1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
51 #include <linux/namei.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/tty.h>
67 #include <linux/binfmts.h>
68 #include <linux/highmem.h>
69 #include <linux/syscalls.h>
70 #include <asm/syscall.h>
71 #include <linux/capability.h>
72 #include <linux/fs_struct.h>
73 #include <linux/compat.h>
74 #include <linux/ctype.h>
75 #include <linux/string.h>
76 #include <linux/uaccess.h>
77 #include <uapi/linux/limits.h>
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
86 /* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
93 /* number of audit rules */
96 /* determines whether we collect data for signals sent */
99 struct audit_aux_data
{
100 struct audit_aux_data
*next
;
104 #define AUDIT_AUX_IPCPERM 0
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS 16
109 struct audit_aux_data_pids
{
110 struct audit_aux_data d
;
111 pid_t target_pid
[AUDIT_AUX_PIDS
];
112 kuid_t target_auid
[AUDIT_AUX_PIDS
];
113 kuid_t target_uid
[AUDIT_AUX_PIDS
];
114 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
115 u32 target_sid
[AUDIT_AUX_PIDS
];
116 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
120 struct audit_aux_data_bprm_fcaps
{
121 struct audit_aux_data d
;
122 struct audit_cap_data fcap
;
123 unsigned int fcap_ver
;
124 struct audit_cap_data old_pcap
;
125 struct audit_cap_data new_pcap
;
128 struct audit_tree_refs
{
129 struct audit_tree_refs
*next
;
130 struct audit_chunk
*c
[31];
133 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
140 switch (audit_classify_syscall(ctx
->arch
, n
)) {
142 if ((mask
& AUDIT_PERM_WRITE
) &&
143 audit_match_class(AUDIT_CLASS_WRITE
, n
))
145 if ((mask
& AUDIT_PERM_READ
) &&
146 audit_match_class(AUDIT_CLASS_READ
, n
))
148 if ((mask
& AUDIT_PERM_ATTR
) &&
149 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
152 case 1: /* 32bit on biarch */
153 if ((mask
& AUDIT_PERM_WRITE
) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
156 if ((mask
& AUDIT_PERM_READ
) &&
157 audit_match_class(AUDIT_CLASS_READ_32
, n
))
159 if ((mask
& AUDIT_PERM_ATTR
) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
164 return mask
& ACC_MODE(ctx
->argv
[1]);
166 return mask
& ACC_MODE(ctx
->argv
[2]);
167 case 4: /* socketcall */
168 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
170 return mask
& AUDIT_PERM_EXEC
;
176 static int audit_match_filetype(struct audit_context
*ctx
, int val
)
178 struct audit_names
*n
;
179 umode_t mode
= (umode_t
)val
;
184 list_for_each_entry(n
, &ctx
->names_list
, list
) {
185 if ((n
->ino
!= AUDIT_INO_UNSET
) &&
186 ((n
->mode
& S_IFMT
) == mode
))
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
203 #ifdef CONFIG_AUDIT_TREE
204 static void audit_set_auditable(struct audit_context
*ctx
)
208 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
212 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
214 struct audit_tree_refs
*p
= ctx
->trees
;
215 int left
= ctx
->tree_count
;
217 p
->c
[--left
] = chunk
;
218 ctx
->tree_count
= left
;
227 ctx
->tree_count
= 30;
233 static int grow_tree_refs(struct audit_context
*ctx
)
235 struct audit_tree_refs
*p
= ctx
->trees
;
236 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
242 p
->next
= ctx
->trees
;
244 ctx
->first_trees
= ctx
->trees
;
245 ctx
->tree_count
= 31;
250 static void unroll_tree_refs(struct audit_context
*ctx
,
251 struct audit_tree_refs
*p
, int count
)
253 #ifdef CONFIG_AUDIT_TREE
254 struct audit_tree_refs
*q
;
257 /* we started with empty chain */
258 p
= ctx
->first_trees
;
260 /* if the very first allocation has failed, nothing to do */
265 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
267 audit_put_chunk(q
->c
[n
]);
271 while (n
-- > ctx
->tree_count
) {
272 audit_put_chunk(q
->c
[n
]);
276 ctx
->tree_count
= count
;
280 static void free_tree_refs(struct audit_context
*ctx
)
282 struct audit_tree_refs
*p
, *q
;
283 for (p
= ctx
->first_trees
; p
; p
= q
) {
289 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
291 #ifdef CONFIG_AUDIT_TREE
292 struct audit_tree_refs
*p
;
297 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
298 for (n
= 0; n
< 31; n
++)
299 if (audit_tree_match(p
->c
[n
], tree
))
304 for (n
= ctx
->tree_count
; n
< 31; n
++)
305 if (audit_tree_match(p
->c
[n
], tree
))
312 static int audit_compare_uid(kuid_t uid
,
313 struct audit_names
*name
,
314 struct audit_field
*f
,
315 struct audit_context
*ctx
)
317 struct audit_names
*n
;
321 rc
= audit_uid_comparator(uid
, f
->op
, name
->uid
);
327 list_for_each_entry(n
, &ctx
->names_list
, list
) {
328 rc
= audit_uid_comparator(uid
, f
->op
, n
->uid
);
336 static int audit_compare_gid(kgid_t gid
,
337 struct audit_names
*name
,
338 struct audit_field
*f
,
339 struct audit_context
*ctx
)
341 struct audit_names
*n
;
345 rc
= audit_gid_comparator(gid
, f
->op
, name
->gid
);
351 list_for_each_entry(n
, &ctx
->names_list
, list
) {
352 rc
= audit_gid_comparator(gid
, f
->op
, n
->gid
);
360 static int audit_field_compare(struct task_struct
*tsk
,
361 const struct cred
*cred
,
362 struct audit_field
*f
,
363 struct audit_context
*ctx
,
364 struct audit_names
*name
)
367 /* process to file object comparisons */
368 case AUDIT_COMPARE_UID_TO_OBJ_UID
:
369 return audit_compare_uid(cred
->uid
, name
, f
, ctx
);
370 case AUDIT_COMPARE_GID_TO_OBJ_GID
:
371 return audit_compare_gid(cred
->gid
, name
, f
, ctx
);
372 case AUDIT_COMPARE_EUID_TO_OBJ_UID
:
373 return audit_compare_uid(cred
->euid
, name
, f
, ctx
);
374 case AUDIT_COMPARE_EGID_TO_OBJ_GID
:
375 return audit_compare_gid(cred
->egid
, name
, f
, ctx
);
376 case AUDIT_COMPARE_AUID_TO_OBJ_UID
:
377 return audit_compare_uid(tsk
->loginuid
, name
, f
, ctx
);
378 case AUDIT_COMPARE_SUID_TO_OBJ_UID
:
379 return audit_compare_uid(cred
->suid
, name
, f
, ctx
);
380 case AUDIT_COMPARE_SGID_TO_OBJ_GID
:
381 return audit_compare_gid(cred
->sgid
, name
, f
, ctx
);
382 case AUDIT_COMPARE_FSUID_TO_OBJ_UID
:
383 return audit_compare_uid(cred
->fsuid
, name
, f
, ctx
);
384 case AUDIT_COMPARE_FSGID_TO_OBJ_GID
:
385 return audit_compare_gid(cred
->fsgid
, name
, f
, ctx
);
386 /* uid comparisons */
387 case AUDIT_COMPARE_UID_TO_AUID
:
388 return audit_uid_comparator(cred
->uid
, f
->op
, tsk
->loginuid
);
389 case AUDIT_COMPARE_UID_TO_EUID
:
390 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->euid
);
391 case AUDIT_COMPARE_UID_TO_SUID
:
392 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->suid
);
393 case AUDIT_COMPARE_UID_TO_FSUID
:
394 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->fsuid
);
395 /* auid comparisons */
396 case AUDIT_COMPARE_AUID_TO_EUID
:
397 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->euid
);
398 case AUDIT_COMPARE_AUID_TO_SUID
:
399 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->suid
);
400 case AUDIT_COMPARE_AUID_TO_FSUID
:
401 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->fsuid
);
402 /* euid comparisons */
403 case AUDIT_COMPARE_EUID_TO_SUID
:
404 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->suid
);
405 case AUDIT_COMPARE_EUID_TO_FSUID
:
406 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->fsuid
);
407 /* suid comparisons */
408 case AUDIT_COMPARE_SUID_TO_FSUID
:
409 return audit_uid_comparator(cred
->suid
, f
->op
, cred
->fsuid
);
410 /* gid comparisons */
411 case AUDIT_COMPARE_GID_TO_EGID
:
412 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->egid
);
413 case AUDIT_COMPARE_GID_TO_SGID
:
414 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->sgid
);
415 case AUDIT_COMPARE_GID_TO_FSGID
:
416 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->fsgid
);
417 /* egid comparisons */
418 case AUDIT_COMPARE_EGID_TO_SGID
:
419 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->sgid
);
420 case AUDIT_COMPARE_EGID_TO_FSGID
:
421 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->fsgid
);
422 /* sgid comparison */
423 case AUDIT_COMPARE_SGID_TO_FSGID
:
424 return audit_gid_comparator(cred
->sgid
, f
->op
, cred
->fsgid
);
426 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
432 /* Determine if any context name data matches a rule's watch data */
433 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
436 * If task_creation is true, this is an explicit indication that we are
437 * filtering a task rule at task creation time. This and tsk == current are
438 * the only situations where tsk->cred may be accessed without an rcu read lock.
