watchdog: pic32-dmt: Remove .owner field for driver
[linux/fpc-iii.git] / drivers / md / dm-crypt.c
blob4f3cb355494469e4abfc259a0042cafd187e36cc
1 /*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
7 * This file is released under the GPL.
8 */
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/kthread.h>
22 #include <linux/backing-dev.h>
23 #include <linux/atomic.h>
24 #include <linux/scatterlist.h>
25 #include <linux/rbtree.h>
26 #include <asm/page.h>
27 #include <asm/unaligned.h>
28 #include <crypto/hash.h>
29 #include <crypto/md5.h>
30 #include <crypto/algapi.h>
31 #include <crypto/skcipher.h>
33 #include <linux/device-mapper.h>
35 #define DM_MSG_PREFIX "crypt"
38 * context holding the current state of a multi-part conversion
40 struct convert_context {
41 struct completion restart;
42 struct bio *bio_in;
43 struct bio *bio_out;
44 struct bvec_iter iter_in;
45 struct bvec_iter iter_out;
46 sector_t cc_sector;
47 atomic_t cc_pending;
48 struct skcipher_request *req;
52 * per bio private data
54 struct dm_crypt_io {
55 struct crypt_config *cc;
56 struct bio *base_bio;
57 struct work_struct work;
59 struct convert_context ctx;
61 atomic_t io_pending;
62 int error;
63 sector_t sector;
65 struct rb_node rb_node;
66 } CRYPTO_MINALIGN_ATTR;
68 struct dm_crypt_request {
69 struct convert_context *ctx;
70 struct scatterlist sg_in;
71 struct scatterlist sg_out;
72 sector_t iv_sector;
75 struct crypt_config;
77 struct crypt_iv_operations {
78 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
79 const char *opts);
80 void (*dtr)(struct crypt_config *cc);
81 int (*init)(struct crypt_config *cc);
82 int (*wipe)(struct crypt_config *cc);
83 int (*generator)(struct crypt_config *cc, u8 *iv,
84 struct dm_crypt_request *dmreq);
85 int (*post)(struct crypt_config *cc, u8 *iv,
86 struct dm_crypt_request *dmreq);
89 struct iv_essiv_private {
90 struct crypto_ahash *hash_tfm;
91 u8 *salt;
94 struct iv_benbi_private {
95 int shift;
98 #define LMK_SEED_SIZE 64 /* hash + 0 */
99 struct iv_lmk_private {
100 struct crypto_shash *hash_tfm;
101 u8 *seed;
104 #define TCW_WHITENING_SIZE 16
105 struct iv_tcw_private {
106 struct crypto_shash *crc32_tfm;
107 u8 *iv_seed;
108 u8 *whitening;
112 * Crypt: maps a linear range of a block device
113 * and encrypts / decrypts at the same time.
115 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
116 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
117 DM_CRYPT_EXIT_THREAD};
120 * The fields in here must be read only after initialization.
122 struct crypt_config {
123 struct dm_dev *dev;
124 sector_t start;
127 * pool for per bio private data, crypto requests and
128 * encryption requeusts/buffer pages
130 mempool_t *req_pool;
131 mempool_t *page_pool;
132 struct bio_set *bs;
133 struct mutex bio_alloc_lock;
135 struct workqueue_struct *io_queue;
136 struct workqueue_struct *crypt_queue;
138 struct task_struct *write_thread;
139 wait_queue_head_t write_thread_wait;
140 struct rb_root write_tree;
142 char *cipher;
143 char *cipher_string;
145 struct crypt_iv_operations *iv_gen_ops;
146 union {
147 struct iv_essiv_private essiv;
148 struct iv_benbi_private benbi;
149 struct iv_lmk_private lmk;
150 struct iv_tcw_private tcw;
151 } iv_gen_private;
152 sector_t iv_offset;
153 unsigned int iv_size;
155 /* ESSIV: struct crypto_cipher *essiv_tfm */
156 void *iv_private;
157 struct crypto_skcipher **tfms;
158 unsigned tfms_count;
161 * Layout of each crypto request:
163 * struct skcipher_request
164 * context
165 * padding
166 * struct dm_crypt_request
167 * padding
168 * IV
170 * The padding is added so that dm_crypt_request and the IV are
171 * correctly aligned.
173 unsigned int dmreq_start;
175 unsigned int per_bio_data_size;
177 unsigned long flags;
178 unsigned int key_size;
179 unsigned int key_parts; /* independent parts in key buffer */
180 unsigned int key_extra_size; /* additional keys length */
181 u8 key[0];
184 #define MIN_IOS 16
186 static void clone_init(struct dm_crypt_io *, struct bio *);
187 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
188 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
191 * Use this to access cipher attributes that are the same for each CPU.
193 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
195 return cc->tfms[0];
199 * Different IV generation algorithms:
201 * plain: the initial vector is the 32-bit little-endian version of the sector
202 * number, padded with zeros if necessary.
204 * plain64: the initial vector is the 64-bit little-endian version of the sector
205 * number, padded with zeros if necessary.
207 * essiv: "encrypted sector|salt initial vector", the sector number is
208 * encrypted with the bulk cipher using a salt as key. The salt
209 * should be derived from the bulk cipher's key via hashing.
211 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
212 * (needed for LRW-32-AES and possible other narrow block modes)
214 * null: the initial vector is always zero. Provides compatibility with
215 * obsolete loop_fish2 devices. Do not use for new devices.
217 * lmk: Compatible implementation of the block chaining mode used
218 * by the Loop-AES block device encryption system
219 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
220 * It operates on full 512 byte sectors and uses CBC
221 * with an IV derived from the sector number, the data and
222 * optionally extra IV seed.
223 * This means that after decryption the first block
224 * of sector must be tweaked according to decrypted data.
225 * Loop-AES can use three encryption schemes:
226 * version 1: is plain aes-cbc mode
227 * version 2: uses 64 multikey scheme with lmk IV generator
228 * version 3: the same as version 2 with additional IV seed
229 * (it uses 65 keys, last key is used as IV seed)
231 * tcw: Compatible implementation of the block chaining mode used
232 * by the TrueCrypt device encryption system (prior to version 4.1).
233 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
234 * It operates on full 512 byte sectors and uses CBC
235 * with an IV derived from initial key and the sector number.
236 * In addition, whitening value is applied on every sector, whitening
237 * is calculated from initial key, sector number and mixed using CRC32.
238 * Note that this encryption scheme is vulnerable to watermarking attacks
239 * and should be used for old compatible containers access only.
