Merge branch 'drm-fixes' of git://people.freedesktop.org/~airlied/linux
[linux/fpc-iii.git] / arch / powerpc / kernel / lparcfg.c
blobf5725bce9ed29c55583b2805749a542628977698
1 /*
2 * PowerPC64 LPAR Configuration Information Driver
4 * Dave Engebretsen engebret@us.ibm.com
5 * Copyright (c) 2003 Dave Engebretsen
6 * Will Schmidt willschm@us.ibm.com
7 * SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation.
8 * seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation.
9 * Nathan Lynch nathanl@austin.ibm.com
10 * Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation.
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
17 * This driver creates a proc file at /proc/ppc64/lparcfg which contains
18 * keyword - value pairs that specify the configuration of the partition.
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/errno.h>
24 #include <linux/proc_fs.h>
25 #include <linux/init.h>
26 #include <linux/seq_file.h>
27 #include <linux/slab.h>
28 #include <asm/uaccess.h>
29 #include <asm/lppaca.h>
30 #include <asm/hvcall.h>
31 #include <asm/firmware.h>
32 #include <asm/rtas.h>
33 #include <asm/time.h>
34 #include <asm/prom.h>
35 #include <asm/vdso_datapage.h>
36 #include <asm/vio.h>
37 #include <asm/mmu.h>
39 #define MODULE_VERS "1.9"
40 #define MODULE_NAME "lparcfg"
42 /* #define LPARCFG_DEBUG */
44 static struct proc_dir_entry *proc_ppc64_lparcfg;
47 * Track sum of all purrs across all processors. This is used to further
48 * calculate usage values by different applications
50 static unsigned long get_purr(void)
52 unsigned long sum_purr = 0;
53 int cpu;
55 for_each_possible_cpu(cpu) {
56 struct cpu_usage *cu;
58 cu = &per_cpu(cpu_usage_array, cpu);
59 sum_purr += cu->current_tb;
61 return sum_purr;
65 * Methods used to fetch LPAR data when running on a pSeries platform.
68 struct hvcall_ppp_data {
69 u64 entitlement;
70 u64 unallocated_entitlement;
71 u16 group_num;
72 u16 pool_num;
73 u8 capped;
74 u8 weight;
75 u8 unallocated_weight;
76 u16 active_procs_in_pool;
77 u16 active_system_procs;
78 u16 phys_platform_procs;
79 u32 max_proc_cap_avail;
80 u32 entitled_proc_cap_avail;
84 * H_GET_PPP hcall returns info in 4 parms.
85 * entitled_capacity,unallocated_capacity,
86 * aggregation, resource_capability).
88 * R4 = Entitled Processor Capacity Percentage.
89 * R5 = Unallocated Processor Capacity Percentage.
90 * R6 (AABBCCDDEEFFGGHH).
91 * XXXX - reserved (0)
92 * XXXX - reserved (0)
93 * XXXX - Group Number
94 * XXXX - Pool Number.
95 * R7 (IIJJKKLLMMNNOOPP).
96 * XX - reserved. (0)
97 * XX - bit 0-6 reserved (0). bit 7 is Capped indicator.
98 * XX - variable processor Capacity Weight
99 * XX - Unallocated Variable Processor Capacity Weight.
100 * XXXX - Active processors in Physical Processor Pool.
101 * XXXX - Processors active on platform.
102 * R8 (QQQQRRRRRRSSSSSS). if ibm,partition-performance-parameters-level >= 1
103 * XXXX - Physical platform procs allocated to virtualization.
104 * XXXXXX - Max procs capacity % available to the partitions pool.
105 * XXXXXX - Entitled procs capacity % available to the
106 * partitions pool.
