memstick: move the dereference below the NULL test
[linux/fpc-iii.git] / mm / ksm.c
blobab2ba9ad3c59504ed8e90c4ca9156f6ce4249145
1 /*
2 * Memory merging support.
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
14 * This work is licensed under the terms of the GNU GPL, version 2.
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
41 #include <asm/tlbflush.h>
42 #include "internal.h"
44 #ifdef CONFIG_NUMA
45 #define NUMA(x) (x)
46 #define DO_NUMA(x) do { (x); } while (0)
47 #else
48 #define NUMA(x) (0)
49 #define DO_NUMA(x) do { } while (0)
50 #endif
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
75 * KSM solves this problem by several techniques:
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
95 /**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100 * @mm: the mm that this information is valid for
102 struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
105 struct rmap_item *rmap_list;
106 struct mm_struct *mm;
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
114 * @seqnr: count of completed full scans (needed when removing unstable node)
116 * There is only the one ksm_scan instance of this cursor structure.
118 struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
121 struct rmap_item **rmap_list;
122 unsigned long seqnr;
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
130 * @hlist: hlist head of rmap_items using this ksm page
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
134 struct stable_node {
135 union {
136 struct rb_node node; /* when node of stable tree */
137 struct { /* when listed for migration */
138 struct list_head *head;
139 struct list_head list;
142 struct hlist_head hlist;
143 unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 int nid;
146 #endif
150 * struct rmap_item - reverse mapping item for virtual addresses
151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
154 * @mm: the memory structure this rmap_item is pointing into
155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156 * @oldchecksum: previous checksum of the page at that virtual address
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
161 struct rmap_item {
162 struct rmap_item *rmap_list;
163 union {
164 struct anon_vma *anon_vma; /* when stable */
165 #ifdef CONFIG_NUMA
166 int nid; /* when node of unstable tree */
167 #endif
169 struct mm_struct *mm;
170 unsigned long address; /* + low bits used for flags below */
171 unsigned int oldchecksum; /* when unstable */
172 union {
173 struct rb_node node; /* when node of unstable tree */
174 struct { /* when listed from stable tree */
175 struct stable_node *head;
176 struct hlist_node hlist;
181 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
183 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
197 static struct mm_slot ksm_mm_head = {
198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
200 static struct ksm_scan ksm_scan = {
201 .mm_slot = &ksm_mm_head,
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes 1U
232 #define ksm_nr_node_ids 1
233 #endif
235 #define KSM_RUN_STOP 0
236 #define KSM_RUN_MERGE 1
237 #define KSM_RUN_UNMERGE 2
238 #define KSM_RUN_OFFLINE 4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247 sizeof(struct __struct), __alignof__(struct __struct),\
248 (__flags), NULL)
250 static int __init ksm_slab_init(void)
252 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253 if (!rmap_item_cache)
254 goto out;
256 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257 if (!stable_node_cache)
258 goto out_free1;
260 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261 if (!mm_slot_cache)
262 goto out_free2;
264 return 0;
266 out_free2:
267 kmem_cache_destroy(stable_node_cache);
268 out_free1:
269 kmem_cache_destroy(rmap_item_cache);
270 out:
271 return -ENOMEM;
274 static void __init ksm_slab_free(void)
276 kmem_cache_destroy(mm_slot_cache);
277 kmem_cache_destroy(stable_node_cache);
278 kmem_cache_destroy(rmap_item_cache);
279 mm_slot_cache = NULL;
282 static inline struct rmap_item *alloc_rmap_item(void)
284 struct rmap_item *rmap_item;
286 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287 if (rmap_item)
288 ksm_rmap_items++;
289 return rmap_item;
292 static inline void free_rmap_item(struct rmap_item *rmap_item)
294 ksm_rmap_items--;
295 rmap_item->mm = NULL; /* debug safety */
296 kmem_cache_free(rmap_item_cache, rmap_item);
299 static inline struct stable_node *alloc_stable_node(void)
301 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
304 static inline void free_stable_node(struct stable_node *stable_node)
306 kmem_cache_free(stable_node_cache, stable_node);
309 static inline struct mm_slot *alloc_mm_slot(void)
311 if (!mm_slot_cache) /* initialization failed */
312 return NULL;
313 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
316 static inline void free_mm_slot(struct mm_slot *mm_slot)
318 kmem_cache_free(mm_slot_cache, mm_slot);
321 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
323 struct hlist_node *node;
324 struct mm_slot *slot;
326 hash_for_each_possible(mm_slots_hash, slot, node, link, (unsigned long)mm)
327 if (slot->mm == mm)
328 return slot;
330 return NULL;
333 static void insert_to_mm_slots_hash(struct mm_struct *mm,
334 struct mm_slot *mm_slot)
336 mm_slot->mm = mm;
337 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
341 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
342 * page tables after it has passed through ksm_exit() - which, if necessary,
343 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
344 * a special flag: they can just back out as soon as mm_users goes to zero.
345 * ksm_test_exit() is used throughout to make this test for exit: in some
346 * places for correctness, in some places just to avoid unnecessary work.
348 static inline bool ksm_test_exit(struct mm_struct *mm)
350 return atomic_read(&mm->mm_users) == 0;
354 * We use break_ksm to break COW on a ksm page: it's a stripped down
356 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
357 * put_page(page);
359 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
360 * in case the application has unmapped and remapped mm,addr meanwhile.
361 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
362 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
364 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
366 struct page *page;
367 int ret = 0;
369 do {
370 cond_resched();
371 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
372 if (IS_ERR_OR_NULL(page))
373 break;
374 if (PageKsm(page))
375 ret = handle_mm_fault(vma->vm_mm, vma, addr,
376 FAULT_FLAG_WRITE);
377 else
378 ret = VM_FAULT_WRITE;
379 put_page(page);
380 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
382 * We must loop because handle_mm_fault() may back out if there's
383 * any difficulty e.g. if pte accessed bit gets updated concurrently.
385 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
386 * COW has been broken, even if the vma does not permit VM_WRITE;
387 * but note that a concurrent fault might break PageKsm for us.
389 * VM_FAULT_SIGBUS could occur if we race with truncation of the
390 * backing file, which also invalidates anonymous pages: that's
391 * okay, that truncation will have unmapped the PageKsm for us.
393 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
394 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
395 * current task has TIF_MEMDIE set, and will be OOM killed on return
396 * to user; and ksmd, having no mm, would never be chosen for that.
398 * But if the mm is in a limited mem_cgroup, then the fault may fail
399 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
400 * even ksmd can fail in this way - though it's usually breaking ksm
401 * just to undo a merge it made a moment before, so unlikely to oom.
403 * That's a pity: we might therefore have more kernel pages allocated
404 * than we're counting as nodes in the stable tree; but ksm_do_scan
405 * will retry to break_cow on each pass, so should recover the page
406 * in due course. The important thing is to not let VM_MERGEABLE
407 * be cleared while any such pages might remain in the area.
409 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
412 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
413 unsigned long addr)
415 struct vm_area_struct *vma;
416 if (ksm_test_exit(mm))
417 return NULL;
418 vma = find_vma(mm, addr);
419 if (!vma || vma->vm_start > addr)
420 return NULL;
421 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
422 return NULL;
423 return vma;
426 static void break_cow(struct rmap_item *rmap_item)
428 struct mm_struct *mm = rmap_item->mm;
429 unsigned long addr = rmap_item->address;
430 struct vm_area_struct *vma;
433 * It is not an accident that whenever we want to break COW
434 * to undo, we also need to drop a reference to the anon_vma.
436 put_anon_vma(rmap_item->anon_vma);
438 down_read(&mm->mmap_sem);
439 vma = find_mergeable_vma(mm, addr);
440 if (vma)
441 break_ksm(vma, addr);
442 up_read(&mm->mmap_sem);
445 static struct page *page_trans_compound_anon(struct page *page)
447 if (PageTransCompound(page)) {
448 struct page *head = compound_trans_head(page);
450 * head may actually be splitted and freed from under
451 * us but it's ok here.