241 * plumb: unimplemented, see:
242 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
245 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
246 struct dm_crypt_request *dmreq)
248 memset(iv, 0, cc->iv_size);
249 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
251 return 0;
254 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
255 struct dm_crypt_request *dmreq)
257 memset(iv, 0, cc->iv_size);
258 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
260 return 0;
263 /* Initialise ESSIV - compute salt but no local memory allocations */
264 static int crypt_iv_essiv_init(struct crypt_config *cc)
266 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
267 AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
268 struct scatterlist sg;
269 struct crypto_cipher *essiv_tfm;
270 int err;
272 sg_init_one(&sg, cc->key, cc->key_size);
273 ahash_request_set_tfm(req, essiv->hash_tfm);
274 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
275 ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
277 err = crypto_ahash_digest(req);
278 ahash_request_zero(req);
279 if (err)
280 return err;
282 essiv_tfm = cc->iv_private;
284 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
285 crypto_ahash_digestsize(essiv->hash_tfm));
286 if (err)
287 return err;
289 return 0;
292 /* Wipe salt and reset key derived from volume key */
293 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
295 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
296 unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
297 struct crypto_cipher *essiv_tfm;
298 int r, err = 0;
300 memset(essiv->salt, 0, salt_size);
302 essiv_tfm = cc->iv_private;
303 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
304 if (r)
305 err = r;
307 return err;
310 /* Set up per cpu cipher state */
311 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
312 struct dm_target *ti,
313 u8 *salt, unsigned saltsize)
315 struct crypto_cipher *essiv_tfm;
316 int err;
318 /* Setup the essiv_tfm with the given salt */
319 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
320 if (IS_ERR(essiv_tfm)) {
321 ti->error = "Error allocating crypto tfm for ESSIV";
322 return essiv_tfm;
325 if (crypto_cipher_blocksize(essiv_tfm) !=
326 crypto_skcipher_ivsize(any_tfm(cc))) {
327 ti->error = "Block size of ESSIV cipher does "
328 "not match IV size of block cipher";
329 crypto_free_cipher(essiv_tfm);
330 return ERR_PTR(-EINVAL);
333 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
334 if (err) {
335 ti->error = "Failed to set key for ESSIV cipher";
336 crypto_free_cipher(essiv_tfm);
337 return ERR_PTR(err);
340 return essiv_tfm;
343 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
345 struct crypto_cipher *essiv_tfm;
346 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
348 crypto_free_ahash(essiv->hash_tfm);
349 essiv->hash_tfm = NULL;
351 kzfree(essiv->salt);
352 essiv->salt = NULL;
354 essiv_tfm = cc->iv_private;
356 if (essiv_tfm)
357 crypto_free_cipher(essiv_tfm);
359 cc->iv_private = NULL;
362 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
363 const char *opts)
365 struct crypto_cipher *essiv_tfm = NULL;
366 struct crypto_ahash *hash_tfm = NULL;
367 u8 *salt = NULL;
368 int err;
370 if (!opts) {
371 ti->error = "Digest algorithm missing for ESSIV mode";
372 return -EINVAL;
375 /* Allocate hash algorithm */
376 hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
377 if (IS_ERR(hash_tfm)) {
378 ti->error = "Error initializing ESSIV hash";
379 err = PTR_ERR(hash_tfm);
380 goto bad;
383 salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
384 if (!salt) {
385 ti->error = "Error kmallocing salt storage in ESSIV";
386 err = -ENOMEM;
387 goto bad;
390 cc->iv_gen_private.essiv.salt = salt;
391 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
393 essiv_tfm = setup_essiv_cpu(cc, ti, salt,
394 crypto_ahash_digestsize(hash_tfm));
395 if (IS_ERR(essiv_tfm)) {
396 crypt_iv_essiv_dtr(cc);
397 return PTR_ERR(essiv_tfm);
399 cc->iv_private = essiv_tfm;
401 return 0;
403 bad:
404 if (hash_tfm && !IS_ERR(hash_tfm))
405 crypto_free_ahash(hash_tfm);
406 kfree(salt);
407 return err;
410 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
411 struct dm_crypt_request *dmreq)
413 struct crypto_cipher *essiv_tfm = cc->iv_private;
415 memset(iv, 0, cc->iv_size);
416 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
417 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
419 return 0;
422 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
423 const char *opts)
425 unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
426 int log = ilog2(bs);
428 /* we need to calculate how far we must shift the sector count
429 * to get the cipher block count, we use this shift in _gen */
431 if (1 << log != bs) {
432 ti->error = "cypher blocksize is not a power of 2";
433 return -EINVAL;
436 if (log > 9) {
437 ti->error = "cypher blocksize is > 512";
438 return -EINVAL;
441 cc->iv_gen_private.benbi.shift = 9 - log;
443 return 0;
446 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
450 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
451 struct dm_crypt_request *dmreq)
453 __be64 val;
455 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
457 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
458 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
460 return 0;
463 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
464 struct dm_crypt_request *dmreq)
466 memset(iv, 0, cc->iv_size);
468 return 0;
471 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
473 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
475 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
476 crypto_free_shash(lmk->hash_tfm);
477 lmk->hash_tfm = NULL;
479 kzfree(lmk->seed);
480 lmk->seed = NULL;
483 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
484 const char *opts)
486 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
488 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
489 if (IS_ERR(lmk->hash_tfm)) {
490 ti->error = "Error initializing LMK hash";
491 return PTR_ERR(lmk->hash_tfm);
494 /* No seed in LMK version 2 */
495 if (cc->key_parts == cc->tfms_count) {
496 lmk->seed = NULL;
497 return 0;
500 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
501 if (!lmk->seed) {
502 crypt_iv_lmk_dtr(cc);
503 ti->error = "Error kmallocing seed storage in LMK";
504 return -ENOMEM;
507 return 0;
510 static int crypt_iv_lmk_init(struct crypt_config *cc)
512 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
513 int subkey_size = cc->key_size / cc->key_parts;
515 /* LMK seed is on the position of LMK_KEYS + 1 key */
516 if (lmk->seed)
517 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
518 crypto_shash_digestsize(lmk->hash_tfm));
520 return 0;
523 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
525 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
527 if (lmk->seed)
528 memset(lmk->seed, 0, LMK_SEED_SIZE);
530 return 0;
533 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
534 struct dm_crypt_request *dmreq,
535 u8 *data)
537 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
538 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
539 struct md5_state md5state;
540 __le32 buf[4];
541 int i, r;
543 desc->tfm = lmk->hash_tfm;
544 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
546 r = crypto_shash_init(desc);
547 if (r)
548 return r;
550 if (lmk->seed) {
551 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
552 if (r)
553 return r;
556 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
557 r = crypto_shash_update(desc, data + 16, 16 * 31);
558 if (r)
559 return r;
561 /* Sector is cropped to 56 bits here */
562 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
563 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
564 buf[2] = cpu_to_le32(4024);
565 buf[3] = 0;
566 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
567 if (r)
568 return r;
570 /* No MD5 padding here */
571 r = crypto_shash_export(desc, &md5state);
572 if (r)
573 return r;
575 for (i = 0; i < MD5_HASH_WORDS; i++)
576 __cpu_to_le32s(&md5state.hash[i]);
577 memcpy(iv, &md5state.hash, cc->iv_size);
579 return 0;
582 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
583 struct dm_crypt_request *dmreq)
585 u8 *src;
586 int r = 0;
588 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
