2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
7 * This file is released under the GPL.
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/kthread.h>
22 #include <linux/backing-dev.h>
23 #include <linux/atomic.h>
24 #include <linux/scatterlist.h>
25 #include <linux/rbtree.h>
27 #include <asm/unaligned.h>
28 #include <crypto/hash.h>
29 #include <crypto/md5.h>
30 #include <crypto/algapi.h>
31 #include <crypto/skcipher.h>
33 #include <linux/device-mapper.h>
35 #define DM_MSG_PREFIX "crypt"
38 * context holding the current state of a multi-part conversion
40 struct convert_context
{
41 struct completion restart
;
44 struct bvec_iter iter_in
;
45 struct bvec_iter iter_out
;
48 struct skcipher_request
*req
;
52 * per bio private data
55 struct crypt_config
*cc
;
57 struct work_struct work
;
59 struct convert_context ctx
;
65 struct rb_node rb_node
;
66 } CRYPTO_MINALIGN_ATTR
;
68 struct dm_crypt_request
{
69 struct convert_context
*ctx
;
70 struct scatterlist sg_in
;
71 struct scatterlist sg_out
;
77 struct crypt_iv_operations
{
78 int (*ctr
)(struct crypt_config
*cc
, struct dm_target
*ti
,
80 void (*dtr
)(struct crypt_config
*cc
);
81 int (*init
)(struct crypt_config
*cc
);
82 int (*wipe
)(struct crypt_config
*cc
);
83 int (*generator
)(struct crypt_config
*cc
, u8
*iv
,
84 struct dm_crypt_request
*dmreq
);
85 int (*post
)(struct crypt_config
*cc
, u8
*iv
,
86 struct dm_crypt_request
*dmreq
);
89 struct iv_essiv_private
{
90 struct crypto_ahash
*hash_tfm
;
94 struct iv_benbi_private
{
98 #define LMK_SEED_SIZE 64 /* hash + 0 */
99 struct iv_lmk_private
{
100 struct crypto_shash
*hash_tfm
;
104 #define TCW_WHITENING_SIZE 16
105 struct iv_tcw_private
{
106 struct crypto_shash
*crc32_tfm
;
112 * Crypt: maps a linear range of a block device
113 * and encrypts / decrypts at the same time.
115 enum flags
{ DM_CRYPT_SUSPENDED
, DM_CRYPT_KEY_VALID
,
116 DM_CRYPT_SAME_CPU
, DM_CRYPT_NO_OFFLOAD
,
117 DM_CRYPT_EXIT_THREAD
};
120 * The fields in here must be read only after initialization.
122 struct crypt_config
{
127 * pool for per bio private data, crypto requests and
128 * encryption requeusts/buffer pages
131 mempool_t
*page_pool
;
133 struct mutex bio_alloc_lock
;
135 struct workqueue_struct
*io_queue
;
136 struct workqueue_struct
*crypt_queue
;
138 struct task_struct
*write_thread
;
139 wait_queue_head_t write_thread_wait
;
140 struct rb_root write_tree
;
145 struct crypt_iv_operations
*iv_gen_ops
;
147 struct iv_essiv_private essiv
;
148 struct iv_benbi_private benbi
;
149 struct iv_lmk_private lmk
;
150 struct iv_tcw_private tcw
;
153 unsigned int iv_size
;
155 /* ESSIV: struct crypto_cipher *essiv_tfm */
157 struct crypto_skcipher
**tfms
;
161 * Layout of each crypto request:
163 * struct skcipher_request
166 * struct dm_crypt_request
170 * The padding is added so that dm_crypt_request and the IV are
173 unsigned int dmreq_start
;
175 unsigned int per_bio_data_size
;
178 unsigned int key_size
;
179 unsigned int key_parts
; /* independent parts in key buffer */
180 unsigned int key_extra_size
; /* additional keys length */
186 static void clone_init(struct dm_crypt_io
*, struct bio
*);
187 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
);
188 static u8
*iv_of_dmreq(struct crypt_config
*cc
, struct dm_crypt_request
*dmreq
);
191 * Use this to access cipher attributes that are the same for each CPU.
193 static struct crypto_skcipher
*any_tfm(struct crypt_config
*cc
)
199 * Different IV generation algorithms:
201 * plain: the initial vector is the 32-bit little-endian version of the sector
202 * number, padded with zeros if necessary.
204 * plain64: the initial vector is the 64-bit little-endian version of the sector
205 * number, padded with zeros if necessary.
207 * essiv: "encrypted sector|salt initial vector", the sector number is
208 * encrypted with the bulk cipher using a salt as key. The salt
209 * should be derived from the bulk cipher's key via hashing.
211 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
212 * (needed for LRW-32-AES and possible other narrow block modes)
214 * null: the initial vector is always zero. Provides compatibility with
215 * obsolete loop_fish2 devices. Do not use for new devices.
217 * lmk: Compatible implementation of the block chaining mode used
218 * by the Loop-AES block device encryption system
219 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
220 * It operates on full 512 byte sectors and uses CBC
221 * with an IV derived from the sector number, the data and
222 * optionally extra IV seed.
223 * This means that after decryption the first block
224 * of sector must be tweaked according to decrypted data.
225 * Loop-AES can use three encryption schemes:
226 * version 1: is plain aes-cbc mode
227 * version 2: uses 64 multikey scheme with lmk IV generator
228 * version 3: the same as version 2 with additional IV seed
229 * (it uses 65 keys, last key is used as IV seed)
231 * tcw: Compatible implementation of the block chaining mode used
232 * by the TrueCrypt device encryption system (prior to version 4.1).
233 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
234 * It operates on full 512 byte sectors and uses CBC
235 * with an IV derived from initial key and the sector number.
236 * In addition, whitening value is applied on every sector, whitening
237 * is calculated from initial key, sector number and mixed using CRC32.
238 * Note that this encryption scheme is vulnerable to watermarking attacks
239 * and should be used for old compatible containers access only.