453 if (PageAnon(head))
454 return head;
456 return NULL;
459 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
461 struct mm_struct *mm = rmap_item->mm;
462 unsigned long addr = rmap_item->address;
463 struct vm_area_struct *vma;
464 struct page *page;
466 down_read(&mm->mmap_sem);
467 vma = find_mergeable_vma(mm, addr);
468 if (!vma)
469 goto out;
471 page = follow_page(vma, addr, FOLL_GET);
472 if (IS_ERR_OR_NULL(page))
473 goto out;
474 if (PageAnon(page) || page_trans_compound_anon(page)) {
475 flush_anon_page(vma, page, addr);
476 flush_dcache_page(page);
477 } else {
478 put_page(page);
479 out: page = NULL;
481 up_read(&mm->mmap_sem);
482 return page;
486 * This helper is used for getting right index into array of tree roots.
487 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
488 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
489 * every node has its own stable and unstable tree.
491 static inline int get_kpfn_nid(unsigned long kpfn)
493 return ksm_merge_across_nodes ? 0 : pfn_to_nid(kpfn);
496 static void remove_node_from_stable_tree(struct stable_node *stable_node)
498 struct rmap_item *rmap_item;
499 struct hlist_node *hlist;
501 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
502 if (rmap_item->hlist.next)
503 ksm_pages_sharing--;
504 else
505 ksm_pages_shared--;
506 put_anon_vma(rmap_item->anon_vma);
507 rmap_item->address &= PAGE_MASK;
508 cond_resched();
511 if (stable_node->head == &migrate_nodes)
512 list_del(&stable_node->list);
513 else
514 rb_erase(&stable_node->node,
515 root_stable_tree + NUMA(stable_node->nid));
516 free_stable_node(stable_node);
520 * get_ksm_page: checks if the page indicated by the stable node
521 * is still its ksm page, despite having held no reference to it.
522 * In which case we can trust the content of the page, and it
523 * returns the gotten page; but if the page has now been zapped,
524 * remove the stale node from the stable tree and return NULL.
525 * But beware, the stable node's page might be being migrated.
527 * You would expect the stable_node to hold a reference to the ksm page.
528 * But if it increments the page's count, swapping out has to wait for
529 * ksmd to come around again before it can free the page, which may take
530 * seconds or even minutes: much too unresponsive. So instead we use a
531 * "keyhole reference": access to the ksm page from the stable node peeps
532 * out through its keyhole to see if that page still holds the right key,
533 * pointing back to this stable node. This relies on freeing a PageAnon
534 * page to reset its page->mapping to NULL, and relies on no other use of
535 * a page to put something that might look like our key in page->mapping.
536 * is on its way to being freed; but it is an anomaly to bear in mind.
538 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
540 struct page *page;
541 void *expected_mapping;
542 unsigned long kpfn;
544 expected_mapping = (void *)stable_node +
545 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
546 again:
547 kpfn = ACCESS_ONCE(stable_node->kpfn);
548 page = pfn_to_page(kpfn);
551 * page is computed from kpfn, so on most architectures reading
552 * page->mapping is naturally ordered after reading node->kpfn,
553 * but on Alpha we need to be more careful.
555 smp_read_barrier_depends();
556 if (ACCESS_ONCE(page->mapping) != expected_mapping)
557 goto stale;
560 * We cannot do anything with the page while its refcount is 0.
561 * Usually 0 means free, or tail of a higher-order page: in which
562 * case this node is no longer referenced, and should be freed;
563 * however, it might mean that the page is under page_freeze_refs().
564 * The __remove_mapping() case is easy, again the node is now stale;
565 * but if page is swapcache in migrate_page_move_mapping(), it might
566 * still be our page, in which case it's essential to keep the node.
568 while (!get_page_unless_zero(page)) {
570 * Another check for page->mapping != expected_mapping would
571 * work here too. We have chosen the !PageSwapCache test to
572 * optimize the common case, when the page is or is about to
573 * be freed: PageSwapCache is cleared (under spin_lock_irq)
574 * in the freeze_refs section of __remove_mapping(); but Anon
575 * page->mapping reset to NULL later, in free_pages_prepare().
577 if (!PageSwapCache(page))
578 goto stale;
579 cpu_relax();
582 if (ACCESS_ONCE(page->mapping) != expected_mapping) {
583 put_page(page);
584 goto stale;
587 if (lock_it) {
588 lock_page(page);
589 if (ACCESS_ONCE(page->mapping) != expected_mapping) {
590 unlock_page(page);
591 put_page(page);
592 goto stale;
595 return page;
597 stale:
599 * We come here from above when page->mapping or !PageSwapCache
600 * suggests that the node is stale; but it might be under migration.
601 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
602 * before checking whether node->kpfn has been changed.
604 smp_rmb();
605 if (ACCESS_ONCE(stable_node->kpfn) != kpfn)
606 goto again;
607 remove_node_from_stable_tree(stable_node);
608 return NULL;
612 * Removing rmap_item from stable or unstable tree.
613 * This function will clean the information from the stable/unstable tree.
615 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
617 if (rmap_item->address & STABLE_FLAG) {
618 struct stable_node *stable_node;
619 struct page *page;
621 stable_node = rmap_item->head;
622 page = get_ksm_page(stable_node, true);
623 if (!page)
624 goto out;
626 hlist_del(&rmap_item->hlist);
627 unlock_page(page);
628 put_page(page);
630 if (stable_node->hlist.first)
631 ksm_pages_sharing--;
632 else
633 ksm_pages_shared--;
635 put_anon_vma(rmap_item->anon_vma);
636 rmap_item->address &= PAGE_MASK;
638 } else if (rmap_item->address & UNSTABLE_FLAG) {
639 unsigned char age;
641 * Usually ksmd can and must skip the rb_erase, because
642 * root_unstable_tree was already reset to RB_ROOT.
643 * But be careful when an mm is exiting: do the rb_erase
644 * if this rmap_item was inserted by this scan, rather
645 * than left over from before.
647 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
648 BUG_ON(age > 1);
649 if (!age)
650 rb_erase(&rmap_item->node,
651 root_unstable_tree + NUMA(rmap_item->nid));
652 ksm_pages_unshared--;
653 rmap_item->address &= PAGE_MASK;
655 out:
656 cond_resched(); /* we're called from many long loops */
659 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
660 struct rmap_item **rmap_list)
662 while (*rmap_list) {
663 struct rmap_item *rmap_item = *rmap_list;
664 *rmap_list = rmap_item->rmap_list;
665 remove_rmap_item_from_tree(rmap_item);
666 free_rmap_item(rmap_item);
671 * Though it's very tempting to unmerge rmap_items from stable tree rather
672 * than check every pte of a given vma, the locking doesn't quite work for
673 * that - an rmap_item is assigned to the stable tree after inserting ksm
674 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
675 * rmap_items from parent to child at fork time (so as not to waste time
676 * if exit comes before the next scan reaches it).
678 * Similarly, although we'd like to remove rmap_items (so updating counts
679 * and freeing memory) when unmerging an area, it's easier to leave that
680 * to the next pass of ksmd - consider, for example, how ksmd might be
681 * in cmp_and_merge_page on one of the rmap_items we would be removing.
683 static int unmerge_ksm_pages(struct vm_area_struct *vma,
684 unsigned long start, unsigned long end)
686 unsigned long addr;
687 int err = 0;
689 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
690 if (ksm_test_exit(vma->vm_mm))
691 break;
692 if (signal_pending(current))
693 err = -ERESTARTSYS;
694 else
695 err = break_ksm(vma, addr);
697 return err;
700 #ifdef CONFIG_SYSFS
702 * Only called through the sysfs control interface:
704 static int remove_stable_node(struct stable_node *stable_node)
706 struct page *page;
707 int err;
709 page = get_ksm_page(stable_node, true);
710 if (!page) {
712 * get_ksm_page did remove_node_from_stable_tree itself.
714 return 0;
717 if (WARN_ON_ONCE(page_mapped(page))) {
719 * This should not happen: but if it does, just refuse to let
720 * merge_across_nodes be switched - there is no need to panic.
722 err = -EBUSY;
723 } else {
725 * The stable node did not yet appear stale to get_ksm_page(),
726 * since that allows for an unmapped ksm page to be recognized
727 * right up until it is freed; but the node is safe to remove.
728 * This page might be in a pagevec waiting to be freed,
729 * or it might be PageSwapCache (perhaps under writeback),
730 * or it might have been removed from swapcache a moment ago.
