net: DCB: Validate DCB_ATTR_DCB_BUFFER argument
[linux/fpc-iii.git] / drivers / usb / host / oxu210hp-hcd.c
blobe67242e437edceb643e4f421b7b8d05d3587ae73
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
4 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
6 * This code is *strongly* based on EHCI-HCD code by David Brownell since
7 * the chip is a quasi-EHCI compatible.
8 */
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/dmapool.h>
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/ioport.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/timer.h>
20 #include <linux/list.h>
21 #include <linux/interrupt.h>
22 #include <linux/usb.h>
23 #include <linux/usb/hcd.h>
24 #include <linux/moduleparam.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/io.h>
28 #include <asm/irq.h>
29 #include <asm/unaligned.h>
31 #include <linux/irq.h>
32 #include <linux/platform_device.h>
34 #define DRIVER_VERSION "0.0.50"
36 #define OXU_DEVICEID 0x00
37 #define OXU_REV_MASK 0xffff0000
38 #define OXU_REV_SHIFT 16
39 #define OXU_REV_2100 0x2100
40 #define OXU_BO_SHIFT 8
41 #define OXU_BO_MASK (0x3 << OXU_BO_SHIFT)
42 #define OXU_MAJ_REV_SHIFT 4
43 #define OXU_MAJ_REV_MASK (0xf << OXU_MAJ_REV_SHIFT)
44 #define OXU_MIN_REV_SHIFT 0
45 #define OXU_MIN_REV_MASK (0xf << OXU_MIN_REV_SHIFT)
46 #define OXU_HOSTIFCONFIG 0x04
47 #define OXU_SOFTRESET 0x08
48 #define OXU_SRESET (1 << 0)
50 #define OXU_PIOBURSTREADCTRL 0x0C
52 #define OXU_CHIPIRQSTATUS 0x10
53 #define OXU_CHIPIRQEN_SET 0x14
54 #define OXU_CHIPIRQEN_CLR 0x18
55 #define OXU_USBSPHLPWUI 0x00000080
56 #define OXU_USBOTGLPWUI 0x00000040
57 #define OXU_USBSPHI 0x00000002
58 #define OXU_USBOTGI 0x00000001
60 #define OXU_CLKCTRL_SET 0x1C
61 #define OXU_SYSCLKEN 0x00000008
62 #define OXU_USBSPHCLKEN 0x00000002
63 #define OXU_USBOTGCLKEN 0x00000001
65 #define OXU_ASO 0x68
66 #define OXU_SPHPOEN 0x00000100
67 #define OXU_OVRCCURPUPDEN 0x00000800
68 #define OXU_ASO_OP (1 << 10)
69 #define OXU_COMPARATOR 0x000004000
71 #define OXU_USBMODE 0x1A8
72 #define OXU_VBPS 0x00000020
73 #define OXU_ES_LITTLE 0x00000000
74 #define OXU_CM_HOST_ONLY 0x00000003
77 * Proper EHCI structs & defines
80 /* Magic numbers that can affect system performance */
81 #define EHCI_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
82 #define EHCI_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
83 #define EHCI_TUNE_RL_TT 0
84 #define EHCI_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
85 #define EHCI_TUNE_MULT_TT 1
86 #define EHCI_TUNE_FLS 2 /* (small) 256 frame schedule */
88 struct oxu_hcd;
90 /* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
92 /* Section 2.2 Host Controller Capability Registers */
93 struct ehci_caps {
94 /* these fields are specified as 8 and 16 bit registers,
95 * but some hosts can't perform 8 or 16 bit PCI accesses.
97 u32 hc_capbase;
98 #define HC_LENGTH(p) (((p)>>00)&0x00ff) /* bits 7:0 */
99 #define HC_VERSION(p) (((p)>>16)&0xffff) /* bits 31:16 */
100 u32 hcs_params; /* HCSPARAMS - offset 0x4 */
101 #define HCS_DEBUG_PORT(p) (((p)>>20)&0xf) /* bits 23:20, debug port? */
102 #define HCS_INDICATOR(p) ((p)&(1 << 16)) /* true: has port indicators */
103 #define HCS_N_CC(p) (((p)>>12)&0xf) /* bits 15:12, #companion HCs */
104 #define HCS_N_PCC(p) (((p)>>8)&0xf) /* bits 11:8, ports per CC */
105 #define HCS_PORTROUTED(p) ((p)&(1 << 7)) /* true: port routing */
106 #define HCS_PPC(p) ((p)&(1 << 4)) /* true: port power control */
107 #define HCS_N_PORTS(p) (((p)>>0)&0xf) /* bits 3:0, ports on HC */
109 u32 hcc_params; /* HCCPARAMS - offset 0x8 */
110 #define HCC_EXT_CAPS(p) (((p)>>8)&0xff) /* for pci extended caps */
111 #define HCC_ISOC_CACHE(p) ((p)&(1 << 7)) /* true: can cache isoc frame */
112 #define HCC_ISOC_THRES(p) (((p)>>4)&0x7) /* bits 6:4, uframes cached */
113 #define HCC_CANPARK(p) ((p)&(1 << 2)) /* true: can park on async qh */
114 #define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1)) /* true: periodic_size changes*/
115 #define HCC_64BIT_ADDR(p) ((p)&(1)) /* true: can use 64-bit addr */
116 u8 portroute[8]; /* nibbles for routing - offset 0xC */
117 } __packed;
120 /* Section 2.3 Host Controller Operational Registers */
121 struct ehci_regs {
122 /* USBCMD: offset 0x00 */
123 u32 command;
124 /* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
125 #define CMD_PARK (1<<11) /* enable "park" on async qh */
126 #define CMD_PARK_CNT(c) (((c)>>8)&3) /* how many transfers to park for */
127 #define CMD_LRESET (1<<7) /* partial reset (no ports, etc) */
128 #define CMD_IAAD (1<<6) /* "doorbell" interrupt async advance */
129 #define CMD_ASE (1<<5) /* async schedule enable */
130 #define CMD_PSE (1<<4) /* periodic schedule enable */
131 /* 3:2 is periodic frame list size */
132 #define CMD_RESET (1<<1) /* reset HC not bus */
133 #define CMD_RUN (1<<0) /* start/stop HC */
135 /* USBSTS: offset 0x04 */
136 u32 status;
137 #define STS_ASS (1<<15) /* Async Schedule Status */
138 #define STS_PSS (1<<14) /* Periodic Schedule Status */
139 #define STS_RECL (1<<13) /* Reclamation */
140 #define STS_HALT (1<<12) /* Not running (any reason) */
141 /* some bits reserved */
142 /* these STS_* flags are also intr_enable bits (USBINTR) */
143 #define STS_IAA (1<<5) /* Interrupted on async advance */
144 #define STS_FATAL (1<<4) /* such as some PCI access errors */
145 #define STS_FLR (1<<3) /* frame list rolled over */
146 #define STS_PCD (1<<2) /* port change detect */
147 #define STS_ERR (1<<1) /* "error" completion (overflow, ...) */
148 #define STS_INT (1<<0) /* "normal" completion (short, ...) */
150 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
152 /* USBINTR: offset 0x08 */
153 u32 intr_enable;
155 /* FRINDEX: offset 0x0C */
156 u32 frame_index; /* current microframe number */
157 /* CTRLDSSEGMENT: offset 0x10 */
158 u32 segment; /* address bits 63:32 if needed */
159 /* PERIODICLISTBASE: offset 0x14 */
160 u32 frame_list; /* points to periodic list */
161 /* ASYNCLISTADDR: offset 0x18 */
162 u32 async_next; /* address of next async queue head */
164 u32 reserved[9];
166 /* CONFIGFLAG: offset 0x40 */
167 u32 configured_flag;
168 #define FLAG_CF (1<<0) /* true: we'll support "high speed" */
170 /* PORTSC: offset 0x44 */
171 u32 port_status[0]; /* up to N_PORTS */
172 /* 31:23 reserved */
173 #define PORT_WKOC_E (1<<22) /* wake on overcurrent (enable) */
174 #define PORT_WKDISC_E (1<<21) /* wake on disconnect (enable) */
175 #define PORT_WKCONN_E (1<<20) /* wake on connect (enable) */
176 /* 19:16 for port testing */
177 #define PORT_LED_OFF (0<<14)
178 #define PORT_LED_AMBER (1<<14)
179 #define PORT_LED_GREEN (2<<14)
180 #define PORT_LED_MASK (3<<14)
181 #define PORT_OWNER (1<<13) /* true: companion hc owns this port */
182 #define PORT_POWER (1<<12) /* true: has power (see PPC) */
183 #define PORT_USB11(x) (((x)&(3<<10)) == (1<<10)) /* USB 1.1 device */
184 /* 11:10 for detecting lowspeed devices (reset vs release ownership) */
185 /* 9 reserved */
186 #define PORT_RESET (1<<8) /* reset port */
187 #define PORT_SUSPEND (1<<7) /* suspend port */
188 #define PORT_RESUME (1<<6) /* resume it */
189 #define PORT_OCC (1<<5) /* over current change */
190 #define PORT_OC (1<<4) /* over current active */
191 #define PORT_PEC (1<<3) /* port enable change */
192 #define PORT_PE (1<<2) /* port enable */
193 #define PORT_CSC (1<<1) /* connect status change */
194 #define PORT_CONNECT (1<<0) /* device connected */
195 #define PORT_RWC_BITS (PORT_CSC | PORT_PEC | PORT_OCC)
196 } __packed;
198 /* Appendix C, Debug port ... intended for use with special "debug devices"
199 * that can help if there's no serial console. (nonstandard enumeration.)
201 struct ehci_dbg_port {
202 u32 control;
203 #define DBGP_OWNER (1<<30)
204 #define DBGP_ENABLED (1<<28)
205 #define DBGP_DONE (1<<16)
206 #define DBGP_INUSE (1<<10)
207 #define DBGP_ERRCODE(x) (((x)>>7)&0x07)
208 # define DBGP_ERR_BAD 1
209 # define DBGP_ERR_SIGNAL 2
210 #define DBGP_ERROR (1<<6)
211 #define DBGP_GO (1<<5)
212 #define DBGP_OUT (1<<4)
213 #define DBGP_LEN(x) (((x)>>0)&0x0f)
214 u32 pids;
215 #define DBGP_PID_GET(x) (((x)>>16)&0xff)
216 #define DBGP_PID_SET(data, tok) (((data)<<8)|(tok))
217 u32 data03;
218 u32 data47;
219 u32 address;
220 #define DBGP_EPADDR(dev, ep) (((dev)<<8)|(ep))
221 } __packed;
223 #define QTD_NEXT(dma) cpu_to_le32((u32)dma)
226 * EHCI Specification 0.95 Section 3.5
227 * QTD: describe data transfer components (buffer, direction, ...)
228 * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
230 * These are associated only with "QH" (Queue Head) structures,
231 * used with control, bulk, and interrupt transfers.
233 struct ehci_qtd {
234 /* first part defined by EHCI spec */
235 __le32 hw_next; /* see EHCI 3.5.1 */
236 __le32 hw_alt_next; /* see EHCI 3.5.2 */
237 __le32 hw_token; /* see EHCI 3.5.3 */
238 #define QTD_TOGGLE (1 << 31) /* data toggle */
239 #define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff)
240 #define QTD_IOC (1 << 15) /* interrupt on complete */
241 #define QTD_CERR(tok) (((tok)>>10) & 0x3)
242 #define QTD_PID(tok) (((tok)>>8) & 0x3)
243 #define QTD_STS_ACTIVE (1 << 7) /* HC may execute this */
244 #define QTD_STS_HALT (1 << 6) /* halted on error */
245 #define QTD_STS_DBE (1 << 5) /* data buffer error (in HC) */
246 #define QTD_STS_BABBLE (1 << 4) /* device was babbling (qtd halted) */
247 #define QTD_STS_XACT (1 << 3) /* device gave illegal response */
248 #define QTD_STS_MMF (1 << 2) /* incomplete split transaction */
249 #define QTD_STS_STS (1 << 1) /* split transaction state */
250 #define QTD_STS_PING (1 << 0) /* issue PING? */
251 __le32 hw_buf[5]; /* see EHCI 3.5.4 */
252 __le32 hw_buf_hi[5]; /* Appendix B */
254 /* the rest is HCD-private */
255 dma_addr_t qtd_dma; /* qtd address */
256 struct list_head qtd_list; /* sw qtd list */
257 struct urb *urb; /* qtd's urb */
258 size_t length; /* length of buffer */
260 u32 qtd_buffer_len;
261 void *buffer;
262 dma_addr_t buffer_dma;
263 void *transfer_buffer;
264 void *transfer_dma;
265 } __aligned(32);
267 /* mask NakCnt+T in qh->hw_alt_next */
268 #define QTD_MASK cpu_to_le32 (~0x1f)
270 #define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
272 /* Type tag from {qh, itd, sitd, fstn}->hw_next */
273 #define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1))
275 /* values for that type tag */
276 #define Q_TYPE_QH cpu_to_le32 (1 << 1)
278 /* next async queue entry, or pointer to interrupt/periodic QH */
279 #define QH_NEXT(dma) (cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH)
281 /* for periodic/async schedules and qtd lists, mark end of list */
282 #define EHCI_LIST_END cpu_to_le32(1) /* "null pointer" to hw */
285 * Entries in periodic shadow table are pointers to one of four kinds
286 * of data structure. That's dictated by the hardware; a type tag is
287 * encoded in the low bits of the hardware's periodic schedule. Use
288 * Q_NEXT_TYPE to get the tag.
290 * For entries in the async schedule, the type tag always says "qh".
292 union ehci_shadow {
293 struct ehci_qh *qh; /* Q_TYPE_QH */
294 __le32 *hw_next; /* (all types) */
295 void *ptr;
299 * EHCI Specification 0.95 Section 3.6
300 * QH: describes control/bulk/interrupt endpoints
301 * See Fig 3-7 "Queue Head Structure Layout".
303 * These appear in both the async and (for interrupt) periodic schedules.