241 * plumb: unimplemented, see:
242 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
245 static int crypt_iv_plain_gen(struct crypt_config
*cc
, u8
*iv
,
246 struct dm_crypt_request
*dmreq
)
248 memset(iv
, 0, cc
->iv_size
);
249 *(__le32
*)iv
= cpu_to_le32(dmreq
->iv_sector
& 0xffffffff);
254 static int crypt_iv_plain64_gen(struct crypt_config
*cc
, u8
*iv
,
255 struct dm_crypt_request
*dmreq
)
257 memset(iv
, 0, cc
->iv_size
);
258 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
263 /* Initialise ESSIV - compute salt but no local memory allocations */
264 static int crypt_iv_essiv_init(struct crypt_config
*cc
)
266 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
267 AHASH_REQUEST_ON_STACK(req
, essiv
->hash_tfm
);
268 struct scatterlist sg
;
269 struct crypto_cipher
*essiv_tfm
;
272 sg_init_one(&sg
, cc
->key
, cc
->key_size
);
273 ahash_request_set_tfm(req
, essiv
->hash_tfm
);
274 ahash_request_set_callback(req
, CRYPTO_TFM_REQ_MAY_SLEEP
, NULL
, NULL
);
275 ahash_request_set_crypt(req
, &sg
, essiv
->salt
, cc
->key_size
);
277 err
= crypto_ahash_digest(req
);
278 ahash_request_zero(req
);
282 essiv_tfm
= cc
->iv_private
;
284 err
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
,
285 crypto_ahash_digestsize(essiv
->hash_tfm
));
292 /* Wipe salt and reset key derived from volume key */
293 static int crypt_iv_essiv_wipe(struct crypt_config
*cc
)
295 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
296 unsigned salt_size
= crypto_ahash_digestsize(essiv
->hash_tfm
);
297 struct crypto_cipher
*essiv_tfm
;
300 memset(essiv
->salt
, 0, salt_size
);
302 essiv_tfm
= cc
->iv_private
;
303 r
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
, salt_size
);
310 /* Set up per cpu cipher state */
311 static struct crypto_cipher
*setup_essiv_cpu(struct crypt_config
*cc
,
312 struct dm_target
*ti
,
313 u8
*salt
, unsigned saltsize
)
315 struct crypto_cipher
*essiv_tfm
;
318 /* Setup the essiv_tfm with the given salt */
319 essiv_tfm
= crypto_alloc_cipher(cc
->cipher
, 0, CRYPTO_ALG_ASYNC
);
320 if (IS_ERR(essiv_tfm
)) {
321 ti
->error
= "Error allocating crypto tfm for ESSIV";
325 if (crypto_cipher_blocksize(essiv_tfm
) !=
326 crypto_skcipher_ivsize(any_tfm(cc
))) {
327 ti
->error
= "Block size of ESSIV cipher does "
328 "not match IV size of block cipher";
329 crypto_free_cipher(essiv_tfm
);
330 return ERR_PTR(-EINVAL
);
333 err
= crypto_cipher_setkey(essiv_tfm
, salt
, saltsize
);
335 ti
->error
= "Failed to set key for ESSIV cipher";
336 crypto_free_cipher(essiv_tfm
);
343 static void crypt_iv_essiv_dtr(struct crypt_config
*cc
)
345 struct crypto_cipher
*essiv_tfm
;
346 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
348 crypto_free_ahash(essiv
->hash_tfm
);
349 essiv
->hash_tfm
= NULL
;
354 essiv_tfm
= cc
->iv_private
;
357 crypto_free_cipher(essiv_tfm
);
359 cc
->iv_private
= NULL
;
362 static int crypt_iv_essiv_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
365 struct crypto_cipher
*essiv_tfm
= NULL
;
366 struct crypto_ahash
*hash_tfm
= NULL
;
371 ti
->error
= "Digest algorithm missing for ESSIV mode";
375 /* Allocate hash algorithm */
376 hash_tfm
= crypto_alloc_ahash(opts
, 0, CRYPTO_ALG_ASYNC
);
377 if (IS_ERR(hash_tfm
)) {
378 ti
->error
= "Error initializing ESSIV hash";
379 err
= PTR_ERR(hash_tfm
);
383 salt
= kzalloc(crypto_ahash_digestsize(hash_tfm
), GFP_KERNEL
);
385 ti
->error
= "Error kmallocing salt storage in ESSIV";
390 cc
->iv_gen_private
.essiv
.salt
= salt
;
391 cc
->iv_gen_private
.essiv
.hash_tfm
= hash_tfm
;
393 essiv_tfm
= setup_essiv_cpu(cc
, ti
, salt
,
394 crypto_ahash_digestsize(hash_tfm
));
395 if (IS_ERR(essiv_tfm
)) {
396 crypt_iv_essiv_dtr(cc
);
397 return PTR_ERR(essiv_tfm
);
399 cc
->iv_private
= essiv_tfm
;
404 if (hash_tfm
&& !IS_ERR(hash_tfm
))
405 crypto_free_ahash(hash_tfm
);
410 static int crypt_iv_essiv_gen(struct crypt_config
*cc
, u8
*iv
,
411 struct dm_crypt_request
*dmreq
)
413 struct crypto_cipher
*essiv_tfm
= cc
->iv_private
;
415 memset(iv
, 0, cc
->iv_size
);
416 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
417 crypto_cipher_encrypt_one(essiv_tfm
, iv
, iv
);
422 static int crypt_iv_benbi_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
425 unsigned bs
= crypto_skcipher_blocksize(any_tfm(cc
));
428 /* we need to calculate how far we must shift the sector count
429 * to get the cipher block count, we use this shift in _gen */
431 if (1 << log
!= bs
) {
432 ti
->error
= "cypher blocksize is not a power of 2";
437 ti
->error
= "cypher blocksize is > 512";
441 cc
->iv_gen_private
.benbi
.shift
= 9 - log
;
446 static void crypt_iv_benbi_dtr(struct crypt_config
*cc
)
450 static int crypt_iv_benbi_gen(struct crypt_config
*cc
, u8
*iv
,
451 struct dm_crypt_request
*dmreq
)
455 memset(iv
, 0, cc
->iv_size
- sizeof(u64
)); /* rest is cleared below */
457 val
= cpu_to_be64(((u64
)dmreq
->iv_sector
<< cc
->iv_gen_private
.benbi
.shift
) + 1);
458 put_unaligned(val
, (__be64
*)(iv
+ cc
->iv_size
- sizeof(u64
)));
463 static int crypt_iv_null_gen(struct crypt_config
*cc
, u8
*iv
,
464 struct dm_crypt_request
*dmreq
)
466 memset(iv
, 0, cc
->iv_size
);
471 static void crypt_iv_lmk_dtr(struct crypt_config
*cc
)
473 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
475 if (lmk
->hash_tfm
&& !IS_ERR(lmk
->hash_tfm
))
476 crypto_free_shash(lmk
->hash_tfm
);
477 lmk
->hash_tfm
= NULL
;
483 static int crypt_iv_lmk_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
486 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
488 lmk
->hash_tfm
= crypto_alloc_shash("md5", 0, 0);
489 if (IS_ERR(lmk
->hash_tfm
)) {
490 ti
->error
= "Error initializing LMK hash";
491 return PTR_ERR(lmk
->hash_tfm
);
494 /* No seed in LMK version 2 */
495 if (cc
->key_parts
== cc
->tfms_count
) {
500 lmk
->seed
= kzalloc(LMK_SEED_SIZE
, GFP_KERNEL
);
502 crypt_iv_lmk_dtr(cc
);
503 ti
->error
= "Error kmallocing seed storage in LMK";
510 static int crypt_iv_lmk_init(struct crypt_config
*cc
)
512 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
513 int subkey_size
= cc
->key_size
/ cc
->key_parts
;
515 /* LMK seed is on the position of LMK_KEYS + 1 key */
517 memcpy(lmk
->seed
, cc
->key
+ (cc
->tfms_count
* subkey_size
),
518 crypto_shash_digestsize(lmk
->hash_tfm
));
523 static int crypt_iv_lmk_wipe(struct crypt_config
*cc
)
525 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
528 memset(lmk
->seed
, 0, LMK_SEED_SIZE
);
533 static int crypt_iv_lmk_one(struct crypt_config
*cc
, u8
*iv
,