108 static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data)
110 unsigned long rc;
111 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
113 rc = plpar_hcall9(H_GET_PPP, retbuf);
115 ppp_data->entitlement = retbuf[0];
116 ppp_data->unallocated_entitlement = retbuf[1];
118 ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
119 ppp_data->pool_num = retbuf[2] & 0xffff;
121 ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01;
122 ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff;
123 ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff;
124 ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff;
125 ppp_data->active_system_procs = retbuf[3] & 0xffff;
127 ppp_data->phys_platform_procs = retbuf[4] >> 6 * 8;
128 ppp_data->max_proc_cap_avail = (retbuf[4] >> 3 * 8) & 0xffffff;
129 ppp_data->entitled_proc_cap_avail = retbuf[4] & 0xffffff;
131 return rc;
134 static unsigned h_pic(unsigned long *pool_idle_time,
135 unsigned long *num_procs)
137 unsigned long rc;
138 unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
140 rc = plpar_hcall(H_PIC, retbuf);
142 *pool_idle_time = retbuf[0];
143 *num_procs = retbuf[1];
145 return rc;
149 * parse_ppp_data
150 * Parse out the data returned from h_get_ppp and h_pic
152 static void parse_ppp_data(struct seq_file *m)
154 struct hvcall_ppp_data ppp_data;
155 struct device_node *root;
156 const int *perf_level;
157 int rc;
159 rc = h_get_ppp(&ppp_data);
160 if (rc)
161 return;
163 seq_printf(m, "partition_entitled_capacity=%lld\n",
164 ppp_data.entitlement);
165 seq_printf(m, "group=%d\n", ppp_data.group_num);
166 seq_printf(m, "system_active_processors=%d\n",
167 ppp_data.active_system_procs);
169 /* pool related entries are appropriate for shared configs */
170 if (lppaca_of(0).shared_proc) {
171 unsigned long pool_idle_time, pool_procs;
173 seq_printf(m, "pool=%d\n", ppp_data.pool_num);
175 /* report pool_capacity in percentage */
176 seq_printf(m, "pool_capacity=%d\n",
177 ppp_data.active_procs_in_pool * 100);
179 h_pic(&pool_idle_time, &pool_procs);
180 seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time);
181 seq_printf(m, "pool_num_procs=%ld\n", pool_procs);
184 seq_printf(m, "unallocated_capacity_weight=%d\n",
185 ppp_data.unallocated_weight);
186 seq_printf(m, "capacity_weight=%d\n", ppp_data.weight);
187 seq_printf(m, "capped=%d\n", ppp_data.capped);
188 seq_printf(m, "unallocated_capacity=%lld\n",
189 ppp_data.unallocated_entitlement);
191 /* The last bits of information returned from h_get_ppp are only
192 * valid if the ibm,partition-performance-parameters-level
193 * property is >= 1.
195 root = of_find_node_by_path("/");
196 if (root) {
197 perf_level = of_get_property(root,
198 "ibm,partition-performance-parameters-level",
199 NULL);
200 if (perf_level && (*perf_level >= 1)) {
201 seq_printf(m,
202 "physical_procs_allocated_to_virtualization=%d\n",
203 ppp_data.phys_platform_procs);
204 seq_printf(m, "max_proc_capacity_available=%d\n",
205 ppp_data.max_proc_cap_avail);
206 seq_printf(m, "entitled_proc_capacity_available=%d\n",
207 ppp_data.entitled_proc_cap_avail);
210 of_node_put(root);
215 * parse_mpp_data
216 * Parse out data returned from h_get_mpp
218 static void parse_mpp_data(struct seq_file *m)
220 struct hvcall_mpp_data mpp_data;
221 int rc;
223 rc = h_get_mpp(&mpp_data);
224 if (rc)
225 return;
227 seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem);
229 if (mpp_data.mapped_mem != -1)
230 seq_printf(m, "mapped_entitled_memory=%ld\n",
231 mpp_data.mapped_mem);
233 seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num);
234 seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num);
236 seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight);
