2 * SuperH MSIOF SPI Master Interface
4 * Copyright (c) 2009 Magnus Damm
5 * Copyright (C) 2014 Glider bvba
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
13 #include <linux/bitmap.h>
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/err.h>
20 #include <linux/gpio.h>
21 #include <linux/interrupt.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sh_dma.h>
31 #include <linux/spi/sh_msiof.h>
32 #include <linux/spi/spi.h>
34 #include <asm/unaligned.h>
37 struct sh_msiof_chipdata
{
43 struct sh_msiof_spi_priv
{
44 struct spi_master
*master
;
45 void __iomem
*mapbase
;
47 struct platform_device
*pdev
;
48 const struct sh_msiof_chipdata
*chipdata
;
49 struct sh_msiof_spi_info
*info
;
50 struct completion done
;
51 unsigned int tx_fifo_size
;
52 unsigned int rx_fifo_size
;
55 dma_addr_t tx_dma_addr
;
56 dma_addr_t rx_dma_addr
;
59 #define TMDR1 0x00 /* Transmit Mode Register 1 */
60 #define TMDR2 0x04 /* Transmit Mode Register 2 */
61 #define TMDR3 0x08 /* Transmit Mode Register 3 */
62 #define RMDR1 0x10 /* Receive Mode Register 1 */
63 #define RMDR2 0x14 /* Receive Mode Register 2 */
64 #define RMDR3 0x18 /* Receive Mode Register 3 */
65 #define TSCR 0x20 /* Transmit Clock Select Register */
66 #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
67 #define CTR 0x28 /* Control Register */
68 #define FCTR 0x30 /* FIFO Control Register */
69 #define STR 0x40 /* Status Register */
70 #define IER 0x44 /* Interrupt Enable Register */
71 #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
72 #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
73 #define TFDR 0x50 /* Transmit FIFO Data Register */
74 #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
75 #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
76 #define RFDR 0x60 /* Receive FIFO Data Register */
79 #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
80 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
81 #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
82 #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
83 #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
84 #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
85 #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
86 #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
87 #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
88 #define MDR1_FLD_SHIFT 2
89 #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
91 #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
94 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
95 #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
96 #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
99 #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
100 #define SCR_BRPS(i) (((i) - 1) << 8)
101 #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
102 #define SCR_BRDV_DIV_2 0x0000
103 #define SCR_BRDV_DIV_4 0x0001
104 #define SCR_BRDV_DIV_8 0x0002
105 #define SCR_BRDV_DIV_16 0x0003
106 #define SCR_BRDV_DIV_32 0x0004
107 #define SCR_BRDV_DIV_1 0x0007
110 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
111 #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
112 #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
113 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
114 #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
115 #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
116 #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
117 #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
118 #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
119 #define CTR_TXDIZ_LOW 0x00000000 /* 0 */
120 #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
121 #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
122 #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
123 #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
124 #define CTR_TXE 0x00000200 /* Transmit Enable */
125 #define CTR_RXE 0x00000100 /* Receive Enable */
128 #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
129 #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
130 #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
131 #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
132 #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
133 #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
