2 * VMware vSockets Driver
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 /* Implementation notes:
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
38 * - "Server" sockets are referred to as listener sockets throughout this
39 * implementation because they are in the SS_LISTEN state. When a connection
40 * request is received (the second kind of socket mentioned above), we create a
41 * new socket and refer to it as a pending socket. These pending sockets are
42 * placed on the pending connection list of the listener socket. When future
43 * packets are received for the address the listener socket is bound to, we
44 * check if the source of the packet is from one that has an existing pending
45 * connection. If it does, we process the packet for the pending socket. When
46 * that socket reaches the connected state, it is removed from the listener
47 * socket's pending list and enqueued in the listener socket's accept queue.
48 * Callers of accept(2) will accept connected sockets from the listener socket's
49 * accept queue. If the socket cannot be accepted for some reason then it is
50 * marked rejected. Once the connection is accepted, it is owned by the user
51 * process and the responsibility for cleanup falls with that user process.
53 * - It is possible that these pending sockets will never reach the connected
54 * state; in fact, we may never receive another packet after the connection
55 * request. Because of this, we must schedule a cleanup function to run in the
56 * future, after some amount of time passes where a connection should have been
57 * established. This function ensures that the socket is off all lists so it
58 * cannot be retrieved, then drops all references to the socket so it is cleaned
59 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
60 * function will also cleanup rejected sockets, those that reach the connected
61 * state but leave it before they have been accepted.
63 * - Sockets created by user action will be cleaned up when the user process
64 * calls close(2), causing our release implementation to be called. Our release
65 * implementation will perform some cleanup then drop the last reference so our
66 * sk_destruct implementation is invoked. Our sk_destruct implementation will
67 * perform additional cleanup that's common for both types of sockets.
69 * - A socket's reference count is what ensures that the structure won't be
70 * freed. Each entry in a list (such as the "global" bound and connected tables
71 * and the listener socket's pending list and connected queue) ensures a
72 * reference. When we defer work until process context and pass a socket as our
73 * argument, we must ensure the reference count is increased to ensure the
74 * socket isn't freed before the function is run; the deferred function will
75 * then drop the reference.
78 #include <linux/types.h>
79 #include <linux/bitops.h>
80 #include <linux/cred.h>
81 #include <linux/init.h>
83 #include <linux/kernel.h>
84 #include <linux/kmod.h>
85 #include <linux/list.h>
86 #include <linux/miscdevice.h>
87 #include <linux/module.h>
88 #include <linux/mutex.h>
89 #include <linux/net.h>
90 #include <linux/poll.h>
91 #include <linux/skbuff.h>
92 #include <linux/smp.h>
93 #include <linux/socket.h>
94 #include <linux/stddef.h>
95 #include <linux/unistd.h>
96 #include <linux/wait.h>
97 #include <linux/workqueue.h>
99 #include <net/af_vsock.h>
101 static int __vsock_bind(struct sock
*sk
, struct sockaddr_vm
*addr
);
102 static void vsock_sk_destruct(struct sock
*sk
);
103 static int vsock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
);
105 /* Protocol family. */
106 static struct proto vsock_proto
= {
108 .owner
= THIS_MODULE
,
109 .obj_size
= sizeof(struct vsock_sock
),
112 /* The default peer timeout indicates how long we will wait for a peer response
113 * to a control message.
115 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
117 #define SS_LISTEN 255
119 static const struct vsock_transport
*transport
;
120 static DEFINE_MUTEX(vsock_register_mutex
);
124 /* Get the ID of the local context. This is transport dependent. */
126 int vm_sockets_get_local_cid(void)
128 return transport
->get_local_cid();
130 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid
);
134 /* Each bound VSocket is stored in the bind hash table and each connected
135 * VSocket is stored in the connected hash table.
137 * Unbound sockets are all put on the same list attached to the end of the hash
138 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
139 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
140 * represents the list that addr hashes to).
142 * Specifically, we initialize the vsock_bind_table array to a size of
143 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
144 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
145 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
146 * mods with VSOCK_HASH_SIZE to ensure this.
148 #define VSOCK_HASH_SIZE 251
149 #define MAX_PORT_RETRIES 24
151 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
152 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
153 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
155 /* XXX This can probably be implemented in a better way. */
156 #define VSOCK_CONN_HASH(src, dst) \
157 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
158 #define vsock_connected_sockets(src, dst) \
159 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
160 #define vsock_connected_sockets_vsk(vsk) \
161 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
163 static struct list_head vsock_bind_table
[VSOCK_HASH_SIZE
+ 1];