440 static int audit_filter_rules(struct task_struct
*tsk
,
441 struct audit_krule
*rule
,
442 struct audit_context
*ctx
,
443 struct audit_names
*name
,
444 enum audit_state
*state
,
447 const struct cred
*cred
;
451 cred
= rcu_dereference_check(tsk
->cred
, tsk
== current
|| task_creation
);
453 for (i
= 0; i
< rule
->field_count
; i
++) {
454 struct audit_field
*f
= &rule
->fields
[i
];
455 struct audit_names
*n
;
461 pid
= task_pid_nr(tsk
);
462 result
= audit_comparator(pid
, f
->op
, f
->val
);
467 ctx
->ppid
= task_ppid_nr(tsk
);
468 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
472 result
= audit_exe_compare(tsk
, rule
->exe
);
473 if (f
->op
== Audit_not_equal
)
477 result
= audit_uid_comparator(cred
->uid
, f
->op
, f
->uid
);
480 result
= audit_uid_comparator(cred
->euid
, f
->op
, f
->uid
);
483 result
= audit_uid_comparator(cred
->suid
, f
->op
, f
->uid
);
486 result
= audit_uid_comparator(cred
->fsuid
, f
->op
, f
->uid
);
489 result
= audit_gid_comparator(cred
->gid
, f
->op
, f
->gid
);
490 if (f
->op
== Audit_equal
) {
492 result
= in_group_p(f
->gid
);
493 } else if (f
->op
== Audit_not_equal
) {
495 result
= !in_group_p(f
->gid
);
499 result
= audit_gid_comparator(cred
->egid
, f
->op
, f
->gid
);
500 if (f
->op
== Audit_equal
) {
502 result
= in_egroup_p(f
->gid
);
503 } else if (f
->op
== Audit_not_equal
) {
505 result
= !in_egroup_p(f
->gid
);
509 result
= audit_gid_comparator(cred
->sgid
, f
->op
, f
->gid
);
512 result
= audit_gid_comparator(cred
->fsgid
, f
->op
, f
->gid
);
515 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
519 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
523 if (ctx
&& ctx
->return_valid
)
524 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
527 if (ctx
&& ctx
->return_valid
) {
529 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
531 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
536 if (audit_comparator(MAJOR(name
->dev
), f
->op
, f
->val
) ||
537 audit_comparator(MAJOR(name
->rdev
), f
->op
, f
->val
))
540 list_for_each_entry(n
, &ctx
->names_list
, list
) {
541 if (audit_comparator(MAJOR(n
->dev
), f
->op
, f
->val
) ||
542 audit_comparator(MAJOR(n
->rdev
), f
->op
, f
->val
)) {
551 if (audit_comparator(MINOR(name
->dev
), f
->op
, f
->val
) ||
552 audit_comparator(MINOR(name
->rdev
), f
->op
, f
->val
))
555 list_for_each_entry(n
, &ctx
->names_list
, list
) {
556 if (audit_comparator(MINOR(n
->dev
), f
->op
, f
->val
) ||
557 audit_comparator(MINOR(n
->rdev
), f
->op
, f
->val
)) {
566 result
= audit_comparator(name
->ino
, f
->op
, f
->val
);
568 list_for_each_entry(n
, &ctx
->names_list
, list
) {
569 if (audit_comparator(n
->ino
, f
->op
, f
->val
)) {
578 result
= audit_uid_comparator(name
->uid
, f
->op
, f
->uid
);
580 list_for_each_entry(n
, &ctx
->names_list
, list
) {
581 if (audit_uid_comparator(n
->uid
, f
->op
, f
->uid
)) {
590 result
= audit_gid_comparator(name
->gid
, f
->op
, f
->gid
);
592 list_for_each_entry(n
, &ctx
->names_list
, list
) {
593 if (audit_gid_comparator(n
->gid
, f
->op
, f
->gid
)) {
602 result
= audit_watch_compare(rule
->watch
, name
->ino
, name
->dev
);
606 result
= match_tree_refs(ctx
, rule
->tree
);
609 result
= audit_uid_comparator(tsk
->loginuid
, f
->op
, f
->uid
);
611 case AUDIT_LOGINUID_SET
:
612 result
= audit_comparator(audit_loginuid_set(tsk
), f
->op
, f
->val
);
614 case AUDIT_SUBJ_USER
:
615 case AUDIT_SUBJ_ROLE
:
616 case AUDIT_SUBJ_TYPE
:
619 /* NOTE: this may return negative values indicating
620 a temporary error. We simply treat this as a
621 match for now to avoid losing information that
622 may be wanted. An error message will also be
626 security_task_getsecid(tsk
, &sid
);
629 result
= security_audit_rule_match(sid
, f
->type
,
638 case AUDIT_OBJ_LEV_LOW
:
639 case AUDIT_OBJ_LEV_HIGH
:
640 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
643 /* Find files that match */
645 result
= security_audit_rule_match(
646 name
->osid
, f
->type
, f
->op
,
649 list_for_each_entry(n
, &ctx
->names_list
, list
) {
650 if (security_audit_rule_match(n
->osid
, f
->type
,
658 /* Find ipc objects that match */
659 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
661 if (security_audit_rule_match(ctx
->ipc
.osid
,
672 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
674 case AUDIT_FILTERKEY
:
675 /* ignore this field for filtering */
679 result
= audit_match_perm(ctx
, f
->val
);
682 result
= audit_match_filetype(ctx
, f
->val
);
684 case AUDIT_FIELD_COMPARE
:
685 result
= audit_field_compare(tsk
, cred
, f
, ctx
, name
);
693 if (rule
->prio
<= ctx
->prio
)
695 if (rule
->filterkey
) {
696 kfree(ctx
->filterkey
);
697 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
699 ctx
->prio
= rule
->prio
;
701 switch (rule
->action
) {
702 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
703 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
708 /* At process creation time, we can determine if system-call auditing is
709 * completely disabled for this task. Since we only have the task
710 * structure at this point, we can only check uid and gid.
