net: DCB: Validate DCB_ATTR_DCB_BUFFER argument
[linux/fpc-iii.git] / drivers / usb / dwc2 / gadget.c
blobf7528f732b2aad04d65431bc37744eacd49831d3
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 * Ben Dooks <ben@simtec.co.uk>
9 * http://armlinux.simtec.co.uk/
11 * S3C USB2.0 High-speed / OtG driver
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 #include <linux/usb/composite.h>
33 #include "core.h"
34 #include "hw.h"
36 /* conversion functions */
37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39 return container_of(req, struct dwc2_hsotg_req, req);
42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44 return container_of(ep, struct dwc2_hsotg_ep, ep);
47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49 return container_of(gadget, struct dwc2_hsotg, gadget);
52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
54 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
59 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
63 u32 ep_index, u32 dir_in)
65 if (dir_in)
66 return hsotg->eps_in[ep_index];
67 else
68 return hsotg->eps_out[ep_index];
71 /* forward declaration of functions */
72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 /**
75 * using_dma - return the DMA status of the driver.
76 * @hsotg: The driver state.
78 * Return true if we're using DMA.
80 * Currently, we have the DMA support code worked into everywhere
81 * that needs it, but the AMBA DMA implementation in the hardware can
82 * only DMA from 32bit aligned addresses. This means that gadgets such
83 * as the CDC Ethernet cannot work as they often pass packets which are
84 * not 32bit aligned.
86 * Unfortunately the choice to use DMA or not is global to the controller
87 * and seems to be only settable when the controller is being put through
88 * a core reset. This means we either need to fix the gadgets to take
89 * account of DMA alignment, or add bounce buffers (yuerk).
91 * g_using_dma is set depending on dts flag.
93 static inline bool using_dma(struct dwc2_hsotg *hsotg)
95 return hsotg->params.g_dma;
99 * using_desc_dma - return the descriptor DMA status of the driver.
100 * @hsotg: The driver state.
102 * Return true if we're using descriptor DMA.
104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
106 return hsotg->params.g_dma_desc;
110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
111 * @hs_ep: The endpoint
113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
114 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
118 hs_ep->target_frame += hs_ep->interval;
119 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
120 hs_ep->frame_overrun = true;
121 hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
122 } else {
123 hs_ep->frame_overrun = false;
128 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
129 * by one.
130 * @hs_ep: The endpoint.
132 * This function used in service interval based scheduling flow to calculate
133 * descriptor frame number filed value. For service interval mode frame
134 * number in descriptor should point to last (u)frame in the interval.
137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
139 if (hs_ep->target_frame)
140 hs_ep->target_frame -= 1;
141 else
142 hs_ep->target_frame = DSTS_SOFFN_LIMIT;
146 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
147 * @hsotg: The device state
148 * @ints: A bitmask of the interrupts to enable
150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
152 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
153 u32 new_gsintmsk;
155 new_gsintmsk = gsintmsk | ints;
157 if (new_gsintmsk != gsintmsk) {
158 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
159 dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
164 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
165 * @hsotg: The device state
166 * @ints: A bitmask of the interrupts to enable
168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
170 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
171 u32 new_gsintmsk;
173 new_gsintmsk = gsintmsk & ~ints;
175 if (new_gsintmsk != gsintmsk)
176 dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
180 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
181 * @hsotg: The device state
182 * @ep: The endpoint index
183 * @dir_in: True if direction is in.
184 * @en: The enable value, true to enable
186 * Set or clear the mask for an individual endpoint's interrupt
187 * request.
189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
190 unsigned int ep, unsigned int dir_in,
191 unsigned int en)
193 unsigned long flags;
194 u32 bit = 1 << ep;
195 u32 daint;
197 if (!dir_in)
198 bit <<= 16;
200 local_irq_save(flags);
201 daint = dwc2_readl(hsotg, DAINTMSK);
202 if (en)
203 daint |= bit;
204 else
205 daint &= ~bit;
206 dwc2_writel(hsotg, daint, DAINTMSK);
207 local_irq_restore(flags);
211 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
213 * @hsotg: Programming view of the DWC_otg controller
215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
217 if (hsotg->hw_params.en_multiple_tx_fifo)
218 /* In dedicated FIFO mode we need count of IN EPs */
219 return hsotg->hw_params.num_dev_in_eps;
220 else
221 /* In shared FIFO mode we need count of Periodic IN EPs */
222 return hsotg->hw_params.num_dev_perio_in_ep;
226 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
227 * device mode TX FIFOs
229 * @hsotg: Programming view of the DWC_otg controller
231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
233 int addr;
234 int tx_addr_max;
235 u32 np_tx_fifo_size;
237 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
238 hsotg->params.g_np_tx_fifo_size);
240 /* Get Endpoint Info Control block size in DWORDs. */
241 tx_addr_max = hsotg->hw_params.total_fifo_size;
243 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
244 if (tx_addr_max <= addr)
245 return 0;
247 return tx_addr_max - addr;
251 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
253 * @hsotg: Programming view of the DWC_otg controller
256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
258 u32 gintsts2;
259 u32 gintmsk2;
261 gintsts2 = dwc2_readl(hsotg, GINTSTS2);
262 gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
264 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
265 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
266 dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
267 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
272 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
273 * TX FIFOs
275 * @hsotg: Programming view of the DWC_otg controller
277 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
279 int tx_fifo_count;
280 int tx_fifo_depth;
282 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
284 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
286 if (!tx_fifo_count)
287 return tx_fifo_depth;
288 else
289 return tx_fifo_depth / tx_fifo_count;
293 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
294 * @hsotg: The device instance.
296 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
298 unsigned int ep;
299 unsigned int addr;
300 int timeout;
302 u32 val;
303 u32 *txfsz = hsotg->params.g_tx_fifo_size;
305 /* Reset fifo map if not correctly cleared during previous session */
306 WARN_ON(hsotg->fifo_map);
307 hsotg->fifo_map = 0;
309 /* set RX/NPTX FIFO sizes */
310 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
311 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
312 FIFOSIZE_STARTADDR_SHIFT) |
313 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
314 GNPTXFSIZ);
317 * arange all the rest of the TX FIFOs, as some versions of this
318 * block have overlapping default addresses. This also ensures
319 * that if the settings have been changed, then they are set to
320 * known values.
323 /* start at the end of the GNPTXFSIZ, rounded up */
324 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
327 * Configure fifos sizes from provided configuration and assign
328 * them to endpoints dynamically according to maxpacket size value of
329 * given endpoint.
331 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
332 if (!txfsz[ep])
333 continue;
334 val = addr;
335 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
336 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
337 "insufficient fifo memory");
338 addr += txfsz[ep];
340 dwc2_writel(hsotg, val, DPTXFSIZN(ep));
341 val = dwc2_readl(hsotg, DPTXFSIZN(ep));
344 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
345 addr << GDFIFOCFG_EPINFOBASE_SHIFT,
346 GDFIFOCFG);
348 * according to p428 of the design guide, we need to ensure that
349 * all fifos are flushed before continuing
352 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
353 GRSTCTL_RXFFLSH, GRSTCTL);
355 /* wait until the fifos are both flushed */
356 timeout = 100;
357 while (1) {
358 val = dwc2_readl(hsotg, GRSTCTL);
360 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
361 break;
363 if (--timeout == 0) {
364 dev_err(hsotg->dev,
365 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
366 __func__, val);
367 break;
370 udelay(1);
373 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
377 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
378 * @ep: USB endpoint to allocate request for.
379 * @flags: Allocation flags
381 * Allocate a new USB request structure appropriate for the specified endpoint
383 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
384 gfp_t flags)
386 struct dwc2_hsotg_req *req;
388 req = kzalloc(sizeof(*req), flags);
389 if (!req)
390 return NULL;
392 INIT_LIST_HEAD(&req->queue);
394 return &req->req;
398 * is_ep_periodic - return true if the endpoint is in periodic mode.
399 * @hs_ep: The endpoint to query.
401 * Returns true if the endpoint is in periodic mode, meaning it is being
402 * used for an Interrupt or ISO transfer.
404 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
406 return hs_ep->periodic;
410 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
411 * @hsotg: The device state.
412 * @hs_ep: The endpoint for the request
413 * @hs_req: The request being processed.
415 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
416 * of a request to ensure the buffer is ready for access by the caller.
418 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
419 struct dwc2_hsotg_ep *hs_ep,
420 struct dwc2_hsotg_req *hs_req)
422 struct usb_request *req = &hs_req->req;
424 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
428 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
429 * for Control endpoint
430 * @hsotg: The device state.
432 * This function will allocate 4 descriptor chains for EP 0: 2 for
433 * Setup stage, per one for IN and OUT data/status transactions.
435 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
437 hsotg->setup_desc[0] =
438 dmam_alloc_coherent(hsotg->dev,
439 sizeof(struct dwc2_dma_desc),
440 &hsotg->setup_desc_dma[0],
441 GFP_KERNEL);
442 if (!hsotg->setup_desc[0])
443 goto fail;
445 hsotg->setup_desc[1] =
446 dmam_alloc_coherent(hsotg->dev,
447 sizeof(struct dwc2_dma_desc),
448 &hsotg->setup_desc_dma[1],
449 GFP_KERNEL);
450 if (!hsotg->setup_desc[1])
451 goto fail;
453 hsotg->ctrl_in_desc =
454 dmam_alloc_coherent(hsotg->dev,
455 sizeof(struct dwc2_dma_desc),
456 &hsotg->ctrl_in_desc_dma,
457 GFP_KERNEL);
458 if (!hsotg->ctrl_in_desc)
459 goto fail;
461 hsotg->ctrl_out_desc =
462 dmam_alloc_coherent(hsotg->dev,
463 sizeof(struct dwc2_dma_desc),
464 &hsotg->ctrl_out_desc_dma,
465 GFP_KERNEL);
466 if (!hsotg->ctrl_out_desc)
467 goto fail;
469 return 0;
471 fail:
472 return -ENOMEM;
476 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
477 * @hsotg: The controller state.
478 * @hs_ep: The endpoint we're going to write for.
479 * @hs_req: The request to write data for.
481 * This is called when the TxFIFO has some space in it to hold a new
482 * transmission and we have something to give it. The actual setup of
483 * the data size is done elsewhere, so all we have to do is to actually
484 * write the data.
486 * The return value is zero if there is more space (or nothing was done)
487 * otherwise -ENOSPC is returned if the FIFO space was used up.
489 * This routine is only needed for PIO
491 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
492 struct dwc2_hsotg_ep *hs_ep,
493 struct dwc2_hsotg_req *hs_req)
495 bool periodic = is_ep_periodic(hs_ep);
496 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
497 int buf_pos = hs_req->req.actual;
498 int to_write = hs_ep->size_loaded;
499 void *data;
500 int can_write;
501 int pkt_round;
502 int max_transfer;
504 to_write -= (buf_pos - hs_ep->last_load);
506 /* if there's nothing to write, get out early */
507 if (to_write == 0)
508 return 0;
510 if (periodic && !hsotg->dedicated_fifos) {
511 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
512 int size_left;
513 int size_done;
516 * work out how much data was loaded so we can calculate
517 * how much data is left in the fifo.
520 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
523 * if shared fifo, we cannot write anything until the
524 * previous data has been completely sent.
526 if (hs_ep->fifo_load != 0) {
527 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
528 return -ENOSPC;
531 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
532 __func__, size_left,
533 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
535 /* how much of the data has moved */
536 size_done = hs_ep->size_loaded - size_left;
538 /* how much data is left in the fifo */
539 can_write = hs_ep->fifo_load - size_done;
540 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
541 __func__, can_write);
543 can_write = hs_ep->fifo_size - can_write;
544 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
545 __func__, can_write);
547 if (can_write <= 0) {
548 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
549 return -ENOSPC;
551 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
552 can_write = dwc2_readl(hsotg,
553 DTXFSTS(hs_ep->fifo_index));
555 can_write &= 0xffff;
556 can_write *= 4;
557 } else {
558 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
559 dev_dbg(hsotg->dev,
560 "%s: no queue slots available (0x%08x)\n",
561 __func__, gnptxsts);
563 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
564 return -ENOSPC;
567 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
568 can_write *= 4; /* fifo size is in 32bit quantities. */
571 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
573 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
574 __func__, gnptxsts, can_write, to_write, max_transfer);
577 * limit to 512 bytes of data, it seems at least on the non-periodic
578 * FIFO, requests of >512 cause the endpoint to get stuck with a
579 * fragment of the end of the transfer in it.
581 if (can_write > 512 && !periodic)
582 can_write = 512;
585 * limit the write to one max-packet size worth of data, but allow
586 * the transfer to return that it did not run out of fifo space
587 * doing it.
589 if (to_write > max_transfer) {
590 to_write = max_transfer;
592 /* it's needed only when we do not use dedicated fifos */
593 if (!hsotg->dedicated_fifos)
594 dwc2_hsotg_en_gsint(hsotg,
595 periodic ? GINTSTS_PTXFEMP :
596 GINTSTS_NPTXFEMP);
599 /* see if we can write data */
601 if (to_write > can_write) {
602 to_write = can_write;
603 pkt_round = to_write % max_transfer;
606 * Round the write down to an
607 * exact number of packets.
609 * Note, we do not currently check to see if we can ever
610 * write a full packet or not to the FIFO.
613 if (pkt_round)
614 to_write -= pkt_round;
617 * enable correct FIFO interrupt to alert us when there
618 * is more room left.
621 /* it's needed only when we do not use dedicated fifos */
622 if (!hsotg->dedicated_fifos)
623 dwc2_hsotg_en_gsint(hsotg,
624 periodic ? GINTSTS_PTXFEMP :
625 GINTSTS_NPTXFEMP);
628 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
629 to_write, hs_req->req.length, can_write, buf_pos);
631 if (to_write <= 0)
632 return -ENOSPC;
634 hs_req->req.actual = buf_pos + to_write;
635 hs_ep->total_data += to_write;
637 if (periodic)
638 hs_ep->fifo_load += to_write;
640 to_write = DIV_ROUND_UP(to_write, 4);
641 data = hs_req->req.buf + buf_pos;
643 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
645 return (to_write >= can_write) ? -ENOSPC : 0;
649 * get_ep_limit - get the maximum data legnth for this endpoint
650 * @hs_ep: The endpoint
652 * Return the maximum data that can be queued in one go on a given endpoint
653 * so that transfers that are too long can be split.
655 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
657 int index = hs_ep->index;
658 unsigned int maxsize;
659 unsigned int maxpkt;
661 if (index != 0) {
662 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
663 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
664 } else {
665 maxsize = 64 + 64;
666 if (hs_ep->dir_in)
667 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
668 else
669 maxpkt = 2;
672 /* we made the constant loading easier above by using +1 */
673 maxpkt--;
674 maxsize--;
677 * constrain by packet count if maxpkts*pktsize is greater
678 * than the length register size.
681 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
682 maxsize = maxpkt * hs_ep->ep.maxpacket;
684 return maxsize;
688 * dwc2_hsotg_read_frameno - read current frame number
689 * @hsotg: The device instance
691 * Return the current frame number
693 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
695 u32 dsts;
697 dsts = dwc2_readl(hsotg, DSTS);
698 dsts &= DSTS_SOFFN_MASK;
699 dsts >>= DSTS_SOFFN_SHIFT;
701 return dsts;
705 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
706 * DMA descriptor chain prepared for specific endpoint
707 * @hs_ep: The endpoint
709 * Return the maximum data that can be queued in one go on a given endpoint
710 * depending on its descriptor chain capacity so that transfers that
711 * are too long can be split.
713 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
715 int is_isoc = hs_ep->isochronous;
716 unsigned int maxsize;
718 if (is_isoc)
719 maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
720 DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
721 MAX_DMA_DESC_NUM_HS_ISOC;
722 else
723 maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
725 return maxsize;
729 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
730 * @hs_ep: The endpoint
731 * @mask: RX/TX bytes mask to be defined
733 * Returns maximum data payload for one descriptor after analyzing endpoint
734 * characteristics.
735 * DMA descriptor transfer bytes limit depends on EP type:
736 * Control out - MPS,
737 * Isochronous - descriptor rx/tx bytes bitfield limit,
738 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
739 * have concatenations from various descriptors within one packet.
741 * Selects corresponding mask for RX/TX bytes as well.
