2 * IOMMU API for ARM architected SMMUv3 implementations.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 * Copyright (C) 2015 ARM Limited
18 * Author: Will Deacon <will.deacon@arm.com>
20 * This driver is powered by bad coffee and bombay mix.
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/interrupt.h>
26 #include <linux/iommu.h>
27 #include <linux/iopoll.h>
28 #include <linux/module.h>
29 #include <linux/msi.h>
31 #include <linux/of_address.h>
32 #include <linux/of_platform.h>
33 #include <linux/pci.h>
34 #include <linux/platform_device.h>
36 #include "io-pgtable.h"
39 #define ARM_SMMU_IDR0 0x0
40 #define IDR0_ST_LVL_SHIFT 27
41 #define IDR0_ST_LVL_MASK 0x3
42 #define IDR0_ST_LVL_2LVL (1 << IDR0_ST_LVL_SHIFT)
43 #define IDR0_STALL_MODEL (3 << 24)
44 #define IDR0_TTENDIAN_SHIFT 21
45 #define IDR0_TTENDIAN_MASK 0x3
46 #define IDR0_TTENDIAN_LE (2 << IDR0_TTENDIAN_SHIFT)
47 #define IDR0_TTENDIAN_BE (3 << IDR0_TTENDIAN_SHIFT)
48 #define IDR0_TTENDIAN_MIXED (0 << IDR0_TTENDIAN_SHIFT)
49 #define IDR0_CD2L (1 << 19)
50 #define IDR0_VMID16 (1 << 18)
51 #define IDR0_PRI (1 << 16)
52 #define IDR0_SEV (1 << 14)
53 #define IDR0_MSI (1 << 13)
54 #define IDR0_ASID16 (1 << 12)
55 #define IDR0_ATS (1 << 10)
56 #define IDR0_HYP (1 << 9)
57 #define IDR0_COHACC (1 << 4)
58 #define IDR0_TTF_SHIFT 2
59 #define IDR0_TTF_MASK 0x3
60 #define IDR0_TTF_AARCH64 (2 << IDR0_TTF_SHIFT)
61 #define IDR0_TTF_AARCH32_64 (3 << IDR0_TTF_SHIFT)
62 #define IDR0_S1P (1 << 1)
63 #define IDR0_S2P (1 << 0)
65 #define ARM_SMMU_IDR1 0x4
66 #define IDR1_TABLES_PRESET (1 << 30)
67 #define IDR1_QUEUES_PRESET (1 << 29)
68 #define IDR1_REL (1 << 28)
69 #define IDR1_CMDQ_SHIFT 21
70 #define IDR1_CMDQ_MASK 0x1f
71 #define IDR1_EVTQ_SHIFT 16
72 #define IDR1_EVTQ_MASK 0x1f
73 #define IDR1_PRIQ_SHIFT 11
74 #define IDR1_PRIQ_MASK 0x1f
75 #define IDR1_SSID_SHIFT 6
76 #define IDR1_SSID_MASK 0x1f
77 #define IDR1_SID_SHIFT 0
78 #define IDR1_SID_MASK 0x3f
80 #define ARM_SMMU_IDR5 0x14
81 #define IDR5_STALL_MAX_SHIFT 16
82 #define IDR5_STALL_MAX_MASK 0xffff
83 #define IDR5_GRAN64K (1 << 6)
84 #define IDR5_GRAN16K (1 << 5)
85 #define IDR5_GRAN4K (1 << 4)
86 #define IDR5_OAS_SHIFT 0
87 #define IDR5_OAS_MASK 0x7
88 #define IDR5_OAS_32_BIT (0 << IDR5_OAS_SHIFT)
89 #define IDR5_OAS_36_BIT (1 << IDR5_OAS_SHIFT)
90 #define IDR5_OAS_40_BIT (2 << IDR5_OAS_SHIFT)
91 #define IDR5_OAS_42_BIT (3 << IDR5_OAS_SHIFT)
92 #define IDR5_OAS_44_BIT (4 << IDR5_OAS_SHIFT)
93 #define IDR5_OAS_48_BIT (5 << IDR5_OAS_SHIFT)
95 #define ARM_SMMU_CR0 0x20
96 #define CR0_CMDQEN (1 << 3)
97 #define CR0_EVTQEN (1 << 2)
98 #define CR0_PRIQEN (1 << 1)
99 #define CR0_SMMUEN (1 << 0)
101 #define ARM_SMMU_CR0ACK 0x24
103 #define ARM_SMMU_CR1 0x28
107 #define CR1_CACHE_NC 0
108 #define CR1_CACHE_WB 1
109 #define CR1_CACHE_WT 2
110 #define CR1_TABLE_SH_SHIFT 10
111 #define CR1_TABLE_OC_SHIFT 8
112 #define CR1_TABLE_IC_SHIFT 6
113 #define CR1_QUEUE_SH_SHIFT 4
114 #define CR1_QUEUE_OC_SHIFT 2
115 #define CR1_QUEUE_IC_SHIFT 0
117 #define ARM_SMMU_CR2 0x2c
118 #define CR2_PTM (1 << 2)
119 #define CR2_RECINVSID (1 << 1)
120 #define CR2_E2H (1 << 0)
122 #define ARM_SMMU_IRQ_CTRL 0x50
123 #define IRQ_CTRL_EVTQ_IRQEN (1 << 2)
124 #define IRQ_CTRL_PRIQ_IRQEN (1 << 1)
125 #define IRQ_CTRL_GERROR_IRQEN (1 << 0)
127 #define ARM_SMMU_IRQ_CTRLACK 0x54
129 #define ARM_SMMU_GERROR 0x60
130 #define GERROR_SFM_ERR (1 << 8)
131 #define GERROR_MSI_GERROR_ABT_ERR (1 << 7)
132 #define GERROR_MSI_PRIQ_ABT_ERR (1 << 6)
133 #define GERROR_MSI_EVTQ_ABT_ERR (1 << 5)
134 #define GERROR_MSI_CMDQ_ABT_ERR (1 << 4)
135 #define GERROR_PRIQ_ABT_ERR (1 << 3)
136 #define GERROR_EVTQ_ABT_ERR (1 << 2)
137 #define GERROR_CMDQ_ERR (1 << 0)
138 #define GERROR_ERR_MASK 0xfd
140 #define ARM_SMMU_GERRORN 0x64
142 #define ARM_SMMU_GERROR_IRQ_CFG0 0x68
143 #define ARM_SMMU_GERROR_IRQ_CFG1 0x70
144 #define ARM_SMMU_GERROR_IRQ_CFG2 0x74
146 #define ARM_SMMU_STRTAB_BASE 0x80
147 #define STRTAB_BASE_RA (1UL << 62)
148 #define STRTAB_BASE_ADDR_SHIFT 6
149 #define STRTAB_BASE_ADDR_MASK 0x3ffffffffffUL
151 #define ARM_SMMU_STRTAB_BASE_CFG 0x88
152 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT 0
153 #define STRTAB_BASE_CFG_LOG2SIZE_MASK 0x3f
154 #define STRTAB_BASE_CFG_SPLIT_SHIFT 6
155 #define STRTAB_BASE_CFG_SPLIT_MASK 0x1f
156 #define STRTAB_BASE_CFG_FMT_SHIFT 16
157 #define STRTAB_BASE_CFG_FMT_MASK 0x3
158 #define STRTAB_BASE_CFG_FMT_LINEAR (0 << STRTAB_BASE_CFG_FMT_SHIFT)
159 #define STRTAB_BASE_CFG_FMT_2LVL (1 << STRTAB_BASE_CFG_FMT_SHIFT)
161 #define ARM_SMMU_CMDQ_BASE 0x90
162 #define ARM_SMMU_CMDQ_PROD 0x98
163 #define ARM_SMMU_CMDQ_CONS 0x9c
165 #define ARM_SMMU_EVTQ_BASE 0xa0
166 #define ARM_SMMU_EVTQ_PROD 0x100a8
167 #define ARM_SMMU_EVTQ_CONS 0x100ac
168 #define ARM_SMMU_EVTQ_IRQ_CFG0 0xb0
169 #define ARM_SMMU_EVTQ_IRQ_CFG1 0xb8
170 #define ARM_SMMU_EVTQ_IRQ_CFG2 0xbc
172 #define ARM_SMMU_PRIQ_BASE 0xc0
173 #define ARM_SMMU_PRIQ_PROD 0x100c8
174 #define ARM_SMMU_PRIQ_CONS 0x100cc
175 #define ARM_SMMU_PRIQ_IRQ_CFG0 0xd0
176 #define ARM_SMMU_PRIQ_IRQ_CFG1 0xd8
177 #define ARM_SMMU_PRIQ_IRQ_CFG2 0xdc
179 /* Common MSI config fields */
180 #define MSI_CFG0_ADDR_SHIFT 2
181 #define MSI_CFG0_ADDR_MASK 0x3fffffffffffUL
182 #define MSI_CFG2_SH_SHIFT 4
183 #define MSI_CFG2_SH_NSH (0UL << MSI_CFG2_SH_SHIFT)
184 #define MSI_CFG2_SH_OSH (2UL << MSI_CFG2_SH_SHIFT)
185 #define MSI_CFG2_SH_ISH (3UL << MSI_CFG2_SH_SHIFT)
186 #define MSI_CFG2_MEMATTR_SHIFT 0
187 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE (0x1 << MSI_CFG2_MEMATTR_SHIFT)
189 #define Q_IDX(q, p) ((p) & ((1 << (q)->max_n_shift) - 1))
190 #define Q_WRP(q, p) ((p) & (1 << (q)->max_n_shift))
191 #define Q_OVERFLOW_FLAG (1 << 31)
192 #define Q_OVF(q, p) ((p) & Q_OVERFLOW_FLAG)
193 #define Q_ENT(q, p) ((q)->base + \
194 Q_IDX(q, p) * (q)->ent_dwords)
196 #define Q_BASE_RWA (1UL << 62)
197 #define Q_BASE_ADDR_SHIFT 5
198 #define Q_BASE_ADDR_MASK 0xfffffffffffUL
199 #define Q_BASE_LOG2SIZE_SHIFT 0
200 #define Q_BASE_LOG2SIZE_MASK 0x1fUL
205 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
206 * 2lvl: 128k L1 entries,
207 * 256 lazy entries per table (each table covers a PCI bus)
209 #define STRTAB_L1_SZ_SHIFT 20
210 #define STRTAB_SPLIT 8
212 #define STRTAB_L1_DESC_DWORDS 1
213 #define STRTAB_L1_DESC_SPAN_SHIFT 0
214 #define STRTAB_L1_DESC_SPAN_MASK 0x1fUL
215 #define STRTAB_L1_DESC_L2PTR_SHIFT 6
216 #define STRTAB_L1_DESC_L2PTR_MASK 0x3ffffffffffUL
218 #define STRTAB_STE_DWORDS 8
219 #define STRTAB_STE_0_V (1UL << 0)
220 #define STRTAB_STE_0_CFG_SHIFT 1
221 #define STRTAB_STE_0_CFG_MASK 0x7UL
222 #define STRTAB_STE_0_CFG_ABORT (0UL << STRTAB_STE_0_CFG_SHIFT)
223 #define STRTAB_STE_0_CFG_BYPASS (4UL << STRTAB_STE_0_CFG_SHIFT)
224 #define STRTAB_STE_0_CFG_S1_TRANS (5UL << STRTAB_STE_0_CFG_SHIFT)
225 #define STRTAB_STE_0_CFG_S2_TRANS (6UL << STRTAB_STE_0_CFG_SHIFT)
227 #define STRTAB_STE_0_S1FMT_SHIFT 4
228 #define STRTAB_STE_0_S1FMT_LINEAR (0UL << STRTAB_STE_0_S1FMT_SHIFT)
229 #define STRTAB_STE_0_S1CTXPTR_SHIFT 6
230 #define STRTAB_STE_0_S1CTXPTR_MASK 0x3ffffffffffUL
231 #define STRTAB_STE_0_S1CDMAX_SHIFT 59
232 #define STRTAB_STE_0_S1CDMAX_MASK 0x1fUL
234 #define STRTAB_STE_1_S1C_CACHE_NC 0UL
235 #define STRTAB_STE_1_S1C_CACHE_WBRA 1UL
236 #define STRTAB_STE_1_S1C_CACHE_WT 2UL
237 #define STRTAB_STE_1_S1C_CACHE_WB 3UL
238 #define STRTAB_STE_1_S1C_SH_NSH 0UL
239 #define STRTAB_STE_1_S1C_SH_OSH 2UL
240 #define STRTAB_STE_1_S1C_SH_ISH 3UL
241 #define STRTAB_STE_1_S1CIR_SHIFT 2
242 #define STRTAB_STE_1_S1COR_SHIFT 4
243 #define STRTAB_STE_1_S1CSH_SHIFT 6
245 #define STRTAB_STE_1_S1STALLD (1UL << 27)
247 #define STRTAB_STE_1_EATS_ABT 0UL
248 #define STRTAB_STE_1_EATS_TRANS 1UL
249 #define STRTAB_STE_1_EATS_S1CHK 2UL
250 #define STRTAB_STE_1_EATS_SHIFT 28
252 #define STRTAB_STE_1_STRW_NSEL1 0UL
253 #define STRTAB_STE_1_STRW_EL2 2UL
254 #define STRTAB_STE_1_STRW_SHIFT 30
256 #define STRTAB_STE_2_S2VMID_SHIFT 0
257 #define STRTAB_STE_2_S2VMID_MASK 0xffffUL
258 #define STRTAB_STE_2_VTCR_SHIFT 32
259 #define STRTAB_STE_2_VTCR_MASK 0x7ffffUL
