
1549 else
1550 lock_len = ofs;
1553 * Need largest pow such that:
1555 * 1 / (2^pow) >= (len / size)
1557 * so (assuming power-of-2 size) we do:
1559 * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
1561 pow = ilog2(mtd->size) - order_base_2(lock_len);
1562 if (lock_len == 0) {
1563 val = 0; /* fully unlocked */
1564 } else {
1565 val = mask - (pow << shift);
1566 /* Some power-of-two sizes are not supported */
1567 if (val & ~mask)
1568 return -EINVAL;
1571 status_new = (status_old & ~mask & ~SR_TB) | val;
1573 /* Don't protect status register if we're fully unlocked */
1574 if (lock_len == 0)
1575 status_new &= ~SR_SRWD;
1577 if (!use_top)
1578 status_new |= SR_TB;
1580 /* Don't bother if they're the same */
1581 if (status_new == status_old)
1582 return 0;
1584 /* Only modify protection if it will not lock other areas */
1585 if ((status_new & mask) > (status_old & mask))
1586 return -EINVAL;
1588 return write_sr_and_check(nor, status_new, mask);
1592 * Check if a region of the flash is (completely) locked. See stm_lock() for
1593 * more info.
1595 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
1596 * negative on errors.
1598 static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
1600 int status;
1602 status = read_sr(nor);
1603 if (status < 0)
1604 return status;
1606 return stm_is_locked_sr(nor, ofs, len, status);
1609 static const struct spi_nor_locking_ops stm_locking_ops = {
1610 .lock = stm_lock,
1611 .unlock = stm_unlock,
1612 .is_locked = stm_is_locked,
1615 static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1617 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1618 int ret;
1620 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
1621 if (ret)
1622 return ret;
1624 ret = nor->params.locking_ops->lock(nor, ofs, len);
1626 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
1627 return ret;
1630 static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1632 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1633 int ret;
1635 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
1636 if (ret)
1637 return ret;
1639 ret = nor->params.locking_ops->unlock(nor, ofs, len);
1641 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
1642 return ret;
1645 static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1647 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1648 int ret;
1650 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
1651 if (ret)
1652 return ret;
1654 ret = nor->params.locking_ops->is_locked(nor, ofs, len);
1656 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
1657 return ret;
1661 * Write status Register and configuration register with 2 bytes
1662 * The first byte will be written to the status register, while the
1663 * second byte will be written to the configuration register.
1664 * Return negative if error occurred.
1666 static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
1668 int ret;
1670 write_enable(nor);
1672 if (nor->spimem) {
1673 struct spi_mem_op op =
1674 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),
1675 SPI_MEM_OP_NO_ADDR,
1676 SPI_MEM_OP_NO_DUMMY,
1677 SPI_MEM_OP_DATA_OUT(2, sr_cr, 1));
1679 ret = spi_mem_exec_op(nor->spimem, &op);
1680 } else {
1681 ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
1684 if (ret < 0) {
1685 dev_err(nor->dev,
1686 "error while writing configuration register\n");
1687 return -EINVAL;
1690 ret = spi_nor_wait_till_ready(nor);
1691 if (ret) {
1692 dev_err(nor->dev,
1693 "timeout while writing configuration register\n");
1694 return ret;
1697 return 0;
1701 * macronix_quad_enable() - set QE bit in Status Register.
1702 * @nor: pointer to a 'struct spi_nor'
1704 * Set the Quad Enable (QE) bit in the Status Register.
1706 * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
1708 * Return: 0 on success, -errno otherwise.
1710 static int macronix_quad_enable(struct spi_nor *nor)
1712 int ret, val;
1714 val = read_sr(nor);
1715 if (val < 0)
1716 return val;
1717 if (val & SR_QUAD_EN_MX)
1718 return 0;
1720 write_enable(nor);
1722 write_sr(nor, val | SR_QUAD_EN_MX);
1724 ret = spi_nor_wait_till_ready(nor);
1725 if (ret)
1726 return ret;
1728 ret = read_sr(nor);
1729 if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
1730 dev_err(nor->dev, "Macronix Quad bit not set\n");
1731 return -EINVAL;
1734 return 0;
1738 * spansion_quad_enable() - set QE bit in Configuraiton Register.
1739 * @nor: pointer to a 'struct spi_nor'
1741 * Set the Quad Enable (QE) bit in the Configuration Register.
1742 * This function is kept for legacy purpose because it has been used for a
1743 * long time without anybody complaining but it should be considered as
1744 * deprecated and maybe buggy.
1745 * First, this function doesn't care about the previous values of the Status
1746 * and Configuration Registers when it sets the QE bit (bit 1) in the
1747 * Configuration Register: all other bits are cleared, which may have unwanted
1748 * side effects like removing some block protections.
1749 * Secondly, it uses the Read Configuration Register (35h) instruction though
1750 * some very old and few memories don't support this instruction. If a pull-up
1751 * resistor is present on the MISO/IO1 line, we might still be able to pass the
1752 * "read back" test because the QSPI memory doesn't recognize the command,
1753 * so leaves the MISO/IO1 line state unchanged, hence read_cr() returns 0xFF.
1755 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1756 * memories.
1758 * Return: 0 on success, -errno otherwise.
1760 static int spansion_quad_enable(struct spi_nor *nor)
1762 u8 *sr_cr = nor->bouncebuf;
1763 int ret;
1765 sr_cr[0] = 0;
1766 sr_cr[1] = CR_QUAD_EN_SPAN;
1767 ret = write_sr_cr(nor, sr_cr);
1768 if (ret)
1769 return ret;
1771 /* read back and check it */
1772 ret = read_cr(nor);
1773 if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1774 dev_err(nor->dev, "Spansion Quad bit not set\n");
1775 return -EINVAL;
1778 return 0;
1782 * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
1783 * @nor: pointer to a 'struct spi_nor'
1785 * Set the Quad Enable (QE) bit in the Configuration Register.
1786 * This function should be used with QSPI memories not supporting the Read
1787 * Configuration Register (35h) instruction.
1789 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1790 * memories.
1792 * Return: 0 on success, -errno otherwise.
1794 static int spansion_no_read_cr_quad_enable(struct spi_nor *nor)
1796 u8 *sr_cr = nor->bouncebuf;
1797 int ret;
1799 /* Keep the current value of the Status Register. */
1800 ret = read_sr(nor);
1801 if (ret < 0) {
1802 dev_err(nor->dev, "error while reading status register\n");
1803 return -EINVAL;
1805 sr_cr[0] = ret;
1806 sr_cr[1] = CR_QUAD_EN_SPAN;
1808 return write_sr_cr(nor, sr_cr);
1812 * spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
1813 * @nor: pointer to a 'struct spi_nor'
1815 * Set the Quad Enable (QE) bit in the Configuration Register.
1816 * This function should be used with QSPI memories supporting the Read
1817 * Configuration Register (35h) instruction.
1819 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1820 * memories.
1822 * Return: 0 on success, -errno otherwise.
1824 static int spansion_read_cr_quad_enable(struct spi_nor *nor)
1826 struct device *dev = nor->dev;
1827 u8 *sr_cr = nor->bouncebuf;
1828 int ret;
1830 /* Check current Quad Enable bit value. */
1831 ret = read_cr(nor);
1832 if (ret < 0) {
1833 dev_err(dev, "error while reading configuration register\n");
1834 return -EINVAL;
1837 if (ret & CR_QUAD_EN_SPAN)
1838 return 0;
1840 sr_cr[1] = ret | CR_QUAD_EN_SPAN;
1842 /* Keep the current value of the Status Register. */
1843 ret = read_sr(nor);
1844 if (ret < 0) {
1845 dev_err(dev, "error while reading status register\n");
1846 return -EINVAL;
1848 sr_cr[0] = ret;
1850 ret = write_sr_cr(nor, sr_cr);
1851 if (ret)
1852 return ret;
1854 /* Read back and check it. */
1855 ret = read_cr(nor);
1856 if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1857 dev_err(nor->dev, "Spansion Quad bit not set\n");
1858 return -EINVAL;
1861 return 0;
1864 static int spi_nor_write_sr2(struct spi_nor *nor, u8 *sr2)
1866 if (nor->spimem) {
1867 struct spi_mem_op op =
1868 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 1),
1869 SPI_MEM_OP_NO_ADDR,
1870 SPI_MEM_OP_NO_DUMMY,
1871 SPI_MEM_OP_DATA_OUT(1, sr2, 1));
1873 return spi_mem_exec_op(nor->spimem, &op);
1876 return nor->write_reg(nor, SPINOR_OP_WRSR2, sr2, 1);
1879 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
1881 if (nor->spimem) {
1882 struct spi_mem_op op =
1883 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 1),
1884 SPI_MEM_OP_NO_ADDR,
1885 SPI_MEM_OP_NO_DUMMY,
1886 SPI_MEM_OP_DATA_IN(1, sr2, 1));
1888 return spi_mem_exec_op(nor->spimem, &op);
1891 return nor->read_reg(nor, SPINOR_OP_RDSR2, sr2, 1);
1895 * sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1896 * @nor: pointer to a 'struct spi_nor'
1898 * Set the Quad Enable (QE) bit in the Status Register 2.
1900 * This is one of the procedures to set the QE bit described in the SFDP
1901 * (JESD216 rev B) specification but no manufacturer using this procedure has
1902 * been identified yet, hence the name of the function.
1904 * Return: 0 on success, -errno otherwise.
1906 static int sr2_bit7_quad_enable(struct spi_nor *nor)
1908 u8 *sr2 = nor->bouncebuf;
1909 int ret;
1911 /* Check current Quad Enable bit value. */
1912 ret = spi_nor_read_sr2(nor, sr2);
1913 if (ret)
1914 return ret;
1915 if (*sr2 & SR2_QUAD_EN_BIT7)
1916 return 0;
1918 /* Update the Quad Enable bit. */
1919 *sr2 |= SR2_QUAD_EN_BIT7;
1921 write_enable(nor);
1923 ret = spi_nor_write_sr2(nor, sr2);
1924 if (ret < 0) {
1925 dev_err(nor->dev, "error while writing status register 2\n");
1926 return -EINVAL;
1929 ret = spi_nor_wait_till_ready(nor);
1930 if (ret < 0) {
1931 dev_err(nor->dev, "timeout while writing status register 2\n");
1932 return ret;
1935 /* Read back and check it. */
1936 ret = spi_nor_read_sr2(nor, sr2);
1937 if (!(ret > 0 && (*sr2 & SR2_QUAD_EN_BIT7))) {
1938 dev_err(nor->dev, "SR2 Quad bit not set\n");
1939 return -EINVAL;
1942 return 0;
1946 * spi_nor_clear_sr_bp() - clear the Status Register Block Protection bits.
1947 * @nor: pointer to a 'struct spi_nor'
1949 * Read-modify-write function that clears the Block Protection bits from the
1950 * Status Register without affecting other bits.
1952 * Return: 0 on success, -errno otherwise.
1954 static int spi_nor_clear_sr_bp(struct spi_nor *nor)
1956 int ret;
1957 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1959 ret = read_sr(nor);
1960 if (ret < 0) {
1961 dev_err(nor->dev, "error while reading status register\n");
1962 return ret;
1965 write_enable(nor);
1967 ret = write_sr(nor, ret & ~mask);
1968 if (ret) {
1969 dev_err(nor->dev, "write to status register failed\n");
1970 return ret;
1973 ret = spi_nor_wait_till_ready(nor);
1974 if (ret)
1975 dev_err(nor->dev, "timeout while writing status register\n");
1976 return ret;
1980 * spi_nor_spansion_clear_sr_bp() - clear the Status Register Block Protection
1981 * bits on spansion flashes.
1982 * @nor: pointer to a 'struct spi_nor'
1984 * Read-modify-write function that clears the Block Protection bits from the
1985 * Status Register without affecting other bits. The function is tightly
1986 * coupled with the spansion_quad_enable() function. Both assume that the Write
1987 * Register with 16 bits, together with the Read Configuration Register (35h)
1988 * instructions are supported.
1990 * Return: 0 on success, -errno otherwise.
1992 static int spi_nor_spansion_clear_sr_bp(struct spi_nor *nor)
1994 int ret;
1995 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1996 u8 *sr_cr = nor->bouncebuf;
1998 /* Check current Quad Enable bit value. */
1999 ret = read_cr(nor);
2000 if (ret < 0) {
2001 dev_err(nor->dev,
2002 "error while reading configuration register\n");
2003 return ret;
2007 * When the configuration register Quad Enable bit is one, only the
2008 * Write Status (01h) command with two data bytes may be used.
2010 if (ret & CR_QUAD_EN_SPAN) {
2011 sr_cr[1] = ret;
2013 ret = read_sr(nor);
2014 if (ret < 0) {
2015 dev_err(nor->dev,
2016 "error while reading status register\n");
2017 return ret;
2019 sr_cr[0] = ret & ~mask;
2021 ret = write_sr_cr(nor, sr_cr);
2022 if (ret)
2023 dev_err(nor->dev, "16-bit write register failed\n");
2024 return ret;
2028 * If the Quad Enable bit is zero, use the Write Status (01h) command
2029 * with one data byte.