237 seq_printf(m, "unallocated_entitled_memory_weight=%d\n",
238 mpp_data.unallocated_mem_weight);
239 seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n",
240 mpp_data.unallocated_entitlement);
242 if (mpp_data.pool_size != -1)
243 seq_printf(m, "entitled_memory_pool_size=%ld bytes\n",
244 mpp_data.pool_size);
246 seq_printf(m, "entitled_memory_loan_request=%ld\n",
247 mpp_data.loan_request);
249 seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem);
253 * parse_mpp_x_data
254 * Parse out data returned from h_get_mpp_x
256 static void parse_mpp_x_data(struct seq_file *m)
258 struct hvcall_mpp_x_data mpp_x_data;
260 if (!firmware_has_feature(FW_FEATURE_XCMO))
261 return;
262 if (h_get_mpp_x(&mpp_x_data))
263 return;
265 seq_printf(m, "coalesced_bytes=%ld\n", mpp_x_data.coalesced_bytes);
267 if (mpp_x_data.pool_coalesced_bytes)
268 seq_printf(m, "pool_coalesced_bytes=%ld\n",
269 mpp_x_data.pool_coalesced_bytes);
270 if (mpp_x_data.pool_purr_cycles)
271 seq_printf(m, "coalesce_pool_purr=%ld\n", mpp_x_data.pool_purr_cycles);
272 if (mpp_x_data.pool_spurr_cycles)
273 seq_printf(m, "coalesce_pool_spurr=%ld\n", mpp_x_data.pool_spurr_cycles);
276 #define SPLPAR_CHARACTERISTICS_TOKEN 20
277 #define SPLPAR_MAXLENGTH 1026*(sizeof(char))
280 * parse_system_parameter_string()
281 * Retrieve the potential_processors, max_entitled_capacity and friends
282 * through the get-system-parameter rtas call. Replace keyword strings as
283 * necessary.
285 static void parse_system_parameter_string(struct seq_file *m)
287 int call_status;
289 unsigned char *local_buffer = kmalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
290 if (!local_buffer) {
291 printk(KERN_ERR "%s %s kmalloc failure at line %d\n",
292 __FILE__, __func__, __LINE__);
293 return;
296 spin_lock(&rtas_data_buf_lock);
297 memset(rtas_data_buf, 0, SPLPAR_MAXLENGTH);
298 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
299 NULL,
300 SPLPAR_CHARACTERISTICS_TOKEN,
301 __pa(rtas_data_buf),
302 RTAS_DATA_BUF_SIZE);
303 memcpy(local_buffer, rtas_data_buf, SPLPAR_MAXLENGTH);
304 spin_unlock(&rtas_data_buf_lock);
306 if (call_status != 0) {
307 printk(KERN_INFO
308 "%s %s Error calling get-system-parameter (0x%x)\n",
309 __FILE__, __func__, call_status);
310 } else {
311 int splpar_strlen;
312 int idx, w_idx;
313 char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
314 if (!workbuffer) {
315 printk(KERN_ERR "%s %s kmalloc failure at line %d\n",
316 __FILE__, __func__, __LINE__);
317 kfree(local_buffer);
318 return;
320 #ifdef LPARCFG_DEBUG
321 printk(KERN_INFO "success calling get-system-parameter\n");
322 #endif
323 splpar_strlen = local_buffer[0] * 256 + local_buffer[1];
324 local_buffer += 2; /* step over strlen value */
326 w_idx = 0;
327 idx = 0;
328 while ((*local_buffer) && (idx < splpar_strlen)) {
329 workbuffer[w_idx++] = local_buffer[idx++];
330 if ((local_buffer[idx] == ',')
331 || (local_buffer[idx] == '\0')) {
332 workbuffer[w_idx] = '\0';
333 if (w_idx) {
334 /* avoid the empty string */
335 seq_printf(m, "%s\n", workbuffer);
337 memset(workbuffer, 0, SPLPAR_MAXLENGTH);
338 idx++; /* skip the comma */
339 w_idx = 0;
340 } else if (local_buffer[idx] == '=') {
341 /* code here to replace workbuffer contents
342 with different keyword strings */
343 if (0 == strcmp(workbuffer, "MaxEntCap")) {
344 strcpy(workbuffer,
345 "partition_max_entitled_capacity");
346 w_idx = strlen(workbuffer);
348 if (0 == strcmp(workbuffer, "MaxPlatProcs")) {
349 strcpy(workbuffer,
350 "system_potential_processors");
351 w_idx = strlen(workbuffer);
355 kfree(workbuffer);
356 local_buffer -= 2; /* back up over strlen value */
358 kfree(local_buffer);
361 /* Return the number of processors in the system.