164 static struct list_head vsock_connected_table
[VSOCK_HASH_SIZE
];
165 static DEFINE_SPINLOCK(vsock_table_lock
);
167 /* Autobind this socket to the local address if necessary. */
168 static int vsock_auto_bind(struct vsock_sock
*vsk
)
170 struct sock
*sk
= sk_vsock(vsk
);
171 struct sockaddr_vm local_addr
;
173 if (vsock_addr_bound(&vsk
->local_addr
))
175 vsock_addr_init(&local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
176 return __vsock_bind(sk
, &local_addr
);
179 static void vsock_init_tables(void)
183 for (i
= 0; i
< ARRAY_SIZE(vsock_bind_table
); i
++)
184 INIT_LIST_HEAD(&vsock_bind_table
[i
]);
186 for (i
= 0; i
< ARRAY_SIZE(vsock_connected_table
); i
++)
187 INIT_LIST_HEAD(&vsock_connected_table
[i
]);
190 static void __vsock_insert_bound(struct list_head
*list
,
191 struct vsock_sock
*vsk
)
194 list_add(&vsk
->bound_table
, list
);
197 static void __vsock_insert_connected(struct list_head
*list
,
198 struct vsock_sock
*vsk
)
201 list_add(&vsk
->connected_table
, list
);
204 static void __vsock_remove_bound(struct vsock_sock
*vsk
)
206 list_del_init(&vsk
->bound_table
);
210 static void __vsock_remove_connected(struct vsock_sock
*vsk
)
212 list_del_init(&vsk
->connected_table
);
216 static struct sock
*__vsock_find_bound_socket(struct sockaddr_vm
*addr
)
218 struct vsock_sock
*vsk
;
220 list_for_each_entry(vsk
, vsock_bound_sockets(addr
), bound_table
)
221 if (addr
->svm_port
== vsk
->local_addr
.svm_port
)
222 return sk_vsock(vsk
);
227 static struct sock
*__vsock_find_connected_socket(struct sockaddr_vm
*src
,
228 struct sockaddr_vm
*dst
)
230 struct vsock_sock
*vsk
;
232 list_for_each_entry(vsk
, vsock_connected_sockets(src
, dst
),
234 if (vsock_addr_equals_addr(src
, &vsk
->remote_addr
) &&
235 dst
->svm_port
== vsk
->local_addr
.svm_port
) {
236 return sk_vsock(vsk
);
243 static bool __vsock_in_bound_table(struct vsock_sock
*vsk
)
245 return !list_empty(&vsk
->bound_table
);
248 static bool __vsock_in_connected_table(struct vsock_sock
*vsk
)
250 return !list_empty(&vsk
->connected_table
);
253 static void vsock_insert_unbound(struct vsock_sock
*vsk
)
255 spin_lock_bh(&vsock_table_lock
);
256 __vsock_insert_bound(vsock_unbound_sockets
, vsk
);
257 spin_unlock_bh(&vsock_table_lock
);
260 void vsock_insert_connected(struct vsock_sock
*vsk
)
262 struct list_head
*list
= vsock_connected_sockets(
263 &vsk
->remote_addr
, &vsk
->local_addr
);
265 spin_lock_bh(&vsock_table_lock
);
266 __vsock_insert_connected(list
, vsk
);
267 spin_unlock_bh(&vsock_table_lock
);
269 EXPORT_SYMBOL_GPL(vsock_insert_connected
);
271 void vsock_remove_bound(struct vsock_sock
*vsk
)
273 spin_lock_bh(&vsock_table_lock
);
274 __vsock_remove_bound(vsk
);
275 spin_unlock_bh(&vsock_table_lock
);
277 EXPORT_SYMBOL_GPL(vsock_remove_bound
);
279 void vsock_remove_connected(struct vsock_sock
*vsk
)
281 spin_lock_bh(&vsock_table_lock
);
282 __vsock_remove_connected(vsk
);
283 spin_unlock_bh(&vsock_table_lock
);
285 EXPORT_SYMBOL_GPL(vsock_remove_connected
);
287 struct sock
*vsock_find_bound_socket(struct sockaddr_vm
*addr
)
291 spin_lock_bh(&vsock_table_lock
);
292 sk
= __vsock_find_bound_socket(addr
);
296 spin_unlock_bh(&vsock_table_lock
);
300 EXPORT_SYMBOL_GPL(vsock_find_bound_socket
);
302 struct sock
*vsock_find_connected_socket(struct sockaddr_vm
*src
,
303 struct sockaddr_vm
*dst
)
307 spin_lock_bh(&vsock_table_lock
);
308 sk
= __vsock_find_connected_socket(src
, dst
);
312 spin_unlock_bh(&vsock_table_lock
);
316 EXPORT_SYMBOL_GPL(vsock_find_connected_socket
);
318 static bool vsock_in_bound_table(struct vsock_sock
*vsk
)
322 spin_lock_bh(&vsock_table_lock
);
323 ret
= __vsock_in_bound_table(vsk
);
324 spin_unlock_bh(&vsock_table_lock
);
329 static bool vsock_in_connected_table(struct vsock_sock
*vsk
)
333 spin_lock_bh(&vsock_table_lock
);
334 ret
= __vsock_in_connected_table(vsk
);
335 spin_unlock_bh(&vsock_table_lock
);
340 void vsock_for_each_connected_socket(void (*fn
)(struct sock
*sk
))
344 spin_lock_bh(&vsock_table_lock
);
346 for (i
= 0; i
< ARRAY_SIZE(vsock_connected_table
); i
++) {
347 struct vsock_sock
*vsk
;
348 list_for_each_entry(vsk
, &vsock_connected_table
[i
],
353 spin_unlock_bh(&vsock_table_lock
);
355 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket
);
357 void vsock_add_pending(struct sock
*listener
, struct sock
*pending
)
359 struct vsock_sock
*vlistener
;
360 struct vsock_sock
*vpending
;
362 vlistener
= vsock_sk(listener
);
363 vpending
= vsock_sk(pending
);
367 list_add_tail(&vpending
->pending_links
, &vlistener
->pending_links
);
369 EXPORT_SYMBOL_GPL(vsock_add_pending
);
371 void vsock_remove_pending(struct sock
*listener
, struct sock
*pending
)
373 struct vsock_sock
*vpending
= vsock_sk(pending
);
375 list_del_init(&vpending
->pending_links
);
379 EXPORT_SYMBOL_GPL(vsock_remove_pending
);
381 void vsock_enqueue_accept(struct sock
*listener
, struct sock
*connected
)
383 struct vsock_sock
*vlistener
;
384 struct vsock_sock
*vconnected
;
386 vlistener
= vsock_sk(listener
);
387 vconnected
= vsock_sk(connected
);
389 sock_hold(connected
);
391 list_add_tail(&vconnected
->accept_queue
, &vlistener
->accept_queue
);
393 EXPORT_SYMBOL_GPL(vsock_enqueue_accept
);
395 static struct sock
*vsock_dequeue_accept(struct sock
*listener
)
397 struct vsock_sock
*vlistener
;
398 struct vsock_sock
*vconnected
;
400 vlistener
= vsock_sk(listener
);
402 if (list_empty(&vlistener
->accept_queue
))
405 vconnected
= list_entry(vlistener
->accept_queue
.next
,
406 struct vsock_sock
, accept_queue
);
408 list_del_init(&vconnected
->accept_queue
);
410 /* The caller will need a reference on the connected socket so we let
411 * it call sock_put().