743 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
745 u32 mps = hs_ep->ep.maxpacket;
746 int dir_in = hs_ep->dir_in;
747 u32 desc_size = 0;
749 if (!hs_ep->index && !dir_in) {
750 desc_size = mps;
751 *mask = DEV_DMA_NBYTES_MASK;
752 } else if (hs_ep->isochronous) {
753 if (dir_in) {
754 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
755 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
756 } else {
757 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
758 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
760 } else {
761 desc_size = DEV_DMA_NBYTES_LIMIT;
762 *mask = DEV_DMA_NBYTES_MASK;
764 /* Round down desc_size to be mps multiple */
765 desc_size -= desc_size % mps;
768 return desc_size;
771 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
772 struct dwc2_dma_desc **desc,
773 dma_addr_t dma_buff,
774 unsigned int len,
775 bool true_last)
777 int dir_in = hs_ep->dir_in;
778 u32 mps = hs_ep->ep.maxpacket;
779 u32 maxsize = 0;
780 u32 offset = 0;
781 u32 mask = 0;
782 int i;
784 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
786 hs_ep->desc_count = (len / maxsize) +
787 ((len % maxsize) ? 1 : 0);
788 if (len == 0)
789 hs_ep->desc_count = 1;
791 for (i = 0; i < hs_ep->desc_count; ++i) {
792 (*desc)->status = 0;
793 (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
794 << DEV_DMA_BUFF_STS_SHIFT);
796 if (len > maxsize) {
797 if (!hs_ep->index && !dir_in)
798 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
800 (*desc)->status |=
801 maxsize << DEV_DMA_NBYTES_SHIFT & mask;
802 (*desc)->buf = dma_buff + offset;
804 len -= maxsize;
805 offset += maxsize;
806 } else {
807 if (true_last)
808 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
810 if (dir_in)
811 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
812 ((hs_ep->send_zlp && true_last) ?
813 DEV_DMA_SHORT : 0);
815 (*desc)->status |=
816 len << DEV_DMA_NBYTES_SHIFT & mask;
817 (*desc)->buf = dma_buff + offset;
820 (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
821 (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
822 << DEV_DMA_BUFF_STS_SHIFT);
823 (*desc)++;
828 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
829 * @hs_ep: The endpoint
830 * @ureq: Request to transfer
831 * @offset: offset in bytes
832 * @len: Length of the transfer
834 * This function will iterate over descriptor chain and fill its entries
835 * with corresponding information based on transfer data.
837 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
838 dma_addr_t dma_buff,
839 unsigned int len)
841 struct usb_request *ureq = NULL;
842 struct dwc2_dma_desc *desc = hs_ep->desc_list;
843 struct scatterlist *sg;
844 int i;
845 u8 desc_count = 0;
847 if (hs_ep->req)
848 ureq = &hs_ep->req->req;
850 /* non-DMA sg buffer */
851 if (!ureq || !ureq->num_sgs) {
852 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
853 dma_buff, len, true);
854 return;
857 /* DMA sg buffer */
858 for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
859 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
860 sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
861 sg_is_last(sg));
862 desc_count += hs_ep->desc_count;
865 hs_ep->desc_count = desc_count;
869 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
870 * @hs_ep: The isochronous endpoint.
871 * @dma_buff: usb requests dma buffer.
872 * @len: usb request transfer length.
874 * Fills next free descriptor with the data of the arrived usb request,
875 * frame info, sets Last and IOC bits increments next_desc. If filled
876 * descriptor is not the first one, removes L bit from the previous descriptor
877 * status.
879 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
880 dma_addr_t dma_buff, unsigned int len)
882 struct dwc2_dma_desc *desc;
883 struct dwc2_hsotg *hsotg = hs_ep->parent;
884 u32 index;
885 u32 maxsize = 0;
886 u32 mask = 0;
887 u8 pid = 0;
889 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
891 index = hs_ep->next_desc;
892 desc = &hs_ep->desc_list[index];
894 /* Check if descriptor chain full */
895 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
896 DEV_DMA_BUFF_STS_HREADY) {
897 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
898 return 1;
901 /* Clear L bit of previous desc if more than one entries in the chain */
902 if (hs_ep->next_desc)
903 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
905 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
906 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
908 desc->status = 0;
909 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT);
911 desc->buf = dma_buff;
912 desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
913 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
915 if (hs_ep->dir_in) {
916 if (len)
917 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
918 else
919 pid = 1;
920 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
921 DEV_DMA_ISOC_PID_MASK) |
922 ((len % hs_ep->ep.maxpacket) ?
923 DEV_DMA_SHORT : 0) |
924 ((hs_ep->target_frame <<
925 DEV_DMA_ISOC_FRNUM_SHIFT) &
926 DEV_DMA_ISOC_FRNUM_MASK);
929 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
930 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
932 /* Increment frame number by interval for IN */
933 if (hs_ep->dir_in)
934 dwc2_gadget_incr_frame_num(hs_ep);
936 /* Update index of last configured entry in the chain */
937 hs_ep->next_desc++;
938 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
939 hs_ep->next_desc = 0;
941 return 0;
945 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
946 * @hs_ep: The isochronous endpoint.
948 * Prepare descriptor chain for isochronous endpoints. Afterwards
949 * write DMA address to HW and enable the endpoint.
951 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
953 struct dwc2_hsotg *hsotg = hs_ep->parent;
954 struct dwc2_hsotg_req *hs_req, *treq;
955 int index = hs_ep->index;
956 int ret;
957 int i;
958 u32 dma_reg;
959 u32 depctl;
960 u32 ctrl;
961 struct dwc2_dma_desc *desc;
963 if (list_empty(&hs_ep->queue)) {
964 hs_ep->target_frame = TARGET_FRAME_INITIAL;
965 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
966 return;
969 /* Initialize descriptor chain by Host Busy status */
970 for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
971 desc = &hs_ep->desc_list[i];
972 desc->status = 0;
973 desc->status |= (DEV_DMA_BUFF_STS_HBUSY
974 << DEV_DMA_BUFF_STS_SHIFT);
977 hs_ep->next_desc = 0;
978 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
979 dma_addr_t dma_addr = hs_req->req.dma;
981 if (hs_req->req.num_sgs) {
982 WARN_ON(hs_req->req.num_sgs > 1);
983 dma_addr = sg_dma_address(hs_req->req.sg);
985 ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
986 hs_req->req.length);
987 if (ret)
988 break;
991 hs_ep->compl_desc = 0;
992 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
993 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
995 /* write descriptor chain address to control register */
996 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
998 ctrl = dwc2_readl(hsotg, depctl);
999 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1000 dwc2_writel(hsotg, ctrl, depctl);
1004 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1005 * @hsotg: The controller state.
1006 * @hs_ep: The endpoint to process a request for
1007 * @hs_req: The request to start.
1008 * @continuing: True if we are doing more for the current request.
1010 * Start the given request running by setting the endpoint registers
1011 * appropriately, and writing any data to the FIFOs.
1013 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1014 struct dwc2_hsotg_ep *hs_ep,
1015 struct dwc2_hsotg_req *hs_req,
1016 bool continuing)
1018 struct usb_request *ureq = &hs_req->req;
1019 int index = hs_ep->index;
1020 int dir_in = hs_ep->dir_in;
1021 u32 epctrl_reg;
1022 u32 epsize_reg;
1023 u32 epsize;
1024 u32 ctrl;
1025 unsigned int length;
1026 unsigned int packets;
1027 unsigned int maxreq;
1028 unsigned int dma_reg;
1030 if (index != 0) {
1031 if (hs_ep->req && !continuing) {
1032 dev_err(hsotg->dev, "%s: active request\n", __func__);
1033 WARN_ON(1);
1034 return;
1035 } else if (hs_ep->req != hs_req && continuing) {
1036 dev_err(hsotg->dev,
1037 "%s: continue different req\n", __func__);
1038 WARN_ON(1);
1039 return;
1043 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1044 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1045 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1047 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1048 __func__, dwc2_readl(hsotg, epctrl_reg), index,
1049 hs_ep->dir_in ? "in" : "out");
1051 /* If endpoint is stalled, we will restart request later */
1052 ctrl = dwc2_readl(hsotg, epctrl_reg);
1054 if (index && ctrl & DXEPCTL_STALL) {
1055 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1056 return;
1059 length = ureq->length - ureq->actual;
1060 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1061 ureq->length, ureq->actual);
1063 if (!using_desc_dma(hsotg))
1064 maxreq = get_ep_limit(hs_ep);
1065 else
1066 maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1068 if (length > maxreq) {
1069 int round = maxreq % hs_ep->ep.maxpacket;
1071 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1072 __func__, length, maxreq, round);
1074 /* round down to multiple of packets */
1075 if (round)
1076 maxreq -= round;
1078 length = maxreq;
1081 if (length)
1082 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1083 else
1084 packets = 1; /* send one packet if length is zero. */
1086 if (dir_in && index != 0)
1087 if (hs_ep->isochronous)
1088 epsize = DXEPTSIZ_MC(packets);
1089 else
1090 epsize = DXEPTSIZ_MC(1);
1091 else
1092 epsize = 0;
1095 * zero length packet should be programmed on its own and should not
1096 * be counted in DIEPTSIZ.PktCnt with other packets.
1098 if (dir_in && ureq->zero && !continuing) {
1099 /* Test if zlp is actually required. */
1100 if ((ureq->length >= hs_ep->ep.maxpacket) &&
1101 !(ureq->length % hs_ep->ep.maxpacket))
1102 hs_ep->send_zlp = 1;
1105 epsize |= DXEPTSIZ_PKTCNT(packets);
1106 epsize |= DXEPTSIZ_XFERSIZE(length);
1108 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1109 __func__, packets, length, ureq->length, epsize, epsize_reg);
1111 /* store the request as the current one we're doing */
1112 hs_ep->req = hs_req;
1114 if (using_desc_dma(hsotg)) {
1115 u32 offset = 0;
1116 u32 mps = hs_ep->ep.maxpacket;
1118 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1119 if (!dir_in) {
1120 if (!index)
1121 length = mps;
1122 else if (length % mps)
1123 length += (mps - (length % mps));
1127 * If more data to send, adjust DMA for EP0 out data stage.
1128 * ureq->dma stays unchanged, hence increment it by already
1129 * passed passed data count before starting new transaction.
1131 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1132 continuing)
1133 offset = ureq->actual;
1135 /* Fill DDMA chain entries */
1136 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1137 length);
1139 /* write descriptor chain address to control register */
1140 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1142 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1143 __func__, (u32)hs_ep->desc_list_dma, dma_reg);
1144 } else {
1145 /* write size / packets */
1146 dwc2_writel(hsotg, epsize, epsize_reg);
1148 if (using_dma(hsotg) && !continuing && (length != 0)) {
1150 * write DMA address to control register, buffer
1151 * already synced by dwc2_hsotg_ep_queue().
1154 dwc2_writel(hsotg, ureq->dma, dma_reg);
1156 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1157 __func__, &ureq->dma, dma_reg);
1161 if (hs_ep->isochronous && hs_ep->interval == 1) {
1162 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1163 dwc2_gadget_incr_frame_num(hs_ep);
1165 if (hs_ep->target_frame & 0x1)
1166 ctrl |= DXEPCTL_SETODDFR;
1167 else
1168 ctrl |= DXEPCTL_SETEVENFR;
1171 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1173 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1175 /* For Setup request do not clear NAK */
1176 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1177 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1179 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1180 dwc2_writel(hsotg, ctrl, epctrl_reg);
1183 * set these, it seems that DMA support increments past the end
1184 * of the packet buffer so we need to calculate the length from
1185 * this information.
1187 hs_ep->size_loaded = length;
1188 hs_ep->last_load = ureq->actual;
1190 if (dir_in && !using_dma(hsotg)) {
1191 /* set these anyway, we may need them for non-periodic in */
1192 hs_ep->fifo_load = 0;
1194 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1198 * Note, trying to clear the NAK here causes problems with transmit
1199 * on the S3C6400 ending up with the TXFIFO becoming full.
1202 /* check ep is enabled */
1203 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1204 dev_dbg(hsotg->dev,
1205 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1206 index, dwc2_readl(hsotg, epctrl_reg));
1208 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1209 __func__, dwc2_readl(hsotg, epctrl_reg));
1211 /* enable ep interrupts */
1212 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1216 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1217 * @hsotg: The device state.
1218 * @hs_ep: The endpoint the request is on.
1219 * @req: The request being processed.
1221 * We've been asked to queue a request, so ensure that the memory buffer
1222 * is correctly setup for DMA. If we've been passed an extant DMA address
1223 * then ensure the buffer has been synced to memory. If our buffer has no
1224 * DMA memory, then we map the memory and mark our request to allow us to
1225 * cleanup on completion.
1227 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1228 struct dwc2_hsotg_ep *hs_ep,
1229 struct usb_request *req)
1231 int ret;
1233 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1234 if (ret)
1235 goto dma_error;
1237 return 0;
1239 dma_error:
1240 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1241 __func__, req->buf, req->length);
1243 return -EIO;
1246 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1247 struct dwc2_hsotg_ep *hs_ep,
1248 struct dwc2_hsotg_req *hs_req)
1250 void *req_buf = hs_req->req.buf;
1252 /* If dma is not being used or buffer is aligned */
1253 if (!using_dma(hsotg) || !((long)req_buf & 3))
1254 return 0;
1256 WARN_ON(hs_req->saved_req_buf);
1258 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1259 hs_ep->ep.name, req_buf, hs_req->req.length);
1261 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1262 if (!hs_req->req.buf) {
1263 hs_req->req.buf = req_buf;
1264 dev_err(hsotg->dev,
1265 "%s: unable to allocate memory for bounce buffer\n",
1266 __func__);
1267 return -ENOMEM;
1270 /* Save actual buffer */
1271 hs_req->saved_req_buf = req_buf;
1273 if (hs_ep->dir_in)
1274 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1275 return 0;
1278 static void
1279 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1280 struct dwc2_hsotg_ep *hs_ep,
1281 struct dwc2_hsotg_req *hs_req)
1283 /* If dma is not being used or buffer was aligned */
1284 if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1285 return;
1287 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1288 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1290 /* Copy data from bounce buffer on successful out transfer */
1291 if (!hs_ep->dir_in && !hs_req->req.status)
1292 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1293 hs_req->req.actual);
1295 /* Free bounce buffer */
1296 kfree(hs_req->req.buf);
1298 hs_req->req.buf = hs_req->saved_req_buf;
1299 hs_req->saved_req_buf = NULL;
1303 * dwc2_gadget_target_frame_elapsed - Checks target frame
1304 * @hs_ep: The driver endpoint to check
1306 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1307 * corresponding transfer.
1309 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1311 struct dwc2_hsotg *hsotg = hs_ep->parent;
1312 u32 target_frame = hs_ep->target_frame;
1313 u32 current_frame = hsotg->frame_number;
1314 bool frame_overrun = hs_ep->frame_overrun;
1316 if (!frame_overrun && current_frame >= target_frame)
1317 return true;
1319 if (frame_overrun && current_frame >= target_frame &&
1320 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1321 return true;
1323 return false;
1327 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1328 * @hsotg: The driver state
1329 * @hs_ep: the ep descriptor chain is for
1331 * Called to update EP0 structure's pointers depend on stage of
1332 * control transfer.
1334 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1335 struct dwc2_hsotg_ep *hs_ep)
1337 switch (hsotg->ep0_state) {
1338 case DWC2_EP0_SETUP:
1339 case DWC2_EP0_STATUS_OUT:
1340 hs_ep->desc_list = hsotg->setup_desc[0];
1341 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1342 break;
1343 case DWC2_EP0_DATA_IN:
1344 case DWC2_EP0_STATUS_IN:
1345 hs_ep->desc_list = hsotg->ctrl_in_desc;
1346 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1347 break;
1348 case DWC2_EP0_DATA_OUT:
1349 hs_ep->desc_list = hsotg->ctrl_out_desc;
1350 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1351 break;
1352 default:
1353 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1354 hsotg->ep0_state);
1355 return -EINVAL;
1358 return 0;
1361 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1362 gfp_t gfp_flags)
1364 struct dwc2_hsotg_req *hs_req = our_req(req);
1365 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1366 struct dwc2_hsotg *hs = hs_ep->parent;
1367 bool first;
1368 int ret;
1369 u32 maxsize = 0;
1370 u32 mask = 0;
1373 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1374 ep->name, req, req->length, req->buf, req->no_interrupt,
1375 req->zero, req->short_not_ok);
1377 /* Prevent new request submission when controller is suspended */
1378 if (hs->lx_state != DWC2_L0) {
1379 dev_dbg(hs->dev, "%s: submit request only in active state\n",
1380 __func__);
1381 return -EAGAIN;
1384 /* initialise status of the request */
1385 INIT_LIST_HEAD(&hs_req->queue);
1386 req->actual = 0;
1387 req->status = -EINPROGRESS;
1389 /* Don't queue ISOC request if length greater than mps*mc */
1390 if (hs_ep->isochronous &&
1391 req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1392 dev_err(hs->dev, "req length > maxpacket*mc\n");
1393 return -EINVAL;
1396 /* In DDMA mode for ISOC's don't queue request if length greater
1397 * than descriptor limits.
