1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
4 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
6 * This code is *strongly* based on EHCI-HCD code by David Brownell since
7 * the chip is a quasi-EHCI compatible.
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/dmapool.h>
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/ioport.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/timer.h>
20 #include <linux/list.h>
21 #include <linux/interrupt.h>
22 #include <linux/usb.h>
23 #include <linux/usb/hcd.h>
24 #include <linux/moduleparam.h>
25 #include <linux/dma-mapping.h>
29 #include <asm/unaligned.h>
31 #include <linux/irq.h>
32 #include <linux/platform_device.h>
34 #define DRIVER_VERSION "0.0.50"
36 #define OXU_DEVICEID 0x00
37 #define OXU_REV_MASK 0xffff0000
38 #define OXU_REV_SHIFT 16
39 #define OXU_REV_2100 0x2100
40 #define OXU_BO_SHIFT 8
41 #define OXU_BO_MASK (0x3 << OXU_BO_SHIFT)
42 #define OXU_MAJ_REV_SHIFT 4
43 #define OXU_MAJ_REV_MASK (0xf << OXU_MAJ_REV_SHIFT)
44 #define OXU_MIN_REV_SHIFT 0
45 #define OXU_MIN_REV_MASK (0xf << OXU_MIN_REV_SHIFT)
46 #define OXU_HOSTIFCONFIG 0x04
47 #define OXU_SOFTRESET 0x08
48 #define OXU_SRESET (1 << 0)
50 #define OXU_PIOBURSTREADCTRL 0x0C
52 #define OXU_CHIPIRQSTATUS 0x10
53 #define OXU_CHIPIRQEN_SET 0x14
54 #define OXU_CHIPIRQEN_CLR 0x18
55 #define OXU_USBSPHLPWUI 0x00000080
56 #define OXU_USBOTGLPWUI 0x00000040
57 #define OXU_USBSPHI 0x00000002
58 #define OXU_USBOTGI 0x00000001
60 #define OXU_CLKCTRL_SET 0x1C
61 #define OXU_SYSCLKEN 0x00000008
62 #define OXU_USBSPHCLKEN 0x00000002
63 #define OXU_USBOTGCLKEN 0x00000001
66 #define OXU_SPHPOEN 0x00000100
67 #define OXU_OVRCCURPUPDEN 0x00000800
68 #define OXU_ASO_OP (1 << 10)
69 #define OXU_COMPARATOR 0x000004000
71 #define OXU_USBMODE 0x1A8
72 #define OXU_VBPS 0x00000020
73 #define OXU_ES_LITTLE 0x00000000
74 #define OXU_CM_HOST_ONLY 0x00000003
77 * Proper EHCI structs & defines
80 /* Magic numbers that can affect system performance */
81 #define EHCI_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
82 #define EHCI_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
83 #define EHCI_TUNE_RL_TT 0
84 #define EHCI_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
85 #define EHCI_TUNE_MULT_TT 1
86 #define EHCI_TUNE_FLS 2 /* (small) 256 frame schedule */
90 /* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
92 /* Section 2.2 Host Controller Capability Registers */
94 /* these fields are specified as 8 and 16 bit registers,
95 * but some hosts can't perform 8 or 16 bit PCI accesses.
98 #define HC_LENGTH(p) (((p)>>00)&0x00ff) /* bits 7:0 */
99 #define HC_VERSION(p) (((p)>>16)&0xffff) /* bits 31:16 */
100 u32 hcs_params
; /* HCSPARAMS - offset 0x4 */
101 #define HCS_DEBUG_PORT(p) (((p)>>20)&0xf) /* bits 23:20, debug port? */
102 #define HCS_INDICATOR(p) ((p)&(1 << 16)) /* true: has port indicators */
103 #define HCS_N_CC(p) (((p)>>12)&0xf) /* bits 15:12, #companion HCs */
104 #define HCS_N_PCC(p) (((p)>>8)&0xf) /* bits 11:8, ports per CC */
105 #define HCS_PORTROUTED(p) ((p)&(1 << 7)) /* true: port routing */
106 #define HCS_PPC(p) ((p)&(1 << 4)) /* true: port power control */
107 #define HCS_N_PORTS(p) (((p)>>0)&0xf) /* bits 3:0, ports on HC */
109 u32 hcc_params
; /* HCCPARAMS - offset 0x8 */
110 #define HCC_EXT_CAPS(p) (((p)>>8)&0xff) /* for pci extended caps */
111 #define HCC_ISOC_CACHE(p) ((p)&(1 << 7)) /* true: can cache isoc frame */
112 #define HCC_ISOC_THRES(p) (((p)>>4)&0x7) /* bits 6:4, uframes cached */
113 #define HCC_CANPARK(p) ((p)&(1 << 2)) /* true: can park on async qh */
114 #define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1)) /* true: periodic_size changes*/
115 #define HCC_64BIT_ADDR(p) ((p)&(1)) /* true: can use 64-bit addr */
116 u8 portroute
[8]; /* nibbles for routing - offset 0xC */
120 /* Section 2.3 Host Controller Operational Registers */
122 /* USBCMD: offset 0x00 */
124 /* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
125 #define CMD_PARK (1<<11) /* enable "park" on async qh */
126 #define CMD_PARK_CNT(c) (((c)>>8)&3) /* how many transfers to park for */
127 #define CMD_LRESET (1<<7) /* partial reset (no ports, etc) */
128 #define CMD_IAAD (1<<6) /* "doorbell" interrupt async advance */
129 #define CMD_ASE (1<<5) /* async schedule enable */
130 #define CMD_PSE (1<<4) /* periodic schedule enable */
131 /* 3:2 is periodic frame list size */
132 #define CMD_RESET (1<<1) /* reset HC not bus */
133 #define CMD_RUN (1<<0) /* start/stop HC */
135 /* USBSTS: offset 0x04 */
137 #define STS_ASS (1<<15) /* Async Schedule Status */
138 #define STS_PSS (1<<14) /* Periodic Schedule Status */
139 #define STS_RECL (1<<13) /* Reclamation */
140 #define STS_HALT (1<<12) /* Not running (any reason) */
141 /* some bits reserved */
142 /* these STS_* flags are also intr_enable bits (USBINTR) */
143 #define STS_IAA (1<<5) /* Interrupted on async advance */
144 #define STS_FATAL (1<<4) /* such as some PCI access errors */
145 #define STS_FLR (1<<3) /* frame list rolled over */
146 #define STS_PCD (1<<2) /* port change detect */
147 #define STS_ERR (1<<1) /* "error" completion (overflow, ...) */
148 #define STS_INT (1<<0) /* "normal" completion (short, ...) */
150 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
152 /* USBINTR: offset 0x08 */
155 /* FRINDEX: offset 0x0C */
156 u32 frame_index
; /* current microframe number */
157 /* CTRLDSSEGMENT: offset 0x10 */
158 u32 segment
; /* address bits 63:32 if needed */
159 /* PERIODICLISTBASE: offset 0x14 */
160 u32 frame_list
; /* points to periodic list */
161 /* ASYNCLISTADDR: offset 0x18 */
162 u32 async_next
; /* address of next async queue head */
166 /* CONFIGFLAG: offset 0x40 */
168 #define FLAG_CF (1<<0) /* true: we'll support "high speed" */
170 /* PORTSC: offset 0x44 */
171 u32 port_status
[0]; /* up to N_PORTS */
173 #define PORT_WKOC_E (1<<22) /* wake on overcurrent (enable) */
174 #define PORT_WKDISC_E (1<<21) /* wake on disconnect (enable) */
175 #define PORT_WKCONN_E (1<<20) /* wake on connect (enable) */
176 /* 19:16 for port testing */
177 #define PORT_LED_OFF (0<<14)
178 #define PORT_LED_AMBER (1<<14)
179 #define PORT_LED_GREEN (2<<14)
180 #define PORT_LED_MASK (3<<14)
181 #define PORT_OWNER (1<<13) /* true: companion hc owns this port */
182 #define PORT_POWER (1<<12) /* true: has power (see PPC) */
183 #define PORT_USB11(x) (((x)&(3<<10)) == (1<<10)) /* USB 1.1 device */
184 /* 11:10 for detecting lowspeed devices (reset vs release ownership) */
186 #define PORT_RESET (1<<8) /* reset port */
187 #define PORT_SUSPEND (1<<7) /* suspend port */
188 #define PORT_RESUME (1<<6) /* resume it */
189 #define PORT_OCC (1<<5) /* over current change */
190 #define PORT_OC (1<<4) /* over current active */
191 #define PORT_PEC (1<<3) /* port enable change */
192 #define PORT_PE (1<<2) /* port enable */
193 #define PORT_CSC (1<<1) /* connect status change */
194 #define PORT_CONNECT (1<<0) /* device connected */
195 #define PORT_RWC_BITS (PORT_CSC | PORT_PEC | PORT_OCC)
198 /* Appendix C, Debug port ... intended for use with special "debug devices"
199 * that can help if there's no serial console. (nonstandard enumeration.)
201 struct ehci_dbg_port
{
203 #define DBGP_OWNER (1<<30)
204 #define DBGP_ENABLED (1<<28)
205 #define DBGP_DONE (1<<16)
206 #define DBGP_INUSE (1<<10)
207 #define DBGP_ERRCODE(x) (((x)>>7)&0x07)
208 # define DBGP_ERR_BAD 1
209 # define DBGP_ERR_SIGNAL 2
210 #define DBGP_ERROR (1<<6)
211 #define DBGP_GO (1<<5)
212 #define DBGP_OUT (1<<4)
213 #define DBGP_LEN(x) (((x)>>0)&0x0f)
215 #define DBGP_PID_GET(x) (((x)>>16)&0xff)
216 #define DBGP_PID_SET(data, tok) (((data)<<8)|(tok))
220 #define DBGP_EPADDR(dev, ep) (((dev)<<8)|(ep))
223 #define QTD_NEXT(dma) cpu_to_le32((u32)dma)
226 * EHCI Specification 0.95 Section 3.5
227 * QTD: describe data transfer components (buffer, direction, ...)
228 * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
230 * These are associated only with "QH" (Queue Head) structures,
231 * used with control, bulk, and interrupt transfers.
234 /* first part defined by EHCI spec */
235 __le32 hw_next
; /* see EHCI 3.5.1 */
236 __le32 hw_alt_next
; /* see EHCI 3.5.2 */
237 __le32 hw_token
; /* see EHCI 3.5.3 */
238 #define QTD_TOGGLE (1 << 31) /* data toggle */
239 #define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff)
240 #define QTD_IOC (1 << 15) /* interrupt on complete */
241 #define QTD_CERR(tok) (((tok)>>10) & 0x3)
242 #define QTD_PID(tok) (((tok)>>8) & 0x3)
243 #define QTD_STS_ACTIVE (1 << 7) /* HC may execute this */
244 #define QTD_STS_HALT (1 << 6) /* halted on error */
245 #define QTD_STS_DBE (1 << 5) /* data buffer error (in HC) */
246 #define QTD_STS_BABBLE (1 << 4) /* device was babbling (qtd halted) */
247 #define QTD_STS_XACT (1 << 3) /* device gave illegal response */
248 #define QTD_STS_MMF (1 << 2) /* incomplete split transaction */
249 #define QTD_STS_STS (1 << 1) /* split transaction state */
250 #define QTD_STS_PING (1 << 0) /* issue PING? */
251 __le32 hw_buf
[5]; /* see EHCI 3.5.4 */
252 __le32 hw_buf_hi
[5]; /* Appendix B */
254 /* the rest is HCD-private */
255 dma_addr_t qtd_dma
; /* qtd address */
256 struct list_head qtd_list
; /* sw qtd list */
257 struct urb
*urb
; /* qtd's urb */
258 size_t length
; /* length of buffer */
262 dma_addr_t buffer_dma
;
263 void *transfer_buffer
;
267 /* mask NakCnt+T in qh->hw_alt_next */
268 #define QTD_MASK cpu_to_le32 (~0x1f)
270 #define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
272 /* Type tag from {qh, itd, sitd, fstn}->hw_next */
273 #define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1))
275 /* values for that type tag */
276 #define Q_TYPE_QH cpu_to_le32 (1 << 1)
278 /* next async queue entry, or pointer to interrupt/periodic QH */
279 #define QH_NEXT(dma) (cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH)
281 /* for periodic/async schedules and qtd lists, mark end of list */
282 #define EHCI_LIST_END cpu_to_le32(1) /* "null pointer" to hw */
285 * Entries in periodic shadow table are pointers to one of four kinds
286 * of data structure. That's dictated by the hardware; a type tag is
287 * encoded in the low bits of the hardware's periodic schedule. Use
288 * Q_NEXT_TYPE to get the tag.
290 * For entries in the async schedule, the type tag always says "qh".
293 struct ehci_qh
*qh
; /* Q_TYPE_QH */
294 __le32
*hw_next
; /* (all types) */
299 * EHCI Specification 0.95 Section 3.6
300 * QH: describes control/bulk/interrupt endpoints
301 * See Fig 3-7 "Queue Head Structure Layout".
303 * These appear in both the async and (for interrupt) periodic schedules.
