2 * Copyright (C) 2010,2015 Broadcom
3 * Copyright (C) 2012 Stephen Warren
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
20 * The clock tree on the 2835 has several levels. There's a root
21 * oscillator running at 19.2Mhz. After the oscillator there are 5
22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23 * and "HDMI displays". Those 5 PLLs each can divide their output to
24 * produce up to 4 channels. Finally, there is the level of clocks to
25 * be consumed by other hardware components (like "H264" or "HDMI
26 * state machine"), which divide off of some subset of the PLL
29 * All of the clocks in the tree are exposed in the DT, because the DT
30 * may want to make assignments of the final layer of clocks to the
31 * PLL channels, and some components of the hardware will actually
32 * skip layers of the tree (for example, the pixel clock comes
33 * directly from the PLLH PIX channel without using a CM_*CTL clock
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk.h>
40 #include <linux/clk/bcm2835.h>
41 #include <linux/debugfs.h>
42 #include <linux/module.h>
44 #include <linux/platform_device.h>
45 #include <linux/slab.h>
46 #include <dt-bindings/clock/bcm2835.h>
48 #define CM_PASSWORD 0x5a000000
50 #define CM_GNRICCTL 0x000
51 #define CM_GNRICDIV 0x004
52 # define CM_DIV_FRAC_BITS 12
53 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
55 #define CM_VPUCTL 0x008
56 #define CM_VPUDIV 0x00c
57 #define CM_SYSCTL 0x010
58 #define CM_SYSDIV 0x014
59 #define CM_PERIACTL 0x018
60 #define CM_PERIADIV 0x01c
61 #define CM_PERIICTL 0x020
62 #define CM_PERIIDIV 0x024
63 #define CM_H264CTL 0x028
64 #define CM_H264DIV 0x02c
65 #define CM_ISPCTL 0x030
66 #define CM_ISPDIV 0x034
67 #define CM_V3DCTL 0x038
68 #define CM_V3DDIV 0x03c
69 #define CM_CAM0CTL 0x040
70 #define CM_CAM0DIV 0x044
71 #define CM_CAM1CTL 0x048
72 #define CM_CAM1DIV 0x04c
73 #define CM_CCP2CTL 0x050
74 #define CM_CCP2DIV 0x054
75 #define CM_DSI0ECTL 0x058
76 #define CM_DSI0EDIV 0x05c
77 #define CM_DSI0PCTL 0x060
78 #define CM_DSI0PDIV 0x064
79 #define CM_DPICTL 0x068
80 #define CM_DPIDIV 0x06c
81 #define CM_GP0CTL 0x070
82 #define CM_GP0DIV 0x074
83 #define CM_GP1CTL 0x078
84 #define CM_GP1DIV 0x07c
85 #define CM_GP2CTL 0x080
86 #define CM_GP2DIV 0x084
87 #define CM_HSMCTL 0x088
88 #define CM_HSMDIV 0x08c
89 #define CM_OTPCTL 0x090
90 #define CM_OTPDIV 0x094
91 #define CM_PCMCTL 0x098
92 #define CM_PCMDIV 0x09c
93 #define CM_PWMCTL 0x0a0
94 #define CM_PWMDIV 0x0a4
95 #define CM_SLIMCTL 0x0a8
96 #define CM_SLIMDIV 0x0ac
97 #define CM_SMICTL 0x0b0
98 #define CM_SMIDIV 0x0b4
99 /* no definition for 0x0b8 and 0x0bc */
100 #define CM_TCNTCTL 0x0c0
101 #define CM_TCNTDIV 0x0c4
102 #define CM_TECCTL 0x0c8
103 #define CM_TECDIV 0x0cc
104 #define CM_TD0CTL 0x0d0
105 #define CM_TD0DIV 0x0d4
106 #define CM_TD1CTL 0x0d8
107 #define CM_TD1DIV 0x0dc
108 #define CM_TSENSCTL 0x0e0
109 #define CM_TSENSDIV 0x0e4
110 #define CM_TIMERCTL 0x0e8
111 #define CM_TIMERDIV 0x0ec
112 #define CM_UARTCTL 0x0f0
113 #define CM_UARTDIV 0x0f4
114 #define CM_VECCTL 0x0f8
115 #define CM_VECDIV 0x0fc
116 #define CM_PULSECTL 0x190
117 #define CM_PULSEDIV 0x194
118 #define CM_SDCCTL 0x1a8
119 #define CM_SDCDIV 0x1ac
120 #define CM_ARMCTL 0x1b0
121 #define CM_AVEOCTL 0x1b8
122 #define CM_AVEODIV 0x1bc
123 #define CM_EMMCCTL 0x1c0
124 #define CM_EMMCDIV 0x1c4
126 /* General bits for the CM_*CTL regs */
127 # define CM_ENABLE BIT(4)
128 # define CM_KILL BIT(5)
129 # define CM_GATE_BIT 6
130 # define CM_GATE BIT(CM_GATE_BIT)
131 # define CM_BUSY BIT(7)
132 # define CM_BUSYD BIT(8)
133 # define CM_FRAC BIT(9)
134 # define CM_SRC_SHIFT 0
135 # define CM_SRC_BITS 4
136 # define CM_SRC_MASK 0xf
137 # define CM_SRC_GND 0
138 # define CM_SRC_OSC 1
139 # define CM_SRC_TESTDEBUG0 2
140 # define CM_SRC_TESTDEBUG1 3
141 # define CM_SRC_PLLA_CORE 4
142 # define CM_SRC_PLLA_PER 4
143 # define CM_SRC_PLLC_CORE0 5
144 # define CM_SRC_PLLC_PER 5
145 # define CM_SRC_PLLC_CORE1 8
146 # define CM_SRC_PLLD_CORE 6
147 # define CM_SRC_PLLD_PER 6
148 # define CM_SRC_PLLH_AUX 7
149 # define CM_SRC_PLLC_CORE1 8
150 # define CM_SRC_PLLC_CORE2 9
152 #define CM_OSCCOUNT 0x100
154 #define CM_PLLA 0x104
155 # define CM_PLL_ANARST BIT(8)
156 # define CM_PLLA_HOLDPER BIT(7)
157 # define CM_PLLA_LOADPER BIT(6)
158 # define CM_PLLA_HOLDCORE BIT(5)
159 # define CM_PLLA_LOADCORE BIT(4)
160 # define CM_PLLA_HOLDCCP2 BIT(3)
161 # define CM_PLLA_LOADCCP2 BIT(2)
162 # define CM_PLLA_HOLDDSI0 BIT(1)
163 # define CM_PLLA_LOADDSI0 BIT(0)
165 #define CM_PLLC 0x108
166 # define CM_PLLC_HOLDPER BIT(7)
167 # define CM_PLLC_LOADPER BIT(6)
168 # define CM_PLLC_HOLDCORE2 BIT(5)
169 # define CM_PLLC_LOADCORE2 BIT(4)
170 # define CM_PLLC_HOLDCORE1 BIT(3)
171 # define CM_PLLC_LOADCORE1 BIT(2)
172 # define CM_PLLC_HOLDCORE0 BIT(1)
173 # define CM_PLLC_LOADCORE0 BIT(0)
175 #define CM_PLLD 0x10c
176 # define CM_PLLD_HOLDPER BIT(7)
177 # define CM_PLLD_LOADPER BIT(6)
178 # define CM_PLLD_HOLDCORE BIT(5)
179 # define CM_PLLD_LOADCORE BIT(4)
180 # define CM_PLLD_HOLDDSI1 BIT(3)
181 # define CM_PLLD_LOADDSI1 BIT(2)
182 # define CM_PLLD_HOLDDSI0 BIT(1)
183 # define CM_PLLD_LOADDSI0 BIT(0)
185 #define CM_PLLH 0x110
186 # define CM_PLLH_LOADRCAL BIT(2)
187 # define CM_PLLH_LOADAUX BIT(1)
188 # define CM_PLLH_LOADPIX BIT(0)
190 #define CM_LOCK 0x114
191 # define CM_LOCK_FLOCKH BIT(12)
192 # define CM_LOCK_FLOCKD BIT(11)
193 # define CM_LOCK_FLOCKC BIT(10)
194 # define CM_LOCK_FLOCKB BIT(9)
195 # define CM_LOCK_FLOCKA BIT(8)
197 #define CM_EVENT 0x118
198 #define CM_DSI1ECTL 0x158
199 #define CM_DSI1EDIV 0x15c
200 #define CM_DSI1PCTL 0x160
201 #define CM_DSI1PDIV 0x164
202 #define CM_DFTCTL 0x168
203 #define CM_DFTDIV 0x16c
205 #define CM_PLLB 0x170
206 # define CM_PLLB_HOLDARM BIT(1)
207 # define CM_PLLB_LOADARM BIT(0)
209 #define A2W_PLLA_CTRL 0x1100
210 #define A2W_PLLC_CTRL 0x1120
211 #define A2W_PLLD_CTRL 0x1140
212 #define A2W_PLLH_CTRL 0x1160
213 #define A2W_PLLB_CTRL 0x11e0
214 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
215 # define A2W_PLL_CTRL_PWRDN BIT(16)
216 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000
217 # define A2W_PLL_CTRL_PDIV_SHIFT 12
218 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