1399 if (using_desc_dma(hs) && hs_ep->isochronous) {
1400 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1401 if (hs_ep->dir_in && req->length > maxsize) {
1402 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1403 req->length, maxsize);
1404 return -EINVAL;
1407 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1408 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1409 req->length, hs_ep->ep.maxpacket);
1410 return -EINVAL;
1414 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1415 if (ret)
1416 return ret;
1418 /* if we're using DMA, sync the buffers as necessary */
1419 if (using_dma(hs)) {
1420 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1421 if (ret)
1422 return ret;
1424 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1425 if (using_desc_dma(hs) && !hs_ep->index) {
1426 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1427 if (ret)
1428 return ret;
1431 first = list_empty(&hs_ep->queue);
1432 list_add_tail(&hs_req->queue, &hs_ep->queue);
1435 * Handle DDMA isochronous transfers separately - just add new entry
1436 * to the descriptor chain.
1437 * Transfer will be started once SW gets either one of NAK or
1438 * OutTknEpDis interrupts.
1440 if (using_desc_dma(hs) && hs_ep->isochronous) {
1441 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1442 dma_addr_t dma_addr = hs_req->req.dma;
1444 if (hs_req->req.num_sgs) {
1445 WARN_ON(hs_req->req.num_sgs > 1);
1446 dma_addr = sg_dma_address(hs_req->req.sg);
1448 dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1449 hs_req->req.length);
1451 return 0;
1454 /* Change EP direction if status phase request is after data out */
1455 if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1456 hs->ep0_state == DWC2_EP0_DATA_OUT)
1457 hs_ep->dir_in = 1;
1459 if (first) {
1460 if (!hs_ep->isochronous) {
1461 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1462 return 0;
1465 /* Update current frame number value. */
1466 hs->frame_number = dwc2_hsotg_read_frameno(hs);
1467 while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1468 dwc2_gadget_incr_frame_num(hs_ep);
1469 /* Update current frame number value once more as it
1470 * changes here.
1472 hs->frame_number = dwc2_hsotg_read_frameno(hs);
1475 if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1476 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1478 return 0;
1481 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1482 gfp_t gfp_flags)
1484 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1485 struct dwc2_hsotg *hs = hs_ep->parent;
1486 unsigned long flags = 0;
1487 int ret = 0;
1489 spin_lock_irqsave(&hs->lock, flags);
1490 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1491 spin_unlock_irqrestore(&hs->lock, flags);
1493 return ret;
1496 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1497 struct usb_request *req)
1499 struct dwc2_hsotg_req *hs_req = our_req(req);
1501 kfree(hs_req);
1505 * dwc2_hsotg_complete_oursetup - setup completion callback
1506 * @ep: The endpoint the request was on.
1507 * @req: The request completed.
1509 * Called on completion of any requests the driver itself
1510 * submitted that need cleaning up.
1512 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1513 struct usb_request *req)
1515 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1516 struct dwc2_hsotg *hsotg = hs_ep->parent;
1518 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1520 dwc2_hsotg_ep_free_request(ep, req);
1524 * ep_from_windex - convert control wIndex value to endpoint
1525 * @hsotg: The driver state.
1526 * @windex: The control request wIndex field (in host order).
1528 * Convert the given wIndex into a pointer to an driver endpoint
1529 * structure, or return NULL if it is not a valid endpoint.
1531 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1532 u32 windex)
1534 struct dwc2_hsotg_ep *ep;
1535 int dir = (windex & USB_DIR_IN) ? 1 : 0;
1536 int idx = windex & 0x7F;
1538 if (windex >= 0x100)
1539 return NULL;
1541 if (idx > hsotg->num_of_eps)
1542 return NULL;
1544 ep = index_to_ep(hsotg, idx, dir);
1546 if (idx && ep->dir_in != dir)
1547 return NULL;
1549 return ep;
1553 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1554 * @hsotg: The driver state.
1555 * @testmode: requested usb test mode
1556 * Enable usb Test Mode requested by the Host.
1558 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1560 int dctl = dwc2_readl(hsotg, DCTL);
1562 dctl &= ~DCTL_TSTCTL_MASK;
1563 switch (testmode) {
1564 case TEST_J:
1565 case TEST_K:
1566 case TEST_SE0_NAK:
1567 case TEST_PACKET:
1568 case TEST_FORCE_EN:
1569 dctl |= testmode << DCTL_TSTCTL_SHIFT;
1570 break;
1571 default:
1572 return -EINVAL;
1574 dwc2_writel(hsotg, dctl, DCTL);
1575 return 0;
1579 * dwc2_hsotg_send_reply - send reply to control request
1580 * @hsotg: The device state
1581 * @ep: Endpoint 0
1582 * @buff: Buffer for request
1583 * @length: Length of reply.
1585 * Create a request and queue it on the given endpoint. This is useful as
1586 * an internal method of sending replies to certain control requests, etc.
1588 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1589 struct dwc2_hsotg_ep *ep,
1590 void *buff,
1591 int length)
1593 struct usb_request *req;
1594 int ret;
1596 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1598 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1599 hsotg->ep0_reply = req;
1600 if (!req) {
1601 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1602 return -ENOMEM;
1605 req->buf = hsotg->ep0_buff;
1606 req->length = length;
1608 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1609 * STATUS stage.
1611 req->zero = 0;
1612 req->complete = dwc2_hsotg_complete_oursetup;
1614 if (length)
1615 memcpy(req->buf, buff, length);
1617 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1618 if (ret) {
1619 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1620 return ret;
1623 return 0;
1627 * dwc2_hsotg_process_req_status - process request GET_STATUS
1628 * @hsotg: The device state
1629 * @ctrl: USB control request
1631 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1632 struct usb_ctrlrequest *ctrl)
1634 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1635 struct dwc2_hsotg_ep *ep;
1636 __le16 reply;
1637 u16 status;
1638 int ret;
1640 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1642 if (!ep0->dir_in) {
1643 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1644 return -EINVAL;
1647 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1648 case USB_RECIP_DEVICE:
1649 status = 1 << USB_DEVICE_SELF_POWERED;
1650 status |= hsotg->remote_wakeup_allowed <<
1651 USB_DEVICE_REMOTE_WAKEUP;
1652 reply = cpu_to_le16(status);
1653 break;
1655 case USB_RECIP_INTERFACE:
1656 /* currently, the data result should be zero */
1657 reply = cpu_to_le16(0);
1658 break;
1660 case USB_RECIP_ENDPOINT:
1661 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1662 if (!ep)
1663 return -ENOENT;
1665 reply = cpu_to_le16(ep->halted ? 1 : 0);
1666 break;
1668 default:
1669 return 0;
1672 if (le16_to_cpu(ctrl->wLength) != 2)
1673 return -EINVAL;
1675 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1676 if (ret) {
1677 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1678 return ret;
1681 return 1;
1684 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1687 * get_ep_head - return the first request on the endpoint
1688 * @hs_ep: The controller endpoint to get
1690 * Get the first request on the endpoint.
1692 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1694 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1695 queue);
1699 * dwc2_gadget_start_next_request - Starts next request from ep queue
1700 * @hs_ep: Endpoint structure
1702 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1703 * in its handler. Hence we need to unmask it here to be able to do
1704 * resynchronization.
1706 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1708 u32 mask;
1709 struct dwc2_hsotg *hsotg = hs_ep->parent;
1710 int dir_in = hs_ep->dir_in;
1711 struct dwc2_hsotg_req *hs_req;
1712 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1714 if (!list_empty(&hs_ep->queue)) {
1715 hs_req = get_ep_head(hs_ep);
1716 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1717 return;
1719 if (!hs_ep->isochronous)
1720 return;
1722 if (dir_in) {
1723 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1724 __func__);
1725 } else {
1726 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1727 __func__);
1728 mask = dwc2_readl(hsotg, epmsk_reg);
1729 mask |= DOEPMSK_OUTTKNEPDISMSK;
1730 dwc2_writel(hsotg, mask, epmsk_reg);
1735 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1736 * @hsotg: The device state
1737 * @ctrl: USB control request
1739 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1740 struct usb_ctrlrequest *ctrl)
1742 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1743 struct dwc2_hsotg_req *hs_req;
1744 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1745 struct dwc2_hsotg_ep *ep;
1746 int ret;
1747 bool halted;
1748 u32 recip;
1749 u32 wValue;
1750 u32 wIndex;
1752 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1753 __func__, set ? "SET" : "CLEAR");
1755 wValue = le16_to_cpu(ctrl->wValue);
1756 wIndex = le16_to_cpu(ctrl->wIndex);
1757 recip = ctrl->bRequestType & USB_RECIP_MASK;
1759 switch (recip) {
1760 case USB_RECIP_DEVICE:
1761 switch (wValue) {
1762 case USB_DEVICE_REMOTE_WAKEUP:
1763 if (set)
1764 hsotg->remote_wakeup_allowed = 1;
1765 else
1766 hsotg->remote_wakeup_allowed = 0;
1767 break;
1769 case USB_DEVICE_TEST_MODE:
1770 if ((wIndex & 0xff) != 0)
1771 return -EINVAL;
1772 if (!set)
1773 return -EINVAL;
1775 hsotg->test_mode = wIndex >> 8;
1776 break;
1777 default:
1778 return -ENOENT;
1781 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1782 if (ret) {
1783 dev_err(hsotg->dev,
1784 "%s: failed to send reply\n", __func__);
1785 return ret;
1787 break;
1789 case USB_RECIP_ENDPOINT:
1790 ep = ep_from_windex(hsotg, wIndex);
1791 if (!ep) {
1792 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1793 __func__, wIndex);
1794 return -ENOENT;
1797 switch (wValue) {
1798 case USB_ENDPOINT_HALT:
1799 halted = ep->halted;
1801 dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1803 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1804 if (ret) {
1805 dev_err(hsotg->dev,
1806 "%s: failed to send reply\n", __func__);
1807 return ret;
1811 * we have to complete all requests for ep if it was
1812 * halted, and the halt was cleared by CLEAR_FEATURE
1815 if (!set && halted) {
1817 * If we have request in progress,
1818 * then complete it
1820 if (ep->req) {
1821 hs_req = ep->req;
1822 ep->req = NULL;
1823 list_del_init(&hs_req->queue);
1824 if (hs_req->req.complete) {
1825 spin_unlock(&hsotg->lock);
1826 usb_gadget_giveback_request(
1827 &ep->ep, &hs_req->req);
1828 spin_lock(&hsotg->lock);
1832 /* If we have pending request, then start it */
1833 if (!ep->req)
1834 dwc2_gadget_start_next_request(ep);
1837 break;
1839 default:
1840 return -ENOENT;
1842 break;
1843 default:
1844 return -ENOENT;
1846 return 1;
1849 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1852 * dwc2_hsotg_stall_ep0 - stall ep0
1853 * @hsotg: The device state
1855 * Set stall for ep0 as response for setup request.
1857 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1859 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1860 u32 reg;
1861 u32 ctrl;
1863 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1864 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1867 * DxEPCTL_Stall will be cleared by EP once it has
1868 * taken effect, so no need to clear later.
1871 ctrl = dwc2_readl(hsotg, reg);
1872 ctrl |= DXEPCTL_STALL;
1873 ctrl |= DXEPCTL_CNAK;
1874 dwc2_writel(hsotg, ctrl, reg);
1876 dev_dbg(hsotg->dev,
1877 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1878 ctrl, reg, dwc2_readl(hsotg, reg));
1881 * complete won't be called, so we enqueue
1882 * setup request here
1884 dwc2_hsotg_enqueue_setup(hsotg);
1888 * dwc2_hsotg_process_control - process a control request
1889 * @hsotg: The device state
1890 * @ctrl: The control request received
1892 * The controller has received the SETUP phase of a control request, and
1893 * needs to work out what to do next (and whether to pass it on to the
1894 * gadget driver).
1896 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1897 struct usb_ctrlrequest *ctrl)
1899 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1900 int ret = 0;
1901 u32 dcfg;
1903 dev_dbg(hsotg->dev,
1904 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1905 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1906 ctrl->wIndex, ctrl->wLength);
1908 if (ctrl->wLength == 0) {
1909 ep0->dir_in = 1;
1910 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1911 } else if (ctrl->bRequestType & USB_DIR_IN) {
1912 ep0->dir_in = 1;
1913 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1914 } else {
1915 ep0->dir_in = 0;
1916 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1919 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1920 switch (ctrl->bRequest) {
1921 case USB_REQ_SET_ADDRESS:
1922 hsotg->connected = 1;
1923 dcfg = dwc2_readl(hsotg, DCFG);
1924 dcfg &= ~DCFG_DEVADDR_MASK;
1925 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1926 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1927 dwc2_writel(hsotg, dcfg, DCFG);
1929 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1931 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1932 return;
1934 case USB_REQ_GET_STATUS:
1935 ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1936 break;
1938 case USB_REQ_CLEAR_FEATURE:
1939 case USB_REQ_SET_FEATURE:
1940 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1941 break;
1945 /* as a fallback, try delivering it to the driver to deal with */
1947 if (ret == 0 && hsotg->driver) {
1948 spin_unlock(&hsotg->lock);
1949 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1950 spin_lock(&hsotg->lock);
1951 if (ret < 0)
1952 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1955 hsotg->delayed_status = false;
1956 if (ret == USB_GADGET_DELAYED_STATUS)
1957 hsotg->delayed_status = true;
1960 * the request is either unhandlable, or is not formatted correctly
1961 * so respond with a STALL for the status stage to indicate failure.
1964 if (ret < 0)
1965 dwc2_hsotg_stall_ep0(hsotg);
1969 * dwc2_hsotg_complete_setup - completion of a setup transfer
1970 * @ep: The endpoint the request was on.
1971 * @req: The request completed.
1973 * Called on completion of any requests the driver itself submitted for
1974 * EP0 setup packets
1976 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1977 struct usb_request *req)
1979 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1980 struct dwc2_hsotg *hsotg = hs_ep->parent;
1982 if (req->status < 0) {
1983 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1984 return;
1987 spin_lock(&hsotg->lock);
1988 if (req->actual == 0)
1989 dwc2_hsotg_enqueue_setup(hsotg);
1990 else
1991 dwc2_hsotg_process_control(hsotg, req->buf);
1992 spin_unlock(&hsotg->lock);
1996 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1997 * @hsotg: The device state.
1999 * Enqueue a request on EP0 if necessary to received any SETUP packets
2000 * received from the host.
2002 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2004 struct usb_request *req = hsotg->ctrl_req;
2005 struct dwc2_hsotg_req *hs_req = our_req(req);
2006 int ret;
2008 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2010 req->zero = 0;
2011 req->length = 8;
2012 req->buf = hsotg->ctrl_buff;
2013 req->complete = dwc2_hsotg_complete_setup;
2015 if (!list_empty(&hs_req->queue)) {
2016 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2017 return;
2020 hsotg->eps_out[0]->dir_in = 0;
2021 hsotg->eps_out[0]->send_zlp = 0;
2022 hsotg->ep0_state = DWC2_EP0_SETUP;
2024 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2025 if (ret < 0) {
2026 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2028 * Don't think there's much we can do other than watch the
2029 * driver fail.
2034 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2035 struct dwc2_hsotg_ep *hs_ep)
2037 u32 ctrl;
2038 u8 index = hs_ep->index;
2039 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2040 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2042 if (hs_ep->dir_in)
2043 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2044 index);
2045 else
2046 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2047 index);
2048 if (using_desc_dma(hsotg)) {
2049 /* Not specific buffer needed for ep0 ZLP */
2050 dma_addr_t dma = hs_ep->desc_list_dma;
2052 if (!index)
2053 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2055 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2056 } else {
2057 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2058 DXEPTSIZ_XFERSIZE(0),
2059 epsiz_reg);
2062 ctrl = dwc2_readl(hsotg, epctl_reg);
2063 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
2064 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2065 ctrl |= DXEPCTL_USBACTEP;
2066 dwc2_writel(hsotg, ctrl, epctl_reg);
2070 * dwc2_hsotg_complete_request - complete a request given to us
2071 * @hsotg: The device state.
2072 * @hs_ep: The endpoint the request was on.
2073 * @hs_req: The request to complete.
2074 * @result: The result code (0 => Ok, otherwise errno)
2076 * The given request has finished, so call the necessary completion
2077 * if it has one and then look to see if we can start a new request
2078 * on the endpoint.