712 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
714 struct audit_entry
*e
;
715 enum audit_state state
;
718 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
719 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
,
721 if (state
== AUDIT_RECORD_CONTEXT
)
722 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
728 return AUDIT_BUILD_CONTEXT
;
731 static int audit_in_mask(const struct audit_krule
*rule
, unsigned long val
)
735 if (val
> 0xffffffff)
738 word
= AUDIT_WORD(val
);
739 if (word
>= AUDIT_BITMASK_SIZE
)
742 bit
= AUDIT_BIT(val
);
744 return rule
->mask
[word
] & bit
;
747 /* At syscall entry and exit time, this filter is called if the
748 * audit_state is not low enough that auditing cannot take place, but is
749 * also not high enough that we already know we have to write an audit
750 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
752 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
753 struct audit_context
*ctx
,
754 struct list_head
*list
)
756 struct audit_entry
*e
;
757 enum audit_state state
;
759 if (audit_pid
&& tsk
->tgid
== audit_pid
)
760 return AUDIT_DISABLED
;
763 if (!list_empty(list
)) {
764 list_for_each_entry_rcu(e
, list
, list
) {
765 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
766 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
769 ctx
->current_state
= state
;
775 return AUDIT_BUILD_CONTEXT
;
779 * Given an audit_name check the inode hash table to see if they match.
780 * Called holding the rcu read lock to protect the use of audit_inode_hash
782 static int audit_filter_inode_name(struct task_struct
*tsk
,
783 struct audit_names
*n
,
784 struct audit_context
*ctx
) {
785 int h
= audit_hash_ino((u32
)n
->ino
);
786 struct list_head
*list
= &audit_inode_hash
[h
];
787 struct audit_entry
*e
;
788 enum audit_state state
;
790 if (list_empty(list
))
793 list_for_each_entry_rcu(e
, list
, list
) {
794 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
795 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
, false)) {
796 ctx
->current_state
= state
;
804 /* At syscall exit time, this filter is called if any audit_names have been
805 * collected during syscall processing. We only check rules in sublists at hash
806 * buckets applicable to the inode numbers in audit_names.
807 * Regarding audit_state, same rules apply as for audit_filter_syscall().
809 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
811 struct audit_names
*n
;
813 if (audit_pid
&& tsk
->tgid
== audit_pid
)
818 list_for_each_entry(n
, &ctx
->names_list
, list
) {
819 if (audit_filter_inode_name(tsk
, n
, ctx
))
825 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
826 static inline struct audit_context
*audit_take_context(struct task_struct
*tsk
,
830 struct audit_context
*context
= tsk
->audit_context
;
834 context
->return_valid
= return_valid
;
837 * we need to fix up the return code in the audit logs if the actual
838 * return codes are later going to be fixed up by the arch specific
841 * This is actually a test for:
842 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
843 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
845 * but is faster than a bunch of ||
847 if (unlikely(return_code
<= -ERESTARTSYS
) &&
848 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
849 (return_code
!= -ENOIOCTLCMD
))
850 context
->return_code
= -EINTR
;
852 context
->return_code
= return_code
;
854 if (context
->in_syscall
&& !context
->dummy
) {
855 audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
856 audit_filter_inodes(tsk
, context
);
859 tsk
->audit_context
= NULL
;
863 static inline void audit_proctitle_free(struct audit_context
*context
)
865 kfree(context
->proctitle
.value
);
866 context
->proctitle
.value
= NULL
;
867 context
->proctitle
.len
= 0;
870 static inline void audit_free_names(struct audit_context
*context
)
872 struct audit_names
*n
, *next
;
874 list_for_each_entry_safe(n
, next
, &context
->names_list
, list
) {
881 context
->name_count
= 0;
882 path_put(&context
->pwd
);
883 context
->pwd
.dentry
= NULL
;
884 context
->pwd
.mnt
= NULL
;
887 static inline void audit_free_aux(struct audit_context
*context
)
889 struct audit_aux_data
*aux
;
891 while ((aux
= context
->aux
)) {
892 context
->aux
= aux
->next
;
895 while ((aux
= context
->aux_pids
)) {
896 context
->aux_pids
= aux
->next
;
901 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
903 struct audit_context
*context
;
905 context
= kzalloc(sizeof(*context
), GFP_KERNEL
);
908 context
->state
= state
;
909 context
->prio
= state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
910 INIT_LIST_HEAD(&context
->killed_trees
);
911 INIT_LIST_HEAD(&context
->names_list
);
916 * audit_alloc - allocate an audit context block for a task
919 * Filter on the task information and allocate a per-task audit context
920 * if necessary. Doing so turns on system call auditing for the
921 * specified task. This is called from copy_process, so no lock is
924 int audit_alloc(struct task_struct
*tsk
)
926 struct audit_context
*context
;
927 enum audit_state state
;
930 if (likely(!audit_ever_enabled
))
931 return 0; /* Return if not auditing. */
933 state
= audit_filter_task(tsk
, &key
);
934 if (state
== AUDIT_DISABLED
) {
935 clear_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
939 if (!(context
= audit_alloc_context(state
))) {
941 audit_log_lost("out of memory in audit_alloc");
944 context
->filterkey
= key
;
946 tsk
->audit_context
= context
;
947 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
951 static inline void audit_free_context(struct audit_context
*context
)
953 audit_free_names(context
);
954 unroll_tree_refs(context
, NULL
, 0);
955 free_tree_refs(context
);
956 audit_free_aux(context
);
957 kfree(context
->filterkey
);
958 kfree(context
->sockaddr
);
959 audit_proctitle_free(context
);
963 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
964 kuid_t auid
, kuid_t uid
, unsigned int sessionid
,
967 struct audit_buffer
*ab
;
972 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
976 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
,
977 from_kuid(&init_user_ns
, auid
),
978 from_kuid(&init_user_ns
, uid
), sessionid
);
980 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
981 audit_log_format(ab
, " obj=(none)");
984 audit_log_format(ab
, " obj=%s", ctx
);
985 security_release_secctx(ctx
, len
);
988 audit_log_format(ab
, " ocomm=");
989 audit_log_untrustedstring(ab
, comm
);
995 static void audit_log_execve_info(struct audit_context
*context
,
996 struct audit_buffer
**ab
)
1010 const char __user
*p
= (const char __user
*)current
->mm
->arg_start
;
1012 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1013 * data we put in the audit record for this argument (see the
1014 * code below) ... at this point in time 96 is plenty */
1017 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1018 * current value of 7500 is not as important as the fact that it
1019 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1020 * room if we go over a little bit in the logging below */
1021 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN
> 7500);
1022 len_max
= MAX_EXECVE_AUDIT_LEN
;
1024 /* scratch buffer to hold the userspace args */
1025 buf_head
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1027 audit_panic("out of memory for argv string");
1032 audit_log_format(*ab
, "argc=%d", context
->execve
.argc
);
1037 require_data
= true;
1042 /* NOTE: we don't ever want to trust this value for anything
1043 * serious, but the audit record format insists we
1044 * provide an argument length for really long arguments,
1045 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1046 * to use strncpy_from_user() to obtain this value for
1047 * recording in the log, although we don't use it
1048 * anywhere here to avoid a double-fetch problem */
1050 len_full
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1052 /* read more data from userspace */
1054 /* can we make more room in the buffer? */
1055 if (buf
!= buf_head
) {
1056 memmove(buf_head
, buf
, len_buf
);
1060 /* fetch as much as we can of the argument */
1061 len_tmp
= strncpy_from_user(&buf_head
[len_buf
], p
,
1063 if (len_tmp
== -EFAULT
) {
1064 /* unable to copy from userspace */
1065 send_sig(SIGKILL
, current
, 0);
1067 } else if (len_tmp
== (len_max
- len_buf
)) {
1068 /* buffer is not large enough */
1069 require_data
= true;
1070 /* NOTE: if we are going to span multiple
1071 * buffers force the encoding so we stand
1072 * a chance at a sane len_full value and
1073 * consistent record encoding */
1075 len_full
= len_full
* 2;
1078 require_data
= false;
1080 encode
= audit_string_contains_control(
1082 /* try to use a trusted value for len_full */
1083 if (len_full
< len_max
)
1084 len_full
= (encode
?