534 struct dm_crypt_request
*dmreq
,
537 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
538 SHASH_DESC_ON_STACK(desc
, lmk
->hash_tfm
);
539 struct md5_state md5state
;
543 desc
->tfm
= lmk
->hash_tfm
;
544 desc
->flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
546 r
= crypto_shash_init(desc
);
551 r
= crypto_shash_update(desc
, lmk
->seed
, LMK_SEED_SIZE
);
556 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
557 r
= crypto_shash_update(desc
, data
+ 16, 16 * 31);
561 /* Sector is cropped to 56 bits here */
562 buf
[0] = cpu_to_le32(dmreq
->iv_sector
& 0xFFFFFFFF);
563 buf
[1] = cpu_to_le32((((u64
)dmreq
->iv_sector
>> 32) & 0x00FFFFFF) | 0x80000000);
564 buf
[2] = cpu_to_le32(4024);
566 r
= crypto_shash_update(desc
, (u8
*)buf
, sizeof(buf
));
570 /* No MD5 padding here */
571 r
= crypto_shash_export(desc
, &md5state
);
575 for (i
= 0; i
< MD5_HASH_WORDS
; i
++)
576 __cpu_to_le32s(&md5state
.hash
[i
]);
577 memcpy(iv
, &md5state
.hash
, cc
->iv_size
);
582 static int crypt_iv_lmk_gen(struct crypt_config
*cc
, u8
*iv
,
583 struct dm_crypt_request
*dmreq
)
588 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
) {
589 src
= kmap_atomic(sg_page(&dmreq
->sg_in
));
590 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, src
+ dmreq
->sg_in
.offset
);
593 memset(iv
, 0, cc
->iv_size
);
598 static int crypt_iv_lmk_post(struct crypt_config
*cc
, u8
*iv
,
599 struct dm_crypt_request
*dmreq
)
604 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
)
607 dst
= kmap_atomic(sg_page(&dmreq
->sg_out
));
608 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, dst
+ dmreq
->sg_out
.offset
);
610 /* Tweak the first block of plaintext sector */
612 crypto_xor(dst
+ dmreq
->sg_out
.offset
, iv
, cc
->iv_size
);
618 static void crypt_iv_tcw_dtr(struct crypt_config
*cc
)
620 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
622 kzfree(tcw
->iv_seed
);
624 kzfree(tcw
->whitening
);
625 tcw
->whitening
= NULL
;
627 if (tcw
->crc32_tfm
&& !IS_ERR(tcw
->crc32_tfm
))
628 crypto_free_shash(tcw
->crc32_tfm
);
629 tcw
->crc32_tfm
= NULL
;
632 static int crypt_iv_tcw_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
635 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
637 if (cc
->key_size
<= (cc
->iv_size
+ TCW_WHITENING_SIZE
)) {
638 ti
->error
= "Wrong key size for TCW";
642 tcw
->crc32_tfm
= crypto_alloc_shash("crc32", 0, 0);
643 if (IS_ERR(tcw
->crc32_tfm
)) {
644 ti
->error
= "Error initializing CRC32 in TCW";
645 return PTR_ERR(tcw
->crc32_tfm
);
648 tcw
->iv_seed
= kzalloc(cc
->iv_size
, GFP_KERNEL
);
649 tcw
->whitening
= kzalloc(TCW_WHITENING_SIZE
, GFP_KERNEL
);
650 if (!tcw
->iv_seed
|| !tcw
->whitening
) {
651 crypt_iv_tcw_dtr(cc
);
652 ti
->error
= "Error allocating seed storage in TCW";
659 static int crypt_iv_tcw_init(struct crypt_config
*cc
)
661 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
662 int key_offset
= cc
->key_size
- cc
->iv_size
- TCW_WHITENING_SIZE
;
664 memcpy(tcw
->iv_seed
, &cc
->key
[key_offset
], cc
->iv_size
);
665 memcpy(tcw
->whitening
, &cc
->key
[key_offset
+ cc
->iv_size
],
671 static int crypt_iv_tcw_wipe(struct crypt_config
*cc
)
673 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
675 memset(tcw
->iv_seed
, 0, cc
->iv_size
);
676 memset(tcw
->whitening
, 0, TCW_WHITENING_SIZE
);
681 static int crypt_iv_tcw_whitening(struct crypt_config
*cc
,
682 struct dm_crypt_request
*dmreq
,
685 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
686 u64 sector
= cpu_to_le64((u64
)dmreq
->iv_sector
);
687 u8 buf
[TCW_WHITENING_SIZE
];
688 SHASH_DESC_ON_STACK(desc
, tcw
->crc32_tfm
);
691 /* xor whitening with sector number */
692 memcpy(buf
, tcw
->whitening
, TCW_WHITENING_SIZE
);
693 crypto_xor(buf
, (u8
*)§or
, 8);
694 crypto_xor(&buf
[8], (u8
*)§or
, 8);
696 /* calculate crc32 for every 32bit part and xor it */
697 desc
->tfm
= tcw
->crc32_tfm
;
698 desc
->flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
699 for (i
= 0; i
< 4; i
++) {
700 r
= crypto_shash_init(desc
);
703 r
= crypto_shash_update(desc
, &buf
[i
* 4], 4);
706 r
= crypto_shash_final(desc
, &buf
[i
* 4]);
710 crypto_xor(&buf
[0], &buf
[12], 4);
711 crypto_xor(&buf
[4], &buf
[8], 4);
713 /* apply whitening (8 bytes) to whole sector */
714 for (i
= 0; i
< ((1 << SECTOR_SHIFT
) / 8); i
++)
715 crypto_xor(data
+ i
* 8, buf
, 8);
717 memzero_explicit(buf
, sizeof(buf
));
721 static int crypt_iv_tcw_gen(struct crypt_config
*cc
, u8
*iv
,
722 struct dm_crypt_request
*dmreq
)
724 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
725 u64 sector
= cpu_to_le64((u64
)dmreq
->iv_sector
);
729 /* Remove whitening from ciphertext */
730 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
) {
731 src
= kmap_atomic(sg_page(&dmreq
->sg_in
));
732 r
= crypt_iv_tcw_whitening(cc
, dmreq
, src
+ dmreq
->sg_in
.offset
);
737 memcpy(iv
, tcw
->iv_seed
, cc
->iv_size
);
738 crypto_xor(iv
, (u8
*)§or
, 8);
740 crypto_xor(&iv
[8], (u8
*)§or
, cc
->iv_size
- 8);
745 static int crypt_iv_tcw_post(struct crypt_config
*cc
, u8
*iv
,
746 struct dm_crypt_request
*dmreq
)
751 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
)
754 /* Apply whitening on ciphertext */
755 dst
= kmap_atomic(sg_page(&dmreq
->sg_out
));
756 r
= crypt_iv_tcw_whitening(cc
, dmreq
, dst
+ dmreq
->sg_out
.offset
);
762 static struct crypt_iv_operations crypt_iv_plain_ops
= {
763 .generator
= crypt_iv_plain_gen
766 static struct crypt_iv_operations crypt_iv_plain64_ops
= {
767 .generator
= crypt_iv_plain64_gen
770 static struct crypt_iv_operations crypt_iv_essiv_ops
= {
771 .ctr
= crypt_iv_essiv_ctr
,
772 .dtr
= crypt_iv_essiv_dtr
,
773 .init
= crypt_iv_essiv_init
,
774 .wipe
= crypt_iv_essiv_wipe
,
775 .generator
= crypt_iv_essiv_gen
778 static struct crypt_iv_operations crypt_iv_benbi_ops
= {
779 .ctr
= crypt_iv_benbi_ctr
,
780 .dtr
= crypt_iv_benbi_dtr
,
781 .generator
= crypt_iv_benbi_gen
784 static struct crypt_iv_operations crypt_iv_null_ops
= {
785 .generator
= crypt_iv_null_gen
788 static struct crypt_iv_operations crypt_iv_lmk_ops
= {
789 .ctr
= crypt_iv_lmk_ctr
,
790 .dtr
= crypt_iv_lmk_dtr
,
791 .init
= crypt_iv_lmk_init
,
792 .wipe
= crypt_iv_lmk_wipe
,
793 .generator
= crypt_iv_lmk_gen
,
794 .post
= crypt_iv_lmk_post
797 static struct crypt_iv_operations crypt_iv_tcw_ops
= {
798 .ctr
= crypt_iv_tcw_ctr
,
799 .dtr
= crypt_iv_tcw_dtr
,
800 .init
= crypt_iv_tcw_init
,
801 .wipe
= crypt_iv_tcw_wipe
,
802 .generator
= crypt_iv_tcw_gen
,
803 .post
= crypt_iv_tcw_post