307 /* first part defined by EHCI spec */
308 __le32 hw_next
; /* see EHCI 3.6.1 */
309 __le32 hw_info1
; /* see EHCI 3.6.2 */
310 #define QH_HEAD 0x00008000
311 __le32 hw_info2
; /* see EHCI 3.6.2 */
312 #define QH_SMASK 0x000000ff
313 #define QH_CMASK 0x0000ff00
314 #define QH_HUBADDR 0x007f0000
315 #define QH_HUBPORT 0x3f800000
316 #define QH_MULT 0xc0000000
317 __le32 hw_current
; /* qtd list - see EHCI 3.6.4 */
319 /* qtd overlay (hardware parts of a struct ehci_qtd) */
326 /* the rest is HCD-private */
327 dma_addr_t qh_dma
; /* address of qh */
328 union ehci_shadow qh_next
; /* ptr to qh; or periodic */
329 struct list_head qtd_list
; /* sw qtd list */
330 struct ehci_qtd
*dummy
;
331 struct ehci_qh
*reclaim
; /* next to reclaim */
338 #define QH_STATE_LINKED 1 /* HC sees this */
339 #define QH_STATE_UNLINK 2 /* HC may still see this */
340 #define QH_STATE_IDLE 3 /* HC doesn't see this */
341 #define QH_STATE_UNLINK_WAIT 4 /* LINKED and on reclaim q */
342 #define QH_STATE_COMPLETING 5 /* don't touch token.HALT */
344 /* periodic schedule info */
345 u8 usecs
; /* intr bandwidth */
346 u8 gap_uf
; /* uframes split/csplit gap */
347 u8 c_usecs
; /* ... split completion bw */
348 u16 tt_usecs
; /* tt downstream bandwidth */
349 unsigned short period
; /* polling interval */
350 unsigned short start
; /* where polling starts */
351 #define NO_FRAME ((unsigned short)~0) /* pick new start */
352 struct usb_device
*dev
; /* access to TT */
356 * Proper OXU210HP structs
359 #define OXU_OTG_CORE_OFFSET 0x00400
360 #define OXU_OTG_CAP_OFFSET (OXU_OTG_CORE_OFFSET + 0x100)
361 #define OXU_SPH_CORE_OFFSET 0x00800
362 #define OXU_SPH_CAP_OFFSET (OXU_SPH_CORE_OFFSET + 0x100)
364 #define OXU_OTG_MEM 0xE000
365 #define OXU_SPH_MEM 0x16000
367 /* Only how many elements & element structure are specifies here. */
368 /* 2 host controllers are enabled - total size <= 28 kbytes */
369 #define DEFAULT_I_TDPS 1024
376 #define BUFFER_SIZE 512
379 struct usb_hcd
*hcd
[2];
383 u8 buffer
[BUFFER_SIZE
];
384 } __aligned(BUFFER_SIZE
);
386 struct oxu_onchip_mem
{
387 struct oxu_buf db_pool
[BUFFER_NUM
];
389 u32 frame_list
[DEFAULT_I_TDPS
];
390 struct ehci_qh qh_pool
[QHEAD_NUM
];
391 struct ehci_qtd qtd_pool
[QTD_NUM
];
392 } __aligned(4 << 10);
394 #define EHCI_MAX_ROOT_PORTS 15 /* see HCS_N_PORTS */
402 struct oxu_hcd
{ /* one per controller */
403 unsigned int is_otg
:1;
405 u8 qh_used
[QHEAD_NUM
];
406 u8 qtd_used
[QTD_NUM
];
407 u8 db_used
[BUFFER_NUM
];
408 u8 murb_used
[MURB_NUM
];
410 struct oxu_onchip_mem __iomem
*mem
;
413 struct timer_list urb_timer
;
415 struct ehci_caps __iomem
*caps
;
416 struct ehci_regs __iomem
*regs
;
418 u32 hcs_params
; /* cached register copy */
421 /* async schedule support */
422 struct ehci_qh
*async
;
423 struct ehci_qh
*reclaim
;
424 unsigned int reclaim_ready
:1;
425 unsigned int scanning
:1;
427 /* periodic schedule support */
428 unsigned int periodic_size
;
429 __le32
*periodic
; /* hw periodic table */
430 dma_addr_t periodic_dma
;
431 unsigned int i_thresh
; /* uframes HC might cache */
433 union ehci_shadow
*pshadow
; /* mirror hw periodic table */
434 int next_uframe
; /* scan periodic, start here */
435 unsigned int periodic_sched
; /* periodic activity count */
437 /* per root hub port */
438 unsigned long reset_done
[EHCI_MAX_ROOT_PORTS
];
439 /* bit vectors (one bit per port) */
440 unsigned long bus_suspended
; /* which ports were
441 * already suspended at the
442 * start of a bus suspend
444 unsigned long companion_ports
;/* which ports are dedicated
445 * to the companion controller
448 struct timer_list watchdog
;
449 unsigned long actions
;
451 unsigned long next_statechange
;
455 struct list_head urb_list
; /* this is the head to urb
456 * queue that didn't get enough
459 struct oxu_murb
*murb_pool
; /* murb per split big urb */
460 unsigned int urb_len
;
462 u8 sbrn
; /* packed release number */
465 #define EHCI_IAA_JIFFIES (HZ/100) /* arbitrary; ~10 msec */
466 #define EHCI_IO_JIFFIES (HZ/10) /* io watchdog > irq_thresh */
467 #define EHCI_ASYNC_JIFFIES (HZ/20) /* async idle timeout */
468 #define EHCI_SHRINK_JIFFIES (HZ/200) /* async qh unlink delay */
470 enum ehci_timer_action
{
481 #define oxu_dbg(oxu, fmt, args...) \
482 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
483 #define oxu_err(oxu, fmt, args...) \
484 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
485 #define oxu_info(oxu, fmt, args...) \
486 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
488 #ifdef CONFIG_DYNAMIC_DEBUG
492 static inline struct usb_hcd
*oxu_to_hcd(struct oxu_hcd
*oxu
)
494 return container_of((void *) oxu
, struct usb_hcd
, hcd_priv
);
497 static inline struct oxu_hcd
*hcd_to_oxu(struct usb_hcd
*hcd
)
499 return (struct oxu_hcd
*) (hcd
->hcd_priv
);
507 #undef OXU_VERBOSE_DEBUG
509 #ifdef OXU_VERBOSE_DEBUG
510 #define oxu_vdbg oxu_dbg
512 #define oxu_vdbg(oxu, fmt, args...) /* Nop */
517 static int __attribute__((__unused__
))
518 dbg_status_buf(char *buf
, unsigned len
, const char *label
, u32 status
)
520 return scnprintf(buf
, len
, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
521 label
, label
[0] ? " " : "", status
,
522 (status
& STS_ASS
) ? " Async" : "",
523 (status
& STS_PSS
) ? " Periodic" : "",
524 (status
& STS_RECL
) ? " Recl" : "",
525 (status
& STS_HALT
) ? " Halt" : "",
526 (status
& STS_IAA
) ? " IAA" : "",
527 (status
& STS_FATAL
) ? " FATAL" : "",
528 (status
& STS_FLR
) ? " FLR" : "",
529 (status
& STS_PCD
) ? " PCD" : "",
530 (status
& STS_ERR
) ? " ERR" : "",
531 (status
& STS_INT
) ? " INT" : ""
535 static int __attribute__((__unused__
))
536 dbg_intr_buf(char *buf
, unsigned len
, const char *label
, u32 enable
)
538 return scnprintf(buf
, len
, "%s%sintrenable %02x%s%s%s%s%s%s",
539 label
, label
[0] ? " " : "", enable
,
540 (enable
& STS_IAA
) ? " IAA" : "",
541 (enable
& STS_FATAL
) ? " FATAL" : "",
542 (enable
& STS_FLR
) ? " FLR" : "",
543 (enable
& STS_PCD
) ? " PCD" : "",
544 (enable
& STS_ERR
) ? " ERR" : "",
545 (enable
& STS_INT
) ? " INT" : ""
549 static const char *const fls_strings
[] =
550 { "1024", "512", "256", "??" };
552 static int dbg_command_buf(char *buf
, unsigned len
,
553 const char *label
, u32 command
)
555 return scnprintf(buf
, len
,
556 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
557 label
, label
[0] ? " " : "", command
,
558 (command
& CMD_PARK
) ? "park" : "(park)",
559 CMD_PARK_CNT(command
),
560 (command
>> 16) & 0x3f,
561 (command
& CMD_LRESET
) ? " LReset" : "",
562 (command
& CMD_IAAD
) ? " IAAD" : "",
563 (command
& CMD_ASE
) ? " Async" : "",
564 (command
& CMD_PSE
) ? " Periodic" : "",
565 fls_strings
[(command
>> 2) & 0x3],
566 (command
& CMD_RESET
) ? " Reset" : "",
567 (command
& CMD_RUN
) ? "RUN" : "HALT"
571 static int dbg_port_buf(char *buf
, unsigned len
, const char *label
,
572 int port
, u32 status
)
576 /* signaling state */
577 switch (status
& (3 << 10)) {
582 sig
= "k"; /* low speed */
592 return scnprintf(buf
, len
,
593 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
594 label
, label
[0] ? " " : "", port
, status
,
595 (status
& PORT_POWER
) ? " POWER" : "",
596 (status
& PORT_OWNER
) ? " OWNER" : "",
598 (status
& PORT_RESET
) ? " RESET" : "",
599 (status
& PORT_SUSPEND
) ? " SUSPEND" : "",
600 (status
& PORT_RESUME
) ? " RESUME" : "",
601 (status
& PORT_OCC
) ? " OCC" : "",
602 (status
& PORT_OC
) ? " OC" : "",
603 (status
& PORT_PEC
) ? " PEC" : "",
604 (status
& PORT_PE
) ? " PE" : "",
605 (status
& PORT_CSC
) ? " CSC" : "",
606 (status
& PORT_CONNECT
) ? " CONNECT" : ""
612 static inline int __attribute__((__unused__
))
613 dbg_status_buf(char *buf
, unsigned len
, const char *label
, u32 status
)
616 static inline int __attribute__((__unused__
))
617 dbg_command_buf(char *buf
, unsigned len
, const char *label
, u32 command
)
620 static inline int __attribute__((__unused__
))
621 dbg_intr_buf(char *buf
, unsigned len
, const char *label
, u32 enable
)
624 static inline int __attribute__((__unused__
))
625 dbg_port_buf(char *buf
, unsigned len
, const char *label
, int port
, u32 status
)
630 /* functions have the "wrong" filename when they're output... */
631 #define dbg_status(oxu, label, status) { \
633 dbg_status_buf(_buf, sizeof _buf, label, status); \
634 oxu_dbg(oxu, "%s\n", _buf); \
637 #define dbg_cmd(oxu, label, command) { \
639 dbg_command_buf(_buf, sizeof _buf, label, command); \
640 oxu_dbg(oxu, "%s\n", _buf); \
643 #define dbg_port(oxu, label, port, status) { \
645 dbg_port_buf(_buf, sizeof _buf, label, port, status); \
646 oxu_dbg(oxu, "%s\n", _buf); \
653 /* Initial IRQ latency: faster than hw default */
654 static int log2_irq_thresh
; /* 0 to 6 */
655 module_param(log2_irq_thresh
, int, S_IRUGO
);
656 MODULE_PARM_DESC(log2_irq_thresh
, "log2 IRQ latency, 1-64 microframes");
658 /* Initial park setting: slower than hw default */
659 static unsigned park
;
660 module_param(park
, uint
, S_IRUGO
);
661 MODULE_PARM_DESC(park
, "park setting; 1-3 back-to-back async packets");
663 /* For flakey hardware, ignore overcurrent indicators */
664 static bool ignore_oc
;
665 module_param(ignore_oc
, bool, S_IRUGO
);
666 MODULE_PARM_DESC(ignore_oc
, "ignore bogus hardware overcurrent indications");
669 static void ehci_work(struct oxu_hcd
*oxu
);
670 static int oxu_hub_control(struct usb_hcd
*hcd
,
671 u16 typeReq
, u16 wValue
, u16 wIndex
,
672 char *buf
, u16 wLength
);
678 /* Low level read/write registers functions */
679 static inline u32
oxu_readl(void *base
, u32 reg
)
681 return readl(base
+ reg
);
684 static inline void oxu_writel(void *base
, u32 reg
, u32 val
)
686 writel(val
, base
+ reg
);
689 static inline void timer_action_done(struct oxu_hcd
*oxu
,
690 enum ehci_timer_action action
)
692 clear_bit(action
, &oxu
->actions
);
695 static inline void timer_action(struct oxu_hcd
*oxu
,
696 enum ehci_timer_action action
)
698 if (!test_and_set_bit(action
, &oxu
->actions
)) {
702 case TIMER_IAA_WATCHDOG
:
703 t
= EHCI_IAA_JIFFIES
;
705 case TIMER_IO_WATCHDOG
:
708 case TIMER_ASYNC_OFF
:
709 t
= EHCI_ASYNC_JIFFIES
;
711 case TIMER_ASYNC_SHRINK
:
713 t
= EHCI_SHRINK_JIFFIES
;
717 /* all timings except IAA watchdog can be overridden.
718 * async queue SHRINK often precedes IAA. while it's ready
719 * to go OFF neither can matter, and afterwards the IO
720 * watchdog stops unless there's still periodic traffic.
722 if (action
!= TIMER_IAA_WATCHDOG
723 && t
> oxu
->watchdog
.expires
724 && timer_pending(&oxu
->watchdog
))
726 mod_timer(&oxu
->watchdog
, t
);
731 * handshake - spin reading hc until handshake completes or fails
732 * @ptr: address of hc register to be read
733 * @mask: bits to look at in result of read
734 * @done: value of those bits when handshake succeeds
735 * @usec: timeout in microseconds
737 * Returns negative errno, or zero on success
739 * Success happens when the "mask" bits have the specified value (hardware
740 * handshake done). There are two failure modes: "usec" have passed (major
741 * hardware flakeout), or the register reads as all-ones (hardware removed).
743 * That last failure should_only happen in cases like physical cardbus eject
744 * before driver shutdown. But it also seems to be caused by bugs in cardbus
745 * bridge shutdown: shutting down the bridge before the devices using it.
747 static int handshake(struct oxu_hcd
*oxu
, void __iomem
*ptr
,
748 u32 mask
, u32 done
, int usec
)
754 if (result
== ~(u32
)0) /* card removed */
765 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
766 static int ehci_halt(struct oxu_hcd
*oxu
)
768 u32 temp
= readl(&oxu
->regs
->status
);
770 /* disable any irqs left enabled by previous code */
771 writel(0, &oxu
->regs
->intr_enable
);
773 if ((temp
& STS_HALT
) != 0)
776 temp
= readl(&oxu
->regs
->command
);
778 writel(temp
, &oxu
->regs
->command
);
779 return handshake(oxu
, &oxu
->regs
->status
,
780 STS_HALT
, STS_HALT
, 16 * 125);
783 /* Put TDI/ARC silicon into EHCI mode */
784 static void tdi_reset(struct oxu_hcd
*oxu
)
786 u32 __iomem
*reg_ptr
;
789 reg_ptr
= (u32 __iomem
*)(((u8 __iomem
*)oxu
->regs
) + 0x68);
790 tmp
= readl(reg_ptr
);
792 writel(tmp
, reg_ptr
);
795 /* Reset a non-running (STS_HALT == 1) controller */
796 static int ehci_reset(struct oxu_hcd
*oxu
)
799 u32 command
= readl(&oxu
->regs
->command
);
801 command
|= CMD_RESET
;
802 dbg_cmd(oxu
, "reset", command
);
803 writel(command
, &oxu
->regs
->command
);
804 oxu_to_hcd(oxu
)->state
= HC_STATE_HALT
;
805 oxu
->next_statechange
= jiffies
;
806 retval
= handshake(oxu
, &oxu
->regs
->command
,
807 CMD_RESET
, 0, 250 * 1000);
817 /* Idle the controller (from running) */
818 static void ehci_quiesce(struct oxu_hcd
*oxu
)
823 BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
));
826 /* wait for any schedule enables/disables to take effect */
827 temp
= readl(&oxu
->regs
->command
) << 10;
828 temp
&= STS_ASS
| STS_PSS
;
829 if (handshake(oxu
, &oxu
->regs
->status
, STS_ASS
| STS_PSS
,
830 temp
, 16 * 125) != 0) {
831 oxu_to_hcd(oxu
)->state
= HC_STATE_HALT
;
835 /* then disable anything that's still active */
836 temp
= readl(&oxu
->regs
->command
);
837 temp
&= ~(CMD_ASE
| CMD_IAAD
| CMD_PSE
);
838 writel(temp
, &oxu
->regs
->command
);
840 /* hardware can take 16 microframes to turn off ... */
841 if (handshake(oxu
, &oxu
->regs
->status
, STS_ASS
| STS_PSS
,
843 oxu_to_hcd(oxu
)->state
= HC_STATE_HALT
;
848 static int check_reset_complete(struct oxu_hcd
*oxu
, int index
,
849 u32 __iomem
*status_reg
, int port_status
)
851 if (!(port_status
& PORT_CONNECT
)) {
852 oxu
->reset_done
[index
] = 0;
856 /* if reset finished and it's still not enabled -- handoff */
857 if (!(port_status
& PORT_PE
)) {
858 oxu_dbg(oxu
, "Failed to enable port %d on root hub TT\n",
862 oxu_dbg(oxu
, "port %d high speed\n", index
+ 1);
867 static void ehci_hub_descriptor(struct oxu_hcd
*oxu
,
868 struct usb_hub_descriptor
*desc
)
870 int ports
= HCS_N_PORTS(oxu
->hcs_params
);
873 desc
->bDescriptorType
= USB_DT_HUB
;
874 desc
->bPwrOn2PwrGood
= 10; /* oxu 1.0, 2.3.9 says 20ms max */
875 desc
->bHubContrCurrent
= 0;
877 desc
->bNbrPorts
= ports
;
878 temp
= 1 + (ports
/ 8);
879 desc
->bDescLength
= 7 + 2 * temp
;
881 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
882 memset(&desc
->u
.hs
.DeviceRemovable
[0], 0, temp
);
883 memset(&desc
->u
.hs
.DeviceRemovable
[temp
], 0xff, temp
);
885 temp
= HUB_CHAR_INDV_PORT_OCPM
; /* per-port overcurrent reporting */
886 if (HCS_PPC(oxu
->hcs_params
))
887 temp
|= HUB_CHAR_INDV_PORT_LPSM
; /* per-port power control */
889 temp
|= HUB_CHAR_NO_LPSM
; /* no power switching */
890 desc
->wHubCharacteristics
= (__force __u16
)cpu_to_le16(temp
);
894 /* Allocate an OXU210HP on-chip memory data buffer
896 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
897 * Each transfer descriptor has one or more on-chip memory data buffers.
899 * Data buffers are allocated from a fix sized pool of data blocks.
900 * To minimise fragmentation and give reasonable memory utlisation,
901 * data buffers are allocated with sizes the power of 2 multiples of
902 * the block size, starting on an address a multiple of the allocated size.
904 * FIXME: callers of this function require a buffer to be allocated for
905 * len=0. This is a waste of on-chip memory and should be fix. Then this
906 * function should be changed to not allocate a buffer for len=0.