589 src = kmap_atomic(sg_page(&dmreq->sg_in));
590 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
591 kunmap_atomic(src);
592 } else
593 memset(iv, 0, cc->iv_size);
595 return r;
598 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
599 struct dm_crypt_request *dmreq)
601 u8 *dst;
602 int r;
604 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
605 return 0;
607 dst = kmap_atomic(sg_page(&dmreq->sg_out));
608 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
610 /* Tweak the first block of plaintext sector */
611 if (!r)
612 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
614 kunmap_atomic(dst);
615 return r;
618 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
620 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
622 kzfree(tcw->iv_seed);
623 tcw->iv_seed = NULL;
624 kzfree(tcw->whitening);
625 tcw->whitening = NULL;
627 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
628 crypto_free_shash(tcw->crc32_tfm);
629 tcw->crc32_tfm = NULL;
632 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
633 const char *opts)
635 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
637 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
638 ti->error = "Wrong key size for TCW";
639 return -EINVAL;
642 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
643 if (IS_ERR(tcw->crc32_tfm)) {
644 ti->error = "Error initializing CRC32 in TCW";
645 return PTR_ERR(tcw->crc32_tfm);
648 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
649 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
650 if (!tcw->iv_seed || !tcw->whitening) {
651 crypt_iv_tcw_dtr(cc);
652 ti->error = "Error allocating seed storage in TCW";
653 return -ENOMEM;
656 return 0;
659 static int crypt_iv_tcw_init(struct crypt_config *cc)
661 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
662 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
664 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
665 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
666 TCW_WHITENING_SIZE);
668 return 0;
671 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
673 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
675 memset(tcw->iv_seed, 0, cc->iv_size);
676 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
678 return 0;
681 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
682 struct dm_crypt_request *dmreq,
683 u8 *data)
685 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
686 u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
687 u8 buf[TCW_WHITENING_SIZE];
688 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
689 int i, r;
691 /* xor whitening with sector number */
692 memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
693 crypto_xor(buf, (u8 *)&sector, 8);
694 crypto_xor(&buf[8], (u8 *)&sector, 8);
696 /* calculate crc32 for every 32bit part and xor it */
697 desc->tfm = tcw->crc32_tfm;
698 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
699 for (i = 0; i < 4; i++) {
700 r = crypto_shash_init(desc);
701 if (r)
702 goto out;
703 r = crypto_shash_update(desc, &buf[i * 4], 4);
704 if (r)
705 goto out;
706 r = crypto_shash_final(desc, &buf[i * 4]);
707 if (r)
708 goto out;
710 crypto_xor(&buf[0], &buf[12], 4);
711 crypto_xor(&buf[4], &buf[8], 4);
713 /* apply whitening (8 bytes) to whole sector */
714 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
715 crypto_xor(data + i * 8, buf, 8);
716 out:
717 memzero_explicit(buf, sizeof(buf));
718 return r;
721 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
722 struct dm_crypt_request *dmreq)
724 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
725 u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
726 u8 *src;
727 int r = 0;
729 /* Remove whitening from ciphertext */
730 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
731 src = kmap_atomic(sg_page(&dmreq->sg_in));
732 r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
733 kunmap_atomic(src);
736 /* Calculate IV */
737 memcpy(iv, tcw->iv_seed, cc->iv_size);
738 crypto_xor(iv, (u8 *)&sector, 8);
739 if (cc->iv_size > 8)
740 crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
742 return r;
745 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
746 struct dm_crypt_request *dmreq)
748 u8 *dst;
749 int r;
751 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
752 return 0;
754 /* Apply whitening on ciphertext */
755 dst = kmap_atomic(sg_page(&dmreq->sg_out));
756 r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
757 kunmap_atomic(dst);
759 return r;
762 static struct crypt_iv_operations crypt_iv_plain_ops = {
763 .generator = crypt_iv_plain_gen
766 static struct crypt_iv_operations crypt_iv_plain64_ops = {
767 .generator = crypt_iv_plain64_gen
770 static struct crypt_iv_operations crypt_iv_essiv_ops = {
771 .ctr = crypt_iv_essiv_ctr,
772 .dtr = crypt_iv_essiv_dtr,
773 .init = crypt_iv_essiv_init,
774 .wipe = crypt_iv_essiv_wipe,
775 .generator = crypt_iv_essiv_gen
778 static struct crypt_iv_operations crypt_iv_benbi_ops = {
779 .ctr = crypt_iv_benbi_ctr,
780 .dtr = crypt_iv_benbi_dtr,
781 .generator = crypt_iv_benbi_gen
784 static struct crypt_iv_operations crypt_iv_null_ops = {
785 .generator = crypt_iv_null_gen
788 static struct crypt_iv_operations crypt_iv_lmk_ops = {
789 .ctr = crypt_iv_lmk_ctr,
790 .dtr = crypt_iv_lmk_dtr,
791 .init = crypt_iv_lmk_init,
792 .wipe = crypt_iv_lmk_wipe,
793 .generator = crypt_iv_lmk_gen,
794 .post = crypt_iv_lmk_post
797 static struct crypt_iv_operations crypt_iv_tcw_ops = {
798 .ctr = crypt_iv_tcw_ctr,
799 .dtr = crypt_iv_tcw_dtr,
800 .init = crypt_iv_tcw_init,
801 .wipe = crypt_iv_tcw_wipe,
802 .generator = crypt_iv_tcw_gen,
803 .post = crypt_iv_tcw_post
806 static void crypt_convert_init(struct crypt_config *cc,
807 struct convert_context *ctx,
808 struct bio *bio_out, struct bio *bio_in,
809 sector_t sector)
811 ctx->bio_in = bio_in;
812 ctx->bio_out = bio_out;
813 if (bio_in)
814 ctx->iter_in = bio_in->bi_iter;
815 if (bio_out)
816 ctx->iter_out = bio_out->bi_iter;
817 ctx->cc_sector = sector + cc->iv_offset;
818 init_completion(&ctx->restart);
821 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
822 struct skcipher_request *req)
824 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
827 static struct skcipher_request *req_of_dmreq(struct crypt_config *cc,
828 struct dm_crypt_request *dmreq)
830 return (struct skcipher_request *)((char *)dmreq - cc->dmreq_start);
833 static u8 *iv_of_dmreq(struct crypt_config *cc,
834 struct dm_crypt_request *dmreq)
836 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
837 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
840 static int crypt_convert_block(struct crypt_config *cc,
841 struct convert_context *ctx,
842 struct skcipher_request *req)
844 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
845 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
846 struct dm_crypt_request *dmreq;
847 u8 *iv;
848 int r;
850 dmreq = dmreq_of_req(cc, req);
851 iv = iv_of_dmreq(cc, dmreq);
853 dmreq->iv_sector = ctx->cc_sector;
854 dmreq->ctx = ctx;
855 sg_init_table(&dmreq->sg_in, 1);
856 sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
857 bv_in.bv_offset);
859 sg_init_table(&dmreq->sg_out, 1);
860 sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
861 bv_out.bv_offset);
863 bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
864 bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
866 if (cc->iv_gen_ops) {
867 r = cc->iv_gen_ops->generator(cc, iv, dmreq);
868 if (r < 0)
869 return r;
872 skcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
873 1 << SECTOR_SHIFT, iv);
875 if (bio_data_dir(ctx->bio_in) == WRITE)
876 r = crypto_skcipher_encrypt(req);
877 else
878 r = crypto_skcipher_decrypt(req);
880 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
881 r = cc->iv_gen_ops->post(cc, iv, dmreq);
883 return r;
886 static void kcryptd_async_done(struct crypto_async_request *async_req,
887 int error);
889 static void crypt_alloc_req(struct crypt_config *cc,
890 struct convert_context *ctx)
892 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
894 if (!ctx->req)
895 ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
897 skcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
900 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
901 * requests if driver request queue is full.