134 #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
135 #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
136 #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
137 #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
138 #define FCTR_TFUA_SHIFT 20
139 #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
140 #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
141 #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
142 #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
143 #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
144 #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
145 #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
146 #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
147 #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
148 #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
149 #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
150 #define FCTR_RFUA_SHIFT 4
151 #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
154 #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
155 #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
156 #define STR_TEOF 0x00800000 /* Frame Transmission End */
157 #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
158 #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
159 #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
160 #define STR_RFFUL 0x00002000 /* Receive FIFO Full */
161 #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
162 #define STR_REOF 0x00000080 /* Frame Reception End */
163 #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
164 #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
165 #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
168 #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
169 #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
170 #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
171 #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
172 #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
173 #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
174 #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
175 #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
176 #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
177 #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
178 #define IER_REOFE 0x00000080 /* Frame Reception End Enable */
179 #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
180 #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
181 #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
184 static u32
sh_msiof_read(struct sh_msiof_spi_priv
*p
, int reg_offs
)
189 return ioread16(p
->mapbase
+ reg_offs
);
191 return ioread32(p
->mapbase
+ reg_offs
);
195 static void sh_msiof_write(struct sh_msiof_spi_priv
*p
, int reg_offs
,
201 iowrite16(value
, p
->mapbase
+ reg_offs
);
204 iowrite32(value
, p
->mapbase
+ reg_offs
);
209 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv
*p
,
212 u32 mask
= clr
| set
;
216 data
= sh_msiof_read(p
, CTR
);
219 sh_msiof_write(p
, CTR
, data
);
221 for (k
= 100; k
> 0; k
--) {
222 if ((sh_msiof_read(p
, CTR
) & mask
) == set
)
228 return k
> 0 ? 0 : -ETIMEDOUT
;
231 static irqreturn_t
sh_msiof_spi_irq(int irq
, void *data
)
233 struct sh_msiof_spi_priv
*p
= data
;
235 /* just disable the interrupt and wake up */
236 sh_msiof_write(p
, IER
, 0);
245 } const sh_msiof_spi_div_table
[] = {
246 { 1, SCR_BRDV_DIV_1
},
247 { 2, SCR_BRDV_DIV_2
},
248 { 4, SCR_BRDV_DIV_4
},
249 { 8, SCR_BRDV_DIV_8
},
250 { 16, SCR_BRDV_DIV_16
},
251 { 32, SCR_BRDV_DIV_32
},
254 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv
*p
,
255 unsigned long parent_rate
, u32 spi_hz
)
257 unsigned long div
= 1024;
261 if (!WARN_ON(!spi_hz
|| !parent_rate
))
262 div
= DIV_ROUND_UP(parent_rate
, spi_hz
);
264 for (k
= 0; k
< ARRAY_SIZE(sh_msiof_spi_div_table
); k
++) {
265 brps
= DIV_ROUND_UP(div
, sh_msiof_spi_div_table
[k
].div
);
266 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
267 if (sh_msiof_spi_div_table
[k
].div
== 1 && brps
> 2)
269 if (brps
<= 32) /* max of brdv is 32 */
273 k
= min_t(int, k
, ARRAY_SIZE(sh_msiof_spi_div_table
) - 1);
275 scr
= sh_msiof_spi_div_table
[k
].brdv
| SCR_BRPS(brps
);
276 sh_msiof_write(p
, TSCR
, scr
);
277 if (!(p