908 static int oxu_buf_alloc(struct oxu_hcd
*oxu
, struct ehci_qtd
*qtd
, int len
)
910 int n_blocks
; /* minium blocks needed to hold len */
911 int a_blocks
; /* blocks allocated */
914 /* Don't allocte bigger than supported */
915 if (len
> BUFFER_SIZE
* BUFFER_NUM
) {
916 oxu_err(oxu
, "buffer too big (%d)\n", len
);
920 spin_lock(&oxu
->mem_lock
);
922 /* Number of blocks needed to hold len */
923 n_blocks
= (len
+ BUFFER_SIZE
- 1) / BUFFER_SIZE
;
925 /* Round the number of blocks up to the power of 2 */
926 for (a_blocks
= 1; a_blocks
< n_blocks
; a_blocks
<<= 1)
929 /* Find a suitable available data buffer */
930 for (i
= 0; i
< BUFFER_NUM
;
931 i
+= max(a_blocks
, (int)oxu
->db_used
[i
])) {
933 /* Check all the required blocks are available */
934 for (j
= 0; j
< a_blocks
; j
++)
935 if (oxu
->db_used
[i
+ j
])
941 /* Allocate blocks found! */
942 qtd
->buffer
= (void *) &oxu
->mem
->db_pool
[i
];
943 qtd
->buffer_dma
= virt_to_phys(qtd
->buffer
);
945 qtd
->qtd_buffer_len
= BUFFER_SIZE
* a_blocks
;
946 oxu
->db_used
[i
] = a_blocks
;
948 spin_unlock(&oxu
->mem_lock
);
955 spin_unlock(&oxu
->mem_lock
);
960 static void oxu_buf_free(struct oxu_hcd
*oxu
, struct ehci_qtd
*qtd
)
964 spin_lock(&oxu
->mem_lock
);
966 index
= (qtd
->buffer
- (void *) &oxu
->mem
->db_pool
[0])
968 oxu
->db_used
[index
] = 0;
969 qtd
->qtd_buffer_len
= 0;
973 spin_unlock(&oxu
->mem_lock
);
976 static inline void ehci_qtd_init(struct ehci_qtd
*qtd
, dma_addr_t dma
)
978 memset(qtd
, 0, sizeof *qtd
);
980 qtd
->hw_token
= cpu_to_le32(QTD_STS_HALT
);
981 qtd
->hw_next
= EHCI_LIST_END
;
982 qtd
->hw_alt_next
= EHCI_LIST_END
;
983 INIT_LIST_HEAD(&qtd
->qtd_list
);
986 static inline void oxu_qtd_free(struct oxu_hcd
*oxu
, struct ehci_qtd
*qtd
)
991 oxu_buf_free(oxu
, qtd
);
993 spin_lock(&oxu
->mem_lock
);
995 index
= qtd
- &oxu
->mem
->qtd_pool
[0];
996 oxu
->qtd_used
[index
] = 0;
998 spin_unlock(&oxu
->mem_lock
);
1001 static struct ehci_qtd
*ehci_qtd_alloc(struct oxu_hcd
*oxu
)
1004 struct ehci_qtd
*qtd
= NULL
;
1006 spin_lock(&oxu
->mem_lock
);
1008 for (i
= 0; i
< QTD_NUM
; i
++)
1009 if (!oxu
->qtd_used
[i
])
1013 qtd
= (struct ehci_qtd
*) &oxu
->mem
->qtd_pool
[i
];
1014 memset(qtd
, 0, sizeof *qtd
);
1016 qtd
->hw_token
= cpu_to_le32(QTD_STS_HALT
);
1017 qtd
->hw_next
= EHCI_LIST_END
;
1018 qtd
->hw_alt_next
= EHCI_LIST_END
;
1019 INIT_LIST_HEAD(&qtd
->qtd_list
);
1021 qtd
->qtd_dma
= virt_to_phys(qtd
);
1023 oxu
->qtd_used
[i
] = 1;
1026 spin_unlock(&oxu
->mem_lock
);
1031 static void oxu_qh_free(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
1035 spin_lock(&oxu
->mem_lock
);
1037 index
= qh
- &oxu
->mem
->qh_pool
[0];
1038 oxu
->qh_used
[index
] = 0;
1040 spin_unlock(&oxu
->mem_lock
);
1043 static void qh_destroy(struct kref
*kref
)
1045 struct ehci_qh
*qh
= container_of(kref
, struct ehci_qh
, kref
);
1046 struct oxu_hcd
*oxu
= qh
->oxu
;
1048 /* clean qtds first, and know this is not linked */
1049 if (!list_empty(&qh
->qtd_list
) || qh
->qh_next
.ptr
) {
1050 oxu_dbg(oxu
, "unused qh not empty!\n");
1054 oxu_qtd_free(oxu
, qh
->dummy
);
1055 oxu_qh_free(oxu
, qh
);
1058 static struct ehci_qh
*oxu_qh_alloc(struct oxu_hcd
*oxu
)
1061 struct ehci_qh
*qh
= NULL
;
1063 spin_lock(&oxu
->mem_lock
);
1065 for (i
= 0; i
< QHEAD_NUM
; i
++)
1066 if (!oxu
->qh_used
[i
])
1069 if (i
< QHEAD_NUM
) {
1070 qh
= (struct ehci_qh
*) &oxu
->mem
->qh_pool
[i
];
1071 memset(qh
, 0, sizeof *qh
);
1073 kref_init(&qh
->kref
);
1075 qh
->qh_dma
= virt_to_phys(qh
);
1076 INIT_LIST_HEAD(&qh
->qtd_list
);
1078 /* dummy td enables safe urb queuing */
1079 qh
->dummy
= ehci_qtd_alloc(oxu
);
1080 if (qh
->dummy
== NULL
) {
1081 oxu_dbg(oxu
, "no dummy td\n");
1082 oxu
->qh_used
[i
] = 0;
1087 oxu
->qh_used
[i
] = 1;
1090 spin_unlock(&oxu
->mem_lock
);
1095 /* to share a qh (cpu threads, or hc) */
1096 static inline struct ehci_qh
*qh_get(struct ehci_qh
*qh
)
1098 kref_get(&qh
->kref
);
1102 static inline void qh_put(struct ehci_qh
*qh
)
1104 kref_put(&qh
->kref
, qh_destroy
);
1107 static void oxu_murb_free(struct oxu_hcd
*oxu
, struct oxu_murb
*murb
)
1111 spin_lock(&oxu
->mem_lock
);
1113 index
= murb
- &oxu
->murb_pool
[0];
1114 oxu
->murb_used
[index
] = 0;
1116 spin_unlock(&oxu
->mem_lock
);
1119 static struct oxu_murb
*oxu_murb_alloc(struct oxu_hcd
*oxu
)
1123 struct oxu_murb
*murb
= NULL
;
1125 spin_lock(&oxu
->mem_lock
);
1127 for (i
= 0; i
< MURB_NUM
; i
++)
1128 if (!oxu
->murb_used
[i
])
1132 murb
= &(oxu
->murb_pool
)[i
];
1134 oxu
->murb_used
[i
] = 1;
1137 spin_unlock(&oxu
->mem_lock
);
1142 /* The queue heads and transfer descriptors are managed from pools tied
1143 * to each of the "per device" structures.
1144 * This is the initialisation and cleanup code.
1146 static void ehci_mem_cleanup(struct oxu_hcd
*oxu
)
1148 kfree(oxu
->murb_pool
);
1149 oxu
->murb_pool
= NULL
;
1155 del_timer(&oxu
->urb_timer
);
1157 oxu
->periodic
= NULL
;
1159 /* shadow periodic table */
1160 kfree(oxu
->pshadow
);
1161 oxu
->pshadow
= NULL
;
1164 /* Remember to add cleanup code (above) if you add anything here.
1166 static int ehci_mem_init(struct oxu_hcd
*oxu
, gfp_t flags
)
1170 for (i
= 0; i
< oxu
->periodic_size
; i
++)
1171 oxu
->mem
->frame_list
[i
] = EHCI_LIST_END
;
1172 for (i
= 0; i
< QHEAD_NUM
; i
++)
1173 oxu
->qh_used
[i
] = 0;
1174 for (i
= 0; i
< QTD_NUM
; i
++)
1175 oxu
->qtd_used
[i
] = 0;
1177 oxu
->murb_pool
= kcalloc(MURB_NUM
, sizeof(struct oxu_murb
), flags
);
1178 if (!oxu
->murb_pool
)
1181 for (i
= 0; i
< MURB_NUM
; i
++)
1182 oxu
->murb_used
[i
] = 0;
1184 oxu
->async
= oxu_qh_alloc(oxu
);
1188 oxu
->periodic
= (__le32
*) &oxu
->mem
->frame_list
;
1189 oxu
->periodic_dma
= virt_to_phys(oxu
->periodic
);
1191 for (i
= 0; i
< oxu
->periodic_size
; i
++)
1192 oxu
->periodic
[i
] = EHCI_LIST_END
;
1194 /* software shadow of hardware table */
1195 oxu
->pshadow
= kcalloc(oxu
->periodic_size
, sizeof(void *), flags
);
1196 if (oxu
->pshadow
!= NULL
)
1200 oxu_dbg(oxu
, "couldn't init memory\n");
1201 ehci_mem_cleanup(oxu
);
1205 /* Fill a qtd, returning how much of the buffer we were able to queue up.
1207 static int qtd_fill(struct ehci_qtd
*qtd
, dma_addr_t buf
, size_t len
,
1208 int token
, int maxpacket
)
1213 /* one buffer entry per 4K ... first might be short or unaligned */
1214 qtd
->hw_buf
[0] = cpu_to_le32((u32
)addr
);
1215 qtd
->hw_buf_hi
[0] = cpu_to_le32((u32
)(addr
>> 32));
1216 count
= 0x1000 - (buf
& 0x0fff); /* rest of that page */
1217 if (likely(len
< count
)) /* ... iff needed */
1223 /* per-qtd limit: from 16K to 20K (best alignment) */
1224 for (i
= 1; count
< len
&& i
< 5; i
++) {
1226 qtd
->hw_buf
[i
] = cpu_to_le32((u32
)addr
);
1227 qtd
->hw_buf_hi
[i
] = cpu_to_le32((u32
)(addr
>> 32));
1229 if ((count
+ 0x1000) < len
)
1235 /* short packets may only terminate transfers */
1237 count
-= (count
% maxpacket
);
1239 qtd
->hw_token
= cpu_to_le32((count
<< 16) | token
);
1240 qtd
->length
= count
;
1245 static inline void qh_update(struct oxu_hcd
*oxu
,
1246 struct ehci_qh
*qh
, struct ehci_qtd
*qtd
)
1248 /* writes to an active overlay are unsafe */
1249 BUG_ON(qh
->qh_state
!= QH_STATE_IDLE
);
1251 qh
->hw_qtd_next
= QTD_NEXT(qtd
->qtd_dma
);
1252 qh
->hw_alt_next
= EHCI_LIST_END
;
1254 /* Except for control endpoints, we make hardware maintain data
1255 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
1256 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
1259 if (!(qh
->hw_info1
& cpu_to_le32(1 << 14))) {
1260 unsigned is_out
, epnum
;
1262 is_out
= !(qtd
->hw_token
& cpu_to_le32(1 << 8));
1263 epnum
= (le32_to_cpup(&qh
->hw_info1
) >> 8) & 0x0f;
1264 if (unlikely(!usb_gettoggle(qh
->dev
, epnum
, is_out
))) {
1265 qh
->hw_token
&= ~cpu_to_le32(QTD_TOGGLE
);
1266 usb_settoggle(qh
->dev
, epnum
, is_out
, 1);
1270 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
1272 qh
->hw_token
&= cpu_to_le32(QTD_TOGGLE
| QTD_STS_PING
);
1275 /* If it weren't for a common silicon quirk (writing the dummy into the qh
1276 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
1277 * recovery (including urb dequeue) would need software changes to a QH...
1279 static void qh_refresh(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
1281 struct ehci_qtd
*qtd
;
1283 if (list_empty(&qh
->qtd_list
))
1286 qtd
= list_entry(qh
->qtd_list
.next
,
1287 struct ehci_qtd
, qtd_list
);
1288 /* first qtd may already be partially processed */
1289 if (cpu_to_le32(qtd
->qtd_dma
) == qh
->hw_current
)
1294 qh_update(oxu
, qh
, qtd
);
1297 static void qtd_copy_status(struct oxu_hcd
*oxu
, struct urb
*urb
,
1298 size_t length
, u32 token
)
1300 /* count IN/OUT bytes, not SETUP (even short packets) */
1301 if (likely(QTD_PID(token
) != 2))
1302 urb
->actual_length
+= length
- QTD_LENGTH(token
);
1304 /* don't modify error codes */
1305 if (unlikely(urb
->status
!= -EINPROGRESS
))
1308 /* force cleanup after short read; not always an error */
1309 if (unlikely(IS_SHORT_READ(token
)))
1310 urb
->status
= -EREMOTEIO
;
1312 /* serious "can't proceed" faults reported by the hardware */
1313 if (token
& QTD_STS_HALT
) {
1314 if (token
& QTD_STS_BABBLE
) {
1315 /* FIXME "must" disable babbling device's port too */
1316 urb
->status
= -EOVERFLOW
;
1317 } else if (token
& QTD_STS_MMF
) {
1318 /* fs/ls interrupt xfer missed the complete-split */
1319 urb
->status
= -EPROTO
;
1320 } else if (token
& QTD_STS_DBE
) {
1321 urb
->status
= (QTD_PID(token
) == 1) /* IN ? */
1322 ? -ENOSR
/* hc couldn't read data */
1323 : -ECOMM
; /* hc couldn't write data */
1324 } else if (token
& QTD_STS_XACT
) {
1325 /* timeout, bad crc, wrong PID, etc; retried */
1326 if (QTD_CERR(token
))
1327 urb
->status
= -EPIPE
;
1329 oxu_dbg(oxu
, "devpath %s ep%d%s 3strikes\n",
1331 usb_pipeendpoint(urb
->pipe
),
1332 usb_pipein(urb
->pipe
) ? "in" : "out");
1333 urb
->status
= -EPROTO
;
1335 /* CERR nonzero + no errors + halt --> stall */
1336 } else if (QTD_CERR(token
))
1337 urb
->status
= -EPIPE
;
1339 urb
->status
= -EPROTO
;
1341 oxu_vdbg(oxu
, "dev%d ep%d%s qtd token %08x --> status %d\n",
1342 usb_pipedevice(urb
->pipe
),
1343 usb_pipeendpoint(urb
->pipe
),
1344 usb_pipein(urb
->pipe
) ? "in" : "out",
1345 token
, urb
->status
);
1349 static void ehci_urb_done(struct oxu_hcd
*oxu
, struct urb
*urb
)
1350 __releases(oxu
->lock
)
1351 __acquires(oxu
->lock
)
1353 if (likely(urb
->hcpriv
!= NULL
)) {
1354 struct ehci_qh
*qh
= (struct ehci_qh
*) urb
->hcpriv
;
1356 /* S-mask in a QH means it's an interrupt urb */
1357 if ((qh
->hw_info2
& cpu_to_le32(QH_SMASK
)) != 0) {
1359 /* ... update hc-wide periodic stats (for usbfs) */
1360 oxu_to_hcd(oxu
)->self
.bandwidth_int_reqs
--;
1366 switch (urb
->status
) {
1367 case -EINPROGRESS
: /* success */
1369 default: /* fault */
1371 case -EREMOTEIO
: /* fault or normal */
1372 if (!(urb
->transfer_flags
& URB_SHORT_NOT_OK
))
1375 case -ECONNRESET
: /* canceled */
1380 #ifdef OXU_URB_TRACE
1381 oxu_dbg(oxu
, "%s %s urb %p ep%d%s status %d len %d/%d\n",
1382 __func__
, urb
->dev
->devpath
, urb
,
1383 usb_pipeendpoint(urb
->pipe
),
1384 usb_pipein(urb
->pipe
) ? "in" : "out",
1386 urb
->actual_length
, urb
->transfer_buffer_length
);
1389 /* complete() can reenter this HCD */
1390 spin_unlock(&oxu
->lock
);
1391 usb_hcd_giveback_urb(oxu_to_hcd(oxu
), urb
, urb
->status
);
1392 spin_lock(&oxu
->lock
);
1395 static void start_unlink_async(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
);
1396 static void unlink_async(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
);
1398 static void intr_deschedule(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
);
1399 static int qh_schedule(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
);
1401 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
1403 /* Process and free completed qtds for a qh, returning URBs to drivers.
1404 * Chases up to qh->hw_current. Returns number of completions called,
1405 * indicating how much "real" work we did.
1407 static unsigned qh_completions(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
1409 struct ehci_qtd
*last
= NULL
, *end
= qh
->dummy
;
1410 struct ehci_qtd
*qtd
, *tmp
;
1415 struct oxu_murb
*murb
= NULL
;
1417 if (unlikely(list_empty(&qh
->qtd_list
)))
1420 /* completions (or tasks on other cpus) must never clobber HALT
1421 * till we've gone through and cleaned everything up, even when
1422 * they add urbs to this qh's queue or mark them for unlinking.
1424 * NOTE: unlinking expects to be done in queue order.
1426 state
= qh
->qh_state
;
1427 qh
->qh_state
= QH_STATE_COMPLETING
;
1428 stopped
= (state
== QH_STATE_IDLE
);
1430 /* remove de-activated QTDs from front of queue.
1431 * after faults (including short reads), cleanup this urb
1432 * then let the queue advance.
1433 * if queue is stopped, handles unlinks.
1435 list_for_each_entry_safe(qtd
, tmp
, &qh
->qtd_list
, qtd_list
) {
1441 /* Clean up any state from previous QTD ...*/
1443 if (likely(last
->urb
!= urb
)) {
1444 if (last
->urb
->complete
== NULL
) {
1445 murb
= (struct oxu_murb
*) last
->urb
;
1446 last
->urb
= murb
->main
;
1448 ehci_urb_done(oxu
, last
->urb
);
1451 oxu_murb_free(oxu
, murb
);
1453 ehci_urb_done(oxu
, last
->urb
);
1457 oxu_qtd_free(oxu
, last
);
1461 /* ignore urbs submitted during completions we reported */
1465 /* hardware copies qtd out of qh overlay */
1467 token
= le32_to_cpu(qtd
->hw_token
);
1469 /* always clean up qtds the hc de-activated */
1470 if ((token
& QTD_STS_ACTIVE
) == 0) {
1472 if ((token
& QTD_STS_HALT
) != 0) {
1475 /* magic dummy for some short reads; qh won't advance.
1476 * that silicon quirk can kick in with this dummy too.
1478 } else if (IS_SHORT_READ(token
) &&
1479 !(qtd
->hw_alt_next
& EHCI_LIST_END
)) {
1484 /* stop scanning when we reach qtds the hc is using */
1485 } else if (likely(!stopped
&&
1486 HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
))) {
1492 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
)))
1493 urb
->status
= -ESHUTDOWN
;
1495 /* ignore active urbs unless some previous qtd
1496 * for the urb faulted (including short read) or
1497 * its urb was canceled. we may patch qh or qtds.
1499 if (likely(urb
->status
== -EINPROGRESS
))
1502 /* issue status after short control reads */
1503 if (unlikely(do_status
!= 0)
1504 && QTD_PID(token
) == 0 /* OUT */) {
1509 /* token in overlay may be most current */
1510 if (state
== QH_STATE_IDLE
1511 && cpu_to_le32(qtd
->qtd_dma
)
1513 token
= le32_to_cpu(qh
->hw_token
);
1515 /* force halt for unlinked or blocked qh, so we'll
1516 * patch the qh later and so that completions can't
1517 * activate it while we "know" it's stopped.
1519 if ((HALT_BIT
& qh
->hw_token
) == 0) {
1521 qh
->hw_token
|= HALT_BIT
;
1526 /* Remove it from the queue */
1527 qtd_copy_status(oxu
, urb
->complete
?