1085 len_tmp
* 2 : len_tmp
);
1089 buf_head
[len_buf
] = '\0';
1091 /* length of the buffer in the audit record? */
1092 len_abuf
= (encode
? len_buf
* 2 : len_buf
+ 2);
1095 /* write as much as we can to the audit log */
1097 /* NOTE: some magic numbers here - basically if we
1098 * can't fit a reasonable amount of data into the
1099 * existing audit buffer, flush it and start with
1101 if ((sizeof(abuf
) + 8) > len_rem
) {
1104 *ab
= audit_log_start(context
,
1105 GFP_KERNEL
, AUDIT_EXECVE
);
1110 /* create the non-arg portion of the arg record */
1112 if (require_data
|| (iter
> 0) ||
1113 ((len_abuf
+ sizeof(abuf
)) > len_rem
)) {
1115 len_tmp
+= snprintf(&abuf
[len_tmp
],
1116 sizeof(abuf
) - len_tmp
,
1120 len_tmp
+= snprintf(&abuf
[len_tmp
],
1121 sizeof(abuf
) - len_tmp
,
1122 " a%d[%d]=", arg
, iter
++);
1124 len_tmp
+= snprintf(&abuf
[len_tmp
],
1125 sizeof(abuf
) - len_tmp
,
1127 WARN_ON(len_tmp
>= sizeof(abuf
));
1128 abuf
[sizeof(abuf
) - 1] = '\0';
1130 /* log the arg in the audit record */
1131 audit_log_format(*ab
, "%s", abuf
);
1135 if (len_abuf
> len_rem
)
1136 len_tmp
= len_rem
/ 2; /* encoding */
1137 audit_log_n_hex(*ab
, buf
, len_tmp
);
1138 len_rem
-= len_tmp
* 2;
1139 len_abuf
-= len_tmp
* 2;
1141 if (len_abuf
> len_rem
)
1142 len_tmp
= len_rem
- 2; /* quotes */
1143 audit_log_n_string(*ab
, buf
, len_tmp
);
1144 len_rem
-= len_tmp
+ 2;
1145 /* don't subtract the "2" because we still need
1146 * to add quotes to the remaining string */
1147 len_abuf
-= len_tmp
;
1153 /* ready to move to the next argument? */
1154 if ((len_buf
== 0) && !require_data
) {
1158 require_data
= true;
1161 } while (arg
< context
->execve
.argc
);
1163 /* NOTE: the caller handles the final audit_log_end() call */
1169 static void show_special(struct audit_context
*context
, int *call_panic
)
1171 struct audit_buffer
*ab
;
1174 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1178 switch (context
->type
) {
1179 case AUDIT_SOCKETCALL
: {
1180 int nargs
= context
->socketcall
.nargs
;
1181 audit_log_format(ab
, "nargs=%d", nargs
);
1182 for (i
= 0; i
< nargs
; i
++)
1183 audit_log_format(ab
, " a%d=%lx", i
,
1184 context
->socketcall
.args
[i
]);
1187 u32 osid
= context
->ipc
.osid
;
1189 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#ho",
1190 from_kuid(&init_user_ns
, context
->ipc
.uid
),
1191 from_kgid(&init_user_ns
, context
->ipc
.gid
),
1196 if (security_secid_to_secctx(osid
, &ctx
, &len
)) {
1197 audit_log_format(ab
, " osid=%u", osid
);
1200 audit_log_format(ab
, " obj=%s", ctx
);
1201 security_release_secctx(ctx
, len
);
1204 if (context
->ipc
.has_perm
) {
1206 ab
= audit_log_start(context
, GFP_KERNEL
,
1207 AUDIT_IPC_SET_PERM
);
1210 audit_log_format(ab
,
1211 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1212 context
->ipc
.qbytes
,
1213 context
->ipc
.perm_uid
,
1214 context
->ipc
.perm_gid
,
1215 context
->ipc
.perm_mode
);
1218 case AUDIT_MQ_OPEN
: {
1219 audit_log_format(ab
,
1220 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1221 "mq_msgsize=%ld mq_curmsgs=%ld",
1222 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1223 context
->mq_open
.attr
.mq_flags
,
1224 context
->mq_open
.attr
.mq_maxmsg
,
1225 context
->mq_open
.attr
.mq_msgsize
,
1226 context
->mq_open
.attr
.mq_curmsgs
);
1228 case AUDIT_MQ_SENDRECV
: {
1229 audit_log_format(ab
,
1230 "mqdes=%d msg_len=%zd msg_prio=%u "
1231 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1232 context
->mq_sendrecv
.mqdes
,
1233 context
->mq_sendrecv
.msg_len
,
1234 context
->mq_sendrecv
.msg_prio
,
1235 context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1236 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1238 case AUDIT_MQ_NOTIFY
: {
1239 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1240 context
->mq_notify
.mqdes
,
1241 context
->mq_notify
.sigev_signo
);
1243 case AUDIT_MQ_GETSETATTR
: {
1244 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1245 audit_log_format(ab
,
1246 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1248 context
->mq_getsetattr
.mqdes
,
1249 attr
->mq_flags
, attr
->mq_maxmsg
,
1250 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1252 case AUDIT_CAPSET
: {
1253 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1254 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1255 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1256 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1259 audit_log_format(ab
, "fd=%d flags=0x%x", context
->mmap
.fd
,
1260 context
->mmap
.flags
);
1262 case AUDIT_EXECVE
: {
1263 audit_log_execve_info(context
, &ab
);
1269 static inline int audit_proctitle_rtrim(char *proctitle
, int len
)
1271 char *end
= proctitle
+ len
- 1;
1272 while (end
> proctitle
&& !isprint(*end
))
1275 /* catch the case where proctitle is only 1 non-print character */
1276 len
= end
- proctitle
+ 1;
1277 len
-= isprint(proctitle
[len
-1]) == 0;
1281 static void audit_log_proctitle(struct task_struct
*tsk
,
1282 struct audit_context
*context
)
1286 char *msg
= "(null)";
1287 int len
= strlen(msg
);
1288 struct audit_buffer
*ab
;
1290 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PROCTITLE
);
1292 return; /* audit_panic or being filtered */
1294 audit_log_format(ab
, "proctitle=");
1297 if (!context
->proctitle
.value
) {
1298 buf
= kmalloc(MAX_PROCTITLE_AUDIT_LEN
, GFP_KERNEL
);
1301 /* Historically called this from procfs naming */
1302 res
= get_cmdline(tsk
, buf
, MAX_PROCTITLE_AUDIT_LEN
);
1307 res
= audit_proctitle_rtrim(buf
, res
);
1312 context
->proctitle
.value
= buf
;
1313 context
->proctitle
.len
= res
;
1315 msg
= context
->proctitle
.value
;
1316 len
= context
->proctitle
.len
;
1318 audit_log_n_untrustedstring(ab
, msg
, len
);
1322 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1324 int i
, call_panic
= 0;
1325 struct audit_buffer
*ab
;
1326 struct audit_aux_data
*aux
;
1327 struct audit_names
*n
;
1329 /* tsk == current */
1330 context
->personality
= tsk