->chipdata
->master_flags
& SPI_MASTER_MUST_TX
))
278 sh_msiof_write(p
, RSCR
, scr
);
281 static u32
sh_msiof_get_delay_bit(u32 dtdl_or_syncdl
)
284 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
288 * b'011 (SYNCDL only) : 300
292 if (dtdl_or_syncdl
% 100)
293 return dtdl_or_syncdl
/ 100 + 5;
295 return dtdl_or_syncdl
/ 100;
298 static u32
sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv
*p
)
305 /* check if DTDL and SYNCDL is allowed value */
306 if (p
->info
->dtdl
> 200 || p
->info
->syncdl
> 300) {
307 dev_warn(&p
->pdev
->dev
, "DTDL or SYNCDL is too large\n");
311 /* check if the sum of DTDL and SYNCDL becomes an integer value */
312 if ((p
->info
->dtdl
+ p
->info
->syncdl
) % 100) {
313 dev_warn(&p
->pdev
->dev
, "the sum of DTDL/SYNCDL is not good\n");
317 val
= sh_msiof_get_delay_bit(p
->info
->dtdl
) << MDR1_DTDL_SHIFT
;
318 val
|= sh_msiof_get_delay_bit(p
->info
->syncdl
) << MDR1_SYNCDL_SHIFT
;
323 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv
*p
,
325 u32 tx_hi_z
, u32 lsb_first
, u32 cs_high
)
331 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
337 tmp
= MDR1_SYNCMD_SPI
| 1 << MDR1_FLD_SHIFT
| MDR1_XXSTP
;
338 tmp
|= !cs_high
<< MDR1_SYNCAC_SHIFT
;
339 tmp
|= lsb_first
<< MDR1_BITLSB_SHIFT
;
340 tmp
|= sh_msiof_spi_get_dtdl_and_syncdl(p
);
341 sh_msiof_write(p
, TMDR1
, tmp
| MDR1_TRMD
| TMDR1_PCON
);
342 if (p
->chipdata
->master_flags
& SPI_MASTER_MUST_TX
) {
343 /* These bits are reserved if RX needs TX */
346 sh_msiof_write(p
, RMDR1
, tmp
);
349 tmp
|= CTR_TSCKIZ_SCK
| cpol
<< CTR_TSCKIZ_POL_SHIFT
;
350 tmp
|= CTR_RSCKIZ_SCK
| cpol
<< CTR_RSCKIZ_POL_SHIFT
;
354 tmp
|= edge
<< CTR_TEDG_SHIFT
;
355 tmp
|= edge
<< CTR_REDG_SHIFT
;
356 tmp
|= tx_hi_z
? CTR_TXDIZ_HIZ
: CTR_TXDIZ_LOW
;
357 sh_msiof_write(p
, CTR
, tmp
);
360 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv
*p
,
361 const void *tx_buf
, void *rx_buf
,
364 u32 dr2
= MDR2_BITLEN1(bits
) | MDR2_WDLEN1(words
);
366 if (tx_buf
|| (p
->chipdata
->master_flags
& SPI_MASTER_MUST_TX
))
367 sh_msiof_write(p
, TMDR2
, dr2
);
369 sh_msiof_write(p
, TMDR2
, dr2
| MDR2_GRPMASK1
);
372 sh_msiof_write(p
, RMDR2
, dr2
);
375 static void sh_msiof_reset_str(struct sh_msiof_spi_priv
*p
)
377 sh_msiof_write(p
, STR
,
378 sh_msiof_read(p
, STR
) & ~(STR_TDREQ
| STR_RDREQ
));
381 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv
*p
,
382 const void *tx_buf
, int words
, int fs
)
384 const u8
*buf_8
= tx_buf
;
387 for (k
= 0; k
< words
; k
++)
388 sh_msiof_write(p
, TFDR
, buf_8
[k
] << fs
);
391 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv
*p
,
392 const void *tx_buf
, int words
, int fs
)
394 const u16
*buf_16
= tx_buf
;
397 for (k
= 0; k
< words
; k
++)
398 sh_msiof_write(p
, TFDR
, buf_16
[k
] << fs
);
401 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv
*p
,
402 const void *tx_buf
, int words
, int fs
)
404 const u16
*buf_16
= tx_buf
;
407 for (k
= 0; k
< words
; k
++)
408 sh_msiof_write(p
, TFDR
, get_unaligned(&buf_16
[k
]) << fs
);
411 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv
*p
,
412 const void *tx_buf
, int words
, int fs
)
414 const u32
*buf_32
= tx_buf
;
417 for (k
= 0; k
< words
; k
++)
418 sh_msiof_write(p
, TFDR
, buf_32
[k
] << fs
);
421 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv
*p
,
422 const void *tx_buf
, int words
, int fs
)
424 const u32
*buf_32
= tx_buf
;
427 for (k
= 0; k
< words
; k
++)
428 sh_msiof_write(p
, TFDR
, get_unaligned(&buf_32
[k
]) << fs
);
431 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv
*p
,
432 const void *tx_buf
, int words
, int fs
)
434 const u32
*buf_32
= tx_buf
;
437 for (k
= 0; k
< words
; k
++)
438 sh_msiof_write(p
, TFDR
, swab32(buf_32
[k
] << fs
));
441 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv
*p
,
442 const void *tx_buf
, int words
, int fs
)
444 const u32
*buf_32
= tx_buf
;
447 for (k
= 0; k
< words
; k
++)
448 sh_msiof_write(p
, TFDR
, swab32(get_unaligned(&buf_32
[k
]) << fs
));
451 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv
*p
,
452 void *rx_buf
, int words
, int fs
)
457 for (k
= 0; k
< words
; k
++)
458 buf_8
[k
] = sh_msiof_read(p
, RFDR
) >> fs
;
461 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv
*p
,
462 void *rx_buf
, int words
, int fs
)