219 # define A2W_PLL_CTRL_NDIV_SHIFT 0
221 #define A2W_PLLA_ANA0 0x1010
222 #define A2W_PLLC_ANA0 0x1030
223 #define A2W_PLLD_ANA0 0x1050
224 #define A2W_PLLH_ANA0 0x1070
225 #define A2W_PLLB_ANA0 0x10f0
227 #define A2W_PLL_KA_SHIFT 7
228 #define A2W_PLL_KA_MASK GENMASK(9, 7)
229 #define A2W_PLL_KI_SHIFT 19
230 #define A2W_PLL_KI_MASK GENMASK(21, 19)
231 #define A2W_PLL_KP_SHIFT 15
232 #define A2W_PLL_KP_MASK GENMASK(18, 15)
234 #define A2W_PLLH_KA_SHIFT 19
235 #define A2W_PLLH_KA_MASK GENMASK(21, 19)
236 #define A2W_PLLH_KI_LOW_SHIFT 22
237 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
238 #define A2W_PLLH_KI_HIGH_SHIFT 0
239 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
240 #define A2W_PLLH_KP_SHIFT 1
241 #define A2W_PLLH_KP_MASK GENMASK(4, 1)
243 #define A2W_XOSC_CTRL 0x1190
244 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
245 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
246 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
247 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
248 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
249 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
250 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
251 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
253 #define A2W_PLLA_FRAC 0x1200
254 #define A2W_PLLC_FRAC 0x1220
255 #define A2W_PLLD_FRAC 0x1240
256 #define A2W_PLLH_FRAC 0x1260
257 #define A2W_PLLB_FRAC 0x12e0
258 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
259 # define A2W_PLL_FRAC_BITS 20
261 #define A2W_PLL_CHANNEL_DISABLE BIT(8)
262 #define A2W_PLL_DIV_BITS 8
263 #define A2W_PLL_DIV_SHIFT 0
265 #define A2W_PLLA_DSI0 0x1300
266 #define A2W_PLLA_CORE 0x1400
267 #define A2W_PLLA_PER 0x1500
268 #define A2W_PLLA_CCP2 0x1600
270 #define A2W_PLLC_CORE2 0x1320
271 #define A2W_PLLC_CORE1 0x1420
272 #define A2W_PLLC_PER 0x1520
273 #define A2W_PLLC_CORE0 0x1620
275 #define A2W_PLLD_DSI0 0x1340
276 #define A2W_PLLD_CORE 0x1440
277 #define A2W_PLLD_PER 0x1540
278 #define A2W_PLLD_DSI1 0x1640
280 #define A2W_PLLH_AUX 0x1360
281 #define A2W_PLLH_RCAL 0x1460
282 #define A2W_PLLH_PIX 0x1560
283 #define A2W_PLLH_STS 0x1660
285 #define A2W_PLLH_CTRLR 0x1960
286 #define A2W_PLLH_FRACR 0x1a60
287 #define A2W_PLLH_AUXR 0x1b60
288 #define A2W_PLLH_RCALR 0x1c60
289 #define A2W_PLLH_PIXR 0x1d60
290 #define A2W_PLLH_STSR 0x1e60
292 #define A2W_PLLB_ARM 0x13e0
293 #define A2W_PLLB_SP0 0x14e0
294 #define A2W_PLLB_SP1 0x15e0
295 #define A2W_PLLB_SP2 0x16e0
297 #define LOCK_TIMEOUT_NS 100000000
298 #define BCM2835_MAX_FB_RATE 1750000000u
300 struct bcm2835_cprman
{
303 spinlock_t regs_lock
; /* spinlock for all clocks */
304 const char *osc_name
;
307 struct clk_hw_onecell_data onecell
;
310 static inline void cprman_write(struct bcm2835_cprman
*cprman
, u32 reg
, u32 val
)
312 writel(CM_PASSWORD
| val
, cprman
->regs
+ reg
);
315 static inline u32
cprman_read(struct bcm2835_cprman
*cprman
, u32 reg
)
317 return readl(cprman
->regs
+ reg
);
320 static int bcm2835_debugfs_regset(struct bcm2835_cprman
*cprman
, u32 base
,
321 struct debugfs_reg32
*regs
, size_t nregs
,
322 struct dentry
*dentry
)
324 struct dentry
*regdump
;
325 struct debugfs_regset32
*regset
;
327 regset
= devm_kzalloc(cprman
->dev
, sizeof(*regset
), GFP_KERNEL
);
332 regset
->nregs
= nregs
;
333 regset
->base
= cprman
->regs
+ base
;
335 regdump
= debugfs_create_regset32("regdump", S_IRUGO
, dentry
,
338 return regdump
? 0 : -ENOMEM
;
342 * These are fixed clocks. They're probably not all root clocks and it may
343 * be possible to turn them on and off but until this is mapped out better
344 * it's the only way they can be used.
346 void __init
bcm2835_init_clocks(void)
351 hw
= clk_hw_register_fixed_rate(NULL
, "apb_pclk", NULL
, 0, 126000000);
353 pr_err("apb_pclk not registered\n");
355 hw
= clk_hw_register_fixed_rate(NULL
, "uart0_pclk", NULL
, 0, 3000000);
357 pr_err("uart0_pclk not registered\n");
358 ret
= clk_hw_register_clkdev(hw
, NULL
, "20201000.uart");
360 pr_err("uart0_pclk alias not registered\n");
362 hw
= clk_hw_register_fixed_rate(NULL
, "uart1_pclk", NULL
, 0, 125000000);
364 pr_err("uart1_pclk not registered\n");
365 ret
= clk_hw_register_clkdev(hw
, NULL
, "20215000.uart");
367 pr_err("uart1_pclk alias not registered\n");
370 struct bcm2835_pll_data
{
376 u32 reference_enable_mask
;
377 /* Bit in CM_LOCK to indicate when the PLL has locked. */
380 const struct bcm2835_pll_ana_bits
*ana
;
382 unsigned long min_rate
;
383 unsigned long max_rate
;
385 * Highest rate for the VCO before we have to use the
388 unsigned long max_fb_rate
;
391 struct bcm2835_pll_ana_bits
{
401 static const struct bcm2835_pll_ana_bits bcm2835_ana_default
= {
404 .mask1
= (u32
)~(A2W_PLL_KI_MASK
| A2W_PLL_KP_MASK
),
405 .set1
= (2 << A2W_PLL_KI_SHIFT
) | (8 << A2W_PLL_KP_SHIFT
),
406 .mask3
= (u32
)~A2W_PLL_KA_MASK
,
407 .set3
= (2 << A2W_PLL_KA_SHIFT
),
408 .fb_prediv_mask
= BIT(14),
411 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh
= {
412 .mask0
= (u32
)~(A2W_PLLH_KA_MASK
| A2W_PLLH_KI_LOW_MASK
),
413 .set0
= (2 << A2W_PLLH_KA_SHIFT
) | (2 << A2W_PLLH_KI_LOW_SHIFT
),
414 .mask1
= (u32
)~(A2W_PLLH_KI_HIGH_MASK
| A2W_PLLH_KP_MASK
),
415 .set1
= (6 << A2W_PLLH_KP_SHIFT
),
418 .fb_prediv_mask
= BIT(11),
421 struct bcm2835_pll_divider_data
{
423 const char *source_pll
;
433 struct bcm2835_clock_data
{
436 const char *const *parents
;
442 /* Number of integer bits in the divider */
444 /* Number of fractional bits in the divider */
453 struct bcm2835_gate_data
{
462 struct bcm2835_cprman
*cprman
;
463 const struct bcm2835_pll_data
*data
;
466 static int bcm2835_pll_is_on(struct clk_hw
*hw
)
468 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
469 struct bcm2835_cprman
*cprman
= pll
->cprman
;
470 const struct bcm2835_pll_data
*data
= pll
->data
;
472 return cprman_read(cprman
, data
->a2w_ctrl_reg
) &
473 A2W_PLL_CTRL_PRST_DISABLE
;
476 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate
,
477 unsigned long parent_rate
,
478 u32
*ndiv
, u32
*fdiv
)
482 div
= (u64
)rate
<< A2W_PLL_FRAC_BITS
;
483 do_div(div
, parent_rate
);
485 *ndiv
= div
>> A2W_PLL_FRAC_BITS
;
486 *fdiv
= div
& ((1 << A2W_PLL_FRAC_BITS