806 static void crypt_convert_init(struct crypt_config
*cc
,
807 struct convert_context
*ctx
,
808 struct bio
*bio_out
, struct bio
*bio_in
,
811 ctx
->bio_in
= bio_in
;
812 ctx
->bio_out
= bio_out
;
814 ctx
->iter_in
= bio_in
->bi_iter
;
816 ctx
->iter_out
= bio_out
->bi_iter
;
817 ctx
->cc_sector
= sector
+ cc
->iv_offset
;
818 init_completion(&ctx
->restart
);
821 static struct dm_crypt_request
*dmreq_of_req(struct crypt_config
*cc
,
822 struct skcipher_request
*req
)
824 return (struct dm_crypt_request
*)((char *)req
+ cc
->dmreq_start
);
827 static struct skcipher_request
*req_of_dmreq(struct crypt_config
*cc
,
828 struct dm_crypt_request
*dmreq
)
830 return (struct skcipher_request
*)((char *)dmreq
- cc
->dmreq_start
);
833 static u8
*iv_of_dmreq(struct crypt_config
*cc
,
834 struct dm_crypt_request
*dmreq
)
836 return (u8
*)ALIGN((unsigned long)(dmreq
+ 1),
837 crypto_skcipher_alignmask(any_tfm(cc
)) + 1);
840 static int crypt_convert_block(struct crypt_config
*cc
,
841 struct convert_context
*ctx
,
842 struct skcipher_request
*req
)
844 struct bio_vec bv_in
= bio_iter_iovec(ctx
->bio_in
, ctx
->iter_in
);
845 struct bio_vec bv_out
= bio_iter_iovec(ctx
->bio_out
, ctx
->iter_out
);
846 struct dm_crypt_request
*dmreq
;
850 dmreq
= dmreq_of_req(cc
, req
);
851 iv
= iv_of_dmreq(cc
, dmreq
);
853 dmreq
->iv_sector
= ctx
->cc_sector
;
855 sg_init_table(&dmreq
->sg_in
, 1);
856 sg_set_page(&dmreq
->sg_in
, bv_in
.bv_page
, 1 << SECTOR_SHIFT
,
859 sg_init_table(&dmreq
->sg_out
, 1);
860 sg_set_page(&dmreq
->sg_out
, bv_out
.bv_page
, 1 << SECTOR_SHIFT
,
863 bio_advance_iter(ctx
->bio_in
, &ctx
->iter_in
, 1 << SECTOR_SHIFT
);
864 bio_advance_iter(ctx
->bio_out
, &ctx
->iter_out
, 1 << SECTOR_SHIFT
);
866 if (cc
->iv_gen_ops
) {
867 r
= cc
->iv_gen_ops
->generator(cc
, iv
, dmreq
);
872 skcipher_request_set_crypt(req
, &dmreq
->sg_in
, &dmreq
->sg_out
,
873 1 << SECTOR_SHIFT
, iv
);
875 if (bio_data_dir(ctx
->bio_in
) == WRITE
)
876 r
= crypto_skcipher_encrypt(req
);
878 r
= crypto_skcipher_decrypt(req
);
880 if (!r
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
881 r
= cc
->iv_gen_ops
->post(cc
, iv
, dmreq
);
886 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
889 static void crypt_alloc_req(struct crypt_config
*cc
,
890 struct convert_context
*ctx
)
892 unsigned key_index
= ctx
->cc_sector
& (cc
->tfms_count
- 1);
895 ctx
->req
= mempool_alloc(cc
->req_pool
, GFP_NOIO
);
897 skcipher_request_set_tfm(ctx
->req
, cc
->tfms
[key_index
]);
900 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
901 * requests if driver request queue is full.
903 skcipher_request_set_callback(ctx
->req
,
904 CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
905 kcryptd_async_done
, dmreq_of_req(cc
, ctx
->req
));
908 static void crypt_free_req(struct crypt_config
*cc
,
909 struct skcipher_request
*req
, struct bio
*base_bio
)
911 struct dm_crypt_io
*io
= dm_per_bio_data(base_bio
, cc
->per_bio_data_size
);
913 if ((struct skcipher_request
*)(io
+ 1) != req
)
914 mempool_free(req
, cc
->req_pool
);
918 * Encrypt / decrypt data from one bio to another one (can be the same one)
920 static int crypt_convert(struct crypt_config
*cc
,
921 struct convert_context
*ctx
)
925 atomic_set(&ctx
->cc_pending
, 1);
927 while (ctx
->iter_in
.bi_size
&& ctx
->iter_out
.bi_size
) {
929 crypt_alloc_req(cc
, ctx
);
931 atomic_inc(&ctx
->cc_pending
);
933 r
= crypt_convert_block(cc
, ctx
, ctx
->req
);
937 * The request was queued by a crypto driver
938 * but the driver request queue is full, let's wait.
941 wait_for_completion(&ctx
->restart
);
942 reinit_completion(&ctx
->restart
);
945 * The request is queued and processed asynchronously,
946 * completion function kcryptd_async_done() will be called.
953 * The request was already processed (synchronously).
956 atomic_dec(&ctx
->cc_pending
);
961 /* There was an error while processing the request. */
963 atomic_dec(&ctx
->cc_pending
);
971 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
);
974 * Generate a new unfragmented bio with the given size
975 * This should never violate the device limitations (but only because
976 * max_segment_size is being constrained to PAGE_SIZE).
978 * This function may be called concurrently. If we allocate from the mempool
979 * concurrently, there is a possibility of deadlock. For example, if we have
980 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
981 * the mempool concurrently, it may deadlock in a situation where both processes
982 * have allocated 128 pages and the mempool is exhausted.
984 * In order to avoid this scenario we allocate the pages under a mutex.
986 * In order to not degrade performance with excessive locking, we try
987 * non-blocking allocations without a mutex first but on failure we fallback
988 * to blocking allocations with a mutex.
990 static struct bio
*crypt_alloc_buffer(struct dm_crypt_io
*io
, unsigned size
)
992 struct crypt_config
*cc
= io
->cc
;
994 unsigned int nr_iovecs
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
995 gfp_t gfp_mask
= GFP_NOWAIT
| __GFP_HIGHMEM
;
996 unsigned i
, len
, remaining_size
;
998 struct bio_vec
*bvec
;
1001 if (unlikely(gfp_mask
& __GFP_DIRECT_RECLAIM
))
1002 mutex_lock(&cc
->bio_alloc_lock
);
1004 clone
= bio_alloc_bioset(GFP_NOIO
, nr_iovecs
, cc
->bs
);
1008 clone_init(io
, clone
);
1010 remaining_size
= size
;
1012 for (i
= 0; i
< nr_iovecs
; i
++) {
1013 page
= mempool_alloc(cc
->page_pool
, gfp_mask
);
1015 crypt_free_buffer_pages(cc
, clone
);
1017 gfp_mask
|= __GFP_DIRECT_RECLAIM
;
1021 len
= (remaining_size
> PAGE_SIZE
) ? PAGE_SIZE
: remaining_size
;
1023 bvec
= &clone
->bi_io_vec
[clone
->bi_vcnt
++];
1024 bvec
->bv_page
= page
;
1026 bvec
->bv_offset
= 0;
1028 clone
->bi_iter
.bi_size
+= len
;
1030 remaining_size
-= len
;
1034 if (unlikely(gfp_mask
& __GFP_DIRECT_RECLAIM
))
1035 mutex_unlock(&cc
->bio_alloc_lock
);
1040 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
)
1045 bio_for_each_segment_all(bv
, clone
, i
) {
1046 BUG_ON(!bv
->bv_page
);
1047 mempool_free(bv
->bv_page
, cc
->page_pool
);
1052 static void crypt_io_init(struct dm_crypt_io
*io
, struct crypt_config
*cc
,
1053 struct bio
*bio
, sector_t sector
)
1057 io
->sector
= sector
;
1060 atomic_set(&io
->io_pending
, 0);
1063 static void crypt_inc_pending(struct dm_crypt_io
*io
)
1065 atomic_inc(&io
->io_pending
);
1069 * One of the bios was finished. Check for completion of
1070 * the whole request and correctly clean up the buffer.