260 #define STRTAB_STE_2_S2AA64 (1UL << 51)
261 #define STRTAB_STE_2_S2ENDI (1UL << 52)
262 #define STRTAB_STE_2_S2PTW (1UL << 54)
263 #define STRTAB_STE_2_S2R (1UL << 58)
265 #define STRTAB_STE_3_S2TTB_SHIFT 4
266 #define STRTAB_STE_3_S2TTB_MASK 0xfffffffffffUL
268 /* Context descriptor (stage-1 only) */
269 #define CTXDESC_CD_DWORDS 8
270 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT 0
271 #define ARM64_TCR_T0SZ_SHIFT 0
272 #define ARM64_TCR_T0SZ_MASK 0x1fUL
273 #define CTXDESC_CD_0_TCR_TG0_SHIFT 6
274 #define ARM64_TCR_TG0_SHIFT 14
275 #define ARM64_TCR_TG0_MASK 0x3UL
276 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT 8
277 #define ARM64_TCR_IRGN0_SHIFT 8
278 #define ARM64_TCR_IRGN0_MASK 0x3UL
279 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT 10
280 #define ARM64_TCR_ORGN0_SHIFT 10
281 #define ARM64_TCR_ORGN0_MASK 0x3UL
282 #define CTXDESC_CD_0_TCR_SH0_SHIFT 12
283 #define ARM64_TCR_SH0_SHIFT 12
284 #define ARM64_TCR_SH0_MASK 0x3UL
285 #define CTXDESC_CD_0_TCR_EPD0_SHIFT 14
286 #define ARM64_TCR_EPD0_SHIFT 7
287 #define ARM64_TCR_EPD0_MASK 0x1UL
288 #define CTXDESC_CD_0_TCR_EPD1_SHIFT 30
289 #define ARM64_TCR_EPD1_SHIFT 23
290 #define ARM64_TCR_EPD1_MASK 0x1UL
292 #define CTXDESC_CD_0_ENDI (1UL << 15)
293 #define CTXDESC_CD_0_V (1UL << 31)
295 #define CTXDESC_CD_0_TCR_IPS_SHIFT 32
296 #define ARM64_TCR_IPS_SHIFT 32
297 #define ARM64_TCR_IPS_MASK 0x7UL
298 #define CTXDESC_CD_0_TCR_TBI0_SHIFT 38
299 #define ARM64_TCR_TBI0_SHIFT 37
300 #define ARM64_TCR_TBI0_MASK 0x1UL
302 #define CTXDESC_CD_0_AA64 (1UL << 41)
303 #define CTXDESC_CD_0_R (1UL << 45)
304 #define CTXDESC_CD_0_A (1UL << 46)
305 #define CTXDESC_CD_0_ASET_SHIFT 47
306 #define CTXDESC_CD_0_ASET_SHARED (0UL << CTXDESC_CD_0_ASET_SHIFT)
307 #define CTXDESC_CD_0_ASET_PRIVATE (1UL << CTXDESC_CD_0_ASET_SHIFT)
308 #define CTXDESC_CD_0_ASID_SHIFT 48
309 #define CTXDESC_CD_0_ASID_MASK 0xffffUL
311 #define CTXDESC_CD_1_TTB0_SHIFT 4
312 #define CTXDESC_CD_1_TTB0_MASK 0xfffffffffffUL
314 #define CTXDESC_CD_3_MAIR_SHIFT 0
316 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
317 #define ARM_SMMU_TCR2CD(tcr, fld) \
318 (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK) \
319 << CTXDESC_CD_0_TCR_##fld##_SHIFT)
322 #define CMDQ_ENT_DWORDS 2
323 #define CMDQ_MAX_SZ_SHIFT 8
325 #define CMDQ_ERR_SHIFT 24
326 #define CMDQ_ERR_MASK 0x7f
327 #define CMDQ_ERR_CERROR_NONE_IDX 0
328 #define CMDQ_ERR_CERROR_ILL_IDX 1
329 #define CMDQ_ERR_CERROR_ABT_IDX 2
331 #define CMDQ_0_OP_SHIFT 0
332 #define CMDQ_0_OP_MASK 0xffUL
333 #define CMDQ_0_SSV (1UL << 11)
335 #define CMDQ_PREFETCH_0_SID_SHIFT 32
336 #define CMDQ_PREFETCH_1_SIZE_SHIFT 0
337 #define CMDQ_PREFETCH_1_ADDR_MASK ~0xfffUL
339 #define CMDQ_CFGI_0_SID_SHIFT 32
340 #define CMDQ_CFGI_0_SID_MASK 0xffffffffUL
341 #define CMDQ_CFGI_1_LEAF (1UL << 0)
342 #define CMDQ_CFGI_1_RANGE_SHIFT 0
343 #define CMDQ_CFGI_1_RANGE_MASK 0x1fUL
345 #define CMDQ_TLBI_0_VMID_SHIFT 32
346 #define CMDQ_TLBI_0_ASID_SHIFT 48
347 #define CMDQ_TLBI_1_LEAF (1UL << 0)
348 #define CMDQ_TLBI_1_VA_MASK ~0xfffUL
349 #define CMDQ_TLBI_1_IPA_MASK 0xfffffffff000UL
351 #define CMDQ_PRI_0_SSID_SHIFT 12
352 #define CMDQ_PRI_0_SSID_MASK 0xfffffUL
353 #define CMDQ_PRI_0_SID_SHIFT 32
354 #define CMDQ_PRI_0_SID_MASK 0xffffffffUL
355 #define CMDQ_PRI_1_GRPID_SHIFT 0
356 #define CMDQ_PRI_1_GRPID_MASK 0x1ffUL
357 #define CMDQ_PRI_1_RESP_SHIFT 12
358 #define CMDQ_PRI_1_RESP_DENY (0UL << CMDQ_PRI_1_RESP_SHIFT)
359 #define CMDQ_PRI_1_RESP_FAIL (1UL << CMDQ_PRI_1_RESP_SHIFT)
360 #define CMDQ_PRI_1_RESP_SUCC (2UL << CMDQ_PRI_1_RESP_SHIFT)
362 #define CMDQ_SYNC_0_CS_SHIFT 12
363 #define CMDQ_SYNC_0_CS_NONE (0UL << CMDQ_SYNC_0_CS_SHIFT)
364 #define CMDQ_SYNC_0_CS_SEV (2UL << CMDQ_SYNC_0_CS_SHIFT)
367 #define EVTQ_ENT_DWORDS 4
368 #define EVTQ_MAX_SZ_SHIFT 7
370 #define EVTQ_0_ID_SHIFT 0
371 #define EVTQ_0_ID_MASK 0xffUL
374 #define PRIQ_ENT_DWORDS 2
375 #define PRIQ_MAX_SZ_SHIFT 8
377 #define PRIQ_0_SID_SHIFT 0
378 #define PRIQ_0_SID_MASK 0xffffffffUL
379 #define PRIQ_0_SSID_SHIFT 32
380 #define PRIQ_0_SSID_MASK 0xfffffUL
381 #define PRIQ_0_OF (1UL << 57)
382 #define PRIQ_0_PERM_PRIV (1UL << 58)
383 #define PRIQ_0_PERM_EXEC (1UL << 59)
384 #define PRIQ_0_PERM_READ (1UL << 60)
385 #define PRIQ_0_PERM_WRITE (1UL << 61)
386 #define PRIQ_0_PRG_LAST (1UL << 62)
387 #define PRIQ_0_SSID_V (1UL << 63)
389 #define PRIQ_1_PRG_IDX_SHIFT 0
390 #define PRIQ_1_PRG_IDX_MASK 0x1ffUL
391 #define PRIQ_1_ADDR_SHIFT 12
392 #define PRIQ_1_ADDR_MASK 0xfffffffffffffUL
394 /* High-level queue structures */
395 #define ARM_SMMU_POLL_TIMEOUT_US 100
397 static bool disable_bypass
;
398 module_param_named(disable_bypass
, disable_bypass
, bool, S_IRUGO
);
399 MODULE_PARM_DESC(disable_bypass
,
400 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
408 enum arm_smmu_msi_index
{
415 static phys_addr_t arm_smmu_msi_cfg
[ARM_SMMU_MAX_MSIS
][3] = {
417 ARM_SMMU_EVTQ_IRQ_CFG0
,
418 ARM_SMMU_EVTQ_IRQ_CFG1
,
419 ARM_SMMU_EVTQ_IRQ_CFG2
,
421 [GERROR_MSI_INDEX
] = {
422 ARM_SMMU_GERROR_IRQ_CFG0
,
423 ARM_SMMU_GERROR_IRQ_CFG1
,
424 ARM_SMMU_GERROR_IRQ_CFG2
,
427 ARM_SMMU_PRIQ_IRQ_CFG0
,
428 ARM_SMMU_PRIQ_IRQ_CFG1
,
429 ARM_SMMU_PRIQ_IRQ_CFG2
,
433 struct arm_smmu_cmdq_ent
{
436 bool substream_valid
;
438 /* Command-specific fields */
440 #define CMDQ_OP_PREFETCH_CFG 0x1
447 #define CMDQ_OP_CFGI_STE 0x3
448 #define CMDQ_OP_CFGI_ALL 0x4
457 #define CMDQ_OP_TLBI_NH_ASID 0x11
458 #define CMDQ_OP_TLBI_NH_VA 0x12
459 #define CMDQ_OP_TLBI_EL2_ALL 0x20
460 #define CMDQ_OP_TLBI_S12_VMALL 0x28
461 #define CMDQ_OP_TLBI_S2_IPA 0x2a
462 #define CMDQ_OP_TLBI_NSNH_ALL 0x30
470 #define CMDQ_OP_PRI_RESP 0x41
478 #define CMDQ_OP_CMD_SYNC 0x46
482 struct arm_smmu_queue
{
483 int irq
; /* Wired interrupt */
494 u32 __iomem
*prod_reg
;
495 u32 __iomem
*cons_reg
;
498 struct arm_smmu_cmdq
{
499 struct arm_smmu_queue q
;
503 struct arm_smmu_evtq
{
504 struct arm_smmu_queue q
;
508 struct arm_smmu_priq
{
509 struct arm_smmu_queue q
;
512 /* High-level stream table and context descriptor structures */
513 struct arm_smmu_strtab_l1_desc
{
517 dma_addr_t l2ptr_dma
;
520 struct arm_smmu_s1_cfg
{
522 dma_addr_t cdptr_dma
;
524 struct arm_smmu_ctx_desc
{
532 struct arm_smmu_s2_cfg
{
538 struct arm_smmu_strtab_ent
{
541 bool bypass
; /* Overrides s1/s2 config */
542 struct arm_smmu_s1_cfg
*s1_cfg
;
543 struct arm_smmu_s2_cfg
*s2_cfg
;
546 struct arm_smmu_strtab_cfg
{
548 dma_addr_t strtab_dma
;
549 struct arm_smmu_strtab_l1_desc
*l1_desc
;
550 unsigned int num_l1_ents
;
556 /* An SMMUv3 instance */
557 struct arm_smmu_device
{
561 #define ARM_SMMU_FEAT_2_LVL_STRTAB (1 << 0)
562 #define ARM_SMMU_FEAT_2_LVL_CDTAB (1 << 1)
563 #define ARM_SMMU_FEAT_TT_LE (1 << 2)
564 #define ARM_SMMU_FEAT_TT_BE (1 << 3)
565 #define ARM_SMMU_FEAT_PRI (1 << 4)
566 #define ARM_SMMU_FEAT_ATS (1 << 5)
567 #define ARM_SMMU_FEAT_SEV (1 << 6)
568 #define ARM_SMMU_FEAT_MSI (1 << 7)
569 #define ARM_SMMU_FEAT_COHERENCY (1 << 8)
570 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 9)
571 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 10)
572 #define ARM_SMMU_FEAT_STALLS (1 << 11)
573 #define ARM_SMMU_FEAT_HYP (1 << 12)
576 #define ARM_SMMU_OPT_SKIP_PREFETCH (1 << 0)
579 struct arm_smmu_cmdq cmdq
;
580 struct arm_smmu_evtq evtq
;
581 struct arm_smmu_priq priq
;
585 unsigned long ias
; /* IPA */
586 unsigned long oas
; /* PA */
588 #define ARM_SMMU_MAX_ASIDS (1 << 16)
589 unsigned int asid_bits
;
590 DECLARE_BITMAP(asid_map
, ARM_SMMU_MAX_ASIDS
);
592 #define ARM_SMMU_MAX_VMIDS (1 << 16)
593 unsigned int vmid_bits
;
594 DECLARE_BITMAP(vmid_map
, ARM_SMMU_MAX_VMIDS
);
596 unsigned int ssid_bits
;
597 unsigned int sid_bits
;
599 struct arm_smmu_strtab_cfg strtab_cfg
;
602 /* SMMU private data for an IOMMU group */
603 struct arm_smmu_group
{
604 struct arm_smmu_device
*smmu
;
605 struct arm_smmu_domain
*domain
;
608 struct arm_smmu_strtab_ent ste
;
611 /* SMMU private data for an IOMMU domain */
612 enum arm_smmu_domain_stage
{
613 ARM_SMMU_DOMAIN_S1
= 0,
615 ARM_SMMU_DOMAIN_NESTED
,
618 struct arm_smmu_domain