) - 1);
489 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate
,
490 u32 ndiv
, u32 fdiv
, u32 pdiv
)
497 rate
= (u64
)parent_rate
* ((ndiv
<< A2W_PLL_FRAC_BITS
) + fdiv
);
499 return rate
>> A2W_PLL_FRAC_BITS
;
502 static long bcm2835_pll_round_rate(struct clk_hw
*hw
, unsigned long rate
,
503 unsigned long *parent_rate
)
505 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
506 const struct bcm2835_pll_data
*data
= pll
->data
;
509 rate
= clamp(rate
, data
->min_rate
, data
->max_rate
);
511 bcm2835_pll_choose_ndiv_and_fdiv(rate
, *parent_rate
, &ndiv
, &fdiv
);
513 return bcm2835_pll_rate_from_divisors(*parent_rate
, ndiv
, fdiv
, 1);
516 static unsigned long bcm2835_pll_get_rate(struct clk_hw
*hw
,
517 unsigned long parent_rate
)
519 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
520 struct bcm2835_cprman
*cprman
= pll
->cprman
;
521 const struct bcm2835_pll_data
*data
= pll
->data
;
522 u32 a2wctrl
= cprman_read(cprman
, data
->a2w_ctrl_reg
);
523 u32 ndiv
, pdiv
, fdiv
;
526 if (parent_rate
== 0)
529 fdiv
= cprman_read(cprman
, data
->frac_reg
) & A2W_PLL_FRAC_MASK
;
530 ndiv
= (a2wctrl
& A2W_PLL_CTRL_NDIV_MASK
) >> A2W_PLL_CTRL_NDIV_SHIFT
;
531 pdiv
= (a2wctrl
& A2W_PLL_CTRL_PDIV_MASK
) >> A2W_PLL_CTRL_PDIV_SHIFT
;
532 using_prediv
= cprman_read(cprman
, data
->ana_reg_base
+ 4) &
533 data
->ana
->fb_prediv_mask
;
538 return bcm2835_pll_rate_from_divisors(parent_rate
, ndiv
, fdiv
, pdiv
);
541 static void bcm2835_pll_off(struct clk_hw
*hw
)
543 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
544 struct bcm2835_cprman
*cprman
= pll
->cprman
;
545 const struct bcm2835_pll_data
*data
= pll
->data
;
547 spin_lock(&cprman
->regs_lock
);
548 cprman_write(cprman
, data
->cm_ctrl_reg
,
549 cprman_read(cprman
, data
->cm_ctrl_reg
) |
551 cprman_write(cprman
, data
->a2w_ctrl_reg
,
552 cprman_read(cprman
, data
->a2w_ctrl_reg
) |
554 spin_unlock(&cprman
->regs_lock
);
557 static int bcm2835_pll_on(struct clk_hw
*hw
)
559 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
560 struct bcm2835_cprman
*cprman
= pll
->cprman
;
561 const struct bcm2835_pll_data
*data
= pll
->data
;
564 cprman_write(cprman
, data
->a2w_ctrl_reg
,
565 cprman_read(cprman
, data
->a2w_ctrl_reg
) &
566 ~A2W_PLL_CTRL_PWRDN
);
568 /* Take the PLL out of reset. */
569 cprman_write(cprman
, data
->cm_ctrl_reg
,
570 cprman_read(cprman
, data
->cm_ctrl_reg
) & ~CM_PLL_ANARST
);
572 /* Wait for the PLL to lock. */
573 timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
574 while (!(cprman_read(cprman
, CM_LOCK
) & data
->lock_mask
)) {
575 if (ktime_after(ktime_get(), timeout
)) {
576 dev_err(cprman
->dev
, "%s: couldn't lock PLL\n",
577 clk_hw_get_name(hw
));
588 bcm2835_pll_write_ana(struct bcm2835_cprman
*cprman
, u32 ana_reg_base
, u32
*ana
)
593 * ANA register setup is done as a series of writes to
594 * ANA3-ANA0, in that order. This lets us write all 4
595 * registers as a single cycle of the serdes interface (taking
596 * 100 xosc clocks), whereas if we were to update ana0, 1, and
597 * 3 individually through their partial-write registers, each
598 * would be their own serdes cycle.
600 for (i
= 3; i
>= 0; i
--)
601 cprman_write(cprman
, ana_reg_base
+ i
* 4, ana
[i
]);
604 static int bcm2835_pll_set_rate(struct clk_hw
*hw
,
605 unsigned long rate
, unsigned long parent_rate
)
607 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
608 struct bcm2835_cprman
*cprman
= pll
->cprman
;
609 const struct bcm2835_pll_data
*data
= pll
->data
;
610 bool was_using_prediv
, use_fb_prediv
, do_ana_setup_first
;
611 u32 ndiv
, fdiv
, a2w_ctl
;
615 if (rate
> data
->max_fb_rate
) {
616 use_fb_prediv
= true;
619 use_fb_prediv
= false;
622 bcm2835_pll_choose_ndiv_and_fdiv(rate
, parent_rate
, &ndiv
, &fdiv
);
624 for (i
= 3; i
>= 0; i
--)
625 ana
[i
] = cprman_read(cprman
, data
->ana_reg_base
+ i
* 4);
627 was_using_prediv
= ana
[1] & data
->ana
->fb_prediv_mask
;
629 ana
[0] &= ~data
->ana
->mask0
;
630 ana
[0] |= data
->ana
->set0
;
631 ana
[1] &= ~data
->ana
->mask1
;
632 ana
[1] |= data
->ana
->set1
;
633 ana
[3] &= ~data
->ana
->mask3
;
634 ana
[3] |= data
->ana
->set3
;
636 if (was_using_prediv
&& !use_fb_prediv
) {
637 ana
[1] &= ~data
->ana
->fb_prediv_mask
;
638 do_ana_setup_first
= true;
639 } else if (!was_using_prediv
&& use_fb_prediv
) {
640 ana
[1] |= data
->ana
->fb_prediv_mask
;
641 do_ana_setup_first
= false;
643 do_ana_setup_first
= true;
646 /* Unmask the reference clock from the oscillator. */
647 cprman_write(cprman
, A2W_XOSC_CTRL
,
648 cprman_read(cprman
, A2W_XOSC_CTRL
) |
649 data
->reference_enable_mask
);
651 if (do_ana_setup_first
)
652 bcm2835_pll_write_ana(cprman
, data
->ana_reg_base
, ana
);
654 /* Set the PLL multiplier from the oscillator. */
655 cprman_write(cprman
, data
->frac_reg
, fdiv
);
657 a2w_ctl
= cprman_read(cprman
, data
->a2w_ctrl_reg
);
658 a2w_ctl
&= ~A2W_PLL_CTRL_NDIV_MASK
;
659 a2w_ctl
|= ndiv
<< A2W_PLL_CTRL_NDIV_SHIFT
;
660 a2w_ctl
&= ~A2W_PLL_CTRL_PDIV_MASK
;
661 a2w_ctl
|= 1 << A2W_PLL_CTRL_PDIV_SHIFT
;
662 cprman_write(cprman
, data
->a2w_ctrl_reg
, a2w_ctl
);
664 if (!do_ana_setup_first
)
665 bcm2835_pll_write_ana(cprman
, data
->ana_reg_base
, ana
);
670 static int bcm2835_pll_debug_init(struct clk_hw
*hw
,
671 struct dentry
*dentry
)
673 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
674 struct bcm2835_cprman
*cprman
= pll
->cprman
;
675 const struct bcm2835_pll_data
*data
= pll
->data
;
676 struct debugfs_reg32
*regs
;
678 regs
= devm_kzalloc(cprman
->dev
, 7 * sizeof(*regs
), GFP_KERNEL
);
682 regs
[0].name
= "cm_ctrl";
683 regs
[0].offset
= data
->cm_ctrl_reg
;
684 regs
[1].name
= "a2w_ctrl";
685 regs
[1].offset
= data
->a2w_ctrl_reg
;
686 regs
[2].name
= "frac";
687 regs
[2].offset
= data
->frac_reg
;
688 regs
[3].name
= "ana0";
689 regs
[3].offset
= data
->ana_reg_base
+ 0 * 4;
690 regs
[4].name
= "ana1";
691 regs
[4].offset
= data
->ana_reg_base
+ 1 * 4;
692 regs
[5].name
= "ana2";
693 regs
[5].offset
= data
->ana_reg_base
+ 2 * 4;
694 regs
[6].name
= "ana3";
695 regs
[6].offset
= data
->ana_reg_base
+ 3 * 4;
697 return bcm2835_debugfs_regset(cprman
, 0, regs
, 7, dentry
);
700 static const struct clk_ops bcm2835_pll_clk_ops