2080 * Note, expects the ep to already be locked as appropriate.
2082 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2083 struct dwc2_hsotg_ep *hs_ep,
2084 struct dwc2_hsotg_req *hs_req,
2085 int result)
2087 if (!hs_req) {
2088 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2089 return;
2092 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2093 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2096 * only replace the status if we've not already set an error
2097 * from a previous transaction
2100 if (hs_req->req.status == -EINPROGRESS)
2101 hs_req->req.status = result;
2103 if (using_dma(hsotg))
2104 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2106 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2108 hs_ep->req = NULL;
2109 list_del_init(&hs_req->queue);
2112 * call the complete request with the locks off, just in case the
2113 * request tries to queue more work for this endpoint.
2116 if (hs_req->req.complete) {
2117 spin_unlock(&hsotg->lock);
2118 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2119 spin_lock(&hsotg->lock);
2122 /* In DDMA don't need to proceed to starting of next ISOC request */
2123 if (using_desc_dma(hsotg) && hs_ep->isochronous)
2124 return;
2127 * Look to see if there is anything else to do. Note, the completion
2128 * of the previous request may have caused a new request to be started
2129 * so be careful when doing this.
2132 if (!hs_ep->req && result >= 0)
2133 dwc2_gadget_start_next_request(hs_ep);
2137 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2138 * @hs_ep: The endpoint the request was on.
2140 * Get first request from the ep queue, determine descriptor on which complete
2141 * happened. SW discovers which descriptor currently in use by HW, adjusts
2142 * dma_address and calculates index of completed descriptor based on the value
2143 * of DEPDMA register. Update actual length of request, giveback to gadget.
2145 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2147 struct dwc2_hsotg *hsotg = hs_ep->parent;
2148 struct dwc2_hsotg_req *hs_req;
2149 struct usb_request *ureq;
2150 u32 desc_sts;
2151 u32 mask;
2153 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2155 /* Process only descriptors with buffer status set to DMA done */
2156 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2157 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2159 hs_req = get_ep_head(hs_ep);
2160 if (!hs_req) {
2161 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2162 return;
2164 ureq = &hs_req->req;
2166 /* Check completion status */
2167 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2168 DEV_DMA_STS_SUCC) {
2169 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2170 DEV_DMA_ISOC_RX_NBYTES_MASK;
2171 ureq->actual = ureq->length - ((desc_sts & mask) >>
2172 DEV_DMA_ISOC_NBYTES_SHIFT);
2174 /* Adjust actual len for ISOC Out if len is
2175 * not align of 4
2177 if (!hs_ep->dir_in && ureq->length & 0x3)
2178 ureq->actual += 4 - (ureq->length & 0x3);
2180 /* Set actual frame number for completed transfers */
2181 ureq->frame_number =
2182 (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2183 DEV_DMA_ISOC_FRNUM_SHIFT;
2186 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2188 hs_ep->compl_desc++;
2189 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2190 hs_ep->compl_desc = 0;
2191 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2196 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2197 * @hs_ep: The isochronous endpoint.
2199 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2200 * interrupt. Reset target frame and next_desc to allow to start
2201 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2202 * interrupt for OUT direction.
2204 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2206 struct dwc2_hsotg *hsotg = hs_ep->parent;
2208 if (!hs_ep->dir_in)
2209 dwc2_flush_rx_fifo(hsotg);
2210 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2212 hs_ep->target_frame = TARGET_FRAME_INITIAL;
2213 hs_ep->next_desc = 0;
2214 hs_ep->compl_desc = 0;
2218 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2219 * @hsotg: The device state.
2220 * @ep_idx: The endpoint index for the data
2221 * @size: The size of data in the fifo, in bytes
2223 * The FIFO status shows there is data to read from the FIFO for a given
2224 * endpoint, so sort out whether we need to read the data into a request
2225 * that has been made for that endpoint.
2227 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2229 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2230 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2231 int to_read;
2232 int max_req;
2233 int read_ptr;
2235 if (!hs_req) {
2236 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2237 int ptr;
2239 dev_dbg(hsotg->dev,
2240 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2241 __func__, size, ep_idx, epctl);
2243 /* dump the data from the FIFO, we've nothing we can do */
2244 for (ptr = 0; ptr < size; ptr += 4)
2245 (void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2247 return;
2250 to_read = size;
2251 read_ptr = hs_req->req.actual;
2252 max_req = hs_req->req.length - read_ptr;
2254 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2255 __func__, to_read, max_req, read_ptr, hs_req->req.length);
2257 if (to_read > max_req) {
2259 * more data appeared than we where willing
2260 * to deal with in this request.
2263 /* currently we don't deal this */
2264 WARN_ON_ONCE(1);
2267 hs_ep->total_data += to_read;
2268 hs_req->req.actual += to_read;
2269 to_read = DIV_ROUND_UP(to_read, 4);
2272 * note, we might over-write the buffer end by 3 bytes depending on
2273 * alignment of the data.
2275 dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2276 hs_req->req.buf + read_ptr, to_read);
2280 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2281 * @hsotg: The device instance
2282 * @dir_in: If IN zlp
2284 * Generate a zero-length IN packet request for terminating a SETUP
2285 * transaction.
2287 * Note, since we don't write any data to the TxFIFO, then it is
2288 * currently believed that we do not need to wait for any space in
2289 * the TxFIFO.
2291 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2293 /* eps_out[0] is used in both directions */
2294 hsotg->eps_out[0]->dir_in = dir_in;
2295 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2297 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2300 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2301 u32 epctl_reg)
2303 u32 ctrl;
2305 ctrl = dwc2_readl(hsotg, epctl_reg);
2306 if (ctrl & DXEPCTL_EOFRNUM)
2307 ctrl |= DXEPCTL_SETEVENFR;
2308 else
2309 ctrl |= DXEPCTL_SETODDFR;
2310 dwc2_writel(hsotg, ctrl, epctl_reg);
2314 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2315 * @hs_ep - The endpoint on which transfer went
2317 * Iterate over endpoints descriptor chain and get info on bytes remained
2318 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2320 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2322 struct dwc2_hsotg *hsotg = hs_ep->parent;
2323 unsigned int bytes_rem = 0;
2324 struct dwc2_dma_desc *desc = hs_ep->desc_list;
2325 int i;
2326 u32 status;
2328 if (!desc)
2329 return -EINVAL;
2331 for (i = 0; i < hs_ep->desc_count; ++i) {
2332 status = desc->status;
2333 bytes_rem += status & DEV_DMA_NBYTES_MASK;
2335 if (status & DEV_DMA_STS_MASK)
2336 dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2337 i, status & DEV_DMA_STS_MASK);
2338 desc++;
2341 return bytes_rem;
2345 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2346 * @hsotg: The device instance
2347 * @epnum: The endpoint received from
2349 * The RXFIFO has delivered an OutDone event, which means that the data
2350 * transfer for an OUT endpoint has been completed, either by a short
2351 * packet or by the finish of a transfer.
2353 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2355 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2356 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2357 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2358 struct usb_request *req = &hs_req->req;
2359 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2360 int result = 0;
2362 if (!hs_req) {
2363 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2364 return;
2367 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2368 dev_dbg(hsotg->dev, "zlp packet received\n");
2369 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2370 dwc2_hsotg_enqueue_setup(hsotg);
2371 return;
2374 if (using_desc_dma(hsotg))
2375 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2377 if (using_dma(hsotg)) {
2378 unsigned int size_done;
2381 * Calculate the size of the transfer by checking how much
2382 * is left in the endpoint size register and then working it
2383 * out from the amount we loaded for the transfer.
2385 * We need to do this as DMA pointers are always 32bit aligned
2386 * so may overshoot/undershoot the transfer.
2389 size_done = hs_ep->size_loaded - size_left;
2390 size_done += hs_ep->last_load;
2392 req->actual = size_done;
2395 /* if there is more request to do, schedule new transfer */
2396 if (req->actual < req->length && size_left == 0) {
2397 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2398 return;
2401 if (req->actual < req->length && req->short_not_ok) {
2402 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2403 __func__, req->actual, req->length);
2406 * todo - what should we return here? there's no one else
2407 * even bothering to check the status.
2411 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2412 if (!using_desc_dma(hsotg) && epnum == 0 &&
2413 hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2414 /* Move to STATUS IN */
2415 if (!hsotg->delayed_status)
2416 dwc2_hsotg_ep0_zlp(hsotg, true);
2420 * Slave mode OUT transfers do not go through XferComplete so
2421 * adjust the ISOC parity here.
2423 if (!using_dma(hsotg)) {
2424 if (hs_ep->isochronous && hs_ep->interval == 1)
2425 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2426 else if (hs_ep->isochronous && hs_ep->interval > 1)
2427 dwc2_gadget_incr_frame_num(hs_ep);
2430 /* Set actual frame number for completed transfers */
2431 if (!using_desc_dma(hsotg) && hs_ep->isochronous)
2432 req->frame_number = hsotg->frame_number;
2434 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2438 * dwc2_hsotg_handle_rx - RX FIFO has data
2439 * @hsotg: The device instance
2441 * The IRQ handler has detected that the RX FIFO has some data in it
2442 * that requires processing, so find out what is in there and do the
2443 * appropriate read.
2445 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2446 * chunks, so if you have x packets received on an endpoint you'll get x
2447 * FIFO events delivered, each with a packet's worth of data in it.
2449 * When using DMA, we should not be processing events from the RXFIFO
2450 * as the actual data should be sent to the memory directly and we turn
2451 * on the completion interrupts to get notifications of transfer completion.
2453 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2455 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2456 u32 epnum, status, size;
2458 WARN_ON(using_dma(hsotg));
2460 epnum = grxstsr & GRXSTS_EPNUM_MASK;
2461 status = grxstsr & GRXSTS_PKTSTS_MASK;
2463 size = grxstsr & GRXSTS_BYTECNT_MASK;
2464 size >>= GRXSTS_BYTECNT_SHIFT;
2466 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2467 __func__, grxstsr, size, epnum);
2469 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2470 case GRXSTS_PKTSTS_GLOBALOUTNAK:
2471 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2472 break;
2474 case GRXSTS_PKTSTS_OUTDONE:
2475 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2476 dwc2_hsotg_read_frameno(hsotg));
2478 if (!using_dma(hsotg))
2479 dwc2_hsotg_handle_outdone(hsotg, epnum);
2480 break;
2482 case GRXSTS_PKTSTS_SETUPDONE:
2483 dev_dbg(hsotg->dev,
2484 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2485 dwc2_hsotg_read_frameno(hsotg),
2486 dwc2_readl(hsotg, DOEPCTL(0)));
2488 * Call dwc2_hsotg_handle_outdone here if it was not called from
2489 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2490 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2492 if (hsotg->ep0_state == DWC2_EP0_SETUP)
2493 dwc2_hsotg_handle_outdone(hsotg, epnum);
2494 break;
2496 case GRXSTS_PKTSTS_OUTRX:
2497 dwc2_hsotg_rx_data(hsotg, epnum, size);
2498 break;
2500 case GRXSTS_PKTSTS_SETUPRX:
2501 dev_dbg(hsotg->dev,
2502 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2503 dwc2_hsotg_read_frameno(hsotg),
2504 dwc2_readl(hsotg, DOEPCTL(0)));
2506 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2508 dwc2_hsotg_rx_data(hsotg, epnum, size);
2509 break;
2511 default:
2512 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2513 __func__, grxstsr);
2515 dwc2_hsotg_dump(hsotg);
2516 break;
2521 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2522 * @mps: The maximum packet size in bytes.
2524 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2526 switch (mps) {
2527 case 64:
2528 return D0EPCTL_MPS_64;
2529 case 32:
2530 return D0EPCTL_MPS_32;
2531 case 16:
2532 return D0EPCTL_MPS_16;
2533 case 8:
2534 return D0EPCTL_MPS_8;
2537 /* bad max packet size, warn and return invalid result */
2538 WARN_ON(1);
2539 return (u32)-1;
2543 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2544 * @hsotg: The driver state.
2545 * @ep: The index number of the endpoint
2546 * @mps: The maximum packet size in bytes
2547 * @mc: The multicount value
2548 * @dir_in: True if direction is in.
2550 * Configure the maximum packet size for the given endpoint, updating
2551 * the hardware control registers to reflect this.
2553 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2554 unsigned int ep, unsigned int mps,
2555 unsigned int mc, unsigned int dir_in)
2557 struct dwc2_hsotg_ep *hs_ep;
2558 u32 reg;
2560 hs_ep = index_to_ep(hsotg, ep, dir_in);
2561 if (!hs_ep)
2562 return;
2564 if (ep == 0) {
2565 u32 mps_bytes = mps;
2567 /* EP0 is a special case */
2568 mps = dwc2_hsotg_ep0_mps(mps_bytes);
2569 if (mps > 3)
2570 goto bad_mps;
2571 hs_ep->ep.maxpacket = mps_bytes;
2572 hs_ep->mc = 1;
2573 } else {
2574 if (mps > 1024)
2575 goto bad_mps;
2576 hs_ep->mc = mc;
2577 if (mc > 3)
2578 goto bad_mps;
2579 hs_ep->ep.maxpacket = mps;
2582 if (dir_in) {
2583 reg = dwc2_readl(hsotg, DIEPCTL(ep));
2584 reg &= ~DXEPCTL_MPS_MASK;
2585 reg |= mps;
2586 dwc2_writel(hsotg, reg, DIEPCTL(ep));
2587 } else {
2588 reg = dwc2_readl(hsotg, DOEPCTL(ep));
2589 reg &= ~DXEPCTL_MPS_MASK;
2590 reg |= mps;
2591 dwc2_writel(hsotg, reg, DOEPCTL(ep));
2594 return;
2596 bad_mps:
2597 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2601 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2602 * @hsotg: The driver state
2603 * @idx: The index for the endpoint (0..15)
2605 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2607 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2608 GRSTCTL);
2610 /* wait until the fifo is flushed */
2611 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2612 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2613 __func__);
2617 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2618 * @hsotg: The driver state
2619 * @hs_ep: The driver endpoint to check.
2621 * Check to see if there is a request that has data to send, and if so
2622 * make an attempt to write data into the FIFO.
2624 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2625 struct dwc2_hsotg_ep *hs_ep)
2627 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2629 if (!hs_ep->dir_in || !hs_req) {
2631 * if request is not enqueued, we disable interrupts
2632 * for endpoints, excepting ep0
2634 if (hs_ep->index != 0)
2635 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2636 hs_ep->dir_in, 0);
2637 return 0;
2640 if (hs_req->req.actual < hs_req->req.length) {
2641 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2642 hs_ep->index);
2643 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2646 return 0;
2650 * dwc2_hsotg_complete_in - complete IN transfer
2651 * @hsotg: The device state.
2652 * @hs_ep: The endpoint that has just completed.
2654 * An IN transfer has been completed, update the transfer's state and then
2655 * call the relevant completion routines.
2657 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2658 struct dwc2_hsotg_ep *hs_ep)
2660 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2661 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2662 int size_left, size_done;
2664 if (!hs_req) {
2665 dev_dbg(hsotg->dev, "XferCompl but no req\n");
2666 return;
2669 /* Finish ZLP handling for IN EP0 transactions */
2670 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2671 dev_dbg(hsotg->dev, "zlp packet sent\n");
2674 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2675 * changed to IN. Change back to complete OUT transfer request
2677 hs_ep->dir_in = 0;
2679 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2680 if (hsotg->test_mode) {
2681 int ret;
2683 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2684 if (ret < 0) {
2685 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2686 hsotg->test_mode);
2687 dwc2_hsotg_stall_ep0(hsotg);
2688 return;
2691 dwc2_hsotg_enqueue_setup(hsotg);
2692 return;
2696 * Calculate the size of the transfer by checking how much is left
2697 * in the endpoint size register and then working it out from
2698 * the amount we loaded for the transfer.
2700 * We do this even for DMA, as the transfer may have incremented
2701 * past the end of the buffer (DMA transfers are always 32bit
2702 * aligned).
2704 if (using_desc_dma(hsotg)) {
2705 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2706 if (size_left < 0)
2707 dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2708 size_left);
2709 } else {
2710 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2713 size_done = hs_ep->size_loaded - size_left;
2714 size_done += hs_ep->last_load;
2716 if (hs_req->req.actual != size_done)
2717 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2718 __func__, hs_req->req.actual, size_done);
2720 hs_req->req.actual = size_done;
2721 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2722 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2724 if (!size_left && hs_req->req.actual < hs_req->req.length) {
2725 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2726 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2727 return;
2730 /* Zlp for all endpoints, for ep0 only in DATA IN stage */
2731 if (hs_ep->send_zlp) {
2732 dwc2_hsotg_program_zlp(hsotg, hs_ep);
2733 hs_ep->send_zlp = 0;
2734 /* transfer will be completed on next complete interrupt */
2735 return;
2738 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2739 /* Move to STATUS OUT */
2740 dwc2_hsotg_ep0_zlp(hsotg, false);
2741 return;
2744 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2748 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2749 * @hsotg: The device state.