->personality
;
1332 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1334 return; /* audit_panic has been called */
1335 audit_log_format(ab
, "arch=%x syscall=%d",
1336 context
->arch
, context
->major
);
1337 if (context
->personality
!= PER_LINUX
)
1338 audit_log_format(ab
, " per=%lx", context
->personality
);
1339 if (context
->return_valid
)
1340 audit_log_format(ab
, " success=%s exit=%ld",
1341 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1342 context
->return_code
);
1344 audit_log_format(ab
,
1345 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1350 context
->name_count
);
1352 audit_log_task_info(ab
, tsk
);
1353 audit_log_key(ab
, context
->filterkey
);
1356 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1358 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1360 continue; /* audit_panic has been called */
1362 switch (aux
->type
) {
1364 case AUDIT_BPRM_FCAPS
: {
1365 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1366 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1367 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1368 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1369 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1370 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1371 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1372 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1373 audit_log_cap(ab
, "new_pp", &axs
->new_pcap
.permitted
);
1374 audit_log_cap(ab
, "new_pi", &axs
->new_pcap
.inheritable
);
1375 audit_log_cap(ab
, "new_pe", &axs
->new_pcap
.effective
);
1383 show_special(context
, &call_panic
);
1385 if (context
->fds
[0] >= 0) {
1386 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1388 audit_log_format(ab
, "fd0=%d fd1=%d",
1389 context
->fds
[0], context
->fds
[1]);
1394 if (context
->sockaddr_len
) {
1395 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1397 audit_log_format(ab
, "saddr=");
1398 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1399 context
->sockaddr_len
);
1404 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1405 struct audit_aux_data_pids
*axs
= (void *)aux
;
1407 for (i
= 0; i
< axs
->pid_count
; i
++)
1408 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1409 axs
->target_auid
[i
],
1411 axs
->target_sessionid
[i
],
1413 axs
->target_comm
[i
]))
1417 if (context
->target_pid
&&
1418 audit_log_pid_context(context
, context
->target_pid
,
1419 context
->target_auid
, context
->target_uid
,
1420 context
->target_sessionid
,
1421 context
->target_sid
, context
->target_comm
))
1424 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1425 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1427 audit_log_d_path(ab
, " cwd=", &context
->pwd
);
1433 list_for_each_entry(n
, &context
->names_list
, list
) {
1436 audit_log_name(context
, n
, NULL
, i
++, &call_panic
);
1439 audit_log_proctitle(tsk
, context
);
1441 /* Send end of event record to help user space know we are finished */
1442 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1446 audit_panic("error converting sid to string");
1450 * audit_free - free a per-task audit context
1451 * @tsk: task whose audit context block to free
1453 * Called from copy_process and do_exit
1455 void __audit_free(struct task_struct
*tsk
)
1457 struct audit_context
*context
;
1459 context
= audit_take_context(tsk
, 0, 0);
1463 /* Check for system calls that do not go through the exit
1464 * function (e.g., exit_group), then free context block.
1465 * We use GFP_ATOMIC here because we might be doing this
1466 * in the context of the idle thread */
1467 /* that can happen only if we are called from do_exit() */
1468 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1469 audit_log_exit(context
, tsk
);
1470 if (!list_empty(&context
->killed_trees
))
1471 audit_kill_trees(&context
->killed_trees
);
1473 audit_free_context(context
);
1477 * audit_syscall_entry - fill in an audit record at syscall entry
1478 * @major: major syscall type (function)
1479 * @a1: additional syscall register 1
1480 * @a2: additional syscall register 2
1481 * @a3: additional syscall register 3
1482 * @a4: additional syscall register 4
1484 * Fill in audit context at syscall entry. This only happens if the
1485 * audit context was created when the task was created and the state or
1486 * filters demand the audit context be built. If the state from the
1487 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1488 * then the record will be written at syscall exit time (otherwise, it
1489 * will only be written if another part of the kernel requests that it
1492 void __audit_syscall_entry(int major
, unsigned long a1
, unsigned long a2
,
1493 unsigned long a3
, unsigned long a4
)
1495 struct task_struct
*tsk
= current
;
1496 struct audit_context
*context
= tsk
->audit_context
;
1497 enum audit_state state
;
1502 BUG_ON(context
->in_syscall
|| context
->name_count
);
1507 context
->arch
= syscall_get_arch();
1508 context
->major
= major
;
1509 context
->argv
[0] = a1
;
1510 context
->argv
[1] = a2
;
1511 context
->argv
[2] = a3
;
1512 context
->argv
[3] = a4
;
1514 state
= context
->state
;
1515 context
->dummy
= !audit_n_rules
;
1516 if (!context
->dummy
&& state
== AUDIT_BUILD_CONTEXT
) {
1518 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1520 if (state
== AUDIT_DISABLED
)
1523 context
->serial
= 0;
1524 context
->ctime
= CURRENT_TIME
;
1525 context
->in_syscall
= 1;
1526 context
->current_state
= state
;
1531 * audit_syscall_exit - deallocate audit context after a system call
1532 * @success: success value of the syscall
1533 * @return_code: return value of the syscall
1535 * Tear down after system call. If the audit context has been marked as
1536 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1537 * filtering, or because some other part of the kernel wrote an audit
1538 * message), then write out the syscall information. In call cases,
1539 * free the names stored from getname().