= {
701 .is_prepared
= bcm2835_pll_is_on
,
702 .prepare
= bcm2835_pll_on
,
703 .unprepare
= bcm2835_pll_off
,
704 .recalc_rate
= bcm2835_pll_get_rate
,
705 .set_rate
= bcm2835_pll_set_rate
,
706 .round_rate
= bcm2835_pll_round_rate
,
707 .debug_init
= bcm2835_pll_debug_init
,
710 struct bcm2835_pll_divider
{
711 struct clk_divider div
;
712 struct bcm2835_cprman
*cprman
;
713 const struct bcm2835_pll_divider_data
*data
;
716 static struct bcm2835_pll_divider
*
717 bcm2835_pll_divider_from_hw(struct clk_hw
*hw
)
719 return container_of(hw
, struct bcm2835_pll_divider
, div
.hw
);
722 static int bcm2835_pll_divider_is_on(struct clk_hw
*hw
)
724 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
725 struct bcm2835_cprman
*cprman
= divider
->cprman
;
726 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
728 return !(cprman_read(cprman
, data
->a2w_reg
) & A2W_PLL_CHANNEL_DISABLE
);
731 static long bcm2835_pll_divider_round_rate(struct clk_hw
*hw
,
733 unsigned long *parent_rate
)
735 return clk_divider_ops
.round_rate(hw
, rate
, parent_rate
);
738 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw
*hw
,
739 unsigned long parent_rate
)
741 return clk_divider_ops
.recalc_rate(hw
, parent_rate
);
744 static void bcm2835_pll_divider_off(struct clk_hw
*hw
)
746 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
747 struct bcm2835_cprman
*cprman
= divider
->cprman
;
748 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
750 spin_lock(&cprman
->regs_lock
);
751 cprman_write(cprman
, data
->cm_reg
,
752 (cprman_read(cprman
, data
->cm_reg
) &
753 ~data
->load_mask
) | data
->hold_mask
);
754 cprman_write(cprman
, data
->a2w_reg
,
755 cprman_read(cprman
, data
->a2w_reg
) |
756 A2W_PLL_CHANNEL_DISABLE
);
757 spin_unlock(&cprman
->regs_lock
);
760 static int bcm2835_pll_divider_on(struct clk_hw
*hw
)
762 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
763 struct bcm2835_cprman
*cprman
= divider
->cprman
;
764 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
766 spin_lock(&cprman
->regs_lock
);
767 cprman_write(cprman
, data
->a2w_reg
,
768 cprman_read(cprman
, data
->a2w_reg
) &
769 ~A2W_PLL_CHANNEL_DISABLE
);
771 cprman_write(cprman
, data
->cm_reg
,
772 cprman_read(cprman
, data
->cm_reg
) & ~data
->hold_mask
);
773 spin_unlock(&cprman
->regs_lock
);
778 static int bcm2835_pll_divider_set_rate(struct clk_hw
*hw
,
780 unsigned long parent_rate
)
782 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
783 struct bcm2835_cprman
*cprman
= divider
->cprman
;
784 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
785 u32 cm
, div
, max_div
= 1 << A2W_PLL_DIV_BITS
;
787 div
= DIV_ROUND_UP_ULL(parent_rate
, rate
);
789 div
= min(div
, max_div
);
793 cprman_write(cprman
, data
->a2w_reg
, div
);
794 cm
= cprman_read(cprman
, data
->cm_reg
);
795 cprman_write(cprman
, data
->cm_reg
, cm
| data
->load_mask
);
796 cprman_write(cprman
, data
->cm_reg
, cm
& ~data
->load_mask
);
801 static int bcm2835_pll_divider_debug_init(struct clk_hw
*hw
,
802 struct dentry
*dentry
)
804 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
805 struct bcm2835_cprman
*cprman
= divider
->cprman
;
806 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
807 struct debugfs_reg32
*regs
;
809 regs
= devm_kzalloc(cprman
->dev
, 7 * sizeof(*regs
), GFP_KERNEL
);
814 regs
[0].offset
= data
->cm_reg
;
815 regs
[1].name
= "a2w";
816 regs
[1].offset
= data
->a2w_reg
;
818 return bcm2835_debugfs_regset(cprman
, 0, regs
, 2, dentry
);
821 static const struct clk_ops bcm2835_pll_divider_clk_ops
= {
822 .is_prepared
= bcm2835_pll_divider_is_on
,
823 .prepare
= bcm2835_pll_divider_on
,
824 .unprepare
= bcm2835_pll_divider_off
,
825 .recalc_rate
= bcm2835_pll_divider_get_rate
,
826 .set_rate
= bcm2835_pll_divider_set_rate
,
827 .round_rate
= bcm2835_pll_divider_round_rate
,
828 .debug_init
= bcm2835_pll_divider_debug_init
,
832 * The CM dividers do fixed-point division, so we can't use the
833 * generic integer divider code like the PLL dividers do (and we can't
834 * fake it by having some fixed shifts preceding it in the clock tree,
835 * because we'd run out of bits in a 32-bit unsigned long).
837 struct bcm2835_clock
{
839 struct bcm2835_cprman
*cprman
;
840 const struct bcm2835_clock_data
*data
;
843 static struct bcm2835_clock
*bcm2835_clock_from_hw(struct clk_hw
*hw
)
845 return container_of(hw
, struct bcm2835_clock
, hw
);
848 static int bcm2835_clock_is_on(struct clk_hw
*hw
)
850 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
851 struct bcm2835_cprman
*cprman
= clock
->cprman
;
852 const struct bcm2835_clock_data
*data
= clock
->data
;
854 return (cprman_read(cprman
, data
->ctl_reg
) & CM_ENABLE
) != 0;
857 static u32
bcm2835_clock_choose_div(struct clk_hw
*hw
,
859 unsigned long parent_rate
,
862 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
863 const struct bcm2835_clock_data
*data
= clock
->data
;
864 u32 unused_frac_mask
=
865 GENMASK(CM_DIV_FRAC_BITS
- data
->frac_bits
, 0) >> 1;
866 u64 temp
= (u64
)parent_rate
<< CM_DIV_FRAC_BITS
;
868 u32 div
, mindiv
, maxdiv
;
870 rem
= do_div(temp
, rate
);
873 /* Round up and mask off the unused bits */
874 if (round_up
&& ((div
& unused_frac_mask
) != 0 || rem
!= 0))
875 div
+= unused_frac_mask
+ 1;
876 div
&= ~unused_frac_mask
;
878 /* different clamping limits apply for a mash clock */
879 if (data
->is_mash_clock
) {
880 /* clamp to min divider of 2 */
881 mindiv
= 2 << CM_DIV_FRAC_BITS
;
882 /* clamp to the highest possible integer divider */
883 maxdiv
= (BIT(data
->int_bits
) - 1) << CM_DIV_FRAC_BITS
;
885 /* clamp to min divider of 1 */
886 mindiv
= 1 << CM_DIV_FRAC_BITS
;
887 /* clamp to the highest possible fractional divider */
888 maxdiv
= GENMASK(data
->int_bits
+ CM_DIV_FRAC_BITS
- 1,
889 CM_DIV_FRAC_BITS
- data
->frac_bits
);
892 /* apply the clamping limits */
893 div
= max_t(u32
, div
, mindiv
);
894 div
= min_t(u32
, div
, maxdiv
);
899 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock
*clock
,
900 unsigned long parent_rate
,
903 const struct bcm2835_clock_data
*data
= clock
->data
;
907 * The divisor is a 12.12 fixed point field, but only some of
908 * the bits are populated in any given clock.