903 skcipher_request_set_callback(ctx->req,
904 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
905 kcryptd_async_done, dmreq_of_req(cc, ctx->req));
908 static void crypt_free_req(struct crypt_config *cc,
909 struct skcipher_request *req, struct bio *base_bio)
911 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
913 if ((struct skcipher_request *)(io + 1) != req)
914 mempool_free(req, cc->req_pool);
918 * Encrypt / decrypt data from one bio to another one (can be the same one)
920 static int crypt_convert(struct crypt_config *cc,
921 struct convert_context *ctx)
923 int r;
925 atomic_set(&ctx->cc_pending, 1);
927 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
929 crypt_alloc_req(cc, ctx);
931 atomic_inc(&ctx->cc_pending);
933 r = crypt_convert_block(cc, ctx, ctx->req);
935 switch (r) {
937 * The request was queued by a crypto driver
938 * but the driver request queue is full, let's wait.
940 case -EBUSY:
941 wait_for_completion(&ctx->restart);
942 reinit_completion(&ctx->restart);
943 /* fall through */
945 * The request is queued and processed asynchronously,
946 * completion function kcryptd_async_done() will be called.
948 case -EINPROGRESS:
949 ctx->req = NULL;
950 ctx->cc_sector++;
951 continue;
953 * The request was already processed (synchronously).
955 case 0:
956 atomic_dec(&ctx->cc_pending);
957 ctx->cc_sector++;
958 cond_resched();
959 continue;
961 /* There was an error while processing the request. */
962 default:
963 atomic_dec(&ctx->cc_pending);
964 return r;
968 return 0;
971 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
974 * Generate a new unfragmented bio with the given size
975 * This should never violate the device limitations (but only because
976 * max_segment_size is being constrained to PAGE_SIZE).
978 * This function may be called concurrently. If we allocate from the mempool
979 * concurrently, there is a possibility of deadlock. For example, if we have
980 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
981 * the mempool concurrently, it may deadlock in a situation where both processes
982 * have allocated 128 pages and the mempool is exhausted.
984 * In order to avoid this scenario we allocate the pages under a mutex.
986 * In order to not degrade performance with excessive locking, we try
987 * non-blocking allocations without a mutex first but on failure we fallback
988 * to blocking allocations with a mutex.
990 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
992 struct crypt_config *cc = io->cc;
993 struct bio *clone;
994 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
995 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
996 unsigned i, len, remaining_size;
997 struct page *page;
998 struct bio_vec *bvec;
1000 retry:
1001 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1002 mutex_lock(&cc->bio_alloc_lock);
1004 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1005 if (!clone)
1006 goto return_clone;
1008 clone_init(io, clone);
1010 remaining_size = size;
1012 for (i = 0; i < nr_iovecs; i++) {
1013 page = mempool_alloc(cc->page_pool, gfp_mask);
1014 if (!page) {
1015 crypt_free_buffer_pages(cc, clone);
1016 bio_put(clone);
1017 gfp_mask |= __GFP_DIRECT_RECLAIM;
1018 goto retry;
1021 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1023 bvec = &clone->bi_io_vec[clone->bi_vcnt++];
1024 bvec->bv_page = page;
1025 bvec->bv_len = len;
1026 bvec->bv_offset = 0;
1028 clone->bi_iter.bi_size += len;
1030 remaining_size -= len;
1033 return_clone:
1034 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1035 mutex_unlock(&cc->bio_alloc_lock);
1037 return clone;
1040 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1042 unsigned int i;
1043 struct bio_vec *bv;
1045 bio_for_each_segment_all(bv, clone, i) {
1046 BUG_ON(!bv->bv_page);
1047 mempool_free(bv->bv_page, cc->page_pool);
1048 bv->bv_page = NULL;
1052 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1053 struct bio *bio, sector_t sector)
1055 io->cc = cc;
1056 io->base_bio = bio;
1057 io->sector = sector;
1058 io->error = 0;
1059 io->ctx.req = NULL;
1060 atomic_set(&io->io_pending, 0);
1063 static void crypt_inc_pending(struct dm_crypt_io *io)
1065 atomic_inc(&io->io_pending);
1069 * One of the bios was finished. Check for completion of
1070 * the whole request and correctly clean up the buffer.
1072 static void crypt_dec_pending(struct dm_crypt_io *io)
1074 struct crypt_config *cc = io->cc;
1075 struct bio *base_bio = io->base_bio;
1076 int error = io->error;
1078 if (!atomic_dec_and_test(&io->io_pending))
1079 return;
1081 if (io->ctx.req)
1082 crypt_free_req(cc, io->ctx.req, base_bio);
1084 base_bio->bi_error = error;
1085 bio_endio(base_bio);
1089 * kcryptd/kcryptd_io:
1091 * Needed because it would be very unwise to do decryption in an
1092 * interrupt context.