732 set_page_stable_node(page, NULL);
733 remove_node_from_stable_tree(stable_node);
734 err = 0;
737 unlock_page(page);
738 put_page(page);
739 return err;
742 static int remove_all_stable_nodes(void)
744 struct stable_node *stable_node;
745 struct list_head *this, *next;
746 int nid;
747 int err = 0;
749 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
750 while (root_stable_tree[nid].rb_node) {
751 stable_node = rb_entry(root_stable_tree[nid].rb_node,
752 struct stable_node, node);
753 if (remove_stable_node(stable_node)) {
754 err = -EBUSY;
755 break; /* proceed to next nid */
757 cond_resched();
760 list_for_each_safe(this, next, &migrate_nodes) {
761 stable_node = list_entry(this, struct stable_node, list);
762 if (remove_stable_node(stable_node))
763 err = -EBUSY;
764 cond_resched();
766 return err;
769 static int unmerge_and_remove_all_rmap_items(void)
771 struct mm_slot *mm_slot;
772 struct mm_struct *mm;
773 struct vm_area_struct *vma;
774 int err = 0;
776 spin_lock(&ksm_mmlist_lock);
777 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
778 struct mm_slot, mm_list);
779 spin_unlock(&ksm_mmlist_lock);
781 for (mm_slot = ksm_scan.mm_slot;
782 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
783 mm = mm_slot->mm;
784 down_read(&mm->mmap_sem);
785 for (vma = mm->mmap; vma; vma = vma->vm_next) {
786 if (ksm_test_exit(mm))
787 break;
788 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
789 continue;
790 err = unmerge_ksm_pages(vma,
791 vma->vm_start, vma->vm_end);
792 if (err)
793 goto error;
796 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
798 spin_lock(&ksm_mmlist_lock);
799 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
800 struct mm_slot, mm_list);
801 if (ksm_test_exit(mm)) {
802 hash_del(&mm_slot->link);
803 list_del(&mm_slot->mm_list);
804 spin_unlock(&ksm_mmlist_lock);
806 free_mm_slot(mm_slot);
807 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
808 up_read(&mm->mmap_sem);
809 mmdrop(mm);
810 } else {
811 spin_unlock(&ksm_mmlist_lock);
812 up_read(&mm->mmap_sem);
816 /* Clean up stable nodes, but don't worry if some are still busy */
817 remove_all_stable_nodes();
818 ksm_scan.seqnr = 0;
819 return 0;
821 error:
822 up_read(&mm->mmap_sem);
823 spin_lock(&ksm_mmlist_lock);
824 ksm_scan.mm_slot = &ksm_mm_head;
825 spin_unlock(&ksm_mmlist_lock);
826 return err;
828 #endif /* CONFIG_SYSFS */
830 static u32 calc_checksum(struct page *page)
832 u32 checksum;
833 void *addr = kmap_atomic(page);
834 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
835 kunmap_atomic(addr);
836 return checksum;
839 static int memcmp_pages(struct page *page1, struct page *page2)
841 char *addr1, *addr2;
842 int ret;
844 addr1 = kmap_atomic(page1);
845 addr2 = kmap_atomic(page2);
846 ret = memcmp(addr1, addr2, PAGE_SIZE);
847 kunmap_atomic(addr2);
848 kunmap_atomic(addr1);
849 return ret;
852 static inline int pages_identical(struct page *page1, struct page *page2)
854 return !memcmp_pages(page1, page2);
857 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
858 pte_t *orig_pte)
860 struct mm_struct *mm = vma->vm_mm;
861 unsigned long addr;
862 pte_t *ptep;
863 spinlock_t *ptl;
864 int swapped;
865 int err = -EFAULT;
866 unsigned long mmun_start; /* For mmu_notifiers */
867 unsigned long mmun_end; /* For mmu_notifiers */
869 addr = page_address_in_vma(page, vma);
870 if (addr == -EFAULT)
871 goto out;
873 BUG_ON(PageTransCompound(page));
875 mmun_start = addr;
876 mmun_end = addr + PAGE_SIZE;
877 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
879 ptep = page_check_address(page, mm, addr, &ptl, 0);
880 if (!ptep)
881 goto out_mn;
883 if (pte_write(*ptep) || pte_dirty(*ptep)) {
884 pte_t entry;
886 swapped = PageSwapCache(page);
887 flush_cache_page(vma, addr, page_to_pfn(page));
889 * Ok this is tricky, when get_user_pages_fast() run it doesn't
890 * take any lock, therefore the check that we are going to make
891 * with the pagecount against the mapcount is racey and
892 * O_DIRECT can happen right after the check.
893 * So we clear the pte and flush the tlb before the check
894 * this assure us that no O_DIRECT can happen after the check
895 * or in the middle of the check.
897 entry = ptep_clear_flush(vma, addr, ptep);
899 * Check that no O_DIRECT or similar I/O is in progress on the
900 * page
902 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
903 set_pte_at(mm, addr, ptep, entry);
904 goto out_unlock;
906 if (pte_dirty(entry))
907 set_page_dirty(page);
908 entry = pte_mkclean(pte_wrprotect(entry));
909 set_pte_at_notify(mm, addr, ptep, entry);
911 *orig_pte = *ptep;
912 err = 0;
914 out_unlock:
915 pte_unmap_unlock(ptep, ptl);
916 out_mn:
917 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
918 out:
919 return err;
923 * replace_page - replace page in vma by new ksm page
924 * @vma: vma that holds the pte pointing to page
925 * @page: the page we are replacing by kpage
926 * @kpage: the ksm page we replace page by
927 * @orig_pte: the original value of the pte
929 * Returns 0 on success, -EFAULT on failure.
931 static int replace_page(struct vm_area_struct *vma, struct page *page,
932 struct page *kpage, pte_t orig_pte)
934 struct mm_struct *mm = vma->vm_mm;
935 pmd_t *pmd;
936 pte_t *ptep;
937 spinlock_t *ptl;
938 unsigned long addr;
939 int err = -EFAULT;
940 unsigned long mmun_start; /* For mmu_notifiers */
941 unsigned long mmun_end; /* For mmu_notifiers */
943 addr = page_address_in_vma(page, vma);
944 if (addr == -EFAULT)
945 goto out;
947 pmd = mm_find_pmd(mm, addr);
948 if (!pmd)
949 goto out;
950 BUG_ON(pmd_trans_huge(*pmd));
952 mmun_start = addr;
953 mmun_end = addr + PAGE_SIZE;
954 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
956 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
957 if (!pte_same(*ptep, orig_pte)) {
958 pte_unmap_unlock(ptep, ptl);
959 goto out_mn;
962 get_page(kpage);
963 page_add_anon_rmap(kpage, vma, addr);
965 flush_cache_page(vma, addr, pte_pfn(*ptep));
966 ptep_clear_flush(vma, addr, ptep);
967 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
969 page_remove_rmap(page);
970 if (!page_mapped(page))
971 try_to_free_swap(page);
972 put_page(page);
974 pte_unmap_unlock(ptep, ptl);
975 err = 0;
976 out_mn:
977 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
978 out:
979 return err;
982 static int page_trans_compound_anon_split(struct page *page)
984 int ret = 0;
985 struct page *transhuge_head = page_trans_compound_anon(page);
986 if (transhuge_head) {
987 /* Get the reference on the head to split it. */
988 if (get_page_unless_zero(transhuge_head)) {
990 * Recheck we got the reference while the head
991 * was still anonymous.
993 if (PageAnon(transhuge_head))
994 ret = split_huge_page(transhuge_head);
995 else
997 * Retry later if split_huge_page run
998 * from under us.
1000 ret = 1;
1001 put_page(transhuge_head);
1002 } else
1003 /* Retry later if split_huge_page run from under us. */
1004 ret = 1;
1006 return ret;
1010 * try_to_merge_one_page - take two pages and merge them into one
1011 * @vma: the vma that holds the pte pointing to page
1012 * @page: the PageAnon page that we want to replace with kpage
1013 * @kpage: the PageKsm page that we want to map instead of page,
1014 * or NULL the first time when we want to use page as kpage.
1016 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1018 static int try_to_merge_one_page(struct vm_area_struct *vma,
1019 struct page *page, struct page *kpage)
1021 pte_t orig_pte = __pte(0);
1022 int err = -EFAULT;
1024 if (page == kpage) /* ksm page forked */
1025 return 0;
1027 if (!(vma->vm_flags & VM_MERGEABLE))
1028 goto out;
1029 if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1030 goto out;
1031 BUG_ON(PageTransCompound(page));
1032 if (!PageAnon(page))
1033 goto out;
1036 * We need the page lock to read a stable PageSwapCache in
1037 * write_protect_page(). We use trylock_page() instead of
1038 * lock_page() because we don't want to wait here - we
1039 * prefer to continue scanning and merging different pages,
1040 * then come back to this page when it is unlocked.