910 div
>>= CM_DIV_FRAC_BITS
- data
->frac_bits
;
911 div
&= (1 << (data
->int_bits
+ data
->frac_bits
)) - 1;
916 temp
= (u64
)parent_rate
<< data
->frac_bits
;
923 static unsigned long bcm2835_clock_get_rate(struct clk_hw
*hw
,
924 unsigned long parent_rate
)
926 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
927 struct bcm2835_cprman
*cprman
= clock
->cprman
;
928 const struct bcm2835_clock_data
*data
= clock
->data
;
929 u32 div
= cprman_read(cprman
, data
->div_reg
);
931 return bcm2835_clock_rate_from_divisor(clock
, parent_rate
, div
);
934 static void bcm2835_clock_wait_busy(struct bcm2835_clock
*clock
)
936 struct bcm2835_cprman
*cprman
= clock
->cprman
;
937 const struct bcm2835_clock_data
*data
= clock
->data
;
938 ktime_t timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
940 while (cprman_read(cprman
, data
->ctl_reg
) & CM_BUSY
) {
941 if (ktime_after(ktime_get(), timeout
)) {
942 dev_err(cprman
->dev
, "%s: couldn't lock PLL\n",
943 clk_hw_get_name(&clock
->hw
));
950 static void bcm2835_clock_off(struct clk_hw
*hw
)
952 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
953 struct bcm2835_cprman
*cprman
= clock
->cprman
;
954 const struct bcm2835_clock_data
*data
= clock
->data
;
956 spin_lock(&cprman
->regs_lock
);
957 cprman_write(cprman
, data
->ctl_reg
,
958 cprman_read(cprman
, data
->ctl_reg
) & ~CM_ENABLE
);
959 spin_unlock(&cprman
->regs_lock
);
961 /* BUSY will remain high until the divider completes its cycle. */
962 bcm2835_clock_wait_busy(clock
);
965 static int bcm2835_clock_on(struct clk_hw
*hw
)
967 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
968 struct bcm2835_cprman
*cprman
= clock
->cprman
;
969 const struct bcm2835_clock_data
*data
= clock
->data
;
971 spin_lock(&cprman
->regs_lock
);
972 cprman_write(cprman
, data
->ctl_reg
,
973 cprman_read(cprman
, data
->ctl_reg
) |
976 spin_unlock(&cprman
->regs_lock
);
981 static int bcm2835_clock_set_rate(struct clk_hw
*hw
,
982 unsigned long rate
, unsigned long parent_rate
)
984 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
985 struct bcm2835_cprman
*cprman
= clock
->cprman
;
986 const struct bcm2835_clock_data
*data
= clock
->data
;
987 u32 div
= bcm2835_clock_choose_div(hw
, rate
, parent_rate
, false);
990 spin_lock(&cprman
->regs_lock
);
993 * Setting up frac support
995 * In principle it is recommended to stop/start the clock first,
996 * but as we set CLK_SET_RATE_GATE during registration of the
997 * clock this requirement should be take care of by the
1000 ctl
= cprman_read(cprman
, data
->ctl_reg
) & ~CM_FRAC
;
1001 ctl
|= (div
& CM_DIV_FRAC_MASK
) ? CM_FRAC
: 0;
1002 cprman_write(cprman
, data
->ctl_reg
, ctl
);
1004 cprman_write(cprman
, data
->div_reg
, div
);
1006 spin_unlock(&cprman
->regs_lock
);
1012 bcm2835_clk_is_pllc(struct clk_hw
*hw
)
1017 return strncmp(clk_hw_get_name(hw
), "pllc", 4) == 0;
1020 static int bcm2835_clock_determine_rate(struct clk_hw
*hw
,
1021 struct clk_rate_request
*req
)
1023 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1024 struct clk_hw
*parent
, *best_parent
= NULL
;
1025 bool current_parent_is_pllc
;
1026 unsigned long rate
, best_rate
= 0;
1027 unsigned long prate
, best_prate
= 0;
1031 current_parent_is_pllc
= bcm2835_clk_is_pllc(clk_hw_get_parent(hw
));
1034 * Select parent clock that results in the closest but lower rate
1036 for (i
= 0; i
< clk_hw_get_num_parents(hw
); ++i
) {
1037 parent
= clk_hw_get_parent_by_index(hw
, i
);
1042 * Don't choose a PLLC-derived clock as our parent
1043 * unless it had been manually set that way. PLLC's
1044 * frequency gets adjusted by the firmware due to
1045 * over-temp or under-voltage conditions, without
1046 * prior notification to our clock consumer.
1048 if (bcm2835_clk_is_pllc(parent
) && !current_parent_is_pllc
)
1051 prate
= clk_hw_get_rate(parent
);
1052 div
= bcm2835_clock_choose_div(hw
, req
->rate
, prate
, true);
1053 rate
= bcm2835_clock_rate_from_divisor(clock
, prate
, div
);
1054 if (rate
> best_rate
&& rate
<= req
->rate
) {
1055 best_parent
= parent
;
1064 req
->best_parent_hw
= best_parent
;
1065 req
->best_parent_rate
= best_prate
;
1067 req
->rate
= best_rate
;
1072 static int bcm2835_clock_set_parent(struct clk_hw
*hw
, u8 index
)
1074 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1075 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1076 const struct bcm2835_clock_data
*data
= clock
->data
;
1077 u8 src
= (index
<< CM_SRC_SHIFT
) & CM_SRC_MASK
;
1079 cprman_write(cprman
, data
->ctl_reg
, src
);
1083 static u8
bcm2835_clock_get_parent(struct clk_hw
*hw
)
1085 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1086 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1087 const struct bcm2835_clock_data
*data
= clock
->data
;
1088 u32 src
= cprman_read(cprman
, data
->ctl_reg
);
1090 return (src
& CM_SRC_MASK
) >> CM_SRC_SHIFT
;
1093 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32
[] = {
1104 static int bcm2835_clock_debug_init(struct clk_hw
*hw
,
1105 struct dentry
*dentry
)
1107 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1108 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1109 const struct bcm2835_clock_data
*data
= clock
->data
;
1111 return bcm2835_debugfs_regset(
1112 cprman
, data
->ctl_reg
,
1113 bcm2835_debugfs_clock_reg32
,
1114 ARRAY_SIZE(bcm2835_debugfs_clock_reg32
),
1118 static const struct clk_ops bcm2835_clock_clk_ops
= {
1119 .is_prepared
= bcm2835_clock_is_on
,
1120 .prepare
= bcm2835_clock_on
,
1121 .unprepare
= bcm2835_clock_off
,
1122 .recalc_rate
= bcm2835_clock_get_rate
,
1123 .set_rate
= bcm2835_clock_set_rate
,
1124 .determine_rate
= bcm2835_clock_determine_rate
,
1125 .set_parent
= bcm2835_clock_set_parent
,
1126 .get_parent
= bcm2835_clock_get_parent
,
1127 .debug_init
= bcm2835_clock_debug_init
,
1130 static int bcm2835_vpu_clock_is_on(struct clk_hw
*hw
)
1136 * The VPU clock can never be disabled (it doesn't have an ENABLE
1137 * bit), so it gets its own set of clock ops.
1139 static const struct clk_ops bcm2835_vpu_clock_clk_ops
= {
1140 .is_prepared
= bcm2835_vpu_clock_is_on
,
1141 .recalc_rate
= bcm2835_clock_get_rate
,
1142 .set_rate
= bcm2835_clock_set_rate
,
1143 .determine_rate
= bcm2835_clock_determine_rate
,
1144 .set_parent
= bcm2835_clock_set_parent
,
1145 .get_parent
= bcm2835_clock_get_parent
,
1146 .debug_init
= bcm2835_clock_debug_init
,
1149 static struct clk_hw
*bcm2835_register_pll(struct bcm2835_cprman
*cprman
,
1150 const struct bcm2835_pll_data
*data
)
1152 struct bcm2835_pll
*pll
;
1153 struct clk_init_data init
;
1156 memset(&init
, 0, sizeof(init
));
1158 /* All of the PLLs derive from the external oscillator. */
1159 init
.parent_names
= &cprman
->osc_name
;
1160 init
.num_parents
= 1;
1161 init
.name
= data
->name
;
1162 init
.ops
= &bcm2835_pll_clk_ops
;
1163 init
.flags
= CLK_IGNORE_UNUSED
;
1165 pll
= kzalloc(sizeof(*pll
), GFP_KERNEL
);
1169 pll
->cprman
= cprman
;
1171 pll
->hw
.init
= &init
;
1173 ret
= devm_clk_hw_register(cprman
->dev
, &pll
->hw
);
1179 static struct clk_hw
*
1180 bcm2835_register_pll_divider(struct bcm2835_cprman
*cprman
,
1181 const struct bcm2835_pll_divider_data
*data
)
1183 struct bcm2835_pll_divider
*divider
;
1184 struct clk_init_data init
;
1185 const char *divider_name
;
1188 if (data
->fixed_divider
!= 1) {
1189 divider_name
= devm_kasprintf(cprman
->dev
, GFP_KERNEL
,
1190 "%s_prediv", data
->name
);
1194 divider_name
= data
->name
;
1197 memset(&init
, 0, sizeof(init
));
1199 init
.parent_names
= &data
->source_pll
;
1200 init
.num_parents
= 1;
1201 init
.name
= divider_name
;
1202 init
.ops
= &bcm2835_pll_divider_clk_ops
;
1203 init
.flags
= CLK_SET_RATE_PARENT
| CLK_IGNORE_UNUSED
;
1205 divider
= devm_kzalloc(cprman
->dev
, sizeof(*divider
), GFP_KERNEL
);
1209 divider
->div
.reg
= cprman
->regs
+ data
->a2w_reg
;
1210 divider
->div
.shift
= A2W_PLL_DIV_SHIFT
;
1211 divider
->div
.width
= A2W_PLL_DIV_BITS
;
1212 divider
->div
.flags
= CLK_DIVIDER_MAX_AT_ZERO
;
1213 divider
->div
.lock
= &cprman
->regs_lock
;
1214 divider
->div
.hw
.init
= &init
;
1215 divider
->div
.table
= NULL
;
1217 divider
->cprman
= cprman
;
1218 divider
->data
= data
;
1220 ret
= devm_clk_hw_register(cprman
->dev
, ÷r
->div
.hw
);
1222 return ERR_PTR(ret
);
1225 * PLLH's channels have a fixed divide by 10 afterwards, which
1226 * is what our consumers are actually using.