464 u16
*buf_16
= rx_buf
;
467 for (k
= 0; k
< words
; k
++)
468 buf_16
[k
] = sh_msiof_read(p
, RFDR
) >> fs
;
471 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv
*p
,
472 void *rx_buf
, int words
, int fs
)
474 u16
*buf_16
= rx_buf
;
477 for (k
= 0; k
< words
; k
++)
478 put_unaligned(sh_msiof_read(p
, RFDR
) >> fs
, &buf_16
[k
]);
481 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv
*p
,
482 void *rx_buf
, int words
, int fs
)
484 u32
*buf_32
= rx_buf
;
487 for (k
= 0; k
< words
; k
++)
488 buf_32
[k
] = sh_msiof_read(p
, RFDR
) >> fs
;
491 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv
*p
,
492 void *rx_buf
, int words
, int fs
)
494 u32
*buf_32
= rx_buf
;
497 for (k
= 0; k
< words
; k
++)
498 put_unaligned(sh_msiof_read(p
, RFDR
) >> fs
, &buf_32
[k
]);
501 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv
*p
,
502 void *rx_buf
, int words
, int fs
)
504 u32
*buf_32
= rx_buf
;
507 for (k
= 0; k
< words
; k
++)
508 buf_32
[k
] = swab32(sh_msiof_read(p
, RFDR
) >> fs
);
511 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv
*p
,
512 void *rx_buf
, int words
, int fs
)
514 u32
*buf_32
= rx_buf
;
517 for (k
= 0; k
< words
; k
++)
518 put_unaligned(swab32(sh_msiof_read(p
, RFDR
) >> fs
), &buf_32
[k
]);
521 static int sh_msiof_spi_setup(struct spi_device
*spi
)
523 struct device_node
*np
= spi
->master
->dev
.of_node
;
524 struct sh_msiof_spi_priv
*p
= spi_master_get_devdata(spi
->master
);
526 pm_runtime_get_sync(&p
->pdev
->dev
);
530 * Use spi->controller_data for CS (same strategy as spi_gpio),
531 * if any. otherwise let HW control CS
533 spi
->cs_gpio
= (uintptr_t)spi
->controller_data
;
536 /* Configure pins before deasserting CS */
537 sh_msiof_spi_set_pin_regs(p
, !!(spi
->mode
& SPI_CPOL
),
538 !!(spi
->mode
& SPI_CPHA
),
539 !!(spi
->mode
& SPI_3WIRE
),
540 !!(spi
->mode
& SPI_LSB_FIRST
),
541 !!(spi
->mode
& SPI_CS_HIGH
));
543 if (spi
->cs_gpio
>= 0)
544 gpio_set_value(spi
->cs_gpio
, !(spi
->mode
& SPI_CS_HIGH
));
547 pm_runtime_put(&p
->pdev
->dev
);
552 static int sh_msiof_prepare_message(struct spi_master
*master
,
553 struct spi_message
*msg
)
555 struct sh_msiof_spi_priv
*p
= spi_master_get_devdata(master
);
556 const struct spi_device
*spi
= msg
->spi
;
558 /* Configure pins before asserting CS */
559 sh_msiof_spi_set_pin_regs(p
, !!(spi
->mode
& SPI_CPOL
),
560 !!(spi
->mode
& SPI_CPHA
),
561 !!(spi
->mode
& SPI_3WIRE
),
562 !!(spi
->mode
& SPI_LSB_FIRST
),
563 !!(spi
->mode
& SPI_CS_HIGH
));
567 static int sh_msiof_spi_start(struct sh_msiof_spi_priv
*p
, void *rx_buf
)
571 /* setup clock and rx/tx signals */
572 ret
= sh_msiof_modify_ctr_wait(p
, 0, CTR_TSCKE
);
574 ret
= sh_msiof_modify_ctr_wait(p
, 0, CTR_RXE
);
576 ret
= sh_msiof_modify_ctr_wait(p
, 0, CTR_TXE
);
578 /* start by setting frame bit */
580 ret
= sh_msiof_modify_ctr_wait(p
, 0, CTR_TFSE
);
585 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv
*p
, void *rx_buf
)
589 /* shut down frame, rx/tx and clock signals */
590 ret
= sh_msiof_modify_ctr_wait(p
, CTR_TFSE
, 0);
592 ret
= sh_msiof_modify_ctr_wait(p
, CTR_TXE
, 0);
594 ret
= sh_msiof_modify_ctr_wait(p
, CTR_RXE
, 0);
596 ret
= sh_msiof_modify_ctr_wait(p
, CTR_TSCKE
, 0);
601 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv
*p
,
602 void (*tx_fifo
)(struct sh_msiof_spi_priv
*,
603 const void *, int, int),
604 void (*rx_fifo
)(struct sh_msiof_spi_priv
*,
606 const void *tx_buf
, void *rx_buf
,
612 /* limit maximum word transfer to rx/tx fifo size */
614 words
= min_t(int, words
, p
->tx_fifo_size
);
616 words
= min_t(int, words
, p
->rx_fifo_size
);
618 /* the fifo contents need shifting */
619 fifo_shift
= 32 - bits
;
621 /* default FIFO watermarks for PIO */
622 sh_msiof_write(p
, FCTR
, 0);
624 /* setup msiof transfer mode registers */
625 sh_msiof_spi_set_mode_regs(p
, tx_buf
, rx_buf
, bits
, words
);
626 sh_msiof_write(p
, IER
, IER_TEOFE
| IER_REOFE
);
630 tx_fifo(p
, tx_buf
, words
, fifo_shift
);
632 reinit_completion(&p
->done
);
634 ret
= sh_msiof_spi_start(p
, rx_buf
);
636 dev_err(&p
->pdev
->dev
, "failed to start hardware\n");
640 /* wait for tx fifo to be emptied / rx fifo to be filled */
641 if (!wait_for_completion_timeout(&p
->done
, HZ
)) {
642 dev_err(&p
->pdev
->dev
, "PIO timeout\n");