1528 urb
: ((struct oxu_murb
*) urb
)->main
,
1529 qtd
->length
, token
);
1530 if ((usb_pipein(qtd
->urb
->pipe
)) &&
1531 (NULL
!= qtd
->transfer_buffer
))
1532 memcpy(qtd
->transfer_buffer
, qtd
->buffer
, qtd
->length
);
1533 do_status
= (urb
->status
== -EREMOTEIO
)
1534 && usb_pipecontrol(urb
->pipe
);
1536 if (stopped
&& qtd
->qtd_list
.prev
!= &qh
->qtd_list
) {
1537 last
= list_entry(qtd
->qtd_list
.prev
,
1538 struct ehci_qtd
, qtd_list
);
1539 last
->hw_next
= qtd
->hw_next
;
1541 list_del(&qtd
->qtd_list
);
1545 /* last urb's completion might still need calling */
1546 if (likely(last
!= NULL
)) {
1547 if (last
->urb
->complete
== NULL
) {
1548 murb
= (struct oxu_murb
*) last
->urb
;
1549 last
->urb
= murb
->main
;
1551 ehci_urb_done(oxu
, last
->urb
);
1554 oxu_murb_free(oxu
, murb
);
1556 ehci_urb_done(oxu
, last
->urb
);
1559 oxu_qtd_free(oxu
, last
);
1562 /* restore original state; caller must unlink or relink */
1563 qh
->qh_state
= state
;
1565 /* be sure the hardware's done with the qh before refreshing
1566 * it after fault cleanup, or recovering from silicon wrongly
1567 * overlaying the dummy qtd (which reduces DMA chatter).
1569 if (stopped
!= 0 || qh
->hw_qtd_next
== EHCI_LIST_END
) {
1572 qh_refresh(oxu
, qh
);
1574 case QH_STATE_LINKED
:
1575 /* should be rare for periodic transfers,
1576 * except maybe high bandwidth ...
1578 if ((cpu_to_le32(QH_SMASK
)
1579 & qh
->hw_info2
) != 0) {
1580 intr_deschedule(oxu
, qh
);
1581 (void) qh_schedule(oxu
, qh
);
1583 unlink_async(oxu
, qh
);
1585 /* otherwise, unlink already started */
1592 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1593 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
1594 /* ... and packet size, for any kind of endpoint descriptor */
1595 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
1597 /* Reverse of qh_urb_transaction: free a list of TDs.
1598 * used for cleanup after errors, before HC sees an URB's TDs.
1600 static void qtd_list_free(struct oxu_hcd
*oxu
,
1601 struct urb
*urb
, struct list_head
*head
)
1603 struct ehci_qtd
*qtd
, *temp
;
1605 list_for_each_entry_safe(qtd
, temp
, head
, qtd_list
) {
1606 list_del(&qtd
->qtd_list
);
1607 oxu_qtd_free(oxu
, qtd
);
1611 /* Create a list of filled qtds for this URB; won't link into qh.
1613 static struct list_head
*qh_urb_transaction(struct oxu_hcd
*oxu
,
1615 struct list_head
*head
,
1618 struct ehci_qtd
*qtd
, *qtd_prev
;
1623 void *transfer_buf
= NULL
;
1627 * URBs map to sequences of QTDs: one logical transaction
1629 qtd
= ehci_qtd_alloc(oxu
);
1632 list_add_tail(&qtd
->qtd_list
, head
);
1635 token
= QTD_STS_ACTIVE
;
1636 token
|= (EHCI_TUNE_CERR
<< 10);
1637 /* for split transactions, SplitXState initialized to zero */
1639 len
= urb
->transfer_buffer_length
;
1640 is_input
= usb_pipein(urb
->pipe
);
1641 if (!urb
->transfer_buffer
&& urb
->transfer_buffer_length
&& is_input
)
1642 urb
->transfer_buffer
= phys_to_virt(urb
->transfer_dma
);
1644 if (usb_pipecontrol(urb
->pipe
)) {
1646 ret
= oxu_buf_alloc(oxu
, qtd
, sizeof(struct usb_ctrlrequest
));
1650 qtd_fill(qtd
, qtd
->buffer_dma
, sizeof(struct usb_ctrlrequest
),
1651 token
| (2 /* "setup" */ << 8), 8);
1652 memcpy(qtd
->buffer
, qtd
->urb
->setup_packet
,
1653 sizeof(struct usb_ctrlrequest
));
1655 /* ... and always at least one more pid */
1656 token
^= QTD_TOGGLE
;
1658 qtd
= ehci_qtd_alloc(oxu
);
1662 qtd_prev
->hw_next
= QTD_NEXT(qtd
->qtd_dma
);
1663 list_add_tail(&qtd
->qtd_list
, head
);
1665 /* for zero length DATA stages, STATUS is always IN */
1667 token
|= (1 /* "in" */ << 8);
1671 * Data transfer stage: buffer setup
1674 ret
= oxu_buf_alloc(oxu
, qtd
, len
);
1678 buf
= qtd
->buffer_dma
;
1679 transfer_buf
= urb
->transfer_buffer
;
1682 memcpy(qtd
->buffer
, qtd
->urb
->transfer_buffer
, len
);
1685 token
|= (1 /* "in" */ << 8);
1686 /* else it's already initted to "out" pid (0 << 8) */
1688 maxpacket
= max_packet(usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
));
1691 * buffer gets wrapped in one or more qtds;
1692 * last one may be "short" (including zero len)
1693 * and may serve as a control status ack
1698 this_qtd_len
= qtd_fill(qtd
, buf
, len
, token
, maxpacket
);
1699 qtd
->transfer_buffer
= transfer_buf
;
1700 len
-= this_qtd_len
;
1701 buf
+= this_qtd_len
;
1702 transfer_buf
+= this_qtd_len
;
1704 qtd
->hw_alt_next
= oxu
->async
->hw_alt_next
;
1706 /* qh makes control packets use qtd toggle; maybe switch it */
1707 if ((maxpacket
& (this_qtd_len
+ (maxpacket
- 1))) == 0)
1708 token
^= QTD_TOGGLE
;
1710 if (likely(len
<= 0))
1714 qtd
= ehci_qtd_alloc(oxu
);
1717 if (likely(len
> 0)) {
1718 ret
= oxu_buf_alloc(oxu
, qtd
, len
);
1723 qtd_prev
->hw_next
= QTD_NEXT(qtd
->qtd_dma
);
1724 list_add_tail(&qtd
->qtd_list
, head
);
1727 /* unless the bulk/interrupt caller wants a chance to clean
1728 * up after short reads, hc should advance qh past this urb
1730 if (likely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) == 0
1731 || usb_pipecontrol(urb
->pipe
)))
1732 qtd
->hw_alt_next
= EHCI_LIST_END
;
1735 * control requests may need a terminating data "status" ack;
1736 * bulk ones may need a terminating short packet (zero length).
1738 if (likely(urb
->transfer_buffer_length
!= 0)) {
1741 if (usb_pipecontrol(urb
->pipe
)) {
1743 token
^= 0x0100; /* "in" <--> "out" */
1744 token
|= QTD_TOGGLE
; /* force DATA1 */
1745 } else if (usb_pipebulk(urb
->pipe
)
1746 && (urb
->transfer_flags
& URB_ZERO_PACKET
)
1747 && !(urb
->transfer_buffer_length
% maxpacket
)) {
1752 qtd
= ehci_qtd_alloc(oxu
);
1756 qtd_prev
->hw_next
= QTD_NEXT(qtd
->qtd_dma
);
1757 list_add_tail(&qtd
->qtd_list
, head
);
1759 /* never any data in such packets */
1760 qtd_fill(qtd
, 0, 0, token
, 0);
1764 /* by default, enable interrupt on urb completion */
1765 qtd
->hw_token
|= cpu_to_le32(QTD_IOC
);
1769 qtd_list_free(oxu
, urb
, head
);
1773 /* Each QH holds a qtd list; a QH is used for everything except iso.
1775 * For interrupt urbs, the scheduler must set the microframe scheduling
1776 * mask(s) each time the QH gets scheduled. For highspeed, that's
1777 * just one microframe in the s-mask. For split interrupt transactions
1778 * there are additional complications: c-mask, maybe FSTNs.
1780 static struct ehci_qh
*qh_make(struct oxu_hcd
*oxu
,
1781 struct urb
*urb
, gfp_t flags
)
1783 struct ehci_qh
*qh
= oxu_qh_alloc(oxu
);
1784 u32 info1
= 0, info2
= 0;
1792 * init endpoint/device data for this QH
1794 info1
|= usb_pipeendpoint(urb
->pipe
) << 8;
1795 info1
|= usb_pipedevice(urb
->pipe
) << 0;
1797 is_input
= usb_pipein(urb
->pipe
);
1798 type
= usb_pipetype(urb
->pipe
);
1799 maxp
= usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
);
1801 /* Compute interrupt scheduling parameters just once, and save.
1802 * - allowing for high bandwidth, how many nsec/uframe are used?
1803 * - split transactions need a second CSPLIT uframe; same question
1804 * - splits also need a schedule gap (for full/low speed I/O)
1805 * - qh has a polling interval
1807 * For control/bulk requests, the HC or TT handles these.
1809 if (type
== PIPE_INTERRUPT
) {
1810 qh
->usecs
= NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH
,
1812 hb_mult(maxp
) * max_packet(maxp
)));
1813 qh
->start
= NO_FRAME
;
1815 if (urb
->dev
->speed
== USB_SPEED_HIGH
) {
1819 qh
->period
= urb
->interval
>> 3;
1820 if (qh
->period
== 0 && urb
->interval
!= 1) {
1821 /* NOTE interval 2 or 4 uframes could work.
1822 * But interval 1 scheduling is simpler, and
1823 * includes high bandwidth.
1825 oxu_dbg(oxu
, "intr period %d uframes, NYET!\n",
1830 struct usb_tt
*tt
= urb
->dev
->tt
;
1833 /* gap is f(FS/LS transfer times) */
1834 qh
->gap_uf
= 1 + usb_calc_bus_time(urb
->dev
->speed
,
1835 is_input
, 0, maxp
) / (125 * 1000);
1837 /* FIXME this just approximates SPLIT/CSPLIT times */
1838 if (is_input
) { /* SPLIT, gap, CSPLIT+DATA */
1839 qh
->c_usecs
= qh
->usecs
+ HS_USECS(0);
1840 qh
->usecs
= HS_USECS(1);
1841 } else { /* SPLIT+DATA, gap, CSPLIT */
1842 qh
->usecs
+= HS_USECS(1);
1843 qh
->c_usecs
= HS_USECS(0);
1846 think_time
= tt
? tt
->think_time
: 0;
1847 qh
->tt_usecs
= NS_TO_US(think_time
+
1848 usb_calc_bus_time(urb
->dev
->speed
,
1849 is_input
, 0, max_packet(maxp
)));
1850 qh
->period
= urb
->interval
;
1854 /* support for tt scheduling, and access to toggles */
1858 switch (urb
->dev
->speed
) {
1860 info1
|= (1 << 12); /* EPS "low" */
1863 case USB_SPEED_FULL
:
1864 /* EPS 0 means "full" */
1865 if (type
!= PIPE_INTERRUPT
)
1866 info1
|= (EHCI_TUNE_RL_TT
<< 28);
1867 if (type
== PIPE_CONTROL
) {
1868 info1
|= (1 << 27); /* for TT */
1869 info1
|= 1 << 14; /* toggle from qtd */
1871 info1
|= maxp
<< 16;
1873 info2
|= (EHCI_TUNE_MULT_TT
<< 30);
1874 info2
|= urb
->dev
->ttport
<< 23;
1876 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1880 case USB_SPEED_HIGH
: /* no TT involved */
1881 info1
|= (2 << 12); /* EPS "high" */
1882 if (type
== PIPE_CONTROL
) {
1883 info1
|= (EHCI_TUNE_RL_HS
<< 28);
1884 info1
|= 64 << 16; /* usb2 fixed maxpacket */
1885 info1
|= 1 << 14; /* toggle from qtd */
1886 info2
|= (EHCI_TUNE_MULT_HS
<< 30);
1887 } else if (type
== PIPE_BULK
) {
1888 info1
|= (EHCI_TUNE_RL_HS
<< 28);
1889 info1
|= 512 << 16; /* usb2 fixed maxpacket */
1890 info2
|= (EHCI_TUNE_MULT_HS
<< 30);
1891 } else { /* PIPE_INTERRUPT */
1892 info1
|= max_packet(maxp
) << 16;
1893 info2
|= hb_mult(maxp
) << 30;
1897 oxu_dbg(oxu
, "bogus dev %p speed %d\n", urb
->dev
, urb
->dev
->speed
);
1903 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1905 /* init as live, toggle clear, advance to dummy */
1906 qh
->qh_state
= QH_STATE_IDLE
;
1907 qh
->hw_info1
= cpu_to_le32(info1
);
1908 qh
->hw_info2
= cpu_to_le32(info2
);
1909 usb_settoggle(urb
->dev
, usb_pipeendpoint(urb
->pipe
), !is_input
, 1);
1910 qh_refresh(oxu
, qh
);
1914 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1916 static void qh_link_async(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
1918 __le32 dma
= QH_NEXT(qh
->qh_dma
);
1919 struct ehci_qh
*head
;
1921 /* (re)start the async schedule? */
1923 timer_action_done(oxu
, TIMER_ASYNC_OFF
);
1924 if (!head
->qh_next
.qh
) {
1925 u32 cmd
= readl(&oxu
->regs
->command
);
1927 if (!(cmd
& CMD_ASE
)) {
1928 /* in case a clear of CMD_ASE didn't take yet */
1929 (void)handshake(oxu
, &oxu
->regs
->status
,
1931 cmd
|= CMD_ASE
| CMD_RUN
;
1932 writel(cmd
, &oxu
->regs
->command
);
1933 oxu_to_hcd(oxu
)->state
= HC_STATE_RUNNING
;
1934 /* posted write need not be known to HC yet ... */
1938 /* clear halt and/or toggle; and maybe recover from silicon quirk */
1939 if (qh
->qh_state
== QH_STATE_IDLE
)
1940 qh_refresh(oxu
, qh
);
1942 /* splice right after start */
1943 qh
->qh_next
= head
->qh_next
;
1944 qh
->hw_next
= head
->hw_next
;
1947 head
->qh_next
.qh
= qh
;
1948 head
->hw_next
= dma
;
1950 qh
->qh_state
= QH_STATE_LINKED
;
1951 /* qtd completions reported later by interrupt */
1954 #define QH_ADDR_MASK cpu_to_le32(0x7f)
1957 * For control/bulk/interrupt, return QH with these TDs appended.
1958 * Allocates and initializes the QH if necessary.
1959 * Returns null if it can't allocate a QH it needs to.
1960 * If the QH has TDs (urbs) already, that's great.
1962 static struct ehci_qh
*qh_append_tds(struct oxu_hcd
*oxu
,
1963 struct urb
*urb
, struct list_head
*qtd_list
,
1964 int epnum
, void **ptr
)
1966 struct ehci_qh
*qh
= NULL
;
1968 qh
= (struct ehci_qh
*) *ptr
;
1969 if (unlikely(qh
== NULL
)) {
1970 /* can't sleep here, we have oxu->lock... */
1971 qh
= qh_make(oxu
, urb
, GFP_ATOMIC
);
1974 if (likely(qh
!= NULL
)) {
1975 struct ehci_qtd
*qtd
;
1977 if (unlikely(list_empty(qtd_list
)))
1980 qtd
= list_entry(qtd_list
->next
, struct ehci_qtd
,
1983 /* control qh may need patching ... */
1984 if (unlikely(epnum
== 0)) {
1986 /* usb_reset_device() briefly reverts to address 0 */
1987 if (usb_pipedevice(urb
->pipe
) == 0)
1988 qh
->hw_info1
&= ~QH_ADDR_MASK
;
1991 /* just one way to queue requests: swap with the dummy qtd.
1992 * only hc or qh_refresh() ever modify the overlay.
1994 if (likely(qtd
!= NULL
)) {
1995 struct ehci_qtd
*dummy
;
1999 /* to avoid racing the HC, use the dummy td instead of
2000 * the first td of our list (becomes new dummy). both
2001 * tds stay deactivated until we're done, when the
2002 * HC is allowed to fetch the old dummy (4.10.2).
2004 token
= qtd
->hw_token
;
2005 qtd
->hw_token
= HALT_BIT
;
2009 dma
= dummy
->qtd_dma
;
2011 dummy
->qtd_dma
= dma
;
2013 list_del(&qtd
->qtd_list
);
2014 list_add(&dummy
->qtd_list
, qtd_list
);
2015 list_splice(qtd_list
, qh
->qtd_list
.prev
);
2017 ehci_qtd_init(qtd
, qtd
->qtd_dma
);
2020 /* hc must see the new dummy at list end */
2022 qtd
= list_entry(qh
->qtd_list
.prev
,
2023 struct ehci_qtd
, qtd_list
);
2024 qtd
->hw_next
= QTD_NEXT(dma
);
2026 /* let the hc process these next qtds */
2027 dummy
->hw_token
= (token
& ~(0x80));
2029 dummy
->hw_token
= token
;
2031 urb
->hcpriv
= qh_get(qh
);
2037 static int submit_async(struct oxu_hcd
*oxu
, struct urb
*urb
,
2038 struct list_head
*qtd_list
, gfp_t mem_flags
)
2040 struct ehci_qtd
*qtd
;
2042 unsigned long flags
;
2043 struct ehci_qh
*qh
= NULL
;
2046 qtd
= list_entry(qtd_list
->next
, struct ehci_qtd
, qtd_list
);
2047 epnum
= urb
->ep
->desc
.bEndpointAddress
;
2049 #ifdef OXU_URB_TRACE
2050 oxu_dbg(oxu
, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2051 __func__
, urb
->dev
->devpath
, urb
,
2052 epnum
& 0x0f, (epnum
& USB_DIR_IN
) ? "in" : "out",
2053 urb
->transfer_buffer_length
,
2054 qtd
, urb
->ep
->hcpriv
);
2057 spin_lock_irqsave(&oxu
->lock
, flags
);
2058 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu
)))) {
2063 qh
= qh_append_tds(oxu
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
2064 if (unlikely(qh
== NULL
)) {
2069 /* Control/bulk operations through TTs don't need scheduling,
2070 * the HC and TT handle it when the TT has a buffer ready.