2031 return spi_nor_clear_sr_bp(nor);
2034 /* Used when the "_ext_id" is two bytes at most */
2035 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
2036 .id = { \
2037 ((_jedec_id) >> 16) & 0xff, \
2038 ((_jedec_id) >> 8) & 0xff, \
2039 (_jedec_id) & 0xff, \
2040 ((_ext_id) >> 8) & 0xff, \
2041 (_ext_id) & 0xff, \
2042 }, \
2043 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
2044 .sector_size = (_sector_size), \
2045 .n_sectors = (_n_sectors), \
2046 .page_size = 256, \
2047 .flags = (_flags),
2049 #define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
2050 .id = { \
2051 ((_jedec_id) >> 16) & 0xff, \
2052 ((_jedec_id) >> 8) & 0xff, \
2053 (_jedec_id) & 0xff, \
2054 ((_ext_id) >> 16) & 0xff, \
2055 ((_ext_id) >> 8) & 0xff, \
2056 (_ext_id) & 0xff, \
2057 }, \
2058 .id_len = 6, \
2059 .sector_size = (_sector_size), \
2060 .n_sectors = (_n_sectors), \
2061 .page_size = 256, \
2062 .flags = (_flags),
2064 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
2065 .sector_size = (_sector_size), \
2066 .n_sectors = (_n_sectors), \
2067 .page_size = (_page_size), \
2068 .addr_width = (_addr_width), \
2069 .flags = (_flags),
2071 #define S3AN_INFO(_jedec_id, _n_sectors, _page_size) \
2072 .id = { \
2073 ((_jedec_id) >> 16) & 0xff, \
2074 ((_jedec_id) >> 8) & 0xff, \
2075 (_jedec_id) & 0xff \
2076 }, \
2077 .id_len = 3, \
2078 .sector_size = (8*_page_size), \
2079 .n_sectors = (_n_sectors), \
2080 .page_size = _page_size, \
2081 .addr_width = 3, \
2082 .flags = SPI_NOR_NO_FR | SPI_S3AN,
2084 static int
2085 is25lp256_post_bfpt_fixups(struct spi_nor *nor,
2086 const struct sfdp_parameter_header *bfpt_header,
2087 const struct sfdp_bfpt *bfpt,
2088 struct spi_nor_flash_parameter *params)
2091 * IS25LP256 supports 4B opcodes, but the BFPT advertises a
2092 * BFPT_DWORD1_ADDRESS_BYTES_3_ONLY address width.
2093 * Overwrite the address width advertised by the BFPT.
2095 if ((bfpt->dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) ==
2096 BFPT_DWORD1_ADDRESS_BYTES_3_ONLY)
2097 nor->addr_width = 4;
2099 return 0;
2102 static struct spi_nor_fixups is25lp256_fixups = {
2103 .post_bfpt = is25lp256_post_bfpt_fixups,
2106 static int
2107 mx25l25635_post_bfpt_fixups(struct spi_nor *nor,
2108 const struct sfdp_parameter_header *bfpt_header,
2109 const struct sfdp_bfpt *bfpt,
2110 struct spi_nor_flash_parameter *params)
2113 * MX25L25635F supports 4B opcodes but MX25L25635E does not.
2114 * Unfortunately, Macronix has re-used the same JEDEC ID for both
2115 * variants which prevents us from defining a new entry in the parts
2116 * table.
2117 * We need a way to differentiate MX25L25635E and MX25L25635F, and it
2118 * seems that the F version advertises support for Fast Read 4-4-4 in
2119 * its BFPT table.
2121 if (bfpt->dwords[BFPT_DWORD(5)] & BFPT_DWORD5_FAST_READ_4_4_4)
2122 nor->flags |= SNOR_F_4B_OPCODES;
2124 return 0;
2127 static struct spi_nor_fixups mx25l25635_fixups = {
2128 .post_bfpt = mx25l25635_post_bfpt_fixups,
2131 static void gd25q256_default_init(struct spi_nor *nor)
2134 * Some manufacturer like GigaDevice may use different
2135 * bit to set QE on different memories, so the MFR can't
2136 * indicate the quad_enable method for this case, we need
2137 * to set it in the default_init fixup hook.
2139 nor->params.quad_enable = macronix_quad_enable;
2142 static struct spi_nor_fixups gd25q256_fixups = {
2143 .default_init = gd25q256_default_init,
2146 /* NOTE: double check command sets and memory organization when you add
2147 * more nor chips. This current list focusses on newer chips, which
2148 * have been converging on command sets which including JEDEC ID.
2150 * All newly added entries should describe *hardware* and should use SECT_4K
2151 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
2152 * scenarios excluding small sectors there is config option that can be
2153 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
2154 * For historical (and compatibility) reasons (before we got above config) some
2155 * old entries may be missing 4K flag.
2157 static const struct flash_info spi_nor_ids[] = {
2158 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
2159 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
2160 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
2162 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
2163 { "at25df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
2164 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
2165 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
2167 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
2168 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
2169 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
2170 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
2172 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
2174 /* EON -- en25xxx */
2175 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
2176 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
2177 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
2178 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
2179 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
2180 { "en25q80a", INFO(0x1c3014, 0, 64 * 1024, 16,
2181 SECT_4K | SPI_NOR_DUAL_READ) },
2182 { "en25qh32", INFO(0x1c7016, 0, 64 * 1024, 64, 0) },
2183 { "en25qh64", INFO(0x1c7017, 0, 64 * 1024, 128,
2184 SECT_4K | SPI_NOR_DUAL_READ) },
2185 { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
2186 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
2187 { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K) },
2189 /* ESMT */
2190 { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
2191 { "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
2192 { "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_HAS_LOCK) },
2194 /* Everspin */
2195 { "mr25h128", CAT25_INFO( 16 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2196 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2197 { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2198 { "mr25h40", CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2200 /* Fujitsu */
2201 { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
2203 /* GigaDevice */
2205 "gd25q16", INFO(0xc84015, 0, 64 * 1024, 32,
2206 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2207 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2210 "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64,
2211 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2212 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2215 "gd25lq32", INFO(0xc86016, 0, 64 * 1024, 64,
2216 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2217 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2220 "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
2221 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2222 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2225 "gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
2226 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2227 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2230 "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
2231 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2232 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2235 "gd25q256", INFO(0xc84019, 0, 64 * 1024, 512,
2236 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2237 SPI_NOR_4B_OPCODES | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2238 .fixups = &gd25q256_fixups,
2241 /* Intel/Numonyx -- xxxs33b */
2242 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
2243 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
2244 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
2246 /* ISSI */
2247 { "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K) },
2248 { "is25lq040b", INFO(0x9d4013, 0, 64 * 1024, 8,
2249 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2250 { "is25lp016d", INFO(0x9d6015, 0, 64 * 1024, 32,
2251 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2252 { "is25lp080d", INFO(0x9d6014, 0, 64 * 1024, 16,
2253 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2254 { "is25lp032", INFO(0x9d6016, 0, 64 * 1024, 64,
2255 SECT_4K | SPI_NOR_DUAL_READ) },
2256 { "is25lp064", INFO(0x9d6017, 0, 64 * 1024, 128,
2257 SECT_4K | SPI_NOR_DUAL_READ) },
2258 { "is25lp128", INFO(0x9d6018, 0, 64 * 1024, 256,
2259 SECT_4K | SPI_NOR_DUAL_READ) },
2260 { "is25lp256", INFO(0x9d6019, 0, 64 * 1024, 512,
2261 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2262 SPI_NOR_4B_OPCODES)
2263 .fixups = &is25lp256_fixups },
2264 { "is25wp032", INFO(0x9d7016, 0, 64 * 1024, 64,
2265 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2266 { "is25wp064", INFO(0x9d7017, 0, 64 * 1024, 128,
2267 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2268 { "is25wp128", INFO(0x9d7018, 0, 64 * 1024, 256,
2269 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2271 /* Macronix */
2272 { "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K) },
2273 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
2274 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
2275 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
2276 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
2277 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K) },
2278 { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
2279 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
2280 { "mx25u2033e", INFO(0xc22532, 0, 64 * 1024, 4, SECT_4K) },
2281 { "mx25u3235f", INFO(0xc22536, 0, 64 * 1024, 64,
2282 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2283 { "mx25u4035", INFO(0xc22533, 0, 64 * 1024, 8, SECT_4K) },
2284 { "mx25u8035", INFO(0xc22534, 0, 64 * 1024, 16, SECT_4K) },
2285 { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
2286 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
2287 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
2288 { "mx25u12835f", INFO(0xc22538, 0, 64 * 1024, 256,
2289 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2290 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512,
2291 SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
2292 .fixups = &mx25l25635_fixups },
2293 { "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_4B_OPCODES) },
2294 { "mx25v8035f", INFO(0xc22314, 0, 64 * 1024, 16,
2295 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2296 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
2297 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2298 { "mx66u51235f", INFO(0xc2253a, 0, 64 * 1024, 1024, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2299 { "mx66l1g45g", INFO(0xc2201b, 0, 64 * 1024, 2048, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2300 { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
2302 /* Micron <--> ST Micro */
2303 { "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_QUAD_READ) },
2304 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
2305 { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
2306 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
2307 { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
2308 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
2309 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
2310 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2311 { "n25q256ax1", INFO(0x20bb19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) },
2312 { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
2313 { "mt25qu512a", INFO6(0x20bb20, 0x104400, 64 * 1024, 1024,
2314 SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
2315 SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2316 { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K |
2317 SPI_NOR_QUAD_READ) },
2318 { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
2319 { "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
2320 { "mt25ql02g", INFO(0x20ba22, 0, 64 * 1024, 4096,
2321 SECT_4K | USE_FSR | SPI_NOR_QUAD_READ |
2322 NO_CHIP_ERASE) },
2323 { "mt25qu02g", INFO(0x20bb22, 0, 64 * 1024, 4096, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
2325 /* Micron */
2327 "mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512,
2328 SECT_4K | USE_FSR | SPI_NOR_OCTAL_READ |
2329 SPI_NOR_4B_OPCODES)
2331 { "mt35xu02g", INFO(0x2c5b1c, 0, 128 * 1024, 2048,
2332 SECT_4K | USE_FSR | SPI_NOR_OCTAL_READ |
2333 SPI_NOR_4B_OPCODES) },
2335 /* PMC */
2336 { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
2337 { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
2338 { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
2340 /* Spansion/Cypress -- single (large) sector size only, at least
2341 * for the chips listed here (without boot sectors).