1541 void __audit_syscall_exit(int success
, long return_code
)
1543 struct task_struct
*tsk
= current
;
1544 struct audit_context
*context
;
1547 success
= AUDITSC_SUCCESS
;
1549 success
= AUDITSC_FAILURE
;
1551 context
= audit_take_context(tsk
, success
, return_code
);
1555 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1556 audit_log_exit(context
, tsk
);
1558 context
->in_syscall
= 0;
1559 context
->prio
= context
->state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1561 if (!list_empty(&context
->killed_trees
))
1562 audit_kill_trees(&context
->killed_trees
);
1564 audit_free_names(context
);
1565 unroll_tree_refs(context
, NULL
, 0);
1566 audit_free_aux(context
);
1567 context
->aux
= NULL
;
1568 context
->aux_pids
= NULL
;
1569 context
->target_pid
= 0;
1570 context
->target_sid
= 0;
1571 context
->sockaddr_len
= 0;
1573 context
->fds
[0] = -1;
1574 if (context
->state
!= AUDIT_RECORD_CONTEXT
) {
1575 kfree(context
->filterkey
);
1576 context
->filterkey
= NULL
;
1578 tsk
->audit_context
= context
;
1581 static inline void handle_one(const struct inode
*inode
)
1583 #ifdef CONFIG_AUDIT_TREE
1584 struct audit_context
*context
;
1585 struct audit_tree_refs
*p
;
1586 struct audit_chunk
*chunk
;
1588 if (likely(hlist_empty(&inode
->i_fsnotify_marks
)))
1590 context
= current
->audit_context
;
1592 count
= context
->tree_count
;
1594 chunk
= audit_tree_lookup(inode
);
1598 if (likely(put_tree_ref(context
, chunk
)))
1600 if (unlikely(!grow_tree_refs(context
))) {
1601 pr_warn("out of memory, audit has lost a tree reference\n");
1602 audit_set_auditable(context
);
1603 audit_put_chunk(chunk
);
1604 unroll_tree_refs(context
, p
, count
);
1607 put_tree_ref(context
, chunk
);
1611 static void handle_path(const struct dentry
*dentry
)
1613 #ifdef CONFIG_AUDIT_TREE
1614 struct audit_context
*context
;
1615 struct audit_tree_refs
*p
;
1616 const struct dentry
*d
, *parent
;
1617 struct audit_chunk
*drop
;
1621 context
= current
->audit_context
;
1623 count
= context
->tree_count
;
1628 seq
= read_seqbegin(&rename_lock
);
1630 struct inode
*inode
= d_backing_inode(d
);
1631 if (inode
&& unlikely(!hlist_empty(&inode
->i_fsnotify_marks
))) {
1632 struct audit_chunk
*chunk
;
1633 chunk
= audit_tree_lookup(inode
);
1635 if (unlikely(!put_tree_ref(context
, chunk
))) {
1641 parent
= d
->d_parent
;
1646 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1649 /* just a race with rename */
1650 unroll_tree_refs(context
, p
, count
);
1653 audit_put_chunk(drop
);
1654 if (grow_tree_refs(context
)) {
1655 /* OK, got more space */
1656 unroll_tree_refs(context
, p
, count
);
1660 pr_warn("out of memory, audit has lost a tree reference\n");
1661 unroll_tree_refs(context
, p
, count
);
1662 audit_set_auditable(context
);
1669 static struct audit_names
*audit_alloc_name(struct audit_context
*context
,
1672 struct audit_names
*aname
;
1674 if (context
->name_count
< AUDIT_NAMES
) {
1675 aname
= &context
->preallocated_names
[context
->name_count
];
1676 memset(aname
, 0, sizeof(*aname
));
1678 aname
= kzalloc(sizeof(*aname
), GFP_NOFS
);
1681 aname
->should_free
= true;
1684 aname
->ino
= AUDIT_INO_UNSET
;
1686 list_add_tail(&aname
->list
, &context
->names_list
);
1688 context
->name_count
++;
1693 * audit_reusename - fill out filename with info from existing entry
1694 * @uptr: userland ptr to pathname
1696 * Search the audit_names list for the current audit context. If there is an
1697 * existing entry with a matching "uptr" then return the filename
1698 * associated with that audit_name. If not, return NULL.
1701 __audit_reusename(const __user
char *uptr
)
1703 struct audit_context
*context
= current
->audit_context
;
1704 struct audit_names
*n
;
1706 list_for_each_entry(n
, &context
->names_list
, list
) {
1709 if (n
->name
->uptr
== uptr
) {
1718 * audit_getname - add a name to the list
1719 * @name: name to add
1721 * Add a name to the list of audit names for this context.
1722 * Called from fs/namei.c:getname().
1724 void __audit_getname(struct filename
*name
)
1726 struct audit_context
*context
= current
->audit_context
;
1727 struct audit_names
*n
;
1729 if (!context
->in_syscall
)
1732 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
1737 n
->name_len
= AUDIT_NAME_FULL
;
1741 if (!context
->pwd
.dentry
)
1742 get_fs_pwd(current
->fs
, &context
->pwd
);
1746 * __audit_inode - store the inode and device from a lookup
1747 * @name: name being audited
1748 * @dentry: dentry being audited
1749 * @flags: attributes for this particular entry
1751 void __audit_inode(struct filename
*name
, const struct dentry
*dentry
,
1754 struct audit_context
*context
= current
->audit_context
;
1755 const struct inode
*inode
= d_backing_inode(dentry
);
1756 struct audit_names
*n
;
1757 bool parent
= flags
& AUDIT_INODE_PARENT
;
1759 if (!context
->in_syscall
)
1766 * If we have a pointer to an audit_names entry already, then we can
1767 * just use it directly if the type is correct.
1772 if (n
->type
== AUDIT_TYPE_PARENT
||
1773 n
->type
== AUDIT_TYPE_UNKNOWN
)
1776 if (n
->type
!= AUDIT_TYPE_PARENT
)
1781 list_for_each_entry_reverse(n
, &context
->names_list
, list
) {
1783 /* valid inode number, use that for the comparison */
1784 if (n
->ino
!= inode
->i_ino
||
1785 n
->dev
!= inode
->i_sb
->s_dev
)
1787 } else if (n
->name
) {
1788 /* inode number has not been set, check the name */
1789 if (strcmp(n
->name
->name
, name
->name
))
1792 /* no inode and no name (?!) ... this is odd ... */
1795 /* match the correct record type */
1797 if (n
->type
== AUDIT_TYPE_PARENT
||
1798 n
->type
== AUDIT_TYPE_UNKNOWN
)
1801 if (n
->type
!= AUDIT_TYPE_PARENT
)
1807 /* unable to find an entry with both a matching name and type */
1808 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
1818 n
->name_len
= n
->name
? parent_len(n
->name
->name
) : AUDIT_NAME_FULL
;
1819 n
->type
= AUDIT_TYPE_PARENT
;
1820 if (flags
& AUDIT_INODE_HIDDEN
)
1823 n
->name_len
= AUDIT_NAME_FULL
;
1824 n
->type
= AUDIT_TYPE_NORMAL
;
1826 handle_path(dentry
);
1827 audit_copy_inode(n
, dentry
, inode
);
1830 void __audit_file(const struct file
*file
)
1832 __audit_inode(NULL
, file
->f_path
.dentry
, 0);
1836 * __audit_inode_child - collect inode info for created/removed objects
1837 * @parent: inode of dentry parent
1838 * @dentry: dentry being audited
1839 * @type: AUDIT_TYPE_* value that we're looking for
1841 * For syscalls that create or remove filesystem objects, audit_inode
1842 * can only collect information for the filesystem object's parent.
1843 * This call updates the audit context with the child's information.
1844 * Syscalls that create a new filesystem object must be hooked after
1845 * the object is created. Syscalls that remove a filesystem object
1846 * must be hooked prior, in order to capture the target inode during
1847 * unsuccessful attempts.