2072 if (likely(qh
->qh_state
== QH_STATE_IDLE
))
2073 qh_link_async(oxu
, qh_get(qh
));
2075 spin_unlock_irqrestore(&oxu
->lock
, flags
);
2076 if (unlikely(qh
== NULL
))
2077 qtd_list_free(oxu
, urb
, qtd_list
);
2081 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
2083 static void end_unlink_async(struct oxu_hcd
*oxu
)
2085 struct ehci_qh
*qh
= oxu
->reclaim
;
2086 struct ehci_qh
*next
;
2088 timer_action_done(oxu
, TIMER_IAA_WATCHDOG
);
2090 qh
->qh_state
= QH_STATE_IDLE
;
2091 qh
->qh_next
.qh
= NULL
;
2092 qh_put(qh
); /* refcount from reclaim */
2094 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
2096 oxu
->reclaim
= next
;
2097 oxu
->reclaim_ready
= 0;
2100 qh_completions(oxu
, qh
);
2102 if (!list_empty(&qh
->qtd_list
)
2103 && HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
))
2104 qh_link_async(oxu
, qh
);
2106 qh_put(qh
); /* refcount from async list */
2108 /* it's not free to turn the async schedule on/off; leave it
2109 * active but idle for a while once it empties.
2111 if (HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
)
2112 && oxu
->async
->qh_next
.qh
== NULL
)
2113 timer_action(oxu
, TIMER_ASYNC_OFF
);
2117 oxu
->reclaim
= NULL
;
2118 start_unlink_async(oxu
, next
);
2122 /* makes sure the async qh will become idle */
2123 /* caller must own oxu->lock */
2125 static void start_unlink_async(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
2127 int cmd
= readl(&oxu
->regs
->command
);
2128 struct ehci_qh
*prev
;
2131 assert_spin_locked(&oxu
->lock
);
2132 BUG_ON(oxu
->reclaim
|| (qh
->qh_state
!= QH_STATE_LINKED
2133 && qh
->qh_state
!= QH_STATE_UNLINK_WAIT
));
2136 /* stop async schedule right now? */
2137 if (unlikely(qh
== oxu
->async
)) {
2138 /* can't get here without STS_ASS set */
2139 if (oxu_to_hcd(oxu
)->state
!= HC_STATE_HALT
2141 /* ... and CMD_IAAD clear */
2142 writel(cmd
& ~CMD_ASE
, &oxu
->regs
->command
);
2144 /* handshake later, if we need to */
2145 timer_action_done(oxu
, TIMER_ASYNC_OFF
);
2150 qh
->qh_state
= QH_STATE_UNLINK
;
2151 oxu
->reclaim
= qh
= qh_get(qh
);
2154 while (prev
->qh_next
.qh
!= qh
)
2155 prev
= prev
->qh_next
.qh
;
2157 prev
->hw_next
= qh
->hw_next
;
2158 prev
->qh_next
= qh
->qh_next
;
2161 if (unlikely(oxu_to_hcd(oxu
)->state
== HC_STATE_HALT
)) {
2162 /* if (unlikely(qh->reclaim != 0))
2163 * this will recurse, probably not much
2165 end_unlink_async(oxu
);
2169 oxu
->reclaim_ready
= 0;
2171 writel(cmd
, &oxu
->regs
->command
);
2172 (void) readl(&oxu
->regs
->command
);
2173 timer_action(oxu
, TIMER_IAA_WATCHDOG
);
2176 static void scan_async(struct oxu_hcd
*oxu
)
2179 enum ehci_timer_action action
= TIMER_IO_WATCHDOG
;
2181 if (!++(oxu
->stamp
))
2183 timer_action_done(oxu
, TIMER_ASYNC_SHRINK
);
2185 qh
= oxu
->async
->qh_next
.qh
;
2186 if (likely(qh
!= NULL
)) {
2188 /* clean any finished work for this qh */
2189 if (!list_empty(&qh
->qtd_list
)
2190 && qh
->stamp
!= oxu
->stamp
) {
2193 /* unlinks could happen here; completion
2194 * reporting drops the lock. rescan using
2195 * the latest schedule, but don't rescan
2196 * qhs we already finished (no looping).
2199 qh
->stamp
= oxu
->stamp
;
2200 temp
= qh_completions(oxu
, qh
);
2206 /* unlink idle entries, reducing HC PCI usage as well
2207 * as HCD schedule-scanning costs. delay for any qh
2208 * we just scanned, there's a not-unusual case that it
2209 * doesn't stay idle for long.
2210 * (plus, avoids some kind of re-activation race.)
2212 if (list_empty(&qh
->qtd_list
)) {
2213 if (qh
->stamp
== oxu
->stamp
)
2214 action
= TIMER_ASYNC_SHRINK
;
2215 else if (!oxu
->reclaim
2216 && qh
->qh_state
== QH_STATE_LINKED
)
2217 start_unlink_async(oxu
, qh
);
2220 qh
= qh
->qh_next
.qh
;
2223 if (action
== TIMER_ASYNC_SHRINK
)
2224 timer_action(oxu
, TIMER_ASYNC_SHRINK
);
2228 * periodic_next_shadow - return "next" pointer on shadow list
2229 * @periodic: host pointer to qh/itd/sitd
2230 * @tag: hardware tag for type of this record
2232 static union ehci_shadow
*periodic_next_shadow(union ehci_shadow
*periodic
,
2238 return &periodic
->qh
->qh_next
;
2242 /* caller must hold oxu->lock */
2243 static void periodic_unlink(struct oxu_hcd
*oxu
, unsigned frame
, void *ptr
)
2245 union ehci_shadow
*prev_p
= &oxu
->pshadow
[frame
];
2246 __le32
*hw_p
= &oxu
->periodic
[frame
];
2247 union ehci_shadow here
= *prev_p
;
2249 /* find predecessor of "ptr"; hw and shadow lists are in sync */
2250 while (here
.ptr
&& here
.ptr
!= ptr
) {
2251 prev_p
= periodic_next_shadow(prev_p
, Q_NEXT_TYPE(*hw_p
));
2252 hw_p
= here
.hw_next
;
2255 /* an interrupt entry (at list end) could have been shared */
2259 /* update shadow and hardware lists ... the old "next" pointers
2260 * from ptr may still be in use, the caller updates them.
2262 *prev_p
= *periodic_next_shadow(&here
, Q_NEXT_TYPE(*hw_p
));
2263 *hw_p
= *here
.hw_next
;
2266 /* how many of the uframe's 125 usecs are allocated? */
2267 static unsigned short periodic_usecs(struct oxu_hcd
*oxu
,
2268 unsigned frame
, unsigned uframe
)
2270 __le32
*hw_p
= &oxu
->periodic
[frame
];
2271 union ehci_shadow
*q
= &oxu
->pshadow
[frame
];
2275 switch (Q_NEXT_TYPE(*hw_p
)) {
2278 /* is it in the S-mask? */
2279 if (q
->qh
->hw_info2
& cpu_to_le32(1 << uframe
))
2280 usecs
+= q
->qh
->usecs
;
2281 /* ... or C-mask? */
2282 if (q
->qh
->hw_info2
& cpu_to_le32(1 << (8 + uframe
)))
2283 usecs
+= q
->qh
->c_usecs
;
2284 hw_p
= &q
->qh
->hw_next
;
2285 q
= &q
->qh
->qh_next
;
2291 oxu_err(oxu
, "uframe %d sched overrun: %d usecs\n",
2292 frame
* 8 + uframe
, usecs
);
2297 static int enable_periodic(struct oxu_hcd
*oxu
)
2302 /* did clearing PSE did take effect yet?
2303 * takes effect only at frame boundaries...
2305 status
= handshake(oxu
, &oxu
->regs
->status
, STS_PSS
, 0, 9 * 125);
2307 oxu_to_hcd(oxu
)->state
= HC_STATE_HALT
;
2308 usb_hc_died(oxu_to_hcd(oxu
));
2312 cmd
= readl(&oxu
->regs
->command
) | CMD_PSE
;
2313 writel(cmd
, &oxu
->regs
->command
);
2314 /* posted write ... PSS happens later */
2315 oxu_to_hcd(oxu
)->state
= HC_STATE_RUNNING
;
2317 /* make sure ehci_work scans these */
2318 oxu
->next_uframe
= readl(&oxu
->regs
->frame_index
)
2319 % (oxu
->periodic_size
<< 3);
2323 static int disable_periodic(struct oxu_hcd
*oxu
)
2328 /* did setting PSE not take effect yet?
2329 * takes effect only at frame boundaries...
2331 status
= handshake(oxu
, &oxu
->regs
->status
, STS_PSS
, STS_PSS
, 9 * 125);
2333 oxu_to_hcd(oxu
)->state
= HC_STATE_HALT
;
2334 usb_hc_died(oxu_to_hcd(oxu
));
2338 cmd
= readl(&oxu
->regs
->command
) & ~CMD_PSE
;
2339 writel(cmd
, &oxu
->regs
->command
);
2340 /* posted write ... */
2342 oxu
->next_uframe
= -1;
2346 /* periodic schedule slots have iso tds (normal or split) first, then a
2347 * sparse tree for active interrupt transfers.
2349 * this just links in a qh; caller guarantees uframe masks are set right.
2350 * no FSTN support (yet; oxu 0.96+)
2352 static int qh_link_periodic(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
2355 unsigned period
= qh
->period
;
2357 dev_dbg(&qh
->dev
->dev
,
2358 "link qh%d-%04x/%p start %d [%d/%d us]\n",
2359 period
, le32_to_cpup(&qh
->hw_info2
) & (QH_CMASK
| QH_SMASK
),
2360 qh
, qh
->start
, qh
->usecs
, qh
->c_usecs
);
2362 /* high bandwidth, or otherwise every microframe */
2366 for (i
= qh
->start
; i
< oxu
->periodic_size
; i
+= period
) {
2367 union ehci_shadow
*prev
= &oxu
->pshadow
[i
];
2368 __le32
*hw_p
= &oxu
->periodic
[i
];
2369 union ehci_shadow here
= *prev
;
2372 /* skip the iso nodes at list head */
2374 type
= Q_NEXT_TYPE(*hw_p
);
2375 if (type
== Q_TYPE_QH
)
2377 prev
= periodic_next_shadow(prev
, type
);
2378 hw_p
= &here
.qh
->hw_next
;
2382 /* sorting each branch by period (slow-->fast)
2383 * enables sharing interior tree nodes
2385 while (here
.ptr
&& qh
!= here
.qh
) {
2386 if (qh
->period
> here
.qh
->period
)
2388 prev
= &here
.qh
->qh_next
;
2389 hw_p
= &here
.qh
->hw_next
;
2392 /* link in this qh, unless some earlier pass did that */
2393 if (qh
!= here
.qh
) {
2396 qh
->hw_next
= *hw_p
;
2399 *hw_p
= QH_NEXT(qh
->qh_dma
);
2402 qh
->qh_state
= QH_STATE_LINKED
;
2405 /* update per-qh bandwidth for usbfs */
2406 oxu_to_hcd(oxu
)->self
.bandwidth_allocated
+= qh
->period
2407 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
2410 /* maybe enable periodic schedule processing */
2411 if (!oxu
->periodic_sched
++)
2412 return enable_periodic(oxu
);
2417 static void qh_unlink_periodic(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
2423 * IF this isn't high speed
2424 * and this qh is active in the current uframe
2425 * (and overlay token SplitXstate is false?)
2427 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2430 /* high bandwidth, or otherwise part of every microframe */
2431 period
= qh
->period
;
2435 for (i
= qh
->start
; i
< oxu
->periodic_size
; i
+= period
)
2436 periodic_unlink(oxu
, i
, qh
);
2438 /* update per-qh bandwidth for usbfs */
2439 oxu_to_hcd(oxu
)->self
.bandwidth_allocated
-= qh
->period
2440 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
2443 dev_dbg(&qh
->dev
->dev
,
2444 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2446 le32_to_cpup(&qh
->hw_info2
) & (QH_CMASK
| QH_SMASK
),
2447 qh
, qh
->start
, qh
->usecs
, qh
->c_usecs
);
2449 /* qh->qh_next still "live" to HC */
2450 qh
->qh_state
= QH_STATE_UNLINK
;
2451 qh
->qh_next
.ptr
= NULL
;
2454 /* maybe turn off periodic schedule */
2455 oxu
->periodic_sched
--;
2456 if (!oxu
->periodic_sched
)
2457 (void) disable_periodic(oxu
);
2460 static void intr_deschedule(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
2464 qh_unlink_periodic(oxu
, qh
);
2466 /* simple/paranoid: always delay, expecting the HC needs to read
2467 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2468 * expect hub_wq to clean up after any CSPLITs we won't issue.
2469 * active high speed queues may need bigger delays...
2471 if (list_empty(&qh
->qtd_list
)
2472 || (cpu_to_le32(QH_CMASK
) & qh
->hw_info2
) != 0)
2475 wait
= 55; /* worst case: 3 * 1024 */
2478 qh
->qh_state
= QH_STATE_IDLE
;
2479 qh
->hw_next
= EHCI_LIST_END
;
2483 static int check_period(struct oxu_hcd
*oxu
,
2484 unsigned frame
, unsigned uframe
,
2485 unsigned period
, unsigned usecs
)
2489 /* complete split running into next frame?
2490 * given FSTN support, we could sometimes check...
2496 * 80% periodic == 100 usec/uframe available
2497 * convert "usecs we need" to "max already claimed"
2499 usecs
= 100 - usecs
;
2501 /* we "know" 2 and 4 uframe intervals were rejected; so
2502 * for period 0, check _every_ microframe in the schedule.
2504 if (unlikely(period
== 0)) {
2506 for (uframe
= 0; uframe
< 7; uframe
++) {
2507 claimed
= periodic_usecs(oxu
, frame
, uframe
);
2508 if (claimed
> usecs
)
2511 } while ((frame
+= 1) < oxu
->periodic_size
);
2513 /* just check the specified uframe, at that period */
2516 claimed
= periodic_usecs(oxu
, frame
, uframe
);
2517 if (claimed
> usecs
)
2519 } while ((frame
+= period
) < oxu
->periodic_size
);
2525 static int check_intr_schedule(struct oxu_hcd
*oxu
,
2526 unsigned frame
, unsigned uframe
,
2527 const struct ehci_qh
*qh
, __le32
*c_maskp
)
2529 int retval
= -ENOSPC
;
2531 if (qh
->c_usecs
&& uframe
>= 6) /* FSTN territory? */
2534 if (!check_period(oxu
, frame
, uframe
, qh
->period
, qh
->usecs
))
2546 /* "first fit" scheduling policy used the first time through,
2547 * or when the previous schedule slot can't be re-used.
2549 static int qh_schedule(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
2554 unsigned frame
; /* 0..(qh->period - 1), or NO_FRAME */
2556 qh_refresh(oxu
, qh
);
2557 qh
->hw_next
= EHCI_LIST_END
;
2560 /* reuse the previous schedule slots, if we can */
2561 if (frame
< qh
->period
) {
2562 uframe
= ffs(le32_to_cpup(&qh
->hw_info2
) & QH_SMASK
);
2563 status
= check_intr_schedule(oxu
, frame
, --uframe
,
2571 /* else scan the schedule to find a group of slots such that all
2572 * uframes have enough periodic bandwidth available.
2575 /* "normal" case, uframing flexible except with splits */
2577 frame
= qh
->period
- 1;
2579 for (uframe
= 0; uframe
< 8; uframe
++) {
2580 status
= check_intr_schedule(oxu
,
2586 } while (status
&& frame
--);
2588 /* qh->period == 0 means every uframe */
2591 status
= check_intr_schedule(oxu
, 0, 0, qh
, &c_mask
);
2597 /* reset S-frame and (maybe) C-frame masks */
2598 qh
->hw_info2
&= cpu_to_le32(~(QH_CMASK
| QH_SMASK
));
2599 qh
->hw_info2
|= qh
->period
2600 ? cpu_to_le32(1 << uframe
)
2601 : cpu_to_le32(QH_SMASK
);
2602 qh
->hw_info2
|= c_mask
;
2604 oxu_dbg(oxu
, "reused qh %p schedule\n", qh
);
2606 /* stuff into the periodic schedule */
2607 status
= qh_link_periodic(oxu
, qh
);
2612 static int intr_submit(struct oxu_hcd
*oxu
, struct urb
*urb
,
2613 struct list_head
*qtd_list
, gfp_t mem_flags
)
2616 unsigned long flags
;
2619 struct list_head empty
;
2621 /* get endpoint and transfer/schedule data */
2622 epnum
= urb
->ep
->desc
.bEndpointAddress
;
2624 spin_lock_irqsave(&oxu
->lock
, flags
);
2626 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu
)))) {
2627 status
= -ESHUTDOWN
;
2631 /* get qh and force any scheduling errors */
2632 INIT_LIST_HEAD(&empty
);
2633 qh
= qh_append_tds(oxu
, urb
, &empty
, epnum
, &urb
->ep
->hcpriv
);
2638 if (qh
->qh_state
== QH_STATE_IDLE
) {
2639 status
= qh_schedule(oxu
, qh
);
2644 /* then queue the urb's tds to the qh */
2645 qh
= qh_append_tds(oxu
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
2648 /* ... update usbfs periodic stats */
2649 oxu_to_hcd(oxu
)->self
.bandwidth_int_reqs
++;
2652 spin_unlock_irqrestore(&oxu
->lock
, flags
);
2654 qtd_list_free(oxu
, urb
, qtd_list
);
2659 static inline int itd_submit(struct oxu_hcd
*oxu
, struct urb
*urb
,
2662 oxu_dbg(oxu
, "iso support is missing!\n");
2666 static inline int sitd_submit(struct oxu_hcd
*oxu
, struct urb
*urb
,
2669 oxu_dbg(oxu
, "split iso support is missing!\n");
2673 static void scan_periodic(struct oxu_hcd
*oxu
)
2675 unsigned frame
, clock
, now_uframe
, mod
;
2678 mod
= oxu
->periodic_size
<< 3;
2681 * When running, scan from last scan point up to "now"
2682 * else clean up by scanning everything that's left.