2343 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2344 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2345 { "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64,
2346 SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2347 { "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256,
2348 SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2349 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, USE_CLSR) },
2350 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2351 { "s25fl512s", INFO6(0x010220, 0x4d0080, 256 * 1024, 256,
2352 SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2353 SPI_NOR_HAS_LOCK | USE_CLSR) },
2354 { "s25fs512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2355 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
2356 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
2357 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
2358 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2359 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2360 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
2361 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
2362 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
2363 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
2364 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
2365 { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2366 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2367 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2368 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
2369 { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2370 { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K) },
2371 { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) },
2372 { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ) },
2373 { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ) },
2374 { "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2375 { "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2376 { "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2378 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
2379 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
2380 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
2381 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
2382 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
2383 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
2384 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
2385 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
2386 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
2387 { "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K) },
2388 { "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K) },
2389 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
2390 { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
2391 { "sst26wf016b", INFO(0xbf2651, 0, 64 * 1024, 32, SECT_4K |
2392 SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2393 { "sst26vf064b", INFO(0xbf2643, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2395 /* ST Microelectronics -- newer production may have feature updates */
2396 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
2397 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
2398 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
2399 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
2400 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
2401 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
2402 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
2403 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
2404 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
2406 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
2407 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
2408 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
2409 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
2410 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
2411 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
2412 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
2413 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
2414 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
2416 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
2417 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
2418 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
2420 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
2421 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
2422 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
2424 { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
2425 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
2426 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
2427 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
2428 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
2429 { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
2431 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
2432 { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) },
2433 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
2434 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
2435 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
2436 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
2437 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
2439 "w25q16dw", INFO(0xef6015, 0, 64 * 1024, 32,
2440 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2441 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2443 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
2445 "w25q16jv-im/jm", INFO(0xef7015, 0, 64 * 1024, 32,
2446 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2447 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2449 { "w25q20cl", INFO(0xef4012, 0, 64 * 1024, 4, SECT_4K) },
2450 { "w25q20bw", INFO(0xef5012, 0, 64 * 1024, 4, SECT_4K) },
2451 { "w25q20ew", INFO(0xef6012, 0, 64 * 1024, 4, SECT_4K) },
2452 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
2454 "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64,
2455 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2456 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2459 "w25q32jv", INFO(0xef7016, 0, 64 * 1024, 64,
2460 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2461 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2463 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
2464 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
2466 "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
2467 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2468 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2471 "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
2472 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2473 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2476 "w25q128jv", INFO(0xef7018, 0, 64 * 1024, 256,
2477 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2478 SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2480 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
2481 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
2482 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
2483 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2484 { "w25q256jvm", INFO(0xef7019, 0, 64 * 1024, 512,
2485 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2486 { "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024,
2487 SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_DUAL_READ) },
2489 /* Catalyst / On Semiconductor -- non-JEDEC */
2490 { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2491 { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2492 { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2493 { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2494 { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2496 /* Xilinx S3AN Internal Flash */
2497 { "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
2498 { "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
2499 { "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
2500 { "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
2501 { "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
2503 /* XMC (Wuhan Xinxin Semiconductor Manufacturing Corp.) */
2504 { "XM25QH64A", INFO(0x207017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2505 { "XM25QH128A", INFO(0x207018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2506 { },
2509 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
2511 int tmp;
2512 u8 *id = nor->bouncebuf;
2513 const struct flash_info *info;
2515 if (nor->spimem) {
2516 struct spi_mem_op op =
2517 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
2518 SPI_MEM_OP_NO_ADDR,
2519 SPI_MEM_OP_NO_DUMMY,
2520 SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));
2522 tmp = spi_mem_exec_op(nor->spimem, &op);
2523 } else {
2524 tmp = nor->read_reg(nor, SPINOR_OP_RDID, id,
2525 SPI_NOR_MAX_ID_LEN);
2527 if (tmp < 0) {
2528 dev_err(nor->dev, "error %d reading JEDEC ID\n", tmp);
2529 return ERR_PTR(tmp);
2532 for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
2533 info = &spi_nor_ids[tmp];
2534 if (info->id_len) {
2535 if (!memcmp(info->id, id, info->id_len))
2536 return &spi_nor_ids[tmp];
2539 dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
2540 SPI_NOR_MAX_ID_LEN, id);
2541 return ERR_PTR(-ENODEV);
2544 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
2545 size_t *retlen, u_char *buf)
2547 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2548 ssize_t ret;
2550 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
2552 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
2553 if (ret)
2554 return ret;
2556 while (len) {
2557 loff_t addr = from;
2559 addr = spi_nor_convert_addr(nor, addr);
2561 ret = spi_nor_read_data(nor, addr, len, buf);
2562 if (ret == 0) {
2563 /* We shouldn't see 0-length reads */
2564 ret = -EIO;
2565 goto read_err;
2567 if (ret < 0)
2568 goto read_err;
2570 WARN_ON(ret > len);
2571 *retlen += ret;
2572 buf += ret;
2573 from += ret;
2574 len -= ret;
2576 ret = 0;
2578 read_err:
2579 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
2580 return ret;
2583 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
2584 size_t *retlen, const u_char *buf)
2586 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2587 size_t actual;
2588 int ret;
2590 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
2592 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
2593 if (ret)
2594 return ret;
2596 write_enable(nor);
2598 nor->sst_write_second = false;
2600 actual = to % 2;
2601 /* Start write from odd address. */
2602 if (actual) {
2603 nor->program_opcode = SPINOR_OP_BP;
2605 /* write one byte. */
2606 ret = spi_nor_write_data(nor, to, 1, buf);
2607 if (ret < 0)
2608 goto sst_write_err;
2609 WARN(ret != 1, "While writing 1 byte written %i bytes\n",
2610 (int)ret);
2611 ret = spi_nor_wait_till_ready(nor);
2612 if (ret)
2613 goto sst_write_err;
2615 to += actual;
2617 /* Write out most of the data here. */
2618 for (; actual < len - 1; actual += 2) {
2619 nor->program_opcode = SPINOR_OP_AAI_WP;
2621 /* write two bytes. */
2622 ret = spi_nor_write_data(nor, to, 2, buf + actual);
2623 if (ret < 0)
2624 goto sst_write_err;
2625 WARN(ret != 2, "While writing 2 bytes written %i bytes\n",
2626 (int)ret);
2627 ret = spi_nor_wait_till_ready(nor);
2628 if (ret)
2629 goto sst_write_err;
2630 to += 2;
2631 nor->sst_write_second = true;
2633 nor->sst_write_second = false;
2635 write_disable(nor);
2636 ret = spi_nor_wait_till_ready(nor);
2637 if (ret)
2638 goto sst_write_err;
2640 /* Write out trailing byte if it exists. */
2641 if (actual != len) {
2642 write_enable(nor);
2644 nor->program_opcode = SPINOR_OP_BP;
2645 ret = spi_nor_write_data(nor, to, 1, buf + actual);
2646 if (ret < 0)
2647 goto sst_write_err;
2648 WARN(ret != 1, "While writing 1 byte written %i bytes\n",
2649 (int)ret);
2650 ret = spi_nor_wait_till_ready(nor);
2651 if (ret)
2652 goto sst_write_err;
2653 write_disable(nor);
2654 actual += 1;
2656 sst_write_err:
2657 *retlen += actual;
2658 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
2659 return ret;
2663 * Write an address range to the nor chip. Data must be written in
2664 * FLASH_PAGESIZE chunks. The address range may be any size provided
2665 * it is within the physical boundaries.
2667 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
2668 size_t *retlen, const u_char *buf)
2670 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2671 size_t page_offset, page_remain, i;
2672 ssize_t ret;
2674 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
2676 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
2677 if (ret)
2678 return ret;
2680 for (i = 0; i < len; ) {
2681 ssize_t written;
2682 loff_t addr = to + i;
2685 * If page_size is a power of two, the offset can be quickly
2686 * calculated with an AND operation. On the other cases we
2687 * need to do a modulus operation (more expensive).
2688 * Power of two numbers have only one bit set and we can use
2689 * the instruction hweight32 to detect if we need to do a
2690 * modulus (do_div()) or not.
2692 if (hweight32(nor->page_size) == 1) {
2693 page_offset = addr & (nor->page_size - 1);
2694 } else {
2695 uint64_t aux = addr;
2697 page_offset = do_div(aux, nor->page_size);
2699 /* the size of data remaining on the first page */
2700 page_remain = min_t(size_t,
2701 nor->page_size - page_offset, len - i);
2703 addr = spi_nor_convert_addr(nor, addr);
2705 write_enable(nor);
2706 ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2707 if (ret < 0)
2708 goto write_err;
2709 written = ret;
2711 ret = spi_nor_wait_till_ready(nor);
2712 if (ret)
2713 goto write_err;
2714 *retlen += written;
2715 i += written;
2718 write_err:
2719 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
2720 return ret;
2723 static int spi_nor_check(struct spi_nor *nor)
2725 if (!nor->dev ||
2726 (!nor->spimem &&
2727 (!nor->read || !nor->write || !nor->read_reg ||
2728 !nor->write_reg))) {
2729 pr_err("spi-nor: please fill all the necessary fields!\n");
2730 return -EINVAL;
2733 return 0;
2736 static int s3an_nor_setup(struct spi_nor *nor,
2737 const struct spi_nor_hwcaps *hwcaps)
2739 int ret;
2741 ret = spi_nor_xread_sr(nor, nor->bouncebuf);
2742 if (ret < 0) {
2743 dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
2744 return ret;
2747 nor->erase_opcode = SPINOR_OP_XSE;
2748 nor->program_opcode = SPINOR_OP_XPP;
2749 nor->read_opcode = SPINOR_OP_READ;
2750 nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
2753 * This flashes have a page size of 264 or 528 bytes (known as
2754 * Default addressing mode). It can be changed to a more standard
2755 * Power of two mode where the page size is 256/512. This comes
2756 * with a price: there is 3% less of space, the data is corrupted
2757 * and the page size cannot be changed back to default addressing
2758 * mode.
2760 * The current addressing mode can be read from the XRDSR register
2761 * and should not be changed, because is a destructive operation.
2763 if (nor->bouncebuf[0] & XSR_PAGESIZE) {
2764 /* Flash in Power of 2 mode */
2765 nor->page_size = (nor->page_size == 264) ? 256 : 512;
2766 nor->mtd.writebufsize = nor->page_size;
2767 nor->mtd.size = 8 * nor->page_size * nor->info->n_sectors;
2768 nor->mtd.erasesize = 8 * nor->page_size;
2769 } else {
2770 /* Flash in Default addressing mode */
2771 nor->params.convert_addr = s3an_convert_addr;
2772 nor->mtd.erasesize = nor->info->sector_size;
2775 return 0;
2778 static void
2779 spi_nor_set_read_settings(struct spi_nor_read_command *read,
2780 u8 num_mode_clocks,
2781 u8 num_wait_states,
2782 u8 opcode,
2783 enum spi_nor_protocol proto)
2785 read->num_mode_clocks = num_mode_clocks;
2786 read->num_wait_states = num_wait_states;
2787 read->opcode = opcode;
2788 read->proto = proto;
2791 static void
2792 spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
2793 u8 opcode,
2794 enum spi_nor_protocol proto)
2796 pp->opcode = opcode;
2797 pp->proto = proto;
2800 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2802 size_t i;
2804 for (i = 0; i < size; i++)
2805 if (table[i][0] == (int)hwcaps)
2806 return table[i][1];
2808 return -EINVAL;
2811 static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2813 static const int hwcaps_read2cmd[][2] = {
2814 { SNOR_HWCAPS_READ, SNOR_CMD_READ },
2815 { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
2816 { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
2817 { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
2818 { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
2819 { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
2820 { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
2821 { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
2822 { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
2823 { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
2824 { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
2825 { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
2826 { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
2827 { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
2828 { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
2831 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2832 ARRAY_SIZE(hwcaps_read2cmd));
2835 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2837 static const int hwcaps_pp2cmd[][2] = {
2838 { SNOR_HWCAPS_PP, SNOR_CMD_PP },
2839 { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
2840 { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
2841 { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
2842 { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
2843 { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
2844 { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
2847 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2848 ARRAY_SIZE(hwcaps_pp2cmd));
2852 * Serial Flash Discoverable Parameters (SFDP) parsing.
2856 * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
2857 * addr_width and read_dummy members of the struct spi_nor
2858 * should be previously
2859 * set.
2860 * @nor: pointer to a 'struct spi_nor'
2861 * @addr: offset in the serial flash memory
2862 * @len: number of bytes to read
2863 * @buf: buffer where the data is copied into (dma-safe memory)
2865 * Return: 0 on success, -errno otherwise.
2867 static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
2869 ssize_t ret;
2871 while (len) {
2872 ret = spi_nor_read_data(nor, addr, len, buf);
2873 if (ret < 0)
2874 return ret;
2875 if (!ret || ret > len)
2876 return -EIO;
2878 buf += ret;
2879 addr += ret;
2880 len -= ret;
2882 return 0;
2886 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
2887 * @nor: pointer to a 'struct spi_nor'
2888 * @addr: offset in the SFDP area to start reading data from
2889 * @len: number of bytes to read
2890 * @buf: buffer where the SFDP data are copied into (dma-safe memory)
2892 * Whatever the actual numbers of bytes for address and dummy cycles are
2893 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
2894 * followed by a 3-byte address and 8 dummy clock cycles.
2896 * Return: 0 on success, -errno otherwise.
2898 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
2899 size_t len, void *buf)
2901 u8 addr_width, read_opcode, read_dummy;
2902 int ret;
2904 read_opcode = nor->read_opcode;
2905 addr_width = nor->addr_width;
2906 read_dummy = nor->read_dummy;
2908 nor->read_opcode = SPINOR_OP_RDSFDP;
2909 nor->addr_width = 3;
2910 nor->read_dummy = 8;
2912 ret = spi_nor_read_raw(nor, addr, len, buf);
2914 nor->read_opcode = read_opcode;
2915 nor->addr_width = addr_width;
2916 nor->read_dummy = read_dummy;
2918 return ret;
2922 * spi_nor_spimem_check_op - check if the operation is supported
2923 * by controller
2924 *@nor: pointer to a 'struct spi_nor'
2925 *@op: pointer to op template to be checked
2927 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2929 static int spi_nor_spimem_check_op(struct spi_nor *nor,
2930 struct spi_mem_op *op)
2933 * First test with 4 address bytes. The opcode itself might
2934 * be a 3B addressing opcode but we don't care, because
2935 * SPI controller implementation should not check the opcode,
2936 * but just the sequence.
2938 op->addr.nbytes = 4;
2939 if (!spi_mem_supports_op(nor->spimem, op)) {
2940 if (nor->mtd.size > SZ_16M)
2941 return -ENOTSUPP;
2943 /* If flash size <= 16MB, 3 address bytes are sufficient */
2944 op->addr.nbytes = 3;
2945 if (!spi_mem_supports_op(nor->spimem, op))
2946 return -ENOTSUPP;
2949 return 0;
2953 * spi_nor_spimem_check_readop - check if the read op is supported
2954 * by controller
2955 *@nor: pointer to a 'struct spi_nor'
2956 *@read: pointer to op template to be checked
2958 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2960 static int spi_nor_spimem_check_readop(struct spi_nor *nor,
2961 const struct spi_nor_read_command *read)
2963 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 1),
2964 SPI_MEM_OP_ADDR(3, 0, 1),
2965 SPI_MEM_OP_DUMMY(0, 1),
2966 SPI_MEM_OP_DATA_IN(0, NULL, 1));
2968 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(read->proto);
2969 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(read->proto);
2970 op.data.buswidth = spi_nor_get_protocol_data_nbits(read->proto);
2971 op.dummy.buswidth = op.addr.buswidth;
2972 op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
2973 op.dummy.buswidth / 8;
2975 return spi_nor_spimem_check_op(nor, &op);
2979 * spi_nor_spimem_check_pp - check if the page program op is supported
2980 * by controller
2981 *@nor: pointer to a 'struct spi_nor'
2982 *@pp: pointer to op template to be checked
2984 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2986 static int spi_nor_spimem_check_pp(struct spi_nor *nor,
2987 const struct spi_nor_pp_command *pp)
2989 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 1),
2990 SPI_MEM_OP_ADDR(3, 0, 1),
2991 SPI_MEM_OP_NO_DUMMY,
2992 SPI_MEM_OP_DATA_OUT(0, NULL, 1));
2994 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(pp->proto);
2995 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(pp->proto);
2996 op.data.buswidth = spi_nor_get_protocol_data_nbits(pp->proto);
2998 return spi_nor_spimem_check_op(nor, &op);
3002 * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
3003 * based on SPI controller capabilities
3004 * @nor: pointer to a 'struct spi_nor'
3005 * @hwcaps: pointer to resulting capabilities after adjusting
3006 * according to controller and flash's capability
3008 static void
3009 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
3011 struct spi_nor_flash_parameter *params = &nor->params;
3012 unsigned int cap;
3014 /* DTR modes are not supported yet, mask them all. */
3015 *hwcaps &= ~SNOR_HWCAPS_DTR;
3017 /* X-X-X modes are not supported yet, mask them all. */
3018 *hwcaps &= ~SNOR_HWCAPS_X_X_X;
3020 for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
3021 int rdidx, ppidx;
3023 if (!(*hwcaps & BIT(cap)))
3024 continue;
3026 rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
3027 if (rdidx >= 0 &&
3028 spi_nor_spimem_check_readop(nor, &params->reads[rdidx]))
3029 *hwcaps &= ~BIT(cap);
3031 ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
3032 if (ppidx < 0)
3033 continue;
3035 if (spi_nor_spimem_check_pp(nor,
3036 &params->page_programs[ppidx]))
3037 *hwcaps &= ~BIT(cap);
3042 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
3043 * @nor: pointer to a 'struct spi_nor'
3044 * @addr: offset in the SFDP area to start reading data from
3045 * @len: number of bytes to read
3046 * @buf: buffer where the SFDP data are copied into
3048 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
3049 * guaranteed to be dma-safe.