306 struct ehci_qh {
307 /* first part defined by EHCI spec */
308 __le32 hw_next; /* see EHCI 3.6.1 */
309 __le32 hw_info1; /* see EHCI 3.6.2 */
310 #define QH_HEAD 0x00008000
311 __le32 hw_info2; /* see EHCI 3.6.2 */
312 #define QH_SMASK 0x000000ff
313 #define QH_CMASK 0x0000ff00
314 #define QH_HUBADDR 0x007f0000
315 #define QH_HUBPORT 0x3f800000
316 #define QH_MULT 0xc0000000
317 __le32 hw_current; /* qtd list - see EHCI 3.6.4 */
319 /* qtd overlay (hardware parts of a struct ehci_qtd) */
320 __le32 hw_qtd_next;
321 __le32 hw_alt_next;
322 __le32 hw_token;
323 __le32 hw_buf[5];
324 __le32 hw_buf_hi[5];
326 /* the rest is HCD-private */
327 dma_addr_t qh_dma; /* address of qh */
328 union ehci_shadow qh_next; /* ptr to qh; or periodic */
329 struct list_head qtd_list; /* sw qtd list */
330 struct ehci_qtd *dummy;
331 struct ehci_qh *reclaim; /* next to reclaim */
333 struct oxu_hcd *oxu;
334 struct kref kref;
335 unsigned int stamp;
337 u8 qh_state;
338 #define QH_STATE_LINKED 1 /* HC sees this */
339 #define QH_STATE_UNLINK 2 /* HC may still see this */
340 #define QH_STATE_IDLE 3 /* HC doesn't see this */
341 #define QH_STATE_UNLINK_WAIT 4 /* LINKED and on reclaim q */
342 #define QH_STATE_COMPLETING 5 /* don't touch token.HALT */
344 /* periodic schedule info */
345 u8 usecs; /* intr bandwidth */
346 u8 gap_uf; /* uframes split/csplit gap */
347 u8 c_usecs; /* ... split completion bw */
348 u16 tt_usecs; /* tt downstream bandwidth */
349 unsigned short period; /* polling interval */
350 unsigned short start; /* where polling starts */
351 #define NO_FRAME ((unsigned short)~0) /* pick new start */
352 struct usb_device *dev; /* access to TT */
353 } __aligned(32);
356 * Proper OXU210HP structs
359 #define OXU_OTG_CORE_OFFSET 0x00400
360 #define OXU_OTG_CAP_OFFSET (OXU_OTG_CORE_OFFSET + 0x100)
361 #define OXU_SPH_CORE_OFFSET 0x00800
362 #define OXU_SPH_CAP_OFFSET (OXU_SPH_CORE_OFFSET + 0x100)
364 #define OXU_OTG_MEM 0xE000
365 #define OXU_SPH_MEM 0x16000
367 /* Only how many elements & element structure are specifies here. */
368 /* 2 host controllers are enabled - total size <= 28 kbytes */
369 #define DEFAULT_I_TDPS 1024
370 #define QHEAD_NUM 16
371 #define QTD_NUM 32
372 #define SITD_NUM 8
373 #define MURB_NUM 8
375 #define BUFFER_NUM 8
376 #define BUFFER_SIZE 512
378 struct oxu_info {
379 struct usb_hcd *hcd[2];
382 struct oxu_buf {
383 u8 buffer[BUFFER_SIZE];
384 } __aligned(BUFFER_SIZE);
386 struct oxu_onchip_mem {
387 struct oxu_buf db_pool[BUFFER_NUM];
389 u32 frame_list[DEFAULT_I_TDPS];
390 struct ehci_qh qh_pool[QHEAD_NUM];
391 struct ehci_qtd qtd_pool[QTD_NUM];
392 } __aligned(4 << 10);
394 #define EHCI_MAX_ROOT_PORTS 15 /* see HCS_N_PORTS */
396 struct oxu_murb {
397 struct urb urb;
398 struct urb *main;
399 u8 last;
402 struct oxu_hcd { /* one per controller */
403 unsigned int is_otg:1;
405 u8 qh_used[QHEAD_NUM];
406 u8 qtd_used[QTD_NUM];
407 u8 db_used[BUFFER_NUM];
408 u8 murb_used[MURB_NUM];
410 struct oxu_onchip_mem __iomem *mem;
411 spinlock_t mem_lock;
413 struct timer_list urb_timer;
415 struct ehci_caps __iomem *caps;
416 struct ehci_regs __iomem *regs;
418 u32 hcs_params; /* cached register copy */
419 spinlock_t lock;
421 /* async schedule support */
422 struct ehci_qh *async;
423 struct ehci_qh *reclaim;
424 unsigned int reclaim_ready:1;
425 unsigned int scanning:1;
427 /* periodic schedule support */
428 unsigned int periodic_size;
429 __le32 *periodic; /* hw periodic table */
430 dma_addr_t periodic_dma;
431 unsigned int i_thresh; /* uframes HC might cache */
433 union ehci_shadow *pshadow; /* mirror hw periodic table */
434 int next_uframe; /* scan periodic, start here */
435 unsigned int periodic_sched; /* periodic activity count */
437 /* per root hub port */
438 unsigned long reset_done[EHCI_MAX_ROOT_PORTS];
439 /* bit vectors (one bit per port) */
440 unsigned long bus_suspended; /* which ports were
441 * already suspended at the
442 * start of a bus suspend
444 unsigned long companion_ports;/* which ports are dedicated
445 * to the companion controller
448 struct timer_list watchdog;
449 unsigned long actions;
450 unsigned int stamp;
451 unsigned long next_statechange;
452 u32 command;
454 /* SILICON QUIRKS */
455 struct list_head urb_list; /* this is the head to urb
456 * queue that didn't get enough
457 * resources
459 struct oxu_murb *murb_pool; /* murb per split big urb */
460 unsigned int urb_len;
462 u8 sbrn; /* packed release number */
465 #define EHCI_IAA_JIFFIES (HZ/100) /* arbitrary; ~10 msec */
466 #define EHCI_IO_JIFFIES (HZ/10) /* io watchdog > irq_thresh */
467 #define EHCI_ASYNC_JIFFIES (HZ/20) /* async idle timeout */
468 #define EHCI_SHRINK_JIFFIES (HZ/200) /* async qh unlink delay */
470 enum ehci_timer_action {
471 TIMER_IO_WATCHDOG,
472 TIMER_IAA_WATCHDOG,
473 TIMER_ASYNC_SHRINK,
474 TIMER_ASYNC_OFF,
478 * Main defines
481 #define oxu_dbg(oxu, fmt, args...) \
482 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
483 #define oxu_err(oxu, fmt, args...) \
484 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
485 #define oxu_info(oxu, fmt, args...) \
486 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
488 #ifdef CONFIG_DYNAMIC_DEBUG
489 #define DEBUG
490 #endif
492 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
494 return container_of((void *) oxu, struct usb_hcd, hcd_priv);
497 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
499 return (struct oxu_hcd *) (hcd->hcd_priv);
503 * Debug stuff
506 #undef OXU_URB_TRACE
507 #undef OXU_VERBOSE_DEBUG
509 #ifdef OXU_VERBOSE_DEBUG
510 #define oxu_vdbg oxu_dbg
511 #else
512 #define oxu_vdbg(oxu, fmt, args...) /* Nop */
513 #endif
515 #ifdef DEBUG
517 static int __attribute__((__unused__))
518 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
520 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
521 label, label[0] ? " " : "", status,
522 (status & STS_ASS) ? " Async" : "",
523 (status & STS_PSS) ? " Periodic" : "",
524 (status & STS_RECL) ? " Recl" : "",
525 (status & STS_HALT) ? " Halt" : "",
526 (status & STS_IAA) ? " IAA" : "",
527 (status & STS_FATAL) ? " FATAL" : "",
528 (status & STS_FLR) ? " FLR" : "",
529 (status & STS_PCD) ? " PCD" : "",
530 (status & STS_ERR) ? " ERR" : "",
531 (status & STS_INT) ? " INT" : ""
535 static int __attribute__((__unused__))
536 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
538 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
539 label, label[0] ? " " : "", enable,
540 (enable & STS_IAA) ? " IAA" : "",
541 (enable & STS_FATAL) ? " FATAL" : "",
542 (enable & STS_FLR) ? " FLR" : "",
543 (enable & STS_PCD) ? " PCD" : "",
544 (enable & STS_ERR) ? " ERR" : "",
545 (enable & STS_INT) ? " INT" : ""
549 static const char *const fls_strings[] =
550 { "1024", "512", "256", "??" };
552 static int dbg_command_buf(char *buf, unsigned len,
553 const char *label, u32 command)
555 return scnprintf(buf, len,
556 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
557 label, label[0] ? " " : "", command,
558 (command & CMD_PARK) ? "park" : "(park)",
559 CMD_PARK_CNT(command),
560 (command >> 16) & 0x3f,
561 (command & CMD_LRESET) ? " LReset" : "",
562 (command & CMD_IAAD) ? " IAAD" : "",
563 (command & CMD_ASE) ? " Async" : "",
564 (command & CMD_PSE) ? " Periodic" : "",
565 fls_strings[(command >> 2) & 0x3],
566 (command & CMD_RESET) ? " Reset" : "",
567 (command & CMD_RUN) ? "RUN" : "HALT"
571 static int dbg_port_buf(char *buf, unsigned len, const char *label,
572 int port, u32 status)
574 char *sig;
576 /* signaling state */
577 switch (status & (3 << 10)) {
578 case 0 << 10:
579 sig = "se0";
580 break;
581 case 1 << 10:
582 sig = "k"; /* low speed */
583 break;
584 case 2 << 10:
585 sig = "j";
586 break;
587 default:
588 sig = "?";
589 break;
592 return scnprintf(buf, len,
593 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
594 label, label[0] ? " " : "", port, status,
595 (status & PORT_POWER) ? " POWER" : "",
596 (status & PORT_OWNER) ? " OWNER" : "",
597 sig,
598 (status & PORT_RESET) ? " RESET" : "",
599 (status & PORT_SUSPEND) ? " SUSPEND" : "",
600 (status & PORT_RESUME) ? " RESUME" : "",
601 (status & PORT_OCC) ? " OCC" : "",
602 (status & PORT_OC) ? " OC" : "",
603 (status & PORT_PEC) ? " PEC" : "",
604 (status & PORT_PE) ? " PE" : "",
605 (status & PORT_CSC) ? " CSC" : "",
606 (status & PORT_CONNECT) ? " CONNECT" : ""
610 #else
612 static inline int __attribute__((__unused__))
613 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
614 { return 0; }
616 static inline int __attribute__((__unused__))
617 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
618 { return 0; }
620 static inline int __attribute__((__unused__))
621 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
622 { return 0; }
624 static inline int __attribute__((__unused__))
625 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
626 { return 0; }
628 #endif /* DEBUG */
630 /* functions have the "wrong" filename when they're output... */
631 #define dbg_status(oxu, label, status) { \
632 char _buf[80]; \
633 dbg_status_buf(_buf, sizeof _buf, label, status); \
634 oxu_dbg(oxu, "%s\n", _buf); \
637 #define dbg_cmd(oxu, label, command) { \
638 char _buf[80]; \
639 dbg_command_buf(_buf, sizeof _buf, label, command); \
640 oxu_dbg(oxu, "%s\n", _buf); \
643 #define dbg_port(oxu, label, port, status) { \
644 char _buf[80]; \
645 dbg_port_buf(_buf, sizeof _buf, label, port, status); \
646 oxu_dbg(oxu, "%s\n", _buf); \
650 * Module parameters
653 /* Initial IRQ latency: faster than hw default */
654 static int log2_irq_thresh; /* 0 to 6 */
655 module_param(log2_irq_thresh, int, S_IRUGO);
656 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
658 /* Initial park setting: slower than hw default */
659 static unsigned park;
660 module_param(park, uint, S_IRUGO);
661 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
663 /* For flakey hardware, ignore overcurrent indicators */
664 static bool ignore_oc;
665 module_param(ignore_oc, bool, S_IRUGO);
666 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
669 static void ehci_work(struct oxu_hcd *oxu);
670 static int oxu_hub_control(struct usb_hcd *hcd,
671 u16 typeReq, u16 wValue, u16 wIndex,
672 char *buf, u16 wLength);
675 * Local functions
678 /* Low level read/write registers functions */
679 static inline u32 oxu_readl(void *base, u32 reg)
681 return readl(base + reg);
684 static inline void oxu_writel(void *base, u32 reg, u32 val)
686 writel(val, base + reg);
689 static inline void timer_action_done(struct oxu_hcd *oxu,
690 enum ehci_timer_action action)
692 clear_bit(action, &oxu->actions);
695 static inline void timer_action(struct oxu_hcd *oxu,
696 enum ehci_timer_action action)
698 if (!test_and_set_bit(action, &oxu->actions)) {
699 unsigned long t;
701 switch (action) {
702 case TIMER_IAA_WATCHDOG:
703 t = EHCI_IAA_JIFFIES;
704 break;
705 case TIMER_IO_WATCHDOG:
706 t = EHCI_IO_JIFFIES;
707 break;
708 case TIMER_ASYNC_OFF:
709 t = EHCI_ASYNC_JIFFIES;
710 break;
711 case TIMER_ASYNC_SHRINK:
712 default:
713 t = EHCI_SHRINK_JIFFIES;
714 break;
716 t += jiffies;
717 /* all timings except IAA watchdog can be overridden.
718 * async queue SHRINK often precedes IAA. while it's ready
719 * to go OFF neither can matter, and afterwards the IO
720 * watchdog stops unless there's still periodic traffic.
722 if (action != TIMER_IAA_WATCHDOG
723 && t > oxu->watchdog.expires
724 && timer_pending(&oxu->watchdog))
725 return;
726 mod_timer(&oxu->watchdog, t);
731 * handshake - spin reading hc until handshake completes or fails
732 * @ptr: address of hc register to be read
733 * @mask: bits to look at in result of read
734 * @done: value of those bits when handshake succeeds
735 * @usec: timeout in microseconds
737 * Returns negative errno, or zero on success
739 * Success happens when the "mask" bits have the specified value (hardware
740 * handshake done). There are two failure modes: "usec" have passed (major
741 * hardware flakeout), or the register reads as all-ones (hardware removed).
743 * That last failure should_only happen in cases like physical cardbus eject
744 * before driver shutdown. But it also seems to be caused by bugs in cardbus
745 * bridge shutdown: shutting down the bridge before the devices using it.
747 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
748 u32 mask, u32 done, int usec)
750 u32 result;
752 do {
753 result = readl(ptr);
754 if (result == ~(u32)0) /* card removed */
755 return -ENODEV;
756 result &= mask;
757 if (result == done)
758 return 0;
759 udelay(1);
760 usec--;
761 } while (usec > 0);
762 return -ETIMEDOUT;
765 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
766 static int ehci_halt(struct oxu_hcd *oxu)
768 u32 temp = readl(&oxu->regs->status);
770 /* disable any irqs left enabled by previous code */
771 writel(0, &oxu->regs->intr_enable);
773 if ((temp & STS_HALT) != 0)
774 return 0;
776 temp = readl(&oxu->regs->command);
777 temp &= ~CMD_RUN;
778 writel(temp, &oxu->regs->command);
779 return handshake(oxu, &oxu->regs->status,
780 STS_HALT, STS_HALT, 16 * 125);
783 /* Put TDI/ARC silicon into EHCI mode */
784 static void tdi_reset(struct oxu_hcd *oxu)
786 u32 __iomem *reg_ptr;
787 u32 tmp;
789 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
790 tmp = readl(reg_ptr);
791 tmp |= 0x3;
792 writel(tmp, reg_ptr);
795 /* Reset a non-running (STS_HALT == 1) controller */
796 static int ehci_reset(struct oxu_hcd *oxu)
798 int retval;
799 u32 command = readl(&oxu->regs->command);
801 command |= CMD_RESET;
802 dbg_cmd(oxu, "reset", command);
803 writel(command, &oxu->regs->command);
804 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
805 oxu->next_statechange = jiffies;
806 retval = handshake(oxu, &oxu->regs->command,
807 CMD_RESET, 0, 250 * 1000);
809 if (retval)
810 return retval;
812 tdi_reset(oxu);
814 return retval;
817 /* Idle the controller (from running) */
818 static void ehci_quiesce(struct oxu_hcd *oxu)
820 u32 temp;
822 #ifdef DEBUG
823 BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state));
824 #endif
826 /* wait for any schedule enables/disables to take effect */
827 temp = readl(&oxu->regs->command) << 10;
828 temp &= STS_ASS | STS_PSS;
829 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
830 temp, 16 * 125) != 0) {
831 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
832 return;
835 /* then disable anything that's still active */
836 temp = readl(&oxu->regs->command);
837 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
838 writel(temp, &oxu->regs->command);
840 /* hardware can take 16 microframes to turn off ... */
841 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
842 0, 16 * 125) != 0) {
843 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
844 return;
848 static int check_reset_complete(struct oxu_hcd *oxu, int index,
849 u32 __iomem *status_reg, int port_status)
851 if (!(port_status & PORT_CONNECT)) {
852 oxu->reset_done[index] = 0;
853 return port_status;
856 /* if reset finished and it's still not enabled -- handoff */
857 if (!(port_status & PORT_PE)) {
858 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
859 index+1);
860 return port_status;
861 } else
862 oxu_dbg(oxu, "port %d high speed\n", index + 1);
864 return port_status;
867 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
868 struct usb_hub_descriptor *desc)
870 int ports = HCS_N_PORTS(oxu->hcs_params);
871 u16 temp;
873 desc->bDescriptorType = USB_DT_HUB;
874 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */
875 desc->bHubContrCurrent = 0;
877 desc->bNbrPorts = ports;
878 temp = 1 + (ports / 8);
879 desc->bDescLength = 7 + 2 * temp;
881 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
882 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
883 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
885 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
886 if (HCS_PPC(oxu->hcs_params))
887 temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
888 else
889 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
890 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
894 /* Allocate an OXU210HP on-chip memory data buffer
896 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
897 * Each transfer descriptor has one or more on-chip memory data buffers.
899 * Data buffers are allocated from a fix sized pool of data blocks.
900 * To minimise fragmentation and give reasonable memory utlisation,
901 * data buffers are allocated with sizes the power of 2 multiples of
902 * the block size, starting on an address a multiple of the allocated size.
904 * FIXME: callers of this function require a buffer to be allocated for
905 * len=0. This is a waste of on-chip memory and should be fix. Then this
906 * function should be changed to not allocate a buffer for len=0.