2750 * @idx: Index of ep.
2751 * @dir_in: Endpoint direction 1-in 0-out.
2753 * Reads for endpoint with given index and direction, by masking
2754 * epint_reg with coresponding mask.
2756 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2757 unsigned int idx, int dir_in)
2759 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2760 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2761 u32 ints;
2762 u32 mask;
2763 u32 diepempmsk;
2765 mask = dwc2_readl(hsotg, epmsk_reg);
2766 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2767 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2768 mask |= DXEPINT_SETUP_RCVD;
2770 ints = dwc2_readl(hsotg, epint_reg);
2771 ints &= mask;
2772 return ints;
2776 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2777 * @hs_ep: The endpoint on which interrupt is asserted.
2779 * This interrupt indicates that the endpoint has been disabled per the
2780 * application's request.
2782 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2783 * in case of ISOC completes current request.
2785 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2786 * request starts it.
2788 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2790 struct dwc2_hsotg *hsotg = hs_ep->parent;
2791 struct dwc2_hsotg_req *hs_req;
2792 unsigned char idx = hs_ep->index;
2793 int dir_in = hs_ep->dir_in;
2794 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2795 int dctl = dwc2_readl(hsotg, DCTL);
2797 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2799 if (dir_in) {
2800 int epctl = dwc2_readl(hsotg, epctl_reg);
2802 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2804 if (hs_ep->isochronous) {
2805 dwc2_hsotg_complete_in(hsotg, hs_ep);
2806 return;
2809 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2810 int dctl = dwc2_readl(hsotg, DCTL);
2812 dctl |= DCTL_CGNPINNAK;
2813 dwc2_writel(hsotg, dctl, DCTL);
2815 return;
2818 if (dctl & DCTL_GOUTNAKSTS) {
2819 dctl |= DCTL_CGOUTNAK;
2820 dwc2_writel(hsotg, dctl, DCTL);
2823 if (!hs_ep->isochronous)
2824 return;
2826 if (list_empty(&hs_ep->queue)) {
2827 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2828 __func__, hs_ep);
2829 return;
2832 do {
2833 hs_req = get_ep_head(hs_ep);
2834 if (hs_req)
2835 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2836 -ENODATA);
2837 dwc2_gadget_incr_frame_num(hs_ep);
2838 /* Update current frame number value. */
2839 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2840 } while (dwc2_gadget_target_frame_elapsed(hs_ep));
2842 dwc2_gadget_start_next_request(hs_ep);
2846 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2847 * @ep: The endpoint on which interrupt is asserted.
2849 * This is starting point for ISOC-OUT transfer, synchronization done with
2850 * first out token received from host while corresponding EP is disabled.
2852 * Device does not know initial frame in which out token will come. For this
2853 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2854 * getting this interrupt SW starts calculation for next transfer frame.
2856 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2858 struct dwc2_hsotg *hsotg = ep->parent;
2859 int dir_in = ep->dir_in;
2860 u32 doepmsk;
2862 if (dir_in || !ep->isochronous)
2863 return;
2865 if (using_desc_dma(hsotg)) {
2866 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2867 /* Start first ISO Out */
2868 ep->target_frame = hsotg->frame_number;
2869 dwc2_gadget_start_isoc_ddma(ep);
2871 return;
2874 if (ep->interval > 1 &&
2875 ep->target_frame == TARGET_FRAME_INITIAL) {
2876 u32 ctrl;
2878 ep->target_frame = hsotg->frame_number;
2879 dwc2_gadget_incr_frame_num(ep);
2881 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2882 if (ep->target_frame & 0x1)
2883 ctrl |= DXEPCTL_SETODDFR;
2884 else
2885 ctrl |= DXEPCTL_SETEVENFR;
2887 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2890 dwc2_gadget_start_next_request(ep);
2891 doepmsk = dwc2_readl(hsotg, DOEPMSK);
2892 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2893 dwc2_writel(hsotg, doepmsk, DOEPMSK);
2897 * dwc2_gadget_handle_nak - handle NAK interrupt
2898 * @hs_ep: The endpoint on which interrupt is asserted.
2900 * This is starting point for ISOC-IN transfer, synchronization done with
2901 * first IN token received from host while corresponding EP is disabled.
2903 * Device does not know when first one token will arrive from host. On first
2904 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2905 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2906 * sent in response to that as there was no data in FIFO. SW is basing on this
2907 * interrupt to obtain frame in which token has come and then based on the
2908 * interval calculates next frame for transfer.
2910 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2912 struct dwc2_hsotg *hsotg = hs_ep->parent;
2913 int dir_in = hs_ep->dir_in;
2915 if (!dir_in || !hs_ep->isochronous)
2916 return;
2918 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2920 if (using_desc_dma(hsotg)) {
2921 hs_ep->target_frame = hsotg->frame_number;
2922 dwc2_gadget_incr_frame_num(hs_ep);
2924 /* In service interval mode target_frame must
2925 * be set to last (u)frame of the service interval.
2927 if (hsotg->params.service_interval) {
2928 /* Set target_frame to the first (u)frame of
2929 * the service interval
2931 hs_ep->target_frame &= ~hs_ep->interval + 1;
2933 /* Set target_frame to the last (u)frame of
2934 * the service interval
2936 dwc2_gadget_incr_frame_num(hs_ep);
2937 dwc2_gadget_dec_frame_num_by_one(hs_ep);
2940 dwc2_gadget_start_isoc_ddma(hs_ep);
2941 return;
2944 hs_ep->target_frame = hsotg->frame_number;
2945 if (hs_ep->interval > 1) {
2946 u32 ctrl = dwc2_readl(hsotg,
2947 DIEPCTL(hs_ep->index));
2948 if (hs_ep->target_frame & 0x1)
2949 ctrl |= DXEPCTL_SETODDFR;
2950 else
2951 ctrl |= DXEPCTL_SETEVENFR;
2953 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2956 dwc2_hsotg_complete_request(hsotg, hs_ep,
2957 get_ep_head(hs_ep), 0);
2960 if (!using_desc_dma(hsotg))
2961 dwc2_gadget_incr_frame_num(hs_ep);
2965 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2966 * @hsotg: The driver state
2967 * @idx: The index for the endpoint (0..15)
2968 * @dir_in: Set if this is an IN endpoint
2970 * Process and clear any interrupt pending for an individual endpoint
2972 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2973 int dir_in)
2975 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2976 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2977 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2978 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2979 u32 ints;
2980 u32 ctrl;
2982 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2983 ctrl = dwc2_readl(hsotg, epctl_reg);
2985 /* Clear endpoint interrupts */
2986 dwc2_writel(hsotg, ints, epint_reg);
2988 if (!hs_ep) {
2989 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2990 __func__, idx, dir_in ? "in" : "out");
2991 return;
2994 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2995 __func__, idx, dir_in ? "in" : "out", ints);
2997 /* Don't process XferCompl interrupt if it is a setup packet */
2998 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2999 ints &= ~DXEPINT_XFERCOMPL;
3002 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3003 * stage and xfercomplete was generated without SETUP phase done
3004 * interrupt. SW should parse received setup packet only after host's
3005 * exit from setup phase of control transfer.
3007 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3008 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3009 ints &= ~DXEPINT_XFERCOMPL;
3011 if (ints & DXEPINT_XFERCOMPL) {
3012 dev_dbg(hsotg->dev,
3013 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3014 __func__, dwc2_readl(hsotg, epctl_reg),
3015 dwc2_readl(hsotg, epsiz_reg));
3017 /* In DDMA handle isochronous requests separately */
3018 if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3019 /* XferCompl set along with BNA */
3020 if (!(ints & DXEPINT_BNAINTR))
3021 dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3022 } else if (dir_in) {
3024 * We get OutDone from the FIFO, so we only
3025 * need to look at completing IN requests here
3026 * if operating slave mode
3028 if (hs_ep->isochronous && hs_ep->interval > 1)
3029 dwc2_gadget_incr_frame_num(hs_ep);
3031 dwc2_hsotg_complete_in(hsotg, hs_ep);
3032 if (ints & DXEPINT_NAKINTRPT)
3033 ints &= ~DXEPINT_NAKINTRPT;
3035 if (idx == 0 && !hs_ep->req)
3036 dwc2_hsotg_enqueue_setup(hsotg);
3037 } else if (using_dma(hsotg)) {
3039 * We're using DMA, we need to fire an OutDone here
3040 * as we ignore the RXFIFO.
3042 if (hs_ep->isochronous && hs_ep->interval > 1)
3043 dwc2_gadget_incr_frame_num(hs_ep);
3045 dwc2_hsotg_handle_outdone(hsotg, idx);
3049 if (ints & DXEPINT_EPDISBLD)
3050 dwc2_gadget_handle_ep_disabled(hs_ep);
3052 if (ints & DXEPINT_OUTTKNEPDIS)
3053 dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3055 if (ints & DXEPINT_NAKINTRPT)
3056 dwc2_gadget_handle_nak(hs_ep);
3058 if (ints & DXEPINT_AHBERR)
3059 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3061 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
3062 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
3064 if (using_dma(hsotg) && idx == 0) {
3066 * this is the notification we've received a
3067 * setup packet. In non-DMA mode we'd get this
3068 * from the RXFIFO, instead we need to process
3069 * the setup here.
3072 if (dir_in)
3073 WARN_ON_ONCE(1);
3074 else
3075 dwc2_hsotg_handle_outdone(hsotg, 0);
3079 if (ints & DXEPINT_STSPHSERCVD) {
3080 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3082 /* Safety check EP0 state when STSPHSERCVD asserted */
3083 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3084 /* Move to STATUS IN for DDMA */
3085 if (using_desc_dma(hsotg)) {
3086 if (!hsotg->delayed_status)
3087 dwc2_hsotg_ep0_zlp(hsotg, true);
3088 else
3089 /* In case of 3 stage Control Write with delayed
3090 * status, when Status IN transfer started
3091 * before STSPHSERCVD asserted, NAKSTS bit not
3092 * cleared by CNAK in dwc2_hsotg_start_req()
3093 * function. Clear now NAKSTS to allow complete
3094 * transfer.
3096 dwc2_set_bit(hsotg, DIEPCTL(0),
3097 DXEPCTL_CNAK);
3103 if (ints & DXEPINT_BACK2BACKSETUP)
3104 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3106 if (ints & DXEPINT_BNAINTR) {
3107 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3108 if (hs_ep->isochronous)
3109 dwc2_gadget_handle_isoc_bna(hs_ep);
3112 if (dir_in && !hs_ep->isochronous) {
3113 /* not sure if this is important, but we'll clear it anyway */
3114 if (ints & DXEPINT_INTKNTXFEMP) {
3115 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3116 __func__, idx);
3119 /* this probably means something bad is happening */
3120 if (ints & DXEPINT_INTKNEPMIS) {
3121 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3122 __func__, idx);
3125 /* FIFO has space or is empty (see GAHBCFG) */
3126 if (hsotg->dedicated_fifos &&
3127 ints & DXEPINT_TXFEMP) {
3128 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3129 __func__, idx);
3130 if (!using_dma(hsotg))
3131 dwc2_hsotg_trytx(hsotg, hs_ep);
3137 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3138 * @hsotg: The device state.
3140 * Handle updating the device settings after the enumeration phase has
3141 * been completed.
3143 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3145 u32 dsts = dwc2_readl(hsotg, DSTS);
3146 int ep0_mps = 0, ep_mps = 8;
3149 * This should signal the finish of the enumeration phase
3150 * of the USB handshaking, so we should now know what rate
3151 * we connected at.
3154 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3157 * note, since we're limited by the size of transfer on EP0, and
3158 * it seems IN transfers must be a even number of packets we do
3159 * not advertise a 64byte MPS on EP0.
3162 /* catch both EnumSpd_FS and EnumSpd_FS48 */
3163 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3164 case DSTS_ENUMSPD_FS:
3165 case DSTS_ENUMSPD_FS48:
3166 hsotg->gadget.speed = USB_SPEED_FULL;
3167 ep0_mps = EP0_MPS_LIMIT;
3168 ep_mps = 1023;
3169 break;
3171 case DSTS_ENUMSPD_HS:
3172 hsotg->gadget.speed = USB_SPEED_HIGH;
3173 ep0_mps = EP0_MPS_LIMIT;
3174 ep_mps = 1024;
3175 break;
3177 case DSTS_ENUMSPD_LS:
3178 hsotg->gadget.speed = USB_SPEED_LOW;
3179 ep0_mps = 8;
3180 ep_mps = 8;
3182 * note, we don't actually support LS in this driver at the
3183 * moment, and the documentation seems to imply that it isn't
3184 * supported by the PHYs on some of the devices.
3186 break;
3188 dev_info(hsotg->dev, "new device is %s\n",
3189 usb_speed_string(hsotg->gadget.speed));
3192 * we should now know the maximum packet size for an
3193 * endpoint, so set the endpoints to a default value.
3196 if (ep0_mps) {
3197 int i;
3198 /* Initialize ep0 for both in and out directions */
3199 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3200 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3201 for (i = 1; i < hsotg->num_of_eps; i++) {
3202 if (hsotg->eps_in[i])
3203 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3204 0, 1);
3205 if (hsotg->eps_out[i])
3206 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3207 0, 0);
3211 /* ensure after enumeration our EP0 is active */
3213 dwc2_hsotg_enqueue_setup(hsotg);
3215 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3216 dwc2_readl(hsotg, DIEPCTL0),
3217 dwc2_readl(hsotg, DOEPCTL0));
3221 * kill_all_requests - remove all requests from the endpoint's queue
3222 * @hsotg: The device state.
3223 * @ep: The endpoint the requests may be on.
3224 * @result: The result code to use.
3226 * Go through the requests on the given endpoint and mark them
3227 * completed with the given result code.
3229 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3230 struct dwc2_hsotg_ep *ep,
3231 int result)
3233 unsigned int size;
3235 ep->req = NULL;
3237 while (!list_empty(&ep->queue)) {
3238 struct dwc2_hsotg_req *req = get_ep_head(ep);
3240 dwc2_hsotg_complete_request(hsotg, ep, req, result);
3243 if (!hsotg->dedicated_fifos)
3244 return;
3245 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3246 if (size < ep->fifo_size)
3247 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3251 * dwc2_hsotg_disconnect - disconnect service
3252 * @hsotg: The device state.
3254 * The device has been disconnected. Remove all current
3255 * transactions and signal the gadget driver that this
3256 * has happened.
3258 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3260 unsigned int ep;
3262 if (!hsotg->connected)
3263 return;
3265 hsotg->connected = 0;
3266 hsotg->test_mode = 0;
3268 /* all endpoints should be shutdown */
3269 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3270 if (hsotg->eps_in[ep])
3271 kill_all_requests(hsotg, hsotg->eps_in[ep],
3272 -ESHUTDOWN);
3273 if (hsotg->eps_out[ep])
3274 kill_all_requests(hsotg, hsotg->eps_out[ep],
3275 -ESHUTDOWN);
3278 call_gadget(hsotg, disconnect);
3279 hsotg->lx_state = DWC2_L3;
3281 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3285 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3286 * @hsotg: The device state:
3287 * @periodic: True if this is a periodic FIFO interrupt
3289 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3291 struct dwc2_hsotg_ep *ep;
3292 int epno, ret;
3294 /* look through for any more data to transmit */
3295 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3296 ep = index_to_ep(hsotg, epno, 1);
3298 if (!ep)
3299 continue;
3301 if (!ep->dir_in)
3302 continue;
3304 if ((periodic && !ep->periodic) ||
3305 (!periodic && ep->periodic))
3306 continue;
3308 ret = dwc2_hsotg_trytx(hsotg, ep);
3309 if (ret < 0)
3310 break;
3314 /* IRQ flags which will trigger a retry around the IRQ loop */
3315 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3316 GINTSTS_PTXFEMP | \
3317 GINTSTS_RXFLVL)
3319 static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3321 * dwc2_hsotg_core_init - issue softreset to the core
3322 * @hsotg: The device state
3323 * @is_usb_reset: Usb resetting flag
3325 * Issue a soft reset to the core, and await the core finishing it.