1094 * kcryptd performs the actual encryption or decryption.
1096 * kcryptd_io performs the IO submission.
1098 * They must be separated as otherwise the final stages could be
1099 * starved by new requests which can block in the first stages due
1100 * to memory allocation.
1102 * The work is done per CPU global for all dm-crypt instances.
1103 * They should not depend on each other and do not block.
1105 static void crypt_endio(struct bio *clone)
1107 struct dm_crypt_io *io = clone->bi_private;
1108 struct crypt_config *cc = io->cc;
1109 unsigned rw = bio_data_dir(clone);
1110 int error;
1113 * free the processed pages
1115 if (rw == WRITE)
1116 crypt_free_buffer_pages(cc, clone);
1118 error = clone->bi_error;
1119 bio_put(clone);
1121 if (rw == READ && !error) {
1122 kcryptd_queue_crypt(io);
1123 return;
1126 if (unlikely(error))
1127 io->error = error;
1129 crypt_dec_pending(io);
1132 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1134 struct crypt_config *cc = io->cc;
1136 clone->bi_private = io;
1137 clone->bi_end_io = crypt_endio;
1138 clone->bi_bdev = cc->dev->bdev;
1139 clone->bi_rw = io->base_bio->bi_rw;
1142 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1144 struct crypt_config *cc = io->cc;
1145 struct bio *clone;
1148 * We need the original biovec array in order to decrypt
1149 * the whole bio data *afterwards* -- thanks to immutable
1150 * biovecs we don't need to worry about the block layer
1151 * modifying the biovec array; so leverage bio_clone_fast().
1153 clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1154 if (!clone)
1155 return 1;
1157 crypt_inc_pending(io);
1159 clone_init(io, clone);
1160 clone->bi_iter.bi_sector = cc->start + io->sector;
1162 generic_make_request(clone);
1163 return 0;
1166 static void kcryptd_io_read_work(struct work_struct *work)
1168 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1170 crypt_inc_pending(io);
1171 if (kcryptd_io_read(io, GFP_NOIO))
1172 io->error = -ENOMEM;
1173 crypt_dec_pending(io);
1176 static void kcryptd_queue_read(struct dm_crypt_io *io)
1178 struct crypt_config *cc = io->cc;
1180 INIT_WORK(&io->work, kcryptd_io_read_work);
1181 queue_work(cc->io_queue, &io->work);
1184 static void kcryptd_io_write(struct dm_crypt_io *io)
1186 struct bio *clone = io->ctx.bio_out;
1188 generic_make_request(clone);
1191 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1193 static int dmcrypt_write(void *data)
1195 struct crypt_config *cc = data;
1196 struct dm_crypt_io *io;
1198 while (1) {
1199 struct rb_root write_tree;
1200 struct blk_plug plug;
1202 DECLARE_WAITQUEUE(wait, current);
1204 spin_lock_irq(&cc->write_thread_wait.lock);
1205 continue_locked:
1207 if (!RB_EMPTY_ROOT(&cc->write_tree))
1208 goto pop_from_list;
1210 if (unlikely(test_bit(DM_CRYPT_EXIT_THREAD, &cc->flags))) {
1211 spin_unlock_irq(&cc->write_thread_wait.lock);
1212 break;
1215 __set_current_state(TASK_INTERRUPTIBLE);
1216 __add_wait_queue(&cc->write_thread_wait, &wait);
1218 spin_unlock_irq(&cc->write_thread_wait.lock);
1220 schedule();
1222 spin_lock_irq(&cc->write_thread_wait.lock);
1223 __remove_wait_queue(&cc->write_thread_wait, &wait);
1224 goto continue_locked;
1226 pop_from_list:
1227 write_tree = cc->write_tree;
1228 cc->write_tree = RB_ROOT;
1229 spin_unlock_irq(&cc->write_thread_wait.lock);
1231 BUG_ON(rb_parent(write_tree.rb_node));
1234 * Note: we cannot walk the tree here with rb_next because
1235 * the structures may be freed when kcryptd_io_write is called.
1237 blk_start_plug(&plug);
1238 do {
1239 io = crypt_io_from_node(rb_first(&write_tree));
1240 rb_erase(&io->rb_node, &write_tree);
1241 kcryptd_io_write(io);
1242 } while (!RB_EMPTY_ROOT(&write_tree));
1243 blk_finish_plug(&plug);
1245 return 0;
1248 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1250 struct bio *clone = io->ctx.bio_out;
1251 struct crypt_config *cc = io->cc;
1252 unsigned long flags;
1253 sector_t sector;
1254 struct rb_node **rbp, *parent;
1256 if (unlikely(io->error < 0)) {
1257 crypt_free_buffer_pages(cc, clone);
1258 bio_put(clone);
1259 crypt_dec_pending(io);
1260 return;
1263 /* crypt_convert should have filled the clone bio */
1264 BUG_ON(io->ctx.iter_out.bi_size);
1266 clone->bi_iter.bi_sector = cc->start + io->sector;
1268 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1269 generic_make_request(clone);
1270 return;
1273 spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1274 rbp = &cc->write_tree.rb_node;
1275 parent = NULL;
1276 sector = io->sector;
1277 while (*rbp) {
1278 parent = *rbp;
1279 if (sector < crypt_io_from_node(parent)->sector)
1280 rbp = &(*rbp)->rb_left;
1281 else
1282 rbp = &(*rbp)->rb_right;
1284 rb_link_node(&io->rb_node, parent, rbp);
1285 rb_insert_color(&io->rb_node, &cc->write_tree);
1287 wake_up_locked(&cc->write_thread_wait);
1288 spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1291 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1293 struct crypt_config *cc = io->cc;
1294 struct bio *clone;
1295 int crypt_finished;
1296 sector_t sector = io->sector;
1297 int r;
1300 * Prevent io from disappearing until this function completes.
1302 crypt_inc_pending(io);
1303 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1305 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1306 if (unlikely(!clone)) {
1307 io->error = -EIO;
1308 goto dec;
1311 io->ctx.bio_out = clone;
1312 io->ctx.iter_out = clone->bi_iter;
1314 sector += bio_sectors(clone);
1316 crypt_inc_pending(io);
1317 r = crypt_convert(cc, &io->ctx);
1318 if (r)
1319 io->error = -EIO;
1320 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1322 /* Encryption was already finished, submit io now */
1323 if (crypt_finished) {
1324 kcryptd_crypt_write_io_submit(io, 0);
1325 io->sector = sector;
1328 dec:
1329 crypt_dec_pending(io);
1332 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1334 crypt_dec_pending(io);
1337 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1339 struct crypt_config *cc = io->cc;
1340 int r = 0;
1342 crypt_inc_pending(io);
1344 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1345 io->sector);
1347 r = crypt_convert(cc, &io->ctx);
1348 if (r < 0)
1349 io->error = -EIO;
1351 if (atomic_dec_and_test(&io->ctx.cc_pending))
1352 kcryptd_crypt_read_done(io);
1354 crypt_dec_pending(io);
1357 static void kcryptd_async_done(struct crypto_async_request *async_req,
1358 int error)
1360 struct dm_crypt_request *dmreq = async_req->data;
1361 struct convert_context *ctx = dmreq->ctx;
1362 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1363 struct crypt_config *cc = io->cc;
1366 * A request from crypto driver backlog is going to be processed now,
1367 * finish the completion and continue in crypt_convert().