3051 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
3052 * otherwise.
3054 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
3055 size_t len, void *buf)
3057 void *dma_safe_buf;
3058 int ret;
3060 dma_safe_buf = kmalloc(len, GFP_KERNEL);
3061 if (!dma_safe_buf)
3062 return -ENOMEM;
3064 ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
3065 memcpy(buf, dma_safe_buf, len);
3066 kfree(dma_safe_buf);
3068 return ret;
3071 /* Fast Read settings. */
3073 static void
3074 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
3075 u16 half,
3076 enum spi_nor_protocol proto)
3078 read->num_mode_clocks = (half >> 5) & 0x07;
3079 read->num_wait_states = (half >> 0) & 0x1f;
3080 read->opcode = (half >> 8) & 0xff;
3081 read->proto = proto;
3084 struct sfdp_bfpt_read {
3085 /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
3086 u32 hwcaps;
3089 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
3090 * whether the Fast Read x-y-z command is supported.
3092 u32 supported_dword;
3093 u32 supported_bit;
3096 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
3097 * encodes the op code, the number of mode clocks and the number of wait
3098 * states to be used by Fast Read x-y-z command.
3100 u32 settings_dword;
3101 u32 settings_shift;
3103 /* The SPI protocol for this Fast Read x-y-z command. */
3104 enum spi_nor_protocol proto;
3107 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
3108 /* Fast Read 1-1-2 */
3110 SNOR_HWCAPS_READ_1_1_2,
3111 BFPT_DWORD(1), BIT(16), /* Supported bit */
3112 BFPT_DWORD(4), 0, /* Settings */
3113 SNOR_PROTO_1_1_2,
3116 /* Fast Read 1-2-2 */
3118 SNOR_HWCAPS_READ_1_2_2,
3119 BFPT_DWORD(1), BIT(20), /* Supported bit */
3120 BFPT_DWORD(4), 16, /* Settings */
3121 SNOR_PROTO_1_2_2,
3124 /* Fast Read 2-2-2 */
3126 SNOR_HWCAPS_READ_2_2_2,
3127 BFPT_DWORD(5), BIT(0), /* Supported bit */
3128 BFPT_DWORD(6), 16, /* Settings */
3129 SNOR_PROTO_2_2_2,
3132 /* Fast Read 1-1-4 */
3134 SNOR_HWCAPS_READ_1_1_4,
3135 BFPT_DWORD(1), BIT(22), /* Supported bit */
3136 BFPT_DWORD(3), 16, /* Settings */
3137 SNOR_PROTO_1_1_4,
3140 /* Fast Read 1-4-4 */
3142 SNOR_HWCAPS_READ_1_4_4,
3143 BFPT_DWORD(1), BIT(21), /* Supported bit */
3144 BFPT_DWORD(3), 0, /* Settings */
3145 SNOR_PROTO_1_4_4,
3148 /* Fast Read 4-4-4 */
3150 SNOR_HWCAPS_READ_4_4_4,
3151 BFPT_DWORD(5), BIT(4), /* Supported bit */
3152 BFPT_DWORD(7), 16, /* Settings */
3153 SNOR_PROTO_4_4_4,
3157 struct sfdp_bfpt_erase {
3159 * The half-word at offset <shift> in DWORD <dwoard> encodes the
3160 * op code and erase sector size to be used by Sector Erase commands.
3162 u32 dword;
3163 u32 shift;
3166 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
3167 /* Erase Type 1 in DWORD8 bits[15:0] */
3168 {BFPT_DWORD(8), 0},
3170 /* Erase Type 2 in DWORD8 bits[31:16] */
3171 {BFPT_DWORD(8), 16},
3173 /* Erase Type 3 in DWORD9 bits[15:0] */
3174 {BFPT_DWORD(9), 0},
3176 /* Erase Type 4 in DWORD9 bits[31:16] */
3177 {BFPT_DWORD(9), 16},
3181 * spi_nor_set_erase_type() - set a SPI NOR erase type
3182 * @erase: pointer to a structure that describes a SPI NOR erase type
3183 * @size: the size of the sector/block erased by the erase type
3184 * @opcode: the SPI command op code to erase the sector/block
3186 static void spi_nor_set_erase_type(struct spi_nor_erase_type *erase,
3187 u32 size, u8 opcode)
3189 erase->size = size;
3190 erase->opcode = opcode;
3191 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
3192 erase->size_shift = ffs(erase->size) - 1;
3193 erase->size_mask = (1 << erase->size_shift) - 1;
3197 * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
3198 * @erase: pointer to a structure that describes a SPI NOR erase type
3199 * @size: the size of the sector/block erased by the erase type
3200 * @opcode: the SPI command op code to erase the sector/block
3201 * @i: erase type index as sorted in the Basic Flash Parameter Table
3203 * The supported Erase Types will be sorted at init in ascending order, with
3204 * the smallest Erase Type size being the first member in the erase_type array
3205 * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
3206 * the Basic Flash Parameter Table since it will be used later on to
3207 * synchronize with the supported Erase Types defined in SFDP optional tables.
3209 static void
3210 spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
3211 u32 size, u8 opcode, u8 i)
3213 erase->idx = i;
3214 spi_nor_set_erase_type(erase, size, opcode);
3218 * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
3219 * @l: member in the left half of the map's erase_type array
3220 * @r: member in the right half of the map's erase_type array
3222 * Comparison function used in the sort() call to sort in ascending order the
3223 * map's erase types, the smallest erase type size being the first member in the
3224 * sorted erase_type array.
3226 * Return: the result of @l->size - @r->size
3228 static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
3230 const struct spi_nor_erase_type *left = l, *right = r;
3232 return left->size - right->size;
3236 * spi_nor_sort_erase_mask() - sort erase mask
3237 * @map: the erase map of the SPI NOR
3238 * @erase_mask: the erase type mask to be sorted
3240 * Replicate the sort done for the map's erase types in BFPT: sort the erase
3241 * mask in ascending order with the smallest erase type size starting from
3242 * BIT(0) in the sorted erase mask.
3244 * Return: sorted erase mask.
3246 static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
3248 struct spi_nor_erase_type *erase_type = map->erase_type;
3249 int i;
3250 u8 sorted_erase_mask = 0;
3252 if (!erase_mask)
3253 return 0;
3255 /* Replicate the sort done for the map's erase types. */
3256 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
3257 if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
3258 sorted_erase_mask |= BIT(i);
3260 return sorted_erase_mask;
3264 * spi_nor_regions_sort_erase_types() - sort erase types in each region
3265 * @map: the erase map of the SPI NOR
3267 * Function assumes that the erase types defined in the erase map are already
3268 * sorted in ascending order, with the smallest erase type size being the first
3269 * member in the erase_type array. It replicates the sort done for the map's
3270 * erase types. Each region's erase bitmask will indicate which erase types are
3271 * supported from the sorted erase types defined in the erase map.
3272 * Sort the all region's erase type at init in order to speed up the process of
3273 * finding the best erase command at runtime.
3275 static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
3277 struct spi_nor_erase_region *region = map->regions;
3278 u8 region_erase_mask, sorted_erase_mask;
3280 while (region) {
3281 region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
3283 sorted_erase_mask = spi_nor_sort_erase_mask(map,
3284 region_erase_mask);
3286 /* Overwrite erase mask. */
3287 region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) |
3288 sorted_erase_mask;
3290 region = spi_nor_region_next(region);
3295 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
3296 * @map: the erase map of the SPI NOR
3297 * @erase_mask: bitmask encoding erase types that can erase the entire
3298 * flash memory
3299 * @flash_size: the spi nor flash memory size
3301 static void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
3302 u8 erase_mask, u64 flash_size)
3304 /* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
3305 map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
3306 SNOR_LAST_REGION;
3307 map->uniform_region.size = flash_size;
3308 map->regions = &map->uniform_region;
3309 map->uniform_erase_type = erase_mask;
3312 static int
3313 spi_nor_post_bfpt_fixups(struct spi_nor *nor,
3314 const struct sfdp_parameter_header *bfpt_header,
3315 const struct sfdp_bfpt *bfpt,
3316 struct spi_nor_flash_parameter *params)
3318 if (nor->info->fixups && nor->info->fixups->post_bfpt)
3319 return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt,
3320 params);
3322 return 0;
3326 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
3327 * @nor: pointer to a 'struct spi_nor'
3328 * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing
3329 * the Basic Flash Parameter Table length and version
3330 * @params: pointer to the 'struct spi_nor_flash_parameter' to be
3331 * filled
3333 * The Basic Flash Parameter Table is the main and only mandatory table as
3334 * defined by the SFDP (JESD216) specification.
3335 * It provides us with the total size (memory density) of the data array and
3336 * the number of address bytes for Fast Read, Page Program and Sector Erase
3337 * commands.
3338 * For Fast READ commands, it also gives the number of mode clock cycles and
3339 * wait states (regrouped in the number of dummy clock cycles) for each
3340 * supported instruction op code.
3341 * For Page Program, the page size is now available since JESD216 rev A, however
3342 * the supported instruction op codes are still not provided.
3343 * For Sector Erase commands, this table stores the supported instruction op
3344 * codes and the associated sector sizes.
3345 * Finally, the Quad Enable Requirements (QER) are also available since JESD216
3346 * rev A. The QER bits encode the manufacturer dependent procedure to be
3347 * executed to set the Quad Enable (QE) bit in some internal register of the
3348 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
3349 * sending any Quad SPI command to the memory. Actually, setting the QE bit
3350 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
3351 * and IO3 hence enabling 4 (Quad) I/O lines.
3353 * Return: 0 on success, -errno otherwise.
3355 static int spi_nor_parse_bfpt(struct spi_nor *nor,
3356 const struct sfdp_parameter_header *bfpt_header,
3357 struct spi_nor_flash_parameter *params)
3359 struct spi_nor_erase_map *map = &params->erase_map;
3360 struct spi_nor_erase_type *erase_type = map->erase_type;
3361 struct sfdp_bfpt bfpt;
3362 size_t len;
3363 int i, cmd, err;
3364 u32 addr;
3365 u16 half;
3366 u8 erase_mask;
3368 /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
3369 if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
3370 return -EINVAL;
3372 /* Read the Basic Flash Parameter Table. */
3373 len = min_t(size_t, sizeof(bfpt),
3374 bfpt_header->length * sizeof(u32));
3375 addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
3376 memset(&bfpt, 0, sizeof(bfpt));
3377 err = spi_nor_read_sfdp_dma_unsafe(nor, addr, len, &bfpt);
3378 if (err < 0)
3379 return err;
3381 /* Fix endianness of the BFPT DWORDs. */
3382 for (i = 0; i < BFPT_DWORD_MAX; i++)
3383 bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]);
3385 /* Number of address bytes. */
3386 switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
3387 case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
3388 nor->addr_width = 3;
3389 break;
3391 case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
3392 nor->addr_width = 4;
3393 break;
3395 default:
3396 break;
3399 /* Flash Memory Density (in bits). */
3400 params->size = bfpt.dwords[BFPT_DWORD(2)];
3401 if (params->size & BIT(31)) {
3402 params->size &= ~BIT(31);
3405 * Prevent overflows on params->size. Anyway, a NOR of 2^64
3406 * bits is unlikely to exist so this error probably means
3407 * the BFPT we are reading is corrupted/wrong.
3409 if (params->size > 63)
3410 return -EINVAL;
3412 params->size = 1ULL << params->size;
3413 } else {
3414 params->size++;
3416 params->size >>= 3; /* Convert to bytes. */
3418 /* Fast Read settings. */
3419 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
3420 const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
3421 struct spi_nor_read_command *read;
3423 if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
3424 params->hwcaps.mask &= ~rd->hwcaps;
3425 continue;
3428 params->hwcaps.mask |= rd->hwcaps;
3429 cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
3430 read = &params->reads[cmd];
3431 half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
3432 spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
3436 * Sector Erase settings. Reinitialize the uniform erase map using the
3437 * Erase Types defined in the bfpt table.