1072 static void crypt_dec_pending(struct dm_crypt_io
*io
)
1074 struct crypt_config
*cc
= io
->cc
;
1075 struct bio
*base_bio
= io
->base_bio
;
1076 int error
= io
->error
;
1078 if (!atomic_dec_and_test(&io
->io_pending
))
1082 crypt_free_req(cc
, io
->ctx
.req
, base_bio
);
1084 base_bio
->bi_error
= error
;
1085 bio_endio(base_bio
);
1089 * kcryptd/kcryptd_io:
1091 * Needed because it would be very unwise to do decryption in an
1092 * interrupt context.
1094 * kcryptd performs the actual encryption or decryption.
1096 * kcryptd_io performs the IO submission.
1098 * They must be separated as otherwise the final stages could be
1099 * starved by new requests which can block in the first stages due
1100 * to memory allocation.
1102 * The work is done per CPU global for all dm-crypt instances.
1103 * They should not depend on each other and do not block.
1105 static void crypt_endio(struct bio
*clone
)
1107 struct dm_crypt_io
*io
= clone
->bi_private
;
1108 struct crypt_config
*cc
= io
->cc
;
1109 unsigned rw
= bio_data_dir(clone
);
1113 * free the processed pages
1116 crypt_free_buffer_pages(cc
, clone
);
1118 error
= clone
->bi_error
;
1121 if (rw
== READ
&& !error
) {
1122 kcryptd_queue_crypt(io
);
1126 if (unlikely(error
))
1129 crypt_dec_pending(io
);
1132 static void clone_init(struct dm_crypt_io
*io
, struct bio
*clone
)
1134 struct crypt_config
*cc
= io
->cc
;
1136 clone
->bi_private
= io
;
1137 clone
->bi_end_io
= crypt_endio
;
1138 clone
->bi_bdev
= cc
->dev
->bdev
;
1139 clone
->bi_rw
= io
->base_bio
->bi_rw
;
1142 static int kcryptd_io_read(struct dm_crypt_io
*io
, gfp_t gfp
)
1144 struct crypt_config
*cc
= io
->cc
;
1148 * We need the original biovec array in order to decrypt
1149 * the whole bio data *afterwards* -- thanks to immutable
1150 * biovecs we don't need to worry about the block layer
1151 * modifying the biovec array; so leverage bio_clone_fast().
1153 clone
= bio_clone_fast(io
->base_bio
, gfp
, cc
->bs
);
1157 crypt_inc_pending(io
);
1159 clone_init(io
, clone
);
1160 clone
->bi_iter
.bi_sector
= cc
->start
+ io
->sector
;
1162 generic_make_request(clone
);
1166 static void kcryptd_io_read_work(struct work_struct
*work
)
1168 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1170 crypt_inc_pending(io
);
1171 if (kcryptd_io_read(io
, GFP_NOIO
))
1172 io
->error
= -ENOMEM
;
1173 crypt_dec_pending(io
);
1176 static void kcryptd_queue_read(struct dm_crypt_io
*io
)
1178 struct crypt_config
*cc
= io
->cc
;
1180 INIT_WORK(&io
->work
, kcryptd_io_read_work
);
1181 queue_work(cc
->io_queue
, &io
->work
);
1184 static void kcryptd_io_write(struct dm_crypt_io
*io
)
1186 struct bio
*clone
= io
->ctx
.bio_out
;
1188 generic_make_request(clone
);
1191 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1193 static int dmcrypt_write(void *data
)
1195 struct crypt_config
*cc
= data
;
1196 struct dm_crypt_io
*io
;
1199 struct rb_root write_tree
;
1200 struct blk_plug plug
;
1202 DECLARE_WAITQUEUE(wait
, current
);
1204 spin_lock_irq(&cc
->write_thread_wait
.lock
);
1207 if (!RB_EMPTY_ROOT(&cc
->write_tree
))
1210 if (unlikely(test_bit(DM_CRYPT_EXIT_THREAD
, &cc
->flags
))) {
1211 spin_unlock_irq(&cc
->write_thread_wait
.lock
);
1215 __set_current_state(TASK_INTERRUPTIBLE
);
1216 __add_wait_queue(&cc
->write_thread_wait
, &wait
);
1218 spin_unlock_irq(&cc
->write_thread_wait
.lock
);
1222 spin_lock_irq(&cc
->write_thread_wait
.lock
);
1223 __remove_wait_queue(&cc
->write_thread_wait
, &wait
);
1224 goto continue_locked
;
1227 write_tree
= cc
->write_tree
;
1228 cc
->write_tree
= RB_ROOT
;
1229 spin_unlock_irq(&cc
->write_thread_wait
.lock
);
1231 BUG_ON(rb_parent(write_tree
.rb_node
));
1234 * Note: we cannot walk the tree here with rb_next because
1235 * the structures may be freed when kcryptd_io_write is called.
1237 blk_start_plug(&plug
);
1239 io
= crypt_io_from_node(rb_first(&write_tree
));
1240 rb_erase(&io
->rb_node
, &write_tree
);
1241 kcryptd_io_write(io
);
1242 } while (!RB_EMPTY_ROOT(&write_tree
));
1243 blk_finish_plug(&plug
);
1248 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io
*io
, int async
)
1250 struct bio
*clone
= io
->ctx
.bio_out
;
1251 struct crypt_config
*cc
= io
->cc
;
1252 unsigned long flags
;
1254 struct rb_node
**rbp
, *parent
;
1256 if (unlikely(io
->error
< 0)) {
1257 crypt_free_buffer_pages(cc
, clone
);
1259 crypt_dec_pending(io
);
1263 /* crypt_convert should have filled the clone bio */
1264 BUG_ON(io
->ctx
.iter_out
.bi_size
);
1266 clone
->bi_iter
.bi_sector
= cc
->start
+ io
->sector
;
1268 if (likely(!async
) && test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
)) {
1269 generic_make_request(clone
);
1273 spin_lock_irqsave(&cc
->write_thread_wait
.lock
, flags
);
1274 rbp
= &cc
->write_tree
.rb_node
;
1276 sector
= io
->sector
;
1279 if (sector
< crypt_io_from_node(parent
)->sector
)
1280 rbp
= &(*rbp
)->rb_left
;
1282 rbp
= &(*rbp
)->rb_right
;
1284 rb_link_node(&io
->rb_node
, parent
, rbp
);
1285 rb_insert_color(&io
->rb_node
, &cc
->write_tree
);
1287 wake_up_locked(&cc
->write_thread_wait
);
1288 spin_unlock_irqrestore(&cc
->write_thread_wait
.lock
, flags
);
1291 static void kcryptd_crypt_write_convert(struct dm_crypt_io
*io
)
1293 struct crypt_config
*cc
= io
->cc
;
1296 sector_t sector
= io
->sector
;
1300 * Prevent io from disappearing until this function completes.