414 return sk_vsock(vconnected
);
417 static bool vsock_is_accept_queue_empty(struct sock
*sk
)
419 struct vsock_sock
*vsk
= vsock_sk(sk
);
420 return list_empty(&vsk
->accept_queue
);
423 static bool vsock_is_pending(struct sock
*sk
)
425 struct vsock_sock
*vsk
= vsock_sk(sk
);
426 return !list_empty(&vsk
->pending_links
);
429 static int vsock_send_shutdown(struct sock
*sk
, int mode
)
431 return transport
->shutdown(vsock_sk(sk
), mode
);
434 void vsock_pending_work(struct work_struct
*work
)
437 struct sock
*listener
;
438 struct vsock_sock
*vsk
;
441 vsk
= container_of(work
, struct vsock_sock
, dwork
.work
);
443 listener
= vsk
->listener
;
449 if (vsock_is_pending(sk
)) {
450 vsock_remove_pending(listener
, sk
);
451 } else if (!vsk
->rejected
) {
452 /* We are not on the pending list and accept() did not reject
453 * us, so we must have been accepted by our user process. We
454 * just need to drop our references to the sockets and be on
461 listener
->sk_ack_backlog
--;
463 /* We need to remove ourself from the global connected sockets list so
464 * incoming packets can't find this socket, and to reduce the reference
467 if (vsock_in_connected_table(vsk
))
468 vsock_remove_connected(vsk
);
470 sk
->sk_state
= SS_FREE
;
474 release_sock(listener
);
481 EXPORT_SYMBOL_GPL(vsock_pending_work
);
483 /**** SOCKET OPERATIONS ****/
485 static int __vsock_bind_stream(struct vsock_sock
*vsk
,
486 struct sockaddr_vm
*addr
)
488 static u32 port
= LAST_RESERVED_PORT
+ 1;
489 struct sockaddr_vm new_addr
;
491 vsock_addr_init(&new_addr
, addr
->svm_cid
, addr
->svm_port
);
493 if (addr
->svm_port
== VMADDR_PORT_ANY
) {
497 for (i
= 0; i
< MAX_PORT_RETRIES
; i
++) {
498 if (port
<= LAST_RESERVED_PORT
)
499 port
= LAST_RESERVED_PORT
+ 1;
501 new_addr
.svm_port
= port
++;
503 if (!__vsock_find_bound_socket(&new_addr
)) {
510 return -EADDRNOTAVAIL
;
512 /* If port is in reserved range, ensure caller
513 * has necessary privileges.
515 if (addr
->svm_port
<= LAST_RESERVED_PORT
&&
516 !capable(CAP_NET_BIND_SERVICE
)) {
520 if (__vsock_find_bound_socket(&new_addr
))
524 vsock_addr_init(&vsk
->local_addr
, new_addr
.svm_cid
, new_addr
.svm_port
);
526 /* Remove stream sockets from the unbound list and add them to the hash
527 * table for easy lookup by its address. The unbound list is simply an
528 * extra entry at the end of the hash table, a trick used by AF_UNIX.
530 __vsock_remove_bound(vsk
);
531 __vsock_insert_bound(vsock_bound_sockets(&vsk
->local_addr
), vsk
);
536 static int __vsock_bind_dgram(struct vsock_sock
*vsk
,
537 struct sockaddr_vm
*addr
)
539 return transport
->dgram_bind(vsk
, addr
);
542 static int __vsock_bind(struct sock
*sk
, struct sockaddr_vm
*addr
)
544 struct vsock_sock
*vsk
= vsock_sk(sk
);
548 /* First ensure this socket isn't already bound. */
549 if (vsock_addr_bound(&vsk
->local_addr
))
552 /* Now bind to the provided address or select appropriate values if
553 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
554 * like AF_INET prevents binding to a non-local IP address (in most
555 * cases), we only allow binding to the local CID.
557 cid
= transport
->get_local_cid();
558 if (addr
->svm_cid
!= cid
&& addr
->svm_cid
!= VMADDR_CID_ANY
)
559 return -EADDRNOTAVAIL
;
561 switch (sk
->sk_socket
->type
) {
563 spin_lock_bh(&vsock_table_lock
);
564 retval
= __vsock_bind_stream(vsk
, addr
);
565 spin_unlock_bh(&vsock_table_lock
);
569 retval
= __vsock_bind_dgram(vsk
, addr
);
580 struct sock
*__vsock_create(struct net
*net
,
587 struct vsock_sock
*psk
;
588 struct vsock_sock
*vsk
;
590 sk
= sk_alloc(net
, AF_VSOCK
, priority
, &vsock_proto
);
594 sock_init_data(sock
, sk
);
596 /* sk->sk_type is normally set in sock_init_data, but only if sock is
597 * non-NULL. We make sure that our sockets always have a type by
598 * setting it here if needed.
604 vsock_addr_init(&vsk
->local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
605 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
607 sk
->sk_destruct
= vsock_sk_destruct
;
608 sk
->sk_backlog_rcv
= vsock_queue_rcv_skb
;
610 sock_reset_flag(sk
, SOCK_DONE
);
612 INIT_LIST_HEAD(&vsk
->bound_table
);
613 INIT_LIST_HEAD(&vsk
->connected_table
);
614 vsk
->listener
= NULL
;
615 INIT_LIST_HEAD(&vsk
->pending_links
);
616 INIT_LIST_HEAD(&vsk
->accept_queue
);
617 vsk
->rejected
= false;
618 vsk
->sent_request
= false;
619 vsk
->ignore_connecting_rst
= false;
620 vsk
->peer_shutdown
= 0;
622 psk
= parent
? vsock_sk(parent
) : NULL
;
624 vsk
->trusted
= psk
->trusted
;
625 vsk
->owner
= get_cred(psk
->owner
);
626 vsk
->connect_timeout
= psk
->connect_timeout
;
628 vsk
->trusted
= capable(CAP_NET_ADMIN
);
629 vsk
->owner
= get_current_cred();
630 vsk
->connect_timeout
= VSOCK_DEFAULT_CONNECT_TIMEOUT
;
633 if (transport
->init(vsk
, psk
) < 0) {
639 vsock_insert_unbound(vsk
);
643 EXPORT_SYMBOL_GPL(__vsock_create
);
645 static void __vsock_release(struct sock
*sk
)
649 struct sock
*pending
;
650 struct vsock_sock
*vsk
;
653 pending
= NULL
; /* Compiler warning. */
655 if (vsock_in_bound_table(vsk
))
656 vsock_remove_bound(vsk
);
658 if (vsock_in_connected_table(vsk
))
659 vsock_remove_connected(vsk
);
661 transport
->release(vsk
);
665 sk
->sk_shutdown
= SHUTDOWN_MASK
;
667 while ((skb
= skb_dequeue(&sk
->sk_receive_queue
)))
670 /* Clean up any sockets that never were accepted. */
671 while ((pending
= vsock_dequeue_accept(sk
)) != NULL
) {
672 __vsock_release(pending
);
681 static void vsock_sk_destruct(struct sock
*sk
)
683 struct vsock_sock
*vsk
= vsock_sk(sk
);
685 transport
->destruct(vsk
);
687 /* When clearing these addresses, there's no need to set the family and
688 * possibly register the address family with the kernel.