3439 erase_mask = 0;
3440 memset(&params->erase_map, 0, sizeof(params->erase_map));
3441 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
3442 const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
3443 u32 erasesize;
3444 u8 opcode;
3446 half = bfpt.dwords[er->dword] >> er->shift;
3447 erasesize = half & 0xff;
3449 /* erasesize == 0 means this Erase Type is not supported. */
3450 if (!erasesize)
3451 continue;
3453 erasesize = 1U << erasesize;
3454 opcode = (half >> 8) & 0xff;
3455 erase_mask |= BIT(i);
3456 spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
3457 opcode, i);
3459 spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
3461 * Sort all the map's Erase Types in ascending order with the smallest
3462 * erase size being the first member in the erase_type array.
3464 sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
3465 spi_nor_map_cmp_erase_type, NULL);
3467 * Sort the erase types in the uniform region in order to update the
3468 * uniform_erase_type bitmask. The bitmask will be used later on when
3469 * selecting the uniform erase.
3471 spi_nor_regions_sort_erase_types(map);
3472 map->uniform_erase_type = map->uniform_region.offset &
3473 SNOR_ERASE_TYPE_MASK;
3475 /* Stop here if not JESD216 rev A or later. */
3476 if (bfpt_header->length < BFPT_DWORD_MAX)
3477 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt,
3478 params);
3480 /* Page size: this field specifies 'N' so the page size = 2^N bytes. */
3481 params->page_size = bfpt.dwords[BFPT_DWORD(11)];
3482 params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
3483 params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
3484 params->page_size = 1U << params->page_size;
3486 /* Quad Enable Requirements. */
3487 switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
3488 case BFPT_DWORD15_QER_NONE:
3489 params->quad_enable = NULL;
3490 break;
3492 case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
3493 case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
3494 params->quad_enable = spansion_no_read_cr_quad_enable;
3495 break;
3497 case BFPT_DWORD15_QER_SR1_BIT6:
3498 params->quad_enable = macronix_quad_enable;
3499 break;
3501 case BFPT_DWORD15_QER_SR2_BIT7:
3502 params->quad_enable = sr2_bit7_quad_enable;
3503 break;
3505 case BFPT_DWORD15_QER_SR2_BIT1:
3506 params->quad_enable = spansion_read_cr_quad_enable;
3507 break;
3509 default:
3510 return -EINVAL;
3513 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, params);
3516 #define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22)
3517 #define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22)
3518 #define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22)
3519 #define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22)
3520 #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22)
3522 #define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16)
3523 #define SMPT_CMD_READ_DUMMY_SHIFT 16
3524 #define SMPT_CMD_READ_DUMMY(_cmd) \
3525 (((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
3526 #define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL
3528 #define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24)
3529 #define SMPT_CMD_READ_DATA_SHIFT 24
3530 #define SMPT_CMD_READ_DATA(_cmd) \
3531 (((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
3533 #define SMPT_CMD_OPCODE_MASK GENMASK(15, 8)
3534 #define SMPT_CMD_OPCODE_SHIFT 8
3535 #define SMPT_CMD_OPCODE(_cmd) \
3536 (((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
3538 #define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16)
3539 #define SMPT_MAP_REGION_COUNT_SHIFT 16
3540 #define SMPT_MAP_REGION_COUNT(_header) \
3541 ((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
3542 SMPT_MAP_REGION_COUNT_SHIFT) + 1)
3544 #define SMPT_MAP_ID_MASK GENMASK(15, 8)
3545 #define SMPT_MAP_ID_SHIFT 8
3546 #define SMPT_MAP_ID(_header) \
3547 (((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
3549 #define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8)
3550 #define SMPT_MAP_REGION_SIZE_SHIFT 8
3551 #define SMPT_MAP_REGION_SIZE(_region) \
3552 (((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
3553 SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
3555 #define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0)
3556 #define SMPT_MAP_REGION_ERASE_TYPE(_region) \
3557 ((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
3559 #define SMPT_DESC_TYPE_MAP BIT(1)
3560 #define SMPT_DESC_END BIT(0)
3563 * spi_nor_smpt_addr_width() - return the address width used in the
3564 * configuration detection command.
3565 * @nor: pointer to a 'struct spi_nor'
3566 * @settings: configuration detection command descriptor, dword1
3568 static u8 spi_nor_smpt_addr_width(const struct spi_nor *nor, const u32 settings)
3570 switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
3571 case SMPT_CMD_ADDRESS_LEN_0:
3572 return 0;
3573 case SMPT_CMD_ADDRESS_LEN_3:
3574 return 3;
3575 case SMPT_CMD_ADDRESS_LEN_4:
3576 return 4;
3577 case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
3578 /* fall through */
3579 default:
3580 return nor->addr_width;
3585 * spi_nor_smpt_read_dummy() - return the configuration detection command read
3586 * latency, in clock cycles.
3587 * @nor: pointer to a 'struct spi_nor'
3588 * @settings: configuration detection command descriptor, dword1
3590 * Return: the number of dummy cycles for an SMPT read
3592 static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
3594 u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
3596 if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
3597 return nor->read_dummy;
3598 return read_dummy;
3602 * spi_nor_get_map_in_use() - get the configuration map in use
3603 * @nor: pointer to a 'struct spi_nor'
3604 * @smpt: pointer to the sector map parameter table
3605 * @smpt_len: sector map parameter table length
3607 * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
3609 static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
3610 u8 smpt_len)
3612 const u32 *ret;
3613 u8 *buf;
3614 u32 addr;
3615 int err;
3616 u8 i;
3617 u8 addr_width, read_opcode, read_dummy;
3618 u8 read_data_mask, map_id;
3620 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
3621 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
3622 if (!buf)
3623 return ERR_PTR(-ENOMEM);
3625 addr_width = nor->addr_width;
3626 read_dummy = nor->read_dummy;
3627 read_opcode = nor->read_opcode;
3629 map_id = 0;
3630 /* Determine if there are any optional Detection Command Descriptors */
3631 for (i = 0; i < smpt_len; i += 2) {
3632 if (smpt[i] & SMPT_DESC_TYPE_MAP)
3633 break;
3635 read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
3636 nor->addr_width = spi_nor_smpt_addr_width(nor, smpt[i]);
3637 nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
3638 nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
3639 addr = smpt[i + 1];
3641 err = spi_nor_read_raw(nor, addr, 1, buf);
3642 if (err) {
3643 ret = ERR_PTR(err);
3644 goto out;
3648 * Build an index value that is used to select the Sector Map
3649 * Configuration that is currently in use.
3651 map_id = map_id << 1 | !!(*buf & read_data_mask);
3655 * If command descriptors are provided, they always precede map
3656 * descriptors in the table. There is no need to start the iteration
3657 * over smpt array all over again.
3659 * Find the matching configuration map.
3661 ret = ERR_PTR(-EINVAL);
3662 while (i < smpt_len) {
3663 if (SMPT_MAP_ID(smpt[i]) == map_id) {
3664 ret = smpt + i;
3665 break;
3669 * If there are no more configuration map descriptors and no
3670 * configuration ID matched the configuration identifier, the
3671 * sector address map is unknown.
3673 if (smpt[i] & SMPT_DESC_END)
3674 break;
3676 /* increment the table index to the next map */
3677 i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
3680 /* fall through */
3681 out:
3682 kfree(buf);
3683 nor->addr_width = addr_width;
3684 nor->read_dummy = read_dummy;
3685 nor->read_opcode = read_opcode;
3686 return ret;
3690 * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
3691 * @region: pointer to a structure that describes a SPI NOR erase region
3692 * @erase: pointer to a structure that describes a SPI NOR erase type
3693 * @erase_type: erase type bitmask
3695 static void
3696 spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
3697 const struct spi_nor_erase_type *erase,
3698 const u8 erase_type)
3700 int i;
3702 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
3703 if (!(erase_type & BIT(i)))
3704 continue;
3705 if (region->size & erase[i].size_mask) {
3706 spi_nor_region_mark_overlay(region);
3707 return;
3713 * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
3714 * @nor: pointer to a 'struct spi_nor'
3715 * @params: pointer to a duplicate 'struct spi_nor_flash_parameter' that is
3716 * used for storing SFDP parsed data
3717 * @smpt: pointer to the sector map parameter table
3719 * Return: 0 on success, -errno otherwise.
3721 static int
3722 spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
3723 struct spi_nor_flash_parameter *params,
3724 const u32 *smpt)
3726 struct spi_nor_erase_map *map = &params->erase_map;
3727 struct spi_nor_erase_type *erase = map->erase_type;
3728 struct spi_nor_erase_region *region;
3729 u64 offset;
3730 u32 region_count;
3731 int i, j;
3732 u8 uniform_erase_type, save_uniform_erase_type;
3733 u8 erase_type, regions_erase_type;
3735 region_count = SMPT_MAP_REGION_COUNT(*smpt);
3737 * The regions will be freed when the driver detaches from the
3738 * device.
3740 region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
3741 GFP_KERNEL);
3742 if (!region)
3743 return -ENOMEM;
3744 map->regions = region;
3746 uniform_erase_type = 0xff;
3747 regions_erase_type = 0;
3748 offset = 0;
3749 /* Populate regions. */
3750 for (i = 0; i < region_count; i++) {
3751 j = i + 1; /* index for the region dword */
3752 region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
3753 erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
3754 region[i].offset = offset | erase_type;
3756 spi_nor_region_check_overlay(&region[i], erase, erase_type);
3759 * Save the erase types that are supported in all regions and
3760 * can erase the entire flash memory.
3762 uniform_erase_type &= erase_type;
3765 * regions_erase_type mask will indicate all the erase types
3766 * supported in this configuration map.
3768 regions_erase_type |= erase_type;
3770 offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) +
3771 region[i].size;
3774 save_uniform_erase_type = map->uniform_erase_type;
3775 map->uniform_erase_type = spi_nor_sort_erase_mask(map,
3776 uniform_erase_type);
3778 if (!regions_erase_type) {
3780 * Roll back to the previous uniform_erase_type mask, SMPT is
3781 * broken.
3783 map->uniform_erase_type = save_uniform_erase_type;
3784 return -EINVAL;
3788 * BFPT advertises all the erase types supported by all the possible
3789 * map configurations. Mask out the erase types that are not supported
3790 * by the current map configuration.
3792 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
3793 if (!(regions_erase_type & BIT(erase[i].idx)))
3794 spi_nor_set_erase_type(&erase[i], 0, 0xFF);
3796 spi_nor_region_mark_end(&region[i - 1]);
3798 return 0;
3802 * spi_nor_parse_smpt() - parse Sector Map Parameter Table
3803 * @nor: pointer to a 'struct spi_nor'
3804 * @smpt_header: sector map parameter table header
3805 * @params: pointer to a duplicate 'struct spi_nor_flash_parameter'
3806 * that is used for storing SFDP parsed data
3808 * This table is optional, but when available, we parse it to identify the
3809 * location and size of sectors within the main data array of the flash memory
3810 * device and to identify which Erase Types are supported by each sector.
3812 * Return: 0 on success, -errno otherwise.
3814 static int spi_nor_parse_smpt(struct spi_nor *nor,
3815 const struct sfdp_parameter_header *smpt_header,
3816 struct spi_nor_flash_parameter *params)
3818 const u32 *sector_map;
3819 u32 *smpt;
3820 size_t len;
3821 u32 addr;
3822 int i, ret;
3824 /* Read the Sector Map Parameter Table. */
3825 len = smpt_header->length * sizeof(*smpt);
3826 smpt = kmalloc(len, GFP_KERNEL);
3827 if (!smpt)
3828 return -ENOMEM;
3830 addr = SFDP_PARAM_HEADER_PTP(smpt_header);
3831 ret = spi_nor_read_sfdp(nor, addr, len, smpt);
3832 if (ret)
3833 goto out;
3835 /* Fix endianness of the SMPT DWORDs. */
3836 for (i = 0; i < smpt_header->length; i++)
3837 smpt[i] = le32_to_cpu(smpt[i]);
3839 sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
3840 if (IS_ERR(sector_map)) {
3841 ret = PTR_ERR(sector_map);
3842 goto out;
3845 ret = spi_nor_init_non_uniform_erase_map(nor, params, sector_map);
3846 if (ret)
3847 goto out;
3849 spi_nor_regions_sort_erase_types(&params->erase_map);
3850 /* fall through */
3851 out:
3852 kfree(smpt);
3853 return ret;
3856 #define SFDP_4BAIT_DWORD_MAX 2
3858 struct sfdp_4bait {
3859 /* The hardware capability. */
3860 u32 hwcaps;
3863 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
3864 * the associated 4-byte address op code is supported.
3866 u32 supported_bit;
3870 * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
3871 * @nor: pointer to a 'struct spi_nor'.
3872 * @param_header: pointer to the 'struct sfdp_parameter_header' describing
3873 * the 4-Byte Address Instruction Table length and version.
3874 * @params: pointer to the 'struct spi_nor_flash_parameter' to be.
3876 * Return: 0 on success, -errno otherwise.