1302 crypt_inc_pending(io
);
1303 crypt_convert_init(cc
, &io
->ctx
, NULL
, io
->base_bio
, sector
);
1305 clone
= crypt_alloc_buffer(io
, io
->base_bio
->bi_iter
.bi_size
);
1306 if (unlikely(!clone
)) {
1311 io
->ctx
.bio_out
= clone
;
1312 io
->ctx
.iter_out
= clone
->bi_iter
;
1314 sector
+= bio_sectors(clone
);
1316 crypt_inc_pending(io
);
1317 r
= crypt_convert(cc
, &io
->ctx
);
1320 crypt_finished
= atomic_dec_and_test(&io
->ctx
.cc_pending
);
1322 /* Encryption was already finished, submit io now */
1323 if (crypt_finished
) {
1324 kcryptd_crypt_write_io_submit(io
, 0);
1325 io
->sector
= sector
;
1329 crypt_dec_pending(io
);
1332 static void kcryptd_crypt_read_done(struct dm_crypt_io
*io
)
1334 crypt_dec_pending(io
);
1337 static void kcryptd_crypt_read_convert(struct dm_crypt_io
*io
)
1339 struct crypt_config
*cc
= io
->cc
;
1342 crypt_inc_pending(io
);
1344 crypt_convert_init(cc
, &io
->ctx
, io
->base_bio
, io
->base_bio
,
1347 r
= crypt_convert(cc
, &io
->ctx
);
1351 if (atomic_dec_and_test(&io
->ctx
.cc_pending
))
1352 kcryptd_crypt_read_done(io
);
1354 crypt_dec_pending(io
);
1357 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
1360 struct dm_crypt_request
*dmreq
= async_req
->data
;
1361 struct convert_context
*ctx
= dmreq
->ctx
;
1362 struct dm_crypt_io
*io
= container_of(ctx
, struct dm_crypt_io
, ctx
);
1363 struct crypt_config
*cc
= io
->cc
;
1366 * A request from crypto driver backlog is going to be processed now,
1367 * finish the completion and continue in crypt_convert().
1368 * (Callback will be called for the second time for this request.)
1370 if (error
== -EINPROGRESS
) {
1371 complete(&ctx
->restart
);
1375 if (!error
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
1376 error
= cc
->iv_gen_ops
->post(cc
, iv_of_dmreq(cc
, dmreq
), dmreq
);
1381 crypt_free_req(cc
, req_of_dmreq(cc
, dmreq
), io
->base_bio
);
1383 if (!atomic_dec_and_test(&ctx
->cc_pending
))
1386 if (bio_data_dir(io
->base_bio
) == READ
)
1387 kcryptd_crypt_read_done(io
);
1389 kcryptd_crypt_write_io_submit(io
, 1);
1392 static void kcryptd_crypt(struct work_struct
*work
)
1394 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1396 if (bio_data_dir(io
->base_bio
) == READ
)
1397 kcryptd_crypt_read_convert(io
);
1399 kcryptd_crypt_write_convert(io
);
1402 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
)
1404 struct crypt_config
*cc
= io
->cc
;
1406 INIT_WORK(&io
->work
, kcryptd_crypt
);
1407 queue_work(cc
->crypt_queue
, &io
->work
);
1411 * Decode key from its hex representation
1413 static int crypt_decode_key(u8
*key
, char *hex
, unsigned int size
)
1420 for (i
= 0; i
< size
; i
++) {
1424 if (kstrtou8(buffer
, 16, &key
[i
]))
1434 static void crypt_free_tfms(struct crypt_config
*cc
)
1441 for (i
= 0; i
< cc
->tfms_count
; i
++)
1442 if (cc
->tfms
[i
] && !IS_ERR(cc
->tfms
[i
])) {
1443 crypto_free_skcipher(cc
->tfms
[i
]);
1451 static int crypt_alloc_tfms(struct crypt_config
*cc
, char *ciphermode
)
1456 cc
->tfms
= kmalloc(cc
->tfms_count
* sizeof(struct crypto_skcipher
*),
1461 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1462 cc
->tfms
[i
] = crypto_alloc_skcipher(ciphermode
, 0, 0);
1463 if (IS_ERR(cc
->tfms
[i
])) {
1464 err
= PTR_ERR(cc
->tfms
[i
]);
1465 crypt_free_tfms(cc
);
1473 static int crypt_setkey_allcpus(struct crypt_config
*cc
)
1475 unsigned subkey_size
;
1478 /* Ignore extra keys (which are used for IV etc) */
1479 subkey_size
= (cc
->key_size
- cc
->key_extra_size
) >> ilog2(cc
->tfms_count
);
1481 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1482 r
= crypto_skcipher_setkey(cc
->tfms
[i
],
1483 cc
->key
+ (i
* subkey_size
),
1492 static int crypt_set_key(struct crypt_config
*cc
, char *key
)
1495 int key_string_len
= strlen(key
);
1497 /* The key size may not be changed. */
1498 if (cc
->key_size
!= (key_string_len
>> 1))
1501 /* Hyphen (which gives a key_size of zero) means there is no key. */
1502 if (!cc
->key_size
&& strcmp(key
, "-"))
1505 if (cc
->key_size
&& crypt_decode_key(cc
->key
, key
, cc
->key_size
) < 0)
1508 set_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1510 r
= crypt_setkey_allcpus(cc
);
1513 /* Hex key string not needed after here, so wipe it. */
1514 memset(key
, '0', key_string_len
);
1519 static int crypt_wipe_key(struct crypt_config
*cc
)
1521 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1522 memset(&cc
->key
, 0, cc
->key_size
* sizeof(u8
));
1524 return crypt_setkey_allcpus(cc
);
1527 static void crypt_dtr(struct dm_target
*ti
)
1529 struct crypt_config
*cc
= ti
->private;
1536 if (cc
->write_thread
) {
1537 spin_lock_irq(&cc
->write_thread_wait
.lock
);
1538 set_bit(DM_CRYPT_EXIT_THREAD
, &cc
->flags
);
1539 wake_up_locked(&cc
->write_thread_wait
);
1540 spin_unlock_irq(&cc
->write_thread_wait
.lock
);
1541 kthread_stop(cc
->write_thread
);
1545 destroy_workqueue(cc
->io_queue
);
1546 if (cc
->crypt_queue
)
1547 destroy_workqueue(cc
->crypt_queue
);
1549 crypt_free_tfms(cc
);
1552 bioset_free(cc
->bs
);
1554 mempool_destroy(cc
->page_pool
);
1555 mempool_destroy(cc
->req_pool
);
1557 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
1558 cc
->iv_gen_ops
->dtr(cc
);
1561 dm_put_device(ti
, cc
->dev
);
1564 kzfree(cc
->cipher_string
);
1566 /* Must zero key material before freeing */
1570 static int crypt_ctr_cipher(struct dm_target
*ti
,
1571 char *cipher_in
, char *key
)
1573 struct crypt_config
*cc
= ti
->private;
1574 char *tmp
, *cipher
, *chainmode
, *ivmode
, *ivopts
, *keycount
;
1575 char *cipher_api
= NULL
;
1579 /* Convert to crypto api definition? */
1580 if (strchr(cipher_in
, '(')) {
1581 ti
->error
= "Bad cipher specification";
1585 cc
->cipher_string
= kstrdup(cipher_in
, GFP_KERNEL
);
1586 if (!cc
->cipher_string
)
1590 * Legacy dm-crypt cipher specification
1591 * cipher[:keycount]-mode-iv:ivopts
1594 keycount
= strsep(&tmp
, "-");
1595 cipher
= strsep(&keycount
, ":");
1599 else if (sscanf(keycount
, "%u%c", &cc
->tfms_count
, &dummy
) != 1 ||
1600 !is_power_of_2(cc
->tfms_count
)) {
1601 ti
->error
= "Bad cipher key count specification";
1604 cc
->key_parts
= cc
->tfms_count
;
1605 cc
->key_extra_size
= 0;
1607 cc
->cipher
= kstrdup(cipher
, GFP_KERNEL
);
1611 chainmode
= strsep(&tmp
, "-");
1612 ivopts
= strsep(&tmp
, "-");
1613 ivmode
= strsep(&ivopts
, ":");
1616 DMWARN("Ignoring unexpected additional cipher options");
1619 * For compatibility with the original dm-crypt mapping format, if
1620 * only the cipher name is supplied, use cbc-plain.