690 vsock_addr_init(&vsk
->local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
691 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
693 put_cred(vsk
->owner
);
696 static int vsock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
700 err
= sock_queue_rcv_skb(sk
, skb
);
707 s64
vsock_stream_has_data(struct vsock_sock
*vsk
)
709 return transport
->stream_has_data(vsk
);
711 EXPORT_SYMBOL_GPL(vsock_stream_has_data
);
713 s64
vsock_stream_has_space(struct vsock_sock
*vsk
)
715 return transport
->stream_has_space(vsk
);
717 EXPORT_SYMBOL_GPL(vsock_stream_has_space
);
719 static int vsock_release(struct socket
*sock
)
721 __vsock_release(sock
->sk
);
723 sock
->state
= SS_FREE
;
729 vsock_bind(struct socket
*sock
, struct sockaddr
*addr
, int addr_len
)
733 struct sockaddr_vm
*vm_addr
;
737 if (vsock_addr_cast(addr
, addr_len
, &vm_addr
) != 0)
741 err
= __vsock_bind(sk
, vm_addr
);
747 static int vsock_getname(struct socket
*sock
,
748 struct sockaddr
*addr
, int *addr_len
, int peer
)
752 struct vsock_sock
*vsk
;
753 struct sockaddr_vm
*vm_addr
;
762 if (sock
->state
!= SS_CONNECTED
) {
766 vm_addr
= &vsk
->remote_addr
;
768 vm_addr
= &vsk
->local_addr
;
776 /* sys_getsockname() and sys_getpeername() pass us a
777 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
778 * that macro is defined in socket.c instead of .h, so we hardcode its
781 BUILD_BUG_ON(sizeof(*vm_addr
) > 128);
782 memcpy(addr
, vm_addr
, sizeof(*vm_addr
));
783 *addr_len
= sizeof(*vm_addr
);
790 static int vsock_shutdown(struct socket
*sock
, int mode
)
795 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
796 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
797 * here like the other address families do. Note also that the
798 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
799 * which is what we want.
803 if ((mode
& ~SHUTDOWN_MASK
) || !mode
)
806 /* If this is a STREAM socket and it is not connected then bail out
807 * immediately. If it is a DGRAM socket then we must first kick the
808 * socket so that it wakes up from any sleeping calls, for example
809 * recv(), and then afterwards return the error.
813 if (sock
->state
== SS_UNCONNECTED
) {
815 if (sk
->sk_type
== SOCK_STREAM
)
818 sock
->state
= SS_DISCONNECTING
;
822 /* Receive and send shutdowns are treated alike. */
823 mode
= mode
& (RCV_SHUTDOWN
| SEND_SHUTDOWN
);
826 sk
->sk_shutdown
|= mode
;
827 sk
->sk_state_change(sk
);
830 if (sk
->sk_type
== SOCK_STREAM
) {
831 sock_reset_flag(sk
, SOCK_DONE
);
832 vsock_send_shutdown(sk
, mode
);
839 static unsigned int vsock_poll(struct file
*file
, struct socket
*sock
,
844 struct vsock_sock
*vsk
;
849 poll_wait(file
, sk_sleep(sk
), wait
);
853 /* Signify that there has been an error on this socket. */
856 /* INET sockets treat local write shutdown and peer write shutdown as a
857 * case of POLLHUP set.
859 if ((sk
->sk_shutdown
== SHUTDOWN_MASK
) ||
860 ((sk
->sk_shutdown
& SEND_SHUTDOWN
) &&
861 (vsk
->peer_shutdown
& SEND_SHUTDOWN
))) {
865 if (sk
->sk_shutdown
& RCV_SHUTDOWN
||
866 vsk
->peer_shutdown
& SEND_SHUTDOWN
) {
870 if (sock
->type
== SOCK_DGRAM
) {
871 /* For datagram sockets we can read if there is something in
872 * the queue and write as long as the socket isn't shutdown for
875 if (!skb_queue_empty(&sk
->sk_receive_queue
) ||
876 (sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
877 mask
|= POLLIN
| POLLRDNORM
;
880 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
))
881 mask
|= POLLOUT
| POLLWRNORM
| POLLWRBAND
;
883 } else if (sock
->type
== SOCK_STREAM
) {
886 /* Listening sockets that have connections in their accept
889 if (sk
->sk_state
== SS_LISTEN
890 && !vsock_is_accept_queue_empty(sk
))
891 mask
|= POLLIN
| POLLRDNORM
;
893 /* If there is something in the queue then we can read. */
894 if (transport
->stream_is_active(vsk
) &&
895 !(sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
896 bool data_ready_now
= false;
897 int ret
= transport
->notify_poll_in(
898 vsk
, 1, &data_ready_now
);
903 mask
|= POLLIN
| POLLRDNORM
;
908 /* Sockets whose connections have been closed, reset, or
909 * terminated should also be considered read, and we check the
910 * shutdown flag for that.