3878 static int spi_nor_parse_4bait(struct spi_nor *nor,
3879 const struct sfdp_parameter_header *param_header,
3880 struct spi_nor_flash_parameter *params)
3882 static const struct sfdp_4bait reads[] = {
3883 { SNOR_HWCAPS_READ, BIT(0) },
3884 { SNOR_HWCAPS_READ_FAST, BIT(1) },
3885 { SNOR_HWCAPS_READ_1_1_2, BIT(2) },
3886 { SNOR_HWCAPS_READ_1_2_2, BIT(3) },
3887 { SNOR_HWCAPS_READ_1_1_4, BIT(4) },
3888 { SNOR_HWCAPS_READ_1_4_4, BIT(5) },
3889 { SNOR_HWCAPS_READ_1_1_1_DTR, BIT(13) },
3890 { SNOR_HWCAPS_READ_1_2_2_DTR, BIT(14) },
3891 { SNOR_HWCAPS_READ_1_4_4_DTR, BIT(15) },
3893 static const struct sfdp_4bait programs[] = {
3894 { SNOR_HWCAPS_PP, BIT(6) },
3895 { SNOR_HWCAPS_PP_1_1_4, BIT(7) },
3896 { SNOR_HWCAPS_PP_1_4_4, BIT(8) },
3898 static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
3899 { 0u /* not used */, BIT(9) },
3900 { 0u /* not used */, BIT(10) },
3901 { 0u /* not used */, BIT(11) },
3902 { 0u /* not used */, BIT(12) },
3904 struct spi_nor_pp_command *params_pp = params->page_programs;
3905 struct spi_nor_erase_map *map = &params->erase_map;
3906 struct spi_nor_erase_type *erase_type = map->erase_type;
3907 u32 *dwords;
3908 size_t len;
3909 u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
3910 int i, ret;
3912 if (param_header->major != SFDP_JESD216_MAJOR ||
3913 param_header->length < SFDP_4BAIT_DWORD_MAX)
3914 return -EINVAL;
3916 /* Read the 4-byte Address Instruction Table. */
3917 len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
3919 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
3920 dwords = kmalloc(len, GFP_KERNEL);
3921 if (!dwords)
3922 return -ENOMEM;
3924 addr = SFDP_PARAM_HEADER_PTP(param_header);
3925 ret = spi_nor_read_sfdp(nor, addr, len, dwords);
3926 if (ret)
3927 goto out;
3929 /* Fix endianness of the 4BAIT DWORDs. */
3930 for (i = 0; i < SFDP_4BAIT_DWORD_MAX; i++)
3931 dwords[i] = le32_to_cpu(dwords[i]);
3934 * Compute the subset of (Fast) Read commands for which the 4-byte
3935 * version is supported.
3937 discard_hwcaps = 0;
3938 read_hwcaps = 0;
3939 for (i = 0; i < ARRAY_SIZE(reads); i++) {
3940 const struct sfdp_4bait *read = &reads[i];
3942 discard_hwcaps |= read->hwcaps;
3943 if ((params->hwcaps.mask & read->hwcaps) &&
3944 (dwords[0] & read->supported_bit))
3945 read_hwcaps |= read->hwcaps;
3949 * Compute the subset of Page Program commands for which the 4-byte
3950 * version is supported.
3952 pp_hwcaps = 0;
3953 for (i = 0; i < ARRAY_SIZE(programs); i++) {
3954 const struct sfdp_4bait *program = &programs[i];
3957 * The 4 Byte Address Instruction (Optional) Table is the only
3958 * SFDP table that indicates support for Page Program Commands.
3959 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
3960 * authority for specifying Page Program support.
3962 discard_hwcaps |= program->hwcaps;
3963 if (dwords[0] & program->supported_bit)
3964 pp_hwcaps |= program->hwcaps;
3968 * Compute the subset of Sector Erase commands for which the 4-byte
3969 * version is supported.
3971 erase_mask = 0;
3972 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
3973 const struct sfdp_4bait *erase = &erases[i];
3975 if (dwords[0] & erase->supported_bit)
3976 erase_mask |= BIT(i);
3979 /* Replicate the sort done for the map's erase types in BFPT. */
3980 erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
3983 * We need at least one 4-byte op code per read, program and erase
3984 * operation; the .read(), .write() and .erase() hooks share the
3985 * nor->addr_width value.
3987 if (!read_hwcaps || !pp_hwcaps || !erase_mask)
3988 goto out;
3991 * Discard all operations from the 4-byte instruction set which are
3992 * not supported by this memory.
3994 params->hwcaps.mask &= ~discard_hwcaps;
3995 params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
3997 /* Use the 4-byte address instruction set. */
3998 for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
3999 struct spi_nor_read_command *read_cmd = &params->reads[i];
4001 read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
4004 /* 4BAIT is the only SFDP table that indicates page program support. */
4005 if (pp_hwcaps & SNOR_HWCAPS_PP)
4006 spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP],
4007 SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
4008 if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
4009 spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_1_4],
4010 SPINOR_OP_PP_1_1_4_4B,
4011 SNOR_PROTO_1_1_4);
4012 if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
4013 spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_4_4],
4014 SPINOR_OP_PP_1_4_4_4B,
4015 SNOR_PROTO_1_4_4);
4017 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
4018 if (erase_mask & BIT(i))
4019 erase_type[i].opcode = (dwords[1] >>
4020 erase_type[i].idx * 8) & 0xFF;
4021 else
4022 spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF);
4026 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
4027 * later because we already did the conversion to 4byte opcodes. Also,
4028 * this latest function implements a legacy quirk for the erase size of
4029 * Spansion memory. However this quirk is no longer needed with new
4030 * SFDP compliant memories.
4032 nor->addr_width = 4;
4033 nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
4035 /* fall through */
4036 out:
4037 kfree(dwords);
4038 return ret;
4042 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
4043 * @nor: pointer to a 'struct spi_nor'
4044 * @params: pointer to the 'struct spi_nor_flash_parameter' to be
4045 * filled
4047 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
4048 * specification. This is a standard which tends to supported by almost all
4049 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
4050 * runtime the main parameters needed to perform basic SPI flash operations such
4051 * as Fast Read, Page Program or Sector Erase commands.
4053 * Return: 0 on success, -errno otherwise.
4055 static int spi_nor_parse_sfdp(struct spi_nor *nor,
4056 struct spi_nor_flash_parameter *params)
4058 const struct sfdp_parameter_header *param_header, *bfpt_header;
4059 struct sfdp_parameter_header *param_headers = NULL;
4060 struct sfdp_header header;
4061 struct device *dev = nor->dev;
4062 size_t psize;
4063 int i, err;
4065 /* Get the SFDP header. */
4066 err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
4067 if (err < 0)
4068 return err;
4070 /* Check the SFDP header version. */
4071 if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
4072 header.major != SFDP_JESD216_MAJOR)
4073 return -EINVAL;
4076 * Verify that the first and only mandatory parameter header is a
4077 * Basic Flash Parameter Table header as specified in JESD216.
4079 bfpt_header = &header.bfpt_header;
4080 if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
4081 bfpt_header->major != SFDP_JESD216_MAJOR)
4082 return -EINVAL;
4085 * Allocate memory then read all parameter headers with a single
4086 * Read SFDP command. These parameter headers will actually be parsed
4087 * twice: a first time to get the latest revision of the basic flash
4088 * parameter table, then a second time to handle the supported optional
4089 * tables.
4090 * Hence we read the parameter headers once for all to reduce the
4091 * processing time. Also we use kmalloc() instead of devm_kmalloc()
4092 * because we don't need to keep these parameter headers: the allocated
4093 * memory is always released with kfree() before exiting this function.
4095 if (header.nph) {
4096 psize = header.nph * sizeof(*param_headers);
4098 param_headers = kmalloc(psize, GFP_KERNEL);
4099 if (!param_headers)
4100 return -ENOMEM;
4102 err = spi_nor_read_sfdp(nor, sizeof(header),
4103 psize, param_headers);
4104 if (err < 0) {
4105 dev_err(dev, "failed to read SFDP parameter headers\n");
4106 goto exit;
4111 * Check other parameter headers to get the latest revision of
4112 * the basic flash parameter table.
4114 for (i = 0; i < header.nph; i++) {
4115 param_header = &param_headers[i];
4117 if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
4118 param_header->major == SFDP_JESD216_MAJOR &&
4119 (param_header->minor > bfpt_header->minor ||
4120 (param_header->minor == bfpt_header->minor &&
4121 param_header->length > bfpt_header->length)))
4122 bfpt_header = param_header;
4125 err = spi_nor_parse_bfpt(nor, bfpt_header, params);
4126 if (err)
4127 goto exit;
4129 /* Parse optional parameter tables. */
4130 for (i = 0; i < header.nph; i++) {
4131 param_header = &param_headers[i];
4133 switch (SFDP_PARAM_HEADER_ID(param_header)) {
4134 case SFDP_SECTOR_MAP_ID:
4135 err = spi_nor_parse_smpt(nor, param_header, params);
4136 break;
4138 case SFDP_4BAIT_ID:
4139 err = spi_nor_parse_4bait(nor, param_header, params);
4140 break;
4142 default:
4143 break;
4146 if (err) {
4147 dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
4148 SFDP_PARAM_HEADER_ID(param_header));
4150 * Let's not drop all information we extracted so far
4151 * if optional table parsers fail. In case of failing,
4152 * each optional parser is responsible to roll back to
4153 * the previously known spi_nor data.
4155 err = 0;
4159 exit:
4160 kfree(param_headers);
4161 return err;
4164 static int spi_nor_select_read(struct spi_nor *nor,
4165 u32 shared_hwcaps)
4167 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
4168 const struct spi_nor_read_command *read;
4170 if (best_match < 0)
4171 return -EINVAL;
4173 cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
4174 if (cmd < 0)
4175 return -EINVAL;
4177 read = &nor->params.reads[cmd];
4178 nor->read_opcode = read->opcode;
4179 nor->read_proto = read->proto;
4182 * In the spi-nor framework, we don't need to make the difference
4183 * between mode clock cycles and wait state clock cycles.
4184 * Indeed, the value of the mode clock cycles is used by a QSPI
4185 * flash memory to know whether it should enter or leave its 0-4-4
4186 * (Continuous Read / XIP) mode.
4187 * eXecution In Place is out of the scope of the mtd sub-system.
4188 * Hence we choose to merge both mode and wait state clock cycles
4189 * into the so called dummy clock cycles.
4191 nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
4192 return 0;
4195 static int spi_nor_select_pp(struct spi_nor *nor,
4196 u32 shared_hwcaps)
4198 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
4199 const struct spi_nor_pp_command *pp;
4201 if (best_match < 0)
4202 return -EINVAL;
4204 cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
4205 if (cmd < 0)
4206 return -EINVAL;
4208 pp = &nor->params.page_programs[cmd];
4209 nor->program_opcode = pp->opcode;
4210 nor->write_proto = pp->proto;
4211 return 0;
4215 * spi_nor_select_uniform_erase() - select optimum uniform erase type
4216 * @map: the erase map of the SPI NOR
4217 * @wanted_size: the erase type size to search for. Contains the value of
4218 * info->sector_size or of the "small sector" size in case
4219 * CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
4221 * Once the optimum uniform sector erase command is found, disable all the
4222 * other.
4224 * Return: pointer to erase type on success, NULL otherwise.
4226 static const struct spi_nor_erase_type *
4227 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
4228 const u32 wanted_size)
4230 const struct spi_nor_erase_type *tested_erase, *erase = NULL;
4231 int i;
4232 u8 uniform_erase_type = map->uniform_erase_type;
4234 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
4235 if (!(uniform_erase_type & BIT(i)))
4236 continue;
4238 tested_erase = &map->erase_type[i];
4241 * If the current erase size is the one, stop here:
4242 * we have found the right uniform Sector Erase command.
4244 if (tested_erase->size == wanted_size) {
4245 erase = tested_erase;
4246 break;
4250 * Otherwise, the current erase size is still a valid canditate.
4251 * Select the biggest valid candidate.
4253 if (!erase && tested_erase->size)
4254 erase = tested_erase;
4255 /* keep iterating to find the wanted_size */
4258 if (!erase)
4259 return NULL;
4261 /* Disable all other Sector Erase commands. */
4262 map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
4263 map->uniform_erase_type |= BIT(erase - map->erase_type);
4264 return erase;
4267 static int spi_nor_select_erase(struct spi_nor *nor)
4269 struct spi_nor_erase_map *map = &nor->params.erase_map;
4270 const struct spi_nor_erase_type *erase = NULL;
4271 struct mtd_info *mtd = &nor->mtd;
4272 u32 wanted_size = nor->info->sector_size;
4273 int i;
4276 * The previous implementation handling Sector Erase commands assumed
4277 * that the SPI flash memory has an uniform layout then used only one
4278 * of the supported erase sizes for all Sector Erase commands.
4279 * So to be backward compatible, the new implementation also tries to
4280 * manage the SPI flash memory as uniform with a single erase sector
4281 * size, when possible.
4283 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
4284 /* prefer "small sector" erase if possible */
4285 wanted_size = 4096u;
4286 #endif
4288 if (spi_nor_has_uniform_erase(nor)) {
4289 erase = spi_nor_select_uniform_erase(map, wanted_size);
4290 if (!erase)
4291 return -EINVAL;
4292 nor->erase_opcode = erase->opcode;
4293 mtd->erasesize = erase->size;
4294 return 0;
4298 * For non-uniform SPI flash memory, set mtd->erasesize to the
4299 * maximum erase sector size. No need to set nor->erase_opcode.
4301 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
4302 if (map->erase_type[i].size) {
4303 erase = &map->erase_type[i];
4304 break;
4308 if (!erase)
4309 return -EINVAL;
4311 mtd->erasesize = erase->size;
4312 return 0;
4315 static int spi_nor_default_setup(struct spi_nor *nor,
4316 const struct spi_nor_hwcaps *hwcaps)
4318 struct spi_nor_flash_parameter *params = &nor->params;
4319 u32 ignored_mask, shared_mask;
4320 int err;
4323 * Keep only the hardware capabilities supported by both the SPI
4324 * controller and the SPI flash memory.