{
619 struct arm_smmu_device
*smmu
;
620 struct mutex init_mutex
; /* Protects smmu pointer */
622 struct io_pgtable_ops
*pgtbl_ops
;
623 spinlock_t pgtbl_lock
;
625 enum arm_smmu_domain_stage stage
;
627 struct arm_smmu_s1_cfg s1_cfg
;
628 struct arm_smmu_s2_cfg s2_cfg
;
631 struct iommu_domain domain
;
634 struct arm_smmu_option_prop
{
639 static struct arm_smmu_option_prop arm_smmu_options
[] = {
640 { ARM_SMMU_OPT_SKIP_PREFETCH
, "hisilicon,broken-prefetch-cmd" },
644 static struct arm_smmu_domain
*to_smmu_domain(struct iommu_domain
*dom
)
646 return container_of(dom
, struct arm_smmu_domain
, domain
);
649 static void parse_driver_options(struct arm_smmu_device
*smmu
)
654 if (of_property_read_bool(smmu
->dev
->of_node
,
655 arm_smmu_options
[i
].prop
)) {
656 smmu
->options
|= arm_smmu_options
[i
].opt
;
657 dev_notice(smmu
->dev
, "option %s\n",
658 arm_smmu_options
[i
].prop
);
660 } while (arm_smmu_options
[++i
].opt
);
663 /* Low-level queue manipulation functions */
664 static bool queue_full(struct arm_smmu_queue
*q
)
666 return Q_IDX(q
, q
->prod
) == Q_IDX(q
, q
->cons
) &&
667 Q_WRP(q
, q
->prod
) != Q_WRP(q
, q
->cons
);
670 static bool queue_empty(struct arm_smmu_queue
*q
)
672 return Q_IDX(q
, q
->prod
) == Q_IDX(q
, q
->cons
) &&
673 Q_WRP(q
, q
->prod
) == Q_WRP(q
, q
->cons
);
676 static void queue_sync_cons(struct arm_smmu_queue
*q
)
678 q
->cons
= readl_relaxed(q
->cons_reg
);
681 static void queue_inc_cons(struct arm_smmu_queue
*q
)
683 u32 cons
= (Q_WRP(q
, q
->cons
) | Q_IDX(q
, q
->cons
)) + 1;
685 q
->cons
= Q_OVF(q
, q
->cons
) | Q_WRP(q
, cons
) | Q_IDX(q
, cons
);
686 writel(q
->cons
, q
->cons_reg
);
689 static int queue_sync_prod(struct arm_smmu_queue
*q
)
692 u32 prod
= readl_relaxed(q
->prod_reg
);
694 if (Q_OVF(q
, prod
) != Q_OVF(q
, q
->prod
))
701 static void queue_inc_prod(struct arm_smmu_queue
*q
)
703 u32 prod
= (Q_WRP(q
, q
->prod
) | Q_IDX(q
, q
->prod
)) + 1;
705 q
->prod
= Q_OVF(q
, q
->prod
) | Q_WRP(q
, prod
) | Q_IDX(q
, prod
);
706 writel(q
->prod
, q
->prod_reg
);
709 static bool __queue_cons_before(struct arm_smmu_queue
*q
, u32 until
)
711 if (Q_WRP(q
, q
->cons
) == Q_WRP(q
, until
))
712 return Q_IDX(q
, q
->cons
) < Q_IDX(q
, until
);
714 return Q_IDX(q
, q
->cons
) >= Q_IDX(q
, until
);
717 static int queue_poll_cons(struct arm_smmu_queue
*q
, u32 until
, bool wfe
)
719 ktime_t timeout
= ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US
);
721 while (queue_sync_cons(q
), __queue_cons_before(q
, until
)) {
722 if (ktime_compare(ktime_get(), timeout
) > 0)
736 static void queue_write(__le64
*dst
, u64
*src
, size_t n_dwords
)
740 for (i
= 0; i
< n_dwords
; ++i
)
741 *dst
++ = cpu_to_le64(*src
++);
744 static int queue_insert_raw(struct arm_smmu_queue
*q
, u64
*ent
)
749 queue_write(Q_ENT(q
, q
->prod
), ent
, q
->ent_dwords
);
754 static void queue_read(__le64
*dst
, u64
*src
, size_t n_dwords
)
758 for (i
= 0; i
< n_dwords
; ++i
)
759 *dst
++ = le64_to_cpu(*src
++);
762 static int queue_remove_raw(struct arm_smmu_queue
*q
, u64
*ent
)
767 queue_read(ent
, Q_ENT(q
, q
->cons
), q
->ent_dwords
);
772 /* High-level queue accessors */
773 static int arm_smmu_cmdq_build_cmd(u64
*cmd
, struct arm_smmu_cmdq_ent
*ent
)
775 memset(cmd
, 0, CMDQ_ENT_DWORDS
<< 3);
776 cmd
[0] |= (ent
->opcode
& CMDQ_0_OP_MASK
) << CMDQ_0_OP_SHIFT
;
778 switch (ent
->opcode
) {
779 case CMDQ_OP_TLBI_EL2_ALL
:
780 case CMDQ_OP_TLBI_NSNH_ALL
:
782 case CMDQ_OP_PREFETCH_CFG
:
783 cmd
[0] |= (u64
)ent
->prefetch
.sid
<< CMDQ_PREFETCH_0_SID_SHIFT
;
784 cmd
[1] |= ent
->prefetch
.size
<< CMDQ_PREFETCH_1_SIZE_SHIFT
;
785 cmd
[1] |= ent
->prefetch
.addr
& CMDQ_PREFETCH_1_ADDR_MASK
;
787 case CMDQ_OP_CFGI_STE
:
788 cmd
[0] |= (u64
)ent
->cfgi
.sid
<< CMDQ_CFGI_0_SID_SHIFT
;
789 cmd
[1] |= ent
->cfgi
.leaf
? CMDQ_CFGI_1_LEAF
: 0;
791 case CMDQ_OP_CFGI_ALL
:
792 /* Cover the entire SID range */
793 cmd
[1] |= CMDQ_CFGI_1_RANGE_MASK
<< CMDQ_CFGI_1_RANGE_SHIFT
;
795 case CMDQ_OP_TLBI_NH_VA
:
796 cmd
[0] |= (u64
)ent
->tlbi
.asid
<< CMDQ_TLBI_0_ASID_SHIFT
;
797 cmd
[1] |= ent
->tlbi
.leaf
? CMDQ_TLBI_1_LEAF
: 0;
798 cmd
[1] |= ent
->tlbi
.addr
& CMDQ_TLBI_1_VA_MASK
;
800 case CMDQ_OP_TLBI_S2_IPA
:
801 cmd
[0] |= (u64
)ent
->tlbi
.vmid
<< CMDQ_TLBI_0_VMID_SHIFT
;
802 cmd
[1] |= ent
->tlbi
.leaf
? CMDQ_TLBI_1_LEAF
: 0;
803 cmd
[1] |= ent
->tlbi
.addr
& CMDQ_TLBI_1_IPA_MASK
;
805 case CMDQ_OP_TLBI_NH_ASID
:
806 cmd
[0] |= (u64
)ent
->tlbi
.asid
<< CMDQ_TLBI_0_ASID_SHIFT
;
808 case CMDQ_OP_TLBI_S12_VMALL
:
809 cmd
[0] |= (u64
)ent
->tlbi
.vmid
<< CMDQ_TLBI_0_VMID_SHIFT
;
811 case CMDQ_OP_PRI_RESP
:
812 cmd
[0] |= ent
->substream_valid
? CMDQ_0_SSV
: 0;
813 cmd
[0] |= ent
->pri
.ssid
<< CMDQ_PRI_0_SSID_SHIFT
;
814 cmd
[0] |= (u64
)ent
->pri
.sid
<< CMDQ_PRI_0_SID_SHIFT
;
815 cmd
[1] |= ent
->pri
.grpid
<< CMDQ_PRI_1_GRPID_SHIFT
;
816 switch (ent
->pri
.resp
) {
818 cmd
[1] |= CMDQ_PRI_1_RESP_DENY
;
821 cmd
[1] |= CMDQ_PRI_1_RESP_FAIL
;
824 cmd
[1] |= CMDQ_PRI_1_RESP_SUCC
;
830 case CMDQ_OP_CMD_SYNC
:
831 cmd
[0] |= CMDQ_SYNC_0_CS_SEV
;
840 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device
*smmu
)
842 static const char *cerror_str
[] = {
843 [CMDQ_ERR_CERROR_NONE_IDX
] = "No error",
844 [CMDQ_ERR_CERROR_ILL_IDX
] = "Illegal command",
845 [CMDQ_ERR_CERROR_ABT_IDX
] = "Abort on command fetch",
849 u64 cmd
[CMDQ_ENT_DWORDS
];
850 struct arm_smmu_queue
*q
= &smmu
->cmdq
.q
;
851 u32 cons
= readl_relaxed(q
->cons_reg
);
852 u32 idx
= cons
>> CMDQ_ERR_SHIFT
& CMDQ_ERR_MASK
;
853 struct arm_smmu_cmdq_ent cmd_sync
= {
854 .opcode
= CMDQ_OP_CMD_SYNC
,
857 dev_err(smmu
->dev
, "CMDQ error (cons 0x%08x): %s\n", cons
,
861 case CMDQ_ERR_CERROR_ILL_IDX
:
863 case CMDQ_ERR_CERROR_ABT_IDX
:
864 dev_err(smmu
->dev
, "retrying command fetch\n");
865 case CMDQ_ERR_CERROR_NONE_IDX
:
870 * We may have concurrent producers, so we need to be careful
871 * not to touch any of the shadow cmdq state.
873 queue_read(cmd
, Q_ENT(q
, cons
), q
->ent_dwords
);
874 dev_err(smmu
->dev
, "skipping command in error state:\n");
875 for (i
= 0; i
< ARRAY_SIZE(cmd
); ++i
)
876 dev_err(smmu
->dev
, "\t0x%016llx\n", (unsigned long long)cmd
[i
]);
878 /* Convert the erroneous command into a CMD_SYNC */
879 if (arm_smmu_cmdq_build_cmd(cmd
, &cmd_sync
)) {
880 dev_err(smmu
->dev
, "failed to convert to CMD_SYNC\n");
884 queue_write(Q_ENT(q
, cons
), cmd
, q
->ent_dwords
);
887 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device
*smmu
,
888 struct arm_smmu_cmdq_ent
*ent
)
891 u64 cmd
[CMDQ_ENT_DWORDS
];
892 bool wfe
= !!(smmu
->features
& ARM_SMMU_FEAT_SEV
);
893 struct arm_smmu_queue
*q
= &smmu
->cmdq
.q
;
895 if (arm_smmu_cmdq_build_cmd(cmd
, ent
)) {
896 dev_warn(smmu
->dev
, "ignoring unknown CMDQ opcode 0x%x\n",
901 spin_lock(&smmu
->cmdq
.lock
);
902 while (until
= q
->prod
+ 1, queue_insert_raw(q
, cmd
) == -ENOSPC
) {
904 * Keep the queue locked, otherwise the producer could wrap
905 * twice and we could see a future consumer pointer that looks
906 * like it's behind us.
908 if (queue_poll_cons(q
, until
, wfe
))
909 dev_err_ratelimited(smmu
->dev
, "CMDQ timeout\n");
912 if (ent
->opcode
== CMDQ_OP_CMD_SYNC
&& queue_poll_cons(q
, until
, wfe
))
913 dev_err_ratelimited(smmu
->dev
, "CMD_SYNC timeout\n");
914 spin_unlock(&smmu
->cmdq
.lock
);
917 /* Context descriptor manipulation functions */
918 static u64
arm_smmu_cpu_tcr_to_cd(u64 tcr
)
922 /* Repack the TCR. Just care about TTBR0 for now */
923 val
|= ARM_SMMU_TCR2CD(tcr
, T0SZ
);
924 val
|= ARM_SMMU_TCR2CD(tcr
, TG0
);
925 val
|= ARM_SMMU_TCR2CD(tcr
, IRGN0
);
926 val
|= ARM_SMMU_TCR2CD(tcr
, ORGN0
);
927 val
|= ARM_SMMU_TCR2CD(tcr
, SH0
);
928 val
|= ARM_SMMU_TCR2CD(tcr
, EPD0
);
929 val
|= ARM_SMMU_TCR2CD(tcr
, EPD1
);
930 val
|= ARM_SMMU_TCR2CD(tcr
, IPS
);
931 val
|= ARM_SMMU_TCR2CD(tcr
, TBI0
);
936 static void arm_smmu_write_ctx_desc(struct arm_smmu_device
*smmu
,
937 struct arm_smmu_s1_cfg
*cfg
)
942 * We don't need to issue any invalidation here, as we'll invalidate
943 * the STE when installing the new entry anyway.