1368 * (Callback will be called for the second time for this request.)
1370 if (error == -EINPROGRESS) {
1371 complete(&ctx->restart);
1372 return;
1375 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1376 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1378 if (error < 0)
1379 io->error = -EIO;
1381 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1383 if (!atomic_dec_and_test(&ctx->cc_pending))
1384 return;
1386 if (bio_data_dir(io->base_bio) == READ)
1387 kcryptd_crypt_read_done(io);
1388 else
1389 kcryptd_crypt_write_io_submit(io, 1);
1392 static void kcryptd_crypt(struct work_struct *work)
1394 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1396 if (bio_data_dir(io->base_bio) == READ)
1397 kcryptd_crypt_read_convert(io);
1398 else
1399 kcryptd_crypt_write_convert(io);
1402 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1404 struct crypt_config *cc = io->cc;
1406 INIT_WORK(&io->work, kcryptd_crypt);
1407 queue_work(cc->crypt_queue, &io->work);
1411 * Decode key from its hex representation
1413 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1415 char buffer[3];
1416 unsigned int i;
1418 buffer[2] = '\0';
1420 for (i = 0; i < size; i++) {
1421 buffer[0] = *hex++;
1422 buffer[1] = *hex++;
1424 if (kstrtou8(buffer, 16, &key[i]))
1425 return -EINVAL;
1428 if (*hex != '\0')
1429 return -EINVAL;
1431 return 0;
1434 static void crypt_free_tfms(struct crypt_config *cc)
1436 unsigned i;
1438 if (!cc->tfms)
1439 return;
1441 for (i = 0; i < cc->tfms_count; i++)
1442 if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1443 crypto_free_skcipher(cc->tfms[i]);
1444 cc->tfms[i] = NULL;
1447 kfree(cc->tfms);
1448 cc->tfms = NULL;
1451 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1453 unsigned i;
1454 int err;
1456 cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_skcipher *),
1457 GFP_KERNEL);
1458 if (!cc->tfms)
1459 return -ENOMEM;
1461 for (i = 0; i < cc->tfms_count; i++) {
1462 cc->tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1463 if (IS_ERR(cc->tfms[i])) {
1464 err = PTR_ERR(cc->tfms[i]);
1465 crypt_free_tfms(cc);
1466 return err;
1470 return 0;
1473 static int crypt_setkey_allcpus(struct crypt_config *cc)
1475 unsigned subkey_size;
1476 int err = 0, i, r;
1478 /* Ignore extra keys (which are used for IV etc) */
1479 subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1481 for (i = 0; i < cc->tfms_count; i++) {
1482 r = crypto_skcipher_setkey(cc->tfms[i],
1483 cc->key + (i * subkey_size),
1484 subkey_size);
1485 if (r)
1486 err = r;
1489 return err;
1492 static int crypt_set_key(struct crypt_config *cc, char *key)
1494 int r = -EINVAL;
1495 int key_string_len = strlen(key);
1497 /* The key size may not be changed. */
1498 if (cc->key_size != (key_string_len >> 1))
1499 goto out;
1501 /* Hyphen (which gives a key_size of zero) means there is no key. */
1502 if (!cc->key_size && strcmp(key, "-"))
1503 goto out;
1505 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1506 goto out;
1508 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1510 r = crypt_setkey_allcpus(cc);
1512 out:
1513 /* Hex key string not needed after here, so wipe it. */
1514 memset(key, '0', key_string_len);
1516 return r;
1519 static int crypt_wipe_key(struct crypt_config *cc)
1521 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1522 memset(&cc->key, 0, cc->key_size * sizeof(u8));
1524 return crypt_setkey_allcpus(cc);
1527 static void crypt_dtr(struct dm_target *ti)
1529 struct crypt_config *cc = ti->private;
1531 ti->private = NULL;
1533 if (!cc)
1534 return;
1536 if (cc->write_thread) {
1537 spin_lock_irq(&cc->write_thread_wait.lock);
1538 set_bit(DM_CRYPT_EXIT_THREAD, &cc->flags);
1539 wake_up_locked(&cc->write_thread_wait);
1540 spin_unlock_irq(&cc->write_thread_wait.lock);
1541 kthread_stop(cc->write_thread);
1544 if (cc->io_queue)
1545 destroy_workqueue(cc->io_queue);
1546 if (cc->crypt_queue)
1547 destroy_workqueue(cc->crypt_queue);
1549 crypt_free_tfms(cc);
1551 if (cc->bs)
1552 bioset_free(cc->bs);
1554 mempool_destroy(cc->page_pool);
1555 mempool_destroy(cc->req_pool);
1557 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1558 cc->iv_gen_ops->dtr(cc);
1560 if (cc->dev)
1561 dm_put_device(ti, cc->dev);
1563 kzfree(cc->cipher);
1564 kzfree(cc->cipher_string);
1566 /* Must zero key material before freeing */
1567 kzfree(cc);
1570 static int crypt_ctr_cipher(struct dm_target *ti,
1571 char *cipher_in, char *key)
1573 struct crypt_config *cc = ti->private;
1574 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1575 char *cipher_api = NULL;
1576 int ret = -EINVAL;
1577 char dummy;
1579 /* Convert to crypto api definition? */
1580 if (strchr(cipher_in, '(')) {
1581 ti->error = "Bad cipher specification";
1582 return -EINVAL;
1585 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1586 if (!cc->cipher_string)
1587 goto bad_mem;
1590 * Legacy dm-crypt cipher specification
1591 * cipher[:keycount]-mode-iv:ivopts
1593 tmp = cipher_in;
1594 keycount = strsep(&tmp, "-");
1595 cipher = strsep(&keycount, ":");
1597 if (!keycount)
1598 cc->tfms_count = 1;
1599 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1600 !is_power_of_2(cc->tfms_count)) {
1601 ti->error = "Bad cipher key count specification";
1602 return -EINVAL;
1604 cc->key_parts = cc->tfms_count;
1605 cc->key_extra_size = 0;
1607 cc->cipher = kstrdup(cipher, GFP_KERNEL);
1608 if (!cc->cipher)
1609 goto bad_mem;
1611 chainmode = strsep(&tmp, "-");
1612 ivopts = strsep(&tmp, "-");
1613 ivmode = strsep(&ivopts, ":");
1615 if (tmp)
1616 DMWARN("Ignoring unexpected additional cipher options");
1619 * For compatibility with the original dm-crypt mapping format, if
1620 * only the cipher name is supplied, use cbc-plain.