1042 if (!trylock_page(page))
1043 goto out;
1045 * If this anonymous page is mapped only here, its pte may need
1046 * to be write-protected. If it's mapped elsewhere, all of its
1047 * ptes are necessarily already write-protected. But in either
1048 * case, we need to lock and check page_count is not raised.
1050 if (write_protect_page(vma, page, &orig_pte) == 0) {
1051 if (!kpage) {
1053 * While we hold page lock, upgrade page from
1054 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1055 * stable_tree_insert() will update stable_node.
1057 set_page_stable_node(page, NULL);
1058 mark_page_accessed(page);
1059 err = 0;
1060 } else if (pages_identical(page, kpage))
1061 err = replace_page(vma, page, kpage, orig_pte);
1064 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1065 munlock_vma_page(page);
1066 if (!PageMlocked(kpage)) {
1067 unlock_page(page);
1068 lock_page(kpage);
1069 mlock_vma_page(kpage);
1070 page = kpage; /* for final unlock */
1074 unlock_page(page);
1075 out:
1076 return err;
1080 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1081 * but no new kernel page is allocated: kpage must already be a ksm page.
1083 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1085 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1086 struct page *page, struct page *kpage)
1088 struct mm_struct *mm = rmap_item->mm;
1089 struct vm_area_struct *vma;
1090 int err = -EFAULT;
1092 down_read(&mm->mmap_sem);
1093 if (ksm_test_exit(mm))
1094 goto out;
1095 vma = find_vma(mm, rmap_item->address);
1096 if (!vma || vma->vm_start > rmap_item->address)
1097 goto out;
1099 err = try_to_merge_one_page(vma, page, kpage);
1100 if (err)
1101 goto out;
1103 /* Unstable nid is in union with stable anon_vma: remove first */
1104 remove_rmap_item_from_tree(rmap_item);
1106 /* Must get reference to anon_vma while still holding mmap_sem */
1107 rmap_item->anon_vma = vma->anon_vma;
1108 get_anon_vma(vma->anon_vma);
1109 out:
1110 up_read(&mm->mmap_sem);
1111 return err;
1115 * try_to_merge_two_pages - take two identical pages and prepare them
1116 * to be merged into one page.
1118 * This function returns the kpage if we successfully merged two identical
1119 * pages into one ksm page, NULL otherwise.
1121 * Note that this function upgrades page to ksm page: if one of the pages
1122 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1124 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1125 struct page *page,
1126 struct rmap_item *tree_rmap_item,
1127 struct page *tree_page)
1129 int err;
1131 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1132 if (!err) {
1133 err = try_to_merge_with_ksm_page(tree_rmap_item,
1134 tree_page, page);
1136 * If that fails, we have a ksm page with only one pte
1137 * pointing to it: so break it.
1139 if (err)
1140 break_cow(rmap_item);
1142 return err ? NULL : page;
1146 * stable_tree_search - search for page inside the stable tree
1148 * This function checks if there is a page inside the stable tree
1149 * with identical content to the page that we are scanning right now.
1151 * This function returns the stable tree node of identical content if found,
1152 * NULL otherwise.
1154 static struct page *stable_tree_search(struct page *page)
1156 int nid;
1157 struct rb_root *root;
1158 struct rb_node **new;
1159 struct rb_node *parent;
1160 struct stable_node *stable_node;
1161 struct stable_node *page_node;
1163 page_node = page_stable_node(page);
1164 if (page_node && page_node->head != &migrate_nodes) {
1165 /* ksm page forked */
1166 get_page(page);
1167 return page;
1170 nid = get_kpfn_nid(page_to_pfn(page));
1171 root = root_stable_tree + nid;
1172 again:
1173 new = &root->rb_node;
1174 parent = NULL;
1176 while (*new) {
1177 struct page *tree_page;
1178 int ret;
1180 cond_resched();
1181 stable_node = rb_entry(*new, struct stable_node, node);
1182 tree_page = get_ksm_page(stable_node, false);
1183 if (!tree_page)
1184 return NULL;
1186 ret = memcmp_pages(page, tree_page);
1187 put_page(tree_page);
1189 parent = *new;
1190 if (ret < 0)
1191 new = &parent->rb_left;
1192 else if (ret > 0)
1193 new = &parent->rb_right;
1194 else {
1196 * Lock and unlock the stable_node's page (which
1197 * might already have been migrated) so that page
1198 * migration is sure to notice its raised count.
1199 * It would be more elegant to return stable_node
1200 * than kpage, but that involves more changes.
1202 tree_page = get_ksm_page(stable_node, true);
1203 if (tree_page) {
1204 unlock_page(tree_page);
1205 if (get_kpfn_nid(stable_node->kpfn) !=
1206 NUMA(stable_node->nid)) {
1207 put_page(tree_page);
1208 goto replace;
1210 return tree_page;
1213 * There is now a place for page_node, but the tree may
1214 * have been rebalanced, so re-evaluate parent and new.
1216 if (page_node)
1217 goto again;
1218 return NULL;
1222 if (!page_node)
1223 return NULL;
1225 list_del(&page_node->list);
1226 DO_NUMA(page_node->nid = nid);
1227 rb_link_node(&page_node->node, parent, new);
1228 rb_insert_color(&page_node->node, root);
1229 get_page(page);
1230 return page;
1232 replace:
1233 if (page_node) {
1234 list_del(&page_node->list);
1235 DO_NUMA(page_node->nid = nid);
1236 rb_replace_node(&stable_node->node, &page_node->node, root);
1237 get_page(page);
1238 } else {
1239 rb_erase(&stable_node->node, root);
1240 page = NULL;
1242 stable_node->head = &migrate_nodes;
1243 list_add(&stable_node->list, stable_node->head);
1244 return page;
1248 * stable_tree_insert - insert stable tree node pointing to new ksm page
1249 * into the stable tree.
1251 * This function returns the stable tree node just allocated on success,
1252 * NULL otherwise.
1254 static struct stable_node *stable_tree_insert(struct page *kpage)
1256 int nid;
1257 unsigned long kpfn;
1258 struct rb_root *root;
1259 struct rb_node **new;
1260 struct rb_node *parent = NULL;
1261 struct stable_node *stable_node;
1263 kpfn = page_to_pfn(kpage);
1264 nid = get_kpfn_nid(kpfn);
1265 root = root_stable_tree + nid;
1266 new = &root->rb_node;
1268 while (*new) {
1269 struct page *tree_page;
1270 int ret;
1272 cond_resched();
1273 stable_node = rb_entry(*new, struct stable_node, node);
1274 tree_page = get_ksm_page(stable_node, false);
1275 if (!tree_page)
1276 return NULL;
1278 ret = memcmp_pages(kpage, tree_page);
1279 put_page(tree_page);
1281 parent = *new;
1282 if (ret < 0)
1283 new = &parent->rb_left;
1284 else if (ret > 0)
1285 new = &parent->rb_right;
1286 else {
1288 * It is not a bug that stable_tree_search() didn't
1289 * find this node: because at that time our page was
1290 * not yet write-protected, so may have changed since.
1292 return NULL;
1296 stable_node = alloc_stable_node();
1297 if (!stable_node)
1298 return NULL;
1300 INIT_HLIST_HEAD(&stable_node->hlist);
1301 stable_node->kpfn = kpfn;
1302 set_page_stable_node(kpage, stable_node);
1303 DO_NUMA(stable_node->nid = nid);
1304 rb_link_node(&stable_node->node, parent, new);
1305 rb_insert_color(&stable_node->node, root);
1307 return stable_node;
1311 * unstable_tree_search_insert - search for identical page,
1312 * else insert rmap_item into the unstable tree.
1314 * This function searches for a page in the unstable tree identical to the
1315 * page currently being scanned; and if no identical page is found in the
1316 * tree, we insert rmap_item as a new object into the unstable tree.
1318 * This function returns pointer to rmap_item found to be identical
1319 * to the currently scanned page, NULL otherwise.
1321 * This function does both searching and inserting, because they share
1322 * the same walking algorithm in an rbtree.