945 val
= arm_smmu_cpu_tcr_to_cd(cfg
->cd
.tcr
) |
949 CTXDESC_CD_0_R
| CTXDESC_CD_0_A
| CTXDESC_CD_0_ASET_PRIVATE
|
950 CTXDESC_CD_0_AA64
| (u64
)cfg
->cd
.asid
<< CTXDESC_CD_0_ASID_SHIFT
|
952 cfg
->cdptr
[0] = cpu_to_le64(val
);
954 val
= cfg
->cd
.ttbr
& CTXDESC_CD_1_TTB0_MASK
<< CTXDESC_CD_1_TTB0_SHIFT
;
955 cfg
->cdptr
[1] = cpu_to_le64(val
);
957 cfg
->cdptr
[3] = cpu_to_le64(cfg
->cd
.mair
<< CTXDESC_CD_3_MAIR_SHIFT
);
960 /* Stream table manipulation functions */
962 arm_smmu_write_strtab_l1_desc(__le64
*dst
, struct arm_smmu_strtab_l1_desc
*desc
)
966 val
|= (desc
->span
& STRTAB_L1_DESC_SPAN_MASK
)
967 << STRTAB_L1_DESC_SPAN_SHIFT
;
968 val
|= desc
->l2ptr_dma
&
969 STRTAB_L1_DESC_L2PTR_MASK
<< STRTAB_L1_DESC_L2PTR_SHIFT
;
971 *dst
= cpu_to_le64(val
);
974 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device
*smmu
, u32 sid
)
976 struct arm_smmu_cmdq_ent cmd
= {
977 .opcode
= CMDQ_OP_CFGI_STE
,
984 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
985 cmd
.opcode
= CMDQ_OP_CMD_SYNC
;
986 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
989 static void arm_smmu_write_strtab_ent(struct arm_smmu_device
*smmu
, u32 sid
,
990 __le64
*dst
, struct arm_smmu_strtab_ent
*ste
)
993 * This is hideously complicated, but we only really care about
994 * three cases at the moment:
996 * 1. Invalid (all zero) -> bypass (init)
997 * 2. Bypass -> translation (attach)
998 * 3. Translation -> bypass (detach)
1000 * Given that we can't update the STE atomically and the SMMU
1001 * doesn't read the thing in a defined order, that leaves us
1002 * with the following maintenance requirements:
1004 * 1. Update Config, return (init time STEs aren't live)
1005 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1006 * 3. Update Config, sync
1008 u64 val
= le64_to_cpu(dst
[0]);
1009 bool ste_live
= false;
1010 struct arm_smmu_cmdq_ent prefetch_cmd
= {
1011 .opcode
= CMDQ_OP_PREFETCH_CFG
,
1017 if (val
& STRTAB_STE_0_V
) {
1020 cfg
= val
& STRTAB_STE_0_CFG_MASK
<< STRTAB_STE_0_CFG_SHIFT
;
1022 case STRTAB_STE_0_CFG_BYPASS
:
1024 case STRTAB_STE_0_CFG_S1_TRANS
:
1025 case STRTAB_STE_0_CFG_S2_TRANS
:
1028 case STRTAB_STE_0_CFG_ABORT
:
1032 BUG(); /* STE corruption */
1036 /* Nuke the existing STE_0 value, as we're going to rewrite it */
1037 val
= ste
->valid
? STRTAB_STE_0_V
: 0;
1040 val
|= disable_bypass
? STRTAB_STE_0_CFG_ABORT
1041 : STRTAB_STE_0_CFG_BYPASS
;
1042 dst
[0] = cpu_to_le64(val
);
1043 dst
[2] = 0; /* Nuke the VMID */
1045 arm_smmu_sync_ste_for_sid(smmu
, sid
);
1051 dst
[1] = cpu_to_le64(
1052 STRTAB_STE_1_S1C_CACHE_WBRA
1053 << STRTAB_STE_1_S1CIR_SHIFT
|
1054 STRTAB_STE_1_S1C_CACHE_WBRA
1055 << STRTAB_STE_1_S1COR_SHIFT
|
1056 STRTAB_STE_1_S1C_SH_ISH
<< STRTAB_STE_1_S1CSH_SHIFT
|
1057 STRTAB_STE_1_S1STALLD
|
1058 #ifdef CONFIG_PCI_ATS
1059 STRTAB_STE_1_EATS_TRANS
<< STRTAB_STE_1_EATS_SHIFT
|
1061 STRTAB_STE_1_STRW_NSEL1
<< STRTAB_STE_1_STRW_SHIFT
);
1063 val
|= (ste
->s1_cfg
->cdptr_dma
& STRTAB_STE_0_S1CTXPTR_MASK
1064 << STRTAB_STE_0_S1CTXPTR_SHIFT
) |
1065 STRTAB_STE_0_CFG_S1_TRANS
;
1070 dst
[2] = cpu_to_le64(
1071 ste
->s2_cfg
->vmid
<< STRTAB_STE_2_S2VMID_SHIFT
|
1072 (ste
->s2_cfg
->vtcr
& STRTAB_STE_2_VTCR_MASK
)
1073 << STRTAB_STE_2_VTCR_SHIFT
|
1075 STRTAB_STE_2_S2ENDI
|
1077 STRTAB_STE_2_S2PTW
| STRTAB_STE_2_S2AA64
|
1080 dst
[3] = cpu_to_le64(ste
->s2_cfg
->vttbr
&
1081 STRTAB_STE_3_S2TTB_MASK
<< STRTAB_STE_3_S2TTB_SHIFT
);
1083 val
|= STRTAB_STE_0_CFG_S2_TRANS
;
1086 arm_smmu_sync_ste_for_sid(smmu
, sid
);
1087 dst
[0] = cpu_to_le64(val
);
1088 arm_smmu_sync_ste_for_sid(smmu
, sid
);
1090 /* It's likely that we'll want to use the new STE soon */
1091 if (!(smmu
->options
& ARM_SMMU_OPT_SKIP_PREFETCH
))
1092 arm_smmu_cmdq_issue_cmd(smmu
, &prefetch_cmd
);
1095 static void arm_smmu_init_bypass_stes(u64
*strtab
, unsigned int nent
)
1098 struct arm_smmu_strtab_ent ste
= {
1103 for (i
= 0; i
< nent
; ++i
) {
1104 arm_smmu_write_strtab_ent(NULL
, -1, strtab
, &ste
);
1105 strtab
+= STRTAB_STE_DWORDS
;
1109 static int arm_smmu_init_l2_strtab(struct arm_smmu_device
*smmu
, u32 sid
)
1113 struct arm_smmu_strtab_cfg
*cfg
= &smmu
->strtab_cfg
;
1114 struct arm_smmu_strtab_l1_desc
*desc
= &cfg
->l1_desc
[sid
>> STRTAB_SPLIT
];
1119 size
= 1 << (STRTAB_SPLIT
+ ilog2(STRTAB_STE_DWORDS
) + 3);
1120 strtab
= &cfg
->strtab
[(sid
>> STRTAB_SPLIT
) * STRTAB_L1_DESC_DWORDS
];
1122 desc
->span
= STRTAB_SPLIT
+ 1;
1123 desc
->l2ptr
= dma_zalloc_coherent(smmu
->dev
, size
, &desc
->l2ptr_dma
,
1127 "failed to allocate l2 stream table for SID %u\n",
1132 arm_smmu_init_bypass_stes(desc
->l2ptr
, 1 << STRTAB_SPLIT
);
1133 arm_smmu_write_strtab_l1_desc(strtab
, desc
);
1137 /* IRQ and event handlers */
1138 static irqreturn_t
arm_smmu_evtq_thread(int irq
, void *dev
)
1141 struct arm_smmu_device
*smmu
= dev
;
1142 struct arm_smmu_queue
*q
= &smmu
->evtq
.q
;
1143 u64 evt
[EVTQ_ENT_DWORDS
];
1145 while (!queue_remove_raw(q
, evt
)) {
1146 u8 id
= evt
[0] >> EVTQ_0_ID_SHIFT
& EVTQ_0_ID_MASK
;
1148 dev_info(smmu
->dev
, "event 0x%02x received:\n", id
);
1149 for (i
= 0; i
< ARRAY_SIZE(evt
); ++i
)
1150 dev_info(smmu
->dev
, "\t0x%016llx\n",
1151 (unsigned long long)evt
[i
]);
1154 /* Sync our overflow flag, as we believe we're up to speed */
1155 q
->cons
= Q_OVF(q
, q
->prod
) | Q_WRP(q
, q
->cons
) | Q_IDX(q
, q
->cons
);
1159 static irqreturn_t
arm_smmu_evtq_handler(int irq
, void *dev
)
1161 irqreturn_t ret
= IRQ_WAKE_THREAD
;
1162 struct arm_smmu_device
*smmu
= dev
;
1163 struct arm_smmu_queue
*q
= &smmu
->evtq
.q
;
1166 * Not much we can do on overflow, so scream and pretend we're
1169 if (queue_sync_prod(q
) == -EOVERFLOW
)
1170 dev_err(smmu
->dev
, "EVTQ overflow detected -- events lost\n");
1171 else if (queue_empty(q
))
1177 static irqreturn_t
arm_smmu_priq_thread(int irq
, void *dev
)
1179 struct arm_smmu_device
*smmu
= dev
;
1180 struct arm_smmu_queue
*q
= &smmu
->priq
.q
;
1181 u64 evt
[PRIQ_ENT_DWORDS
];
1183 while (!queue_remove_raw(q
, evt
)) {
1188 sid
= evt
[0] >> PRIQ_0_SID_SHIFT
& PRIQ_0_SID_MASK
;
1189 ssv
= evt
[0] & PRIQ_0_SSID_V
;
1190 ssid
= ssv
? evt
[0] >> PRIQ_0_SSID_SHIFT
& PRIQ_0_SSID_MASK
: 0;
1191 last
= evt
[0] & PRIQ_0_PRG_LAST
;
1192 grpid
= evt
[1] >> PRIQ_1_PRG_IDX_SHIFT
& PRIQ_1_PRG_IDX_MASK
;
1194 dev_info(smmu
->dev
, "unexpected PRI request received:\n");
1196 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1197 sid
, ssid
, grpid
, last
? "L" : "",
1198 evt
[0] & PRIQ_0_PERM_PRIV
? "" : "un",
1199 evt
[0] & PRIQ_0_PERM_READ
? "R" : "",
1200 evt
[0] & PRIQ_0_PERM_WRITE
? "W" : "",
1201 evt
[0] & PRIQ_0_PERM_EXEC
? "X" : "",
1202 evt
[1] & PRIQ_1_ADDR_MASK
<< PRIQ_1_ADDR_SHIFT
);
1205 struct arm_smmu_cmdq_ent cmd
= {
1206 .opcode
= CMDQ_OP_PRI_RESP
,
1207 .substream_valid
= ssv
,
1212 .resp
= PRI_RESP_DENY
,
1216 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
1220 /* Sync our overflow flag, as we believe we're up to speed */
1221 q
->cons
= Q_OVF(q
, q
->prod
) | Q_WRP(q
, q
->cons
) | Q_IDX(q
, q
->cons
);
1222 writel(q
->cons
, q
->cons_reg
);
1226 static irqreturn_t
arm_smmu_priq_handler(int irq
, void *dev
)
1228 irqreturn_t ret
= IRQ_WAKE_THREAD
;
1229 struct arm_smmu_device
*smmu
= dev
;
1230 struct arm_smmu_queue
*q
= &smmu
->priq
.q
;
1232 /* PRIQ overflow indicates a programming error */
1233 if (queue_sync_prod(q
) == -EOVERFLOW
)
1234 dev_err(smmu
->dev
, "PRIQ overflow detected -- requests lost\n");
1235 else if (queue_empty(q
))
1241 static irqreturn_t
arm_smmu_cmdq_sync_handler(int irq
, void *dev
)
1243 /* We don't actually use CMD_SYNC interrupts for anything */
1247 static int arm_smmu_device_disable(struct arm_smmu_device
*smmu
);
1249 static irqreturn_t
arm_smmu_gerror_handler(int irq
, void *dev
)
1251 u32 gerror
, gerrorn
;
1252 struct arm_smmu_device
*smmu
= dev
;
1254 gerror
= readl_relaxed(smmu
->base
+ ARM_SMMU_GERROR
);
1255 gerrorn
= readl_relaxed(smmu
->base
+ ARM_SMMU_GERRORN
);
1258 if (!(gerror
& GERROR_ERR_MASK
))
1259 return IRQ_NONE
; /* No errors pending */
1262 "unexpected global error reported (0x%08x), this could be serious\n",
1265 if (gerror
& GERROR_SFM_ERR
) {
1266 dev_err(smmu
->dev
, "device has entered Service Failure Mode!\n");
1267 arm_smmu_device_disable(smmu
);
1270 if (gerror
& GERROR_MSI_GERROR_ABT_ERR
)
1271 dev_warn(smmu
->dev
, "GERROR MSI write aborted\n");
1273 if (gerror
& GERROR_MSI_PRIQ_ABT_ERR
) {
1274 dev_warn(smmu
->dev
, "PRIQ MSI write aborted\n");
1275 arm_smmu_priq_handler(irq
, smmu
->dev
);
1278 if (gerror
& GERROR_MSI_EVTQ_ABT_ERR
) {
1279 dev_warn(smmu
->dev
, "EVTQ MSI write aborted\n");
1280 arm_smmu_evtq_handler(irq
, smmu
->dev
);
1283 if (gerror
& GERROR_MSI_CMDQ_ABT_ERR
) {
1284 dev_warn(smmu
->dev
, "CMDQ MSI write aborted\n");
1285 arm_smmu_cmdq_sync_handler(irq
, smmu
->dev
);
1288 if (gerror
& GERROR_PRIQ_ABT_ERR
)
1289 dev_err(smmu
->dev
, "PRIQ write aborted -- events may have been lost\n");
1291 if (gerror
& GERROR_EVTQ_ABT_ERR
)
1292 dev_err(smmu
->dev
, "EVTQ write aborted -- events may have been lost\n");
1294 if (gerror
& GERROR_CMDQ_ERR
)
1295 arm_smmu_cmdq_skip_err(smmu
);
1297 writel(gerror
, smmu
->base
+ ARM_SMMU_GERRORN
);
1301 /* IO_PGTABLE API */
1302 static void __arm_smmu_tlb_sync(struct arm_smmu_device
*smmu
)
1304 struct arm_smmu_cmdq_ent cmd
;
1306 cmd
.opcode
= CMDQ_OP_CMD_SYNC
;
1307 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
1310 static void arm_smmu_tlb_sync(void *cookie
)
1312 struct arm_smmu_domain
*smmu_domain
= cookie
;
1313 __arm_smmu_tlb_sync(smmu_domain
->smmu
);
1316 static void arm_smmu_tlb_inv_context(void *cookie
)
1318 struct arm_smmu_domain
*smmu_domain
= cookie
;
1319 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1320 struct arm_smmu_cmdq_ent cmd
;
1322 if (smmu_domain
->stage
== ARM_SMMU_DOMAIN_S1
) {
1323 cmd
.opcode
= CMDQ_OP_TLBI_NH_ASID
;
1324 cmd
.tlbi
.asid
= smmu_domain
->s1_cfg
.cd
.asid
;
1327 cmd
.opcode
= CMDQ_OP_TLBI_S12_VMALL
;
1328 cmd
.tlbi
.vmid
= smmu_domain
->s2_cfg
.vmid
;
1331 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
1332 __arm_smmu_tlb_sync(smmu
);
1335 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova
, size_t size
,
1336 bool leaf
, void *cookie
)
1338 struct arm_smmu_domain
*smmu_domain
= cookie
;
1339 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1340 struct arm_smmu_cmdq_ent cmd
= {
1347 if (smmu_domain
->stage
== ARM_SMMU_DOMAIN_S1
) {
1348 cmd
.opcode
= CMDQ_OP_TLBI_NH_VA
;
1349 cmd
.tlbi
.asid
= smmu_domain
->s1_cfg
.cd
.asid
;
1351 cmd
.opcode
= CMDQ_OP_TLBI_S2_IPA
;
1352 cmd
.tlbi
.vmid
= smmu_domain
->s2_cfg
.vmid
;
1355 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
1358 static struct iommu_gather_ops arm_smmu_gather_ops
= {
1359 .tlb_flush_all
= arm_smmu_tlb_inv_context
,
1360 .tlb_add_flush
= arm_smmu_tlb_inv_range_nosync
,
1361 .tlb_sync
= arm_smmu_tlb_sync
,
1365 static bool arm_smmu_capable(enum iommu_cap cap
)
1368 case IOMMU_CAP_CACHE_COHERENCY
:
1370 case IOMMU_CAP_INTR_REMAP
:
1371 return true; /* MSIs are just memory writes */
1372 case IOMMU_CAP_NOEXEC
:
1379 static struct iommu_domain
*arm_smmu_domain_alloc(unsigned type
)
1381 struct arm_smmu_domain
*smmu_domain
;
1383 if (type
!= IOMMU_DOMAIN_UNMANAGED
)
1387 * Allocate the domain and initialise some of its data structures.