649 rx_fifo(p
, rx_buf
, words
, fifo_shift
);
651 /* clear status bits */
652 sh_msiof_reset_str(p
);
654 ret
= sh_msiof_spi_stop(p
, rx_buf
);
656 dev_err(&p
->pdev
->dev
, "failed to shut down hardware\n");
663 sh_msiof_reset_str(p
);
664 sh_msiof_spi_stop(p
, rx_buf
);
666 sh_msiof_write(p
, IER
, 0);
670 static void sh_msiof_dma_complete(void *arg
)
672 struct sh_msiof_spi_priv
*p
= arg
;
674 sh_msiof_write(p
, IER
, 0);
678 static int sh_msiof_dma_once(struct sh_msiof_spi_priv
*p
, const void *tx
,
679 void *rx
, unsigned int len
)
682 struct dma_async_tx_descriptor
*desc_tx
= NULL
, *desc_rx
= NULL
;
686 /* First prepare and submit the DMA request(s), as this may fail */
688 ier_bits
|= IER_RDREQE
| IER_RDMAE
;
689 desc_rx
= dmaengine_prep_slave_single(p
->master
->dma_rx
,
690 p
->rx_dma_addr
, len
, DMA_FROM_DEVICE
,
691 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
695 desc_rx
->callback
= sh_msiof_dma_complete
;
696 desc_rx
->callback_param
= p
;
697 cookie
= dmaengine_submit(desc_rx
);
698 if (dma_submit_error(cookie
))
703 ier_bits
|= IER_TDREQE
| IER_TDMAE
;
704 dma_sync_single_for_device(p
->master
->dma_tx
->device
->dev
,
705 p
->tx_dma_addr
, len
, DMA_TO_DEVICE
);
706 desc_tx
= dmaengine_prep_slave_single(p
->master
->dma_tx
,
707 p
->tx_dma_addr
, len
, DMA_TO_DEVICE
,
708 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
716 desc_tx
->callback
= NULL
;
718 desc_tx
->callback
= sh_msiof_dma_complete
;
719 desc_tx
->callback_param
= p
;
721 cookie
= dmaengine_submit(desc_tx
);
722 if (dma_submit_error(cookie
)) {
728 /* 1 stage FIFO watermarks for DMA */
729 sh_msiof_write(p
, FCTR
, FCTR_TFWM_1
| FCTR_RFWM_1
);
731 /* setup msiof transfer mode registers (32-bit words) */
732 sh_msiof_spi_set_mode_regs(p
, tx
, rx
, 32, len
/ 4);
734 sh_msiof_write(p
, IER
, ier_bits
);
736 reinit_completion(&p
->done
);
740 dma_async_issue_pending(p
->master
->dma_rx
);
742 dma_async_issue_pending(p
->master
->dma_tx
);
744 ret
= sh_msiof_spi_start(p
, rx
);
746 dev_err(&p
->pdev
->dev
, "failed to start hardware\n");
750 /* wait for tx fifo to be emptied / rx fifo to be filled */
751 if (!wait_for_completion_timeout(&p
->done
, HZ
)) {
752 dev_err(&p
->pdev
->dev
, "DMA timeout\n");
757 /* clear status bits */
758 sh_msiof_reset_str(p
);
760 ret
= sh_msiof_spi_stop(p
, rx
);
762 dev_err(&p
->pdev
->dev
, "failed to shut down hardware\n");
767 dma_sync_single_for_cpu(p
->master
->dma_rx
->device
->dev
,
774 sh_msiof_reset_str(p
);
775 sh_msiof_spi_stop(p
, rx
);
778 dmaengine_terminate_all(p
->master
->dma_tx
);
781 dmaengine_terminate_all(p
->master
->dma_rx
);
782 sh_msiof_write(p
, IER
, 0);
786 static void copy_bswap32(u32
*dst
, const u32
*src
, unsigned int words
)
788 /* src or dst can be unaligned, but not both */
789 if ((unsigned long)src
& 3) {
791 *dst
++ = swab32(get_unaligned(src
));
794 } else if ((unsigned long)dst
& 3) {
796 put_unaligned(swab32(*src
++), dst
);
801 *dst
++ = swab32(*src
++);
805 static void copy_wswap32(u32
*dst
, const u32
*src
, unsigned int words
)
807 /* src or dst can be unaligned, but not both */
808 if ((unsigned long)src
& 3) {
810 *dst
++ = swahw32(get_unaligned(src
));
813 } else if ((unsigned long)dst
& 3) {
815 put_unaligned(swahw32(*src
++), dst
);
820 *dst
++ = swahw32(*src
++);
824 static void copy_plain32(u32
*dst
, const u32
*src
, unsigned int words
)
826 memcpy(dst
, src
, words
* 4);
829 static int sh_msiof_transfer_one(struct spi_master
*master
,
830 struct spi_device
*spi
,
831 struct spi_transfer
*t
)
833 struct sh_msiof_spi_priv
*p
= spi_master_get_devdata(master
);
834 void (*copy32
)(u32
*, const u32
*, unsigned int);
835 void (*tx_fifo
)(struct sh_msiof_spi_priv
*, const void *, int, int);
836 void (*rx_fifo
)(struct sh_msiof_spi_priv
*, void *, int, int);
837 const void *tx_buf
= t
->tx_buf
;
838 void *rx_buf
= t
->rx_buf
;
839 unsigned int len
= t
->len
;
840 unsigned int bits
= t
->bits_per_word
;
841 unsigned int bytes_per_word
;
847 /* setup clocks (clock already enabled in chipselect()) */
848 sh_msiof_spi_set_clk_regs(p
, clk_get_rate(p
->clk
), t
->speed_hz
);
850 while (master
->dma_tx
&& len
> 15) {
852 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
853 * words, with byte resp. word swapping.