912 if (sk
->sk_shutdown
& RCV_SHUTDOWN
||
913 vsk
->peer_shutdown
& SEND_SHUTDOWN
) {
914 mask
|= POLLIN
| POLLRDNORM
;
917 /* Connected sockets that can produce data can be written. */
918 if (sk
->sk_state
== SS_CONNECTED
) {
919 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
)) {
920 bool space_avail_now
= false;
921 int ret
= transport
->notify_poll_out(
922 vsk
, 1, &space_avail_now
);
927 /* Remove POLLWRBAND since INET
928 * sockets are not setting it.
930 mask
|= POLLOUT
| POLLWRNORM
;
936 /* Simulate INET socket poll behaviors, which sets
937 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
938 * but local send is not shutdown.
940 if (sk
->sk_state
== SS_UNCONNECTED
) {
941 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
))
942 mask
|= POLLOUT
| POLLWRNORM
;
952 static int vsock_dgram_sendmsg(struct kiocb
*kiocb
, struct socket
*sock
,
953 struct msghdr
*msg
, size_t len
)
957 struct vsock_sock
*vsk
;
958 struct sockaddr_vm
*remote_addr
;
960 if (msg
->msg_flags
& MSG_OOB
)
963 /* For now, MSG_DONTWAIT is always assumed... */
970 err
= vsock_auto_bind(vsk
);
975 /* If the provided message contains an address, use that. Otherwise
976 * fall back on the socket's remote handle (if it has been connected).
979 vsock_addr_cast(msg
->msg_name
, msg
->msg_namelen
,
980 &remote_addr
) == 0) {
981 /* Ensure this address is of the right type and is a valid
985 if (remote_addr
->svm_cid
== VMADDR_CID_ANY
)
986 remote_addr
->svm_cid
= transport
->get_local_cid();
988 if (!vsock_addr_bound(remote_addr
)) {
992 } else if (sock
->state
== SS_CONNECTED
) {
993 remote_addr
= &vsk
->remote_addr
;
995 if (remote_addr
->svm_cid
== VMADDR_CID_ANY
)
996 remote_addr
->svm_cid
= transport
->get_local_cid();
998 /* XXX Should connect() or this function ensure remote_addr is
1001 if (!vsock_addr_bound(&vsk
->remote_addr
)) {
1010 if (!transport
->dgram_allow(remote_addr
->svm_cid
,
1011 remote_addr
->svm_port
)) {
1016 err
= transport
->dgram_enqueue(vsk
, remote_addr
, msg
->msg_iov
, len
);
1023 static int vsock_dgram_connect(struct socket
*sock
,
1024 struct sockaddr
*addr
, int addr_len
, int flags
)
1028 struct vsock_sock
*vsk
;
1029 struct sockaddr_vm
*remote_addr
;
1034 err
= vsock_addr_cast(addr
, addr_len
, &remote_addr
);
1035 if (err
== -EAFNOSUPPORT
&& remote_addr
->svm_family
== AF_UNSPEC
) {
1037 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
,
1039 sock
->state
= SS_UNCONNECTED
;
1042 } else if (err
!= 0)
1047 err
= vsock_auto_bind(vsk
);
1051 if (!transport
->dgram_allow(remote_addr
->svm_cid
,
1052 remote_addr
->svm_port
)) {
1057 memcpy(&vsk
->remote_addr
, remote_addr
, sizeof(vsk
->remote_addr
));
1058 sock
->state
= SS_CONNECTED
;
1065 static int vsock_dgram_recvmsg(struct kiocb
*kiocb
, struct socket
*sock
,
1066 struct msghdr
*msg
, size_t len
, int flags
)
1068 return transport
->dgram_dequeue(kiocb
, vsock_sk(sock
->sk
), msg
, len
,
1072 static const struct proto_ops vsock_dgram_ops
= {
1074 .owner
= THIS_MODULE
,
1075 .release
= vsock_release
,
1077 .connect
= vsock_dgram_connect
,
1078 .socketpair
= sock_no_socketpair
,
1079 .accept
= sock_no_accept
,
1080 .getname
= vsock_getname
,
1082 .ioctl
= sock_no_ioctl
,
1083 .listen
= sock_no_listen
,
1084 .shutdown
= vsock_shutdown
,
1085 .setsockopt
= sock_no_setsockopt
,
1086 .getsockopt
= sock_no_getsockopt
,
1087 .sendmsg
= vsock_dgram_sendmsg
,
1088 .recvmsg
= vsock_dgram_recvmsg
,
1089 .mmap
= sock_no_mmap
,
1090 .sendpage
= sock_no_sendpage
,
1093 static void vsock_connect_timeout(struct work_struct
*work
)
1096 struct vsock_sock
*vsk
;
1098 vsk
= container_of(work
, struct vsock_sock
, dwork
.work
);
1102 if (sk
->sk_state
== SS_CONNECTING
&&
1103 (sk
->sk_shutdown
!= SHUTDOWN_MASK
)) {
1104 sk
->sk_state
= SS_UNCONNECTED
;
1105 sk
->sk_err
= ETIMEDOUT
;
1106 sk
->sk_error_report(sk
);
1113 static int vsock_stream_connect(struct socket
*sock
, struct sockaddr
*addr
,
1114 int addr_len
, int flags
)
1118 struct vsock_sock
*vsk
;
1119 struct sockaddr_vm
*remote_addr
;
1129 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1130 switch (sock
->state
) {
1134 case SS_DISCONNECTING
:
1138 /* This continues on so we can move sock into the SS_CONNECTED
1139 * state once the connection has completed (at which point err
1140 * will be set to zero also). Otherwise, we will either wait
1141 * for the connection or return -EALREADY should this be a
1142 * non-blocking call.
1147 if ((sk
->sk_state
== SS_LISTEN
) ||
1148 vsock_addr_cast(addr
, addr_len
, &remote_addr
) != 0) {
1153 /* The hypervisor and well-known contexts do not have socket
1156 if (!transport
->stream_allow(remote_addr
->svm_cid
,
1157 remote_addr
->svm_port
)) {
1162 /* Set the remote address that we are connecting to. */
1163 memcpy(&vsk
->remote_addr
, remote_addr
,
1164 sizeof(vsk
->remote_addr
));
1166 err
= vsock_auto_bind(vsk
);
1170 sk
->sk_state
= SS_CONNECTING
;
1172 err
= transport
->connect(vsk
);
1176 /* Mark sock as connecting and set the error code to in
1177 * progress in case this is a non-blocking connect.