1388 * We can't really do anything meaningful until we've added a
1391 smmu_domain
= kzalloc(sizeof(*smmu_domain
), GFP_KERNEL
);
1395 mutex_init(&smmu_domain
->init_mutex
);
1396 spin_lock_init(&smmu_domain
->pgtbl_lock
);
1397 return &smmu_domain
->domain
;
1400 static int arm_smmu_bitmap_alloc(unsigned long *map
, int span
)
1402 int idx
, size
= 1 << span
;
1405 idx
= find_first_zero_bit(map
, size
);
1408 } while (test_and_set_bit(idx
, map
));
1413 static void arm_smmu_bitmap_free(unsigned long *map
, int idx
)
1415 clear_bit(idx
, map
);
1418 static void arm_smmu_domain_free(struct iommu_domain
*domain
)
1420 struct arm_smmu_domain
*smmu_domain
= to_smmu_domain(domain
);
1421 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1423 free_io_pgtable_ops(smmu_domain
->pgtbl_ops
);
1425 /* Free the CD and ASID, if we allocated them */
1426 if (smmu_domain
->stage
== ARM_SMMU_DOMAIN_S1
) {
1427 struct arm_smmu_s1_cfg
*cfg
= &smmu_domain
->s1_cfg
;
1430 dma_free_coherent(smmu_domain
->smmu
->dev
,
1431 CTXDESC_CD_DWORDS
<< 3,
1435 arm_smmu_bitmap_free(smmu
->asid_map
, cfg
->cd
.asid
);
1438 struct arm_smmu_s2_cfg
*cfg
= &smmu_domain
->s2_cfg
;
1440 arm_smmu_bitmap_free(smmu
->vmid_map
, cfg
->vmid
);
1446 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain
*smmu_domain
,
1447 struct io_pgtable_cfg
*pgtbl_cfg
)
1451 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1452 struct arm_smmu_s1_cfg
*cfg
= &smmu_domain
->s1_cfg
;
1454 asid
= arm_smmu_bitmap_alloc(smmu
->asid_map
, smmu
->asid_bits
);
1455 if (IS_ERR_VALUE(asid
))
1458 cfg
->cdptr
= dma_zalloc_coherent(smmu
->dev
, CTXDESC_CD_DWORDS
<< 3,
1459 &cfg
->cdptr_dma
, GFP_KERNEL
);
1461 dev_warn(smmu
->dev
, "failed to allocate context descriptor\n");
1466 cfg
->cd
.asid
= (u16
)asid
;
1467 cfg
->cd
.ttbr
= pgtbl_cfg
->arm_lpae_s1_cfg
.ttbr
[0];
1468 cfg
->cd
.tcr
= pgtbl_cfg
->arm_lpae_s1_cfg
.tcr
;
1469 cfg
->cd
.mair
= pgtbl_cfg
->arm_lpae_s1_cfg
.mair
[0];
1473 arm_smmu_bitmap_free(smmu
->asid_map
, asid
);
1477 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain
*smmu_domain
,
1478 struct io_pgtable_cfg
*pgtbl_cfg
)
1481 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1482 struct arm_smmu_s2_cfg
*cfg
= &smmu_domain
->s2_cfg
;
1484 vmid
= arm_smmu_bitmap_alloc(smmu
->vmid_map
, smmu
->vmid_bits
);
1485 if (IS_ERR_VALUE(vmid
))
1488 cfg
->vmid
= (u16
)vmid
;
1489 cfg
->vttbr
= pgtbl_cfg
->arm_lpae_s2_cfg
.vttbr
;
1490 cfg
->vtcr
= pgtbl_cfg
->arm_lpae_s2_cfg
.vtcr
;
1494 static struct iommu_ops arm_smmu_ops
;
1496 static int arm_smmu_domain_finalise(struct iommu_domain
*domain
)
1499 unsigned long ias
, oas
;
1500 enum io_pgtable_fmt fmt
;
1501 struct io_pgtable_cfg pgtbl_cfg
;
1502 struct io_pgtable_ops
*pgtbl_ops
;
1503 int (*finalise_stage_fn
)(struct arm_smmu_domain
*,
1504 struct io_pgtable_cfg
*);
1505 struct arm_smmu_domain
*smmu_domain
= to_smmu_domain(domain
);
1506 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1508 /* Restrict the stage to what we can actually support */
1509 if (!(smmu
->features
& ARM_SMMU_FEAT_TRANS_S1
))
1510 smmu_domain
->stage
= ARM_SMMU_DOMAIN_S2
;
1511 if (!(smmu
->features
& ARM_SMMU_FEAT_TRANS_S2
))
1512 smmu_domain
->stage
= ARM_SMMU_DOMAIN_S1
;
1514 switch (smmu_domain
->stage
) {
1515 case ARM_SMMU_DOMAIN_S1
:
1518 fmt
= ARM_64_LPAE_S1
;
1519 finalise_stage_fn
= arm_smmu_domain_finalise_s1
;
1521 case ARM_SMMU_DOMAIN_NESTED
:
1522 case ARM_SMMU_DOMAIN_S2
:
1525 fmt
= ARM_64_LPAE_S2
;
1526 finalise_stage_fn
= arm_smmu_domain_finalise_s2
;
1532 pgtbl_cfg
= (struct io_pgtable_cfg
) {
1533 .pgsize_bitmap
= arm_smmu_ops
.pgsize_bitmap
,
1536 .tlb
= &arm_smmu_gather_ops
,
1537 .iommu_dev
= smmu
->dev
,
1540 pgtbl_ops
= alloc_io_pgtable_ops(fmt
, &pgtbl_cfg
, smmu_domain
);
1544 arm_smmu_ops
.pgsize_bitmap
= pgtbl_cfg
.pgsize_bitmap
;
1546 ret
= finalise_stage_fn(smmu_domain
, &pgtbl_cfg
);
1547 if (IS_ERR_VALUE(ret
)) {
1548 free_io_pgtable_ops(pgtbl_ops
);
1552 smmu_domain
->pgtbl_ops
= pgtbl_ops
;
1556 static struct arm_smmu_group
*arm_smmu_group_get(struct device
*dev
)
1558 struct iommu_group
*group
;
1559 struct arm_smmu_group
*smmu_group
;
1561 group
= iommu_group_get(dev
);
1565 smmu_group
= iommu_group_get_iommudata(group
);
1566 iommu_group_put(group
);
1570 static __le64
*arm_smmu_get_step_for_sid(struct arm_smmu_device
*smmu
, u32 sid
)
1573 struct arm_smmu_strtab_cfg
*cfg
= &smmu
->strtab_cfg
;
1575 if (smmu
->features
& ARM_SMMU_FEAT_2_LVL_STRTAB
) {
1576 struct arm_smmu_strtab_l1_desc
*l1_desc
;
1579 /* Two-level walk */
1580 idx
= (sid
>> STRTAB_SPLIT
) * STRTAB_L1_DESC_DWORDS
;
1581 l1_desc
= &cfg
->l1_desc
[idx
];
1582 idx
= (sid
& ((1 << STRTAB_SPLIT
) - 1)) * STRTAB_STE_DWORDS
;
1583 step
= &l1_desc
->l2ptr
[idx
];
1585 /* Simple linear lookup */
1586 step
= &cfg
->strtab
[sid
* STRTAB_STE_DWORDS
];
1592 static int arm_smmu_install_ste_for_group(struct arm_smmu_group
*smmu_group
)
1595 struct arm_smmu_domain
*smmu_domain
= smmu_group
->domain
;
1596 struct arm_smmu_strtab_ent
*ste
= &smmu_group
->ste
;
1597 struct arm_smmu_device
*smmu
= smmu_group
->smmu
;
1599 if (smmu_domain
->stage
== ARM_SMMU_DOMAIN_S1
) {
1600 ste
->s1_cfg
= &smmu_domain
->s1_cfg
;
1602 arm_smmu_write_ctx_desc(smmu
, ste
->s1_cfg
);
1605 ste
->s2_cfg
= &smmu_domain
->s2_cfg
;
1608 for (i
= 0; i
< smmu_group
->num_sids
; ++i
) {
1609 u32 sid
= smmu_group
->sids
[i
];
1610 __le64
*step
= arm_smmu_get_step_for_sid(smmu
, sid
);
1612 arm_smmu_write_strtab_ent(smmu
, sid
, step
, ste
);
1618 static int arm_smmu_attach_dev(struct iommu_domain
*domain
, struct device
*dev
)
1621 struct arm_smmu_device
*smmu
;
1622 struct arm_smmu_domain
*smmu_domain
= to_smmu_domain(domain
);
1623 struct arm_smmu_group
*smmu_group
= arm_smmu_group_get(dev
);
1628 /* Already attached to a different domain? */
1629 if (smmu_group
->domain
&& smmu_group
->domain
!= smmu_domain
)
1632 smmu
= smmu_group
->smmu
;
1633 mutex_lock(&smmu_domain
->init_mutex
);
1635 if (!smmu_domain
->smmu
) {
1636 smmu_domain
->smmu
= smmu
;
1637 ret
= arm_smmu_domain_finalise(domain
);
1639 smmu_domain
->smmu
= NULL
;
1642 } else if (smmu_domain
->smmu
!= smmu
) {
1644 "cannot attach to SMMU %s (upstream of %s)\n",
1645 dev_name(smmu_domain
->smmu
->dev
),
1646 dev_name(smmu
->dev
));
1651 /* Group already attached to this domain? */
1652 if (smmu_group
->domain
)
1655 smmu_group
->domain
= smmu_domain
;
1656 smmu_group
->ste
.bypass
= false;
1658 ret
= arm_smmu_install_ste_for_group(smmu_group
);
1659 if (IS_ERR_VALUE(ret
))
1660 smmu_group
->domain
= NULL
;
1663 mutex_unlock(&smmu_domain
->init_mutex
);
1667 static void arm_smmu_detach_dev(struct iommu_domain
*domain
, struct device
*dev
)
1669 struct arm_smmu_domain
*smmu_domain
= to_smmu_domain(domain
);
1670 struct arm_smmu_group
*smmu_group
= arm_smmu_group_get(dev
);
1672 BUG_ON(!smmu_domain
);
1673 BUG_ON(!smmu_group
);
1675 mutex_lock(&smmu_domain
->init_mutex
);
1676 BUG_ON(smmu_group
->domain
!= smmu_domain
);
1678 smmu_group
->ste
.bypass
= true;
1679 if (IS_ERR_VALUE(arm_smmu_install_ste_for_group(smmu_group
)))
1680 dev_warn(dev
, "failed to install bypass STE\n");
1682 smmu_group
->domain
= NULL
;
1683 mutex_unlock(&smmu_domain
->init_mutex
);
1686 static int arm_smmu_map(struct iommu_domain
*domain
, unsigned long iova
,
1687 phys_addr_t paddr
, size_t size
, int prot
)
1690 unsigned long flags
;
1691 struct arm_smmu_domain
*smmu_domain
= to_smmu_domain(domain
);
1692 struct io_pgtable_ops
*ops
= smmu_domain
->pgtbl_ops
;
1697 spin_lock_irqsave(&smmu_domain
->pgtbl_lock
, flags
);
1698 ret
= ops
->map(ops
, iova
, paddr
, size
, prot
);
1699 spin_unlock_irqrestore(&smmu_domain
->pgtbl_lock
, flags
);
1704 arm_smmu_unmap(struct iommu_domain
*domain
, unsigned long iova
, size_t size
)
1707 unsigned long flags
;
1708 struct arm_smmu_domain
*smmu_domain
= to_smmu_domain(domain
);
1709 struct io_pgtable_ops
*ops
= smmu_domain
->pgtbl_ops
;
1714 spin_lock_irqsave(&smmu_domain