2683 * Touches as few pages as possible: cache-friendly.
2685 now_uframe
= oxu
->next_uframe
;
2686 if (HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
))
2687 clock
= readl(&oxu
->regs
->frame_index
);
2689 clock
= now_uframe
+ mod
- 1;
2693 union ehci_shadow q
, *q_p
;
2696 /* don't scan past the live uframe */
2697 frame
= now_uframe
>> 3;
2698 if (frame
!= (clock
>> 3)) {
2699 /* safe to scan the whole frame at once */
2704 /* scan each element in frame's queue for completions */
2705 q_p
= &oxu
->pshadow
[frame
];
2706 hw_p
= &oxu
->periodic
[frame
];
2708 type
= Q_NEXT_TYPE(*hw_p
);
2711 while (q
.ptr
!= NULL
) {
2712 union ehci_shadow temp
;
2716 /* handle any completions */
2717 temp
.qh
= qh_get(q
.qh
);
2718 type
= Q_NEXT_TYPE(q
.qh
->hw_next
);
2720 modified
= qh_completions(oxu
, temp
.qh
);
2721 if (unlikely(list_empty(&temp
.qh
->qtd_list
)))
2722 intr_deschedule(oxu
, temp
.qh
);
2726 oxu_dbg(oxu
, "corrupt type %d frame %d shadow %p\n",
2727 type
, frame
, q
.ptr
);
2731 /* assume completion callbacks modify the queue */
2732 if (unlikely(modified
))
2736 /* Stop when we catch up to the HC */
2738 /* FIXME: this assumes we won't get lapped when
2739 * latencies climb; that should be rare, but...
2740 * detect it, and just go all the way around.
2741 * FLR might help detect this case, so long as latencies
2742 * don't exceed periodic_size msec (default 1.024 sec).
2745 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2747 if (now_uframe
== clock
) {
2750 if (!HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
))
2752 oxu
->next_uframe
= now_uframe
;
2753 now
= readl(&oxu
->regs
->frame_index
) % mod
;
2754 if (now_uframe
== now
)
2757 /* rescan the rest of this frame, then ... */
2766 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2767 * The firmware seems to think that powering off is a wakeup event!
2768 * This routine turns off remote wakeup and everything else, on all ports.
2770 static void ehci_turn_off_all_ports(struct oxu_hcd
*oxu
)
2772 int port
= HCS_N_PORTS(oxu
->hcs_params
);
2775 writel(PORT_RWC_BITS
, &oxu
->regs
->port_status
[port
]);
2778 static void ehci_port_power(struct oxu_hcd
*oxu
, int is_on
)
2782 if (!HCS_PPC(oxu
->hcs_params
))
2785 oxu_dbg(oxu
, "...power%s ports...\n", is_on
? "up" : "down");
2786 for (port
= HCS_N_PORTS(oxu
->hcs_params
); port
> 0; )
2787 (void) oxu_hub_control(oxu_to_hcd(oxu
),
2788 is_on
? SetPortFeature
: ClearPortFeature
,
2789 USB_PORT_FEAT_POWER
,
2794 /* Called from some interrupts, timers, and so on.
2795 * It calls driver completion functions, after dropping oxu->lock.
2797 static void ehci_work(struct oxu_hcd
*oxu
)
2799 timer_action_done(oxu
, TIMER_IO_WATCHDOG
);
2800 if (oxu
->reclaim_ready
)
2801 end_unlink_async(oxu
);
2803 /* another CPU may drop oxu->lock during a schedule scan while
2804 * it reports urb completions. this flag guards against bogus
2805 * attempts at re-entrant schedule scanning.
2811 if (oxu
->next_uframe
!= -1)
2815 /* the IO watchdog guards against hardware or driver bugs that
2816 * misplace IRQs, and should let us run completely without IRQs.
2817 * such lossage has been observed on both VT6202 and VT8235.
2819 if (HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
) &&
2820 (oxu
->async
->qh_next
.ptr
!= NULL
||
2821 oxu
->periodic_sched
!= 0))
2822 timer_action(oxu
, TIMER_IO_WATCHDOG
);
2825 static void unlink_async(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
2827 /* if we need to use IAA and it's busy, defer */
2828 if (qh
->qh_state
== QH_STATE_LINKED
2830 && HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
)) {
2831 struct ehci_qh
*last
;
2833 for (last
= oxu
->reclaim
;
2835 last
= last
->reclaim
)
2837 qh
->qh_state
= QH_STATE_UNLINK_WAIT
;
2840 /* bypass IAA if the hc can't care */
2841 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
) && oxu
->reclaim
)
2842 end_unlink_async(oxu
);
2844 /* something else might have unlinked the qh by now */
2845 if (qh
->qh_state
== QH_STATE_LINKED
)
2846 start_unlink_async(oxu
, qh
);
2850 * USB host controller methods
2853 static irqreturn_t
oxu210_hcd_irq(struct usb_hcd
*hcd
)
2855 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2856 u32 status
, pcd_status
= 0;
2859 spin_lock(&oxu
->lock
);
2861 status
= readl(&oxu
->regs
->status
);
2863 /* e.g. cardbus physical eject */
2864 if (status
== ~(u32
) 0) {
2865 oxu_dbg(oxu
, "device removed\n");
2870 status
&= INTR_MASK
;
2871 if (!status
|| unlikely(hcd
->state
== HC_STATE_HALT
)) {
2872 spin_unlock(&oxu
->lock
);
2876 /* clear (just) interrupts */
2877 writel(status
, &oxu
->regs
->status
);
2878 readl(&oxu
->regs
->command
); /* unblock posted write */
2881 #ifdef OXU_VERBOSE_DEBUG
2882 /* unrequested/ignored: Frame List Rollover */
2883 dbg_status(oxu
, "irq", status
);
2886 /* INT, ERR, and IAA interrupt rates can be throttled */
2888 /* normal [4.15.1.2] or error [4.15.1.1] completion */
2889 if (likely((status
& (STS_INT
|STS_ERR
)) != 0))
2892 /* complete the unlinking of some qh [4.15.2.3] */
2893 if (status
& STS_IAA
) {
2894 oxu
->reclaim_ready
= 1;
2898 /* remote wakeup [4.3.1] */
2899 if (status
& STS_PCD
) {
2900 unsigned i
= HCS_N_PORTS(oxu
->hcs_params
);
2901 pcd_status
= status
;
2903 /* resume root hub? */
2904 if (!(readl(&oxu
->regs
->command
) & CMD_RUN
))
2905 usb_hcd_resume_root_hub(hcd
);
2908 int pstatus
= readl(&oxu
->regs
->port_status
[i
]);
2910 if (pstatus
& PORT_OWNER
)
2912 if (!(pstatus
& PORT_RESUME
)
2913 || oxu
->reset_done
[i
] != 0)
2916 /* start USB_RESUME_TIMEOUT resume signaling from this
2917 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2918 * stop that signaling.
2920 oxu
->reset_done
[i
] = jiffies
+
2921 msecs_to_jiffies(USB_RESUME_TIMEOUT
);
2922 oxu_dbg(oxu
, "port %d remote wakeup\n", i
+ 1);
2923 mod_timer(&hcd
->rh_timer
, oxu
->reset_done
[i
]);
2927 /* PCI errors [4.15.2.4] */
2928 if (unlikely((status
& STS_FATAL
) != 0)) {
2929 /* bogus "fatal" IRQs appear on some chips... why? */
2930 status
= readl(&oxu
->regs
->status
);
2931 dbg_cmd(oxu
, "fatal", readl(&oxu
->regs
->command
));
2932 dbg_status(oxu
, "fatal", status
);
2933 if (status
& STS_HALT
) {
2934 oxu_err(oxu
, "fatal error\n");
2937 writel(0, &oxu
->regs
->configured_flag
);
2939 /* generic layer kills/unlinks all urbs, then
2940 * uses oxu_stop to clean up the rest
2948 spin_unlock(&oxu
->lock
);
2949 if (pcd_status
& STS_PCD
)
2950 usb_hcd_poll_rh_status(hcd
);
2954 static irqreturn_t
oxu_irq(struct usb_hcd
*hcd
)
2956 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2957 int ret
= IRQ_HANDLED
;
2959 u32 status
= oxu_readl(hcd
->regs
, OXU_CHIPIRQSTATUS
);
2960 u32 enable
= oxu_readl(hcd
->regs
, OXU_CHIPIRQEN_SET
);
2962 /* Disable all interrupt */
2963 oxu_writel(hcd
->regs
, OXU_CHIPIRQEN_CLR
, enable
);
2965 if ((oxu
->is_otg
&& (status
& OXU_USBOTGI
)) ||
2966 (!oxu
->is_otg
&& (status
& OXU_USBSPHI
)))
2967 oxu210_hcd_irq(hcd
);
2971 /* Enable all interrupt back */
2972 oxu_writel(hcd
->regs
, OXU_CHIPIRQEN_SET
, enable
);
2977 static void oxu_watchdog(struct timer_list
*t
)
2979 struct oxu_hcd
*oxu
= from_timer(oxu
, t
, watchdog
);
2980 unsigned long flags
;
2982 spin_lock_irqsave(&oxu
->lock
, flags
);
2984 /* lost IAA irqs wedge things badly; seen with a vt8235 */
2986 u32 status
= readl(&oxu
->regs
->status
);
2987 if (status
& STS_IAA
) {
2988 oxu_vdbg(oxu
, "lost IAA\n");
2989 writel(STS_IAA
, &oxu
->regs
->status
);
2990 oxu
->reclaim_ready
= 1;
2994 /* stop async processing after it's idled a bit */
2995 if (test_bit(TIMER_ASYNC_OFF
, &oxu
->actions
))
2996 start_unlink_async(oxu
, oxu
->async
);
2998 /* oxu could run by timer, without IRQs ... */
3001 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3004 /* One-time init, only for memory state.
3006 static int oxu_hcd_init(struct usb_hcd
*hcd
)
3008 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3013 spin_lock_init(&oxu
->lock
);
3015 timer_setup(&oxu
->watchdog
, oxu_watchdog
, 0);
3018 * hw default: 1K periodic list heads, one per frame.
3019 * periodic_size can shrink by USBCMD update if hcc_params allows.
3021 oxu
->periodic_size
= DEFAULT_I_TDPS
;
3022 retval
= ehci_mem_init(oxu
, GFP_KERNEL
);
3026 /* controllers may cache some of the periodic schedule ... */
3027 hcc_params
= readl(&oxu
->caps
->hcc_params
);
3028 if (HCC_ISOC_CACHE(hcc_params
)) /* full frame cache */
3030 else /* N microframes cached */
3031 oxu
->i_thresh
= 2 + HCC_ISOC_THRES(hcc_params
);
3033 oxu
->reclaim
= NULL
;
3034 oxu
->reclaim_ready
= 0;
3035 oxu
->next_uframe
= -1;
3038 * dedicate a qh for the async ring head, since we couldn't unlink
3039 * a 'real' qh without stopping the async schedule [4.8]. use it
3040 * as the 'reclamation list head' too.
3041 * its dummy is used in hw_alt_next of many tds, to prevent the qh
3042 * from automatically advancing to the next td after short reads.
3044 oxu
->async
->qh_next
.qh
= NULL
;
3045 oxu
->async
->hw_next
= QH_NEXT(oxu
->async
->qh_dma
);
3046 oxu
->async
->hw_info1
= cpu_to_le32(QH_HEAD
);
3047 oxu
->async
->hw_token
= cpu_to_le32(QTD_STS_HALT
);
3048 oxu
->async
->hw_qtd_next
= EHCI_LIST_END
;
3049 oxu
->async
->qh_state
= QH_STATE_LINKED
;
3050 oxu
->async
->hw_alt_next
= QTD_NEXT(oxu
->async
->dummy
->qtd_dma
);
3052 /* clear interrupt enables, set irq latency */
3053 if (log2_irq_thresh
< 0 || log2_irq_thresh
> 6)
3054 log2_irq_thresh
= 0;
3055 temp
= 1 << (16 + log2_irq_thresh
);
3056 if (HCC_CANPARK(hcc_params
)) {
3057 /* HW default park == 3, on hardware that supports it (like
3058 * NVidia and ALI silicon), maximizes throughput on the async
3059 * schedule by avoiding QH fetches between transfers.
3061 * With fast usb storage devices and NForce2, "park" seems to
3062 * make problems: throughput reduction (!), data errors...
3065 park
= min(park
, (unsigned) 3);
3069 oxu_dbg(oxu
, "park %d\n", park
);
3071 if (HCC_PGM_FRAMELISTLEN(hcc_params
)) {
3072 /* periodic schedule size can be smaller than default */
3074 temp
|= (EHCI_TUNE_FLS
<< 2);
3076 oxu
->command
= temp
;
3081 /* Called during probe() after chip reset completes.
3083 static int oxu_reset(struct usb_hcd
*hcd
)
3085 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3087 spin_lock_init(&oxu
->mem_lock
);
3088 INIT_LIST_HEAD(&oxu
->urb_list
);
3092 oxu
->caps
= hcd
->regs
+ OXU_OTG_CAP_OFFSET
;
3093 oxu
->regs
= hcd
->regs
+ OXU_OTG_CAP_OFFSET
+ \
3094 HC_LENGTH(readl(&oxu
->caps
->hc_capbase
));
3096 oxu
->mem
= hcd
->regs
+ OXU_SPH_MEM
;
3098 oxu
->caps
= hcd
->regs
+ OXU_SPH_CAP_OFFSET
;
3099 oxu
->regs
= hcd
->regs
+ OXU_SPH_CAP_OFFSET
+ \
3100 HC_LENGTH(readl(&oxu
->caps
->hc_capbase
));
3102 oxu
->mem
= hcd
->regs
+ OXU_OTG_MEM
;
3105 oxu
->hcs_params
= readl(&oxu
->caps
->hcs_params
);
3108 return oxu_hcd_init(hcd
);
3111 static int oxu_run(struct usb_hcd
*hcd
)
3113 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3115 u32 temp
, hcc_params
;
3117 hcd
->uses_new_polling
= 1;
3119 /* EHCI spec section 4.1 */
3120 retval
= ehci_reset(oxu
);
3122 ehci_mem_cleanup(oxu
);
3125 writel(oxu
->periodic_dma
, &oxu
->regs
->frame_list
);
3126 writel((u32
) oxu
->async
->qh_dma
, &oxu
->regs
->async_next
);
3128 /* hcc_params controls whether oxu->regs->segment must (!!!)
3129 * be used; it constrains QH/ITD/SITD and QTD locations.
3130 * dma_pool consistent memory always uses segment zero.
3131 * streaming mappings for I/O buffers, like pci_map_single(),
3132 * can return segments above 4GB, if the device allows.
3134 * NOTE: the dma mask is visible through dev->dma_mask, so
3135 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
3136 * Scsi_Host.highmem_io, and so forth. It's readonly to all
3137 * host side drivers though.
3139 hcc_params
= readl(&oxu
->caps
->hcc_params
);
3140 if (HCC_64BIT_ADDR(hcc_params
))
3141 writel(0, &oxu
->regs
->segment
);
3143 oxu
->command
&= ~(CMD_LRESET
| CMD_IAAD
| CMD_PSE
|
3144 CMD_ASE
| CMD_RESET
);
3145 oxu
->command
|= CMD_RUN
;
3146 writel(oxu
->command
, &oxu
->regs
->command
);
3147 dbg_cmd(oxu
, "init", oxu
->command
);
3150 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
3151 * are explicitly handed to companion controller(s), so no TT is
3152 * involved with the root hub. (Except where one is integrated,
3153 * and there's no companion controller unless maybe for USB OTG.)
3155 hcd
->state
= HC_STATE_RUNNING
;
3156 writel(FLAG_CF
, &oxu
->regs
->configured_flag
);
3157 readl(&oxu
->regs
->command
); /* unblock posted writes */
3159 temp
= HC_VERSION(readl(&oxu
->caps
->hc_capbase
));
3160 oxu_info(oxu
, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
3161 ((oxu
->sbrn
& 0xf0)>>4), (oxu
->sbrn
& 0x0f),
3162 temp
>> 8, temp
& 0xff, DRIVER_VERSION
,
3163 ignore_oc
? ", overcurrent ignored" : "");
3165 writel(INTR_MASK
, &oxu
->regs
->intr_enable
); /* Turn On Interrupts */
3170 static void oxu_stop(struct usb_hcd
*hcd
)
3172 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3174 /* Turn off port power on all root hub ports. */
3175 ehci_port_power(oxu
, 0);
3177 /* no more interrupts ... */
3178 del_timer_sync(&oxu
->watchdog
);
3180 spin_lock_irq(&oxu
->lock
);
3181 if (HC_IS_RUNNING(hcd
->state
))
3185 writel(0, &oxu
->regs
->intr_enable
);
3186 spin_unlock_irq(&oxu
->lock
);
3188 /* let companion controllers work when we aren't */
3189 writel(0, &oxu
->regs
->configured_flag
);
3191 /* root hub is shut down separately (first, when possible) */
3192 spin_lock_irq(&oxu
->lock
);
3195 spin_unlock_irq(&oxu
->lock
);
3196 ehci_mem_cleanup(oxu
);
3198 dbg_status(oxu
, "oxu_stop completed", readl(&oxu
->regs
->status
));
3201 /* Kick in for silicon on any bus (not just pci, etc).