362 * This function reads through the device tree and counts
363 * the virtual processors, this does not include threads.
365 static int lparcfg_count_active_processors(void)
367 struct device_node *cpus_dn = NULL;
368 int count = 0;
370 while ((cpus_dn = of_find_node_by_type(cpus_dn, "cpu"))) {
371 #ifdef LPARCFG_DEBUG
372 printk(KERN_ERR "cpus_dn %p\n", cpus_dn);
373 #endif
374 count++;
376 return count;
379 static void pseries_cmo_data(struct seq_file *m)
381 int cpu;
382 unsigned long cmo_faults = 0;
383 unsigned long cmo_fault_time = 0;
385 seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO));
387 if (!firmware_has_feature(FW_FEATURE_CMO))
388 return;
390 for_each_possible_cpu(cpu) {
391 cmo_faults += lppaca_of(cpu).cmo_faults;
392 cmo_fault_time += lppaca_of(cpu).cmo_fault_time;
395 seq_printf(m, "cmo_faults=%lu\n", cmo_faults);
396 seq_printf(m, "cmo_fault_time_usec=%lu\n",
397 cmo_fault_time / tb_ticks_per_usec);
398 seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp());
399 seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp());
400 seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size());
403 static void splpar_dispatch_data(struct seq_file *m)
405 int cpu;
406 unsigned long dispatches = 0;
407 unsigned long dispatch_dispersions = 0;
409 for_each_possible_cpu(cpu) {
410 dispatches += lppaca_of(cpu).yield_count;
411 dispatch_dispersions += lppaca_of(cpu).dispersion_count;
414 seq_printf(m, "dispatches=%lu\n", dispatches);
415 seq_printf(m, "dispatch_dispersions=%lu\n", dispatch_dispersions);
418 static void parse_em_data(struct seq_file *m)
420 unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
422 if (plpar_hcall(H_GET_EM_PARMS, retbuf) == H_SUCCESS)
423 seq_printf(m, "power_mode_data=%016lx\n", retbuf[0]);
426 static int pseries_lparcfg_data(struct seq_file *m, void *v)
428 int partition_potential_processors;
429 int partition_active_processors;
430 struct device_node *rtas_node;
431 const int *lrdrp = NULL;
433 rtas_node = of_find_node_by_path("/rtas");
434 if (rtas_node)
435 lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL);
437 if (lrdrp == NULL) {
438 partition_potential_processors = vdso_data->processorCount;
439 } else {
440 partition_potential_processors = *(lrdrp + 4);
442 of_node_put(rtas_node);
444 partition_active_processors = lparcfg_count_active_processors();
446 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
447 /* this call handles the ibm,get-system-parameter contents */
448 parse_system_parameter_string(m);
449 parse_ppp_data(m);
450 parse_mpp_data(m);
451 parse_mpp_x_data(m);
452 pseries_cmo_data(m);
453 splpar_dispatch_data(m);
455 seq_printf(m, "purr=%ld\n", get_purr());
456 } else { /* non SPLPAR case */
458 seq_printf(m, "system_active_processors=%d\n",
459 partition_potential_processors);
461 seq_printf(m, "system_potential_processors=%d\n",
462 partition_potential_processors);