1228 if (data
->fixed_divider
!= 1) {
1229 return clk_hw_register_fixed_factor(cprman
->dev
, data
->name
,
1231 CLK_SET_RATE_PARENT
,
1233 data
->fixed_divider
);
1236 return ÷r
->div
.hw
;
1239 static struct clk_hw
*bcm2835_register_clock(struct bcm2835_cprman
*cprman
,
1240 const struct bcm2835_clock_data
*data
)
1242 struct bcm2835_clock
*clock
;
1243 struct clk_init_data init
;
1244 const char *parents
[1 << CM_SRC_BITS
];
1249 * Replace our "xosc" references with the oscillator's
1252 for (i
= 0; i
< data
->num_mux_parents
; i
++) {
1253 if (strcmp(data
->parents
[i
], "xosc") == 0)
1254 parents
[i
] = cprman
->osc_name
;
1256 parents
[i
] = data
->parents
[i
];
1259 memset(&init
, 0, sizeof(init
));
1260 init
.parent_names
= parents
;
1261 init
.num_parents
= data
->num_mux_parents
;
1262 init
.name
= data
->name
;
1263 init
.flags
= data
->flags
| CLK_IGNORE_UNUSED
;
1265 if (data
->is_vpu_clock
) {
1266 init
.ops
= &bcm2835_vpu_clock_clk_ops
;
1268 init
.ops
= &bcm2835_clock_clk_ops
;
1269 init
.flags
|= CLK_SET_RATE_GATE
| CLK_SET_PARENT_GATE
;
1271 /* If the clock wasn't actually enabled at boot, it's not
1274 if (!(cprman_read(cprman
, data
->ctl_reg
) & CM_ENABLE
))
1275 init
.flags
&= ~CLK_IS_CRITICAL
;
1278 clock
= devm_kzalloc(cprman
->dev
, sizeof(*clock
), GFP_KERNEL
);
1282 clock
->cprman
= cprman
;
1284 clock
->hw
.init
= &init
;
1286 ret
= devm_clk_hw_register(cprman
->dev
, &clock
->hw
);
1288 return ERR_PTR(ret
);
1292 static struct clk
*bcm2835_register_gate(struct bcm2835_cprman
*cprman
,
1293 const struct bcm2835_gate_data
*data
)
1295 return clk_register_gate(cprman
->dev
, data
->name
, data
->parent
,
1296 CLK_IGNORE_UNUSED
| CLK_SET_RATE_GATE
,
1297 cprman
->regs
+ data
->ctl_reg
,
1298 CM_GATE_BIT
, 0, &cprman
->regs_lock
);
1301 typedef struct clk_hw
*(*bcm2835_clk_register
)(struct bcm2835_cprman
*cprman
,
1303 struct bcm2835_clk_desc
{
1304 bcm2835_clk_register clk_register
;
1308 /* assignment helper macros for different clock types */
1309 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1310 .data = __VA_ARGS__ }
1311 #define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
1312 &(struct bcm2835_pll_data) \
1314 #define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
1315 &(struct bcm2835_pll_divider_data) \
1317 #define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
1318 &(struct bcm2835_clock_data) \
1320 #define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
1321 &(struct bcm2835_gate_data) \
1324 /* parent mux arrays plus helper macros */
1326 /* main oscillator parent mux */
1327 static const char *const bcm2835_clock_osc_parents
[] = {
1334 #define REGISTER_OSC_CLK(...) REGISTER_CLK( \
1335 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1336 .parents = bcm2835_clock_osc_parents, \
1339 /* main peripherial parent mux */
1340 static const char *const bcm2835_clock_per_parents
[] = {
1351 #define REGISTER_PER_CLK(...) REGISTER_CLK( \
1352 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1353 .parents = bcm2835_clock_per_parents, \
1356 /* main vpu parent mux */
1357 static const char *const bcm2835_clock_vpu_parents
[] = {
1370 #define REGISTER_VPU_CLK(...) REGISTER_CLK( \
1371 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1372 .parents = bcm2835_clock_vpu_parents, \
1376 * the real definition of all the pll, pll_dividers and clocks
1377 * these make use of the above REGISTER_* macros
1379 static const struct bcm2835_clk_desc clk_desc_array
[] = {
1380 /* the PLL + PLL dividers */
1383 * PLLA is the auxiliary PLL, used to drive the CCP2
1384 * (Compact Camera Port 2) transmitter clock.
1386 * It is in the PX LDO power domain, which is on when the
1387 * AUDIO domain is on.
1389 [BCM2835_PLLA
] = REGISTER_PLL(
1391 .cm_ctrl_reg
= CM_PLLA
,
1392 .a2w_ctrl_reg
= A2W_PLLA_CTRL
,
1393 .frac_reg
= A2W_PLLA_FRAC
,
1394 .ana_reg_base
= A2W_PLLA_ANA0
,
1395 .reference_enable_mask
= A2W_XOSC_CTRL_PLLA_ENABLE
,
1396 .lock_mask
= CM_LOCK_FLOCKA
,
1398 .ana
= &bcm2835_ana_default
,
1400 .min_rate
= 600000000u,
1401 .max_rate
= 2400000000u,
1402 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1403 [BCM2835_PLLA_CORE
] = REGISTER_PLL_DIV(
1404 .name
= "plla_core",
1405 .source_pll
= "plla",
1407 .a2w_reg
= A2W_PLLA_CORE
,
1408 .load_mask
= CM_PLLA_LOADCORE
,
1409 .hold_mask
= CM_PLLA_HOLDCORE
,
1410 .fixed_divider
= 1),
1411 [BCM2835_PLLA_PER
] = REGISTER_PLL_DIV(
1413 .source_pll
= "plla",
1415 .a2w_reg
= A2W_PLLA_PER
,
1416 .load_mask
= CM_PLLA_LOADPER
,
1417 .hold_mask
= CM_PLLA_HOLDPER
,
1418 .fixed_divider
= 1),
1419 [BCM2835_PLLA_DSI0
] = REGISTER_PLL_DIV(
1420 .name
= "plla_dsi0",
1421 .source_pll
= "plla",
1423 .a2w_reg
= A2W_PLLA_DSI0
,
1424 .load_mask
= CM_PLLA_LOADDSI0
,
1425 .hold_mask
= CM_PLLA_HOLDDSI0
,
1426 .fixed_divider
= 1),
1427 [BCM2835_PLLA_CCP2
] = REGISTER_PLL_DIV(
1428 .name
= "plla_ccp2",
1429 .source_pll
= "plla",
1431 .a2w_reg
= A2W_PLLA_CCP2
,
1432 .load_mask
= CM_PLLA_LOADCCP2
,
1433 .hold_mask
= CM_PLLA_HOLDCCP2
,
1434 .fixed_divider
= 1),
1436 /* PLLB is used for the ARM's clock. */
1437 [BCM2835_PLLB
] = REGISTER_PLL(
1439 .cm_ctrl_reg
= CM_PLLB
,
1440 .a2w_ctrl_reg
= A2W_PLLB_CTRL
,
1441 .frac_reg
= A2W_PLLB_FRAC
,
1442 .ana_reg_base
= A2W_PLLB_ANA0
,
1443 .reference_enable_mask
= A2W_XOSC_CTRL_PLLB_ENABLE
,
1444 .lock_mask
= CM_LOCK_FLOCKB
,
1446 .ana
= &bcm2835_ana_default
,
1448 .min_rate
= 600000000u,
1449 .max_rate
= 3000000000u,
1450 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1451 [BCM2835_PLLB_ARM
] = REGISTER_PLL_DIV(
1453 .source_pll
= "pllb",
1455 .a2w_reg
= A2W_PLLB_ARM
,
1456 .load_mask
= CM_PLLB_LOADARM
,
1457 .hold_mask
= CM_PLLB_HOLDARM
,
1458 .fixed_divider
= 1),
1461 * PLLC is the core PLL, used to drive the core VPU clock.