908 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
910 int n_blocks; /* minium blocks needed to hold len */
911 int a_blocks; /* blocks allocated */
912 int i, j;
914 /* Don't allocte bigger than supported */
915 if (len > BUFFER_SIZE * BUFFER_NUM) {
916 oxu_err(oxu, "buffer too big (%d)\n", len);
917 return -ENOMEM;
920 spin_lock(&oxu->mem_lock);
922 /* Number of blocks needed to hold len */
923 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
925 /* Round the number of blocks up to the power of 2 */
926 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
929 /* Find a suitable available data buffer */
930 for (i = 0; i < BUFFER_NUM;
931 i += max(a_blocks, (int)oxu->db_used[i])) {
933 /* Check all the required blocks are available */
934 for (j = 0; j < a_blocks; j++)
935 if (oxu->db_used[i + j])
936 break;
938 if (j != a_blocks)
939 continue;
941 /* Allocate blocks found! */
942 qtd->buffer = (void *) &oxu->mem->db_pool[i];
943 qtd->buffer_dma = virt_to_phys(qtd->buffer);
945 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
946 oxu->db_used[i] = a_blocks;
948 spin_unlock(&oxu->mem_lock);
950 return 0;
953 /* Failed */
955 spin_unlock(&oxu->mem_lock);
957 return -ENOMEM;
960 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
962 int index;
964 spin_lock(&oxu->mem_lock);
966 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
967 / BUFFER_SIZE;
968 oxu->db_used[index] = 0;
969 qtd->qtd_buffer_len = 0;
970 qtd->buffer_dma = 0;
971 qtd->buffer = NULL;
973 spin_unlock(&oxu->mem_lock);
976 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
978 memset(qtd, 0, sizeof *qtd);
979 qtd->qtd_dma = dma;
980 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
981 qtd->hw_next = EHCI_LIST_END;
982 qtd->hw_alt_next = EHCI_LIST_END;
983 INIT_LIST_HEAD(&qtd->qtd_list);
986 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
988 int index;
990 if (qtd->buffer)
991 oxu_buf_free(oxu, qtd);
993 spin_lock(&oxu->mem_lock);
995 index = qtd - &oxu->mem->qtd_pool[0];
996 oxu->qtd_used[index] = 0;
998 spin_unlock(&oxu->mem_lock);
1001 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
1003 int i;
1004 struct ehci_qtd *qtd = NULL;
1006 spin_lock(&oxu->mem_lock);
1008 for (i = 0; i < QTD_NUM; i++)
1009 if (!oxu->qtd_used[i])
1010 break;
1012 if (i < QTD_NUM) {
1013 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
1014 memset(qtd, 0, sizeof *qtd);
1016 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
1017 qtd->hw_next = EHCI_LIST_END;
1018 qtd->hw_alt_next = EHCI_LIST_END;
1019 INIT_LIST_HEAD(&qtd->qtd_list);
1021 qtd->qtd_dma = virt_to_phys(qtd);
1023 oxu->qtd_used[i] = 1;
1026 spin_unlock(&oxu->mem_lock);
1028 return qtd;
1031 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
1033 int index;
1035 spin_lock(&oxu->mem_lock);
1037 index = qh - &oxu->mem->qh_pool[0];
1038 oxu->qh_used[index] = 0;
1040 spin_unlock(&oxu->mem_lock);
1043 static void qh_destroy(struct kref *kref)
1045 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
1046 struct oxu_hcd *oxu = qh->oxu;
1048 /* clean qtds first, and know this is not linked */
1049 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1050 oxu_dbg(oxu, "unused qh not empty!\n");
1051 BUG();
1053 if (qh->dummy)
1054 oxu_qtd_free(oxu, qh->dummy);
1055 oxu_qh_free(oxu, qh);
1058 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
1060 int i;
1061 struct ehci_qh *qh = NULL;
1063 spin_lock(&oxu->mem_lock);
1065 for (i = 0; i < QHEAD_NUM; i++)
1066 if (!oxu->qh_used[i])
1067 break;
1069 if (i < QHEAD_NUM) {
1070 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
1071 memset(qh, 0, sizeof *qh);
1073 kref_init(&qh->kref);
1074 qh->oxu = oxu;
1075 qh->qh_dma = virt_to_phys(qh);
1076 INIT_LIST_HEAD(&qh->qtd_list);
1078 /* dummy td enables safe urb queuing */
1079 qh->dummy = ehci_qtd_alloc(oxu);
1080 if (qh->dummy == NULL) {
1081 oxu_dbg(oxu, "no dummy td\n");
1082 oxu->qh_used[i] = 0;
1083 qh = NULL;
1084 goto unlock;
1087 oxu->qh_used[i] = 1;
1089 unlock:
1090 spin_unlock(&oxu->mem_lock);
1092 return qh;
1095 /* to share a qh (cpu threads, or hc) */
1096 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
1098 kref_get(&qh->kref);
1099 return qh;
1102 static inline void qh_put(struct ehci_qh *qh)
1104 kref_put(&qh->kref, qh_destroy);
1107 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
1109 int index;
1111 spin_lock(&oxu->mem_lock);
1113 index = murb - &oxu->murb_pool[0];
1114 oxu->murb_used[index] = 0;
1116 spin_unlock(&oxu->mem_lock);
1119 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
1122 int i;
1123 struct oxu_murb *murb = NULL;
1125 spin_lock(&oxu->mem_lock);
1127 for (i = 0; i < MURB_NUM; i++)
1128 if (!oxu->murb_used[i])
1129 break;
1131 if (i < MURB_NUM) {
1132 murb = &(oxu->murb_pool)[i];
1134 oxu->murb_used[i] = 1;
1137 spin_unlock(&oxu->mem_lock);
1139 return murb;
1142 /* The queue heads and transfer descriptors are managed from pools tied
1143 * to each of the "per device" structures.
1144 * This is the initialisation and cleanup code.
1146 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
1148 kfree(oxu->murb_pool);
1149 oxu->murb_pool = NULL;
1151 if (oxu->async)
1152 qh_put(oxu->async);
1153 oxu->async = NULL;
1155 del_timer(&oxu->urb_timer);
1157 oxu->periodic = NULL;
1159 /* shadow periodic table */
1160 kfree(oxu->pshadow);
1161 oxu->pshadow = NULL;
1164 /* Remember to add cleanup code (above) if you add anything here.
1166 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
1168 int i;
1170 for (i = 0; i < oxu->periodic_size; i++)
1171 oxu->mem->frame_list[i] = EHCI_LIST_END;
1172 for (i = 0; i < QHEAD_NUM; i++)
1173 oxu->qh_used[i] = 0;
1174 for (i = 0; i < QTD_NUM; i++)
1175 oxu->qtd_used[i] = 0;
1177 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
1178 if (!oxu->murb_pool)
1179 goto fail;
1181 for (i = 0; i < MURB_NUM; i++)
1182 oxu->murb_used[i] = 0;
1184 oxu->async = oxu_qh_alloc(oxu);
1185 if (!oxu->async)
1186 goto fail;
1188 oxu->periodic = (__le32 *) &oxu->mem->frame_list;
1189 oxu->periodic_dma = virt_to_phys(oxu->periodic);
1191 for (i = 0; i < oxu->periodic_size; i++)
1192 oxu->periodic[i] = EHCI_LIST_END;
1194 /* software shadow of hardware table */
1195 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
1196 if (oxu->pshadow != NULL)
1197 return 0;
1199 fail:
1200 oxu_dbg(oxu, "couldn't init memory\n");
1201 ehci_mem_cleanup(oxu);
1202 return -ENOMEM;
1205 /* Fill a qtd, returning how much of the buffer we were able to queue up.
1207 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
1208 int token, int maxpacket)
1210 int i, count;
1211 u64 addr = buf;
1213 /* one buffer entry per 4K ... first might be short or unaligned */
1214 qtd->hw_buf[0] = cpu_to_le32((u32)addr);
1215 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
1216 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
1217 if (likely(len < count)) /* ... iff needed */
1218 count = len;
1219 else {
1220 buf += 0x1000;
1221 buf &= ~0x0fff;
1223 /* per-qtd limit: from 16K to 20K (best alignment) */
1224 for (i = 1; count < len && i < 5; i++) {
1225 addr = buf;
1226 qtd->hw_buf[i] = cpu_to_le32((u32)addr);
1227 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
1228 buf += 0x1000;
1229 if ((count + 0x1000) < len)
1230 count += 0x1000;
1231 else
1232 count = len;
1235 /* short packets may only terminate transfers */
1236 if (count != len)
1237 count -= (count % maxpacket);
1239 qtd->hw_token = cpu_to_le32((count << 16) | token);
1240 qtd->length = count;
1242 return count;
1245 static inline void qh_update(struct oxu_hcd *oxu,
1246 struct ehci_qh *qh, struct ehci_qtd *qtd)
1248 /* writes to an active overlay are unsafe */
1249 BUG_ON(qh->qh_state != QH_STATE_IDLE);
1251 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
1252 qh->hw_alt_next = EHCI_LIST_END;
1254 /* Except for control endpoints, we make hardware maintain data
1255 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
1256 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
1257 * ever clear it.
1259 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
1260 unsigned is_out, epnum;
1262 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
1263 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
1264 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
1265 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
1266 usb_settoggle(qh->dev, epnum, is_out, 1);
1270 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
1271 wmb();
1272 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
1275 /* If it weren't for a common silicon quirk (writing the dummy into the qh
1276 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
1277 * recovery (including urb dequeue) would need software changes to a QH...
1279 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
1281 struct ehci_qtd *qtd;
1283 if (list_empty(&qh->qtd_list))
1284 qtd = qh->dummy;
1285 else {
1286 qtd = list_entry(qh->qtd_list.next,
1287 struct ehci_qtd, qtd_list);
1288 /* first qtd may already be partially processed */
1289 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
1290 qtd = NULL;
1293 if (qtd)
1294 qh_update(oxu, qh, qtd);
1297 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
1298 size_t length, u32 token)
1300 /* count IN/OUT bytes, not SETUP (even short packets) */
1301 if (likely(QTD_PID(token) != 2))
1302 urb->actual_length += length - QTD_LENGTH(token);
1304 /* don't modify error codes */
1305 if (unlikely(urb->status != -EINPROGRESS))
1306 return;
1308 /* force cleanup after short read; not always an error */
1309 if (unlikely(IS_SHORT_READ(token)))
1310 urb->status = -EREMOTEIO;
1312 /* serious "can't proceed" faults reported by the hardware */
1313 if (token & QTD_STS_HALT) {
1314 if (token & QTD_STS_BABBLE) {
1315 /* FIXME "must" disable babbling device's port too */
1316 urb->status = -EOVERFLOW;
1317 } else if (token & QTD_STS_MMF) {
1318 /* fs/ls interrupt xfer missed the complete-split */
1319 urb->status = -EPROTO;
1320 } else if (token & QTD_STS_DBE) {
1321 urb->status = (QTD_PID(token) == 1) /* IN ? */
1322 ? -ENOSR /* hc couldn't read data */
1323 : -ECOMM; /* hc couldn't write data */
1324 } else if (token & QTD_STS_XACT) {
1325 /* timeout, bad crc, wrong PID, etc; retried */
1326 if (QTD_CERR(token))
1327 urb->status = -EPIPE;
1328 else {
1329 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
1330 urb->dev->devpath,
1331 usb_pipeendpoint(urb->pipe),
1332 usb_pipein(urb->pipe) ? "in" : "out");
1333 urb->status = -EPROTO;
1335 /* CERR nonzero + no errors + halt --> stall */
1336 } else if (QTD_CERR(token))
1337 urb->status = -EPIPE;
1338 else /* unknown */
1339 urb->status = -EPROTO;
1341 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
1342 usb_pipedevice(urb->pipe),
1343 usb_pipeendpoint(urb->pipe),
1344 usb_pipein(urb->pipe) ? "in" : "out",
1345 token, urb->status);
1349 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
1350 __releases(oxu->lock)
1351 __acquires(oxu->lock)
1353 if (likely(urb->hcpriv != NULL)) {
1354 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
1356 /* S-mask in a QH means it's an interrupt urb */
1357 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
1359 /* ... update hc-wide periodic stats (for usbfs) */
1360 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
1362 qh_put(qh);
1365 urb->hcpriv = NULL;
1366 switch (urb->status) {
1367 case -EINPROGRESS: /* success */
1368 urb->status = 0;
1369 default: /* fault */
1370 break;
1371 case -EREMOTEIO: /* fault or normal */
1372 if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
1373 urb->status = 0;
1374 break;
1375 case -ECONNRESET: /* canceled */
1376 case -ENOENT:
1377 break;
1380 #ifdef OXU_URB_TRACE
1381 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
1382 __func__, urb->dev->devpath, urb,
1383 usb_pipeendpoint(urb->pipe),
1384 usb_pipein(urb->pipe) ? "in" : "out",
1385 urb->status,
1386 urb->actual_length, urb->transfer_buffer_length);
1387 #endif
1389 /* complete() can reenter this HCD */
1390 spin_unlock(&oxu->lock);
1391 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
1392 spin_lock(&oxu->lock);
1395 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1396 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1398 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1399 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1401 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
1403 /* Process and free completed qtds for a qh, returning URBs to drivers.
1404 * Chases up to qh->hw_current. Returns number of completions called,
1405 * indicating how much "real" work we did.
1407 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
1409 struct ehci_qtd *last = NULL, *end = qh->dummy;
1410 struct ehci_qtd *qtd, *tmp;
1411 int stopped;
1412 unsigned count = 0;
1413 int do_status = 0;
1414 u8 state;
1415 struct oxu_murb *murb = NULL;
1417 if (unlikely(list_empty(&qh->qtd_list)))
1418 return count;
1420 /* completions (or tasks on other cpus) must never clobber HALT
1421 * till we've gone through and cleaned everything up, even when
1422 * they add urbs to this qh's queue or mark them for unlinking.
1424 * NOTE: unlinking expects to be done in queue order.
1426 state = qh->qh_state;
1427 qh->qh_state = QH_STATE_COMPLETING;
1428 stopped = (state == QH_STATE_IDLE);
1430 /* remove de-activated QTDs from front of queue.
1431 * after faults (including short reads), cleanup this urb
1432 * then let the queue advance.
1433 * if queue is stopped, handles unlinks.
1435 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
1436 struct urb *urb;
1437 u32 token = 0;
1439 urb = qtd->urb;
1441 /* Clean up any state from previous QTD ...*/
1442 if (last) {
1443 if (likely(last->urb != urb)) {
1444 if (last->urb->complete == NULL) {
1445 murb = (struct oxu_murb *) last->urb;
1446 last->urb = murb->main;
1447 if (murb->last) {
1448 ehci_urb_done(oxu, last->urb);
1449 count++;
1451 oxu_murb_free(oxu, murb);
1452 } else {
1453 ehci_urb_done(oxu, last->urb);
1454 count++;
1457 oxu_qtd_free(oxu, last);
1458 last = NULL;
1461 /* ignore urbs submitted during completions we reported */
1462 if (qtd == end)
1463 break;
1465 /* hardware copies qtd out of qh overlay */
1466 rmb();
1467 token = le32_to_cpu(qtd->hw_token);
1469 /* always clean up qtds the hc de-activated */
1470 if ((token & QTD_STS_ACTIVE) == 0) {
1472 if ((token & QTD_STS_HALT) != 0) {
1473 stopped = 1;
1475 /* magic dummy for some short reads; qh won't advance.
1476 * that silicon quirk can kick in with this dummy too.
1478 } else if (IS_SHORT_READ(token) &&
1479 !(qtd->hw_alt_next & EHCI_LIST_END)) {
1480 stopped = 1;
1481 goto halt;
1484 /* stop scanning when we reach qtds the hc is using */
1485 } else if (likely(!stopped &&
1486 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1487 break;
1489 } else {
1490 stopped = 1;
1492 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1493 urb->status = -ESHUTDOWN;
1495 /* ignore active urbs unless some previous qtd
1496 * for the urb faulted (including short read) or
1497 * its urb was canceled. we may patch qh or qtds.
1499 if (likely(urb->status == -EINPROGRESS))
1500 continue;
1502 /* issue status after short control reads */
1503 if (unlikely(do_status != 0)
1504 && QTD_PID(token) == 0 /* OUT */) {
1505 do_status = 0;
1506 continue;
1509 /* token in overlay may be most current */
1510 if (state == QH_STATE_IDLE
1511 && cpu_to_le32(qtd->qtd_dma)
1512 == qh->hw_current)
1513 token = le32_to_cpu(qh->hw_token);
1515 /* force halt for unlinked or blocked qh, so we'll
1516 * patch the qh later and so that completions can't
1517 * activate it while we "know" it's stopped.
1519 if ((HALT_BIT & qh->hw_token) == 0) {
1520 halt:
1521 qh->hw_token |= HALT_BIT;
1522 wmb();
1526 /* Remove it from the queue */
1527 qtd_copy_status(oxu, urb->complete ?