1324 static
1325 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1326 struct page *page,
1327 struct page **tree_pagep)
1329 struct rb_node **new;
1330 struct rb_root *root;
1331 struct rb_node *parent = NULL;
1332 int nid;
1334 nid = get_kpfn_nid(page_to_pfn(page));
1335 root = root_unstable_tree + nid;
1336 new = &root->rb_node;
1338 while (*new) {
1339 struct rmap_item *tree_rmap_item;
1340 struct page *tree_page;
1341 int ret;
1343 cond_resched();
1344 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1345 tree_page = get_mergeable_page(tree_rmap_item);
1346 if (IS_ERR_OR_NULL(tree_page))
1347 return NULL;
1350 * Don't substitute a ksm page for a forked page.
1352 if (page == tree_page) {
1353 put_page(tree_page);
1354 return NULL;
1357 ret = memcmp_pages(page, tree_page);
1359 parent = *new;
1360 if (ret < 0) {
1361 put_page(tree_page);
1362 new = &parent->rb_left;
1363 } else if (ret > 0) {
1364 put_page(tree_page);
1365 new = &parent->rb_right;
1366 } else if (!ksm_merge_across_nodes &&
1367 page_to_nid(tree_page) != nid) {
1369 * If tree_page has been migrated to another NUMA node,
1370 * it will be flushed out and put in the right unstable
1371 * tree next time: only merge with it when across_nodes.
1373 put_page(tree_page);
1374 return NULL;
1375 } else {
1376 *tree_pagep = tree_page;
1377 return tree_rmap_item;
1381 rmap_item->address |= UNSTABLE_FLAG;
1382 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1383 DO_NUMA(rmap_item->nid = nid);
1384 rb_link_node(&rmap_item->node, parent, new);
1385 rb_insert_color(&rmap_item->node, root);
1387 ksm_pages_unshared++;
1388 return NULL;
1392 * stable_tree_append - add another rmap_item to the linked list of
1393 * rmap_items hanging off a given node of the stable tree, all sharing
1394 * the same ksm page.
1396 static void stable_tree_append(struct rmap_item *rmap_item,
1397 struct stable_node *stable_node)
1399 rmap_item->head = stable_node;
1400 rmap_item->address |= STABLE_FLAG;
1401 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1403 if (rmap_item->hlist.next)
1404 ksm_pages_sharing++;
1405 else
1406 ksm_pages_shared++;
1410 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1411 * if not, compare checksum to previous and if it's the same, see if page can
1412 * be inserted into the unstable tree, or merged with a page already there and
1413 * both transferred to the stable tree.
1415 * @page: the page that we are searching identical page to.
1416 * @rmap_item: the reverse mapping into the virtual address of this page
1418 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1420 struct rmap_item *tree_rmap_item;
1421 struct page *tree_page = NULL;
1422 struct stable_node *stable_node;
1423 struct page *kpage;
1424 unsigned int checksum;
1425 int err;
1427 stable_node = page_stable_node(page);
1428 if (stable_node) {
1429 if (stable_node->head != &migrate_nodes &&
1430 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1431 rb_erase(&stable_node->node,
1432 root_stable_tree + NUMA(stable_node->nid));
1433 stable_node->head = &migrate_nodes;
1434 list_add(&stable_node->list, stable_node->head);
1436 if (stable_node->head != &migrate_nodes &&
1437 rmap_item->head == stable_node)
1438 return;
1441 /* We first start with searching the page inside the stable tree */
1442 kpage = stable_tree_search(page);
1443 if (kpage == page && rmap_item->head == stable_node) {
1444 put_page(kpage);
1445 return;
1448 remove_rmap_item_from_tree(rmap_item);
1450 if (kpage) {
1451 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1452 if (!err) {
1454 * The page was successfully merged:
1455 * add its rmap_item to the stable tree.
1457 lock_page(kpage);
1458 stable_tree_append(rmap_item, page_stable_node(kpage));
1459 unlock_page(kpage);
1461 put_page(kpage);
1462 return;
1466 * If the hash value of the page has changed from the last time
1467 * we calculated it, this page is changing frequently: therefore we
1468 * don't want to insert it in the unstable tree, and we don't want
1469 * to waste our time searching for something identical to it there.
1471 checksum = calc_checksum(page);
1472 if (rmap_item->oldchecksum != checksum) {
1473 rmap_item->oldchecksum = checksum;
1474 return;
1477 tree_rmap_item =
1478 unstable_tree_search_insert(rmap_item, page, &tree_page);
1479 if (tree_rmap_item) {
1480 kpage = try_to_merge_two_pages(rmap_item, page,
1481 tree_rmap_item, tree_page);
1482 put_page(tree_page);
1483 if (kpage) {
1485 * The pages were successfully merged: insert new
1486 * node in the stable tree and add both rmap_items.
1488 lock_page(kpage);
1489 stable_node = stable_tree_insert(kpage);
1490 if (stable_node) {
1491 stable_tree_append(tree_rmap_item, stable_node);
1492 stable_tree_append(rmap_item, stable_node);
1494 unlock_page(kpage);
1497 * If we fail to insert the page into the stable tree,
1498 * we will have 2 virtual addresses that are pointing
1499 * to a ksm page left outside the stable tree,
1500 * in which case we need to break_cow on both.
1502 if (!stable_node) {
1503 break_cow(tree_rmap_item);
1504 break_cow(rmap_item);
1510 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1511 struct rmap_item **rmap_list,
1512 unsigned long addr)
1514 struct rmap_item *rmap_item;
1516 while (*rmap_list) {
1517 rmap_item = *rmap_list;
1518 if ((rmap_item->address & PAGE_MASK) == addr)
1519 return rmap_item;
1520 if (rmap_item->address > addr)
1521 break;
1522 *rmap_list = rmap_item->rmap_list;
1523 remove_rmap_item_from_tree(rmap_item);
1524 free_rmap_item(rmap_item);
1527 rmap_item = alloc_rmap_item();
1528 if (rmap_item) {
1529 /* It has already been zeroed */
1530 rmap_item->mm = mm_slot->mm;
1531 rmap_item->address = addr;
1532 rmap_item->rmap_list = *rmap_list;
1533 *rmap_list = rmap_item;
1535 return rmap_item;
1538 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1540 struct mm_struct *mm;
1541 struct mm_slot *slot;
1542 struct vm_area_struct *vma;
1543 struct rmap_item *rmap_item;
1544 int nid;
1546 if (list_empty(&ksm_mm_head.mm_list))
1547 return NULL;
1549 slot = ksm_scan.mm_slot;
1550 if (slot == &ksm_mm_head) {
1552 * A number of pages can hang around indefinitely on per-cpu
1553 * pagevecs, raised page count preventing write_protect_page
1554 * from merging them. Though it doesn't really matter much,
1555 * it is puzzling to see some stuck in pages_volatile until
1556 * other activity jostles them out, and they also prevented
1557 * LTP's KSM test from succeeding deterministically; so drain
1558 * them here (here rather than on entry to ksm_do_scan(),
1559 * so we don't IPI too often when pages_to_scan is set low).
1561 lru_add_drain_all();
1564 * Whereas stale stable_nodes on the stable_tree itself
1565 * get pruned in the regular course of stable_tree_search(),
1566 * those moved out to the migrate_nodes list can accumulate:
1567 * so prune them once before each full scan.
1569 if (!ksm_merge_across_nodes) {
1570 struct stable_node *stable_node;
1571 struct list_head *this, *next;
1572 struct page *page;
1574 list_for_each_safe(this, next, &migrate_nodes) {
1575 stable_node = list_entry(this,
1576 struct stable_node, list);
1577 page = get_ksm_page(stable_node, false);
1578 if (page)
1579 put_page(page);
1580 cond_resched();
1584 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1585 root_unstable_tree[nid] = RB_ROOT;
1587 spin_lock(&ksm_mmlist_lock);
1588 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1589 ksm_scan.mm_slot = slot;
1590 spin_unlock(&ksm_mmlist_lock);
1592 * Although we tested list_empty() above, a racing __ksm_exit
1593 * of the last mm on the list may have removed it since then.