1622 if (!chainmode
|| (!strcmp(chainmode
, "plain") && !ivmode
)) {
1627 if (strcmp(chainmode
, "ecb") && !ivmode
) {
1628 ti
->error
= "IV mechanism required";
1632 cipher_api
= kmalloc(CRYPTO_MAX_ALG_NAME
, GFP_KERNEL
);
1636 ret
= snprintf(cipher_api
, CRYPTO_MAX_ALG_NAME
,
1637 "%s(%s)", chainmode
, cipher
);
1643 /* Allocate cipher */
1644 ret
= crypt_alloc_tfms(cc
, cipher_api
);
1646 ti
->error
= "Error allocating crypto tfm";
1651 cc
->iv_size
= crypto_skcipher_ivsize(any_tfm(cc
));
1653 /* at least a 64 bit sector number should fit in our buffer */
1654 cc
->iv_size
= max(cc
->iv_size
,
1655 (unsigned int)(sizeof(u64
) / sizeof(u8
)));
1657 DMWARN("Selected cipher does not support IVs");
1661 /* Choose ivmode, see comments at iv code. */
1663 cc
->iv_gen_ops
= NULL
;
1664 else if (strcmp(ivmode
, "plain") == 0)
1665 cc
->iv_gen_ops
= &crypt_iv_plain_ops
;
1666 else if (strcmp(ivmode
, "plain64") == 0)
1667 cc
->iv_gen_ops
= &crypt_iv_plain64_ops
;
1668 else if (strcmp(ivmode
, "essiv") == 0)
1669 cc
->iv_gen_ops
= &crypt_iv_essiv_ops
;
1670 else if (strcmp(ivmode
, "benbi") == 0)
1671 cc
->iv_gen_ops
= &crypt_iv_benbi_ops
;
1672 else if (strcmp(ivmode
, "null") == 0)
1673 cc
->iv_gen_ops
= &crypt_iv_null_ops
;
1674 else if (strcmp(ivmode
, "lmk") == 0) {
1675 cc
->iv_gen_ops
= &crypt_iv_lmk_ops
;
1677 * Version 2 and 3 is recognised according
1678 * to length of provided multi-key string.
1679 * If present (version 3), last key is used as IV seed.
1680 * All keys (including IV seed) are always the same size.
1682 if (cc
->key_size
% cc
->key_parts
) {
1684 cc
->key_extra_size
= cc
->key_size
/ cc
->key_parts
;
1686 } else if (strcmp(ivmode
, "tcw") == 0) {
1687 cc
->iv_gen_ops
= &crypt_iv_tcw_ops
;
1688 cc
->key_parts
+= 2; /* IV + whitening */
1689 cc
->key_extra_size
= cc
->iv_size
+ TCW_WHITENING_SIZE
;
1692 ti
->error
= "Invalid IV mode";
1696 /* Initialize and set key */
1697 ret
= crypt_set_key(cc
, key
);
1699 ti
->error
= "Error decoding and setting key";
1704 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->ctr
) {
1705 ret
= cc
->iv_gen_ops
->ctr(cc
, ti
, ivopts
);
1707 ti
->error
= "Error creating IV";
1712 /* Initialize IV (set keys for ESSIV etc) */
1713 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
) {
1714 ret
= cc
->iv_gen_ops
->init(cc
);
1716 ti
->error
= "Error initialising IV";
1727 ti
->error
= "Cannot allocate cipher strings";
1732 * Construct an encryption mapping:
1733 * <cipher> <key> <iv_offset> <dev_path> <start>
1735 static int crypt_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
1737 struct crypt_config
*cc
;
1738 unsigned int key_size
, opt_params
;
1739 unsigned long long tmpll
;
1741 size_t iv_size_padding
;
1742 struct dm_arg_set as
;
1743 const char *opt_string
;
1746 static struct dm_arg _args
[] = {
1747 {0, 3, "Invalid number of feature args"},
1751 ti
->error
= "Not enough arguments";
1755 key_size
= strlen(argv
[1]) >> 1;
1757 cc
= kzalloc(sizeof(*cc
) + key_size
* sizeof(u8
), GFP_KERNEL
);
1759 ti
->error
= "Cannot allocate encryption context";
1762 cc
->key_size
= key_size
;
1765 ret
= crypt_ctr_cipher(ti
, argv
[0], argv
[1]);
1769 cc
->dmreq_start
= sizeof(struct skcipher_request
);
1770 cc
->dmreq_start
+= crypto_skcipher_reqsize(any_tfm(cc
));
1771 cc
->dmreq_start
= ALIGN(cc
->dmreq_start
, __alignof__(struct dm_crypt_request
));
1773 if (crypto_skcipher_alignmask(any_tfm(cc
)) < CRYPTO_MINALIGN
) {
1774 /* Allocate the padding exactly */
1775 iv_size_padding
= -(cc
->dmreq_start
+ sizeof(struct dm_crypt_request
))
1776 & crypto_skcipher_alignmask(any_tfm(cc
));
1779 * If the cipher requires greater alignment than kmalloc
1780 * alignment, we don't know the exact position of the
1781 * initialization vector. We must assume worst case.