1528 urb : ((struct oxu_murb *) urb)->main,
1529 qtd->length, token);
1530 if ((usb_pipein(qtd->urb->pipe)) &&
1531 (NULL != qtd->transfer_buffer))
1532 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1533 do_status = (urb->status == -EREMOTEIO)
1534 && usb_pipecontrol(urb->pipe);
1536 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1537 last = list_entry(qtd->qtd_list.prev,
1538 struct ehci_qtd, qtd_list);
1539 last->hw_next = qtd->hw_next;
1541 list_del(&qtd->qtd_list);
1542 last = qtd;
1545 /* last urb's completion might still need calling */
1546 if (likely(last != NULL)) {
1547 if (last->urb->complete == NULL) {
1548 murb = (struct oxu_murb *) last->urb;
1549 last->urb = murb->main;
1550 if (murb->last) {
1551 ehci_urb_done(oxu, last->urb);
1552 count++;
1554 oxu_murb_free(oxu, murb);
1555 } else {
1556 ehci_urb_done(oxu, last->urb);
1557 count++;
1559 oxu_qtd_free(oxu, last);
1562 /* restore original state; caller must unlink or relink */
1563 qh->qh_state = state;
1565 /* be sure the hardware's done with the qh before refreshing
1566 * it after fault cleanup, or recovering from silicon wrongly
1567 * overlaying the dummy qtd (which reduces DMA chatter).
1569 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1570 switch (state) {
1571 case QH_STATE_IDLE:
1572 qh_refresh(oxu, qh);
1573 break;
1574 case QH_STATE_LINKED:
1575 /* should be rare for periodic transfers,
1576 * except maybe high bandwidth ...
1578 if ((cpu_to_le32(QH_SMASK)
1579 & qh->hw_info2) != 0) {
1580 intr_deschedule(oxu, qh);
1581 (void) qh_schedule(oxu, qh);
1582 } else
1583 unlink_async(oxu, qh);
1584 break;
1585 /* otherwise, unlink already started */
1589 return count;
1592 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1593 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
1594 /* ... and packet size, for any kind of endpoint descriptor */
1595 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
1597 /* Reverse of qh_urb_transaction: free a list of TDs.
1598 * used for cleanup after errors, before HC sees an URB's TDs.
1600 static void qtd_list_free(struct oxu_hcd *oxu,
1601 struct urb *urb, struct list_head *head)
1603 struct ehci_qtd *qtd, *temp;
1605 list_for_each_entry_safe(qtd, temp, head, qtd_list) {
1606 list_del(&qtd->qtd_list);
1607 oxu_qtd_free(oxu, qtd);
1611 /* Create a list of filled qtds for this URB; won't link into qh.
1613 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1614 struct urb *urb,
1615 struct list_head *head,
1616 gfp_t flags)
1618 struct ehci_qtd *qtd, *qtd_prev;
1619 dma_addr_t buf;
1620 int len, maxpacket;
1621 int is_input;
1622 u32 token;
1623 void *transfer_buf = NULL;
1624 int ret;
1627 * URBs map to sequences of QTDs: one logical transaction
1629 qtd = ehci_qtd_alloc(oxu);
1630 if (unlikely(!qtd))
1631 return NULL;
1632 list_add_tail(&qtd->qtd_list, head);
1633 qtd->urb = urb;
1635 token = QTD_STS_ACTIVE;
1636 token |= (EHCI_TUNE_CERR << 10);
1637 /* for split transactions, SplitXState initialized to zero */
1639 len = urb->transfer_buffer_length;
1640 is_input = usb_pipein(urb->pipe);
1641 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1642 urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1644 if (usb_pipecontrol(urb->pipe)) {
1645 /* SETUP pid */
1646 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1647 if (ret)
1648 goto cleanup;
1650 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1651 token | (2 /* "setup" */ << 8), 8);
1652 memcpy(qtd->buffer, qtd->urb->setup_packet,
1653 sizeof(struct usb_ctrlrequest));
1655 /* ... and always at least one more pid */
1656 token ^= QTD_TOGGLE;
1657 qtd_prev = qtd;
1658 qtd = ehci_qtd_alloc(oxu);
1659 if (unlikely(!qtd))
1660 goto cleanup;
1661 qtd->urb = urb;
1662 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1663 list_add_tail(&qtd->qtd_list, head);
1665 /* for zero length DATA stages, STATUS is always IN */
1666 if (len == 0)
1667 token |= (1 /* "in" */ << 8);
1671 * Data transfer stage: buffer setup
1674 ret = oxu_buf_alloc(oxu, qtd, len);
1675 if (ret)
1676 goto cleanup;
1678 buf = qtd->buffer_dma;
1679 transfer_buf = urb->transfer_buffer;
1681 if (!is_input)
1682 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1684 if (is_input)
1685 token |= (1 /* "in" */ << 8);
1686 /* else it's already initted to "out" pid (0 << 8) */
1688 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
1691 * buffer gets wrapped in one or more qtds;
1692 * last one may be "short" (including zero len)
1693 * and may serve as a control status ack
1695 for (;;) {
1696 int this_qtd_len;
1698 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1699 qtd->transfer_buffer = transfer_buf;
1700 len -= this_qtd_len;
1701 buf += this_qtd_len;
1702 transfer_buf += this_qtd_len;
1703 if (is_input)
1704 qtd->hw_alt_next = oxu->async->hw_alt_next;
1706 /* qh makes control packets use qtd toggle; maybe switch it */
1707 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1708 token ^= QTD_TOGGLE;
1710 if (likely(len <= 0))
1711 break;
1713 qtd_prev = qtd;
1714 qtd = ehci_qtd_alloc(oxu);
1715 if (unlikely(!qtd))
1716 goto cleanup;
1717 if (likely(len > 0)) {
1718 ret = oxu_buf_alloc(oxu, qtd, len);
1719 if (ret)
1720 goto cleanup;
1722 qtd->urb = urb;
1723 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1724 list_add_tail(&qtd->qtd_list, head);
1727 /* unless the bulk/interrupt caller wants a chance to clean
1728 * up after short reads, hc should advance qh past this urb
1730 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1731 || usb_pipecontrol(urb->pipe)))
1732 qtd->hw_alt_next = EHCI_LIST_END;
1735 * control requests may need a terminating data "status" ack;
1736 * bulk ones may need a terminating short packet (zero length).
1738 if (likely(urb->transfer_buffer_length != 0)) {
1739 int one_more = 0;
1741 if (usb_pipecontrol(urb->pipe)) {
1742 one_more = 1;
1743 token ^= 0x0100; /* "in" <--> "out" */
1744 token |= QTD_TOGGLE; /* force DATA1 */
1745 } else if (usb_pipebulk(urb->pipe)
1746 && (urb->transfer_flags & URB_ZERO_PACKET)
1747 && !(urb->transfer_buffer_length % maxpacket)) {
1748 one_more = 1;
1750 if (one_more) {
1751 qtd_prev = qtd;
1752 qtd = ehci_qtd_alloc(oxu);
1753 if (unlikely(!qtd))
1754 goto cleanup;
1755 qtd->urb = urb;
1756 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1757 list_add_tail(&qtd->qtd_list, head);
1759 /* never any data in such packets */
1760 qtd_fill(qtd, 0, 0, token, 0);
1764 /* by default, enable interrupt on urb completion */
1765 qtd->hw_token |= cpu_to_le32(QTD_IOC);
1766 return head;
1768 cleanup:
1769 qtd_list_free(oxu, urb, head);
1770 return NULL;
1773 /* Each QH holds a qtd list; a QH is used for everything except iso.
1775 * For interrupt urbs, the scheduler must set the microframe scheduling
1776 * mask(s) each time the QH gets scheduled. For highspeed, that's
1777 * just one microframe in the s-mask. For split interrupt transactions
1778 * there are additional complications: c-mask, maybe FSTNs.
1780 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1781 struct urb *urb, gfp_t flags)
1783 struct ehci_qh *qh = oxu_qh_alloc(oxu);
1784 u32 info1 = 0, info2 = 0;
1785 int is_input, type;
1786 int maxp = 0;
1788 if (!qh)
1789 return qh;
1792 * init endpoint/device data for this QH
1794 info1 |= usb_pipeendpoint(urb->pipe) << 8;
1795 info1 |= usb_pipedevice(urb->pipe) << 0;
1797 is_input = usb_pipein(urb->pipe);
1798 type = usb_pipetype(urb->pipe);
1799 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
1801 /* Compute interrupt scheduling parameters just once, and save.
1802 * - allowing for high bandwidth, how many nsec/uframe are used?
1803 * - split transactions need a second CSPLIT uframe; same question
1804 * - splits also need a schedule gap (for full/low speed I/O)
1805 * - qh has a polling interval
1807 * For control/bulk requests, the HC or TT handles these.
1809 if (type == PIPE_INTERRUPT) {
1810 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1811 is_input, 0,
1812 hb_mult(maxp) * max_packet(maxp)));
1813 qh->start = NO_FRAME;
1815 if (urb->dev->speed == USB_SPEED_HIGH) {
1816 qh->c_usecs = 0;
1817 qh->gap_uf = 0;
1819 qh->period = urb->interval >> 3;
1820 if (qh->period == 0 && urb->interval != 1) {
1821 /* NOTE interval 2 or 4 uframes could work.
1822 * But interval 1 scheduling is simpler, and
1823 * includes high bandwidth.
1825 oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1826 urb->interval);
1827 goto done;
1829 } else {
1830 struct usb_tt *tt = urb->dev->tt;
1831 int think_time;
1833 /* gap is f(FS/LS transfer times) */
1834 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1835 is_input, 0, maxp) / (125 * 1000);
1837 /* FIXME this just approximates SPLIT/CSPLIT times */
1838 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
1839 qh->c_usecs = qh->usecs + HS_USECS(0);
1840 qh->usecs = HS_USECS(1);
1841 } else { /* SPLIT+DATA, gap, CSPLIT */
1842 qh->usecs += HS_USECS(1);
1843 qh->c_usecs = HS_USECS(0);
1846 think_time = tt ? tt->think_time : 0;
1847 qh->tt_usecs = NS_TO_US(think_time +
1848 usb_calc_bus_time(urb->dev->speed,
1849 is_input, 0, max_packet(maxp)));
1850 qh->period = urb->interval;
1854 /* support for tt scheduling, and access to toggles */
1855 qh->dev = urb->dev;
1857 /* using TT? */
1858 switch (urb->dev->speed) {
1859 case USB_SPEED_LOW:
1860 info1 |= (1 << 12); /* EPS "low" */
1861 /* FALL THROUGH */
1863 case USB_SPEED_FULL:
1864 /* EPS 0 means "full" */
1865 if (type != PIPE_INTERRUPT)
1866 info1 |= (EHCI_TUNE_RL_TT << 28);
1867 if (type == PIPE_CONTROL) {
1868 info1 |= (1 << 27); /* for TT */
1869 info1 |= 1 << 14; /* toggle from qtd */
1871 info1 |= maxp << 16;
1873 info2 |= (EHCI_TUNE_MULT_TT << 30);
1874 info2 |= urb->dev->ttport << 23;
1876 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1878 break;
1880 case USB_SPEED_HIGH: /* no TT involved */
1881 info1 |= (2 << 12); /* EPS "high" */
1882 if (type == PIPE_CONTROL) {
1883 info1 |= (EHCI_TUNE_RL_HS << 28);
1884 info1 |= 64 << 16; /* usb2 fixed maxpacket */
1885 info1 |= 1 << 14; /* toggle from qtd */
1886 info2 |= (EHCI_TUNE_MULT_HS << 30);
1887 } else if (type == PIPE_BULK) {
1888 info1 |= (EHCI_TUNE_RL_HS << 28);
1889 info1 |= 512 << 16; /* usb2 fixed maxpacket */
1890 info2 |= (EHCI_TUNE_MULT_HS << 30);
1891 } else { /* PIPE_INTERRUPT */
1892 info1 |= max_packet(maxp) << 16;
1893 info2 |= hb_mult(maxp) << 30;
1895 break;
1896 default:
1897 oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1898 done:
1899 qh_put(qh);
1900 return NULL;
1903 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1905 /* init as live, toggle clear, advance to dummy */
1906 qh->qh_state = QH_STATE_IDLE;
1907 qh->hw_info1 = cpu_to_le32(info1);
1908 qh->hw_info2 = cpu_to_le32(info2);
1909 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1910 qh_refresh(oxu, qh);
1911 return qh;
1914 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1916 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1918 __le32 dma = QH_NEXT(qh->qh_dma);
1919 struct ehci_qh *head;
1921 /* (re)start the async schedule? */
1922 head = oxu->async;
1923 timer_action_done(oxu, TIMER_ASYNC_OFF);
1924 if (!head->qh_next.qh) {
1925 u32 cmd = readl(&oxu->regs->command);
1927 if (!(cmd & CMD_ASE)) {
1928 /* in case a clear of CMD_ASE didn't take yet */
1929 (void)handshake(oxu, &oxu->regs->status,
1930 STS_ASS, 0, 150);
1931 cmd |= CMD_ASE | CMD_RUN;
1932 writel(cmd, &oxu->regs->command);
1933 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1934 /* posted write need not be known to HC yet ... */
1938 /* clear halt and/or toggle; and maybe recover from silicon quirk */
1939 if (qh->qh_state == QH_STATE_IDLE)
1940 qh_refresh(oxu, qh);
1942 /* splice right after start */
1943 qh->qh_next = head->qh_next;
1944 qh->hw_next = head->hw_next;
1945 wmb();
1947 head->qh_next.qh = qh;
1948 head->hw_next = dma;
1950 qh->qh_state = QH_STATE_LINKED;
1951 /* qtd completions reported later by interrupt */
1954 #define QH_ADDR_MASK cpu_to_le32(0x7f)
1957 * For control/bulk/interrupt, return QH with these TDs appended.
1958 * Allocates and initializes the QH if necessary.
1959 * Returns null if it can't allocate a QH it needs to.
1960 * If the QH has TDs (urbs) already, that's great.
1962 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1963 struct urb *urb, struct list_head *qtd_list,
1964 int epnum, void **ptr)
1966 struct ehci_qh *qh = NULL;
1968 qh = (struct ehci_qh *) *ptr;
1969 if (unlikely(qh == NULL)) {
1970 /* can't sleep here, we have oxu->lock... */
1971 qh = qh_make(oxu, urb, GFP_ATOMIC);
1972 *ptr = qh;
1974 if (likely(qh != NULL)) {
1975 struct ehci_qtd *qtd;
1977 if (unlikely(list_empty(qtd_list)))
1978 qtd = NULL;
1979 else
1980 qtd = list_entry(qtd_list->next, struct ehci_qtd,
1981 qtd_list);
1983 /* control qh may need patching ... */
1984 if (unlikely(epnum == 0)) {
1986 /* usb_reset_device() briefly reverts to address 0 */
1987 if (usb_pipedevice(urb->pipe) == 0)
1988 qh->hw_info1 &= ~QH_ADDR_MASK;
1991 /* just one way to queue requests: swap with the dummy qtd.
1992 * only hc or qh_refresh() ever modify the overlay.
1994 if (likely(qtd != NULL)) {
1995 struct ehci_qtd *dummy;
1996 dma_addr_t dma;
1997 __le32 token;
1999 /* to avoid racing the HC, use the dummy td instead of
2000 * the first td of our list (becomes new dummy). both
2001 * tds stay deactivated until we're done, when the
2002 * HC is allowed to fetch the old dummy (4.10.2).
2004 token = qtd->hw_token;
2005 qtd->hw_token = HALT_BIT;
2006 wmb();
2007 dummy = qh->dummy;
2009 dma = dummy->qtd_dma;
2010 *dummy = *qtd;
2011 dummy->qtd_dma = dma;
2013 list_del(&qtd->qtd_list);
2014 list_add(&dummy->qtd_list, qtd_list);
2015 list_splice(qtd_list, qh->qtd_list.prev);
2017 ehci_qtd_init(qtd, qtd->qtd_dma);
2018 qh->dummy = qtd;
2020 /* hc must see the new dummy at list end */
2021 dma = qtd->qtd_dma;
2022 qtd = list_entry(qh->qtd_list.prev,
2023 struct ehci_qtd, qtd_list);
2024 qtd->hw_next = QTD_NEXT(dma);
2026 /* let the hc process these next qtds */
2027 dummy->hw_token = (token & ~(0x80));
2028 wmb();
2029 dummy->hw_token = token;
2031 urb->hcpriv = qh_get(qh);
2034 return qh;
2037 static int submit_async(struct oxu_hcd *oxu, struct urb *urb,
2038 struct list_head *qtd_list, gfp_t mem_flags)
2040 struct ehci_qtd *qtd;
2041 int epnum;
2042 unsigned long flags;
2043 struct ehci_qh *qh = NULL;
2044 int rc = 0;
2046 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
2047 epnum = urb->ep->desc.bEndpointAddress;
2049 #ifdef OXU_URB_TRACE
2050 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2051 __func__, urb->dev->devpath, urb,
2052 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
2053 urb->transfer_buffer_length,
2054 qtd, urb->ep->hcpriv);
2055 #endif
2057 spin_lock_irqsave(&oxu->lock, flags);
2058 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2059 rc = -ESHUTDOWN;
2060 goto done;
2063 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2064 if (unlikely(qh == NULL)) {
2065 rc = -ENOMEM;
2066 goto done;
2069 /* Control/bulk operations through TTs don't need scheduling,
2070 * the HC and TT handle it when the TT has a buffer ready.