858 l
= min(len
, p
->tx_fifo_size
* 4);
860 l
= min(len
, p
->rx_fifo_size
* 4);
865 copy32
= copy_bswap32
;
866 } else if (bits
<= 16) {
869 copy32
= copy_wswap32
;
871 copy32
= copy_plain32
;
875 copy32(p
->tx_dma_page
, tx_buf
, l
/ 4);
877 ret
= sh_msiof_dma_once(p
, tx_buf
, rx_buf
, l
);
878 if (ret
== -EAGAIN
) {
879 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
880 dev_driver_string(&p
->pdev
->dev
),
881 dev_name(&p
->pdev
->dev
));
888 copy32(rx_buf
, p
->rx_dma_page
, l
/ 4);
899 if (bits
<= 8 && len
> 15 && !(len
& 3)) {
906 /* setup bytes per word and fifo read/write functions */
909 tx_fifo
= sh_msiof_spi_write_fifo_8
;
910 rx_fifo
= sh_msiof_spi_read_fifo_8
;
911 } else if (bits
<= 16) {
913 if ((unsigned long)tx_buf
& 0x01)
914 tx_fifo
= sh_msiof_spi_write_fifo_16u
;
916 tx_fifo
= sh_msiof_spi_write_fifo_16
;
918 if ((unsigned long)rx_buf
& 0x01)
919 rx_fifo
= sh_msiof_spi_read_fifo_16u
;
921 rx_fifo
= sh_msiof_spi_read_fifo_16
;
924 if ((unsigned long)tx_buf
& 0x03)
925 tx_fifo
= sh_msiof_spi_write_fifo_s32u
;
927 tx_fifo
= sh_msiof_spi_write_fifo_s32
;
929 if ((unsigned long)rx_buf
& 0x03)
930 rx_fifo
= sh_msiof_spi_read_fifo_s32u
;
932 rx_fifo
= sh_msiof_spi_read_fifo_s32
;
935 if ((unsigned long)tx_buf
& 0x03)
936 tx_fifo
= sh_msiof_spi_write_fifo_32u
;
938 tx_fifo
= sh_msiof_spi_write_fifo_32
;
940 if ((unsigned long)rx_buf
& 0x03)
941 rx_fifo
= sh_msiof_spi_read_fifo_32u
;
943 rx_fifo
= sh_msiof_spi_read_fifo_32
;
946 /* transfer in fifo sized chunks */
947 words
= len
/ bytes_per_word
;
950 n
= sh_msiof_spi_txrx_once(p
, tx_fifo
, rx_fifo
, tx_buf
, rx_buf
,
956 tx_buf
+= n
* bytes_per_word
;
958 rx_buf
+= n
* bytes_per_word
;
965 static const struct sh_msiof_chipdata sh_data
= {
971 static const struct sh_msiof_chipdata r8a779x_data
= {
974 .master_flags
= SPI_MASTER_MUST_TX
,
977 static const struct of_device_id sh_msiof_match
[] = {
978 { .compatible
= "renesas,sh-msiof", .data
= &sh_data
},
979 { .compatible
= "renesas,sh-mobile-msiof", .data
= &sh_data
},
980 { .compatible
= "renesas,msiof-r8a7790", .data
= &r8a779x_data
},
981 { .compatible
= "renesas,msiof-r8a7791", .data
= &r8a779x_data
},
982 { .compatible
= "renesas,msiof-r8a7792", .data
= &r8a779x_data
},
983 { .compatible
= "renesas,msiof-r8a7793", .data
= &r8a779x_data
},
984 { .compatible
= "renesas,msiof-r8a7794", .data
= &r8a779x_data
},
987 MODULE_DEVICE_TABLE(of
, sh_msiof_match
);
990 static struct sh_msiof_spi_info
*sh_msiof_spi_parse_dt(struct device
*dev
)
992 struct sh_msiof_spi_info
*info
;
993 struct device_node
*np
= dev
->of_node
;
996 info
= devm_kzalloc(dev
, sizeof(struct sh_msiof_spi_info
), GFP_KERNEL
);
1000 /* Parse the MSIOF properties */
1001 of_property_read_u32(np
, "num-cs", &num_cs
);
1002 of_property_read_u32(np
, "renesas,tx-fifo-size",
1003 &info
->tx_fifo_override
);
1004 of_property_read_u32(np
, "renesas,rx-fifo-size",
1005 &info
->rx_fifo_override
);
1006 of_property_read_u32(np
, "renesas,dtdl", &info
->dtdl
);
1007 of_property_read_u32(np
, "renesas,syncdl", &info
->syncdl
);
1009 info
->num_chipselect
= num_cs
;
1014 static struct sh_msiof_spi_info
*sh_msiof_spi_parse_dt(struct device
*dev
)
1020 static struct dma_chan
*sh_msiof_request_dma_chan(struct device
*dev
,
1021 enum dma_transfer_direction dir
, unsigned int id
, dma_addr_t port_addr
)
1023 dma_cap_mask_t mask
;
1024 struct dma_chan
*chan
;
1025 struct dma_slave_config cfg
;
1029 dma_cap_set(DMA_SLAVE
, mask
);
1031 chan
= dma_request_slave_channel_compat(mask
, shdma_chan_filter
,
1032 (void *)(unsigned long)id
, dev
,
1033 dir
== DMA_MEM_TO_DEV