1179 sock
->state
= SS_CONNECTING
;
1183 /* The receive path will handle all communication until we are able to
1184 * enter the connected state. Here we wait for the connection to be
1185 * completed or a notification of an error.
1187 timeout
= vsk
->connect_timeout
;
1188 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1190 while (sk
->sk_state
!= SS_CONNECTED
&& sk
->sk_err
== 0) {
1191 if (flags
& O_NONBLOCK
) {
1192 /* If we're not going to block, we schedule a timeout
1193 * function to generate a timeout on the connection
1194 * attempt, in case the peer doesn't respond in a
1195 * timely manner. We hold on to the socket until the
1199 INIT_DELAYED_WORK(&vsk
->dwork
,
1200 vsock_connect_timeout
);
1201 schedule_delayed_work(&vsk
->dwork
, timeout
);
1203 /* Skip ahead to preserve error code set above. */
1208 timeout
= schedule_timeout(timeout
);
1211 if (signal_pending(current
)) {
1212 err
= sock_intr_errno(timeout
);
1213 goto out_wait_error
;
1214 } else if (timeout
== 0) {
1216 goto out_wait_error
;
1219 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1224 goto out_wait_error
;
1229 finish_wait(sk_sleep(sk
), &wait
);
1235 sk
->sk_state
= SS_UNCONNECTED
;
1236 sock
->state
= SS_UNCONNECTED
;
1240 static int vsock_accept(struct socket
*sock
, struct socket
*newsock
, int flags
)
1242 struct sock
*listener
;
1244 struct sock
*connected
;
1245 struct vsock_sock
*vconnected
;
1250 listener
= sock
->sk
;
1252 lock_sock(listener
);
1254 if (sock
->type
!= SOCK_STREAM
) {
1259 if (listener
->sk_state
!= SS_LISTEN
) {
1264 /* Wait for children sockets to appear; these are the new sockets
1265 * created upon connection establishment.
1267 timeout
= sock_sndtimeo(listener
, flags
& O_NONBLOCK
);
1268 prepare_to_wait(sk_sleep(listener
), &wait
, TASK_INTERRUPTIBLE
);
1270 while ((connected
= vsock_dequeue_accept(listener
)) == NULL
&&
1271 listener
->sk_err
== 0) {
1272 release_sock(listener
);
1273 timeout
= schedule_timeout(timeout
);
1274 lock_sock(listener
);
1276 if (signal_pending(current
)) {
1277 err
= sock_intr_errno(timeout
);
1279 } else if (timeout
== 0) {
1284 prepare_to_wait(sk_sleep(listener
), &wait
, TASK_INTERRUPTIBLE
);
1287 if (listener
->sk_err
)
1288 err
= -listener
->sk_err
;
1291 listener
->sk_ack_backlog
--;
1293 lock_sock(connected
);
1294 vconnected
= vsock_sk(connected
);
1296 /* If the listener socket has received an error, then we should
1297 * reject this socket and return. Note that we simply mark the
1298 * socket rejected, drop our reference, and let the cleanup
1299 * function handle the cleanup; the fact that we found it in
1300 * the listener's accept queue guarantees that the cleanup
1301 * function hasn't run yet.
1304 vconnected
->rejected
= true;
1305 release_sock(connected
);
1306 sock_put(connected
);
1310 newsock
->state
= SS_CONNECTED
;
1311 sock_graft(connected
, newsock
);
1312 release_sock(connected
);
1313 sock_put(connected
);
1317 finish_wait(sk_sleep(listener
), &wait
);
1319 release_sock(listener
);
1323 static int vsock_listen(struct socket
*sock
, int backlog
)
1327 struct vsock_sock
*vsk
;
1333 if (sock
->type
!= SOCK_STREAM
) {
1338 if (sock
->state
!= SS_UNCONNECTED
) {
1345 if (!vsock_addr_bound(&vsk
->local_addr
)) {
1350 sk
->sk_max_ack_backlog
= backlog
;
1351 sk
->sk_state
= SS_LISTEN
;
1360 static int vsock_stream_setsockopt(struct socket
*sock
,
1363 char __user
*optval
,
1364 unsigned int optlen
)
1368 struct vsock_sock
*vsk
;
1371 if (level
!= AF_VSOCK
)
1372 return -ENOPROTOOPT
;
1374 #define COPY_IN(_v) \
1376 if (optlen < sizeof(_v)) { \
1380 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1393 case SO_VM_SOCKETS_BUFFER_SIZE
:
1395 transport
->set_buffer_size(vsk
, val
);
1398 case SO_VM_SOCKETS_BUFFER_MAX_SIZE
:
1400 transport
->set_max_buffer_size(vsk
, val
);
1403 case SO_VM_SOCKETS_BUFFER_MIN_SIZE
:
1405 transport
->set_min_buffer_size(vsk
, val
);
1408 case SO_VM_SOCKETS_CONNECT_TIMEOUT
: {
1411 if (tv
.tv_sec
>= 0 && tv
.tv_usec
< USEC_PER_SEC
&&
1412 tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/ HZ
- 1)) {
1413 vsk
->connect_timeout
= tv
.tv_sec
* HZ
+
1414 DIV_ROUND_UP(tv
.tv_usec
, (1000000 / HZ
));
1415 if (vsk
->connect_timeout
== 0)
1416 vsk
->connect_timeout
=
1417 VSOCK_DEFAULT_CONNECT_TIMEOUT
;
1437 static int vsock_stream_getsockopt(struct socket
*sock
,
1438 int level
, int optname
,
1439 char __user
*optval
,
1445 struct vsock_sock
*vsk
;
1448 if (level
!= AF_VSOCK
)
1449 return -ENOPROTOOPT
;
1451 err
= get_user(len
, optlen
);
1455 #define COPY_OUT(_v) \