3327 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3328 bool is_usb_reset)
3330 u32 intmsk;
3331 u32 val;
3332 u32 usbcfg;
3333 u32 dcfg = 0;
3334 int ep;
3336 /* Kill any ep0 requests as controller will be reinitialized */
3337 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3339 if (!is_usb_reset) {
3340 if (dwc2_core_reset(hsotg, true))
3341 return;
3342 } else {
3343 /* all endpoints should be shutdown */
3344 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3345 if (hsotg->eps_in[ep])
3346 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3347 if (hsotg->eps_out[ep])
3348 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3353 * we must now enable ep0 ready for host detection and then
3354 * set configuration.
3357 /* keep other bits untouched (so e.g. forced modes are not lost) */
3358 usbcfg = dwc2_readl(hsotg, GUSBCFG);
3359 usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3360 usbcfg |= GUSBCFG_TOUTCAL(7);
3362 /* remove the HNP/SRP and set the PHY */
3363 usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3364 dwc2_writel(hsotg, usbcfg, GUSBCFG);
3366 dwc2_phy_init(hsotg, true);
3368 dwc2_hsotg_init_fifo(hsotg);
3370 if (!is_usb_reset)
3371 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3373 dcfg |= DCFG_EPMISCNT(1);
3375 switch (hsotg->params.speed) {
3376 case DWC2_SPEED_PARAM_LOW:
3377 dcfg |= DCFG_DEVSPD_LS;
3378 break;
3379 case DWC2_SPEED_PARAM_FULL:
3380 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3381 dcfg |= DCFG_DEVSPD_FS48;
3382 else
3383 dcfg |= DCFG_DEVSPD_FS;
3384 break;
3385 default:
3386 dcfg |= DCFG_DEVSPD_HS;
3389 if (hsotg->params.ipg_isoc_en)
3390 dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3392 dwc2_writel(hsotg, dcfg, DCFG);
3394 /* Clear any pending OTG interrupts */
3395 dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3397 /* Clear any pending interrupts */
3398 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3399 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3400 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3401 GINTSTS_USBRST | GINTSTS_RESETDET |
3402 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3403 GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3404 GINTSTS_LPMTRANRCVD;
3406 if (!using_desc_dma(hsotg))
3407 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3409 if (!hsotg->params.external_id_pin_ctl)
3410 intmsk |= GINTSTS_CONIDSTSCHNG;
3412 dwc2_writel(hsotg, intmsk, GINTMSK);
3414 if (using_dma(hsotg)) {
3415 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3416 hsotg->params.ahbcfg,
3417 GAHBCFG);
3419 /* Set DDMA mode support in the core if needed */
3420 if (using_desc_dma(hsotg))
3421 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3423 } else {
3424 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3425 (GAHBCFG_NP_TXF_EMP_LVL |
3426 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3427 GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3431 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3432 * when we have no data to transfer. Otherwise we get being flooded by
3433 * interrupts.
3436 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3437 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3438 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3439 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3440 DIEPMSK);
3443 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3444 * DMA mode we may need this and StsPhseRcvd.
3446 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3447 DOEPMSK_STSPHSERCVDMSK) : 0) |
3448 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3449 DOEPMSK_SETUPMSK,
3450 DOEPMSK);
3452 /* Enable BNA interrupt for DDMA */
3453 if (using_desc_dma(hsotg)) {
3454 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3455 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3458 /* Enable Service Interval mode if supported */
3459 if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3460 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3462 dwc2_writel(hsotg, 0, DAINTMSK);
3464 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3465 dwc2_readl(hsotg, DIEPCTL0),
3466 dwc2_readl(hsotg, DOEPCTL0));
3468 /* enable in and out endpoint interrupts */
3469 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3472 * Enable the RXFIFO when in slave mode, as this is how we collect
3473 * the data. In DMA mode, we get events from the FIFO but also
3474 * things we cannot process, so do not use it.
3476 if (!using_dma(hsotg))
3477 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3479 /* Enable interrupts for EP0 in and out */
3480 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3481 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3483 if (!is_usb_reset) {
3484 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3485 udelay(10); /* see openiboot */
3486 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3489 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3492 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3493 * writing to the EPCTL register..
3496 /* set to read 1 8byte packet */
3497 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3498 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3500 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3501 DXEPCTL_CNAK | DXEPCTL_EPENA |
3502 DXEPCTL_USBACTEP,
3503 DOEPCTL0);
3505 /* enable, but don't activate EP0in */
3506 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3507 DXEPCTL_USBACTEP, DIEPCTL0);
3509 /* clear global NAKs */
3510 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3511 if (!is_usb_reset)
3512 val |= DCTL_SFTDISCON;
3513 dwc2_set_bit(hsotg, DCTL, val);
3515 /* configure the core to support LPM */
3516 dwc2_gadget_init_lpm(hsotg);
3518 /* program GREFCLK register if needed */
3519 if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3520 dwc2_gadget_program_ref_clk(hsotg);
3522 /* must be at-least 3ms to allow bus to see disconnect */
3523 mdelay(3);
3525 hsotg->lx_state = DWC2_L0;
3527 dwc2_hsotg_enqueue_setup(hsotg);
3529 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3530 dwc2_readl(hsotg, DIEPCTL0),
3531 dwc2_readl(hsotg, DOEPCTL0));
3534 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3536 /* set the soft-disconnect bit */
3537 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3540 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3542 /* remove the soft-disconnect and let's go */
3543 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3547 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3548 * @hsotg: The device state:
3550 * This interrupt indicates one of the following conditions occurred while
3551 * transmitting an ISOC transaction.
3552 * - Corrupted IN Token for ISOC EP.
3553 * - Packet not complete in FIFO.
3555 * The following actions will be taken:
3556 * - Determine the EP
3557 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3559 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3561 struct dwc2_hsotg_ep *hs_ep;
3562 u32 epctrl;
3563 u32 daintmsk;
3564 u32 idx;
3566 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3568 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3570 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3571 hs_ep = hsotg->eps_in[idx];
3572 /* Proceed only unmasked ISOC EPs */
3573 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3574 continue;
3576 epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3577 if ((epctrl & DXEPCTL_EPENA) &&
3578 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3579 epctrl |= DXEPCTL_SNAK;
3580 epctrl |= DXEPCTL_EPDIS;
3581 dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3585 /* Clear interrupt */
3586 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3590 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3591 * @hsotg: The device state:
3593 * This interrupt indicates one of the following conditions occurred while
3594 * transmitting an ISOC transaction.
3595 * - Corrupted OUT Token for ISOC EP.
3596 * - Packet not complete in FIFO.
3598 * The following actions will be taken:
3599 * - Determine the EP
3600 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3602 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3604 u32 gintsts;
3605 u32 gintmsk;
3606 u32 daintmsk;
3607 u32 epctrl;
3608 struct dwc2_hsotg_ep *hs_ep;
3609 int idx;
3611 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3613 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3614 daintmsk >>= DAINT_OUTEP_SHIFT;
3616 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3617 hs_ep = hsotg->eps_out[idx];
3618 /* Proceed only unmasked ISOC EPs */
3619 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3620 continue;
3622 epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3623 if ((epctrl & DXEPCTL_EPENA) &&
3624 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3625 /* Unmask GOUTNAKEFF interrupt */
3626 gintmsk = dwc2_readl(hsotg, GINTMSK);
3627 gintmsk |= GINTSTS_GOUTNAKEFF;
3628 dwc2_writel(hsotg, gintmsk, GINTMSK);
3630 gintsts = dwc2_readl(hsotg, GINTSTS);
3631 if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3632 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3633 break;
3638 /* Clear interrupt */
3639 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3643 * dwc2_hsotg_irq - handle device interrupt
3644 * @irq: The IRQ number triggered
3645 * @pw: The pw value when registered the handler.
3647 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3649 struct dwc2_hsotg *hsotg = pw;
3650 int retry_count = 8;
3651 u32 gintsts;
3652 u32 gintmsk;
3654 if (!dwc2_is_device_mode(hsotg))
3655 return IRQ_NONE;
3657 spin_lock(&hsotg->lock);
3658 irq_retry:
3659 gintsts = dwc2_readl(hsotg, GINTSTS);
3660 gintmsk = dwc2_readl(hsotg, GINTMSK);
3662 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3663 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3665 gintsts &= gintmsk;
3667 if (gintsts & GINTSTS_RESETDET) {
3668 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3670 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3672 /* This event must be used only if controller is suspended */
3673 if (hsotg->lx_state == DWC2_L2) {
3674 dwc2_exit_partial_power_down(hsotg, true);
3675 hsotg->lx_state = DWC2_L0;
3679 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3680 u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3681 u32 connected = hsotg->connected;
3683 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3684 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3685 dwc2_readl(hsotg, GNPTXSTS));
3687 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3689 /* Report disconnection if it is not already done. */
3690 dwc2_hsotg_disconnect(hsotg);
3692 /* Reset device address to zero */
3693 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3695 if (usb_status & GOTGCTL_BSESVLD && connected)
3696 dwc2_hsotg_core_init_disconnected(hsotg, true);
3699 if (gintsts & GINTSTS_ENUMDONE) {
3700 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3702 dwc2_hsotg_irq_enumdone(hsotg);
3705 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3706 u32 daint = dwc2_readl(hsotg, DAINT);
3707 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3708 u32 daint_out, daint_in;
3709 int ep;
3711 daint &= daintmsk;
3712 daint_out = daint >> DAINT_OUTEP_SHIFT;
3713 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3715 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3717 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3718 ep++, daint_out >>= 1) {
3719 if (daint_out & 1)
3720 dwc2_hsotg_epint(hsotg, ep, 0);
3723 for (ep = 0; ep < hsotg->num_of_eps && daint_in;
3724 ep++, daint_in >>= 1) {
3725 if (daint_in & 1)
3726 dwc2_hsotg_epint(hsotg, ep, 1);
3730 /* check both FIFOs */
3732 if (gintsts & GINTSTS_NPTXFEMP) {
3733 dev_dbg(hsotg->dev, "NPTxFEmp\n");
3736 * Disable the interrupt to stop it happening again
3737 * unless one of these endpoint routines decides that
3738 * it needs re-enabling
3741 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3742 dwc2_hsotg_irq_fifoempty(hsotg, false);
3745 if (gintsts & GINTSTS_PTXFEMP) {
3746 dev_dbg(hsotg->dev, "PTxFEmp\n");
3748 /* See note in GINTSTS_NPTxFEmp */
3750 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3751 dwc2_hsotg_irq_fifoempty(hsotg, true);
3754 if (gintsts & GINTSTS_RXFLVL) {
3756 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3757 * we need to retry dwc2_hsotg_handle_rx if this is still
3758 * set.
3761 dwc2_hsotg_handle_rx(hsotg);
3764 if (gintsts & GINTSTS_ERLYSUSP) {
3765 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3766 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3770 * these next two seem to crop-up occasionally causing the core
3771 * to shutdown the USB transfer, so try clearing them and logging
3772 * the occurrence.
3775 if (gintsts & GINTSTS_GOUTNAKEFF) {
3776 u8 idx;
3777 u32 epctrl;
3778 u32 gintmsk;
3779 u32 daintmsk;
3780 struct dwc2_hsotg_ep *hs_ep;
3782 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3783 daintmsk >>= DAINT_OUTEP_SHIFT;
3784 /* Mask this interrupt */
3785 gintmsk = dwc2_readl(hsotg, GINTMSK);
3786 gintmsk &= ~GINTSTS_GOUTNAKEFF;
3787 dwc2_writel(hsotg, gintmsk, GINTMSK);
3789 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3790 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3791 hs_ep = hsotg->eps_out[idx];
3792 /* Proceed only unmasked ISOC EPs */
3793 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3794 continue;
3796 epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3798 if (epctrl & DXEPCTL_EPENA) {
3799 epctrl |= DXEPCTL_SNAK;
3800 epctrl |= DXEPCTL_EPDIS;
3801 dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3805 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3808 if (gintsts & GINTSTS_GINNAKEFF) {
3809 dev_info(hsotg->dev, "GINNakEff triggered\n");
3811 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3813 dwc2_hsotg_dump(hsotg);
3816 if (gintsts & GINTSTS_INCOMPL_SOIN)
3817 dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3819 if (gintsts & GINTSTS_INCOMPL_SOOUT)
3820 dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3823 * if we've had fifo events, we should try and go around the
3824 * loop again to see if there's any point in returning yet.
3827 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3828 goto irq_retry;
3830 /* Check WKUP_ALERT interrupt*/
3831 if (hsotg->params.service_interval)
3832 dwc2_gadget_wkup_alert_handler(hsotg);
3834 spin_unlock(&hsotg->lock);
3836 return IRQ_HANDLED;
3839 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3840 struct dwc2_hsotg_ep *hs_ep)
3842 u32 epctrl_reg;
3843 u32 epint_reg;
3845 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3846 DOEPCTL(hs_ep->index);
3847 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3848 DOEPINT(hs_ep->index);
3850 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3851 hs_ep->name);
3853 if (hs_ep->dir_in) {
3854 if (hsotg->dedicated_fifos || hs_ep->periodic) {
3855 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3856 /* Wait for Nak effect */
3857 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3858 DXEPINT_INEPNAKEFF, 100))
3859 dev_warn(hsotg->dev,
3860 "%s: timeout DIEPINT.NAKEFF\n",
3861 __func__);
3862 } else {
3863 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3864 /* Wait for Nak effect */
3865 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3866 GINTSTS_GINNAKEFF, 100))
3867 dev_warn(hsotg->dev,
3868 "%s: timeout GINTSTS.GINNAKEFF\n",
3869 __func__);
3871 } else {
3872 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3873 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3875 /* Wait for global nak to take effect */
3876 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3877 GINTSTS_GOUTNAKEFF, 100))
3878 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3879 __func__);
3882 /* Disable ep */
3883 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3885 /* Wait for ep to be disabled */
3886 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3887 dev_warn(hsotg->dev,
3888 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3890 /* Clear EPDISBLD interrupt */
3891 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3893 if (hs_ep->dir_in) {
3894 unsigned short fifo_index;
3896 if (hsotg->dedicated_fifos || hs_ep->periodic)
3897 fifo_index = hs_ep->fifo_index;
3898 else
3899 fifo_index = 0;
3901 /* Flush TX FIFO */
3902 dwc2_flush_tx_fifo(hsotg, fifo_index);
3904 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3905 if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3906 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3908 } else {
3909 /* Remove global NAKs */
3910 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3915 * dwc2_hsotg_ep_enable - enable the given endpoint
3916 * @ep: The USB endpint to configure
3917 * @desc: The USB endpoint descriptor to configure with.
3919 * This is called from the USB gadget code's usb_ep_enable().