1463 * It is in the PX LDO power domain, which is on when the
1464 * AUDIO domain is on.
1466 [BCM2835_PLLC
] = REGISTER_PLL(
1468 .cm_ctrl_reg
= CM_PLLC
,
1469 .a2w_ctrl_reg
= A2W_PLLC_CTRL
,
1470 .frac_reg
= A2W_PLLC_FRAC
,
1471 .ana_reg_base
= A2W_PLLC_ANA0
,
1472 .reference_enable_mask
= A2W_XOSC_CTRL_PLLC_ENABLE
,
1473 .lock_mask
= CM_LOCK_FLOCKC
,
1475 .ana
= &bcm2835_ana_default
,
1477 .min_rate
= 600000000u,
1478 .max_rate
= 3000000000u,
1479 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1480 [BCM2835_PLLC_CORE0
] = REGISTER_PLL_DIV(
1481 .name
= "pllc_core0",
1482 .source_pll
= "pllc",
1484 .a2w_reg
= A2W_PLLC_CORE0
,
1485 .load_mask
= CM_PLLC_LOADCORE0
,
1486 .hold_mask
= CM_PLLC_HOLDCORE0
,
1487 .fixed_divider
= 1),
1488 [BCM2835_PLLC_CORE1
] = REGISTER_PLL_DIV(
1489 .name
= "pllc_core1",
1490 .source_pll
= "pllc",
1492 .a2w_reg
= A2W_PLLC_CORE1
,
1493 .load_mask
= CM_PLLC_LOADCORE1
,
1494 .hold_mask
= CM_PLLC_HOLDCORE1
,
1495 .fixed_divider
= 1),
1496 [BCM2835_PLLC_CORE2
] = REGISTER_PLL_DIV(
1497 .name
= "pllc_core2",
1498 .source_pll
= "pllc",
1500 .a2w_reg
= A2W_PLLC_CORE2
,
1501 .load_mask
= CM_PLLC_LOADCORE2
,
1502 .hold_mask
= CM_PLLC_HOLDCORE2
,
1503 .fixed_divider
= 1),
1504 [BCM2835_PLLC_PER
] = REGISTER_PLL_DIV(
1506 .source_pll
= "pllc",
1508 .a2w_reg
= A2W_PLLC_PER
,
1509 .load_mask
= CM_PLLC_LOADPER
,
1510 .hold_mask
= CM_PLLC_HOLDPER
,
1511 .fixed_divider
= 1),
1514 * PLLD is the display PLL, used to drive DSI display panels.
1516 * It is in the PX LDO power domain, which is on when the
1517 * AUDIO domain is on.
1519 [BCM2835_PLLD
] = REGISTER_PLL(
1521 .cm_ctrl_reg
= CM_PLLD
,
1522 .a2w_ctrl_reg
= A2W_PLLD_CTRL
,
1523 .frac_reg
= A2W_PLLD_FRAC
,
1524 .ana_reg_base
= A2W_PLLD_ANA0
,
1525 .reference_enable_mask
= A2W_XOSC_CTRL_DDR_ENABLE
,
1526 .lock_mask
= CM_LOCK_FLOCKD
,
1528 .ana
= &bcm2835_ana_default
,
1530 .min_rate
= 600000000u,
1531 .max_rate
= 2400000000u,
1532 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1533 [BCM2835_PLLD_CORE
] = REGISTER_PLL_DIV(
1534 .name
= "plld_core",
1535 .source_pll
= "plld",
1537 .a2w_reg
= A2W_PLLD_CORE
,
1538 .load_mask
= CM_PLLD_LOADCORE
,
1539 .hold_mask
= CM_PLLD_HOLDCORE
,
1540 .fixed_divider
= 1),
1541 [BCM2835_PLLD_PER
] = REGISTER_PLL_DIV(
1543 .source_pll
= "plld",
1545 .a2w_reg
= A2W_PLLD_PER
,
1546 .load_mask
= CM_PLLD_LOADPER
,
1547 .hold_mask
= CM_PLLD_HOLDPER
,
1548 .fixed_divider
= 1),
1549 [BCM2835_PLLD_DSI0
] = REGISTER_PLL_DIV(
1550 .name
= "plld_dsi0",
1551 .source_pll
= "plld",
1553 .a2w_reg
= A2W_PLLD_DSI0
,
1554 .load_mask
= CM_PLLD_LOADDSI0
,
1555 .hold_mask
= CM_PLLD_HOLDDSI0
,
1556 .fixed_divider
= 1),
1557 [BCM2835_PLLD_DSI1
] = REGISTER_PLL_DIV(
1558 .name
= "plld_dsi1",
1559 .source_pll
= "plld",
1561 .a2w_reg
= A2W_PLLD_DSI1
,
1562 .load_mask
= CM_PLLD_LOADDSI1
,
1563 .hold_mask
= CM_PLLD_HOLDDSI1
,
1564 .fixed_divider
= 1),
1567 * PLLH is used to supply the pixel clock or the AUX clock for the
1570 * It is in the HDMI power domain.
1572 [BCM2835_PLLH
] = REGISTER_PLL(
1574 .cm_ctrl_reg
= CM_PLLH
,
1575 .a2w_ctrl_reg
= A2W_PLLH_CTRL
,
1576 .frac_reg
= A2W_PLLH_FRAC
,
1577 .ana_reg_base
= A2W_PLLH_ANA0
,
1578 .reference_enable_mask
= A2W_XOSC_CTRL_PLLC_ENABLE
,
1579 .lock_mask
= CM_LOCK_FLOCKH
,
1581 .ana
= &bcm2835_ana_pllh
,
1583 .min_rate
= 600000000u,
1584 .max_rate
= 3000000000u,
1585 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1586 [BCM2835_PLLH_RCAL
] = REGISTER_PLL_DIV(
1587 .name
= "pllh_rcal",
1588 .source_pll
= "pllh",
1590 .a2w_reg
= A2W_PLLH_RCAL
,
1591 .load_mask
= CM_PLLH_LOADRCAL
,
1593 .fixed_divider
= 10),
1594 [BCM2835_PLLH_AUX
] = REGISTER_PLL_DIV(
1596 .source_pll
= "pllh",
1598 .a2w_reg
= A2W_PLLH_AUX
,
1599 .load_mask
= CM_PLLH_LOADAUX
,
1601 .fixed_divider
= 1),
1602 [BCM2835_PLLH_PIX
] = REGISTER_PLL_DIV(
1604 .source_pll
= "pllh",
1606 .a2w_reg
= A2W_PLLH_PIX
,
1607 .load_mask
= CM_PLLH_LOADPIX
,
1609 .fixed_divider
= 10),
1613 /* clocks with oscillator parent mux */
1615 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1616 [BCM2835_CLOCK_OTP
] = REGISTER_OSC_CLK(
1618 .ctl_reg
= CM_OTPCTL
,
1619 .div_reg
= CM_OTPDIV
,
1623 * Used for a 1Mhz clock for the system clocksource, and also used
1624 * bythe watchdog timer and the camera pulse generator.
1626 [BCM2835_CLOCK_TIMER
] = REGISTER_OSC_CLK(
1628 .ctl_reg
= CM_TIMERCTL
,
1629 .div_reg
= CM_TIMERDIV
,
1633 * Clock for the temperature sensor.
1634 * Generally run at 2Mhz, max 5Mhz.
1636 [BCM2835_CLOCK_TSENS
] = REGISTER_OSC_CLK(
1638 .ctl_reg
= CM_TSENSCTL
,
1639 .div_reg
= CM_TSENSDIV
,
1642 [BCM2835_CLOCK_TEC
] = REGISTER_OSC_CLK(
1644 .ctl_reg
= CM_TECCTL
,
1645 .div_reg
= CM_TECDIV
,
1649 /* clocks with vpu parent mux */
1650 [BCM2835_CLOCK_H264
] = REGISTER_VPU_CLK(
1652 .ctl_reg
= CM_H264CTL
,
1653 .div_reg
= CM_H264DIV
,
1656 [BCM2835_CLOCK_ISP
] = REGISTER_VPU_CLK(
1658 .ctl_reg
= CM_ISPCTL
,
1659 .div_reg
= CM_ISPDIV
,
1664 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1665 * in the SDRAM controller can't be used.