2072 if (likely(qh->qh_state == QH_STATE_IDLE))
2073 qh_link_async(oxu, qh_get(qh));
2074 done:
2075 spin_unlock_irqrestore(&oxu->lock, flags);
2076 if (unlikely(qh == NULL))
2077 qtd_list_free(oxu, urb, qtd_list);
2078 return rc;
2081 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
2083 static void end_unlink_async(struct oxu_hcd *oxu)
2085 struct ehci_qh *qh = oxu->reclaim;
2086 struct ehci_qh *next;
2088 timer_action_done(oxu, TIMER_IAA_WATCHDOG);
2090 qh->qh_state = QH_STATE_IDLE;
2091 qh->qh_next.qh = NULL;
2092 qh_put(qh); /* refcount from reclaim */
2094 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
2095 next = qh->reclaim;
2096 oxu->reclaim = next;
2097 oxu->reclaim_ready = 0;
2098 qh->reclaim = NULL;
2100 qh_completions(oxu, qh);
2102 if (!list_empty(&qh->qtd_list)
2103 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2104 qh_link_async(oxu, qh);
2105 else {
2106 qh_put(qh); /* refcount from async list */
2108 /* it's not free to turn the async schedule on/off; leave it
2109 * active but idle for a while once it empties.
2111 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
2112 && oxu->async->qh_next.qh == NULL)
2113 timer_action(oxu, TIMER_ASYNC_OFF);
2116 if (next) {
2117 oxu->reclaim = NULL;
2118 start_unlink_async(oxu, next);
2122 /* makes sure the async qh will become idle */
2123 /* caller must own oxu->lock */
2125 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2127 int cmd = readl(&oxu->regs->command);
2128 struct ehci_qh *prev;
2130 #ifdef DEBUG
2131 assert_spin_locked(&oxu->lock);
2132 BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
2133 && qh->qh_state != QH_STATE_UNLINK_WAIT));
2134 #endif
2136 /* stop async schedule right now? */
2137 if (unlikely(qh == oxu->async)) {
2138 /* can't get here without STS_ASS set */
2139 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
2140 && !oxu->reclaim) {
2141 /* ... and CMD_IAAD clear */
2142 writel(cmd & ~CMD_ASE, &oxu->regs->command);
2143 wmb();
2144 /* handshake later, if we need to */
2145 timer_action_done(oxu, TIMER_ASYNC_OFF);
2147 return;
2150 qh->qh_state = QH_STATE_UNLINK;
2151 oxu->reclaim = qh = qh_get(qh);
2153 prev = oxu->async;
2154 while (prev->qh_next.qh != qh)
2155 prev = prev->qh_next.qh;
2157 prev->hw_next = qh->hw_next;
2158 prev->qh_next = qh->qh_next;
2159 wmb();
2161 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
2162 /* if (unlikely(qh->reclaim != 0))
2163 * this will recurse, probably not much
2165 end_unlink_async(oxu);
2166 return;
2169 oxu->reclaim_ready = 0;
2170 cmd |= CMD_IAAD;
2171 writel(cmd, &oxu->regs->command);
2172 (void) readl(&oxu->regs->command);
2173 timer_action(oxu, TIMER_IAA_WATCHDOG);
2176 static void scan_async(struct oxu_hcd *oxu)
2178 struct ehci_qh *qh;
2179 enum ehci_timer_action action = TIMER_IO_WATCHDOG;
2181 if (!++(oxu->stamp))
2182 oxu->stamp++;
2183 timer_action_done(oxu, TIMER_ASYNC_SHRINK);
2184 rescan:
2185 qh = oxu->async->qh_next.qh;
2186 if (likely(qh != NULL)) {
2187 do {
2188 /* clean any finished work for this qh */
2189 if (!list_empty(&qh->qtd_list)
2190 && qh->stamp != oxu->stamp) {
2191 int temp;
2193 /* unlinks could happen here; completion
2194 * reporting drops the lock. rescan using
2195 * the latest schedule, but don't rescan
2196 * qhs we already finished (no looping).
2198 qh = qh_get(qh);
2199 qh->stamp = oxu->stamp;
2200 temp = qh_completions(oxu, qh);
2201 qh_put(qh);
2202 if (temp != 0)
2203 goto rescan;
2206 /* unlink idle entries, reducing HC PCI usage as well
2207 * as HCD schedule-scanning costs. delay for any qh
2208 * we just scanned, there's a not-unusual case that it
2209 * doesn't stay idle for long.
2210 * (plus, avoids some kind of re-activation race.)
2212 if (list_empty(&qh->qtd_list)) {
2213 if (qh->stamp == oxu->stamp)
2214 action = TIMER_ASYNC_SHRINK;
2215 else if (!oxu->reclaim
2216 && qh->qh_state == QH_STATE_LINKED)
2217 start_unlink_async(oxu, qh);
2220 qh = qh->qh_next.qh;
2221 } while (qh);
2223 if (action == TIMER_ASYNC_SHRINK)
2224 timer_action(oxu, TIMER_ASYNC_SHRINK);
2228 * periodic_next_shadow - return "next" pointer on shadow list
2229 * @periodic: host pointer to qh/itd/sitd
2230 * @tag: hardware tag for type of this record
2232 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
2233 __le32 tag)
2235 switch (tag) {
2236 default:
2237 case Q_TYPE_QH:
2238 return &periodic->qh->qh_next;
2242 /* caller must hold oxu->lock */
2243 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
2245 union ehci_shadow *prev_p = &oxu->pshadow[frame];
2246 __le32 *hw_p = &oxu->periodic[frame];
2247 union ehci_shadow here = *prev_p;
2249 /* find predecessor of "ptr"; hw and shadow lists are in sync */
2250 while (here.ptr && here.ptr != ptr) {
2251 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
2252 hw_p = here.hw_next;
2253 here = *prev_p;
2255 /* an interrupt entry (at list end) could have been shared */
2256 if (!here.ptr)
2257 return;
2259 /* update shadow and hardware lists ... the old "next" pointers
2260 * from ptr may still be in use, the caller updates them.
2262 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
2263 *hw_p = *here.hw_next;
2266 /* how many of the uframe's 125 usecs are allocated? */
2267 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
2268 unsigned frame, unsigned uframe)
2270 __le32 *hw_p = &oxu->periodic[frame];
2271 union ehci_shadow *q = &oxu->pshadow[frame];
2272 unsigned usecs = 0;
2274 while (q->ptr) {
2275 switch (Q_NEXT_TYPE(*hw_p)) {
2276 case Q_TYPE_QH:
2277 default:
2278 /* is it in the S-mask? */
2279 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
2280 usecs += q->qh->usecs;
2281 /* ... or C-mask? */
2282 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
2283 usecs += q->qh->c_usecs;
2284 hw_p = &q->qh->hw_next;
2285 q = &q->qh->qh_next;
2286 break;
2289 #ifdef DEBUG
2290 if (usecs > 100)
2291 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
2292 frame * 8 + uframe, usecs);
2293 #endif
2294 return usecs;
2297 static int enable_periodic(struct oxu_hcd *oxu)
2299 u32 cmd;
2300 int status;
2302 /* did clearing PSE did take effect yet?
2303 * takes effect only at frame boundaries...
2305 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
2306 if (status != 0) {
2307 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2308 usb_hc_died(oxu_to_hcd(oxu));
2309 return status;
2312 cmd = readl(&oxu->regs->command) | CMD_PSE;
2313 writel(cmd, &oxu->regs->command);
2314 /* posted write ... PSS happens later */
2315 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
2317 /* make sure ehci_work scans these */
2318 oxu->next_uframe = readl(&oxu->regs->frame_index)
2319 % (oxu->periodic_size << 3);
2320 return 0;
2323 static int disable_periodic(struct oxu_hcd *oxu)
2325 u32 cmd;
2326 int status;
2328 /* did setting PSE not take effect yet?
2329 * takes effect only at frame boundaries...
2331 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
2332 if (status != 0) {
2333 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2334 usb_hc_died(oxu_to_hcd(oxu));
2335 return status;
2338 cmd = readl(&oxu->regs->command) & ~CMD_PSE;
2339 writel(cmd, &oxu->regs->command);
2340 /* posted write ... */
2342 oxu->next_uframe = -1;
2343 return 0;
2346 /* periodic schedule slots have iso tds (normal or split) first, then a
2347 * sparse tree for active interrupt transfers.
2349 * this just links in a qh; caller guarantees uframe masks are set right.
2350 * no FSTN support (yet; oxu 0.96+)
2352 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2354 unsigned i;
2355 unsigned period = qh->period;
2357 dev_dbg(&qh->dev->dev,
2358 "link qh%d-%04x/%p start %d [%d/%d us]\n",
2359 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2360 qh, qh->start, qh->usecs, qh->c_usecs);
2362 /* high bandwidth, or otherwise every microframe */
2363 if (period == 0)
2364 period = 1;
2366 for (i = qh->start; i < oxu->periodic_size; i += period) {
2367 union ehci_shadow *prev = &oxu->pshadow[i];
2368 __le32 *hw_p = &oxu->periodic[i];
2369 union ehci_shadow here = *prev;
2370 __le32 type = 0;
2372 /* skip the iso nodes at list head */
2373 while (here.ptr) {
2374 type = Q_NEXT_TYPE(*hw_p);
2375 if (type == Q_TYPE_QH)
2376 break;
2377 prev = periodic_next_shadow(prev, type);
2378 hw_p = &here.qh->hw_next;
2379 here = *prev;
2382 /* sorting each branch by period (slow-->fast)
2383 * enables sharing interior tree nodes
2385 while (here.ptr && qh != here.qh) {
2386 if (qh->period > here.qh->period)
2387 break;
2388 prev = &here.qh->qh_next;
2389 hw_p = &here.qh->hw_next;
2390 here = *prev;
2392 /* link in this qh, unless some earlier pass did that */
2393 if (qh != here.qh) {
2394 qh->qh_next = here;
2395 if (here.qh)
2396 qh->hw_next = *hw_p;
2397 wmb();
2398 prev->qh = qh;
2399 *hw_p = QH_NEXT(qh->qh_dma);
2402 qh->qh_state = QH_STATE_LINKED;
2403 qh_get(qh);
2405 /* update per-qh bandwidth for usbfs */
2406 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
2407 ? ((qh->usecs + qh->c_usecs) / qh->period)
2408 : (qh->usecs * 8);
2410 /* maybe enable periodic schedule processing */
2411 if (!oxu->periodic_sched++)
2412 return enable_periodic(oxu);
2414 return 0;
2417 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2419 unsigned i;
2420 unsigned period;
2422 /* FIXME:
2423 * IF this isn't high speed
2424 * and this qh is active in the current uframe
2425 * (and overlay token SplitXstate is false?)
2426 * THEN
2427 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2430 /* high bandwidth, or otherwise part of every microframe */
2431 period = qh->period;
2432 if (period == 0)
2433 period = 1;
2435 for (i = qh->start; i < oxu->periodic_size; i += period)
2436 periodic_unlink(oxu, i, qh);
2438 /* update per-qh bandwidth for usbfs */
2439 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2440 ? ((qh->usecs + qh->c_usecs) / qh->period)
2441 : (qh->usecs * 8);
2443 dev_dbg(&qh->dev->dev,
2444 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2445 qh->period,
2446 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2447 qh, qh->start, qh->usecs, qh->c_usecs);
2449 /* qh->qh_next still "live" to HC */
2450 qh->qh_state = QH_STATE_UNLINK;
2451 qh->qh_next.ptr = NULL;
2452 qh_put(qh);
2454 /* maybe turn off periodic schedule */
2455 oxu->periodic_sched--;
2456 if (!oxu->periodic_sched)
2457 (void) disable_periodic(oxu);
2460 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2462 unsigned wait;
2464 qh_unlink_periodic(oxu, qh);
2466 /* simple/paranoid: always delay, expecting the HC needs to read
2467 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2468 * expect hub_wq to clean up after any CSPLITs we won't issue.
2469 * active high speed queues may need bigger delays...
2471 if (list_empty(&qh->qtd_list)
2472 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2473 wait = 2;
2474 else
2475 wait = 55; /* worst case: 3 * 1024 */
2477 udelay(wait);
2478 qh->qh_state = QH_STATE_IDLE;
2479 qh->hw_next = EHCI_LIST_END;
2480 wmb();
2483 static int check_period(struct oxu_hcd *oxu,
2484 unsigned frame, unsigned uframe,
2485 unsigned period, unsigned usecs)
2487 int claimed;
2489 /* complete split running into next frame?
2490 * given FSTN support, we could sometimes check...
2492 if (uframe >= 8)
2493 return 0;
2496 * 80% periodic == 100 usec/uframe available
2497 * convert "usecs we need" to "max already claimed"
2499 usecs = 100 - usecs;
2501 /* we "know" 2 and 4 uframe intervals were rejected; so
2502 * for period 0, check _every_ microframe in the schedule.
2504 if (unlikely(period == 0)) {
2505 do {
2506 for (uframe = 0; uframe < 7; uframe++) {
2507 claimed = periodic_usecs(oxu, frame, uframe);
2508 if (claimed > usecs)
2509 return 0;
2511 } while ((frame += 1) < oxu->periodic_size);
2513 /* just check the specified uframe, at that period */
2514 } else {
2515 do {
2516 claimed = periodic_usecs(oxu, frame, uframe);
2517 if (claimed > usecs)
2518 return 0;
2519 } while ((frame += period) < oxu->periodic_size);
2522 return 1;
2525 static int check_intr_schedule(struct oxu_hcd *oxu,
2526 unsigned frame, unsigned uframe,
2527 const struct ehci_qh *qh, __le32 *c_maskp)
2529 int retval = -ENOSPC;
2531 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
2532 goto done;
2534 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2535 goto done;
2536 if (!qh->c_usecs) {
2537 retval = 0;
2538 *c_maskp = 0;
2539 goto done;
2542 done:
2543 return retval;
2546 /* "first fit" scheduling policy used the first time through,
2547 * or when the previous schedule slot can't be re-used.
2549 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2551 int status;
2552 unsigned uframe;
2553 __le32 c_mask;
2554 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
2556 qh_refresh(oxu, qh);
2557 qh->hw_next = EHCI_LIST_END;
2558 frame = qh->start;
2560 /* reuse the previous schedule slots, if we can */
2561 if (frame < qh->period) {
2562 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2563 status = check_intr_schedule(oxu, frame, --uframe,
2564 qh, &c_mask);
2565 } else {
2566 uframe = 0;
2567 c_mask = 0;
2568 status = -ENOSPC;
2571 /* else scan the schedule to find a group of slots such that all
2572 * uframes have enough periodic bandwidth available.
2574 if (status) {
2575 /* "normal" case, uframing flexible except with splits */
2576 if (qh->period) {
2577 frame = qh->period - 1;
2578 do {
2579 for (uframe = 0; uframe < 8; uframe++) {
2580 status = check_intr_schedule(oxu,
2581 frame, uframe, qh,
2582 &c_mask);
2583 if (status == 0)
2584 break;
2586 } while (status && frame--);
2588 /* qh->period == 0 means every uframe */
2589 } else {
2590 frame = 0;
2591 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2593 if (status)
2594 goto done;
2595 qh->start = frame;
2597 /* reset S-frame and (maybe) C-frame masks */
2598 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2599 qh->hw_info2 |= qh->period
2600 ? cpu_to_le32(1 << uframe)
2601 : cpu_to_le32(QH_SMASK);
2602 qh->hw_info2 |= c_mask;
2603 } else
2604 oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2606 /* stuff into the periodic schedule */
2607 status = qh_link_periodic(oxu, qh);
2608 done:
2609 return status;
2612 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2613 struct list_head *qtd_list, gfp_t mem_flags)
2615 unsigned epnum;
2616 unsigned long flags;
2617 struct ehci_qh *qh;
2618 int status = 0;
2619 struct list_head empty;
2621 /* get endpoint and transfer/schedule data */
2622 epnum = urb->ep->desc.bEndpointAddress;
2624 spin_lock_irqsave(&oxu->lock, flags);
2626 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2627 status = -ESHUTDOWN;
2628 goto done;
2631 /* get qh and force any scheduling errors */
2632 INIT_LIST_HEAD(&empty);
2633 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2634 if (qh == NULL) {
2635 status = -ENOMEM;
2636 goto done;
2638 if (qh->qh_state == QH_STATE_IDLE) {
2639 status = qh_schedule(oxu, qh);
2640 if (status != 0)
2641 goto done;
2644 /* then queue the urb's tds to the qh */
2645 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2646 BUG_ON(qh == NULL);
2648 /* ... update usbfs periodic stats */
2649 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2651 done:
2652 spin_unlock_irqrestore(&oxu->lock, flags);
2653 if (status)
2654 qtd_list_free(oxu, urb, qtd_list);
2656 return status;
2659 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2660 gfp_t mem_flags)
2662 oxu_dbg(oxu, "iso support is missing!\n");
2663 return -ENOSYS;
2666 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2667 gfp_t mem_flags)
2669 oxu_dbg(oxu, "split iso support is missing!\n");
2670 return -ENOSYS;
2673 static void scan_periodic(struct oxu_hcd *oxu)
2675 unsigned frame, clock, now_uframe, mod;
2676 unsigned modified;
2678 mod = oxu->periodic_size << 3;
2681 * When running, scan from last scan point up to "now"
2682 * else clean up by scanning everything that's left.