->pgtbl_lock
, flags
);
1715 ret
= ops
->unmap(ops
, iova
, size
);
1716 spin_unlock_irqrestore(&smmu_domain
->pgtbl_lock
, flags
);
1721 arm_smmu_iova_to_phys(struct iommu_domain
*domain
, dma_addr_t iova
)
1724 unsigned long flags
;
1725 struct arm_smmu_domain
*smmu_domain
= to_smmu_domain(domain
);
1726 struct io_pgtable_ops
*ops
= smmu_domain
->pgtbl_ops
;
1731 spin_lock_irqsave(&smmu_domain
->pgtbl_lock
, flags
);
1732 ret
= ops
->iova_to_phys(ops
, iova
);
1733 spin_unlock_irqrestore(&smmu_domain
->pgtbl_lock
, flags
);
1738 static int __arm_smmu_get_pci_sid(struct pci_dev
*pdev
, u16 alias
, void *sidp
)
1740 *(u32
*)sidp
= alias
;
1741 return 0; /* Continue walking */
1744 static void __arm_smmu_release_pci_iommudata(void *data
)
1749 static struct arm_smmu_device
*arm_smmu_get_for_pci_dev(struct pci_dev
*pdev
)
1751 struct device_node
*of_node
;
1752 struct platform_device
*smmu_pdev
;
1753 struct arm_smmu_device
*smmu
= NULL
;
1754 struct pci_bus
*bus
= pdev
->bus
;
1756 /* Walk up to the root bus */
1757 while (!pci_is_root_bus(bus
))
1760 /* Follow the "iommus" phandle from the host controller */
1761 of_node
= of_parse_phandle(bus
->bridge
->parent
->of_node
, "iommus", 0);
1765 /* See if we can find an SMMU corresponding to the phandle */
1766 smmu_pdev
= of_find_device_by_node(of_node
);
1768 smmu
= platform_get_drvdata(smmu_pdev
);
1770 of_node_put(of_node
);
1774 static bool arm_smmu_sid_in_range(struct arm_smmu_device
*smmu
, u32 sid
)
1776 unsigned long limit
= smmu
->strtab_cfg
.num_l1_ents
;
1778 if (smmu
->features
& ARM_SMMU_FEAT_2_LVL_STRTAB
)
1779 limit
*= 1UL << STRTAB_SPLIT
;
1784 static int arm_smmu_add_device(struct device
*dev
)
1788 struct pci_dev
*pdev
;
1789 struct iommu_group
*group
;
1790 struct arm_smmu_group
*smmu_group
;
1791 struct arm_smmu_device
*smmu
;
1793 /* We only support PCI, for now */
1794 if (!dev_is_pci(dev
))
1797 pdev
= to_pci_dev(dev
);
1798 group
= iommu_group_get_for_dev(dev
);
1800 return PTR_ERR(group
);
1802 smmu_group
= iommu_group_get_iommudata(group
);
1804 smmu
= arm_smmu_get_for_pci_dev(pdev
);
1810 smmu_group
= kzalloc(sizeof(*smmu_group
), GFP_KERNEL
);
1816 smmu_group
->ste
.valid
= true;
1817 smmu_group
->smmu
= smmu
;
1818 iommu_group_set_iommudata(group
, smmu_group
,
1819 __arm_smmu_release_pci_iommudata
);
1821 smmu
= smmu_group
->smmu
;
1824 /* Assume SID == RID until firmware tells us otherwise */
1825 pci_for_each_dma_alias(pdev
, __arm_smmu_get_pci_sid
, &sid
);
1826 for (i
= 0; i
< smmu_group
->num_sids
; ++i
) {
1827 /* If we already know about this SID, then we're done */
1828 if (smmu_group
->sids
[i
] == sid
)
1832 /* Check the SID is in range of the SMMU and our stream table */
1833 if (!arm_smmu_sid_in_range(smmu
, sid
)) {
1838 /* Ensure l2 strtab is initialised */
1839 if (smmu
->features
& ARM_SMMU_FEAT_2_LVL_STRTAB
) {
1840 ret
= arm_smmu_init_l2_strtab(smmu
, sid
);
1845 /* Resize the SID array for the group */
1846 smmu_group
->num_sids
++;
1847 sids
= krealloc(smmu_group
->sids
, smmu_group
->num_sids
* sizeof(*sids
),
1850 smmu_group
->num_sids
--;
1855 /* Add the new SID */
1856 sids
[smmu_group
->num_sids
- 1] = sid
;
1857 smmu_group
->sids
= sids
;
1861 iommu_group_put(group
);
1865 static void arm_smmu_remove_device(struct device
*dev
)
1867 iommu_group_remove_device(dev
);
1870 static int arm_smmu_domain_get_attr(struct iommu_domain
*domain
,
1871 enum iommu_attr attr
, void *data
)
1873 struct arm_smmu_domain
*smmu_domain
= to_smmu_domain(domain
);
1876 case DOMAIN_ATTR_NESTING
:
1877 *(int *)data
= (smmu_domain
->stage
== ARM_SMMU_DOMAIN_NESTED
);
1884 static int arm_smmu_domain_set_attr(struct iommu_domain
*domain
,
1885 enum iommu_attr attr
, void *data
)
1888 struct arm_smmu_domain
*smmu_domain
= to_smmu_domain(domain
);
1890 mutex_lock(&smmu_domain
->init_mutex
);
1893 case DOMAIN_ATTR_NESTING
:
1894 if (smmu_domain
->smmu
) {
1900 smmu_domain
->stage
= ARM_SMMU_DOMAIN_NESTED
;
1902 smmu_domain
->stage
= ARM_SMMU_DOMAIN_S1
;
1910 mutex_unlock(&smmu_domain
->init_mutex
);
1914 static struct iommu_ops arm_smmu_ops
= {
1915 .capable
= arm_smmu_capable
,
1916 .domain_alloc
= arm_smmu_domain_alloc
,
1917 .domain_free
= arm_smmu_domain_free
,
1918 .attach_dev
= arm_smmu_attach_dev
,
1919 .detach_dev
= arm_smmu_detach_dev
,
1920 .map
= arm_smmu_map
,
1921 .unmap
= arm_smmu_unmap
,
1922 .map_sg
= default_iommu_map_sg
,
1923 .iova_to_phys
= arm_smmu_iova_to_phys
,
1924 .add_device
= arm_smmu_add_device
,
1925 .remove_device
= arm_smmu_remove_device
,
1926 .device_group
= pci_device_group
,
1927 .domain_get_attr
= arm_smmu_domain_get_attr
,
1928 .domain_set_attr
= arm_smmu_domain_set_attr
,
1929 .pgsize_bitmap
= -1UL, /* Restricted during device attach */
1932 /* Probing and initialisation functions */
1933 static int arm_smmu_init_one_queue(struct arm_smmu_device
*smmu
,
1934 struct arm_smmu_queue
*q
,
1935 unsigned long prod_off
,
1936 unsigned long cons_off
,
1939 size_t qsz
= ((1 << q
->max_n_shift
) * dwords
) << 3;
1941 q
->base
= dma_alloc_coherent(smmu
->dev
, qsz
, &q
->base_dma
, GFP_KERNEL
);
1943 dev_err(smmu
->dev
, "failed to allocate queue (0x%zx bytes)\n",
1948 q
->prod_reg
= smmu
->base
+ prod_off
;
1949 q
->cons_reg
= smmu
->base
+ cons_off
;
1950 q
->ent_dwords
= dwords
;
1952 q
->q_base
= Q_BASE_RWA
;
1953 q
->q_base
|= q
->base_dma
& Q_BASE_ADDR_MASK
<< Q_BASE_ADDR_SHIFT
;
1954 q
->q_base
|= (q
->max_n_shift
& Q_BASE_LOG2SIZE_MASK
)
1955 << Q_BASE_LOG2SIZE_SHIFT
;
1957 q
->prod
= q
->cons
= 0;
1961 static void arm_smmu_free_one_queue(struct arm_smmu_device
*smmu
,
1962 struct arm_smmu_queue
*q
)
1964 size_t qsz
= ((1 << q
->max_n_shift
) * q
->ent_dwords
) << 3;
1966 dma_free_coherent(smmu
->dev
, qsz
, q
->base
, q
->base_dma
);
1969 static void arm_smmu_free_queues(struct arm_smmu_device
*smmu
)
1971 arm_smmu_free_one_queue(smmu
, &smmu
->cmdq
.q
);
1972 arm_smmu_free_one_queue(smmu
, &smmu
->evtq
.q
);
1974 if (smmu
->features
& ARM_SMMU_FEAT_PRI
)
1975 arm_smmu_free_one_queue(smmu
, &smmu
->priq
.q
);
1978 static int arm_smmu_init_queues(struct arm_smmu_device
*smmu
)
1983 spin_lock_init(&smmu
->cmdq
.lock
);
1984 ret
= arm_smmu_init_one_queue(smmu
, &smmu
->cmdq
.q
, ARM_SMMU_CMDQ_PROD
,
1985 ARM_SMMU_CMDQ_CONS
, CMDQ_ENT_DWORDS
);
1990 ret
= arm_smmu_init_one_queue(smmu
, &smmu
->evtq
.q
, ARM_SMMU_EVTQ_PROD
,
1991 ARM_SMMU_EVTQ_CONS
, EVTQ_ENT_DWORDS
);
1996 if (!(smmu
->features
& ARM_SMMU_FEAT_PRI
))
1999 ret
= arm_smmu_init_one_queue(smmu
, &smmu
->priq
.q
, ARM_SMMU_PRIQ_PROD
,
2000 ARM_SMMU_PRIQ_CONS
, PRIQ_ENT_DWORDS
);
2007 arm_smmu_free_one_queue(smmu
, &smmu
->evtq
.q
);
2009 arm_smmu_free_one_queue(smmu
, &smmu
->cmdq
.q
);
2014 static void arm_smmu_free_l2_strtab(struct arm_smmu_device
*smmu
)
2018 struct arm_smmu_strtab_cfg
*cfg
= &smmu
->strtab_cfg
;
2020 size
= 1 << (STRTAB_SPLIT
+ ilog2(STRTAB_STE_DWORDS
) + 3);
2021 for (i
= 0; i
< cfg
->num_l1_ents
; ++i
) {
2022 struct arm_smmu_strtab_l1_desc
*desc
= &cfg
->l1_desc
[i
];
2027 dma_free_coherent(smmu
->dev
, size
, desc
->l2ptr
,
2032 static int arm_smmu_init_l1_strtab(struct arm_smmu_device
*smmu
)
2035 struct arm_smmu_strtab_cfg
*cfg
= &smmu
->strtab_cfg
;
2036 size_t size
= sizeof(*cfg
->l1_desc
) * cfg
->num_l1_ents
;
2037 void *strtab
= smmu
->strtab_cfg
.strtab
;
2039 cfg
->l1_desc
= devm_kzalloc(smmu
->dev
, size
, GFP_KERNEL
);
2040 if (!cfg
->l1_desc
) {
2041 dev_err(smmu
->dev
, "failed to allocate l1 stream table desc\n");
2045 for (i
= 0; i
< cfg
->num_l1_ents
; ++i
) {
2046 arm_smmu_write_strtab_l1_desc(strtab
, &cfg
->l1_desc
[i
]);
2047 strtab
+= STRTAB_L1_DESC_DWORDS
<< 3;
2053 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device
*smmu
)
2059 struct arm_smmu_strtab_cfg
*cfg
= &smmu
->strtab_cfg
;
2062 * If we can resolve everything with a single L2 table, then we
2063 * just need a single L1 descriptor. Otherwise, calculate the L1
2064 * size, capped to the SIDSIZE.