1622 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1623 chainmode = "cbc";
1624 ivmode = "plain";
1627 if (strcmp(chainmode, "ecb") && !ivmode) {
1628 ti->error = "IV mechanism required";
1629 return -EINVAL;
1632 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1633 if (!cipher_api)
1634 goto bad_mem;
1636 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1637 "%s(%s)", chainmode, cipher);
1638 if (ret < 0) {
1639 kfree(cipher_api);
1640 goto bad_mem;
1643 /* Allocate cipher */
1644 ret = crypt_alloc_tfms(cc, cipher_api);
1645 if (ret < 0) {
1646 ti->error = "Error allocating crypto tfm";
1647 goto bad;
1650 /* Initialize IV */
1651 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
1652 if (cc->iv_size)
1653 /* at least a 64 bit sector number should fit in our buffer */
1654 cc->iv_size = max(cc->iv_size,
1655 (unsigned int)(sizeof(u64) / sizeof(u8)));
1656 else if (ivmode) {
1657 DMWARN("Selected cipher does not support IVs");
1658 ivmode = NULL;
1661 /* Choose ivmode, see comments at iv code. */
1662 if (ivmode == NULL)
1663 cc->iv_gen_ops = NULL;
1664 else if (strcmp(ivmode, "plain") == 0)
1665 cc->iv_gen_ops = &crypt_iv_plain_ops;
1666 else if (strcmp(ivmode, "plain64") == 0)
1667 cc->iv_gen_ops = &crypt_iv_plain64_ops;
1668 else if (strcmp(ivmode, "essiv") == 0)
1669 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1670 else if (strcmp(ivmode, "benbi") == 0)
1671 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1672 else if (strcmp(ivmode, "null") == 0)
1673 cc->iv_gen_ops = &crypt_iv_null_ops;
1674 else if (strcmp(ivmode, "lmk") == 0) {
1675 cc->iv_gen_ops = &crypt_iv_lmk_ops;
1677 * Version 2 and 3 is recognised according
1678 * to length of provided multi-key string.
1679 * If present (version 3), last key is used as IV seed.
1680 * All keys (including IV seed) are always the same size.
1682 if (cc->key_size % cc->key_parts) {
1683 cc->key_parts++;
1684 cc->key_extra_size = cc->key_size / cc->key_parts;
1686 } else if (strcmp(ivmode, "tcw") == 0) {
1687 cc->iv_gen_ops = &crypt_iv_tcw_ops;
1688 cc->key_parts += 2; /* IV + whitening */
1689 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1690 } else {
1691 ret = -EINVAL;
1692 ti->error = "Invalid IV mode";
1693 goto bad;
1696 /* Initialize and set key */
1697 ret = crypt_set_key(cc, key);
1698 if (ret < 0) {
1699 ti->error = "Error decoding and setting key";
1700 goto bad;
1703 /* Allocate IV */
1704 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1705 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1706 if (ret < 0) {
1707 ti->error = "Error creating IV";
1708 goto bad;
1712 /* Initialize IV (set keys for ESSIV etc) */
1713 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1714 ret = cc->iv_gen_ops->init(cc);
1715 if (ret < 0) {
1716 ti->error = "Error initialising IV";
1717 goto bad;
1721 ret = 0;
1722 bad:
1723 kfree(cipher_api);
1724 return ret;
1726 bad_mem:
1727 ti->error = "Cannot allocate cipher strings";
1728 return -ENOMEM;
1732 * Construct an encryption mapping:
1733 * <cipher> <key> <iv_offset> <dev_path> <start>
1735 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1737 struct crypt_config *cc;
1738 unsigned int key_size, opt_params;
1739 unsigned long long tmpll;
1740 int ret;
1741 size_t iv_size_padding;
1742 struct dm_arg_set as;
1743 const char *opt_string;
1744 char dummy;
1746 static struct dm_arg _args[] = {
1747 {0, 3, "Invalid number of feature args"},
1750 if (argc < 5) {
1751 ti->error = "Not enough arguments";
1752 return -EINVAL;
1755 key_size = strlen(argv[1]) >> 1;
1757 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1758 if (!cc) {
1759 ti->error = "Cannot allocate encryption context";
1760 return -ENOMEM;
1762 cc->key_size = key_size;
1764 ti->private = cc;
1765 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1766 if (ret < 0)
1767 goto bad;
1769 cc->dmreq_start = sizeof(struct skcipher_request);
1770 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
1771 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1773 if (crypto_skcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1774 /* Allocate the padding exactly */
1775 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1776 & crypto_skcipher_alignmask(any_tfm(cc));
1777 } else {
1779 * If the cipher requires greater alignment than kmalloc
1780 * alignment, we don't know the exact position of the
1781 * initialization vector. We must assume worst case.