1667 [BCM2835_CLOCK_SDRAM
] = REGISTER_VPU_CLK(
1669 .ctl_reg
= CM_SDCCTL
,
1670 .div_reg
= CM_SDCDIV
,
1673 [BCM2835_CLOCK_V3D
] = REGISTER_VPU_CLK(
1675 .ctl_reg
= CM_V3DCTL
,
1676 .div_reg
= CM_V3DDIV
,
1680 * VPU clock. This doesn't have an enable bit, since it drives
1681 * the bus for everything else, and is special so it doesn't need
1682 * to be gated for rate changes. It is also known as "clk_audio"
1683 * in various hardware documentation.
1685 [BCM2835_CLOCK_VPU
] = REGISTER_VPU_CLK(
1687 .ctl_reg
= CM_VPUCTL
,
1688 .div_reg
= CM_VPUDIV
,
1691 .flags
= CLK_IS_CRITICAL
,
1692 .is_vpu_clock
= true),
1694 /* clocks with per parent mux */
1695 [BCM2835_CLOCK_AVEO
] = REGISTER_PER_CLK(
1697 .ctl_reg
= CM_AVEOCTL
,
1698 .div_reg
= CM_AVEODIV
,
1701 [BCM2835_CLOCK_CAM0
] = REGISTER_PER_CLK(
1703 .ctl_reg
= CM_CAM0CTL
,
1704 .div_reg
= CM_CAM0DIV
,
1707 [BCM2835_CLOCK_CAM1
] = REGISTER_PER_CLK(
1709 .ctl_reg
= CM_CAM1CTL
,
1710 .div_reg
= CM_CAM1DIV
,
1713 [BCM2835_CLOCK_DFT
] = REGISTER_PER_CLK(
1715 .ctl_reg
= CM_DFTCTL
,
1716 .div_reg
= CM_DFTDIV
,
1719 [BCM2835_CLOCK_DPI
] = REGISTER_PER_CLK(
1721 .ctl_reg
= CM_DPICTL
,
1722 .div_reg
= CM_DPIDIV
,
1726 /* Arasan EMMC clock */
1727 [BCM2835_CLOCK_EMMC
] = REGISTER_PER_CLK(
1729 .ctl_reg
= CM_EMMCCTL
,
1730 .div_reg
= CM_EMMCDIV
,
1734 /* General purpose (GPIO) clocks */
1735 [BCM2835_CLOCK_GP0
] = REGISTER_PER_CLK(
1737 .ctl_reg
= CM_GP0CTL
,
1738 .div_reg
= CM_GP0DIV
,
1741 .is_mash_clock
= true),
1742 [BCM2835_CLOCK_GP1
] = REGISTER_PER_CLK(
1744 .ctl_reg
= CM_GP1CTL
,
1745 .div_reg
= CM_GP1DIV
,
1748 .flags
= CLK_IS_CRITICAL
,
1749 .is_mash_clock
= true),
1750 [BCM2835_CLOCK_GP2
] = REGISTER_PER_CLK(
1752 .ctl_reg
= CM_GP2CTL
,
1753 .div_reg
= CM_GP2DIV
,
1756 .flags
= CLK_IS_CRITICAL
),
1758 /* HDMI state machine */
1759 [BCM2835_CLOCK_HSM
] = REGISTER_PER_CLK(
1761 .ctl_reg
= CM_HSMCTL
,
1762 .div_reg
= CM_HSMDIV
,
1765 [BCM2835_CLOCK_PCM
] = REGISTER_PER_CLK(
1767 .ctl_reg
= CM_PCMCTL
,
1768 .div_reg
= CM_PCMDIV
,
1771 .is_mash_clock
= true),
1772 [BCM2835_CLOCK_PWM
] = REGISTER_PER_CLK(
1774 .ctl_reg
= CM_PWMCTL
,
1775 .div_reg
= CM_PWMDIV
,
1778 .is_mash_clock
= true),
1779 [BCM2835_CLOCK_SLIM
] = REGISTER_PER_CLK(
1781 .ctl_reg
= CM_SLIMCTL
,
1782 .div_reg
= CM_SLIMDIV
,
1785 .is_mash_clock
= true),
1786 [BCM2835_CLOCK_SMI
] = REGISTER_PER_CLK(
1788 .ctl_reg
= CM_SMICTL
,
1789 .div_reg
= CM_SMIDIV
,
1792 [BCM2835_CLOCK_UART
] = REGISTER_PER_CLK(
1794 .ctl_reg
= CM_UARTCTL
,
1795 .div_reg
= CM_UARTDIV
,
1799 /* TV encoder clock. Only operating frequency is 108Mhz. */
1800 [BCM2835_CLOCK_VEC
] = REGISTER_PER_CLK(
1802 .ctl_reg
= CM_VECCTL
,
1803 .div_reg
= CM_VECDIV
,
1808 [BCM2835_CLOCK_DSI0E
] = REGISTER_PER_CLK(
1810 .ctl_reg
= CM_DSI0ECTL
,
1811 .div_reg
= CM_DSI0EDIV
,
1814 [BCM2835_CLOCK_DSI1E
] = REGISTER_PER_CLK(
1816 .ctl_reg
= CM_DSI1ECTL
,
1817 .div_reg
= CM_DSI1EDIV
,
1824 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
1825 * you have the debug bit set in the power manager, which we
1826 * don't bother exposing) are individual gates off of the
1827 * non-stop vpu clock.
1829 [BCM2835_CLOCK_PERI_IMAGE
] = REGISTER_GATE(
1830 .name
= "peri_image",
1832 .ctl_reg
= CM_PERIICTL
),
1836 * Permanently take a reference on the parent of the SDRAM clock.
1838 * While the SDRAM is being driven by its dedicated PLL most of the
1839 * time, there is a little loop running in the firmware that
1840 * periodically switches the SDRAM to using our CM clock to do PVT
1841 * recalibration, with the assumption that the previously configured
1842 * SDRAM parent is still enabled and running.
1844 static int bcm2835_mark_sdc_parent_critical(struct clk
*sdc
)
1846 struct clk
*parent
= clk_get_parent(sdc
);
1849 return PTR_ERR(parent
);
1851 return clk_prepare_enable(parent
);
1854 static int bcm2835_clk_probe(struct platform_device
*pdev
)
1856 struct device
*dev
= &pdev
->dev
;
1857 struct clk_hw
**hws
;
1858 struct bcm2835_cprman
*cprman
;
1859 struct resource
*res
;
1860 const struct bcm2835_clk_desc
*desc
;
1861 const size_t asize
= ARRAY_SIZE(clk_desc_array
);
1865 cprman
= devm_kzalloc(dev
, sizeof(*cprman
) +
1866 sizeof(*cprman
->onecell
.hws
) * asize
,
1871 spin_lock_init(&cprman
->regs_lock
);
1873 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1874 cprman
->regs
= devm_ioremap_resource(dev
, res
);
1875 if (IS_ERR(cprman
->regs
))
1876 return PTR_ERR(cprman
->regs
);
1878 cprman
->osc_name
= of_clk_get_parent_name(dev
->of_node
, 0);
1879 if (!cprman
->osc_name
)
1882 platform_set_drvdata(pdev
, cprman
);
1884 cprman
->onecell
.num
= asize
;
1885 hws
= cprman
->onecell
.hws
;
1887 for (i
= 0; i
< asize
; i
++) {
1888 desc
= &clk_desc_array
[i
];
1889 if (desc
->clk_register
&& desc
->data
)
1890 hws
[i
] = desc
->clk_register(cprman
, desc
->data
);
1893 ret
= bcm2835_mark_sdc_parent_critical(hws
[BCM2835_CLOCK_SDRAM
]->clk
);
1897 return of_clk_add_hw_provider(dev
->of_node
, of_clk_hw_onecell_get
,
1901 static const struct of_device_id bcm2835_clk_of_match
[] = {
1902 { .compatible
= "brcm,bcm2835-cprman", },
1905 MODULE_DEVICE_TABLE(of
, bcm2835_clk_of_match
);
1907 static struct platform_driver bcm2835_clk_driver
= {
1909 .name
= "bcm2835-clk",
1910 .of_match_table
= bcm2835_clk_of_match
,
1912 .probe
= bcm2835_clk_probe
,
1915 builtin_platform_driver(bcm2835_clk_driver
);
1917 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
1918 MODULE_DESCRIPTION("BCM2835 clock driver");
1919 MODULE_LICENSE("GPL v2");