2066 if (smmu
->sid_bits
< STRTAB_SPLIT
) {
2069 size
= STRTAB_L1_SZ_SHIFT
- (ilog2(STRTAB_L1_DESC_DWORDS
) + 3);
2070 size
= min(size
, smmu
->sid_bits
- STRTAB_SPLIT
);
2072 cfg
->num_l1_ents
= 1 << size
;
2074 size
+= STRTAB_SPLIT
;
2075 if (size
< smmu
->sid_bits
)
2077 "2-level strtab only covers %u/%u bits of SID\n",
2078 size
, smmu
->sid_bits
);
2080 l1size
= cfg
->num_l1_ents
* (STRTAB_L1_DESC_DWORDS
<< 3);
2081 strtab
= dma_zalloc_coherent(smmu
->dev
, l1size
, &cfg
->strtab_dma
,
2085 "failed to allocate l1 stream table (%u bytes)\n",
2089 cfg
->strtab
= strtab
;
2091 /* Configure strtab_base_cfg for 2 levels */
2092 reg
= STRTAB_BASE_CFG_FMT_2LVL
;
2093 reg
|= (size
& STRTAB_BASE_CFG_LOG2SIZE_MASK
)
2094 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT
;
2095 reg
|= (STRTAB_SPLIT
& STRTAB_BASE_CFG_SPLIT_MASK
)
2096 << STRTAB_BASE_CFG_SPLIT_SHIFT
;
2097 cfg
->strtab_base_cfg
= reg
;
2099 ret
= arm_smmu_init_l1_strtab(smmu
);
2101 dma_free_coherent(smmu
->dev
,
2108 static int arm_smmu_init_strtab_linear(struct arm_smmu_device
*smmu
)
2113 struct arm_smmu_strtab_cfg
*cfg
= &smmu
->strtab_cfg
;
2115 size
= (1 << smmu
->sid_bits
) * (STRTAB_STE_DWORDS
<< 3);
2116 strtab
= dma_zalloc_coherent(smmu
->dev
, size
, &cfg
->strtab_dma
,
2120 "failed to allocate linear stream table (%u bytes)\n",
2124 cfg
->strtab
= strtab
;
2125 cfg
->num_l1_ents
= 1 << smmu
->sid_bits
;
2127 /* Configure strtab_base_cfg for a linear table covering all SIDs */
2128 reg
= STRTAB_BASE_CFG_FMT_LINEAR
;
2129 reg
|= (smmu
->sid_bits
& STRTAB_BASE_CFG_LOG2SIZE_MASK
)
2130 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT
;
2131 cfg
->strtab_base_cfg
= reg
;
2133 arm_smmu_init_bypass_stes(strtab
, cfg
->num_l1_ents
);
2137 static int arm_smmu_init_strtab(struct arm_smmu_device
*smmu
)
2142 if (smmu
->features
& ARM_SMMU_FEAT_2_LVL_STRTAB
)
2143 ret
= arm_smmu_init_strtab_2lvl(smmu
);
2145 ret
= arm_smmu_init_strtab_linear(smmu
);
2150 /* Set the strtab base address */
2151 reg
= smmu
->strtab_cfg
.strtab_dma
&
2152 STRTAB_BASE_ADDR_MASK
<< STRTAB_BASE_ADDR_SHIFT
;
2153 reg
|= STRTAB_BASE_RA
;
2154 smmu
->strtab_cfg
.strtab_base
= reg
;
2156 /* Allocate the first VMID for stage-2 bypass STEs */
2157 set_bit(0, smmu
->vmid_map
);
2161 static void arm_smmu_free_strtab(struct arm_smmu_device
*smmu
)
2163 struct arm_smmu_strtab_cfg
*cfg
= &smmu
->strtab_cfg
;
2164 u32 size
= cfg
->num_l1_ents
;
2166 if (smmu
->features
& ARM_SMMU_FEAT_2_LVL_STRTAB
) {
2167 arm_smmu_free_l2_strtab(smmu
);
2168 size
*= STRTAB_L1_DESC_DWORDS
<< 3;
2170 size
*= STRTAB_STE_DWORDS
* 3;
2173 dma_free_coherent(smmu
->dev
, size
, cfg
->strtab
, cfg
->strtab_dma
);
2176 static int arm_smmu_init_structures(struct arm_smmu_device
*smmu
)
2180 ret
= arm_smmu_init_queues(smmu
);
2184 ret
= arm_smmu_init_strtab(smmu
);
2186 goto out_free_queues
;
2191 arm_smmu_free_queues(smmu
);
2195 static void arm_smmu_free_structures(struct arm_smmu_device
*smmu
)
2197 arm_smmu_free_strtab(smmu
);
2198 arm_smmu_free_queues(smmu
);
2201 static int arm_smmu_write_reg_sync(struct arm_smmu_device
*smmu
, u32 val
,
2202 unsigned int reg_off
, unsigned int ack_off
)
2206 writel_relaxed(val
, smmu
->base
+ reg_off
);
2207 return readl_relaxed_poll_timeout(smmu
->base
+ ack_off
, reg
, reg
== val
,
2208 1, ARM_SMMU_POLL_TIMEOUT_US
);
2211 static void arm_smmu_free_msis(void *data
)
2213 struct device
*dev
= data
;
2214 platform_msi_domain_free_irqs(dev
);
2217 static void arm_smmu_write_msi_msg(struct msi_desc
*desc
, struct msi_msg
*msg
)
2219 phys_addr_t doorbell
;
2220 struct device
*dev
= msi_desc_to_dev(desc
);
2221 struct arm_smmu_device
*smmu
= dev_get_drvdata(dev
);
2222 phys_addr_t
*cfg
= arm_smmu_msi_cfg
[desc
->platform
.msi_index
];
2224 doorbell
= (((u64
)msg
->address_hi
) << 32) | msg
->address_lo
;
2225 doorbell
&= MSI_CFG0_ADDR_MASK
<< MSI_CFG0_ADDR_SHIFT
;
2227 writeq_relaxed(doorbell
, smmu
->base
+ cfg
[0]);
2228 writel_relaxed(msg
->data
, smmu
->base
+ cfg
[1]);
2229 writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE
, smmu
->base
+ cfg
[2]);
2232 static void arm_smmu_setup_msis(struct arm_smmu_device
*smmu
)
2234 struct msi_desc
*desc
;
2235 int ret
, nvec
= ARM_SMMU_MAX_MSIS
;
2236 struct device
*dev
= smmu
->dev
;
2238 /* Clear the MSI address regs */
2239 writeq_relaxed(0, smmu
->base
+ ARM_SMMU_GERROR_IRQ_CFG0
);
2240 writeq_relaxed(0, smmu
->base
+ ARM_SMMU_EVTQ_IRQ_CFG0
);
2242 if (smmu
->features
& ARM_SMMU_FEAT_PRI
)
2243 writeq_relaxed(0, smmu
->base
+ ARM_SMMU_PRIQ_IRQ_CFG0
);
2247 if (!(smmu
->features
& ARM_SMMU_FEAT_MSI
))
2250 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2251 ret
= platform_msi_domain_alloc_irqs(dev
, nvec
, arm_smmu_write_msi_msg
);
2253 dev_warn(dev
, "failed to allocate MSIs\n");
2257 for_each_msi_entry(desc
, dev
) {
2258 switch (desc
->platform
.msi_index
) {
2259 case EVTQ_MSI_INDEX
:
2260 smmu
->evtq
.q
.irq
= desc
->irq
;
2262 case GERROR_MSI_INDEX
:
2263 smmu
->gerr_irq
= desc
->irq
;
2265 case PRIQ_MSI_INDEX
:
2266 smmu
->priq
.q
.irq
= desc
->irq
;
2268 default: /* Unknown */
2273 /* Add callback to free MSIs on teardown */
2274 devm_add_action(dev
, arm_smmu_free_msis
, dev
);
2277 static int arm_smmu_setup_irqs(struct arm_smmu_device
*smmu
)
2280 u32 irqen_flags
= IRQ_CTRL_EVTQ_IRQEN
| IRQ_CTRL_GERROR_IRQEN
;
2282 /* Disable IRQs first */
2283 ret
= arm_smmu_write_reg_sync(smmu
, 0, ARM_SMMU_IRQ_CTRL
,
2284 ARM_SMMU_IRQ_CTRLACK
);
2286 dev_err(smmu
->dev
, "failed to disable irqs\n");
2290 arm_smmu_setup_msis(smmu
);
2292 /* Request interrupt lines */
2293 irq
= smmu
->evtq
.q
.irq
;
2295 ret
= devm_request_threaded_irq(smmu
->dev
, irq
,
2296 arm_smmu_evtq_handler
,
2297 arm_smmu_evtq_thread
,
2298 0, "arm-smmu-v3-evtq", smmu
);
2299 if (IS_ERR_VALUE(ret
))
2300 dev_warn(smmu
->dev
, "failed to enable evtq irq\n");
2303 irq
= smmu
->cmdq
.q
.irq
;
2305 ret
= devm_request_irq(smmu
->dev
, irq
,
2306 arm_smmu_cmdq_sync_handler
, 0,
2307 "arm-smmu-v3-cmdq-sync", smmu
);
2308 if (IS_ERR_VALUE(ret
))
2309 dev_warn(smmu
->dev
, "failed to enable cmdq-sync irq\n");
2312 irq
= smmu
->gerr_irq
;
2314 ret
= devm_request_irq(smmu
->dev
, irq
, arm_smmu_gerror_handler
,
2315 0, "arm-smmu-v3-gerror", smmu
);
2316 if (IS_ERR_VALUE(ret
))
2317 dev_warn(smmu
->dev
, "failed to enable gerror irq\n");
2320 if (smmu
->features
& ARM_SMMU_FEAT_PRI
) {
2321 irq
= smmu
->priq
.q
.irq
;
2323 ret
= devm_request_threaded_irq(smmu
->dev
, irq
,
2324 arm_smmu_priq_handler
,
2325 arm_smmu_priq_thread
,
2326 0, "arm-smmu-v3-priq",
2328 if (IS_ERR_VALUE(ret
))
2330 "failed to enable priq irq\n");
2332 irqen_flags
|= IRQ_CTRL_PRIQ_IRQEN
;
2336 /* Enable interrupt generation on the SMMU */
2337 ret
= arm_smmu_write_reg_sync(smmu
, irqen_flags
,
2338 ARM_SMMU_IRQ_CTRL
, ARM_SMMU_IRQ_CTRLACK
);
2340 dev_warn(smmu
->dev
, "failed to enable irqs\n");
2345 static int arm_smmu_device_disable(struct arm_smmu_device
*smmu
)
2349 ret
= arm_smmu_write_reg_sync(smmu
, 0, ARM_SMMU_CR0
, ARM_SMMU_CR0ACK
);
2351 dev_err(smmu
->dev
, "failed to clear cr0\n");
2356 static int arm_smmu_device_reset(struct arm_smmu_device
*smmu
)
2360 struct arm_smmu_cmdq_ent cmd
;
2362 /* Clear CR0 and sync (disables SMMU and queue processing) */
2363 reg
= readl_relaxed(smmu
->base
+ ARM_SMMU_CR0
);
2364 if (reg
& CR0_SMMUEN
)
2365 dev_warn(smmu
->dev
, "SMMU currently enabled! Resetting...\n");
2367 ret
= arm_smmu_device_disable(smmu
);
2371 /* CR1 (table and queue memory attributes) */
2372 reg
= (CR1_SH_ISH
<< CR1_TABLE_SH_SHIFT
) |
2373 (CR1_CACHE_WB
<< CR1_TABLE_OC_SHIFT
) |
2374 (CR1_CACHE_WB
<< CR1_TABLE_IC_SHIFT
) |
2375 (CR1_SH_ISH
<< CR1_QUEUE_SH_SHIFT
) |
2376 (CR1_CACHE_WB
<< CR1_QUEUE_OC_SHIFT
) |
2377 (CR1_CACHE_WB
<< CR1_QUEUE_IC_SHIFT
);
2378 writel_relaxed(reg
, smmu
->base
+ ARM_SMMU_CR1
);
2380 /* CR2 (random crap) */
2381 reg
= CR2_PTM
| CR2_RECINVSID
| CR2_E2H
;
2382 writel_relaxed(reg
, smmu
->base
+ ARM_SMMU_CR2
);
2385 writeq_relaxed(smmu
->strtab_cfg
.strtab_base
,
2386 smmu
->base
+ ARM_SMMU_STRTAB_BASE
);
2387 writel_relaxed(smmu
->strtab_cfg
.strtab_base_cfg
,
2388 smmu
->base
+ ARM_SMMU_STRTAB_BASE_CFG
);
2391 writeq_relaxed(smmu
->cmdq
.q
.q_base
, smmu
->base
+ ARM_SMMU_CMDQ_BASE
);
2392 writel_relaxed(smmu
->cmdq
.q
.prod
, smmu
->base
+ ARM_SMMU_CMDQ_PROD
);
2393 writel_relaxed(smmu
->cmdq
.q
.cons
, smmu
->base
+ ARM_SMMU_CMDQ_CONS
);
2395 enables
= CR0_CMDQEN
;
2396 ret
= arm_smmu_write_reg_sync(smmu
, enables
, ARM_SMMU_CR0
,
2399 dev_err(smmu
->dev
, "failed to enable command queue\n");
2403 /* Invalidate any cached configuration */
2404 cmd
.opcode
= CMDQ_OP_CFGI_ALL
;
2405 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
2406 cmd
.opcode
= CMDQ_OP_CMD_SYNC
;
2407 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
2409 /* Invalidate any stale TLB entries */
2410 if (smmu
->features
& ARM_SMMU_FEAT_HYP
) {
2411 cmd
.opcode
= CMDQ_OP_TLBI_EL2_ALL
;
2412 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
2415 cmd
.opcode
= CMDQ_OP_TLBI_NSNH_ALL
;
2416 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
2417 cmd
.opcode
= CMDQ_OP_CMD_SYNC
;
2418 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
2421 writeq_relaxed(smmu
->evtq
.q
.q_base
, smmu
->base
+ ARM_SMMU_EVTQ_BASE
);
2422 writel_relaxed(smmu
->evtq
.q
.prod
, smmu
->base
+ ARM_SMMU_EVTQ_PROD
);
2423 writel_relaxed(smmu
->evtq
.q
.cons
, smmu
->base
+ ARM_SMMU_EVTQ_CONS
);
2425 enables
|= CR0_EVTQEN
;
2426 ret
= arm_smmu_write_reg_sync(smmu
, enables
, ARM_SMMU_CR0
,
2429 dev_err(smmu
->dev
, "failed to enable event queue\n");
2434 if (smmu
->features
& ARM_SMMU_FEAT_PRI
) {
2435 writeq_relaxed(smmu
->priq
.q
.q_base
,
2436 smmu
->base
+ ARM_SMMU_PRIQ_BASE
);
2437 writel_relaxed(smmu
->priq
.q
.prod
,
2438 smmu
->base
+ ARM_SMMU_PRIQ_PROD
);
2439 writel_relaxed(smmu
->priq
.q
.cons
,
2440 smmu
->base
+ ARM_SMMU_PRIQ_CONS
);
2442 enables
|= CR0_PRIQEN
;
2443 ret
= arm_smmu_write_reg_sync(smmu
, enables
, ARM_SMMU_CR0
,
2446 dev_err(smmu
->dev
, "failed to enable PRI queue\n");
2451 ret
= arm_smmu_setup_irqs(smmu
);
2453 dev_err(smmu
->dev
, "failed to setup irqs\n");
2457 /* Enable the SMMU interface */
2458 enables
|= CR0_SMMUEN
;
2459 ret
= arm_smmu_write_reg_sync(smmu
, enables
, ARM_SMMU_CR0
,
2462 dev_err(smmu
->dev
, "failed to enable SMMU interface\n");
2469 static int arm_smmu_device_probe(struct arm_smmu_device
*smmu
)
2473 unsigned long pgsize_bitmap
= 0;
2476 reg
= readl_relaxed(smmu
->base
+ ARM_SMMU_IDR0
);
2478 /* 2-level structures */
2479 if ((reg
& IDR0_ST_LVL_MASK
<< IDR0_ST_LVL_SHIFT
) == IDR0_ST_LVL_2LVL
)
2480 smmu
->features
|= ARM_SMMU_FEAT_2_LVL_STRTAB
;
2482 if (reg
& IDR0_CD2L
)
2483 smmu
->features
|= ARM_SMMU_FEAT_2_LVL_CDTAB
;
2486 * Translation table endianness.