1783 iv_size_padding = crypto_skcipher_alignmask(any_tfm(cc));
1786 ret = -ENOMEM;
1787 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1788 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1789 if (!cc->req_pool) {
1790 ti->error = "Cannot allocate crypt request mempool";
1791 goto bad;
1794 cc->per_bio_data_size = ti->per_io_data_size =
1795 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1796 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1797 ARCH_KMALLOC_MINALIGN);
1799 cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1800 if (!cc->page_pool) {
1801 ti->error = "Cannot allocate page mempool";
1802 goto bad;
1805 cc->bs = bioset_create(MIN_IOS, 0);
1806 if (!cc->bs) {
1807 ti->error = "Cannot allocate crypt bioset";
1808 goto bad;
1811 mutex_init(&cc->bio_alloc_lock);
1813 ret = -EINVAL;
1814 if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1815 ti->error = "Invalid iv_offset sector";
1816 goto bad;
1818 cc->iv_offset = tmpll;
1820 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
1821 if (ret) {
1822 ti->error = "Device lookup failed";
1823 goto bad;
1826 ret = -EINVAL;
1827 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1828 ti->error = "Invalid device sector";
1829 goto bad;
1831 cc->start = tmpll;
1833 argv += 5;
1834 argc -= 5;
1836 /* Optional parameters */
1837 if (argc) {
1838 as.argc = argc;
1839 as.argv = argv;
1841 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1842 if (ret)
1843 goto bad;
1845 ret = -EINVAL;
1846 while (opt_params--) {
1847 opt_string = dm_shift_arg(&as);
1848 if (!opt_string) {
1849 ti->error = "Not enough feature arguments";
1850 goto bad;
1853 if (!strcasecmp(opt_string, "allow_discards"))
1854 ti->num_discard_bios = 1;
1856 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1857 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1859 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1860 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1862 else {
1863 ti->error = "Invalid feature arguments";
1864 goto bad;
1869 ret = -ENOMEM;
1870 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1871 if (!cc->io_queue) {
1872 ti->error = "Couldn't create kcryptd io queue";
1873 goto bad;
1876 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1877 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1878 else
1879 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
1880 num_online_cpus());
1881 if (!cc->crypt_queue) {
1882 ti->error = "Couldn't create kcryptd queue";
1883 goto bad;
1886 init_waitqueue_head(&cc->write_thread_wait);
1887 cc->write_tree = RB_ROOT;
1889 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
1890 if (IS_ERR(cc->write_thread)) {
1891 ret = PTR_ERR(cc->write_thread);
1892 cc->write_thread = NULL;
1893 ti->error = "Couldn't spawn write thread";
1894 goto bad;
1896 wake_up_process(cc->write_thread);
1898 ti->num_flush_bios = 1;
1899 ti->discard_zeroes_data_unsupported = true;
1901 return 0;
1903 bad:
1904 crypt_dtr(ti);
1905 return ret;
1908 static int crypt_map(struct dm_target *ti, struct bio *bio)
1910 struct dm_crypt_io *io;
1911 struct crypt_config *cc = ti->private;
1914 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1915 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1916 * - for REQ_DISCARD caller must use flush if IO ordering matters
1918 if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1919 bio->bi_bdev = cc->dev->bdev;
1920 if (bio_sectors(bio))
1921 bio->bi_iter.bi_sector = cc->start +
1922 dm_target_offset(ti, bio->bi_iter.bi_sector);
1923 return DM_MAPIO_REMAPPED;
1926 io = dm_per_bio_data(bio, cc->per_bio_data_size);
1927 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1928 io->ctx.req = (struct skcipher_request *)(io + 1);
1930 if (bio_data_dir(io->base_bio) == READ) {
1931 if (kcryptd_io_read(io, GFP_NOWAIT))
1932 kcryptd_queue_read(io);
1933 } else
1934 kcryptd_queue_crypt(io);
1936 return DM_MAPIO_SUBMITTED;
1939 static void crypt_status(struct dm_target *ti, status_type_t type,
1940 unsigned status_flags, char *result, unsigned maxlen)
1942 struct crypt_config *cc = ti->private;
1943 unsigned i, sz = 0;
1944 int num_feature_args = 0;
1946 switch (type) {
1947 case STATUSTYPE_INFO:
1948 result[0] = '\0';
1949 break;
1951 case STATUSTYPE_TABLE:
1952 DMEMIT("%s ", cc->cipher_string);
1954 if (cc->key_size > 0)
1955 for (i = 0; i < cc->key_size; i++)
1956 DMEMIT("%02x", cc->key[i]);
1957 else
1958 DMEMIT("-");
1960 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1961 cc->dev->name, (unsigned long long)cc->start);
1963 num_feature_args += !!ti->num_discard_bios;
1964 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1965 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1966 if (num_feature_args) {
1967 DMEMIT(" %d", num_feature_args);
1968 if (ti->num_discard_bios)
1969 DMEMIT(" allow_discards");
1970 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1971 DMEMIT(" same_cpu_crypt");
1972 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
1973 DMEMIT(" submit_from_crypt_cpus");
1976 break;
1980 static void crypt_postsuspend(struct dm_target *ti)
1982 struct crypt_config *cc = ti->private;
1984 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1987 static int crypt_preresume(struct dm_target *ti)
1989 struct crypt_config *cc = ti->private;
1991 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1992 DMERR("aborting resume - crypt key is not set.");
1993 return -EAGAIN;
1996 return 0;
1999 static void crypt_resume(struct dm_target *ti)
2001 struct crypt_config *cc = ti->private;
2003 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2006 /* Message interface
2007 * key set <key>
2008 * key wipe
2010 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2012 struct crypt_config *cc = ti->private;
2013 int ret = -EINVAL;
2015 if (argc < 2)
2016 goto error;
2018 if (!strcasecmp(argv[0], "key")) {
2019 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2020 DMWARN("not suspended during key manipulation.");
2021 return -EINVAL;
2023 if (argc == 3 && !strcasecmp(argv[1], "set")) {
2024 ret = crypt_set_key(cc, argv[2]);
2025 if (ret)
2026 return ret;
2027 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2028 ret = cc->iv_gen_ops->init(cc);
2029 return ret;
2031 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2032 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2033 ret = cc->iv_gen_ops->wipe(cc);
2034 if (ret)
2035 return ret;
2037 return crypt_wipe_key(cc);
2041 error:
2042 DMWARN("unrecognised message received.");
2043 return -EINVAL;
2046 static int crypt_iterate_devices(struct dm_target *ti,
2047 iterate_devices_callout_fn fn, void *data)
2049 struct crypt_config *cc = ti->private;
2051 return fn(ti, cc->dev, cc->start, ti->len, data);
2054 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2057 * Unfortunate constraint that is required to avoid the potential
2058 * for exceeding underlying device's max_segments limits -- due to
2059 * crypt_alloc_buffer() possibly allocating pages for the encryption
2060 * bio that are not as physically contiguous as the original bio.
2062 limits->max_segment_size = PAGE_SIZE;
2065 static struct target_type crypt_target = {
2066 .name = "crypt",
2067 .version = {1, 14, 1},
2068 .module = THIS_MODULE,
2069 .ctr = crypt_ctr,
2070 .dtr = crypt_dtr,
2071 .map = crypt_map,
2072 .status = crypt_status,
2073 .postsuspend = crypt_postsuspend,
2074 .preresume = crypt_preresume,
2075 .resume = crypt_resume,
2076 .message = crypt_message,
2077 .iterate_devices = crypt_iterate_devices,
2078 .io_hints = crypt_io_hints,
2081 static int __init dm_crypt_init(void)
2083 int r;
2085 r = dm_register_target(&crypt_target);
2086 if (r < 0)
2087 DMERR("register failed %d", r);
2089 return r;
2092 static void __exit dm_crypt_exit(void)
2094 dm_unregister_target(&crypt_target);
2097 module_init(dm_crypt_init);
2098 module_exit(dm_crypt_exit);
2100 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2101 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2102 MODULE_LICENSE("GPL");