? "tx" : "rx");
1035 dev_warn(dev
, "dma_request_slave_channel_compat failed\n");
1039 memset(&cfg
, 0, sizeof(cfg
));
1040 cfg
.direction
= dir
;
1041 if (dir
== DMA_MEM_TO_DEV
) {
1042 cfg
.dst_addr
= port_addr
;
1043 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1045 cfg
.src_addr
= port_addr
;
1046 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1049 ret
= dmaengine_slave_config(chan
, &cfg
);
1051 dev_warn(dev
, "dmaengine_slave_config failed %d\n", ret
);
1052 dma_release_channel(chan
);
1059 static int sh_msiof_request_dma(struct sh_msiof_spi_priv
*p
)
1061 struct platform_device
*pdev
= p
->pdev
;
1062 struct device
*dev
= &pdev
->dev
;
1063 const struct sh_msiof_spi_info
*info
= dev_get_platdata(dev
);
1064 unsigned int dma_tx_id
, dma_rx_id
;
1065 const struct resource
*res
;
1066 struct spi_master
*master
;
1067 struct device
*tx_dev
, *rx_dev
;
1070 /* In the OF case we will get the slave IDs from the DT */
1073 } else if (info
&& info
->dma_tx_id
&& info
->dma_rx_id
) {
1074 dma_tx_id
= info
->dma_tx_id
;
1075 dma_rx_id
= info
->dma_rx_id
;
1077 /* The driver assumes no error */
1081 /* The DMA engine uses the second register set, if present */
1082 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1084 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1087 master
->dma_tx
= sh_msiof_request_dma_chan(dev
, DMA_MEM_TO_DEV
,
1090 if (!master
->dma_tx
)
1093 master
->dma_rx
= sh_msiof_request_dma_chan(dev
, DMA_DEV_TO_MEM
,
1096 if (!master
->dma_rx
)
1099 p
->tx_dma_page
= (void *)__get_free_page(GFP_KERNEL
| GFP_DMA
);
1100 if (!p
->tx_dma_page
)
1103 p
->rx_dma_page
= (void *)__get_free_page(GFP_KERNEL
| GFP_DMA
);
1104 if (!p
->rx_dma_page
)
1107 tx_dev
= master
->dma_tx
->device
->dev
;
1108 p
->tx_dma_addr
= dma_map_single(tx_dev
, p
->tx_dma_page
, PAGE_SIZE
,
1110 if (dma_mapping_error(tx_dev
, p
->tx_dma_addr
))
1113 rx_dev
= master
->dma_rx
->device
->dev
;
1114 p
->rx_dma_addr
= dma_map_single(rx_dev
, p
->rx_dma_page
, PAGE_SIZE
,
1116 if (dma_mapping_error(rx_dev
, p
->rx_dma_addr
))
1119 dev_info(dev
, "DMA available");
1123 dma_unmap_single(tx_dev
, p
->tx_dma_addr
, PAGE_SIZE
, DMA_TO_DEVICE
);
1125 free_page((unsigned long)p
->rx_dma_page
);
1127 free_page((unsigned long)p
->tx_dma_page
);
1129 dma_release_channel(master
->dma_rx
);
1131 dma_release_channel(master
->dma_tx
);
1132 master
->dma_tx
= NULL
;
1136 static void sh_msiof_release_dma(struct sh_msiof_spi_priv
*p
)
1138 struct spi_master
*master
= p
->master
;
1141 if (!master
->dma_tx
)
1144 dev
= &p
->pdev
->dev
;
1145 dma_unmap_single(master
->dma_rx
->device
->dev
, p
->rx_dma_addr
,
1146 PAGE_SIZE
, DMA_FROM_DEVICE
);
1147 dma_unmap_single(master
->dma_tx
->device
->dev
, p
->tx_dma_addr
,
1148 PAGE_SIZE
, DMA_TO_DEVICE
);
1149 free_page((unsigned long)p
->rx_dma_page
);
1150 free_page((unsigned long)p
->tx_dma_page
);
1151 dma_release_channel(master
->dma_rx
);
1152 dma_release_channel(master
->dma_tx
);
1155 static int sh_msiof_spi_probe(struct platform_device
*pdev
)
1158 struct spi_master
*master
;
1159 const struct of_device_id
*of_id
;
1160 struct sh_msiof_spi_priv
*p
;
1164 master
= spi_alloc_master(&pdev
->dev
, sizeof(struct sh_msiof_spi_priv
));
1165 if (master
== NULL
) {
1166 dev_err(&pdev
->dev
, "failed to allocate spi master\n");
1170 p
= spi_master_get_devdata(master
);
1172 platform_set_drvdata(pdev
, p
);
1175 of_id
= of_match_device(sh_msiof_match
, &pdev
->dev
);
1177 p
->chipdata
= of_id
->data
;
1178 p
->info
= sh_msiof_spi_parse_dt(&pdev
->dev
);
1180 p
->chipdata
= (const void *)pdev
->id_entry
->driver_data