1849 void __audit_inode_child(const struct inode
*parent
,
1850 const struct dentry
*dentry
,
1851 const unsigned char type
)
1853 struct audit_context
*context
= current
->audit_context
;
1854 const struct inode
*inode
= d_backing_inode(dentry
);
1855 const char *dname
= dentry
->d_name
.name
;
1856 struct audit_names
*n
, *found_parent
= NULL
, *found_child
= NULL
;
1858 if (!context
->in_syscall
)
1864 /* look for a parent entry first */
1865 list_for_each_entry(n
, &context
->names_list
, list
) {
1867 (n
->type
!= AUDIT_TYPE_PARENT
&&
1868 n
->type
!= AUDIT_TYPE_UNKNOWN
))
1871 if (n
->ino
== parent
->i_ino
&& n
->dev
== parent
->i_sb
->s_dev
&&
1872 !audit_compare_dname_path(dname
,
1873 n
->name
->name
, n
->name_len
)) {
1874 if (n
->type
== AUDIT_TYPE_UNKNOWN
)
1875 n
->type
= AUDIT_TYPE_PARENT
;
1881 /* is there a matching child entry? */
1882 list_for_each_entry(n
, &context
->names_list
, list
) {
1883 /* can only match entries that have a name */
1885 (n
->type
!= type
&& n
->type
!= AUDIT_TYPE_UNKNOWN
))
1888 if (!strcmp(dname
, n
->name
->name
) ||
1889 !audit_compare_dname_path(dname
, n
->name
->name
,
1891 found_parent
->name_len
:
1893 if (n
->type
== AUDIT_TYPE_UNKNOWN
)
1900 if (!found_parent
) {
1901 /* create a new, "anonymous" parent record */
1902 n
= audit_alloc_name(context
, AUDIT_TYPE_PARENT
);
1905 audit_copy_inode(n
, NULL
, parent
);
1909 found_child
= audit_alloc_name(context
, type
);
1913 /* Re-use the name belonging to the slot for a matching parent
1914 * directory. All names for this context are relinquished in
1915 * audit_free_names() */
1917 found_child
->name
= found_parent
->name
;
1918 found_child
->name_len
= AUDIT_NAME_FULL
;
1919 found_child
->name
->refcnt
++;
1924 audit_copy_inode(found_child
, dentry
, inode
);
1926 found_child
->ino
= AUDIT_INO_UNSET
;
1928 EXPORT_SYMBOL_GPL(__audit_inode_child
);
1931 * auditsc_get_stamp - get local copies of audit_context values
1932 * @ctx: audit_context for the task
1933 * @t: timespec to store time recorded in the audit_context
1934 * @serial: serial value that is recorded in the audit_context
1936 * Also sets the context as auditable.
1938 int auditsc_get_stamp(struct audit_context
*ctx
,
1939 struct timespec
*t
, unsigned int *serial
)
1941 if (!ctx
->in_syscall
)
1944 ctx
->serial
= audit_serial();
1945 t
->tv_sec
= ctx
->ctime
.tv_sec
;
1946 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
1947 *serial
= ctx
->serial
;
1950 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
1955 /* global counter which is incremented every time something logs in */
1956 static atomic_t session_id
= ATOMIC_INIT(0);
1958 static int audit_set_loginuid_perm(kuid_t loginuid
)
1960 /* if we are unset, we don't need privs */
1961 if (!audit_loginuid_set(current
))
1963 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1964 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE
))
1966 /* it is set, you need permission */
1967 if (!capable(CAP_AUDIT_CONTROL
))
1969 /* reject if this is not an unset and we don't allow that */
1970 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID
) && uid_valid(loginuid
))
1975 static void audit_log_set_loginuid(kuid_t koldloginuid
, kuid_t kloginuid
,
1976 unsigned int oldsessionid
, unsigned int sessionid
,
1979 struct audit_buffer
*ab
;
1980 uid_t uid
, oldloginuid
, loginuid
;
1981 struct tty_struct
*tty
;
1986 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
1990 uid
= from_kuid(&init_user_ns
, task_uid(current
));
1991 oldloginuid
= from_kuid(&init_user_ns
, koldloginuid
);
1992 loginuid
= from_kuid(&init_user_ns
, kloginuid
),
1993 tty
= audit_get_tty(current
);
1995 audit_log_format(ab
, "pid=%d uid=%u", task_pid_nr(current
), uid
);
1996 audit_log_task_context(ab
);
1997 audit_log_format(ab
, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
1998 oldloginuid
, loginuid
, tty
? tty_name(tty
) : "(none)",
1999 oldsessionid
, sessionid
, !rc
);
2005 * audit_set_loginuid - set current task's audit_context loginuid
2006 * @loginuid: loginuid value
2010 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2012 int audit_set_loginuid(kuid_t loginuid
)
2014 struct task_struct
*task
= current
;
2015 unsigned int oldsessionid
, sessionid
= (unsigned int)-1;
2019 oldloginuid
= audit_get_loginuid(current
);
2020 oldsessionid
= audit_get_sessionid(current
);
2022 rc
= audit_set_loginuid_perm(loginuid
);
2026 /* are we setting or clearing? */
2027 if (uid_valid(loginuid
))
2028 sessionid
= (unsigned int)atomic_inc_return(&session_id
);
2030 task
->sessionid
= sessionid
;
2031 task
->loginuid
= loginuid
;
2033 audit_log_set_loginuid(oldloginuid
, loginuid
, oldsessionid
, sessionid
, rc
);
2038 * __audit_mq_open - record audit data for a POSIX MQ open
2041 * @attr: queue attributes
2044 void __audit_mq_open(int oflag
, umode_t mode
, struct mq_attr
*attr
)
2046 struct audit_context
*context
= current
->audit_context
;
2049 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2051 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2053 context
->mq_open
.oflag
= oflag
;
2054 context
->mq_open
.mode
= mode
;
2056 context
->type
= AUDIT_MQ_OPEN
;
2060 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2061 * @mqdes: MQ descriptor
2062 * @msg_len: Message length
2063 * @msg_prio: Message priority
2064 * @abs_timeout: Message timeout in absolute time
2067 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2068 const struct timespec
*abs_timeout
)
2070 struct audit_context
*context
= current
->audit_context
;
2071 struct timespec
*p
= &context
->mq_sendrecv
.abs_timeout
;
2074 memcpy(p
, abs_timeout
, sizeof(struct timespec
));
2076 memset(p
, 0, sizeof(struct timespec
));
2078 context
->mq_sendrecv
.mqdes
= mqdes
;
2079 context
->mq_sendrecv
.msg_len
= msg_len
;
2080 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2082 context
->type
= AUDIT_MQ_SENDRECV
;
2086 * __audit_mq_notify - record audit data for a POSIX MQ notify
2087 * @mqdes: MQ descriptor
2088 * @notification: Notification event
2092 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2094 struct audit_context
*context
= current
->audit_context
;
2097 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2099 context
->mq_notify
.sigev_signo
= 0;
2101 context
->mq_notify
.mqdes
= mqdes
;
2102 context
->type
= AUDIT_MQ_NOTIFY
;
2106 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2107 * @mqdes: MQ descriptor
2111 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2113 struct audit_context
*context
= current
->audit_context
;
2114 context
->mq_getsetattr
.mqdes
= mqdes
;
2115 context
->mq_getsetattr
.mqstat
= *mqstat
;
2116 context
->type
= AUDIT_MQ_GETSETATTR
;
2120 * audit_ipc_obj - record audit data for ipc object
2121 * @ipcp: ipc permissions
2124 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2126 struct audit_context
*context
= current
->audit_context
;
2127 context
->ipc
.uid
= ipcp
->uid
;
2128 context
->ipc
.gid
= ipcp
->gid
;
2129 context
->ipc
.mode
= ipcp
->mode
;
2130 context
->ipc
.has_perm
= 0;
2131 security_ipc_getsecid(ipcp
, &context
->ipc
.osid
);
2132 context
->type
= AUDIT_IPC
;
2136 * audit_ipc_set_perm - record audit data for new ipc permissions
2137 * @qbytes: msgq bytes
2138 * @uid: msgq user id
2139 * @gid: msgq group id
2140 * @mode: msgq mode (permissions)
2142 * Called only after audit_ipc_obj().