464 seq_printf(m, "partition_max_entitled_capacity=%d\n",
465 partition_potential_processors * 100);
467 seq_printf(m, "partition_entitled_capacity=%d\n",
468 partition_active_processors * 100);
471 seq_printf(m, "partition_active_processors=%d\n",
472 partition_active_processors);
474 seq_printf(m, "partition_potential_processors=%d\n",
475 partition_potential_processors);
477 seq_printf(m, "shared_processor_mode=%d\n", lppaca_of(0).shared_proc);
479 seq_printf(m, "slb_size=%d\n", mmu_slb_size);
481 parse_em_data(m);
483 return 0;
486 static ssize_t update_ppp(u64 *entitlement, u8 *weight)
488 struct hvcall_ppp_data ppp_data;
489 u8 new_weight;
490 u64 new_entitled;
491 ssize_t retval;
493 /* Get our current parameters */
494 retval = h_get_ppp(&ppp_data);
495 if (retval)
496 return retval;
498 if (entitlement) {
499 new_weight = ppp_data.weight;
500 new_entitled = *entitlement;
501 } else if (weight) {
502 new_weight = *weight;
503 new_entitled = ppp_data.entitlement;
504 } else
505 return -EINVAL;
507 pr_debug("%s: current_entitled = %llu, current_weight = %u\n",
508 __func__, ppp_data.entitlement, ppp_data.weight);
510 pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
511 __func__, new_entitled, new_weight);
513 retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight);
514 return retval;
518 * update_mpp
520 * Update the memory entitlement and weight for the partition. Caller must
521 * specify either a new entitlement or weight, not both, to be updated
522 * since the h_set_mpp call takes both entitlement and weight as parameters.
524 static ssize_t update_mpp(u64 *entitlement, u8 *weight)
526 struct hvcall_mpp_data mpp_data;
527 u64 new_entitled;
528 u8 new_weight;
529 ssize_t rc;
531 if (entitlement) {
532 /* Check with vio to ensure the new memory entitlement
533 * can be handled.
535 rc = vio_cmo_entitlement_update(*entitlement);
536 if (rc)
537 return rc;
540 rc = h_get_mpp(&mpp_data);
541 if (rc)
542 return rc;
544 if (entitlement) {
545 new_weight = mpp_data.mem_weight;
546 new_entitled = *entitlement;
547 } else if (weight) {
548 new_weight = *weight;
549 new_entitled = mpp_data.entitled_mem;
550 } else
551 return -EINVAL;
553 pr_debug("%s: current_entitled = %lu, current_weight = %u\n",
554 __func__, mpp_data.entitled_mem, mpp_data.mem_weight);
556 pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
557 __func__, new_entitled, new_weight);
559 rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight);
560 return rc;
564 * Interface for changing system parameters (variable capacity weight
565 * and entitled capacity). Format of input is "param_name=value";
566 * anything after value is ignored. Valid parameters at this time are
567 * "partition_entitled_capacity" and "capacity_weight". We use
568 * H_SET_PPP to alter parameters.
570 * This function should be invoked only on systems with
571 * FW_FEATURE_SPLPAR.