3202 * This forcibly disables dma and IRQs, helping kexec and other cases
3203 * where the next system software may expect clean state.
3205 static void oxu_shutdown(struct usb_hcd
*hcd
)
3207 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3209 (void) ehci_halt(oxu
);
3210 ehci_turn_off_all_ports(oxu
);
3212 /* make BIOS/etc use companion controller during reboot */
3213 writel(0, &oxu
->regs
->configured_flag
);
3215 /* unblock posted writes */
3216 readl(&oxu
->regs
->configured_flag
);
3219 /* Non-error returns are a promise to giveback() the urb later
3220 * we drop ownership so next owner (or urb unlink) can get it
3222 * urb + dev is in hcd.self.controller.urb_list
3223 * we're queueing TDs onto software and hardware lists
3225 * hcd-specific init for hcpriv hasn't been done yet
3227 * NOTE: control, bulk, and interrupt share the same code to append TDs
3228 * to a (possibly active) QH, and the same QH scanning code.
3230 static int __oxu_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
,
3233 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3234 struct list_head qtd_list
;
3236 INIT_LIST_HEAD(&qtd_list
);
3238 switch (usb_pipetype(urb
->pipe
)) {
3242 if (!qh_urb_transaction(oxu
, urb
, &qtd_list
, mem_flags
))
3244 return submit_async(oxu
, urb
, &qtd_list
, mem_flags
);
3246 case PIPE_INTERRUPT
:
3247 if (!qh_urb_transaction(oxu
, urb
, &qtd_list
, mem_flags
))
3249 return intr_submit(oxu
, urb
, &qtd_list
, mem_flags
);
3251 case PIPE_ISOCHRONOUS
:
3252 if (urb
->dev
->speed
== USB_SPEED_HIGH
)
3253 return itd_submit(oxu
, urb
, mem_flags
);
3255 return sitd_submit(oxu
, urb
, mem_flags
);
3259 /* This function is responsible for breaking URBs with big data size
3260 * into smaller size and processing small urbs in sequence.
3262 static int oxu_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
,
3265 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3267 void *transfer_buffer
;
3271 /* If not bulk pipe just enqueue the URB */
3272 if (!usb_pipebulk(urb
->pipe
))
3273 return __oxu_urb_enqueue(hcd
, urb
, mem_flags
);
3275 /* Otherwise we should verify the USB transfer buffer size! */
3276 transfer_buffer
= urb
->transfer_buffer
;
3278 num
= urb
->transfer_buffer_length
/ 4096;
3279 rem
= urb
->transfer_buffer_length
% 4096;
3283 /* If URB is smaller than 4096 bytes just enqueue it! */
3285 return __oxu_urb_enqueue(hcd
, urb
, mem_flags
);
3287 /* Ok, we have more job to do! :) */
3289 for (i
= 0; i
< num
- 1; i
++) {
3290 /* Get free micro URB poll till a free urb is received */
3293 murb
= (struct urb
*) oxu_murb_alloc(oxu
);
3298 /* Coping the urb */
3299 memcpy(murb
, urb
, sizeof(struct urb
));
3301 murb
->transfer_buffer_length
= 4096;
3302 murb
->transfer_buffer
= transfer_buffer
+ i
* 4096;
3304 /* Null pointer for the encodes that this is a micro urb */
3305 murb
->complete
= NULL
;
3307 ((struct oxu_murb
*) murb
)->main
= urb
;
3308 ((struct oxu_murb
*) murb
)->last
= 0;
3310 /* This loop is to guarantee urb to be processed when there's
3311 * not enough resources at a particular time by retrying.
3314 ret
= __oxu_urb_enqueue(hcd
, murb
, mem_flags
);
3320 /* Last urb requires special handling */
3322 /* Get free micro URB poll till a free urb is received */
3324 murb
= (struct urb
*) oxu_murb_alloc(oxu
);
3329 /* Coping the urb */
3330 memcpy(murb
, urb
, sizeof(struct urb
));
3332 murb
->transfer_buffer_length
= rem
> 0 ? rem
: 4096;
3333 murb
->transfer_buffer
= transfer_buffer
+ (num
- 1) * 4096;
3335 /* Null pointer for the encodes that this is a micro urb */
3336 murb
->complete
= NULL
;
3338 ((struct oxu_murb
*) murb
)->main
= urb
;
3339 ((struct oxu_murb
*) murb
)->last
= 1;
3342 ret
= __oxu_urb_enqueue(hcd
, murb
, mem_flags
);
3350 /* Remove from hardware lists.
3351 * Completions normally happen asynchronously
3353 static int oxu_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
3355 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3357 unsigned long flags
;
3359 spin_lock_irqsave(&oxu
->lock
, flags
);
3360 switch (usb_pipetype(urb
->pipe
)) {
3364 qh
= (struct ehci_qh
*) urb
->hcpriv
;
3367 unlink_async(oxu
, qh
);
3370 case PIPE_INTERRUPT
:
3371 qh
= (struct ehci_qh
*) urb
->hcpriv
;
3374 switch (qh
->qh_state
) {
3375 case QH_STATE_LINKED
:
3376 intr_deschedule(oxu
, qh
);
3379 qh_completions(oxu
, qh
);
3382 oxu_dbg(oxu
, "bogus qh %p state %d\n",
3387 /* reschedule QH iff another request is queued */
3388 if (!list_empty(&qh
->qtd_list
)
3389 && HC_IS_RUNNING(hcd
->state
)) {
3392 status
= qh_schedule(oxu
, qh
);
3393 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3396 /* shouldn't happen often, but ...
3397 * FIXME kill those tds' urbs
3399 dev_err(hcd
->self
.controller
,
3400 "can't reschedule qh %p, err %d\n", qh
,
3408 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3412 /* Bulk qh holds the data toggle */
3413 static void oxu_endpoint_disable(struct usb_hcd
*hcd
,
3414 struct usb_host_endpoint
*ep
)
3416 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3417 unsigned long flags
;
3418 struct ehci_qh
*qh
, *tmp
;
3420 /* ASSERT: any requests/urbs are being unlinked */
3421 /* ASSERT: nobody can be submitting urbs for this any more */
3424 spin_lock_irqsave(&oxu
->lock
, flags
);
3429 /* endpoints can be iso streams. for now, we don't
3430 * accelerate iso completions ... so spin a while.
3432 if (qh
->hw_info1
== 0) {
3433 oxu_vdbg(oxu
, "iso delay\n");
3437 if (!HC_IS_RUNNING(hcd
->state
))
3438 qh
->qh_state
= QH_STATE_IDLE
;
3439 switch (qh
->qh_state
) {
3440 case QH_STATE_LINKED
:
3441 for (tmp
= oxu
->async
->qh_next
.qh
;
3443 tmp
= tmp
->qh_next
.qh
)
3445 /* periodic qh self-unlinks on empty */
3448 unlink_async(oxu
, qh
);
3450 case QH_STATE_UNLINK
: /* wait for hw to finish? */
3452 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3453 schedule_timeout_uninterruptible(1);
3455 case QH_STATE_IDLE
: /* fully unlinked */
3456 if (list_empty(&qh
->qtd_list
)) {
3463 /* caller was supposed to have unlinked any requests;
3464 * that's not our job. just leak this memory.
3466 oxu_err(oxu
, "qh %p (#%02x) state %d%s\n",
3467 qh
, ep
->desc
.bEndpointAddress
, qh
->qh_state
,
3468 list_empty(&qh
->qtd_list
) ? "" : "(has tds)");
3473 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3476 static int oxu_get_frame(struct usb_hcd
*hcd
)
3478 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3480 return (readl(&oxu
->regs
->frame_index
) >> 3) %
3484 /* Build "status change" packet (one or two bytes) from HC registers */
3485 static int oxu_hub_status_data(struct usb_hcd
*hcd
, char *buf
)
3487 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3488 u32 temp
, mask
, status
= 0;
3489 int ports
, i
, retval
= 1;
3490 unsigned long flags
;
3492 /* if !PM, root hub timers won't get shut down ... */
3493 if (!HC_IS_RUNNING(hcd
->state
))
3496 /* init status to no-changes */
3498 ports
= HCS_N_PORTS(oxu
->hcs_params
);
3504 /* Some boards (mostly VIA?) report bogus overcurrent indications,
3505 * causing massive log spam unless we completely ignore them. It
3506 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3507 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3508 * PORT_POWER; that's surprising, but maybe within-spec.
3511 mask
= PORT_CSC
| PORT_PEC
| PORT_OCC
;
3513 mask
= PORT_CSC
| PORT_PEC
;
3515 /* no hub change reports (bit 0) for now (power, ...) */
3517 /* port N changes (bit N)? */
3518 spin_lock_irqsave(&oxu
->lock
, flags
);
3519 for (i
= 0; i
< ports
; i
++) {
3520 temp
= readl(&oxu
->regs
->port_status
[i
]);
3523 * Return status information even for ports with OWNER set.
3524 * Otherwise hub_wq wouldn't see the disconnect event when a
3525 * high-speed device is switched over to the companion
3526 * controller by the user.
3529 if (!(temp
& PORT_CONNECT
))
3530 oxu
->reset_done
[i
] = 0;
3531 if ((temp
& mask
) != 0 || ((temp
& PORT_RESUME
) != 0 &&
3532 time_after_eq(jiffies
, oxu
->reset_done
[i
]))) {
3534 buf
[0] |= 1 << (i
+ 1);
3536 buf
[1] |= 1 << (i
- 7);
3540 /* FIXME autosuspend idle root hubs */
3541 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3542 return status
? retval
: 0;
3545 /* Returns the speed of a device attached to a port on the root hub. */
3546 static inline unsigned int oxu_port_speed(struct oxu_hcd
*oxu
,
3547 unsigned int portsc
)
3549 switch ((portsc
>> 26) & 3) {
3553 return USB_PORT_STAT_LOW_SPEED
;
3556 return USB_PORT_STAT_HIGH_SPEED
;
3560 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3561 static int oxu_hub_control(struct usb_hcd
*hcd
, u16 typeReq
,
3562 u16 wValue
, u16 wIndex
, char *buf
, u16 wLength
)
3564 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3565 int ports
= HCS_N_PORTS(oxu
->hcs_params
);
3566 u32 __iomem
*status_reg
= &oxu
->regs
->port_status
[wIndex
- 1];
3568 unsigned long flags
;
3573 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3574 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3575 * (track current state ourselves) ... blink for diagnostics,
3576 * power, "this is the one", etc. EHCI spec supports this.
3579 spin_lock_irqsave(&oxu
->lock
, flags
);
3581 case ClearHubFeature
:
3583 case C_HUB_LOCAL_POWER
:
3584 case C_HUB_OVER_CURRENT
:
3585 /* no hub-wide feature/status flags */
3591 case ClearPortFeature
:
3592 if (!wIndex
|| wIndex
> ports
)
3595 temp
= readl(status_reg
);
3598 * Even if OWNER is set, so the port is owned by the
3599 * companion controller, hub_wq needs to be able to clear
3600 * the port-change status bits (especially
3601 * USB_PORT_STAT_C_CONNECTION).
3605 case USB_PORT_FEAT_ENABLE
:
3606 writel(temp
& ~PORT_PE
, status_reg
);
3608 case USB_PORT_FEAT_C_ENABLE
:
3609 writel((temp
& ~PORT_RWC_BITS
) | PORT_PEC
, status_reg
);
3611 case USB_PORT_FEAT_SUSPEND
:
3612 if (temp
& PORT_RESET
)
3614 if (temp
& PORT_SUSPEND
) {
3615 if ((temp
& PORT_PE
) == 0)
3617 /* resume signaling for 20 msec */
3618 temp
&= ~(PORT_RWC_BITS
| PORT_WAKE_BITS
);
3619 writel(temp
| PORT_RESUME
, status_reg
);
3620 oxu
->reset_done
[wIndex
] = jiffies
3621 + msecs_to_jiffies(20);
3624 case USB_PORT_FEAT_C_SUSPEND
:
3625 /* we auto-clear this feature */
3627 case USB_PORT_FEAT_POWER
:
3628 if (HCS_PPC(oxu
->hcs_params
))
3629 writel(temp
& ~(PORT_RWC_BITS
| PORT_POWER
),
3632 case USB_PORT_FEAT_C_CONNECTION
:
3633 writel((temp
& ~PORT_RWC_BITS
) | PORT_CSC
, status_reg
);
3635 case USB_PORT_FEAT_C_OVER_CURRENT
:
3636 writel((temp
& ~PORT_RWC_BITS
) | PORT_OCC
, status_reg
);
3638 case USB_PORT_FEAT_C_RESET
:
3639 /* GetPortStatus clears reset */
3644 readl(&oxu
->regs
->command
); /* unblock posted write */
3646 case GetHubDescriptor
:
3647 ehci_hub_descriptor(oxu
, (struct usb_hub_descriptor
*)
3651 /* no hub-wide feature/status flags */
3655 if (!wIndex
|| wIndex
> ports
)
3659 temp
= readl(status_reg
);
3661 /* wPortChange bits */
3662 if (temp
& PORT_CSC
)
3663 status
|= USB_PORT_STAT_C_CONNECTION
<< 16;
3664 if (temp
& PORT_PEC
)
3665 status
|= USB_PORT_STAT_C_ENABLE
<< 16;
3666 if ((temp
& PORT_OCC
) && !ignore_oc
)
3667 status
|= USB_PORT_STAT_C_OVERCURRENT
<< 16;
3669 /* whoever resumes must GetPortStatus to complete it!! */
3670 if (temp
& PORT_RESUME
) {
3672 /* Remote Wakeup received? */
3673 if (!oxu
->reset_done
[wIndex
]) {
3674 /* resume signaling for 20 msec */
3675 oxu
->reset_done
[wIndex
] = jiffies
3676 + msecs_to_jiffies(20);
3677 /* check the port again */
3678 mod_timer(&oxu_to_hcd(oxu
)->rh_timer
,
3679 oxu
->reset_done
[wIndex
]);
3682 /* resume completed? */
3683 else if (time_after_eq(jiffies
,
3684 oxu
->reset_done
[wIndex
])) {
3685 status
|= USB_PORT_STAT_C_SUSPEND
<< 16;
3686 oxu
->reset_done
[wIndex
] = 0;
3688 /* stop resume signaling */
3689 temp
= readl(status_reg
);
3690 writel(temp
& ~(PORT_RWC_BITS
| PORT_RESUME
),
3692 retval
= handshake(oxu
, status_reg
,
3693 PORT_RESUME
, 0, 2000 /* 2msec */);
3696 "port %d resume error %d\n",
3697 wIndex
+ 1, retval
);
3700 temp
&= ~(PORT_SUSPEND
|PORT_RESUME
|(3<<10));
3704 /* whoever resets must GetPortStatus to complete it!! */
3705 if ((temp
& PORT_RESET
)
3706 && time_after_eq(jiffies
,
3707 oxu
->reset_done
[wIndex
])) {
3708 status
|= USB_PORT_STAT_C_RESET
<< 16;
3709 oxu
->reset_done
[wIndex
] = 0;
3711 /* force reset to complete */
3712 writel(temp
& ~(PORT_RWC_BITS
| PORT_RESET
),
3714 /* REVISIT: some hardware needs 550+ usec to clear
3715 * this bit; seems too long to spin routinely...
3717 retval
= handshake(oxu
, status_reg
,
3718 PORT_RESET
, 0, 750);
3720 oxu_err(oxu
, "port %d reset error %d\n",
3721 wIndex
+ 1, retval
);
3725 /* see what we found out */
3726 temp
= check_reset_complete(oxu
, wIndex
, status_reg
,
3730 /* transfer dedicated ports to the companion hc */
3731 if ((temp
& PORT_CONNECT
) &&
3732 test_bit(wIndex
, &oxu
->companion_ports
)) {
3733 temp
&= ~PORT_RWC_BITS
;
3735 writel(temp
, status_reg
);
3736 oxu_dbg(oxu
, "port %d --> companion\n", wIndex
+ 1);
3737 temp
= readl(status_reg
);
3741 * Even if OWNER is set, there's no harm letting hub_wq
3742 * see the wPortStatus values (they should all be 0 except
3743 * for PORT_POWER anyway).