4326 shared_mask = hwcaps->mask & params->hwcaps.mask;
4328 if (nor->spimem) {
4330 * When called from spi_nor_probe(), all caps are set and we
4331 * need to discard some of them based on what the SPI
4332 * controller actually supports (using spi_mem_supports_op()).
4334 spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
4335 } else {
4337 * SPI n-n-n protocols are not supported when the SPI
4338 * controller directly implements the spi_nor interface.
4339 * Yet another reason to switch to spi-mem.
4341 ignored_mask = SNOR_HWCAPS_X_X_X;
4342 if (shared_mask & ignored_mask) {
4343 dev_dbg(nor->dev,
4344 "SPI n-n-n protocols are not supported.\n");
4345 shared_mask &= ~ignored_mask;
4349 /* Select the (Fast) Read command. */
4350 err = spi_nor_select_read(nor, shared_mask);
4351 if (err) {
4352 dev_err(nor->dev,
4353 "can't select read settings supported by both the SPI controller and memory.\n");
4354 return err;
4357 /* Select the Page Program command. */
4358 err = spi_nor_select_pp(nor, shared_mask);
4359 if (err) {
4360 dev_err(nor->dev,
4361 "can't select write settings supported by both the SPI controller and memory.\n");
4362 return err;
4365 /* Select the Sector Erase command. */
4366 err = spi_nor_select_erase(nor);
4367 if (err) {
4368 dev_err(nor->dev,
4369 "can't select erase settings supported by both the SPI controller and memory.\n");
4370 return err;
4373 return 0;
4376 static int spi_nor_setup(struct spi_nor *nor,
4377 const struct spi_nor_hwcaps *hwcaps)
4379 if (!nor->params.setup)
4380 return 0;
4382 return nor->params.setup(nor, hwcaps);
4385 static void macronix_set_default_init(struct spi_nor *nor)
4387 nor->params.quad_enable = macronix_quad_enable;
4388 nor->params.set_4byte = macronix_set_4byte;
4391 static void st_micron_set_default_init(struct spi_nor *nor)
4393 nor->flags |= SNOR_F_HAS_LOCK;
4394 nor->params.quad_enable = NULL;
4395 nor->params.set_4byte = st_micron_set_4byte;
4398 static void winbond_set_default_init(struct spi_nor *nor)
4400 nor->params.set_4byte = winbond_set_4byte;
4404 * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
4405 * settings based on MFR register and ->default_init() hook.
4406 * @nor: pointer to a 'struct spi-nor'.
4408 static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
4410 /* Init flash parameters based on MFR */
4411 switch (JEDEC_MFR(nor->info)) {
4412 case SNOR_MFR_MACRONIX:
4413 macronix_set_default_init(nor);
4414 break;
4416 case SNOR_MFR_ST:
4417 case SNOR_MFR_MICRON:
4418 st_micron_set_default_init(nor);
4419 break;
4421 case SNOR_MFR_WINBOND:
4422 winbond_set_default_init(nor);
4423 break;
4425 default:
4426 break;
4429 if (nor->info->fixups && nor->info->fixups->default_init)
4430 nor->info->fixups->default_init(nor);
4434 * spi_nor_sfdp_init_params() - Initialize the flash's parameters and settings
4435 * based on JESD216 SFDP standard.
4436 * @nor: pointer to a 'struct spi-nor'.
4438 * The method has a roll-back mechanism: in case the SFDP parsing fails, the
4439 * legacy flash parameters and settings will be restored.
4441 static void spi_nor_sfdp_init_params(struct spi_nor *nor)
4443 struct spi_nor_flash_parameter sfdp_params;
4445 memcpy(&sfdp_params, &nor->params, sizeof(sfdp_params));
4447 if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
4448 nor->addr_width = 0;
4449 nor->flags &= ~SNOR_F_4B_OPCODES;
4450 } else {
4451 memcpy(&nor->params, &sfdp_params, sizeof(nor->params));
4456 * spi_nor_info_init_params() - Initialize the flash's parameters and settings
4457 * based on nor->info data.
4458 * @nor: pointer to a 'struct spi-nor'.
4460 static void spi_nor_info_init_params(struct spi_nor *nor)
4462 struct spi_nor_flash_parameter *params = &nor->params;
4463 struct spi_nor_erase_map *map = &params->erase_map;
4464 const struct flash_info *info = nor->info;
4465 struct device_node *np = spi_nor_get_flash_node(nor);
4466 u8 i, erase_mask;
4468 /* Initialize legacy flash parameters and settings. */
4469 params->quad_enable = spansion_quad_enable;
4470 params->set_4byte = spansion_set_4byte;
4471 params->setup = spi_nor_default_setup;
4473 /* Set SPI NOR sizes. */
4474 params->size = (u64)info->sector_size * info->n_sectors;
4475 params->page_size = info->page_size;
4477 if (!(info->flags & SPI_NOR_NO_FR)) {
4478 /* Default to Fast Read for DT and non-DT platform devices. */
4479 params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
4481 /* Mask out Fast Read if not requested at DT instantiation. */
4482 if (np && !of_property_read_bool(np, "m25p,fast-read"))
4483 params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
4486 /* (Fast) Read settings. */
4487 params->hwcaps.mask |= SNOR_HWCAPS_READ;
4488 spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
4489 0, 0, SPINOR_OP_READ,
4490 SNOR_PROTO_1_1_1);
4492 if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
4493 spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
4494 0, 8, SPINOR_OP_READ_FAST,
4495 SNOR_PROTO_1_1_1);
4497 if (info->flags & SPI_NOR_DUAL_READ) {
4498 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
4499 spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
4500 0, 8, SPINOR_OP_READ_1_1_2,
4501 SNOR_PROTO_1_1_2);
4504 if (info->flags & SPI_NOR_QUAD_READ) {
4505 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
4506 spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
4507 0, 8, SPINOR_OP_READ_1_1_4,
4508 SNOR_PROTO_1_1_4);
4511 if (info->flags & SPI_NOR_OCTAL_READ) {
4512 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
4513 spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
4514 0, 8, SPINOR_OP_READ_1_1_8,
4515 SNOR_PROTO_1_1_8);
4518 /* Page Program settings. */
4519 params->hwcaps.mask |= SNOR_HWCAPS_PP;
4520 spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
4521 SPINOR_OP_PP, SNOR_PROTO_1_1_1);
4524 * Sector Erase settings. Sort Erase Types in ascending order, with the
4525 * smallest erase size starting at BIT(0).
4527 erase_mask = 0;
4528 i = 0;
4529 if (info->flags & SECT_4K_PMC) {
4530 erase_mask |= BIT(i);
4531 spi_nor_set_erase_type(&map->erase_type[i], 4096u,
4532 SPINOR_OP_BE_4K_PMC);
4533 i++;
4534 } else if (info->flags & SECT_4K) {
4535 erase_mask |= BIT(i);
4536 spi_nor_set_erase_type(&map->erase_type[i], 4096u,
4537 SPINOR_OP_BE_4K);
4538 i++;
4540 erase_mask |= BIT(i);
4541 spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
4542 SPINOR_OP_SE);
4543 spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
4546 static void spansion_post_sfdp_fixups(struct spi_nor *nor)
4548 if (nor->params.size <= SZ_16M)
4549 return;
4551 nor->flags |= SNOR_F_4B_OPCODES;
4552 /* No small sector erase for 4-byte command set */
4553 nor->erase_opcode = SPINOR_OP_SE;
4554 nor->mtd.erasesize = nor->info->sector_size;
4557 static void s3an_post_sfdp_fixups(struct spi_nor *nor)
4559 nor->params.setup = s3an_nor_setup;
4563 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
4564 * after SFDP has been parsed (is also called for SPI NORs that do not
4565 * support RDSFDP).
4566 * @nor: pointer to a 'struct spi_nor'
4568 * Typically used to tweak various parameters that could not be extracted by
4569 * other means (i.e. when information provided by the SFDP/flash_info tables
4570 * are incomplete or wrong).
4572 static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
4574 switch (JEDEC_MFR(nor->info)) {
4575 case SNOR_MFR_SPANSION:
4576 spansion_post_sfdp_fixups(nor);
4577 break;
4579 default:
4580 break;
4583 if (nor->info->flags & SPI_S3AN)
4584 s3an_post_sfdp_fixups(nor);
4586 if (nor->info->fixups && nor->info->fixups->post_sfdp)
4587 nor->info->fixups->post_sfdp(nor);
4591 * spi_nor_late_init_params() - Late initialization of default flash parameters.
4592 * @nor: pointer to a 'struct spi_nor'
4594 * Used to set default flash parameters and settings when the ->default_init()
4595 * hook or the SFDP parser let voids.
4597 static void spi_nor_late_init_params(struct spi_nor *nor)
4600 * NOR protection support. When locking_ops are not provided, we pick
4601 * the default ones.
4603 if (nor->flags & SNOR_F_HAS_LOCK && !nor->params.locking_ops)
4604 nor->params.locking_ops = &stm_locking_ops;
4608 * spi_nor_init_params() - Initialize the flash's parameters and settings.
4609 * @nor: pointer to a 'struct spi-nor'.
4611 * The flash parameters and settings are initialized based on a sequence of
4612 * calls that are ordered by priority:
4614 * 1/ Default flash parameters initialization. The initializations are done
4615 * based on nor->info data:
4616 * spi_nor_info_init_params()
4618 * which can be overwritten by:
4619 * 2/ Manufacturer flash parameters initialization. The initializations are
4620 * done based on MFR register, or when the decisions can not be done solely
4621 * based on MFR, by using specific flash_info tweeks, ->default_init():
4622 * spi_nor_manufacturer_init_params()
4624 * which can be overwritten by:
4625 * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
4626 * should be more accurate that the above.
4627 * spi_nor_sfdp_init_params()
4629 * Please note that there is a ->post_bfpt() fixup hook that can overwrite
4630 * the flash parameters and settings immediately after parsing the Basic
4631 * Flash Parameter Table.
4633 * which can be overwritten by:
4634 * 4/ Post SFDP flash parameters initialization. Used to tweak various
4635 * parameters that could not be extracted by other means (i.e. when
4636 * information provided by the SFDP/flash_info tables are incomplete or
4637 * wrong).
4638 * spi_nor_post_sfdp_fixups()
4640 * 5/ Late default flash parameters initialization, used when the
4641 * ->default_init() hook or the SFDP parser do not set specific params.
4642 * spi_nor_late_init_params()
4644 static void spi_nor_init_params(struct spi_nor *nor)
4646 spi_nor_info_init_params(nor);
4648 spi_nor_manufacturer_init_params(nor);
4650 if ((nor->info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
4651 !(nor->info->flags & SPI_NOR_SKIP_SFDP))
4652 spi_nor_sfdp_init_params(nor);
4654 spi_nor_post_sfdp_fixups(nor);
4656 spi_nor_late_init_params(nor);
4660 * spi_nor_quad_enable() - enable Quad I/O if needed.
4661 * @nor: pointer to a 'struct spi_nor'
4663 * Return: 0 on success, -errno otherwise.
4665 static int spi_nor_quad_enable(struct spi_nor *nor)
4667 if (!nor->params.quad_enable)
4668 return 0;
4670 if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
4671 spi_nor_get_protocol_width(nor->write_proto) == 4))
4672 return 0;
4674 return nor->params.quad_enable(nor);
4677 static int spi_nor_init(struct spi_nor *nor)
4679 int err;
4681 if (nor->clear_sr_bp) {
4682 if (nor->params.quad_enable == spansion_quad_enable)
4683 nor->clear_sr_bp = spi_nor_spansion_clear_sr_bp;
4685 err = nor->clear_sr_bp(nor);
4686 if (err) {
4687 dev_err(nor->dev,
4688 "fail to clear block protection bits\n");
4689 return err;
4693 err = spi_nor_quad_enable(nor);
4694 if (err) {
4695 dev_err(nor->dev, "quad mode not supported\n");
4696 return err;
4699 if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) {
4701 * If the RESET# pin isn't hooked up properly, or the system
4702 * otherwise doesn't perform a reset command in the boot
4703 * sequence, it's impossible to 100% protect against unexpected
4704 * reboots (e.g., crashes). Warn the user (or hopefully, system
4705 * designer) that this is bad.