1595 if (slot == &ksm_mm_head)
1596 return NULL;
1597 next_mm:
1598 ksm_scan.address = 0;
1599 ksm_scan.rmap_list = &slot->rmap_list;
1602 mm = slot->mm;
1603 down_read(&mm->mmap_sem);
1604 if (ksm_test_exit(mm))
1605 vma = NULL;
1606 else
1607 vma = find_vma(mm, ksm_scan.address);
1609 for (; vma; vma = vma->vm_next) {
1610 if (!(vma->vm_flags & VM_MERGEABLE))
1611 continue;
1612 if (ksm_scan.address < vma->vm_start)
1613 ksm_scan.address = vma->vm_start;
1614 if (!vma->anon_vma)
1615 ksm_scan.address = vma->vm_end;
1617 while (ksm_scan.address < vma->vm_end) {
1618 if (ksm_test_exit(mm))
1619 break;
1620 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1621 if (IS_ERR_OR_NULL(*page)) {
1622 ksm_scan.address += PAGE_SIZE;
1623 cond_resched();
1624 continue;
1626 if (PageAnon(*page) ||
1627 page_trans_compound_anon(*page)) {
1628 flush_anon_page(vma, *page, ksm_scan.address);
1629 flush_dcache_page(*page);
1630 rmap_item = get_next_rmap_item(slot,
1631 ksm_scan.rmap_list, ksm_scan.address);
1632 if (rmap_item) {
1633 ksm_scan.rmap_list =
1634 &rmap_item->rmap_list;
1635 ksm_scan.address += PAGE_SIZE;
1636 } else
1637 put_page(*page);
1638 up_read(&mm->mmap_sem);
1639 return rmap_item;
1641 put_page(*page);
1642 ksm_scan.address += PAGE_SIZE;
1643 cond_resched();
1647 if (ksm_test_exit(mm)) {
1648 ksm_scan.address = 0;
1649 ksm_scan.rmap_list = &slot->rmap_list;
1652 * Nuke all the rmap_items that are above this current rmap:
1653 * because there were no VM_MERGEABLE vmas with such addresses.
1655 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1657 spin_lock(&ksm_mmlist_lock);
1658 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1659 struct mm_slot, mm_list);
1660 if (ksm_scan.address == 0) {
1662 * We've completed a full scan of all vmas, holding mmap_sem
1663 * throughout, and found no VM_MERGEABLE: so do the same as
1664 * __ksm_exit does to remove this mm from all our lists now.
1665 * This applies either when cleaning up after __ksm_exit
1666 * (but beware: we can reach here even before __ksm_exit),
1667 * or when all VM_MERGEABLE areas have been unmapped (and
1668 * mmap_sem then protects against race with MADV_MERGEABLE).
1670 hash_del(&slot->link);
1671 list_del(&slot->mm_list);
1672 spin_unlock(&ksm_mmlist_lock);
1674 free_mm_slot(slot);
1675 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1676 up_read(&mm->mmap_sem);
1677 mmdrop(mm);
1678 } else {
1679 spin_unlock(&ksm_mmlist_lock);
1680 up_read(&mm->mmap_sem);
1683 /* Repeat until we've completed scanning the whole list */
1684 slot = ksm_scan.mm_slot;
1685 if (slot != &ksm_mm_head)
1686 goto next_mm;
1688 ksm_scan.seqnr++;
1689 return NULL;
1693 * ksm_do_scan - the ksm scanner main worker function.
1694 * @scan_npages - number of pages we want to scan before we return.
1696 static void ksm_do_scan(unsigned int scan_npages)
1698 struct rmap_item *rmap_item;
1699 struct page *uninitialized_var(page);
1701 while (scan_npages-- && likely(!freezing(current))) {
1702 cond_resched();
1703 rmap_item = scan_get_next_rmap_item(&page);
1704 if (!rmap_item)
1705 return;
1706 cmp_and_merge_page(page, rmap_item);
1707 put_page(page);
1711 static int ksmd_should_run(void)
1713 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1716 static int ksm_scan_thread(void *nothing)
1718 set_freezable();
1719 set_user_nice(current, 5);
1721 while (!kthread_should_stop()) {
1722 mutex_lock(&ksm_thread_mutex);
1723 wait_while_offlining();
1724 if (ksmd_should_run())
1725 ksm_do_scan(ksm_thread_pages_to_scan);
1726 mutex_unlock(&ksm_thread_mutex);
1728 try_to_freeze();
1730 if (ksmd_should_run()) {
1731 schedule_timeout_interruptible(
1732 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1733 } else {
1734 wait_event_freezable(ksm_thread_wait,
1735 ksmd_should_run() || kthread_should_stop());
1738 return 0;
1741 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1742 unsigned long end, int advice, unsigned long *vm_flags)
1744 struct mm_struct *mm = vma->vm_mm;
1745 int err;
1747 switch (advice) {
1748 case MADV_MERGEABLE:
1750 * Be somewhat over-protective for now!
1752 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1753 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1754 VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
1755 return 0; /* just ignore the advice */
1757 #ifdef VM_SAO
1758 if (*vm_flags & VM_SAO)
1759 return 0;
1760 #endif
1762 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1763 err = __ksm_enter(mm);
1764 if (err)
1765 return err;
1768 *vm_flags |= VM_MERGEABLE;
1769 break;
1771 case MADV_UNMERGEABLE:
1772 if (!(*vm_flags & VM_MERGEABLE))
1773 return 0; /* just ignore the advice */
1775 if (vma->anon_vma) {
1776 err = unmerge_ksm_pages(vma, start, end);
1777 if (err)
1778 return err;
1781 *vm_flags &= ~VM_MERGEABLE;
1782 break;
1785 return 0;
1788 int __ksm_enter(struct mm_struct *mm)
1790 struct mm_slot *mm_slot;
1791 int needs_wakeup;
1793 mm_slot = alloc_mm_slot();
1794 if (!mm_slot)
1795 return -ENOMEM;
1797 /* Check ksm_run too? Would need tighter locking */
1798 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1800 spin_lock(&ksm_mmlist_lock);
1801 insert_to_mm_slots_hash(mm, mm_slot);
1803 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1804 * insert just behind the scanning cursor, to let the area settle
1805 * down a little; when fork is followed by immediate exec, we don't
1806 * want ksmd to waste time setting up and tearing down an rmap_list.
1808 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1809 * scanning cursor, otherwise KSM pages in newly forked mms will be
1810 * missed: then we might as well insert at the end of the list.
1812 if (ksm_run & KSM_RUN_UNMERGE)
1813 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1814 else
1815 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1816 spin_unlock(&ksm_mmlist_lock);
1818 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1819 atomic_inc(&mm->mm_count);
1821 if (needs_wakeup)
1822 wake_up_interruptible(&ksm_thread_wait);
1824 return 0;
1827 void __ksm_exit(struct mm_struct *mm)
1829 struct mm_slot *mm_slot;
1830 int easy_to_free = 0;
1833 * This process is exiting: if it's straightforward (as is the
1834 * case when ksmd was never running), free mm_slot immediately.
1835 * But if it's at the cursor or has rmap_items linked to it, use
1836 * mmap_sem to synchronize with any break_cows before pagetables
1837 * are freed, and leave the mm_slot on the list for ksmd to free.
1838 * Beware: ksm may already have noticed it exiting and freed the slot.