2683 * Touches as few pages as possible: cache-friendly.
2685 now_uframe = oxu->next_uframe;
2686 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2687 clock = readl(&oxu->regs->frame_index);
2688 else
2689 clock = now_uframe + mod - 1;
2690 clock %= mod;
2692 for (;;) {
2693 union ehci_shadow q, *q_p;
2694 __le32 type, *hw_p;
2696 /* don't scan past the live uframe */
2697 frame = now_uframe >> 3;
2698 if (frame != (clock >> 3)) {
2699 /* safe to scan the whole frame at once */
2700 now_uframe |= 0x07;
2703 restart:
2704 /* scan each element in frame's queue for completions */
2705 q_p = &oxu->pshadow[frame];
2706 hw_p = &oxu->periodic[frame];
2707 q.ptr = q_p->ptr;
2708 type = Q_NEXT_TYPE(*hw_p);
2709 modified = 0;
2711 while (q.ptr != NULL) {
2712 union ehci_shadow temp;
2714 switch (type) {
2715 case Q_TYPE_QH:
2716 /* handle any completions */
2717 temp.qh = qh_get(q.qh);
2718 type = Q_NEXT_TYPE(q.qh->hw_next);
2719 q = q.qh->qh_next;
2720 modified = qh_completions(oxu, temp.qh);
2721 if (unlikely(list_empty(&temp.qh->qtd_list)))
2722 intr_deschedule(oxu, temp.qh);
2723 qh_put(temp.qh);
2724 break;
2725 default:
2726 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2727 type, frame, q.ptr);
2728 q.ptr = NULL;
2731 /* assume completion callbacks modify the queue */
2732 if (unlikely(modified))
2733 goto restart;
2736 /* Stop when we catch up to the HC */
2738 /* FIXME: this assumes we won't get lapped when
2739 * latencies climb; that should be rare, but...
2740 * detect it, and just go all the way around.
2741 * FLR might help detect this case, so long as latencies
2742 * don't exceed periodic_size msec (default 1.024 sec).
2745 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2747 if (now_uframe == clock) {
2748 unsigned now;
2750 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2751 break;
2752 oxu->next_uframe = now_uframe;
2753 now = readl(&oxu->regs->frame_index) % mod;
2754 if (now_uframe == now)
2755 break;
2757 /* rescan the rest of this frame, then ... */
2758 clock = now;
2759 } else {
2760 now_uframe++;
2761 now_uframe %= mod;
2766 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2767 * The firmware seems to think that powering off is a wakeup event!
2768 * This routine turns off remote wakeup and everything else, on all ports.
2770 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2772 int port = HCS_N_PORTS(oxu->hcs_params);
2774 while (port--)
2775 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2778 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2780 unsigned port;
2782 if (!HCS_PPC(oxu->hcs_params))
2783 return;
2785 oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2786 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; )
2787 (void) oxu_hub_control(oxu_to_hcd(oxu),
2788 is_on ? SetPortFeature : ClearPortFeature,
2789 USB_PORT_FEAT_POWER,
2790 port--, NULL, 0);
2791 msleep(20);
2794 /* Called from some interrupts, timers, and so on.
2795 * It calls driver completion functions, after dropping oxu->lock.
2797 static void ehci_work(struct oxu_hcd *oxu)
2799 timer_action_done(oxu, TIMER_IO_WATCHDOG);
2800 if (oxu->reclaim_ready)
2801 end_unlink_async(oxu);
2803 /* another CPU may drop oxu->lock during a schedule scan while
2804 * it reports urb completions. this flag guards against bogus
2805 * attempts at re-entrant schedule scanning.
2807 if (oxu->scanning)
2808 return;
2809 oxu->scanning = 1;
2810 scan_async(oxu);
2811 if (oxu->next_uframe != -1)
2812 scan_periodic(oxu);
2813 oxu->scanning = 0;
2815 /* the IO watchdog guards against hardware or driver bugs that
2816 * misplace IRQs, and should let us run completely without IRQs.
2817 * such lossage has been observed on both VT6202 and VT8235.
2819 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2820 (oxu->async->qh_next.ptr != NULL ||
2821 oxu->periodic_sched != 0))
2822 timer_action(oxu, TIMER_IO_WATCHDOG);
2825 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2827 /* if we need to use IAA and it's busy, defer */
2828 if (qh->qh_state == QH_STATE_LINKED
2829 && oxu->reclaim
2830 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2831 struct ehci_qh *last;
2833 for (last = oxu->reclaim;
2834 last->reclaim;
2835 last = last->reclaim)
2836 continue;
2837 qh->qh_state = QH_STATE_UNLINK_WAIT;
2838 last->reclaim = qh;
2840 /* bypass IAA if the hc can't care */
2841 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2842 end_unlink_async(oxu);
2844 /* something else might have unlinked the qh by now */
2845 if (qh->qh_state == QH_STATE_LINKED)
2846 start_unlink_async(oxu, qh);
2850 * USB host controller methods
2853 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2855 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2856 u32 status, pcd_status = 0;
2857 int bh;
2859 spin_lock(&oxu->lock);
2861 status = readl(&oxu->regs->status);
2863 /* e.g. cardbus physical eject */
2864 if (status == ~(u32) 0) {
2865 oxu_dbg(oxu, "device removed\n");
2866 goto dead;
2869 /* Shared IRQ? */
2870 status &= INTR_MASK;
2871 if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2872 spin_unlock(&oxu->lock);
2873 return IRQ_NONE;
2876 /* clear (just) interrupts */
2877 writel(status, &oxu->regs->status);
2878 readl(&oxu->regs->command); /* unblock posted write */
2879 bh = 0;
2881 #ifdef OXU_VERBOSE_DEBUG
2882 /* unrequested/ignored: Frame List Rollover */
2883 dbg_status(oxu, "irq", status);
2884 #endif
2886 /* INT, ERR, and IAA interrupt rates can be throttled */
2888 /* normal [4.15.1.2] or error [4.15.1.1] completion */
2889 if (likely((status & (STS_INT|STS_ERR)) != 0))
2890 bh = 1;
2892 /* complete the unlinking of some qh [4.15.2.3] */
2893 if (status & STS_IAA) {
2894 oxu->reclaim_ready = 1;
2895 bh = 1;
2898 /* remote wakeup [4.3.1] */
2899 if (status & STS_PCD) {
2900 unsigned i = HCS_N_PORTS(oxu->hcs_params);
2901 pcd_status = status;
2903 /* resume root hub? */
2904 if (!(readl(&oxu->regs->command) & CMD_RUN))
2905 usb_hcd_resume_root_hub(hcd);
2907 while (i--) {
2908 int pstatus = readl(&oxu->regs->port_status[i]);
2910 if (pstatus & PORT_OWNER)
2911 continue;
2912 if (!(pstatus & PORT_RESUME)
2913 || oxu->reset_done[i] != 0)
2914 continue;
2916 /* start USB_RESUME_TIMEOUT resume signaling from this
2917 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2918 * stop that signaling.
2920 oxu->reset_done[i] = jiffies +
2921 msecs_to_jiffies(USB_RESUME_TIMEOUT);
2922 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2923 mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2927 /* PCI errors [4.15.2.4] */
2928 if (unlikely((status & STS_FATAL) != 0)) {
2929 /* bogus "fatal" IRQs appear on some chips... why? */
2930 status = readl(&oxu->regs->status);
2931 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2932 dbg_status(oxu, "fatal", status);
2933 if (status & STS_HALT) {
2934 oxu_err(oxu, "fatal error\n");
2935 dead:
2936 ehci_reset(oxu);
2937 writel(0, &oxu->regs->configured_flag);
2938 usb_hc_died(hcd);
2939 /* generic layer kills/unlinks all urbs, then
2940 * uses oxu_stop to clean up the rest
2942 bh = 1;
2946 if (bh)
2947 ehci_work(oxu);
2948 spin_unlock(&oxu->lock);
2949 if (pcd_status & STS_PCD)
2950 usb_hcd_poll_rh_status(hcd);
2951 return IRQ_HANDLED;
2954 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2956 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2957 int ret = IRQ_HANDLED;
2959 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2960 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2962 /* Disable all interrupt */
2963 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2965 if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2966 (!oxu->is_otg && (status & OXU_USBSPHI)))
2967 oxu210_hcd_irq(hcd);
2968 else
2969 ret = IRQ_NONE;
2971 /* Enable all interrupt back */
2972 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2974 return ret;
2977 static void oxu_watchdog(struct timer_list *t)
2979 struct oxu_hcd *oxu = from_timer(oxu, t, watchdog);
2980 unsigned long flags;
2982 spin_lock_irqsave(&oxu->lock, flags);
2984 /* lost IAA irqs wedge things badly; seen with a vt8235 */
2985 if (oxu->reclaim) {
2986 u32 status = readl(&oxu->regs->status);
2987 if (status & STS_IAA) {
2988 oxu_vdbg(oxu, "lost IAA\n");
2989 writel(STS_IAA, &oxu->regs->status);
2990 oxu->reclaim_ready = 1;
2994 /* stop async processing after it's idled a bit */
2995 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2996 start_unlink_async(oxu, oxu->async);
2998 /* oxu could run by timer, without IRQs ... */
2999 ehci_work(oxu);
3001 spin_unlock_irqrestore(&oxu->lock, flags);
3004 /* One-time init, only for memory state.
3006 static int oxu_hcd_init(struct usb_hcd *hcd)
3008 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3009 u32 temp;
3010 int retval;
3011 u32 hcc_params;
3013 spin_lock_init(&oxu->lock);
3015 timer_setup(&oxu->watchdog, oxu_watchdog, 0);
3018 * hw default: 1K periodic list heads, one per frame.
3019 * periodic_size can shrink by USBCMD update if hcc_params allows.
3021 oxu->periodic_size = DEFAULT_I_TDPS;
3022 retval = ehci_mem_init(oxu, GFP_KERNEL);
3023 if (retval < 0)
3024 return retval;
3026 /* controllers may cache some of the periodic schedule ... */
3027 hcc_params = readl(&oxu->caps->hcc_params);
3028 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */
3029 oxu->i_thresh = 8;
3030 else /* N microframes cached */
3031 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
3033 oxu->reclaim = NULL;
3034 oxu->reclaim_ready = 0;
3035 oxu->next_uframe = -1;
3038 * dedicate a qh for the async ring head, since we couldn't unlink
3039 * a 'real' qh without stopping the async schedule [4.8]. use it
3040 * as the 'reclamation list head' too.
3041 * its dummy is used in hw_alt_next of many tds, to prevent the qh
3042 * from automatically advancing to the next td after short reads.
3044 oxu->async->qh_next.qh = NULL;
3045 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
3046 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
3047 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
3048 oxu->async->hw_qtd_next = EHCI_LIST_END;
3049 oxu->async->qh_state = QH_STATE_LINKED;
3050 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
3052 /* clear interrupt enables, set irq latency */
3053 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
3054 log2_irq_thresh = 0;
3055 temp = 1 << (16 + log2_irq_thresh);
3056 if (HCC_CANPARK(hcc_params)) {
3057 /* HW default park == 3, on hardware that supports it (like
3058 * NVidia and ALI silicon), maximizes throughput on the async
3059 * schedule by avoiding QH fetches between transfers.
3061 * With fast usb storage devices and NForce2, "park" seems to
3062 * make problems: throughput reduction (!), data errors...
3064 if (park) {
3065 park = min(park, (unsigned) 3);
3066 temp |= CMD_PARK;
3067 temp |= park << 8;
3069 oxu_dbg(oxu, "park %d\n", park);
3071 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
3072 /* periodic schedule size can be smaller than default */
3073 temp &= ~(3 << 2);
3074 temp |= (EHCI_TUNE_FLS << 2);
3076 oxu->command = temp;
3078 return 0;
3081 /* Called during probe() after chip reset completes.
3083 static int oxu_reset(struct usb_hcd *hcd)
3085 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3087 spin_lock_init(&oxu->mem_lock);
3088 INIT_LIST_HEAD(&oxu->urb_list);
3089 oxu->urb_len = 0;
3091 if (oxu->is_otg) {
3092 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
3093 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
3094 HC_LENGTH(readl(&oxu->caps->hc_capbase));
3096 oxu->mem = hcd->regs + OXU_SPH_MEM;
3097 } else {
3098 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
3099 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
3100 HC_LENGTH(readl(&oxu->caps->hc_capbase));
3102 oxu->mem = hcd->regs + OXU_OTG_MEM;
3105 oxu->hcs_params = readl(&oxu->caps->hcs_params);
3106 oxu->sbrn = 0x20;
3108 return oxu_hcd_init(hcd);
3111 static int oxu_run(struct usb_hcd *hcd)
3113 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3114 int retval;
3115 u32 temp, hcc_params;
3117 hcd->uses_new_polling = 1;
3119 /* EHCI spec section 4.1 */
3120 retval = ehci_reset(oxu);
3121 if (retval != 0) {
3122 ehci_mem_cleanup(oxu);
3123 return retval;
3125 writel(oxu->periodic_dma, &oxu->regs->frame_list);
3126 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3128 /* hcc_params controls whether oxu->regs->segment must (!!!)
3129 * be used; it constrains QH/ITD/SITD and QTD locations.
3130 * dma_pool consistent memory always uses segment zero.
3131 * streaming mappings for I/O buffers, like pci_map_single(),
3132 * can return segments above 4GB, if the device allows.
3134 * NOTE: the dma mask is visible through dev->dma_mask, so
3135 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
3136 * Scsi_Host.highmem_io, and so forth. It's readonly to all
3137 * host side drivers though.
3139 hcc_params = readl(&oxu->caps->hcc_params);
3140 if (HCC_64BIT_ADDR(hcc_params))
3141 writel(0, &oxu->regs->segment);
3143 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
3144 CMD_ASE | CMD_RESET);
3145 oxu->command |= CMD_RUN;
3146 writel(oxu->command, &oxu->regs->command);
3147 dbg_cmd(oxu, "init", oxu->command);
3150 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
3151 * are explicitly handed to companion controller(s), so no TT is
3152 * involved with the root hub. (Except where one is integrated,
3153 * and there's no companion controller unless maybe for USB OTG.)
3155 hcd->state = HC_STATE_RUNNING;
3156 writel(FLAG_CF, &oxu->regs->configured_flag);
3157 readl(&oxu->regs->command); /* unblock posted writes */
3159 temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
3160 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
3161 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
3162 temp >> 8, temp & 0xff, DRIVER_VERSION,
3163 ignore_oc ? ", overcurrent ignored" : "");
3165 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
3167 return 0;
3170 static void oxu_stop(struct usb_hcd *hcd)
3172 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3174 /* Turn off port power on all root hub ports. */
3175 ehci_port_power(oxu, 0);
3177 /* no more interrupts ... */
3178 del_timer_sync(&oxu->watchdog);
3180 spin_lock_irq(&oxu->lock);
3181 if (HC_IS_RUNNING(hcd->state))
3182 ehci_quiesce(oxu);
3184 ehci_reset(oxu);
3185 writel(0, &oxu->regs->intr_enable);
3186 spin_unlock_irq(&oxu->lock);
3188 /* let companion controllers work when we aren't */
3189 writel(0, &oxu->regs->configured_flag);
3191 /* root hub is shut down separately (first, when possible) */
3192 spin_lock_irq(&oxu->lock);
3193 if (oxu->async)
3194 ehci_work(oxu);
3195 spin_unlock_irq(&oxu->lock);
3196 ehci_mem_cleanup(oxu);
3198 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
3201 /* Kick in for silicon on any bus (not just pci, etc).