2144 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, umode_t mode
)
2146 struct audit_context
*context
= current
->audit_context
;
2148 context
->ipc
.qbytes
= qbytes
;
2149 context
->ipc
.perm_uid
= uid
;
2150 context
->ipc
.perm_gid
= gid
;
2151 context
->ipc
.perm_mode
= mode
;
2152 context
->ipc
.has_perm
= 1;
2155 void __audit_bprm(struct linux_binprm
*bprm
)
2157 struct audit_context
*context
= current
->audit_context
;
2159 context
->type
= AUDIT_EXECVE
;
2160 context
->execve
.argc
= bprm
->argc
;
2165 * audit_socketcall - record audit data for sys_socketcall
2166 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2170 int __audit_socketcall(int nargs
, unsigned long *args
)
2172 struct audit_context
*context
= current
->audit_context
;
2174 if (nargs
<= 0 || nargs
> AUDITSC_ARGS
|| !args
)
2176 context
->type
= AUDIT_SOCKETCALL
;
2177 context
->socketcall
.nargs
= nargs
;
2178 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2183 * __audit_fd_pair - record audit data for pipe and socketpair
2184 * @fd1: the first file descriptor
2185 * @fd2: the second file descriptor
2188 void __audit_fd_pair(int fd1
, int fd2
)
2190 struct audit_context
*context
= current
->audit_context
;
2191 context
->fds
[0] = fd1
;
2192 context
->fds
[1] = fd2
;
2196 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2197 * @len: data length in user space
2198 * @a: data address in kernel space
2200 * Returns 0 for success or NULL context or < 0 on error.
2202 int __audit_sockaddr(int len
, void *a
)
2204 struct audit_context
*context
= current
->audit_context
;
2206 if (!context
->sockaddr
) {
2207 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2210 context
->sockaddr
= p
;
2213 context
->sockaddr_len
= len
;
2214 memcpy(context
->sockaddr
, a
, len
);
2218 void __audit_ptrace(struct task_struct
*t
)
2220 struct audit_context
*context
= current
->audit_context
;
2222 context
->target_pid
= task_pid_nr(t
);
2223 context
->target_auid
= audit_get_loginuid(t
);
2224 context
->target_uid
= task_uid(t
);
2225 context
->target_sessionid
= audit_get_sessionid(t
);
2226 security_task_getsecid(t
, &context
->target_sid
);
2227 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2231 * audit_signal_info - record signal info for shutting down audit subsystem
2232 * @sig: signal value
2233 * @t: task being signaled
2235 * If the audit subsystem is being terminated, record the task (pid)
2236 * and uid that is doing that.
2238 int __audit_signal_info(int sig
, struct task_struct
*t
)
2240 struct audit_aux_data_pids
*axp
;
2241 struct task_struct
*tsk
= current
;
2242 struct audit_context
*ctx
= tsk
->audit_context
;
2243 kuid_t uid
= current_uid(), t_uid
= task_uid(t
);
2245 if (audit_pid
&& t
->tgid
== audit_pid
) {
2246 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
|| sig
== SIGUSR2
) {
2247 audit_sig_pid
= task_pid_nr(tsk
);
2248 if (uid_valid(tsk
->loginuid
))
2249 audit_sig_uid
= tsk
->loginuid
;
2251 audit_sig_uid
= uid
;
2252 security_task_getsecid(tsk
, &audit_sig_sid
);
2254 if (!audit_signals
|| audit_dummy_context())
2258 /* optimize the common case by putting first signal recipient directly
2259 * in audit_context */
2260 if (!ctx
->target_pid
) {
2261 ctx
->target_pid
= task_tgid_nr(t
);
2262 ctx
->target_auid
= audit_get_loginuid(t
);
2263 ctx
->target_uid
= t_uid
;
2264 ctx
->target_sessionid
= audit_get_sessionid(t
);
2265 security_task_getsecid(t
, &ctx
->target_sid
);
2266 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2270 axp
= (void *)ctx
->aux_pids
;
2271 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2272 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2276 axp
->d
.type
= AUDIT_OBJ_PID
;
2277 axp
->d
.next
= ctx
->aux_pids
;
2278 ctx
->aux_pids
= (void *)axp
;
2280 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2282 axp
->target_pid
[axp
->pid_count
] = task_tgid_nr(t
);
2283 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2284 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2285 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2286 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2287 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2294 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2295 * @bprm: pointer to the bprm being processed
2296 * @new: the proposed new credentials
2297 * @old: the old credentials
2299 * Simply check if the proc already has the caps given by the file and if not
2300 * store the priv escalation info for later auditing at the end of the syscall
2304 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2305 const struct cred
*new, const struct cred
*old
)
2307 struct audit_aux_data_bprm_fcaps
*ax
;
2308 struct audit_context
*context
= current
->audit_context
;
2309 struct cpu_vfs_cap_data vcaps
;
2311 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2315 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2316 ax
->d
.next
= context
->aux
;
2317 context
->aux
= (void *)ax
;
2319 get_vfs_caps_from_disk(bprm
->file
->f_path
.dentry
, &vcaps
);
2321 ax
->fcap
.permitted
= vcaps
.permitted
;
2322 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2323 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2324 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2326 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2327 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2328 ax
->old_pcap
.effective
= old
->cap_effective
;
2330 ax
->new_pcap
.permitted
= new->cap_permitted
;
2331 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2332 ax
->new_pcap
.effective
= new->cap_effective
;
2337 * __audit_log_capset - store information about the arguments to the capset syscall
2338 * @new: the new credentials
2339 * @old: the old (current) credentials
2341 * Record the arguments userspace sent to sys_capset for later printing by the
2342 * audit system if applicable
2344 void __audit_log_capset(const struct cred
*new, const struct cred
*old
)
2346 struct audit_context
*context
= current
->audit_context
;
2347 context
->capset
.pid
= task_pid_nr(current
);
2348 context
->capset
.cap
.effective
= new->cap_effective
;
2349 context
->capset
.cap
.inheritable
= new->cap_effective
;
2350 context
->capset
.cap
.permitted
= new->cap_permitted
;
2351 context
->type
= AUDIT_CAPSET
;
2354 void __audit_mmap_fd(int fd
, int flags
)
2356 struct audit_context
*context
= current
->audit_context
;
2357 context
->mmap
.fd
= fd
;
2358 context
->mmap
.flags
= flags
;
2359 context
->type
= AUDIT_MMAP
;
2362 static void audit_log_task(struct audit_buffer
*ab
)
2366 unsigned int sessionid
;
2367 char comm
[sizeof(current
->comm
)];
2369 auid
= audit_get_loginuid(current
);
2370 sessionid
= audit_get_sessionid(current
);
2371 current_uid_gid(&uid
, &gid
);
2373 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2374 from_kuid(&init_user_ns
, auid
),
2375 from_kuid(&init_user_ns
, uid
),
2376 from_kgid(&init_user_ns
, gid
),
2378 audit_log_task_context(ab
);
2379 audit_log_format(ab
, " pid=%d comm=", task_pid_nr(current
));
2380 audit_log_untrustedstring(ab
, get_task_comm(comm
, current
));
2381 audit_log_d_path_exe(ab
, current
->mm
);
2385 * audit_core_dumps - record information about processes that end abnormally
2386 * @signr: signal value
2388 * If a process ends with a core dump, something fishy is going on and we
2389 * should record the event for investigation.
2391 void audit_core_dumps(long signr
)
2393 struct audit_buffer
*ab
;
2398 if (signr
== SIGQUIT
) /* don't care for those */
2401 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2405 audit_log_format(ab
, " sig=%ld", signr
);
2409 void __audit_seccomp(unsigned long syscall
, long signr
, int code
)
2411 struct audit_buffer
*ab
;
2413 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_SECCOMP
);
2417 audit_log_format(ab
, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2418 signr
, syscall_get_arch(), syscall
, is_compat_task(),
2419 KSTK_EIP(current
), code
);
2423 struct list_head
*audit_killed_trees(void)
2425 struct audit_context
*ctx
= current
->audit_context
;
2426 if (likely(!ctx
|| !ctx
->in_syscall
))
2428 return &ctx
->killed_trees
;