3921 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3922 const struct usb_endpoint_descriptor *desc)
3924 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3925 struct dwc2_hsotg *hsotg = hs_ep->parent;
3926 unsigned long flags;
3927 unsigned int index = hs_ep->index;
3928 u32 epctrl_reg;
3929 u32 epctrl;
3930 u32 mps;
3931 u32 mc;
3932 u32 mask;
3933 unsigned int dir_in;
3934 unsigned int i, val, size;
3935 int ret = 0;
3936 unsigned char ep_type;
3937 int desc_num;
3939 dev_dbg(hsotg->dev,
3940 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3941 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3942 desc->wMaxPacketSize, desc->bInterval);
3944 /* not to be called for EP0 */
3945 if (index == 0) {
3946 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3947 return -EINVAL;
3950 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3951 if (dir_in != hs_ep->dir_in) {
3952 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3953 return -EINVAL;
3956 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3957 mps = usb_endpoint_maxp(desc);
3958 mc = usb_endpoint_maxp_mult(desc);
3960 /* ISOC IN in DDMA supported bInterval up to 10 */
3961 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3962 dir_in && desc->bInterval > 10) {
3963 dev_err(hsotg->dev,
3964 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
3965 return -EINVAL;
3968 /* High bandwidth ISOC OUT in DDMA not supported */
3969 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3970 !dir_in && mc > 1) {
3971 dev_err(hsotg->dev,
3972 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
3973 return -EINVAL;
3976 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3978 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3979 epctrl = dwc2_readl(hsotg, epctrl_reg);
3981 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3982 __func__, epctrl, epctrl_reg);
3984 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
3985 desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
3986 else
3987 desc_num = MAX_DMA_DESC_NUM_GENERIC;
3989 /* Allocate DMA descriptor chain for non-ctrl endpoints */
3990 if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3991 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3992 desc_num * sizeof(struct dwc2_dma_desc),
3993 &hs_ep->desc_list_dma, GFP_ATOMIC);
3994 if (!hs_ep->desc_list) {
3995 ret = -ENOMEM;
3996 goto error2;
4000 spin_lock_irqsave(&hsotg->lock, flags);
4002 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4003 epctrl |= DXEPCTL_MPS(mps);
4006 * mark the endpoint as active, otherwise the core may ignore
4007 * transactions entirely for this endpoint
4009 epctrl |= DXEPCTL_USBACTEP;
4011 /* update the endpoint state */
4012 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4014 /* default, set to non-periodic */
4015 hs_ep->isochronous = 0;
4016 hs_ep->periodic = 0;
4017 hs_ep->halted = 0;
4018 hs_ep->interval = desc->bInterval;
4020 switch (ep_type) {
4021 case USB_ENDPOINT_XFER_ISOC:
4022 epctrl |= DXEPCTL_EPTYPE_ISO;
4023 epctrl |= DXEPCTL_SETEVENFR;
4024 hs_ep->isochronous = 1;
4025 hs_ep->interval = 1 << (desc->bInterval - 1);
4026 hs_ep->target_frame = TARGET_FRAME_INITIAL;
4027 hs_ep->next_desc = 0;
4028 hs_ep->compl_desc = 0;
4029 if (dir_in) {
4030 hs_ep->periodic = 1;
4031 mask = dwc2_readl(hsotg, DIEPMSK);
4032 mask |= DIEPMSK_NAKMSK;
4033 dwc2_writel(hsotg, mask, DIEPMSK);
4034 } else {
4035 mask = dwc2_readl(hsotg, DOEPMSK);
4036 mask |= DOEPMSK_OUTTKNEPDISMSK;
4037 dwc2_writel(hsotg, mask, DOEPMSK);
4039 break;
4041 case USB_ENDPOINT_XFER_BULK:
4042 epctrl |= DXEPCTL_EPTYPE_BULK;
4043 break;
4045 case USB_ENDPOINT_XFER_INT:
4046 if (dir_in)
4047 hs_ep->periodic = 1;
4049 if (hsotg->gadget.speed == USB_SPEED_HIGH)
4050 hs_ep->interval = 1 << (desc->bInterval - 1);
4052 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4053 break;
4055 case USB_ENDPOINT_XFER_CONTROL:
4056 epctrl |= DXEPCTL_EPTYPE_CONTROL;
4057 break;
4061 * if the hardware has dedicated fifos, we must give each IN EP
4062 * a unique tx-fifo even if it is non-periodic.
4064 if (dir_in && hsotg->dedicated_fifos) {
4065 unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4066 u32 fifo_index = 0;
4067 u32 fifo_size = UINT_MAX;
4069 size = hs_ep->ep.maxpacket * hs_ep->mc;
4070 for (i = 1; i <= fifo_count; ++i) {
4071 if (hsotg->fifo_map & (1 << i))
4072 continue;
4073 val = dwc2_readl(hsotg, DPTXFSIZN(i));
4074 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4075 if (val < size)
4076 continue;
4077 /* Search for smallest acceptable fifo */
4078 if (val < fifo_size) {
4079 fifo_size = val;
4080 fifo_index = i;
4083 if (!fifo_index) {
4084 dev_err(hsotg->dev,
4085 "%s: No suitable fifo found\n", __func__);
4086 ret = -ENOMEM;
4087 goto error1;
4089 epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4090 hsotg->fifo_map |= 1 << fifo_index;
4091 epctrl |= DXEPCTL_TXFNUM(fifo_index);
4092 hs_ep->fifo_index = fifo_index;
4093 hs_ep->fifo_size = fifo_size;
4096 /* for non control endpoints, set PID to D0 */
4097 if (index && !hs_ep->isochronous)
4098 epctrl |= DXEPCTL_SETD0PID;
4100 /* WA for Full speed ISOC IN in DDMA mode.
4101 * By Clear NAK status of EP, core will send ZLP
4102 * to IN token and assert NAK interrupt relying
4103 * on TxFIFO status only
4106 if (hsotg->gadget.speed == USB_SPEED_FULL &&
4107 hs_ep->isochronous && dir_in) {
4108 /* The WA applies only to core versions from 2.72a
4109 * to 4.00a (including both). Also for FS_IOT_1.00a
4110 * and HS_IOT_1.00a.
4112 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4114 if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4115 gsnpsid <= DWC2_CORE_REV_4_00a) ||
4116 gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4117 gsnpsid == DWC2_HS_IOT_REV_1_00a)
4118 epctrl |= DXEPCTL_CNAK;
4121 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4122 __func__, epctrl);
4124 dwc2_writel(hsotg, epctrl, epctrl_reg);
4125 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4126 __func__, dwc2_readl(hsotg, epctrl_reg));
4128 /* enable the endpoint interrupt */
4129 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4131 error1:
4132 spin_unlock_irqrestore(&hsotg->lock, flags);
4134 error2:
4135 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4136 dmam_free_coherent(hsotg->dev, desc_num *
4137 sizeof(struct dwc2_dma_desc),
4138 hs_ep->desc_list, hs_ep->desc_list_dma);
4139 hs_ep->desc_list = NULL;
4142 return ret;
4146 * dwc2_hsotg_ep_disable - disable given endpoint
4147 * @ep: The endpoint to disable.
4149 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4151 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4152 struct dwc2_hsotg *hsotg = hs_ep->parent;
4153 int dir_in = hs_ep->dir_in;
4154 int index = hs_ep->index;
4155 u32 epctrl_reg;
4156 u32 ctrl;
4158 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4160 if (ep == &hsotg->eps_out[0]->ep) {
4161 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4162 return -EINVAL;
4165 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4166 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4167 return -EINVAL;
4170 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4172 ctrl = dwc2_readl(hsotg, epctrl_reg);
4174 if (ctrl & DXEPCTL_EPENA)
4175 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4177 ctrl &= ~DXEPCTL_EPENA;
4178 ctrl &= ~DXEPCTL_USBACTEP;
4179 ctrl |= DXEPCTL_SNAK;
4181 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4182 dwc2_writel(hsotg, ctrl, epctrl_reg);
4184 /* disable endpoint interrupts */
4185 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4187 /* terminate all requests with shutdown */
4188 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4190 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4191 hs_ep->fifo_index = 0;
4192 hs_ep->fifo_size = 0;
4194 return 0;
4197 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4199 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4200 struct dwc2_hsotg *hsotg = hs_ep->parent;
4201 unsigned long flags;
4202 int ret;
4204 spin_lock_irqsave(&hsotg->lock, flags);
4205 ret = dwc2_hsotg_ep_disable(ep);
4206 spin_unlock_irqrestore(&hsotg->lock, flags);
4207 return ret;
4211 * on_list - check request is on the given endpoint
4212 * @ep: The endpoint to check.
4213 * @test: The request to test if it is on the endpoint.
4215 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4217 struct dwc2_hsotg_req *req, *treq;
4219 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4220 if (req == test)
4221 return true;
4224 return false;
4228 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4229 * @ep: The endpoint to dequeue.
4230 * @req: The request to be removed from a queue.
4232 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4234 struct dwc2_hsotg_req *hs_req = our_req(req);
4235 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4236 struct dwc2_hsotg *hs = hs_ep->parent;
4237 unsigned long flags;
4239 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4241 spin_lock_irqsave(&hs->lock, flags);
4243 if (!on_list(hs_ep, hs_req)) {
4244 spin_unlock_irqrestore(&hs->lock, flags);
4245 return -EINVAL;
4248 /* Dequeue already started request */
4249 if (req == &hs_ep->req->req)
4250 dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4252 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4253 spin_unlock_irqrestore(&hs->lock, flags);
4255 return 0;
4259 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4260 * @ep: The endpoint to set halt.
4261 * @value: Set or unset the halt.
4262 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4263 * the endpoint is busy processing requests.
4265 * We need to stall the endpoint immediately if request comes from set_feature
4266 * protocol command handler.
4268 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4270 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4271 struct dwc2_hsotg *hs = hs_ep->parent;
4272 int index = hs_ep->index;
4273 u32 epreg;
4274 u32 epctl;
4275 u32 xfertype;
4277 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4279 if (index == 0) {
4280 if (value)
4281 dwc2_hsotg_stall_ep0(hs);
4282 else
4283 dev_warn(hs->dev,
4284 "%s: can't clear halt on ep0\n", __func__);
4285 return 0;
4288 if (hs_ep->isochronous) {
4289 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4290 return -EINVAL;
4293 if (!now && value && !list_empty(&hs_ep->queue)) {
4294 dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4295 ep->name);
4296 return -EAGAIN;
4299 if (hs_ep->dir_in) {
4300 epreg = DIEPCTL(index);
4301 epctl = dwc2_readl(hs, epreg);
4303 if (value) {
4304 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4305 if (epctl & DXEPCTL_EPENA)
4306 epctl |= DXEPCTL_EPDIS;
4307 } else {
4308 epctl &= ~DXEPCTL_STALL;
4309 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4310 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4311 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4312 epctl |= DXEPCTL_SETD0PID;
4314 dwc2_writel(hs, epctl, epreg);
4315 } else {
4316 epreg = DOEPCTL(index);
4317 epctl = dwc2_readl(hs, epreg);
4319 if (value) {
4320 epctl |= DXEPCTL_STALL;
4321 } else {
4322 epctl &= ~DXEPCTL_STALL;
4323 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4324 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4325 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4326 epctl |= DXEPCTL_SETD0PID;
4328 dwc2_writel(hs, epctl, epreg);
4331 hs_ep->halted = value;
4333 return 0;
4337 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4338 * @ep: The endpoint to set halt.
4339 * @value: Set or unset the halt.
4341 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4343 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4344 struct dwc2_hsotg *hs = hs_ep->parent;
4345 unsigned long flags = 0;
4346 int ret = 0;
4348 spin_lock_irqsave(&hs->lock, flags);
4349 ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4350 spin_unlock_irqrestore(&hs->lock, flags);
4352 return ret;
4355 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4356 .enable = dwc2_hsotg_ep_enable,
4357 .disable = dwc2_hsotg_ep_disable_lock,
4358 .alloc_request = dwc2_hsotg_ep_alloc_request,
4359 .free_request = dwc2_hsotg_ep_free_request,
4360 .queue = dwc2_hsotg_ep_queue_lock,
4361 .dequeue = dwc2_hsotg_ep_dequeue,
4362 .set_halt = dwc2_hsotg_ep_sethalt_lock,
4363 /* note, don't believe we have any call for the fifo routines */
4367 * dwc2_hsotg_init - initialize the usb core
4368 * @hsotg: The driver state
4370 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4372 /* unmask subset of endpoint interrupts */
4374 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4375 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4376 DIEPMSK);
4378 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4379 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4380 DOEPMSK);
4382 dwc2_writel(hsotg, 0, DAINTMSK);
4384 /* Be in disconnected state until gadget is registered */
4385 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4387 /* setup fifos */
4389 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4390 dwc2_readl(hsotg, GRXFSIZ),
4391 dwc2_readl(hsotg, GNPTXFSIZ));
4393 dwc2_hsotg_init_fifo(hsotg);
4395 if (using_dma(hsotg))
4396 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4400 * dwc2_hsotg_udc_start - prepare the udc for work
4401 * @gadget: The usb gadget state
4402 * @driver: The usb gadget driver
4404 * Perform initialization to prepare udc device and driver
4405 * to work.
4407 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4408 struct usb_gadget_driver *driver)
4410 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4411 unsigned long flags;
4412 int ret;
4414 if (!hsotg) {
4415 pr_err("%s: called with no device\n", __func__);
4416 return -ENODEV;
4419 if (!driver) {
4420 dev_err(hsotg->dev, "%s: no driver\n", __func__);
4421 return -EINVAL;
4424 if (driver->max_speed < USB_SPEED_FULL)
4425 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4427 if (!driver->setup) {
4428 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4429 return -EINVAL;
4432 WARN_ON(hsotg->driver);
4434 driver->driver.bus = NULL;
4435 hsotg->driver = driver;
4436 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4437 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4439 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4440 ret = dwc2_lowlevel_hw_enable(hsotg);
4441 if (ret)
4442 goto err;
4445 if (!IS_ERR_OR_NULL(hsotg->uphy))
4446 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4448 spin_lock_irqsave(&hsotg->lock, flags);
4449 if (dwc2_hw_is_device(hsotg)) {
4450 dwc2_hsotg_init(hsotg);
4451 dwc2_hsotg_core_init_disconnected(hsotg, false);
4454 hsotg->enabled = 0;
4455 spin_unlock_irqrestore(&hsotg->lock, flags);
4457 gadget->sg_supported = using_desc_dma(hsotg);
4458 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4460 return 0;
4462 err:
4463 hsotg->driver = NULL;
4464 return ret;
4468 * dwc2_hsotg_udc_stop - stop the udc
4469 * @gadget: The usb gadget state
4471 * Stop udc hw block and stay tunned for future transmissions
4473 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4475 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4476 unsigned long flags = 0;
4477 int ep;
4479 if (!hsotg)
4480 return -ENODEV;
4482 /* all endpoints should be shutdown */
4483 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4484 if (hsotg->eps_in[ep])
4485 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4486 if (hsotg->eps_out[ep])
4487 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4490 spin_lock_irqsave(&hsotg->lock, flags);
4492 hsotg->driver = NULL;
4493 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4494 hsotg->enabled = 0;
4496 spin_unlock_irqrestore(&hsotg->lock, flags);
4498 if (!IS_ERR_OR_NULL(hsotg->uphy))
4499 otg_set_peripheral(hsotg->uphy->otg, NULL);
4501 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4502 dwc2_lowlevel_hw_disable(hsotg);
4504 return 0;
4508 * dwc2_hsotg_gadget_getframe - read the frame number
4509 * @gadget: The usb gadget state
4511 * Read the {micro} frame number
4513 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4515 return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4519 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4520 * @gadget: The usb gadget state
4521 * @is_on: Current state of the USB PHY
4523 * Connect/Disconnect the USB PHY pullup
4525 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4527 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4528 unsigned long flags = 0;
4530 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4531 hsotg->op_state);
4533 /* Don't modify pullup state while in host mode */
4534 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4535 hsotg->enabled = is_on;
4536 return 0;
4539 spin_lock_irqsave(&hsotg->lock, flags);
4540 if (is_on) {
4541 hsotg->enabled = 1;
4542 dwc2_hsotg_core_init_disconnected(hsotg, false);
4543 /* Enable ACG feature in device mode,if supported */
4544 dwc2_enable_acg(hsotg);
4545 dwc2_hsotg_core_connect(hsotg);
4546 } else {
4547 dwc2_hsotg_core_disconnect(hsotg);
4548 dwc2_hsotg_disconnect(hsotg);
4549 hsotg->enabled = 0;
4552 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4553 spin_unlock_irqrestore(&hsotg->lock, flags);
4555 return 0;
4558 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4560 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4561 unsigned long flags;
4563 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4564 spin_lock_irqsave(&hsotg->lock, flags);
4567 * If controller is hibernated, it must exit from power_down
4568 * before being initialized / de-initialized
4570 if (hsotg->lx_state == DWC2_L2)
4571 dwc2_exit_partial_power_down(hsotg, false);
4573 if (is_active) {
4574 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4576 dwc2_hsotg_core_init_disconnected(hsotg, false);
4577 if (hsotg->enabled) {
4578 /* Enable ACG feature in device mode,if supported */
4579 dwc2_enable_acg(hsotg);
4580 dwc2_hsotg_core_connect(hsotg);
4582 } else {
4583 dwc2_hsotg_core_disconnect(hsotg);
4584 dwc2_hsotg_disconnect(hsotg);
4587 spin_unlock_irqrestore(&hsotg->lock, flags);
4588 return 0;
4592 * dwc2_hsotg_vbus_draw - report bMaxPower field
4593 * @gadget: The usb gadget state
4594 * @mA: Amount of current
4596 * Report how much power the device may consume to the phy.
4598 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4600 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4602 if (IS_ERR_OR_NULL(hsotg->uphy))
4603 return -ENOTSUPP;
4604 return usb_phy_set_power(hsotg->uphy, mA);
4607 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4608 .get_frame = dwc2_hsotg_gadget_getframe,
4609 .udc_start = dwc2_hsotg_udc_start,
4610 .udc_stop = dwc2_hsotg_udc_stop,
4611 .pullup = dwc2_hsotg_pullup,
4612 .vbus_session = dwc2_hsotg_vbus_session,
4613 .vbus_draw = dwc2_hsotg_vbus_draw,
4617 * dwc2_hsotg_initep - initialise a single endpoint
4618 * @hsotg: The device state.
4619 * @hs_ep: The endpoint to be initialised.