1783 iv_size_padding
= crypto_skcipher_alignmask(any_tfm(cc
));
1787 cc
->req_pool
= mempool_create_kmalloc_pool(MIN_IOS
, cc
->dmreq_start
+
1788 sizeof(struct dm_crypt_request
) + iv_size_padding
+ cc
->iv_size
);
1789 if (!cc
->req_pool
) {
1790 ti
->error
= "Cannot allocate crypt request mempool";
1794 cc
->per_bio_data_size
= ti
->per_io_data_size
=
1795 ALIGN(sizeof(struct dm_crypt_io
) + cc
->dmreq_start
+
1796 sizeof(struct dm_crypt_request
) + iv_size_padding
+ cc
->iv_size
,
1797 ARCH_KMALLOC_MINALIGN
);
1799 cc
->page_pool
= mempool_create_page_pool(BIO_MAX_PAGES
, 0);
1800 if (!cc
->page_pool
) {
1801 ti
->error
= "Cannot allocate page mempool";
1805 cc
->bs
= bioset_create(MIN_IOS
, 0);
1807 ti
->error
= "Cannot allocate crypt bioset";
1811 mutex_init(&cc
->bio_alloc_lock
);
1814 if (sscanf(argv
[2], "%llu%c", &tmpll
, &dummy
) != 1) {
1815 ti
->error
= "Invalid iv_offset sector";
1818 cc
->iv_offset
= tmpll
;
1820 ret
= dm_get_device(ti
, argv
[3], dm_table_get_mode(ti
->table
), &cc
->dev
);
1822 ti
->error
= "Device lookup failed";
1827 if (sscanf(argv
[4], "%llu%c", &tmpll
, &dummy
) != 1) {
1828 ti
->error
= "Invalid device sector";
1836 /* Optional parameters */
1841 ret
= dm_read_arg_group(_args
, &as
, &opt_params
, &ti
->error
);
1846 while (opt_params
--) {
1847 opt_string
= dm_shift_arg(&as
);
1849 ti
->error
= "Not enough feature arguments";
1853 if (!strcasecmp(opt_string
, "allow_discards"))
1854 ti
->num_discard_bios
= 1;
1856 else if (!strcasecmp(opt_string
, "same_cpu_crypt"))
1857 set_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
);
1859 else if (!strcasecmp(opt_string
, "submit_from_crypt_cpus"))
1860 set_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
);
1863 ti
->error
= "Invalid feature arguments";
1870 cc
->io_queue
= alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM
, 1);
1871 if (!cc
->io_queue
) {
1872 ti
->error
= "Couldn't create kcryptd io queue";
1876 if (test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
))
1877 cc
->crypt_queue
= alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE
| WQ_MEM_RECLAIM
, 1);
1879 cc
->crypt_queue
= alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE
| WQ_MEM_RECLAIM
| WQ_UNBOUND
,
1881 if (!cc
->crypt_queue
) {
1882 ti
->error
= "Couldn't create kcryptd queue";
1886 init_waitqueue_head(&cc
->write_thread_wait
);
1887 cc
->write_tree
= RB_ROOT
;
1889 cc
->write_thread
= kthread_create(dmcrypt_write
, cc
, "dmcrypt_write");
1890 if (IS_ERR(cc
->write_thread
)) {
1891 ret
= PTR_ERR(cc
->write_thread
);
1892 cc
->write_thread
= NULL
;
1893 ti
->error
= "Couldn't spawn write thread";
1896 wake_up_process(cc
->write_thread
);
1898 ti
->num_flush_bios
= 1;
1899 ti
->discard_zeroes_data_unsupported
= true;
1908 static int crypt_map(struct dm_target
*ti
, struct bio
*bio
)
1910 struct dm_crypt_io
*io
;
1911 struct crypt_config
*cc
= ti
->private;
1914 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1915 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1916 * - for REQ_DISCARD caller must use flush if IO ordering matters
1918 if (unlikely(bio
->bi_rw
& (REQ_FLUSH
| REQ_DISCARD
))) {
1919 bio
->bi_bdev
= cc
->dev
->bdev
;
1920 if (bio_sectors(bio
))
1921 bio
->bi_iter
.bi_sector
= cc
->start
+
1922 dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
1923 return DM_MAPIO_REMAPPED
;
1926 io
= dm_per_bio_data(bio
, cc
->per_bio_data_size
);
1927 crypt_io_init(io
, cc
, bio
, dm_target_offset(ti
, bio
->bi_iter
.bi_sector
));
1928 io
->ctx
.req
= (struct skcipher_request
*)(io
+ 1);
1930 if (bio_data_dir(io
->base_bio
) == READ
) {
1931 if (kcryptd_io_read(io
, GFP_NOWAIT
))
1932 kcryptd_queue_read(io
);
1934 kcryptd_queue_crypt(io
);
1936 return DM_MAPIO_SUBMITTED
;
1939 static void crypt_status(struct dm_target
*ti
, status_type_t type
,
1940 unsigned status_flags
, char *result
, unsigned maxlen
)
1942 struct crypt_config
*cc
= ti
->private;
1944 int num_feature_args
= 0;
1947 case STATUSTYPE_INFO
:
1951 case STATUSTYPE_TABLE
:
1952 DMEMIT("%s ", cc
->cipher_string
);
1954 if (cc
->key_size
> 0)
1955 for (i
= 0; i
< cc
->key_size
; i
++)
1956 DMEMIT("%02x", cc
->key
[i
]);
1960 DMEMIT(" %llu %s %llu", (unsigned long long)cc
->iv_offset
,
1961 cc
->dev
->name
, (unsigned long long)cc
->start
);
1963 num_feature_args
+= !!ti
->num_discard_bios
;
1964 num_feature_args
+= test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
);
1965 num_feature_args
+= test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
);
1966 if (num_feature_args
) {
1967 DMEMIT(" %d", num_feature_args
);
1968 if (ti
->num_discard_bios
)
1969 DMEMIT(" allow_discards");
1970 if (test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
))
1971 DMEMIT(" same_cpu_crypt");
1972 if (test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
))
1973 DMEMIT(" submit_from_crypt_cpus");
1980 static void crypt_postsuspend(struct dm_target
*ti
)
1982 struct crypt_config
*cc
= ti
->private;
1984 set_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
1987 static int crypt_preresume(struct dm_target
*ti
)
1989 struct crypt_config
*cc
= ti
->private;
1991 if (!test_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
)) {
1992 DMERR("aborting resume - crypt key is not set.");
1999 static void crypt_resume(struct dm_target
*ti
)
2001 struct crypt_config
*cc
= ti
->private;
2003 clear_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
2006 /* Message interface
2010 static int crypt_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
2012 struct crypt_config
*cc
= ti
->private;
2018 if (!strcasecmp(argv
[0], "key")) {
2019 if (!test_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
)) {
2020 DMWARN("not suspended during key manipulation.");
2023 if (argc
== 3 && !strcasecmp(argv
[1], "set")) {
2024 ret
= crypt_set_key(cc
, argv
[2]);
2027 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
)
2028 ret
= cc
->iv_gen_ops
->init(cc
);
2031 if (argc
== 2 && !strcasecmp(argv
[1], "wipe")) {
2032 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->wipe
) {
2033 ret
= cc
->iv_gen_ops
->wipe(cc
);
2037 return crypt_wipe_key(cc
);
2042 DMWARN("unrecognised message received.");
2046 static int crypt_iterate_devices(struct dm_target
*ti
,
2047 iterate_devices_callout_fn fn
, void *data
)
2049 struct crypt_config
*cc
= ti
->private;
2051 return fn(ti
, cc
->dev
, cc
->start
, ti
->len
, data
);
2054 static void crypt_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
2057 * Unfortunate constraint that is required to avoid the potential
2058 * for exceeding underlying device's max_segments limits -- due to
2059 * crypt_alloc_buffer() possibly allocating pages for the encryption
2060 * bio that are not as physically contiguous as the original bio.
2062 limits
->max_segment_size
= PAGE_SIZE
;
2065 static struct target_type crypt_target
= {
2067 .version
= {1, 14, 1},
2068 .module
= THIS_MODULE
,
2072 .status
= crypt_status
,
2073 .postsuspend
= crypt_postsuspend
,
2074 .preresume
= crypt_preresume
,
2075 .resume
= crypt_resume
,
2076 .message
= crypt_message
,
2077 .iterate_devices
= crypt_iterate_devices
,
2078 .io_hints
= crypt_io_hints
,
2081 static int __init
dm_crypt_init(void)
2085 r
= dm_register_target(&crypt_target
);
2087 DMERR("register failed %d", r
);
2092 static void __exit
dm_crypt_exit(void)
2094 dm_unregister_target(&crypt_target
);
2097 module_init(dm_crypt_init
);
2098 module_exit(dm_crypt_exit
);
2100 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2101 MODULE_DESCRIPTION(DM_NAME
" target for transparent encryption / decryption");
2102 MODULE_LICENSE("GPL");