1841 spin_lock(&ksm_mmlist_lock);
1842 mm_slot = get_mm_slot(mm);
1843 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1844 if (!mm_slot->rmap_list) {
1845 hash_del(&mm_slot->link);
1846 list_del(&mm_slot->mm_list);
1847 easy_to_free = 1;
1848 } else {
1849 list_move(&mm_slot->mm_list,
1850 &ksm_scan.mm_slot->mm_list);
1853 spin_unlock(&ksm_mmlist_lock);
1855 if (easy_to_free) {
1856 free_mm_slot(mm_slot);
1857 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1858 mmdrop(mm);
1859 } else if (mm_slot) {
1860 down_write(&mm->mmap_sem);
1861 up_write(&mm->mmap_sem);
1865 struct page *ksm_might_need_to_copy(struct page *page,
1866 struct vm_area_struct *vma, unsigned long address)
1868 struct anon_vma *anon_vma = page_anon_vma(page);
1869 struct page *new_page;
1871 if (PageKsm(page)) {
1872 if (page_stable_node(page) &&
1873 !(ksm_run & KSM_RUN_UNMERGE))
1874 return page; /* no need to copy it */
1875 } else if (!anon_vma) {
1876 return page; /* no need to copy it */
1877 } else if (anon_vma->root == vma->anon_vma->root &&
1878 page->index == linear_page_index(vma, address)) {
1879 return page; /* still no need to copy it */
1881 if (!PageUptodate(page))
1882 return page; /* let do_swap_page report the error */
1884 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1885 if (new_page) {
1886 copy_user_highpage(new_page, page, address, vma);
1888 SetPageDirty(new_page);
1889 __SetPageUptodate(new_page);
1890 __set_page_locked(new_page);
1893 return new_page;
1896 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1897 unsigned long *vm_flags)
1899 struct stable_node *stable_node;
1900 struct rmap_item *rmap_item;
1901 struct hlist_node *hlist;
1902 unsigned int mapcount = page_mapcount(page);
1903 int referenced = 0;
1904 int search_new_forks = 0;
1906 VM_BUG_ON(!PageKsm(page));
1907 VM_BUG_ON(!PageLocked(page));
1909 stable_node = page_stable_node(page);
1910 if (!stable_node)
1911 return 0;
1912 again:
1913 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1914 struct anon_vma *anon_vma = rmap_item->anon_vma;
1915 struct anon_vma_chain *vmac;
1916 struct vm_area_struct *vma;
1918 anon_vma_lock_read(anon_vma);
1919 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1920 0, ULONG_MAX) {
1921 vma = vmac->vma;
1922 if (rmap_item->address < vma->vm_start ||
1923 rmap_item->address >= vma->vm_end)
1924 continue;
1926 * Initially we examine only the vma which covers this
1927 * rmap_item; but later, if there is still work to do,
1928 * we examine covering vmas in other mms: in case they
1929 * were forked from the original since ksmd passed.
1931 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1932 continue;
1934 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1935 continue;
1937 referenced += page_referenced_one(page, vma,
1938 rmap_item->address, &mapcount, vm_flags);
1939 if (!search_new_forks || !mapcount)
1940 break;
1942 anon_vma_unlock_read(anon_vma);
1943 if (!mapcount)
1944 goto out;
1946 if (!search_new_forks++)
1947 goto again;
1948 out:
1949 return referenced;
1952 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1954 struct stable_node *stable_node;
1955 struct hlist_node *hlist;
1956 struct rmap_item *rmap_item;
1957 int ret = SWAP_AGAIN;
1958 int search_new_forks = 0;
1960 VM_BUG_ON(!PageKsm(page));
1961 VM_BUG_ON(!PageLocked(page));
1963 stable_node = page_stable_node(page);
1964 if (!stable_node)
1965 return SWAP_FAIL;
1966 again:
1967 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1968 struct anon_vma *anon_vma = rmap_item->anon_vma;
1969 struct anon_vma_chain *vmac;
1970 struct vm_area_struct *vma;
1972 anon_vma_lock_read(anon_vma);
1973 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1974 0, ULONG_MAX) {
1975 vma = vmac->vma;
1976 if (rmap_item->address < vma->vm_start ||
1977 rmap_item->address >= vma->vm_end)
1978 continue;
1980 * Initially we examine only the vma which covers this
1981 * rmap_item; but later, if there is still work to do,
1982 * we examine covering vmas in other mms: in case they
1983 * were forked from the original since ksmd passed.
1985 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1986 continue;
1988 ret = try_to_unmap_one(page, vma,
1989 rmap_item->address, flags);
1990 if (ret != SWAP_AGAIN || !page_mapped(page)) {
1991 anon_vma_unlock_read(anon_vma);
1992 goto out;
1995 anon_vma_unlock_read(anon_vma);
1997 if (!search_new_forks++)
1998 goto again;
1999 out:
2000 return ret;
2003 #ifdef CONFIG_MIGRATION
2004 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
2005 struct vm_area_struct *, unsigned long, void *), void *arg)
2007 struct stable_node *stable_node;
2008 struct hlist_node *hlist;
2009 struct rmap_item *rmap_item;
2010 int ret = SWAP_AGAIN;
2011 int search_new_forks = 0;
2013 VM_BUG_ON(!PageKsm(page));
2014 VM_BUG_ON(!PageLocked(page));
2016 stable_node = page_stable_node(page);
2017 if (!stable_node)
2018 return ret;
2019 again:
2020 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
2021 struct anon_vma *anon_vma = rmap_item->anon_vma;
2022 struct anon_vma_chain *vmac;
2023 struct vm_area_struct *vma;
2025 anon_vma_lock_read(anon_vma);
2026 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2027 0, ULONG_MAX) {
2028 vma = vmac->vma;
2029 if (rmap_item->address < vma->vm_start ||
2030 rmap_item->address >= vma->vm_end)
2031 continue;
2033 * Initially we examine only the vma which covers this
2034 * rmap_item; but later, if there is still work to do,
2035 * we examine covering vmas in other mms: in case they
2036 * were forked from the original since ksmd passed.
2038 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2039 continue;
2041 ret = rmap_one(page, vma, rmap_item->address, arg);
2042 if (ret != SWAP_AGAIN) {
2043 anon_vma_unlock_read(anon_vma);
2044 goto out;
2047 anon_vma_unlock_read(anon_vma);
2049 if (!search_new_forks++)
2050 goto again;
2051 out:
2052 return ret;
2055 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2057 struct stable_node *stable_node;
2059 VM_BUG_ON(!PageLocked(oldpage));
2060 VM_BUG_ON(!PageLocked(newpage));
2061 VM_BUG_ON(newpage->mapping != oldpage->mapping);
2063 stable_node = page_stable_node(newpage);
2064 if (stable_node) {
2065 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
2066 stable_node->kpfn = page_to_pfn(newpage);
2068 * newpage->mapping was set in advance; now we need smp_wmb()
2069 * to make sure that the new stable_node->kpfn is visible
2070 * to get_ksm_page() before it can see that oldpage->mapping
2071 * has gone stale (or that PageSwapCache has been cleared).
2073 smp_wmb();
2074 set_page_stable_node(oldpage, NULL);
2077 #endif /* CONFIG_MIGRATION */
2079 #ifdef CONFIG_MEMORY_HOTREMOVE
2080 static int just_wait(void *word)
2082 schedule();
2083 return 0;
2086 static void wait_while_offlining(void)
2088 while (ksm_run & KSM_RUN_OFFLINE) {
2089 mutex_unlock(&ksm_thread_mutex);
2090 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2091 just_wait, TASK_UNINTERRUPTIBLE);
2092 mutex_lock(&ksm_thread_mutex);
2096 static void ksm_check_stable_tree(unsigned long start_pfn,
2097 unsigned long end_pfn)
2099 struct stable_node *stable_node;
2100 struct list_head *this, *next;
2101 struct rb_node *node;
2102 int nid;
2104 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2105 node = rb_first(root_stable_tree + nid);
2106 while (node) {
2107 stable_node = rb_entry(node, struct stable_node, node);
2108 if (stable_node->kpfn >= start_pfn &&
2109 stable_node->kpfn < end_pfn) {
2111 * Don't get_ksm_page, page has already gone:
2112 * which is why we keep kpfn instead of page*
2114 remove_node_from_stable_tree(stable_node);
2115 node = rb_first(root_stable_tree + nid);
2116 } else
2117 node = rb_next(node);
2118 cond_resched();
2121 list_for_each_safe(this, next, &migrate_nodes) {
2122 stable_node = list_entry(this, struct stable_node, list);
2123 if (stable_node->kpfn >= start_pfn &&
2124 stable_node->kpfn < end_pfn)
2125 remove_node_from_stable_tree(stable_node);
2126 cond_resched();
2130 static int ksm_memory_callback(struct notifier_block *self,
2131 unsigned long action, void *arg)
2133 struct memory_notify *mn = arg;
2135 switch (action) {
2136 case MEM_GOING_OFFLINE:
2138 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2139 * and remove_all_stable_nodes() while memory is going offline:
2140 * it is unsafe for them to touch the stable tree at this time.
2141 * But unmerge_ksm_pages(), rmap lookups and other entry points
2142 * which do not need the ksm_thread_mutex are all safe.
2144 mutex_lock(&ksm_thread_mutex);
2145 ksm_run |= KSM_RUN_OFFLINE;
2146 mutex_unlock(&ksm_thread_mutex);
2147 break;
2149 case MEM_OFFLINE:
2151 * Most of the work is done by page migration; but there might
2152 * be a few stable_nodes left over, still pointing to struct
2153 * pages which have been offlined: prune those from the tree,
2154 * otherwise get_ksm_page() might later try to access a
2155 * non-existent struct page.