3202 * This forcibly disables dma and IRQs, helping kexec and other cases
3203 * where the next system software may expect clean state.
3205 static void oxu_shutdown(struct usb_hcd *hcd)
3207 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3209 (void) ehci_halt(oxu);
3210 ehci_turn_off_all_ports(oxu);
3212 /* make BIOS/etc use companion controller during reboot */
3213 writel(0, &oxu->regs->configured_flag);
3215 /* unblock posted writes */
3216 readl(&oxu->regs->configured_flag);
3219 /* Non-error returns are a promise to giveback() the urb later
3220 * we drop ownership so next owner (or urb unlink) can get it
3222 * urb + dev is in hcd.self.controller.urb_list
3223 * we're queueing TDs onto software and hardware lists
3225 * hcd-specific init for hcpriv hasn't been done yet
3227 * NOTE: control, bulk, and interrupt share the same code to append TDs
3228 * to a (possibly active) QH, and the same QH scanning code.
3230 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3231 gfp_t mem_flags)
3233 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3234 struct list_head qtd_list;
3236 INIT_LIST_HEAD(&qtd_list);
3238 switch (usb_pipetype(urb->pipe)) {
3239 case PIPE_CONTROL:
3240 case PIPE_BULK:
3241 default:
3242 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3243 return -ENOMEM;
3244 return submit_async(oxu, urb, &qtd_list, mem_flags);
3246 case PIPE_INTERRUPT:
3247 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3248 return -ENOMEM;
3249 return intr_submit(oxu, urb, &qtd_list, mem_flags);
3251 case PIPE_ISOCHRONOUS:
3252 if (urb->dev->speed == USB_SPEED_HIGH)
3253 return itd_submit(oxu, urb, mem_flags);
3254 else
3255 return sitd_submit(oxu, urb, mem_flags);
3259 /* This function is responsible for breaking URBs with big data size
3260 * into smaller size and processing small urbs in sequence.
3262 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3263 gfp_t mem_flags)
3265 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3266 int num, rem;
3267 void *transfer_buffer;
3268 struct urb *murb;
3269 int i, ret;
3271 /* If not bulk pipe just enqueue the URB */
3272 if (!usb_pipebulk(urb->pipe))
3273 return __oxu_urb_enqueue(hcd, urb, mem_flags);
3275 /* Otherwise we should verify the USB transfer buffer size! */
3276 transfer_buffer = urb->transfer_buffer;
3278 num = urb->transfer_buffer_length / 4096;
3279 rem = urb->transfer_buffer_length % 4096;
3280 if (rem != 0)
3281 num++;
3283 /* If URB is smaller than 4096 bytes just enqueue it! */
3284 if (num == 1)
3285 return __oxu_urb_enqueue(hcd, urb, mem_flags);
3287 /* Ok, we have more job to do! :) */
3289 for (i = 0; i < num - 1; i++) {
3290 /* Get free micro URB poll till a free urb is received */
3292 do {
3293 murb = (struct urb *) oxu_murb_alloc(oxu);
3294 if (!murb)
3295 schedule();
3296 } while (!murb);
3298 /* Coping the urb */
3299 memcpy(murb, urb, sizeof(struct urb));
3301 murb->transfer_buffer_length = 4096;
3302 murb->transfer_buffer = transfer_buffer + i * 4096;
3304 /* Null pointer for the encodes that this is a micro urb */
3305 murb->complete = NULL;
3307 ((struct oxu_murb *) murb)->main = urb;
3308 ((struct oxu_murb *) murb)->last = 0;
3310 /* This loop is to guarantee urb to be processed when there's
3311 * not enough resources at a particular time by retrying.
3313 do {
3314 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3315 if (ret)
3316 schedule();
3317 } while (ret);
3320 /* Last urb requires special handling */
3322 /* Get free micro URB poll till a free urb is received */
3323 do {
3324 murb = (struct urb *) oxu_murb_alloc(oxu);
3325 if (!murb)
3326 schedule();
3327 } while (!murb);
3329 /* Coping the urb */
3330 memcpy(murb, urb, sizeof(struct urb));
3332 murb->transfer_buffer_length = rem > 0 ? rem : 4096;
3333 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
3335 /* Null pointer for the encodes that this is a micro urb */
3336 murb->complete = NULL;
3338 ((struct oxu_murb *) murb)->main = urb;
3339 ((struct oxu_murb *) murb)->last = 1;
3341 do {
3342 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3343 if (ret)
3344 schedule();
3345 } while (ret);
3347 return ret;
3350 /* Remove from hardware lists.
3351 * Completions normally happen asynchronously
3353 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
3355 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3356 struct ehci_qh *qh;
3357 unsigned long flags;
3359 spin_lock_irqsave(&oxu->lock, flags);
3360 switch (usb_pipetype(urb->pipe)) {
3361 case PIPE_CONTROL:
3362 case PIPE_BULK:
3363 default:
3364 qh = (struct ehci_qh *) urb->hcpriv;
3365 if (!qh)
3366 break;
3367 unlink_async(oxu, qh);
3368 break;
3370 case PIPE_INTERRUPT:
3371 qh = (struct ehci_qh *) urb->hcpriv;
3372 if (!qh)
3373 break;
3374 switch (qh->qh_state) {
3375 case QH_STATE_LINKED:
3376 intr_deschedule(oxu, qh);
3377 /* FALL THROUGH */
3378 case QH_STATE_IDLE:
3379 qh_completions(oxu, qh);
3380 break;
3381 default:
3382 oxu_dbg(oxu, "bogus qh %p state %d\n",
3383 qh, qh->qh_state);
3384 goto done;
3387 /* reschedule QH iff another request is queued */
3388 if (!list_empty(&qh->qtd_list)
3389 && HC_IS_RUNNING(hcd->state)) {
3390 int status;
3392 status = qh_schedule(oxu, qh);
3393 spin_unlock_irqrestore(&oxu->lock, flags);
3395 if (status != 0) {
3396 /* shouldn't happen often, but ...
3397 * FIXME kill those tds' urbs
3399 dev_err(hcd->self.controller,
3400 "can't reschedule qh %p, err %d\n", qh,
3401 status);
3403 return status;
3405 break;
3407 done:
3408 spin_unlock_irqrestore(&oxu->lock, flags);
3409 return 0;
3412 /* Bulk qh holds the data toggle */
3413 static void oxu_endpoint_disable(struct usb_hcd *hcd,
3414 struct usb_host_endpoint *ep)
3416 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3417 unsigned long flags;
3418 struct ehci_qh *qh, *tmp;
3420 /* ASSERT: any requests/urbs are being unlinked */
3421 /* ASSERT: nobody can be submitting urbs for this any more */
3423 rescan:
3424 spin_lock_irqsave(&oxu->lock, flags);
3425 qh = ep->hcpriv;
3426 if (!qh)
3427 goto done;
3429 /* endpoints can be iso streams. for now, we don't
3430 * accelerate iso completions ... so spin a while.
3432 if (qh->hw_info1 == 0) {
3433 oxu_vdbg(oxu, "iso delay\n");
3434 goto idle_timeout;
3437 if (!HC_IS_RUNNING(hcd->state))
3438 qh->qh_state = QH_STATE_IDLE;
3439 switch (qh->qh_state) {
3440 case QH_STATE_LINKED:
3441 for (tmp = oxu->async->qh_next.qh;
3442 tmp && tmp != qh;
3443 tmp = tmp->qh_next.qh)
3444 continue;
3445 /* periodic qh self-unlinks on empty */
3446 if (!tmp)
3447 goto nogood;
3448 unlink_async(oxu, qh);
3449 /* FALL THROUGH */
3450 case QH_STATE_UNLINK: /* wait for hw to finish? */
3451 idle_timeout:
3452 spin_unlock_irqrestore(&oxu->lock, flags);
3453 schedule_timeout_uninterruptible(1);
3454 goto rescan;
3455 case QH_STATE_IDLE: /* fully unlinked */
3456 if (list_empty(&qh->qtd_list)) {
3457 qh_put(qh);
3458 break;
3460 /* fall through */
3461 default:
3462 nogood:
3463 /* caller was supposed to have unlinked any requests;
3464 * that's not our job. just leak this memory.
3466 oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3467 qh, ep->desc.bEndpointAddress, qh->qh_state,
3468 list_empty(&qh->qtd_list) ? "" : "(has tds)");
3469 break;
3471 ep->hcpriv = NULL;
3472 done:
3473 spin_unlock_irqrestore(&oxu->lock, flags);
3476 static int oxu_get_frame(struct usb_hcd *hcd)
3478 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3480 return (readl(&oxu->regs->frame_index) >> 3) %
3481 oxu->periodic_size;
3484 /* Build "status change" packet (one or two bytes) from HC registers */
3485 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3487 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3488 u32 temp, mask, status = 0;
3489 int ports, i, retval = 1;
3490 unsigned long flags;
3492 /* if !PM, root hub timers won't get shut down ... */
3493 if (!HC_IS_RUNNING(hcd->state))
3494 return 0;
3496 /* init status to no-changes */
3497 buf[0] = 0;
3498 ports = HCS_N_PORTS(oxu->hcs_params);
3499 if (ports > 7) {
3500 buf[1] = 0;
3501 retval++;
3504 /* Some boards (mostly VIA?) report bogus overcurrent indications,
3505 * causing massive log spam unless we completely ignore them. It
3506 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3507 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3508 * PORT_POWER; that's surprising, but maybe within-spec.
3510 if (!ignore_oc)
3511 mask = PORT_CSC | PORT_PEC | PORT_OCC;
3512 else
3513 mask = PORT_CSC | PORT_PEC;
3515 /* no hub change reports (bit 0) for now (power, ...) */
3517 /* port N changes (bit N)? */
3518 spin_lock_irqsave(&oxu->lock, flags);
3519 for (i = 0; i < ports; i++) {
3520 temp = readl(&oxu->regs->port_status[i]);
3523 * Return status information even for ports with OWNER set.
3524 * Otherwise hub_wq wouldn't see the disconnect event when a
3525 * high-speed device is switched over to the companion
3526 * controller by the user.
3529 if (!(temp & PORT_CONNECT))
3530 oxu->reset_done[i] = 0;
3531 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3532 time_after_eq(jiffies, oxu->reset_done[i]))) {
3533 if (i < 7)
3534 buf[0] |= 1 << (i + 1);
3535 else
3536 buf[1] |= 1 << (i - 7);
3537 status = STS_PCD;
3540 /* FIXME autosuspend idle root hubs */
3541 spin_unlock_irqrestore(&oxu->lock, flags);
3542 return status ? retval : 0;
3545 /* Returns the speed of a device attached to a port on the root hub. */
3546 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3547 unsigned int portsc)
3549 switch ((portsc >> 26) & 3) {
3550 case 0:
3551 return 0;
3552 case 1:
3553 return USB_PORT_STAT_LOW_SPEED;
3554 case 2:
3555 default:
3556 return USB_PORT_STAT_HIGH_SPEED;
3560 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3561 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3562 u16 wValue, u16 wIndex, char *buf, u16 wLength)
3564 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3565 int ports = HCS_N_PORTS(oxu->hcs_params);
3566 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3567 u32 temp, status;
3568 unsigned long flags;
3569 int retval = 0;
3570 unsigned selector;
3573 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3574 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3575 * (track current state ourselves) ... blink for diagnostics,
3576 * power, "this is the one", etc. EHCI spec supports this.
3579 spin_lock_irqsave(&oxu->lock, flags);
3580 switch (typeReq) {
3581 case ClearHubFeature:
3582 switch (wValue) {
3583 case C_HUB_LOCAL_POWER:
3584 case C_HUB_OVER_CURRENT:
3585 /* no hub-wide feature/status flags */
3586 break;
3587 default:
3588 goto error;
3590 break;
3591 case ClearPortFeature:
3592 if (!wIndex || wIndex > ports)
3593 goto error;
3594 wIndex--;
3595 temp = readl(status_reg);
3598 * Even if OWNER is set, so the port is owned by the
3599 * companion controller, hub_wq needs to be able to clear
3600 * the port-change status bits (especially
3601 * USB_PORT_STAT_C_CONNECTION).
3604 switch (wValue) {
3605 case USB_PORT_FEAT_ENABLE:
3606 writel(temp & ~PORT_PE, status_reg);
3607 break;
3608 case USB_PORT_FEAT_C_ENABLE:
3609 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3610 break;
3611 case USB_PORT_FEAT_SUSPEND:
3612 if (temp & PORT_RESET)
3613 goto error;
3614 if (temp & PORT_SUSPEND) {
3615 if ((temp & PORT_PE) == 0)
3616 goto error;
3617 /* resume signaling for 20 msec */
3618 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3619 writel(temp | PORT_RESUME, status_reg);
3620 oxu->reset_done[wIndex] = jiffies
3621 + msecs_to_jiffies(20);
3623 break;
3624 case USB_PORT_FEAT_C_SUSPEND:
3625 /* we auto-clear this feature */
3626 break;
3627 case USB_PORT_FEAT_POWER:
3628 if (HCS_PPC(oxu->hcs_params))
3629 writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3630 status_reg);
3631 break;
3632 case USB_PORT_FEAT_C_CONNECTION:
3633 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3634 break;
3635 case USB_PORT_FEAT_C_OVER_CURRENT:
3636 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3637 break;
3638 case USB_PORT_FEAT_C_RESET:
3639 /* GetPortStatus clears reset */
3640 break;
3641 default:
3642 goto error;
3644 readl(&oxu->regs->command); /* unblock posted write */
3645 break;
3646 case GetHubDescriptor:
3647 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3648 buf);
3649 break;
3650 case GetHubStatus:
3651 /* no hub-wide feature/status flags */
3652 memset(buf, 0, 4);
3653 break;
3654 case GetPortStatus:
3655 if (!wIndex || wIndex > ports)
3656 goto error;
3657 wIndex--;
3658 status = 0;
3659 temp = readl(status_reg);
3661 /* wPortChange bits */
3662 if (temp & PORT_CSC)
3663 status |= USB_PORT_STAT_C_CONNECTION << 16;
3664 if (temp & PORT_PEC)
3665 status |= USB_PORT_STAT_C_ENABLE << 16;
3666 if ((temp & PORT_OCC) && !ignore_oc)
3667 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3669 /* whoever resumes must GetPortStatus to complete it!! */
3670 if (temp & PORT_RESUME) {
3672 /* Remote Wakeup received? */
3673 if (!oxu->reset_done[wIndex]) {
3674 /* resume signaling for 20 msec */
3675 oxu->reset_done[wIndex] = jiffies
3676 + msecs_to_jiffies(20);
3677 /* check the port again */
3678 mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3679 oxu->reset_done[wIndex]);
3682 /* resume completed? */
3683 else if (time_after_eq(jiffies,
3684 oxu->reset_done[wIndex])) {
3685 status |= USB_PORT_STAT_C_SUSPEND << 16;
3686 oxu->reset_done[wIndex] = 0;
3688 /* stop resume signaling */
3689 temp = readl(status_reg);
3690 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3691 status_reg);
3692 retval = handshake(oxu, status_reg,
3693 PORT_RESUME, 0, 2000 /* 2msec */);
3694 if (retval != 0) {
3695 oxu_err(oxu,
3696 "port %d resume error %d\n",
3697 wIndex + 1, retval);
3698 goto error;
3700 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3704 /* whoever resets must GetPortStatus to complete it!! */
3705 if ((temp & PORT_RESET)
3706 && time_after_eq(jiffies,
3707 oxu->reset_done[wIndex])) {
3708 status |= USB_PORT_STAT_C_RESET << 16;
3709 oxu->reset_done[wIndex] = 0;
3711 /* force reset to complete */
3712 writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3713 status_reg);
3714 /* REVISIT: some hardware needs 550+ usec to clear
3715 * this bit; seems too long to spin routinely...
3717 retval = handshake(oxu, status_reg,
3718 PORT_RESET, 0, 750);
3719 if (retval != 0) {
3720 oxu_err(oxu, "port %d reset error %d\n",
3721 wIndex + 1, retval);
3722 goto error;
3725 /* see what we found out */
3726 temp = check_reset_complete(oxu, wIndex, status_reg,
3727 readl(status_reg));
3730 /* transfer dedicated ports to the companion hc */
3731 if ((temp & PORT_CONNECT) &&
3732 test_bit(wIndex, &oxu->companion_ports)) {
3733 temp &= ~PORT_RWC_BITS;
3734 temp |= PORT_OWNER;
3735 writel(temp, status_reg);
3736 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3737 temp = readl(status_reg);
3741 * Even if OWNER is set, there's no harm letting hub_wq
3742 * see the wPortStatus values (they should all be 0 except
3743 * for PORT_POWER anyway).