573 static ssize_t lparcfg_write(struct file *file, const char __user * buf,
574 size_t count, loff_t * off)
576 int kbuf_sz = 64;
577 char kbuf[kbuf_sz];
578 char *tmp;
579 u64 new_entitled, *new_entitled_ptr = &new_entitled;
580 u8 new_weight, *new_weight_ptr = &new_weight;
581 ssize_t retval;
583 if (!firmware_has_feature(FW_FEATURE_SPLPAR))
584 return -EINVAL;
586 if (count > kbuf_sz)
587 return -EINVAL;
589 if (copy_from_user(kbuf, buf, count))
590 return -EFAULT;
592 kbuf[count - 1] = '\0';
593 tmp = strchr(kbuf, '=');
594 if (!tmp)
595 return -EINVAL;
597 *tmp++ = '\0';
599 if (!strcmp(kbuf, "partition_entitled_capacity")) {
600 char *endp;
601 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
602 if (endp == tmp)
603 return -EINVAL;
605 retval = update_ppp(new_entitled_ptr, NULL);
606 } else if (!strcmp(kbuf, "capacity_weight")) {
607 char *endp;
608 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
609 if (endp == tmp)
610 return -EINVAL;
612 retval = update_ppp(NULL, new_weight_ptr);
613 } else if (!strcmp(kbuf, "entitled_memory")) {
614 char *endp;
615 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
616 if (endp == tmp)
617 return -EINVAL;
619 retval = update_mpp(new_entitled_ptr, NULL);
620 } else if (!strcmp(kbuf, "entitled_memory_weight")) {
621 char *endp;
622 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
623 if (endp == tmp)
624 return -EINVAL;
626 retval = update_mpp(NULL, new_weight_ptr);
627 } else
628 return -EINVAL;
630 if (retval == H_SUCCESS || retval == H_CONSTRAINED) {
631 retval = count;
632 } else if (retval == H_BUSY) {
633 retval = -EBUSY;
634 } else if (retval == H_HARDWARE) {
635 retval = -EIO;
636 } else if (retval == H_PARAMETER) {
637 retval = -EINVAL;
640 return retval;
643 static int lparcfg_data(struct seq_file *m, void *v)
645 struct device_node *rootdn;
646 const char *model = "";
647 const char *system_id = "";
648 const char *tmp;
649 const unsigned int *lp_index_ptr;
650 unsigned int lp_index = 0;
652 seq_printf(m, "%s %s\n", MODULE_NAME, MODULE_VERS);
654 rootdn = of_find_node_by_path("/");
655 if (rootdn) {
656 tmp = of_get_property(rootdn, "model", NULL);
657 if (tmp)
658 model = tmp;
659 tmp = of_get_property(rootdn, "system-id", NULL);
660 if (tmp)
661 system_id = tmp;
662 lp_index_ptr = of_get_property(rootdn, "ibm,partition-no",
663 NULL);
664 if (lp_index_ptr)
665 lp_index = *lp_index_ptr;
666 of_node_put(rootdn);
668 seq_printf(m, "serial_number=%s\n", system_id);
669 seq_printf(m, "system_type=%s\n", model);
670 seq_printf(m, "partition_id=%d\n", (int)lp_index);
672 return pseries_lparcfg_data(m, v);
675 static int lparcfg_open(struct inode *inode, struct file *file)
677 return single_open(file, lparcfg_data, NULL);
680 static const struct file_operations lparcfg_fops = {
681 .owner = THIS_MODULE,
682 .read = seq_read,
683 .write = lparcfg_write,
684 .open = lparcfg_open,
685 .release = single_release,
686 .llseek = seq_lseek,
689 static int __init lparcfg_init(void)
691 struct proc_dir_entry *ent;
692 umode_t mode = S_IRUSR | S_IRGRP | S_IROTH;
694 /* Allow writing if we have FW_FEATURE_SPLPAR */
695 if (firmware_has_feature(FW_FEATURE_SPLPAR))
696 mode |= S_IWUSR;
698 ent = proc_create("powerpc/lparcfg", mode, NULL, &lparcfg_fops);
699 if (!ent) {
700 printk(KERN_ERR "Failed to create powerpc/lparcfg\n");
701 return -EIO;
704 proc_ppc64_lparcfg = ent;
705 return 0;
708 static void __exit lparcfg_cleanup(void)
710 if (proc_ppc64_lparcfg)
711 remove_proc_entry("lparcfg", proc_ppc64_lparcfg->parent);
714 module_init(lparcfg_init);
715 module_exit(lparcfg_cleanup);
716 MODULE_DESCRIPTION("Interface for LPAR configuration data");
717 MODULE_AUTHOR("Dave Engebretsen");
718 MODULE_LICENSE("GPL");