2157 ksm_check_stable_tree(mn->start_pfn,
2158 mn->start_pfn + mn->nr_pages);
2159 /* fallthrough */
2161 case MEM_CANCEL_OFFLINE:
2162 mutex_lock(&ksm_thread_mutex);
2163 ksm_run &= ~KSM_RUN_OFFLINE;
2164 mutex_unlock(&ksm_thread_mutex);
2166 smp_mb(); /* wake_up_bit advises this */
2167 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2168 break;
2170 return NOTIFY_OK;
2172 #else
2173 static void wait_while_offlining(void)
2176 #endif /* CONFIG_MEMORY_HOTREMOVE */
2178 #ifdef CONFIG_SYSFS
2180 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2183 #define KSM_ATTR_RO(_name) \
2184 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2185 #define KSM_ATTR(_name) \
2186 static struct kobj_attribute _name##_attr = \
2187 __ATTR(_name, 0644, _name##_show, _name##_store)
2189 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2190 struct kobj_attribute *attr, char *buf)
2192 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2195 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2196 struct kobj_attribute *attr,
2197 const char *buf, size_t count)
2199 unsigned long msecs;
2200 int err;
2202 err = strict_strtoul(buf, 10, &msecs);
2203 if (err || msecs > UINT_MAX)
2204 return -EINVAL;
2206 ksm_thread_sleep_millisecs = msecs;
2208 return count;
2210 KSM_ATTR(sleep_millisecs);
2212 static ssize_t pages_to_scan_show(struct kobject *kobj,
2213 struct kobj_attribute *attr, char *buf)
2215 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2218 static ssize_t pages_to_scan_store(struct kobject *kobj,
2219 struct kobj_attribute *attr,
2220 const char *buf, size_t count)
2222 int err;
2223 unsigned long nr_pages;
2225 err = strict_strtoul(buf, 10, &nr_pages);
2226 if (err || nr_pages > UINT_MAX)
2227 return -EINVAL;
2229 ksm_thread_pages_to_scan = nr_pages;
2231 return count;
2233 KSM_ATTR(pages_to_scan);
2235 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2236 char *buf)
2238 return sprintf(buf, "%lu\n", ksm_run);
2241 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2242 const char *buf, size_t count)
2244 int err;
2245 unsigned long flags;
2247 err = strict_strtoul(buf, 10, &flags);
2248 if (err || flags > UINT_MAX)
2249 return -EINVAL;
2250 if (flags > KSM_RUN_UNMERGE)
2251 return -EINVAL;
2254 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2255 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2256 * breaking COW to free the pages_shared (but leaves mm_slots
2257 * on the list for when ksmd may be set running again).
2260 mutex_lock(&ksm_thread_mutex);
2261 wait_while_offlining();
2262 if (ksm_run != flags) {
2263 ksm_run = flags;
2264 if (flags & KSM_RUN_UNMERGE) {
2265 set_current_oom_origin();
2266 err = unmerge_and_remove_all_rmap_items();
2267 clear_current_oom_origin();
2268 if (err) {
2269 ksm_run = KSM_RUN_STOP;
2270 count = err;
2274 mutex_unlock(&ksm_thread_mutex);
2276 if (flags & KSM_RUN_MERGE)
2277 wake_up_interruptible(&ksm_thread_wait);
2279 return count;
2281 KSM_ATTR(run);
2283 #ifdef CONFIG_NUMA
2284 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2285 struct kobj_attribute *attr, char *buf)
2287 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2290 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2291 struct kobj_attribute *attr,
2292 const char *buf, size_t count)
2294 int err;
2295 unsigned long knob;
2297 err = kstrtoul(buf, 10, &knob);
2298 if (err)
2299 return err;
2300 if (knob > 1)
2301 return -EINVAL;
2303 mutex_lock(&ksm_thread_mutex);
2304 wait_while_offlining();
2305 if (ksm_merge_across_nodes != knob) {
2306 if (ksm_pages_shared || remove_all_stable_nodes())
2307 err = -EBUSY;
2308 else if (root_stable_tree == one_stable_tree) {
2309 struct rb_root *buf;
2311 * This is the first time that we switch away from the
2312 * default of merging across nodes: must now allocate
2313 * a buffer to hold as many roots as may be needed.
2314 * Allocate stable and unstable together:
2315 * MAXSMP NODES_SHIFT 10 will use 16kB.
2317 buf = kcalloc(nr_node_ids + nr_node_ids,
2318 sizeof(*buf), GFP_KERNEL | __GFP_ZERO);
2319 /* Let us assume that RB_ROOT is NULL is zero */
2320 if (!buf)
2321 err = -ENOMEM;
2322 else {
2323 root_stable_tree = buf;
2324 root_unstable_tree = buf + nr_node_ids;
2325 /* Stable tree is empty but not the unstable */
2326 root_unstable_tree[0] = one_unstable_tree[0];
2329 if (!err) {
2330 ksm_merge_across_nodes = knob;
2331 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2334 mutex_unlock(&ksm_thread_mutex);
2336 return err ? err : count;
2338 KSM_ATTR(merge_across_nodes);
2339 #endif
2341 static ssize_t pages_shared_show(struct kobject *kobj,
2342 struct kobj_attribute *attr, char *buf)
2344 return sprintf(buf, "%lu\n", ksm_pages_shared);
2346 KSM_ATTR_RO(pages_shared);
2348 static ssize_t pages_sharing_show(struct kobject *kobj,
2349 struct kobj_attribute *attr, char *buf)
2351 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2353 KSM_ATTR_RO(pages_sharing);
2355 static ssize_t pages_unshared_show(struct kobject *kobj,
2356 struct kobj_attribute *attr, char *buf)
2358 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2360 KSM_ATTR_RO(pages_unshared);
2362 static ssize_t pages_volatile_show(struct kobject *kobj,
2363 struct kobj_attribute *attr, char *buf)
2365 long ksm_pages_volatile;
2367 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2368 - ksm_pages_sharing - ksm_pages_unshared;
2370 * It was not worth any locking to calculate that statistic,
2371 * but it might therefore sometimes be negative: conceal that.
2373 if (ksm_pages_volatile < 0)
2374 ksm_pages_volatile = 0;
2375 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2377 KSM_ATTR_RO(pages_volatile);
2379 static ssize_t full_scans_show(struct kobject *kobj,
2380 struct kobj_attribute *attr, char *buf)
2382 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2384 KSM_ATTR_RO(full_scans);
2386 static struct attribute *ksm_attrs[] = {
2387 &sleep_millisecs_attr.attr,
2388 &pages_to_scan_attr.attr,
2389 &run_attr.attr,
2390 &pages_shared_attr.attr,
2391 &pages_sharing_attr.attr,
2392 &pages_unshared_attr.attr,
2393 &pages_volatile_attr.attr,
2394 &full_scans_attr.attr,
2395 #ifdef CONFIG_NUMA
2396 &merge_across_nodes_attr.attr,
2397 #endif
2398 NULL,
2401 static struct attribute_group ksm_attr_group = {
2402 .attrs = ksm_attrs,
2403 .name = "ksm",
2405 #endif /* CONFIG_SYSFS */
2407 static int __init ksm_init(void)
2409 struct task_struct *ksm_thread;
2410 int err;
2412 err = ksm_slab_init();
2413 if (err)
2414 goto out;
2416 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2417 if (IS_ERR(ksm_thread)) {
2418 printk(KERN_ERR "ksm: creating kthread failed\n");
2419 err = PTR_ERR(ksm_thread);
2420 goto out_free;
2423 #ifdef CONFIG_SYSFS
2424 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2425 if (err) {
2426 printk(KERN_ERR "ksm: register sysfs failed\n");
2427 kthread_stop(ksm_thread);
2428 goto out_free;
2430 #else
2431 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2433 #endif /* CONFIG_SYSFS */
2435 #ifdef CONFIG_MEMORY_HOTREMOVE
2436 /* There is no significance to this priority 100 */
2437 hotplug_memory_notifier(ksm_memory_callback, 100);
2438 #endif
2439 return 0;
2441 out_free:
2442 ksm_slab_free();
2443 out:
2444 return err;
2446 module_init(ksm_init)