4620 * @epnum: The endpoint number
4621 * @dir_in: True if direction is in.
4623 * Initialise the given endpoint (as part of the probe and device state
4624 * creation) to give to the gadget driver. Setup the endpoint name, any
4625 * direction information and other state that may be required.
4627 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4628 struct dwc2_hsotg_ep *hs_ep,
4629 int epnum,
4630 bool dir_in)
4632 char *dir;
4634 if (epnum == 0)
4635 dir = "";
4636 else if (dir_in)
4637 dir = "in";
4638 else
4639 dir = "out";
4641 hs_ep->dir_in = dir_in;
4642 hs_ep->index = epnum;
4644 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4646 INIT_LIST_HEAD(&hs_ep->queue);
4647 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4649 /* add to the list of endpoints known by the gadget driver */
4650 if (epnum)
4651 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4653 hs_ep->parent = hsotg;
4654 hs_ep->ep.name = hs_ep->name;
4656 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4657 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4658 else
4659 usb_ep_set_maxpacket_limit(&hs_ep->ep,
4660 epnum ? 1024 : EP0_MPS_LIMIT);
4661 hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4663 if (epnum == 0) {
4664 hs_ep->ep.caps.type_control = true;
4665 } else {
4666 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4667 hs_ep->ep.caps.type_iso = true;
4668 hs_ep->ep.caps.type_bulk = true;
4670 hs_ep->ep.caps.type_int = true;
4673 if (dir_in)
4674 hs_ep->ep.caps.dir_in = true;
4675 else
4676 hs_ep->ep.caps.dir_out = true;
4679 * if we're using dma, we need to set the next-endpoint pointer
4680 * to be something valid.
4683 if (using_dma(hsotg)) {
4684 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4686 if (dir_in)
4687 dwc2_writel(hsotg, next, DIEPCTL(epnum));
4688 else
4689 dwc2_writel(hsotg, next, DOEPCTL(epnum));
4694 * dwc2_hsotg_hw_cfg - read HW configuration registers
4695 * @hsotg: Programming view of the DWC_otg controller
4697 * Read the USB core HW configuration registers
4699 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4701 u32 cfg;
4702 u32 ep_type;
4703 u32 i;
4705 /* check hardware configuration */
4707 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4709 /* Add ep0 */
4710 hsotg->num_of_eps++;
4712 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4713 sizeof(struct dwc2_hsotg_ep),
4714 GFP_KERNEL);
4715 if (!hsotg->eps_in[0])
4716 return -ENOMEM;
4717 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4718 hsotg->eps_out[0] = hsotg->eps_in[0];
4720 cfg = hsotg->hw_params.dev_ep_dirs;
4721 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4722 ep_type = cfg & 3;
4723 /* Direction in or both */
4724 if (!(ep_type & 2)) {
4725 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4726 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4727 if (!hsotg->eps_in[i])
4728 return -ENOMEM;
4730 /* Direction out or both */
4731 if (!(ep_type & 1)) {
4732 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4733 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4734 if (!hsotg->eps_out[i])
4735 return -ENOMEM;
4739 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4740 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4742 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4743 hsotg->num_of_eps,
4744 hsotg->dedicated_fifos ? "dedicated" : "shared",
4745 hsotg->fifo_mem);
4746 return 0;
4750 * dwc2_hsotg_dump - dump state of the udc
4751 * @hsotg: Programming view of the DWC_otg controller
4754 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4756 #ifdef DEBUG
4757 struct device *dev = hsotg->dev;
4758 u32 val;
4759 int idx;
4761 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4762 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4763 dwc2_readl(hsotg, DIEPMSK));
4765 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4766 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4768 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4769 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4771 /* show periodic fifo settings */
4773 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4774 val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4775 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4776 val >> FIFOSIZE_DEPTH_SHIFT,
4777 val & FIFOSIZE_STARTADDR_MASK);
4780 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4781 dev_info(dev,
4782 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4783 dwc2_readl(hsotg, DIEPCTL(idx)),
4784 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4785 dwc2_readl(hsotg, DIEPDMA(idx)));
4787 val = dwc2_readl(hsotg, DOEPCTL(idx));
4788 dev_info(dev,
4789 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4790 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4791 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4792 dwc2_readl(hsotg, DOEPDMA(idx)));
4795 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4796 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4797 #endif
4801 * dwc2_gadget_init - init function for gadget
4802 * @hsotg: Programming view of the DWC_otg controller
4805 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4807 struct device *dev = hsotg->dev;
4808 int epnum;
4809 int ret;
4811 /* Dump fifo information */
4812 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4813 hsotg->params.g_np_tx_fifo_size);
4814 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4816 hsotg->gadget.max_speed = USB_SPEED_HIGH;
4817 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4818 hsotg->gadget.name = dev_name(dev);
4819 hsotg->remote_wakeup_allowed = 0;
4821 if (hsotg->params.lpm)
4822 hsotg->gadget.lpm_capable = true;
4824 if (hsotg->dr_mode == USB_DR_MODE_OTG)
4825 hsotg->gadget.is_otg = 1;
4826 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4827 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4829 ret = dwc2_hsotg_hw_cfg(hsotg);
4830 if (ret) {
4831 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4832 return ret;
4835 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4836 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4837 if (!hsotg->ctrl_buff)
4838 return -ENOMEM;
4840 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4841 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4842 if (!hsotg->ep0_buff)
4843 return -ENOMEM;
4845 if (using_desc_dma(hsotg)) {
4846 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4847 if (ret < 0)
4848 return ret;
4851 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4852 IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4853 if (ret < 0) {
4854 dev_err(dev, "cannot claim IRQ for gadget\n");
4855 return ret;
4858 /* hsotg->num_of_eps holds number of EPs other than ep0 */
4860 if (hsotg->num_of_eps == 0) {
4861 dev_err(dev, "wrong number of EPs (zero)\n");
4862 return -EINVAL;
4865 /* setup endpoint information */
4867 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4868 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4870 /* allocate EP0 request */
4872 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4873 GFP_KERNEL);
4874 if (!hsotg->ctrl_req) {
4875 dev_err(dev, "failed to allocate ctrl req\n");
4876 return -ENOMEM;
4879 /* initialise the endpoints now the core has been initialised */
4880 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4881 if (hsotg->eps_in[epnum])
4882 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4883 epnum, 1);
4884 if (hsotg->eps_out[epnum])
4885 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4886 epnum, 0);
4889 dwc2_hsotg_dump(hsotg);
4891 return 0;
4895 * dwc2_hsotg_remove - remove function for hsotg driver
4896 * @hsotg: Programming view of the DWC_otg controller
4899 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4901 usb_del_gadget_udc(&hsotg->gadget);
4902 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4904 return 0;
4907 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4909 unsigned long flags;
4911 if (hsotg->lx_state != DWC2_L0)
4912 return 0;
4914 if (hsotg->driver) {
4915 int ep;
4917 dev_info(hsotg->dev, "suspending usb gadget %s\n",
4918 hsotg->driver->driver.name);
4920 spin_lock_irqsave(&hsotg->lock, flags);
4921 if (hsotg->enabled)
4922 dwc2_hsotg_core_disconnect(hsotg);
4923 dwc2_hsotg_disconnect(hsotg);
4924 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4925 spin_unlock_irqrestore(&hsotg->lock, flags);
4927 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4928 if (hsotg->eps_in[ep])
4929 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4930 if (hsotg->eps_out[ep])
4931 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4935 return 0;
4938 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4940 unsigned long flags;
4942 if (hsotg->lx_state == DWC2_L2)
4943 return 0;
4945 if (hsotg->driver) {
4946 dev_info(hsotg->dev, "resuming usb gadget %s\n",
4947 hsotg->driver->driver.name);
4949 spin_lock_irqsave(&hsotg->lock, flags);
4950 dwc2_hsotg_core_init_disconnected(hsotg, false);
4951 if (hsotg->enabled) {
4952 /* Enable ACG feature in device mode,if supported */
4953 dwc2_enable_acg(hsotg);
4954 dwc2_hsotg_core_connect(hsotg);
4956 spin_unlock_irqrestore(&hsotg->lock, flags);
4959 return 0;
4963 * dwc2_backup_device_registers() - Backup controller device registers.
4964 * When suspending usb bus, registers needs to be backuped
4965 * if controller power is disabled once suspended.
4967 * @hsotg: Programming view of the DWC_otg controller
4969 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4971 struct dwc2_dregs_backup *dr;
4972 int i;
4974 dev_dbg(hsotg->dev, "%s\n", __func__);
4976 /* Backup dev regs */
4977 dr = &hsotg->dr_backup;
4979 dr->dcfg = dwc2_readl(hsotg, DCFG);
4980 dr->dctl = dwc2_readl(hsotg, DCTL);
4981 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
4982 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
4983 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
4985 for (i = 0; i < hsotg->num_of_eps; i++) {
4986 /* Backup IN EPs */
4987 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
4989 /* Ensure DATA PID is correctly configured */
4990 if (dr->diepctl[i] & DXEPCTL_DPID)
4991 dr->diepctl[i] |= DXEPCTL_SETD1PID;
4992 else
4993 dr->diepctl[i] |= DXEPCTL_SETD0PID;
4995 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
4996 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
4998 /* Backup OUT EPs */
4999 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5001 /* Ensure DATA PID is correctly configured */
5002 if (dr->doepctl[i] & DXEPCTL_DPID)
5003 dr->doepctl[i] |= DXEPCTL_SETD1PID;
5004 else
5005 dr->doepctl[i] |= DXEPCTL_SETD0PID;
5007 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5008 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5009 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5011 dr->valid = true;
5012 return 0;
5016 * dwc2_restore_device_registers() - Restore controller device registers.
5017 * When resuming usb bus, device registers needs to be restored
5018 * if controller power were disabled.
5020 * @hsotg: Programming view of the DWC_otg controller
5021 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5023 * Return: 0 if successful, negative error code otherwise
5025 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5027 struct dwc2_dregs_backup *dr;
5028 int i;
5030 dev_dbg(hsotg->dev, "%s\n", __func__);
5032 /* Restore dev regs */
5033 dr = &hsotg->dr_backup;
5034 if (!dr->valid) {
5035 dev_err(hsotg->dev, "%s: no device registers to restore\n",
5036 __func__);
5037 return -EINVAL;
5039 dr->valid = false;
5041 if (!remote_wakeup)
5042 dwc2_writel(hsotg, dr->dctl, DCTL);
5044 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5045 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5046 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5048 for (i = 0; i < hsotg->num_of_eps; i++) {
5049 /* Restore IN EPs */
5050 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5051 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5052 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5053 /** WA for enabled EPx's IN in DDMA mode. On entering to
5054 * hibernation wrong value read and saved from DIEPDMAx,
5055 * as result BNA interrupt asserted on hibernation exit
5056 * by restoring from saved area.
5058 if (hsotg->params.g_dma_desc &&
5059 (dr->diepctl[i] & DXEPCTL_EPENA))
5060 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5061 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5062 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5063 /* Restore OUT EPs */
5064 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5065 /* WA for enabled EPx's OUT in DDMA mode. On entering to
5066 * hibernation wrong value read and saved from DOEPDMAx,
5067 * as result BNA interrupt asserted on hibernation exit
5068 * by restoring from saved area.
5070 if (hsotg->params.g_dma_desc &&
5071 (dr->doepctl[i] & DXEPCTL_EPENA))
5072 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5073 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5074 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5077 return 0;
5081 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5083 * @hsotg: Programming view of DWC_otg controller
5086 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5088 u32 val;
5090 if (!hsotg->params.lpm)
5091 return;
5093 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5094 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5095 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5096 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5097 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5098 val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5099 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5100 dwc2_writel(hsotg, val, GLPMCFG);
5101 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5103 /* Unmask WKUP_ALERT Interrupt */
5104 if (hsotg->params.service_interval)
5105 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5109 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5111 * @hsotg: Programming view of DWC_otg controller
5114 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5116 u32 val = 0;
5118 val |= GREFCLK_REF_CLK_MODE;
5119 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5120 val |= hsotg->params.sof_cnt_wkup_alert <<
5121 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5123 dwc2_writel(hsotg, val, GREFCLK);
5124 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5128 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5130 * @hsotg: Programming view of the DWC_otg controller
5132 * Return non-zero if failed to enter to hibernation.
5134 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5136 u32 gpwrdn;
5137 int ret = 0;
5139 /* Change to L2(suspend) state */
5140 hsotg->lx_state = DWC2_L2;
5141 dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5142 ret = dwc2_backup_global_registers(hsotg);
5143 if (ret) {
5144 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5145 __func__);
5146 return ret;
5148 ret = dwc2_backup_device_registers(hsotg);
5149 if (ret) {
5150 dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5151 __func__);
5152 return ret;
5155 gpwrdn = GPWRDN_PWRDNRSTN;
5156 gpwrdn |= GPWRDN_PMUACTV;
5157 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5158 udelay(10);
5160 /* Set flag to indicate that we are in hibernation */
5161 hsotg->hibernated = 1;
5163 /* Enable interrupts from wake up logic */
5164 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5165 gpwrdn |= GPWRDN_PMUINTSEL;
5166 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5167 udelay(10);
5169 /* Unmask device mode interrupts in GPWRDN */
5170 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5171 gpwrdn |= GPWRDN_RST_DET_MSK;
5172 gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5173 gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5174 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5175 udelay(10);
5177 /* Enable Power Down Clamp */
5178 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5179 gpwrdn |= GPWRDN_PWRDNCLMP;
5180 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5181 udelay(10);
5183 /* Switch off VDD */
5184 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5185 gpwrdn |= GPWRDN_PWRDNSWTCH;
5186 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5187 udelay(10);
5189 /* Save gpwrdn register for further usage if stschng interrupt */
5190 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5191 dev_dbg(hsotg->dev, "Hibernation completed\n");
5193 return ret;
5197 * dwc2_gadget_exit_hibernation()
5198 * This function is for exiting from Device mode hibernation by host initiated
5199 * resume/reset and device initiated remote-wakeup.
5201 * @hsotg: Programming view of the DWC_otg controller
5202 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5203 * @reset: indicates whether resume is initiated by Reset.
5205 * Return non-zero if failed to exit from hibernation.
5207 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5208 int rem_wakeup, int reset)
5210 u32 pcgcctl;
5211 u32 gpwrdn;
5212 u32 dctl;
5213 int ret = 0;
5214 struct dwc2_gregs_backup *gr;
5215 struct dwc2_dregs_backup *dr;
5217 gr = &hsotg->gr_backup;
5218 dr = &hsotg->dr_backup;
5220 if (!hsotg->hibernated) {
5221 dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5222 return 1;
5224 dev_dbg(hsotg->dev,
5225 "%s: called with rem_wakeup = %d reset = %d\n",
5226 __func__, rem_wakeup, reset);
5228 dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5230 if (!reset) {
5231 /* Clear all pending interupts */
5232 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5235 /* De-assert Restore */
5236 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5237 gpwrdn &= ~GPWRDN_RESTORE;
5238 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5239 udelay(10);
5241 if (!rem_wakeup) {
5242 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5243 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5244 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5247 /* Restore GUSBCFG, DCFG and DCTL */
5248 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5249 dwc2_writel(hsotg, dr->dcfg, DCFG);
5250 dwc2_writel(hsotg, dr->dctl, DCTL);
5252 /* De-assert Wakeup Logic */
5253 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5254 gpwrdn &= ~GPWRDN_PMUACTV;
5255 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5257 if (rem_wakeup) {
5258 udelay(10);
5259 /* Start Remote Wakeup Signaling */
5260 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5261 } else {
5262 udelay(50);
5263 /* Set Device programming done bit */
5264 dctl = dwc2_readl(hsotg, DCTL);
5265 dctl |= DCTL_PWRONPRGDONE;
5266 dwc2_writel(hsotg, dctl, DCTL);
5268 /* Wait for interrupts which must be cleared */
5269 mdelay(2);
5270 /* Clear all pending interupts */
5271 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5273 /* Restore global registers */
5274 ret = dwc2_restore_global_registers(hsotg);
5275 if (ret) {
5276 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5277 __func__);
5278 return ret;
5281 /* Restore device registers */
5282 ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5283 if (ret) {
5284 dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5285 __func__);
5286 return ret;
5289 if (rem_wakeup) {
5290 mdelay(10);
5291 dctl = dwc2_readl(hsotg, DCTL);
5292 dctl &= ~DCTL_RMTWKUPSIG;
5293 dwc2_writel(hsotg, dctl, DCTL);
5296 hsotg->hibernated = 0;
5297 hsotg->lx_state = DWC2_L0;
5298 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5300 return ret;