3746 if (temp
& PORT_CONNECT
) {
3747 status
|= USB_PORT_STAT_CONNECTION
;
3748 /* status may be from integrated TT */
3749 status
|= oxu_port_speed(oxu
, temp
);
3752 status
|= USB_PORT_STAT_ENABLE
;
3753 if (temp
& (PORT_SUSPEND
|PORT_RESUME
))
3754 status
|= USB_PORT_STAT_SUSPEND
;
3756 status
|= USB_PORT_STAT_OVERCURRENT
;
3757 if (temp
& PORT_RESET
)
3758 status
|= USB_PORT_STAT_RESET
;
3759 if (temp
& PORT_POWER
)
3760 status
|= USB_PORT_STAT_POWER
;
3762 #ifndef OXU_VERBOSE_DEBUG
3763 if (status
& ~0xffff) /* only if wPortChange is interesting */
3765 dbg_port(oxu
, "GetStatus", wIndex
+ 1, temp
);
3766 put_unaligned(cpu_to_le32(status
), (__le32
*) buf
);
3770 case C_HUB_LOCAL_POWER
:
3771 case C_HUB_OVER_CURRENT
:
3772 /* no hub-wide feature/status flags */
3778 case SetPortFeature
:
3779 selector
= wIndex
>> 8;
3781 if (!wIndex
|| wIndex
> ports
)
3784 temp
= readl(status_reg
);
3785 if (temp
& PORT_OWNER
)
3788 temp
&= ~PORT_RWC_BITS
;
3790 case USB_PORT_FEAT_SUSPEND
:
3791 if ((temp
& PORT_PE
) == 0
3792 || (temp
& PORT_RESET
) != 0)
3794 if (device_may_wakeup(&hcd
->self
.root_hub
->dev
))
3795 temp
|= PORT_WAKE_BITS
;
3796 writel(temp
| PORT_SUSPEND
, status_reg
);
3798 case USB_PORT_FEAT_POWER
:
3799 if (HCS_PPC(oxu
->hcs_params
))
3800 writel(temp
| PORT_POWER
, status_reg
);
3802 case USB_PORT_FEAT_RESET
:
3803 if (temp
& PORT_RESUME
)
3805 /* line status bits may report this as low speed,
3806 * which can be fine if this root hub has a
3807 * transaction translator built in.
3809 oxu_vdbg(oxu
, "port %d reset\n", wIndex
+ 1);
3814 * caller must wait, then call GetPortStatus
3815 * usb 2.0 spec says 50 ms resets on root
3817 oxu
->reset_done
[wIndex
] = jiffies
3818 + msecs_to_jiffies(50);
3819 writel(temp
, status_reg
);
3822 /* For downstream facing ports (these): one hub port is put
3823 * into test mode according to USB2 11.24.2.13, then the hub
3824 * must be reset (which for root hub now means rmmod+modprobe,
3825 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
3826 * about the EHCI-specific stuff.
3828 case USB_PORT_FEAT_TEST
:
3829 if (!selector
|| selector
> 5)
3833 temp
|= selector
<< 16;
3834 writel(temp
, status_reg
);
3840 readl(&oxu
->regs
->command
); /* unblock posted writes */
3845 /* "stall" on error */
3848 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3854 static int oxu_bus_suspend(struct usb_hcd
*hcd
)
3856 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3860 oxu_dbg(oxu
, "suspend root hub\n");
3862 if (time_before(jiffies
, oxu
->next_statechange
))
3865 port
= HCS_N_PORTS(oxu
->hcs_params
);
3866 spin_lock_irq(&oxu
->lock
);
3868 /* stop schedules, clean any completed work */
3869 if (HC_IS_RUNNING(hcd
->state
)) {
3871 hcd
->state
= HC_STATE_QUIESCING
;
3873 oxu
->command
= readl(&oxu
->regs
->command
);
3875 oxu
->reclaim_ready
= 1;
3878 /* Unlike other USB host controller types, EHCI doesn't have
3879 * any notion of "global" or bus-wide suspend. The driver has
3880 * to manually suspend all the active unsuspended ports, and
3881 * then manually resume them in the bus_resume() routine.
3883 oxu
->bus_suspended
= 0;
3885 u32 __iomem
*reg
= &oxu
->regs
->port_status
[port
];
3886 u32 t1
= readl(reg
) & ~PORT_RWC_BITS
;
3889 /* keep track of which ports we suspend */
3890 if ((t1
& PORT_PE
) && !(t1
& PORT_OWNER
) &&
3891 !(t1
& PORT_SUSPEND
)) {
3893 set_bit(port
, &oxu
->bus_suspended
);
3896 /* enable remote wakeup on all ports */
3897 if (device_may_wakeup(&hcd
->self
.root_hub
->dev
))
3898 t2
|= PORT_WKOC_E
|PORT_WKDISC_E
|PORT_WKCONN_E
;
3900 t2
&= ~(PORT_WKOC_E
|PORT_WKDISC_E
|PORT_WKCONN_E
);
3903 oxu_vdbg(oxu
, "port %d, %08x -> %08x\n",
3909 /* turn off now-idle HC */
3910 del_timer_sync(&oxu
->watchdog
);
3912 hcd
->state
= HC_STATE_SUSPENDED
;
3914 /* allow remote wakeup */
3916 if (!device_may_wakeup(&hcd
->self
.root_hub
->dev
))
3918 writel(mask
, &oxu
->regs
->intr_enable
);
3919 readl(&oxu
->regs
->intr_enable
);
3921 oxu
->next_statechange
= jiffies
+ msecs_to_jiffies(10);
3922 spin_unlock_irq(&oxu
->lock
);
3926 /* Caller has locked the root hub, and should reset/reinit on error */
3927 static int oxu_bus_resume(struct usb_hcd
*hcd
)
3929 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3933 if (time_before(jiffies
, oxu
->next_statechange
))
3935 spin_lock_irq(&oxu
->lock
);
3937 /* Ideally and we've got a real resume here, and no port's power
3938 * was lost. (For PCI, that means Vaux was maintained.) But we
3939 * could instead be restoring a swsusp snapshot -- so that BIOS was
3940 * the last user of the controller, not reset/pm hardware keeping
3941 * state we gave to it.
3943 temp
= readl(&oxu
->regs
->intr_enable
);
3944 oxu_dbg(oxu
, "resume root hub%s\n", temp
? "" : " after power loss");
3946 /* at least some APM implementations will try to deliver
3947 * IRQs right away, so delay them until we're ready.
3949 writel(0, &oxu
->regs
->intr_enable
);
3951 /* re-init operational registers */
3952 writel(0, &oxu
->regs
->segment
);
3953 writel(oxu
->periodic_dma
, &oxu
->regs
->frame_list
);
3954 writel((u32
) oxu
->async
->qh_dma
, &oxu
->regs
->async_next
);
3956 /* restore CMD_RUN, framelist size, and irq threshold */
3957 writel(oxu
->command
, &oxu
->regs
->command
);
3959 /* Some controller/firmware combinations need a delay during which
3960 * they set up the port statuses. See Bugzilla #8190. */
3963 /* manually resume the ports we suspended during bus_suspend() */
3964 i
= HCS_N_PORTS(oxu
->hcs_params
);
3966 temp
= readl(&oxu
->regs
->port_status
[i
]);
3967 temp
&= ~(PORT_RWC_BITS
3968 | PORT_WKOC_E
| PORT_WKDISC_E
| PORT_WKCONN_E
);
3969 if (test_bit(i
, &oxu
->bus_suspended
) && (temp
& PORT_SUSPEND
)) {
3970 oxu
->reset_done
[i
] = jiffies
+ msecs_to_jiffies(20);
3971 temp
|= PORT_RESUME
;
3973 writel(temp
, &oxu
->regs
->port_status
[i
]);
3975 i
= HCS_N_PORTS(oxu
->hcs_params
);
3978 temp
= readl(&oxu
->regs
->port_status
[i
]);
3979 if (test_bit(i
, &oxu
->bus_suspended
) && (temp
& PORT_SUSPEND
)) {
3980 temp
&= ~(PORT_RWC_BITS
| PORT_RESUME
);
3981 writel(temp
, &oxu
->regs
->port_status
[i
]);
3982 oxu_vdbg(oxu
, "resumed port %d\n", i
+ 1);
3985 (void) readl(&oxu
->regs
->command
);
3987 /* maybe re-activate the schedule(s) */
3989 if (oxu
->async
->qh_next
.qh
)
3991 if (oxu
->periodic_sched
)
3994 oxu
->command
|= temp
;
3995 writel(oxu
->command
, &oxu
->regs
->command
);
3998 oxu
->next_statechange
= jiffies
+ msecs_to_jiffies(5);
3999 hcd
->state
= HC_STATE_RUNNING
;
4001 /* Now we can safely re-enable irqs */
4002 writel(INTR_MASK
, &oxu
->regs
->intr_enable
);
4004 spin_unlock_irq(&oxu
->lock
);
4010 static int oxu_bus_suspend(struct usb_hcd
*hcd
)
4015 static int oxu_bus_resume(struct usb_hcd
*hcd
)
4020 #endif /* CONFIG_PM */
4022 static const struct hc_driver oxu_hc_driver
= {
4023 .description
= "oxu210hp_hcd",
4024 .product_desc
= "oxu210hp HCD",
4025 .hcd_priv_size
= sizeof(struct oxu_hcd
),
4028 * Generic hardware linkage
4031 .flags
= HCD_MEMORY
| HCD_USB2
,
4034 * Basic lifecycle operations
4039 .shutdown
= oxu_shutdown
,
4042 * Managing i/o requests and associated device resources
4044 .urb_enqueue
= oxu_urb_enqueue
,
4045 .urb_dequeue
= oxu_urb_dequeue
,
4046 .endpoint_disable
= oxu_endpoint_disable
,
4049 * Scheduling support
4051 .get_frame_number
= oxu_get_frame
,
4056 .hub_status_data
= oxu_hub_status_data
,
4057 .hub_control
= oxu_hub_control
,
4058 .bus_suspend
= oxu_bus_suspend
,
4059 .bus_resume
= oxu_bus_resume
,
4066 static void oxu_configuration(struct platform_device
*pdev
, void *base
)
4070 /* Initialize top level registers.
4073 oxu_writel(base
, OXU_HOSTIFCONFIG
, 0x0000037D);
4074 oxu_writel(base
, OXU_SOFTRESET
, OXU_SRESET
);
4075 oxu_writel(base
, OXU_HOSTIFCONFIG
, 0x0000037D);
4077 tmp
= oxu_readl(base
, OXU_PIOBURSTREADCTRL
);
4078 oxu_writel(base
, OXU_PIOBURSTREADCTRL
, tmp
| 0x0040);
4080 oxu_writel(base
, OXU_ASO
, OXU_SPHPOEN
| OXU_OVRCCURPUPDEN
|
4081 OXU_COMPARATOR
| OXU_ASO_OP
);
4083 tmp
= oxu_readl(base
, OXU_CLKCTRL_SET
);
4084 oxu_writel(base
, OXU_CLKCTRL_SET
, tmp
| OXU_SYSCLKEN
| OXU_USBOTGCLKEN
);
4086 /* Clear all top interrupt enable */
4087 oxu_writel(base
, OXU_CHIPIRQEN_CLR
, 0xff);
4089 /* Clear all top interrupt status */
4090 oxu_writel(base
, OXU_CHIPIRQSTATUS
, 0xff);
4092 /* Enable all needed top interrupt except OTG SPH core */
4093 oxu_writel(base
, OXU_CHIPIRQEN_SET
, OXU_USBSPHLPWUI
| OXU_USBOTGLPWUI
);
4096 static int oxu_verify_id(struct platform_device
*pdev
, void *base
)
4099 static const char * const bo
[] = {
4106 /* Read controller signature register to find a match */
4107 id
= oxu_readl(base
, OXU_DEVICEID
);
4108 dev_info(&pdev
->dev
, "device ID %x\n", id
);
4109 if ((id
& OXU_REV_MASK
) != (OXU_REV_2100
<< OXU_REV_SHIFT
))
4112 dev_info(&pdev
->dev
, "found device %x %s (%04x:%04x)\n",
4113 id
>> OXU_REV_SHIFT
,
4114 bo
[(id
& OXU_BO_MASK
) >> OXU_BO_SHIFT
],
4115 (id
& OXU_MAJ_REV_MASK
) >> OXU_MAJ_REV_SHIFT
,
4116 (id
& OXU_MIN_REV_MASK
) >> OXU_MIN_REV_SHIFT
);
4121 static const struct hc_driver oxu_hc_driver
;
4122 static struct usb_hcd
*oxu_create(struct platform_device
*pdev
,
4123 unsigned long memstart
, unsigned long memlen
,
4124 void *base
, int irq
, int otg
)
4126 struct device
*dev
= &pdev
->dev
;
4128 struct usb_hcd
*hcd
;
4129 struct oxu_hcd
*oxu
;
4132 /* Set endian mode and host mode */
4133 oxu_writel(base
+ (otg
? OXU_OTG_CORE_OFFSET
: OXU_SPH_CORE_OFFSET
),
4135 OXU_CM_HOST_ONLY
| OXU_ES_LITTLE
| OXU_VBPS
);
4137 hcd
= usb_create_hcd(&oxu_hc_driver
, dev
,
4138 otg
? "oxu210hp_otg" : "oxu210hp_sph");
4140 return ERR_PTR(-ENOMEM
);
4142 hcd
->rsrc_start
= memstart
;
4143 hcd
->rsrc_len
= memlen
;
4146 hcd
->state
= HC_STATE_HALT
;
4148 oxu
= hcd_to_oxu(hcd
);
4151 ret
= usb_add_hcd(hcd
, irq
, IRQF_SHARED
);
4153 return ERR_PTR(ret
);
4155 device_wakeup_enable(hcd
->self
.controller
);
4159 static int oxu_init(struct platform_device
*pdev
,
4160 unsigned long memstart
, unsigned long memlen
,
4161 void *base
, int irq
)
4163 struct oxu_info
*info
= platform_get_drvdata(pdev
);
4164 struct usb_hcd
*hcd
;
4167 /* First time configuration at start up */
4168 oxu_configuration(pdev
, base
);
4170 ret
= oxu_verify_id(pdev
, base
);
4172 dev_err(&pdev
->dev
, "no devices found!\n");
4176 /* Create the OTG controller */
4177 hcd
= oxu_create(pdev
, memstart
, memlen
, base
, irq
, 1);
4179 dev_err(&pdev
->dev
, "cannot create OTG controller!\n");
4181 goto error_create_otg
;
4185 /* Create the SPH host controller */
4186 hcd
= oxu_create(pdev
, memstart
, memlen
, base
, irq
, 0);
4188 dev_err(&pdev
->dev
, "cannot create SPH controller!\n");
4190 goto error_create_sph
;
4194 oxu_writel(base
, OXU_CHIPIRQEN_SET
,
4195 oxu_readl(base
, OXU_CHIPIRQEN_SET
) | 3);
4200 usb_remove_hcd(info
->hcd
[0]);
4201 usb_put_hcd(info
->hcd
[0]);
4207 static int oxu_drv_probe(struct platform_device
*pdev
)
4209 struct resource
*res
;
4211 unsigned long memstart
, memlen
;
4213 struct oxu_info
*info
;
4219 * Get the platform resources
4221 res
= platform_get_resource(pdev
, IORESOURCE_IRQ
, 0);
4224 "no IRQ! Check %s setup!\n", dev_name(&pdev
->dev
));
4228 dev_dbg(&pdev
->dev
, "IRQ resource %d\n", irq
);
4230 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
4231 base
= devm_ioremap_resource(&pdev
->dev
, res
);
4233 ret
= PTR_ERR(base
);
4236 memstart
= res
->start
;
4237 memlen
= resource_size(res
);
4239 ret
= irq_set_irq_type(irq
, IRQF_TRIGGER_FALLING
);
4241 dev_err(&pdev
->dev
, "error setting irq type\n");
4246 /* Allocate a driver data struct to hold useful info for both
4249 info
= devm_kzalloc(&pdev
->dev
, sizeof(struct oxu_info
), GFP_KERNEL
);
4254 platform_set_drvdata(pdev
, info
);
4256 ret
= oxu_init(pdev
, memstart
, memlen
, base
, irq
);
4258 dev_dbg(&pdev
->dev
, "cannot init USB devices\n");
4262 dev_info(&pdev
->dev
, "devices enabled and running\n");
4263 platform_set_drvdata(pdev
, info
);
4268 dev_err(&pdev
->dev
, "init %s fail, %d\n", dev_name(&pdev
->dev
), ret
);
4272 static void oxu_remove(struct platform_device
*pdev
, struct usb_hcd
*hcd
)
4274 usb_remove_hcd(hcd
);
4278 static int oxu_drv_remove(struct platform_device
*pdev
)
4280 struct oxu_info
*info
= platform_get_drvdata(pdev
);
4282 oxu_remove(pdev
, info
->hcd
[0]);
4283 oxu_remove(pdev
, info
->hcd
[1]);
4288 static void oxu_drv_shutdown(struct platform_device
*pdev
)
4290 oxu_drv_remove(pdev
);
4295 static int oxu_drv_suspend(struct device
*dev
)
4297 struct platform_device
*pdev
= to_platform_device(dev
);
4298 struct usb_hcd
*hcd
= dev_get_drvdata(dev
);
4303 static int oxu_drv_resume(struct device
*dev
)
4305 struct platform_device
*pdev
= to_platform_device(dev
);
4306 struct usb_hcd
*hcd
= dev_get_drvdata(dev
);
4311 #define oxu_drv_suspend NULL
4312 #define oxu_drv_resume NULL
4315 static struct platform_driver oxu_driver
= {
4316 .probe
= oxu_drv_probe
,
4317 .remove
= oxu_drv_remove
,
4318 .shutdown
= oxu_drv_shutdown
,
4319 .suspend
= oxu_drv_suspend
,
4320 .resume
= oxu_drv_resume
,
4322 .name
= "oxu210hp-hcd",
4323 .bus
= &platform_bus_type
4327 module_platform_driver(oxu_driver
);
4329 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION
);
4330 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
4331 MODULE_LICENSE("GPL");