;
1181 p
->info
= dev_get_platdata(&pdev
->dev
);
1185 dev_err(&pdev
->dev
, "failed to obtain device info\n");
1190 init_completion(&p
->done
);
1192 p
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1193 if (IS_ERR(p
->clk
)) {
1194 dev_err(&pdev
->dev
, "cannot get clock\n");
1195 ret
= PTR_ERR(p
->clk
);
1199 i
= platform_get_irq(pdev
, 0);
1201 dev_err(&pdev
->dev
, "cannot get platform IRQ\n");
1206 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1207 p
->mapbase
= devm_ioremap_resource(&pdev
->dev
, r
);
1208 if (IS_ERR(p
->mapbase
)) {
1209 ret
= PTR_ERR(p
->mapbase
);
1213 ret
= devm_request_irq(&pdev
->dev
, i
, sh_msiof_spi_irq
, 0,
1214 dev_name(&pdev
->dev
), p
);
1216 dev_err(&pdev
->dev
, "unable to request irq\n");
1221 pm_runtime_enable(&pdev
->dev
);
1223 /* Platform data may override FIFO sizes */
1224 p
->tx_fifo_size
= p
->chipdata
->tx_fifo_size
;
1225 p
->rx_fifo_size
= p
->chipdata
->rx_fifo_size
;
1226 if (p
->info
->tx_fifo_override
)
1227 p
->tx_fifo_size
= p
->info
->tx_fifo_override
;
1228 if (p
->info
->rx_fifo_override
)
1229 p
->rx_fifo_size
= p
->info
->rx_fifo_override
;
1231 /* init master code */
1232 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
1233 master
->mode_bits
|= SPI_LSB_FIRST
| SPI_3WIRE
;
1234 master
->flags
= p
->chipdata
->master_flags
;
1235 master
->bus_num
= pdev
->id
;
1236 master
->dev
.of_node
= pdev
->dev
.of_node
;
1237 master
->num_chipselect
= p
->info
->num_chipselect
;
1238 master
->setup
= sh_msiof_spi_setup
;
1239 master
->prepare_message
= sh_msiof_prepare_message
;
1240 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(8, 32);
1241 master
->auto_runtime_pm
= true;
1242 master
->transfer_one
= sh_msiof_transfer_one
;
1244 ret
= sh_msiof_request_dma(p
);
1246 dev_warn(&pdev
->dev
, "DMA not available, using PIO\n");
1248 ret
= devm_spi_register_master(&pdev
->dev
, master
);
1250 dev_err(&pdev
->dev
, "spi_register_master error.\n");
1257 sh_msiof_release_dma(p
);
1258 pm_runtime_disable(&pdev
->dev
);
1260 spi_master_put(master
);
1264 static int sh_msiof_spi_remove(struct platform_device
*pdev
)
1266 struct sh_msiof_spi_priv
*p
= platform_get_drvdata(pdev
);
1268 sh_msiof_release_dma(p
);
1269 pm_runtime_disable(&pdev
->dev
);
1273 static const struct platform_device_id spi_driver_ids
[] = {
1274 { "spi_sh_msiof", (kernel_ulong_t
)&sh_data
},
1277 MODULE_DEVICE_TABLE(platform
, spi_driver_ids
);
1279 #ifdef CONFIG_PM_SLEEP
1280 static int sh_msiof_spi_suspend(struct device
*dev
)
1282 struct platform_device
*pdev
= to_platform_device(dev
);
1283 struct sh_msiof_spi_priv
*p
= platform_get_drvdata(pdev
);
1285 return spi_master_suspend(p
->master
);
1288 static int sh_msiof_spi_resume(struct device
*dev
)
1290 struct platform_device
*pdev
= to_platform_device(dev
);
1291 struct sh_msiof_spi_priv
*p
= platform_get_drvdata(pdev
);
1293 return spi_master_resume(p
->master
);
1296 static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops
, sh_msiof_spi_suspend
,
1297 sh_msiof_spi_resume
);
1298 #define DEV_PM_OPS &sh_msiof_spi_pm_ops
1300 #define DEV_PM_OPS NULL
1301 #endif /* CONFIG_PM_SLEEP */
1303 static struct platform_driver sh_msiof_spi_drv
= {
1304 .probe
= sh_msiof_spi_probe
,
1305 .remove
= sh_msiof_spi_remove
,
1306 .id_table
= spi_driver_ids
,
1308 .name
= "spi_sh_msiof",
1310 .of_match_table
= of_match_ptr(sh_msiof_match
),
1313 module_platform_driver(sh_msiof_spi_drv
);
1315 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1316 MODULE_AUTHOR("Magnus Damm");
1317 MODULE_LICENSE("GPL v2");
1318 MODULE_ALIAS("platform:spi_sh_msiof");