1457 if (len < sizeof(_v)) \
1461 if (copy_to_user(optval, &_v, len) != 0) \
1471 case SO_VM_SOCKETS_BUFFER_SIZE
:
1472 val
= transport
->get_buffer_size(vsk
);
1476 case SO_VM_SOCKETS_BUFFER_MAX_SIZE
:
1477 val
= transport
->get_max_buffer_size(vsk
);
1481 case SO_VM_SOCKETS_BUFFER_MIN_SIZE
:
1482 val
= transport
->get_min_buffer_size(vsk
);
1486 case SO_VM_SOCKETS_CONNECT_TIMEOUT
: {
1488 tv
.tv_sec
= vsk
->connect_timeout
/ HZ
;
1490 (vsk
->connect_timeout
-
1491 tv
.tv_sec
* HZ
) * (1000000 / HZ
);
1496 return -ENOPROTOOPT
;
1499 err
= put_user(len
, optlen
);
1508 static int vsock_stream_sendmsg(struct kiocb
*kiocb
, struct socket
*sock
,
1509 struct msghdr
*msg
, size_t len
)
1512 struct vsock_sock
*vsk
;
1513 ssize_t total_written
;
1516 struct vsock_transport_send_notify_data send_data
;
1525 if (msg
->msg_flags
& MSG_OOB
)
1530 /* Callers should not provide a destination with stream sockets. */
1531 if (msg
->msg_namelen
) {
1532 err
= sk
->sk_state
== SS_CONNECTED
? -EISCONN
: -EOPNOTSUPP
;
1536 /* Send data only if both sides are not shutdown in the direction. */
1537 if (sk
->sk_shutdown
& SEND_SHUTDOWN
||
1538 vsk
->peer_shutdown
& RCV_SHUTDOWN
) {
1543 if (sk
->sk_state
!= SS_CONNECTED
||
1544 !vsock_addr_bound(&vsk
->local_addr
)) {
1549 if (!vsock_addr_bound(&vsk
->remote_addr
)) {
1550 err
= -EDESTADDRREQ
;
1554 /* Wait for room in the produce queue to enqueue our user's data. */
1555 timeout
= sock_sndtimeo(sk
, msg
->msg_flags
& MSG_DONTWAIT
);
1557 err
= transport
->notify_send_init(vsk
, &send_data
);
1561 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1563 while (total_written
< len
) {
1566 while (vsock_stream_has_space(vsk
) == 0 &&
1568 !(sk
->sk_shutdown
& SEND_SHUTDOWN
) &&
1569 !(vsk
->peer_shutdown
& RCV_SHUTDOWN
)) {
1571 /* Don't wait for non-blocking sockets. */
1577 err
= transport
->notify_send_pre_block(vsk
, &send_data
);
1582 timeout
= schedule_timeout(timeout
);
1584 if (signal_pending(current
)) {
1585 err
= sock_intr_errno(timeout
);
1587 } else if (timeout
== 0) {
1592 prepare_to_wait(sk_sleep(sk
), &wait
,
1593 TASK_INTERRUPTIBLE
);
1596 /* These checks occur both as part of and after the loop
1597 * conditional since we need to check before and after
1603 } else if ((sk
->sk_shutdown
& SEND_SHUTDOWN
) ||
1604 (vsk
->peer_shutdown
& RCV_SHUTDOWN
)) {
1609 err
= transport
->notify_send_pre_enqueue(vsk
, &send_data
);
1613 /* Note that enqueue will only write as many bytes as are free
1614 * in the produce queue, so we don't need to ensure len is
1615 * smaller than the queue size. It is the caller's
1616 * responsibility to check how many bytes we were able to send.
1619 written
= transport
->stream_enqueue(
1621 len
- total_written
);
1627 total_written
+= written
;
1629 err
= transport
->notify_send_post_enqueue(
1630 vsk
, written
, &send_data
);
1637 if (total_written
> 0)
1638 err
= total_written
;
1639 finish_wait(sk_sleep(sk
), &wait
);
1647 vsock_stream_recvmsg(struct kiocb
*kiocb
,
1648 struct socket
*sock
,
1649 struct msghdr
*msg
, size_t len
, int flags
)
1652 struct vsock_sock
*vsk
;
1657 struct vsock_transport_recv_notify_data recv_data
;
1667 if (sk
->sk_state
!= SS_CONNECTED
) {
1668 /* Recvmsg is supposed to return 0 if a peer performs an
1669 * orderly shutdown. Differentiate between that case and when a
1670 * peer has not connected or a local shutdown occured with the
1673 if (sock_flag(sk
, SOCK_DONE
))
1681 if (flags
& MSG_OOB
) {
1686 /* We don't check peer_shutdown flag here since peer may actually shut
1687 * down, but there can be data in the queue that a local socket can
1690 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
1695 /* It is valid on Linux to pass in a zero-length receive buffer. This
1696 * is not an error. We may as well bail out now.
1703 /* We must not copy less than target bytes into the user's buffer
1704 * before returning successfully, so we wait for the consume queue to
1705 * have that much data to consume before dequeueing. Note that this
1706 * makes it impossible to handle cases where target is greater than the
1709 target
= sock_rcvlowat(sk
, flags
& MSG_WAITALL
, len
);
1710 if (target
>= transport
->stream_rcvhiwat(vsk
)) {
1714 timeout
= sock_rcvtimeo(sk
, flags
& MSG_DONTWAIT
);
1717 err
= transport
->notify_recv_init(vsk
, target
, &recv_data
);
1721 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1724 s64 ready
= vsock_stream_has_data(vsk
);
1727 /* Invalid queue pair content. XXX This should be
1728 * changed to a connection reset in a later change.