2487 * We currently require the same endianness as the CPU, but this
2488 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2490 switch (reg
& IDR0_TTENDIAN_MASK
<< IDR0_TTENDIAN_SHIFT
) {
2491 case IDR0_TTENDIAN_MIXED
:
2492 smmu
->features
|= ARM_SMMU_FEAT_TT_LE
| ARM_SMMU_FEAT_TT_BE
;
2495 case IDR0_TTENDIAN_BE
:
2496 smmu
->features
|= ARM_SMMU_FEAT_TT_BE
;
2499 case IDR0_TTENDIAN_LE
:
2500 smmu
->features
|= ARM_SMMU_FEAT_TT_LE
;
2504 dev_err(smmu
->dev
, "unknown/unsupported TT endianness!\n");
2508 /* Boolean feature flags */
2509 if (IS_ENABLED(CONFIG_PCI_PRI
) && reg
& IDR0_PRI
)
2510 smmu
->features
|= ARM_SMMU_FEAT_PRI
;
2512 if (IS_ENABLED(CONFIG_PCI_ATS
) && reg
& IDR0_ATS
)
2513 smmu
->features
|= ARM_SMMU_FEAT_ATS
;
2516 smmu
->features
|= ARM_SMMU_FEAT_SEV
;
2519 smmu
->features
|= ARM_SMMU_FEAT_MSI
;
2522 smmu
->features
|= ARM_SMMU_FEAT_HYP
;
2525 * The dma-coherent property is used in preference to the ID
2526 * register, but warn on mismatch.
2528 coherent
= of_dma_is_coherent(smmu
->dev
->of_node
);
2530 smmu
->features
|= ARM_SMMU_FEAT_COHERENCY
;
2532 if (!!(reg
& IDR0_COHACC
) != coherent
)
2533 dev_warn(smmu
->dev
, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2534 coherent
? "true" : "false");
2536 if (reg
& IDR0_STALL_MODEL
)
2537 smmu
->features
|= ARM_SMMU_FEAT_STALLS
;
2540 smmu
->features
|= ARM_SMMU_FEAT_TRANS_S1
;
2543 smmu
->features
|= ARM_SMMU_FEAT_TRANS_S2
;
2545 if (!(reg
& (IDR0_S1P
| IDR0_S2P
))) {
2546 dev_err(smmu
->dev
, "no translation support!\n");
2550 /* We only support the AArch64 table format at present */
2551 switch (reg
& IDR0_TTF_MASK
<< IDR0_TTF_SHIFT
) {
2552 case IDR0_TTF_AARCH32_64
:
2555 case IDR0_TTF_AARCH64
:
2558 dev_err(smmu
->dev
, "AArch64 table format not supported!\n");
2562 /* ASID/VMID sizes */
2563 smmu
->asid_bits
= reg
& IDR0_ASID16
? 16 : 8;
2564 smmu
->vmid_bits
= reg
& IDR0_VMID16
? 16 : 8;
2567 reg
= readl_relaxed(smmu
->base
+ ARM_SMMU_IDR1
);
2568 if (reg
& (IDR1_TABLES_PRESET
| IDR1_QUEUES_PRESET
| IDR1_REL
)) {
2569 dev_err(smmu
->dev
, "embedded implementation not supported\n");
2573 /* Queue sizes, capped at 4k */
2574 smmu
->cmdq
.q
.max_n_shift
= min((u32
)CMDQ_MAX_SZ_SHIFT
,
2575 reg
>> IDR1_CMDQ_SHIFT
& IDR1_CMDQ_MASK
);
2576 if (!smmu
->cmdq
.q
.max_n_shift
) {
2577 /* Odd alignment restrictions on the base, so ignore for now */
2578 dev_err(smmu
->dev
, "unit-length command queue not supported\n");
2582 smmu
->evtq
.q
.max_n_shift
= min((u32
)EVTQ_MAX_SZ_SHIFT
,
2583 reg
>> IDR1_EVTQ_SHIFT
& IDR1_EVTQ_MASK
);
2584 smmu
->priq
.q
.max_n_shift
= min((u32
)PRIQ_MAX_SZ_SHIFT
,
2585 reg
>> IDR1_PRIQ_SHIFT
& IDR1_PRIQ_MASK
);
2587 /* SID/SSID sizes */
2588 smmu
->ssid_bits
= reg
>> IDR1_SSID_SHIFT
& IDR1_SSID_MASK
;
2589 smmu
->sid_bits
= reg
>> IDR1_SID_SHIFT
& IDR1_SID_MASK
;
2592 reg
= readl_relaxed(smmu
->base
+ ARM_SMMU_IDR5
);
2594 /* Maximum number of outstanding stalls */
2595 smmu
->evtq
.max_stalls
= reg
>> IDR5_STALL_MAX_SHIFT
2596 & IDR5_STALL_MAX_MASK
;
2599 if (reg
& IDR5_GRAN64K
)
2600 pgsize_bitmap
|= SZ_64K
| SZ_512M
;
2601 if (reg
& IDR5_GRAN16K
)
2602 pgsize_bitmap
|= SZ_16K
| SZ_32M
;
2603 if (reg
& IDR5_GRAN4K
)
2604 pgsize_bitmap
|= SZ_4K
| SZ_2M
| SZ_1G
;
2606 arm_smmu_ops
.pgsize_bitmap
&= pgsize_bitmap
;
2608 /* Output address size */
2609 switch (reg
& IDR5_OAS_MASK
<< IDR5_OAS_SHIFT
) {
2610 case IDR5_OAS_32_BIT
:
2613 case IDR5_OAS_36_BIT
:
2616 case IDR5_OAS_40_BIT
:
2619 case IDR5_OAS_42_BIT
:
2622 case IDR5_OAS_44_BIT
:
2627 "unknown output address size. Truncating to 48-bit\n");
2629 case IDR5_OAS_48_BIT
:
2633 /* Set the DMA mask for our table walker */
2634 if (dma_set_mask_and_coherent(smmu
->dev
, DMA_BIT_MASK(smmu
->oas
)))
2636 "failed to set DMA mask for table walker\n");
2638 smmu
->ias
= max(smmu
->ias
, smmu
->oas
);
2640 dev_info(smmu
->dev
, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2641 smmu
->ias
, smmu
->oas
, smmu
->features
);
2645 static int arm_smmu_device_dt_probe(struct platform_device
*pdev
)
2648 struct resource
*res
;
2649 struct arm_smmu_device
*smmu
;
2650 struct device
*dev
= &pdev
->dev
;
2652 smmu
= devm_kzalloc(dev
, sizeof(*smmu
), GFP_KERNEL
);
2654 dev_err(dev
, "failed to allocate arm_smmu_device\n");
2660 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2661 if (resource_size(res
) + 1 < SZ_128K
) {
2662 dev_err(dev
, "MMIO region too small (%pr)\n", res
);
2666 smmu
->base
= devm_ioremap_resource(dev
, res
);
2667 if (IS_ERR(smmu
->base
))
2668 return PTR_ERR(smmu
->base
);
2670 /* Interrupt lines */
2671 irq
= platform_get_irq_byname(pdev
, "eventq");
2673 smmu
->evtq
.q
.irq
= irq
;
2675 irq
= platform_get_irq_byname(pdev
, "priq");
2677 smmu
->priq
.q
.irq
= irq
;
2679 irq
= platform_get_irq_byname(pdev
, "cmdq-sync");
2681 smmu
->cmdq
.q
.irq
= irq
;
2683 irq
= platform_get_irq_byname(pdev
, "gerror");
2685 smmu
->gerr_irq
= irq
;
2687 parse_driver_options(smmu
);
2690 ret
= arm_smmu_device_probe(smmu
);
2694 /* Initialise in-memory data structures */
2695 ret
= arm_smmu_init_structures(smmu
);
2699 /* Record our private device structure */
2700 platform_set_drvdata(pdev
, smmu
);
2702 /* Reset the device */
2703 ret
= arm_smmu_device_reset(smmu
);
2705 goto out_free_structures
;
2709 out_free_structures
:
2710 arm_smmu_free_structures(smmu
);
2714 static int arm_smmu_device_remove(struct platform_device
*pdev
)
2716 struct arm_smmu_device
*smmu
= platform_get_drvdata(pdev
);
2718 arm_smmu_device_disable(smmu
);
2719 arm_smmu_free_structures(smmu
);
2723 static struct of_device_id arm_smmu_of_match
[] = {
2724 { .compatible
= "arm,smmu-v3", },
2727 MODULE_DEVICE_TABLE(of
, arm_smmu_of_match
);
2729 static struct platform_driver arm_smmu_driver
= {
2731 .name
= "arm-smmu-v3",
2732 .of_match_table
= of_match_ptr(arm_smmu_of_match
),
2734 .probe
= arm_smmu_device_dt_probe
,
2735 .remove
= arm_smmu_device_remove
,
2738 static int __init
arm_smmu_init(void)
2740 struct device_node
*np
;
2743 np
= of_find_matching_node(NULL
, arm_smmu_of_match
);
2749 ret
= platform_driver_register(&arm_smmu_driver
);
2753 return bus_set_iommu(&pci_bus_type
, &arm_smmu_ops
);
2756 static void __exit
arm_smmu_exit(void)
2758 return platform_driver_unregister(&arm_smmu_driver
);
2761 subsys_initcall(arm_smmu_init
);
2762 module_exit(arm_smmu_exit
);
2764 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2765 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2766 MODULE_LICENSE("GPL v2");