4707 WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
4708 "enabling reset hack; may not recover from unexpected reboots\n");
4709 nor->params.set_4byte(nor, true);
4712 return 0;
4715 /* mtd resume handler */
4716 static void spi_nor_resume(struct mtd_info *mtd)
4718 struct spi_nor *nor = mtd_to_spi_nor(mtd);
4719 struct device *dev = nor->dev;
4720 int ret;
4722 /* re-initialize the nor chip */
4723 ret = spi_nor_init(nor);
4724 if (ret)
4725 dev_err(dev, "resume() failed\n");
4728 void spi_nor_restore(struct spi_nor *nor)
4730 /* restore the addressing mode */
4731 if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
4732 nor->flags & SNOR_F_BROKEN_RESET)
4733 nor->params.set_4byte(nor, false);
4735 EXPORT_SYMBOL_GPL(spi_nor_restore);
4737 static const struct flash_info *spi_nor_match_id(const char *name)
4739 const struct flash_info *id = spi_nor_ids;
4741 while (id->name) {
4742 if (!strcmp(name, id->name))
4743 return id;
4744 id++;
4746 return NULL;
4749 static int spi_nor_set_addr_width(struct spi_nor *nor)
4751 if (nor->addr_width) {
4752 /* already configured from SFDP */
4753 } else if (nor->info->addr_width) {
4754 nor->addr_width = nor->info->addr_width;
4755 } else if (nor->mtd.size > 0x1000000) {
4756 /* enable 4-byte addressing if the device exceeds 16MiB */
4757 nor->addr_width = 4;
4758 } else {
4759 nor->addr_width = 3;
4762 if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
4763 dev_err(nor->dev, "address width is too large: %u\n",
4764 nor->addr_width);
4765 return -EINVAL;
4768 /* Set 4byte opcodes when possible. */
4769 if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
4770 !(nor->flags & SNOR_F_HAS_4BAIT))
4771 spi_nor_set_4byte_opcodes(nor);
4773 return 0;
4776 static void spi_nor_debugfs_init(struct spi_nor *nor,
4777 const struct flash_info *info)
4779 struct mtd_info *mtd = &nor->mtd;
4781 mtd->dbg.partname = info->name;
4782 mtd->dbg.partid = devm_kasprintf(nor->dev, GFP_KERNEL, "spi-nor:%*phN",
4783 info->id_len, info->id);
4786 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
4787 const char *name)
4789 const struct flash_info *info = NULL;
4791 if (name)
4792 info = spi_nor_match_id(name);
4793 /* Try to auto-detect if chip name wasn't specified or not found */
4794 if (!info)
4795 info = spi_nor_read_id(nor);
4796 if (IS_ERR_OR_NULL(info))
4797 return ERR_PTR(-ENOENT);
4800 * If caller has specified name of flash model that can normally be
4801 * detected using JEDEC, let's verify it.
4803 if (name && info->id_len) {
4804 const struct flash_info *jinfo;
4806 jinfo = spi_nor_read_id(nor);
4807 if (IS_ERR(jinfo)) {
4808 return jinfo;
4809 } else if (jinfo != info) {
4811 * JEDEC knows better, so overwrite platform ID. We
4812 * can't trust partitions any longer, but we'll let
4813 * mtd apply them anyway, since some partitions may be
4814 * marked read-only, and we don't want to lose that
4815 * information, even if it's not 100% accurate.
4817 dev_warn(nor->dev, "found %s, expected %s\n",
4818 jinfo->name, info->name);
4819 info = jinfo;
4823 return info;
4826 int spi_nor_scan(struct spi_nor *nor, const char *name,
4827 const struct spi_nor_hwcaps *hwcaps)
4829 const struct flash_info *info;
4830 struct device *dev = nor->dev;
4831 struct mtd_info *mtd = &nor->mtd;
4832 struct device_node *np = spi_nor_get_flash_node(nor);
4833 struct spi_nor_flash_parameter *params = &nor->params;
4834 int ret;
4835 int i;
4837 ret = spi_nor_check(nor);
4838 if (ret)
4839 return ret;
4841 /* Reset SPI protocol for all commands. */
4842 nor->reg_proto = SNOR_PROTO_1_1_1;
4843 nor->read_proto = SNOR_PROTO_1_1_1;
4844 nor->write_proto = SNOR_PROTO_1_1_1;
4847 * We need the bounce buffer early to read/write registers when going
4848 * through the spi-mem layer (buffers have to be DMA-able).
4849 * For spi-mem drivers, we'll reallocate a new buffer if
4850 * nor->page_size turns out to be greater than PAGE_SIZE (which
4851 * shouldn't happen before long since NOR pages are usually less
4852 * than 1KB) after spi_nor_scan() returns.
4854 nor->bouncebuf_size = PAGE_SIZE;
4855 nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
4856 GFP_KERNEL);
4857 if (!nor->bouncebuf)
4858 return -ENOMEM;
4860 info = spi_nor_get_flash_info(nor, name);
4861 if (IS_ERR(info))
4862 return PTR_ERR(info);
4864 nor->info = info;
4866 spi_nor_debugfs_init(nor, info);
4868 mutex_init(&nor->lock);
4871 * Make sure the XSR_RDY flag is set before calling
4872 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
4873 * with Atmel spi-nor
4875 if (info->flags & SPI_NOR_XSR_RDY)
4876 nor->flags |= SNOR_F_READY_XSR_RDY;
4878 if (info->flags & SPI_NOR_HAS_LOCK)
4879 nor->flags |= SNOR_F_HAS_LOCK;
4882 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
4883 * with the software protection bits set.
4885 if (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL ||
4886 JEDEC_MFR(nor->info) == SNOR_MFR_INTEL ||
4887 JEDEC_MFR(nor->info) == SNOR_MFR_SST ||
4888 nor->info->flags & SPI_NOR_HAS_LOCK)
4889 nor->clear_sr_bp = spi_nor_clear_sr_bp;
4891 /* Init flash parameters based on flash_info struct and SFDP */
4892 spi_nor_init_params(nor);
4894 if (!mtd->name)
4895 mtd->name = dev_name(dev);
4896 mtd->priv = nor;
4897 mtd->type = MTD_NORFLASH;
4898 mtd->writesize = 1;
4899 mtd->flags = MTD_CAP_NORFLASH;
4900 mtd->size = params->size;
4901 mtd->_erase = spi_nor_erase;
4902 mtd->_read = spi_nor_read;
4903 mtd->_resume = spi_nor_resume;
4905 if (nor->params.locking_ops) {
4906 mtd->_lock = spi_nor_lock;
4907 mtd->_unlock = spi_nor_unlock;
4908 mtd->_is_locked = spi_nor_is_locked;
4911 /* sst nor chips use AAI word program */
4912 if (info->flags & SST_WRITE)
4913 mtd->_write = sst_write;
4914 else
4915 mtd->_write = spi_nor_write;
4917 if (info->flags & USE_FSR)
4918 nor->flags |= SNOR_F_USE_FSR;
4919 if (info->flags & SPI_NOR_HAS_TB)
4920 nor->flags |= SNOR_F_HAS_SR_TB;
4921 if (info->flags & NO_CHIP_ERASE)
4922 nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
4923 if (info->flags & USE_CLSR)
4924 nor->flags |= SNOR_F_USE_CLSR;
4926 if (info->flags & SPI_NOR_NO_ERASE)
4927 mtd->flags |= MTD_NO_ERASE;
4929 mtd->dev.parent = dev;
4930 nor->page_size = params->page_size;
4931 mtd->writebufsize = nor->page_size;
4933 if (of_property_read_bool(np, "broken-flash-reset"))
4934 nor->flags |= SNOR_F_BROKEN_RESET;
4937 * Configure the SPI memory:
4938 * - select op codes for (Fast) Read, Page Program and Sector Erase.
4939 * - set the number of dummy cycles (mode cycles + wait states).
4940 * - set the SPI protocols for register and memory accesses.
4942 ret = spi_nor_setup(nor, hwcaps);
4943 if (ret)
4944 return ret;
4946 if (info->flags & SPI_NOR_4B_OPCODES)
4947 nor->flags |= SNOR_F_4B_OPCODES;
4949 ret = spi_nor_set_addr_width(nor);
4950 if (ret)
4951 return ret;
4953 /* Send all the required SPI flash commands to initialize device */
4954 ret = spi_nor_init(nor);
4955 if (ret)
4956 return ret;
4958 dev_info(dev, "%s (%lld Kbytes)\n", info->name,
4959 (long long)mtd->size >> 10);
4961 dev_dbg(dev,
4962 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
4963 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
4964 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
4965 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
4967 if (mtd->numeraseregions)
4968 for (i = 0; i < mtd->numeraseregions; i++)
4969 dev_dbg(dev,
4970 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
4971 ".erasesize = 0x%.8x (%uKiB), "
4972 ".numblocks = %d }\n",
4973 i, (long long)mtd->eraseregions[i].offset,
4974 mtd->eraseregions[i].erasesize,
4975 mtd->eraseregions[i].erasesize / 1024,
4976 mtd->eraseregions[i].numblocks);
4977 return 0;
4979 EXPORT_SYMBOL_GPL(spi_nor_scan);
4981 static int spi_nor_probe(struct spi_mem *spimem)
4983 struct spi_device *spi = spimem->spi;
4984 struct flash_platform_data *data = dev_get_platdata(&spi->dev);
4985 struct spi_nor *nor;
4987 * Enable all caps by default. The core will mask them after
4988 * checking what's really supported using spi_mem_supports_op().
4990 const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
4991 char *flash_name;
4992 int ret;
4994 nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
4995 if (!nor)
4996 return -ENOMEM;
4998 nor->spimem = spimem;
4999 nor->dev = &spi->dev;
5000 spi_nor_set_flash_node(nor, spi->dev.of_node);
5002 spi_mem_set_drvdata(spimem, nor);
5004 if (data && data->name)
5005 nor->mtd.name = data->name;
5007 if (!nor->mtd.name)
5008 nor->mtd.name = spi_mem_get_name(spimem);
5011 * For some (historical?) reason many platforms provide two different
5012 * names in flash_platform_data: "name" and "type". Quite often name is
5013 * set to "m25p80" and then "type" provides a real chip name.
5014 * If that's the case, respect "type" and ignore a "name".
5016 if (data && data->type)
5017 flash_name = data->type;
5018 else if (!strcmp(spi->modalias, "spi-nor"))
5019 flash_name = NULL; /* auto-detect */
5020 else
5021 flash_name = spi->modalias;
5023 ret = spi_nor_scan(nor, flash_name, &hwcaps);
5024 if (ret)
5025 return ret;
5028 * None of the existing parts have > 512B pages, but let's play safe
5029 * and add this logic so that if anyone ever adds support for such
5030 * a NOR we don't end up with buffer overflows.
5032 if (nor->page_size > PAGE_SIZE) {
5033 nor->bouncebuf_size = nor->page_size;
5034 devm_kfree(nor->dev, nor->bouncebuf);
5035 nor->bouncebuf = devm_kmalloc(nor->dev,
5036 nor->bouncebuf_size,
5037 GFP_KERNEL);
5038 if (!nor->bouncebuf)
5039 return -ENOMEM;
5042 return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
5043 data ? data->nr_parts : 0);
5046 static int spi_nor_remove(struct spi_mem *spimem)
5048 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
5050 spi_nor_restore(nor);
5052 /* Clean up MTD stuff. */
5053 return mtd_device_unregister(&nor->mtd);
5056 static void spi_nor_shutdown(struct spi_mem *spimem)
5058 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
5060 spi_nor_restore(nor);
5064 * Do NOT add to this array without reading the following:
5066 * Historically, many flash devices are bound to this driver by their name. But
5067 * since most of these flash are compatible to some extent, and their
5068 * differences can often be differentiated by the JEDEC read-ID command, we
5069 * encourage new users to add support to the spi-nor library, and simply bind
5070 * against a generic string here (e.g., "jedec,spi-nor").
5072 * Many flash names are kept here in this list (as well as in spi-nor.c) to
5073 * keep them available as module aliases for existing platforms.
5075 static const struct spi_device_id spi_nor_dev_ids[] = {
5077 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
5078 * hack around the fact that the SPI core does not provide uevent
5079 * matching for .of_match_table
5081 {"spi-nor"},
5084 * Entries not used in DTs that should be safe to drop after replacing
5085 * them with "spi-nor" in platform data.
5087 {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"},
5090 * Entries that were used in DTs without "jedec,spi-nor" fallback and
5091 * should be kept for backward compatibility.
5093 {"at25df321a"}, {"at25df641"}, {"at26df081a"},
5094 {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
5095 {"mx25l25635e"},{"mx66l51235l"},
5096 {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
5097 {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
5098 {"s25fl064k"},
5099 {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
5100 {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"},
5101 {"m25p64"}, {"m25p128"},
5102 {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
5103 {"w25q80bl"}, {"w25q128"}, {"w25q256"},
5105 /* Flashes that can't be detected using JEDEC */
5106 {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"},
5107 {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"},
5108 {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"},
5110 /* Everspin MRAMs (non-JEDEC) */
5111 { "mr25h128" }, /* 128 Kib, 40 MHz */
5112 { "mr25h256" }, /* 256 Kib, 40 MHz */
5113 { "mr25h10" }, /* 1 Mib, 40 MHz */
5114 { "mr25h40" }, /* 4 Mib, 40 MHz */
5116 { },
5118 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
5120 static const struct of_device_id spi_nor_of_table[] = {
5122 * Generic compatibility for SPI NOR that can be identified by the
5123 * JEDEC READ ID opcode (0x9F). Use this, if possible.
5125 { .compatible = "jedec,spi-nor" },
5126 { /* sentinel */ },
5128 MODULE_DEVICE_TABLE(of, spi_nor_of_table);
5131 * REVISIT: many of these chips have deep power-down modes, which
5132 * should clearly be entered on suspend() to minimize power use.
5133 * And also when they're otherwise idle...
5135 static struct spi_mem_driver spi_nor_driver = {
5136 .spidrv = {
5137 .driver = {
5138 .name = "spi-nor",
5139 .of_match_table = spi_nor_of_table,
5141 .id_table = spi_nor_dev_ids,
5143 .probe = spi_nor_probe,
5144 .remove = spi_nor_remove,
5145 .shutdown = spi_nor_shutdown,
5147 module_spi_mem_driver(spi_nor_driver);
5149 MODULE_LICENSE("GPL v2");
5150 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
5151 MODULE_AUTHOR("Mike Lavender");
5152 MODULE_DESCRIPTION("framework for SPI NOR");