1733 } else if (ready
> 0) {
1736 err
= transport
->notify_recv_pre_dequeue(
1737 vsk
, target
, &recv_data
);
1741 read
= transport
->stream_dequeue(
1743 len
- copied
, flags
);
1751 err
= transport
->notify_recv_post_dequeue(
1753 !(flags
& MSG_PEEK
), &recv_data
);
1757 if (read
>= target
|| flags
& MSG_PEEK
)
1762 if (sk
->sk_err
!= 0 || (sk
->sk_shutdown
& RCV_SHUTDOWN
)
1763 || (vsk
->peer_shutdown
& SEND_SHUTDOWN
)) {
1766 /* Don't wait for non-blocking sockets. */
1772 err
= transport
->notify_recv_pre_block(
1773 vsk
, target
, &recv_data
);
1778 timeout
= schedule_timeout(timeout
);
1781 if (signal_pending(current
)) {
1782 err
= sock_intr_errno(timeout
);
1784 } else if (timeout
== 0) {
1789 prepare_to_wait(sk_sleep(sk
), &wait
,
1790 TASK_INTERRUPTIBLE
);
1796 else if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
1800 /* We only do these additional bookkeeping/notification steps
1801 * if we actually copied something out of the queue pair
1802 * instead of just peeking ahead.
1805 if (!(flags
& MSG_PEEK
)) {
1806 /* If the other side has shutdown for sending and there
1807 * is nothing more to read, then modify the socket
1810 if (vsk
->peer_shutdown
& SEND_SHUTDOWN
) {
1811 if (vsock_stream_has_data(vsk
) <= 0) {
1812 sk
->sk_state
= SS_UNCONNECTED
;
1813 sock_set_flag(sk
, SOCK_DONE
);
1814 sk
->sk_state_change(sk
);
1822 finish_wait(sk_sleep(sk
), &wait
);
1828 static const struct proto_ops vsock_stream_ops
= {
1830 .owner
= THIS_MODULE
,
1831 .release
= vsock_release
,
1833 .connect
= vsock_stream_connect
,
1834 .socketpair
= sock_no_socketpair
,
1835 .accept
= vsock_accept
,
1836 .getname
= vsock_getname
,
1838 .ioctl
= sock_no_ioctl
,
1839 .listen
= vsock_listen
,
1840 .shutdown
= vsock_shutdown
,
1841 .setsockopt
= vsock_stream_setsockopt
,
1842 .getsockopt
= vsock_stream_getsockopt
,
1843 .sendmsg
= vsock_stream_sendmsg
,
1844 .recvmsg
= vsock_stream_recvmsg
,
1845 .mmap
= sock_no_mmap
,
1846 .sendpage
= sock_no_sendpage
,
1849 static int vsock_create(struct net
*net
, struct socket
*sock
,
1850 int protocol
, int kern
)
1855 if (protocol
&& protocol
!= PF_VSOCK
)
1856 return -EPROTONOSUPPORT
;
1858 switch (sock
->type
) {
1860 sock
->ops
= &vsock_dgram_ops
;
1863 sock
->ops
= &vsock_stream_ops
;
1866 return -ESOCKTNOSUPPORT
;
1869 sock
->state
= SS_UNCONNECTED
;
1871 return __vsock_create(net
, sock
, NULL
, GFP_KERNEL
, 0) ? 0 : -ENOMEM
;
1874 static const struct net_proto_family vsock_family_ops
= {
1876 .create
= vsock_create
,
1877 .owner
= THIS_MODULE
,
1880 static long vsock_dev_do_ioctl(struct file
*filp
,
1881 unsigned int cmd
, void __user
*ptr
)
1883 u32 __user
*p
= ptr
;
1887 case IOCTL_VM_SOCKETS_GET_LOCAL_CID
:
1888 if (put_user(transport
->get_local_cid(), p
) != 0)
1893 pr_err("Unknown ioctl %d\n", cmd
);
1900 static long vsock_dev_ioctl(struct file
*filp
,
1901 unsigned int cmd
, unsigned long arg
)
1903 return vsock_dev_do_ioctl(filp
, cmd
, (void __user
*)arg
);
1906 #ifdef CONFIG_COMPAT
1907 static long vsock_dev_compat_ioctl(struct file
*filp
,
1908 unsigned int cmd
, unsigned long arg
)
1910 return vsock_dev_do_ioctl(filp
, cmd
, compat_ptr(arg
));
1914 static const struct file_operations vsock_device_ops
= {
1915 .owner
= THIS_MODULE
,
1916 .unlocked_ioctl
= vsock_dev_ioctl
,
1917 #ifdef CONFIG_COMPAT
1918 .compat_ioctl
= vsock_dev_compat_ioctl
,
1920 .open
= nonseekable_open
,
1923 static struct miscdevice vsock_device
= {
1925 .fops
= &vsock_device_ops
,
1928 static int __vsock_core_init(void)
1932 vsock_init_tables();
1934 vsock_device
.minor
= MISC_DYNAMIC_MINOR
;
1935 err
= misc_register(&vsock_device
);
1937 pr_err("Failed to register misc device\n");
1941 err
= proto_register(&vsock_proto
, 1); /* we want our slab */
1943 pr_err("Cannot register vsock protocol\n");
1944 goto err_misc_deregister
;
1947 err
= sock_register(&vsock_family_ops
);
1949 pr_err("could not register af_vsock (%d) address family: %d\n",
1951 goto err_unregister_proto
;
1956 err_unregister_proto
:
1957 proto_unregister(&vsock_proto
);
1958 err_misc_deregister
:
1959 misc_deregister(&vsock_device
);
1963 int vsock_core_init(const struct vsock_transport
*t
)
1965 int retval
= mutex_lock_interruptible(&vsock_register_mutex
);
1975 retval
= __vsock_core_init();
1980 mutex_unlock(&vsock_register_mutex
);
1983 EXPORT_SYMBOL_GPL(vsock_core_init
);
1985 void vsock_core_exit(void)
1987 mutex_lock(&vsock_register_mutex
);
1989 misc_deregister(&vsock_device
);
1990 sock_unregister(AF_VSOCK
);
1991 proto_unregister(&vsock_proto
);
1993 /* We do not want the assignment below re-ordered. */
1997 mutex_unlock(&vsock_register_mutex
);
1999 EXPORT_SYMBOL_GPL(vsock_core_exit
);
2001 MODULE_AUTHOR("VMware, Inc.");
2002 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2003 MODULE_VERSION("1.0.0.0-k");
2004 MODULE_LICENSE("GPL v2");