3746 if (temp & PORT_CONNECT) {
3747 status |= USB_PORT_STAT_CONNECTION;
3748 /* status may be from integrated TT */
3749 status |= oxu_port_speed(oxu, temp);
3751 if (temp & PORT_PE)
3752 status |= USB_PORT_STAT_ENABLE;
3753 if (temp & (PORT_SUSPEND|PORT_RESUME))
3754 status |= USB_PORT_STAT_SUSPEND;
3755 if (temp & PORT_OC)
3756 status |= USB_PORT_STAT_OVERCURRENT;
3757 if (temp & PORT_RESET)
3758 status |= USB_PORT_STAT_RESET;
3759 if (temp & PORT_POWER)
3760 status |= USB_PORT_STAT_POWER;
3762 #ifndef OXU_VERBOSE_DEBUG
3763 if (status & ~0xffff) /* only if wPortChange is interesting */
3764 #endif
3765 dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3766 put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3767 break;
3768 case SetHubFeature:
3769 switch (wValue) {
3770 case C_HUB_LOCAL_POWER:
3771 case C_HUB_OVER_CURRENT:
3772 /* no hub-wide feature/status flags */
3773 break;
3774 default:
3775 goto error;
3777 break;
3778 case SetPortFeature:
3779 selector = wIndex >> 8;
3780 wIndex &= 0xff;
3781 if (!wIndex || wIndex > ports)
3782 goto error;
3783 wIndex--;
3784 temp = readl(status_reg);
3785 if (temp & PORT_OWNER)
3786 break;
3788 temp &= ~PORT_RWC_BITS;
3789 switch (wValue) {
3790 case USB_PORT_FEAT_SUSPEND:
3791 if ((temp & PORT_PE) == 0
3792 || (temp & PORT_RESET) != 0)
3793 goto error;
3794 if (device_may_wakeup(&hcd->self.root_hub->dev))
3795 temp |= PORT_WAKE_BITS;
3796 writel(temp | PORT_SUSPEND, status_reg);
3797 break;
3798 case USB_PORT_FEAT_POWER:
3799 if (HCS_PPC(oxu->hcs_params))
3800 writel(temp | PORT_POWER, status_reg);
3801 break;
3802 case USB_PORT_FEAT_RESET:
3803 if (temp & PORT_RESUME)
3804 goto error;
3805 /* line status bits may report this as low speed,
3806 * which can be fine if this root hub has a
3807 * transaction translator built in.
3809 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3810 temp |= PORT_RESET;
3811 temp &= ~PORT_PE;
3814 * caller must wait, then call GetPortStatus
3815 * usb 2.0 spec says 50 ms resets on root
3817 oxu->reset_done[wIndex] = jiffies
3818 + msecs_to_jiffies(50);
3819 writel(temp, status_reg);
3820 break;
3822 /* For downstream facing ports (these): one hub port is put
3823 * into test mode according to USB2 11.24.2.13, then the hub
3824 * must be reset (which for root hub now means rmmod+modprobe,
3825 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
3826 * about the EHCI-specific stuff.
3828 case USB_PORT_FEAT_TEST:
3829 if (!selector || selector > 5)
3830 goto error;
3831 ehci_quiesce(oxu);
3832 ehci_halt(oxu);
3833 temp |= selector << 16;
3834 writel(temp, status_reg);
3835 break;
3837 default:
3838 goto error;
3840 readl(&oxu->regs->command); /* unblock posted writes */
3841 break;
3843 default:
3844 error:
3845 /* "stall" on error */
3846 retval = -EPIPE;
3848 spin_unlock_irqrestore(&oxu->lock, flags);
3849 return retval;
3852 #ifdef CONFIG_PM
3854 static int oxu_bus_suspend(struct usb_hcd *hcd)
3856 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3857 int port;
3858 int mask;
3860 oxu_dbg(oxu, "suspend root hub\n");
3862 if (time_before(jiffies, oxu->next_statechange))
3863 msleep(5);
3865 port = HCS_N_PORTS(oxu->hcs_params);
3866 spin_lock_irq(&oxu->lock);
3868 /* stop schedules, clean any completed work */
3869 if (HC_IS_RUNNING(hcd->state)) {
3870 ehci_quiesce(oxu);
3871 hcd->state = HC_STATE_QUIESCING;
3873 oxu->command = readl(&oxu->regs->command);
3874 if (oxu->reclaim)
3875 oxu->reclaim_ready = 1;
3876 ehci_work(oxu);
3878 /* Unlike other USB host controller types, EHCI doesn't have
3879 * any notion of "global" or bus-wide suspend. The driver has
3880 * to manually suspend all the active unsuspended ports, and
3881 * then manually resume them in the bus_resume() routine.
3883 oxu->bus_suspended = 0;
3884 while (port--) {
3885 u32 __iomem *reg = &oxu->regs->port_status[port];
3886 u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3887 u32 t2 = t1;
3889 /* keep track of which ports we suspend */
3890 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3891 !(t1 & PORT_SUSPEND)) {
3892 t2 |= PORT_SUSPEND;
3893 set_bit(port, &oxu->bus_suspended);
3896 /* enable remote wakeup on all ports */
3897 if (device_may_wakeup(&hcd->self.root_hub->dev))
3898 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3899 else
3900 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3902 if (t1 != t2) {
3903 oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3904 port + 1, t1, t2);
3905 writel(t2, reg);
3909 /* turn off now-idle HC */
3910 del_timer_sync(&oxu->watchdog);
3911 ehci_halt(oxu);
3912 hcd->state = HC_STATE_SUSPENDED;
3914 /* allow remote wakeup */
3915 mask = INTR_MASK;
3916 if (!device_may_wakeup(&hcd->self.root_hub->dev))
3917 mask &= ~STS_PCD;
3918 writel(mask, &oxu->regs->intr_enable);
3919 readl(&oxu->regs->intr_enable);
3921 oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3922 spin_unlock_irq(&oxu->lock);
3923 return 0;
3926 /* Caller has locked the root hub, and should reset/reinit on error */
3927 static int oxu_bus_resume(struct usb_hcd *hcd)
3929 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3930 u32 temp;
3931 int i;
3933 if (time_before(jiffies, oxu->next_statechange))
3934 msleep(5);
3935 spin_lock_irq(&oxu->lock);
3937 /* Ideally and we've got a real resume here, and no port's power
3938 * was lost. (For PCI, that means Vaux was maintained.) But we
3939 * could instead be restoring a swsusp snapshot -- so that BIOS was
3940 * the last user of the controller, not reset/pm hardware keeping
3941 * state we gave to it.
3943 temp = readl(&oxu->regs->intr_enable);
3944 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3946 /* at least some APM implementations will try to deliver
3947 * IRQs right away, so delay them until we're ready.
3949 writel(0, &oxu->regs->intr_enable);
3951 /* re-init operational registers */
3952 writel(0, &oxu->regs->segment);
3953 writel(oxu->periodic_dma, &oxu->regs->frame_list);
3954 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3956 /* restore CMD_RUN, framelist size, and irq threshold */
3957 writel(oxu->command, &oxu->regs->command);
3959 /* Some controller/firmware combinations need a delay during which
3960 * they set up the port statuses. See Bugzilla #8190. */
3961 mdelay(8);
3963 /* manually resume the ports we suspended during bus_suspend() */
3964 i = HCS_N_PORTS(oxu->hcs_params);
3965 while (i--) {
3966 temp = readl(&oxu->regs->port_status[i]);
3967 temp &= ~(PORT_RWC_BITS
3968 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3969 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3970 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3971 temp |= PORT_RESUME;
3973 writel(temp, &oxu->regs->port_status[i]);
3975 i = HCS_N_PORTS(oxu->hcs_params);
3976 mdelay(20);
3977 while (i--) {
3978 temp = readl(&oxu->regs->port_status[i]);
3979 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3980 temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3981 writel(temp, &oxu->regs->port_status[i]);
3982 oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3985 (void) readl(&oxu->regs->command);
3987 /* maybe re-activate the schedule(s) */
3988 temp = 0;
3989 if (oxu->async->qh_next.qh)
3990 temp |= CMD_ASE;
3991 if (oxu->periodic_sched)
3992 temp |= CMD_PSE;
3993 if (temp) {
3994 oxu->command |= temp;
3995 writel(oxu->command, &oxu->regs->command);
3998 oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3999 hcd->state = HC_STATE_RUNNING;
4001 /* Now we can safely re-enable irqs */
4002 writel(INTR_MASK, &oxu->regs->intr_enable);
4004 spin_unlock_irq(&oxu->lock);
4005 return 0;
4008 #else
4010 static int oxu_bus_suspend(struct usb_hcd *hcd)
4012 return 0;
4015 static int oxu_bus_resume(struct usb_hcd *hcd)
4017 return 0;
4020 #endif /* CONFIG_PM */
4022 static const struct hc_driver oxu_hc_driver = {
4023 .description = "oxu210hp_hcd",
4024 .product_desc = "oxu210hp HCD",
4025 .hcd_priv_size = sizeof(struct oxu_hcd),
4028 * Generic hardware linkage
4030 .irq = oxu_irq,
4031 .flags = HCD_MEMORY | HCD_USB2,
4034 * Basic lifecycle operations
4036 .reset = oxu_reset,
4037 .start = oxu_run,
4038 .stop = oxu_stop,
4039 .shutdown = oxu_shutdown,
4042 * Managing i/o requests and associated device resources
4044 .urb_enqueue = oxu_urb_enqueue,
4045 .urb_dequeue = oxu_urb_dequeue,
4046 .endpoint_disable = oxu_endpoint_disable,
4049 * Scheduling support
4051 .get_frame_number = oxu_get_frame,
4054 * Root hub support
4056 .hub_status_data = oxu_hub_status_data,
4057 .hub_control = oxu_hub_control,
4058 .bus_suspend = oxu_bus_suspend,
4059 .bus_resume = oxu_bus_resume,
4063 * Module stuff
4066 static void oxu_configuration(struct platform_device *pdev, void *base)
4068 u32 tmp;
4070 /* Initialize top level registers.
4071 * First write ever
4073 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4074 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
4075 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4077 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
4078 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
4080 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
4081 OXU_COMPARATOR | OXU_ASO_OP);
4083 tmp = oxu_readl(base, OXU_CLKCTRL_SET);
4084 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
4086 /* Clear all top interrupt enable */
4087 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
4089 /* Clear all top interrupt status */
4090 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
4092 /* Enable all needed top interrupt except OTG SPH core */
4093 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
4096 static int oxu_verify_id(struct platform_device *pdev, void *base)
4098 u32 id;
4099 static const char * const bo[] = {
4100 "reserved",
4101 "128-pin LQFP",
4102 "84-pin TFBGA",
4103 "reserved",
4106 /* Read controller signature register to find a match */
4107 id = oxu_readl(base, OXU_DEVICEID);
4108 dev_info(&pdev->dev, "device ID %x\n", id);
4109 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
4110 return -1;
4112 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
4113 id >> OXU_REV_SHIFT,
4114 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
4115 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
4116 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
4118 return 0;
4121 static const struct hc_driver oxu_hc_driver;
4122 static struct usb_hcd *oxu_create(struct platform_device *pdev,
4123 unsigned long memstart, unsigned long memlen,
4124 void *base, int irq, int otg)
4126 struct device *dev = &pdev->dev;
4128 struct usb_hcd *hcd;
4129 struct oxu_hcd *oxu;
4130 int ret;
4132 /* Set endian mode and host mode */
4133 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
4134 OXU_USBMODE,
4135 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
4137 hcd = usb_create_hcd(&oxu_hc_driver, dev,
4138 otg ? "oxu210hp_otg" : "oxu210hp_sph");
4139 if (!hcd)
4140 return ERR_PTR(-ENOMEM);
4142 hcd->rsrc_start = memstart;
4143 hcd->rsrc_len = memlen;
4144 hcd->regs = base;
4145 hcd->irq = irq;
4146 hcd->state = HC_STATE_HALT;
4148 oxu = hcd_to_oxu(hcd);
4149 oxu->is_otg = otg;
4151 ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
4152 if (ret < 0)
4153 return ERR_PTR(ret);
4155 device_wakeup_enable(hcd->self.controller);
4156 return hcd;
4159 static int oxu_init(struct platform_device *pdev,
4160 unsigned long memstart, unsigned long memlen,
4161 void *base, int irq)
4163 struct oxu_info *info = platform_get_drvdata(pdev);
4164 struct usb_hcd *hcd;
4165 int ret;
4167 /* First time configuration at start up */
4168 oxu_configuration(pdev, base);
4170 ret = oxu_verify_id(pdev, base);
4171 if (ret) {
4172 dev_err(&pdev->dev, "no devices found!\n");
4173 return -ENODEV;
4176 /* Create the OTG controller */
4177 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
4178 if (IS_ERR(hcd)) {
4179 dev_err(&pdev->dev, "cannot create OTG controller!\n");
4180 ret = PTR_ERR(hcd);
4181 goto error_create_otg;
4183 info->hcd[0] = hcd;
4185 /* Create the SPH host controller */
4186 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
4187 if (IS_ERR(hcd)) {
4188 dev_err(&pdev->dev, "cannot create SPH controller!\n");
4189 ret = PTR_ERR(hcd);
4190 goto error_create_sph;
4192 info->hcd[1] = hcd;
4194 oxu_writel(base, OXU_CHIPIRQEN_SET,
4195 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
4197 return 0;
4199 error_create_sph:
4200 usb_remove_hcd(info->hcd[0]);
4201 usb_put_hcd(info->hcd[0]);
4203 error_create_otg:
4204 return ret;
4207 static int oxu_drv_probe(struct platform_device *pdev)
4209 struct resource *res;
4210 void *base;
4211 unsigned long memstart, memlen;
4212 int irq, ret;
4213 struct oxu_info *info;
4215 if (usb_disabled())
4216 return -ENODEV;
4219 * Get the platform resources
4221 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
4222 if (!res) {
4223 dev_err(&pdev->dev,
4224 "no IRQ! Check %s setup!\n", dev_name(&pdev->dev));
4225 return -ENODEV;
4227 irq = res->start;
4228 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
4230 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4231 base = devm_ioremap_resource(&pdev->dev, res);
4232 if (IS_ERR(base)) {
4233 ret = PTR_ERR(base);
4234 goto error;
4236 memstart = res->start;
4237 memlen = resource_size(res);
4239 ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
4240 if (ret) {
4241 dev_err(&pdev->dev, "error setting irq type\n");
4242 ret = -EFAULT;
4243 goto error;
4246 /* Allocate a driver data struct to hold useful info for both
4247 * SPH & OTG devices
4249 info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
4250 if (!info) {
4251 ret = -EFAULT;
4252 goto error;
4254 platform_set_drvdata(pdev, info);
4256 ret = oxu_init(pdev, memstart, memlen, base, irq);
4257 if (ret < 0) {
4258 dev_dbg(&pdev->dev, "cannot init USB devices\n");
4259 goto error;
4262 dev_info(&pdev->dev, "devices enabled and running\n");
4263 platform_set_drvdata(pdev, info);
4265 return 0;
4267 error:
4268 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
4269 return ret;
4272 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
4274 usb_remove_hcd(hcd);
4275 usb_put_hcd(hcd);
4278 static int oxu_drv_remove(struct platform_device *pdev)
4280 struct oxu_info *info = platform_get_drvdata(pdev);
4282 oxu_remove(pdev, info->hcd[0]);
4283 oxu_remove(pdev, info->hcd[1]);
4285 return 0;
4288 static void oxu_drv_shutdown(struct platform_device *pdev)
4290 oxu_drv_remove(pdev);
4293 #if 0
4294 /* FIXME: TODO */
4295 static int oxu_drv_suspend(struct device *dev)
4297 struct platform_device *pdev = to_platform_device(dev);
4298 struct usb_hcd *hcd = dev_get_drvdata(dev);
4300 return 0;
4303 static int oxu_drv_resume(struct device *dev)
4305 struct platform_device *pdev = to_platform_device(dev);
4306 struct usb_hcd *hcd = dev_get_drvdata(dev);
4308 return 0;
4310 #else
4311 #define oxu_drv_suspend NULL
4312 #define oxu_drv_resume NULL
4313 #endif
4315 static struct platform_driver oxu_driver = {
4316 .probe = oxu_drv_probe,
4317 .remove = oxu_drv_remove,
4318 .shutdown = oxu_drv_shutdown,
4319 .suspend = oxu_drv_suspend,
4320 .resume = oxu_drv_resume,
4321 .driver = {
4322 .name = "oxu210hp-hcd",
4323 .bus = &platform_bus_type
4327 module_platform_driver(oxu_driver);
4329 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
4330 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
4331 MODULE_LICENSE("GPL");