4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
25 #include <linux/iomap.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
50 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
51 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
52 enum rw_hint hint
, struct writeback_control
*wbc
);
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
56 inline void touch_buffer(struct buffer_head
*bh
)
58 trace_block_touch_buffer(bh
);
59 mark_page_accessed(bh
->b_page
);
61 EXPORT_SYMBOL(touch_buffer
);
63 void __lock_buffer(struct buffer_head
*bh
)
65 wait_on_bit_lock_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
67 EXPORT_SYMBOL(__lock_buffer
);
69 void unlock_buffer(struct buffer_head
*bh
)
71 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
72 smp_mb__after_atomic();
73 wake_up_bit(&bh
->b_state
, BH_Lock
);
75 EXPORT_SYMBOL(unlock_buffer
);
78 * Returns if the page has dirty or writeback buffers. If all the buffers
79 * are unlocked and clean then the PageDirty information is stale. If
80 * any of the pages are locked, it is assumed they are locked for IO.
82 void buffer_check_dirty_writeback(struct page
*page
,
83 bool *dirty
, bool *writeback
)
85 struct buffer_head
*head
, *bh
;
89 BUG_ON(!PageLocked(page
));
91 if (!page_has_buffers(page
))
94 if (PageWriteback(page
))
97 head
= page_buffers(page
);
100 if (buffer_locked(bh
))
103 if (buffer_dirty(bh
))
106 bh
= bh
->b_this_page
;
107 } while (bh
!= head
);
109 EXPORT_SYMBOL(buffer_check_dirty_writeback
);
112 * Block until a buffer comes unlocked. This doesn't stop it
113 * from becoming locked again - you have to lock it yourself
114 * if you want to preserve its state.
116 void __wait_on_buffer(struct buffer_head
* bh
)
118 wait_on_bit_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
120 EXPORT_SYMBOL(__wait_on_buffer
);
123 __clear_page_buffers(struct page
*page
)
125 ClearPagePrivate(page
);
126 set_page_private(page
, 0);
130 static void buffer_io_error(struct buffer_head
*bh
, char *msg
)
132 if (!test_bit(BH_Quiet
, &bh
->b_state
))
133 printk_ratelimited(KERN_ERR
134 "Buffer I/O error on dev %pg, logical block %llu%s\n",
135 bh
->b_bdev
, (unsigned long long)bh
->b_blocknr
, msg
);
139 * End-of-IO handler helper function which does not touch the bh after
141 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
142 * a race there is benign: unlock_buffer() only use the bh's address for
143 * hashing after unlocking the buffer, so it doesn't actually touch the bh
146 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
149 set_buffer_uptodate(bh
);
151 /* This happens, due to failed read-ahead attempts. */
152 clear_buffer_uptodate(bh
);
158 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
159 * unlock the buffer. This is what ll_rw_block uses too.
161 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
163 __end_buffer_read_notouch(bh
, uptodate
);
166 EXPORT_SYMBOL(end_buffer_read_sync
);
168 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
171 set_buffer_uptodate(bh
);
173 buffer_io_error(bh
, ", lost sync page write");
174 mark_buffer_write_io_error(bh
);
175 clear_buffer_uptodate(bh
);
180 EXPORT_SYMBOL(end_buffer_write_sync
);
183 * Various filesystems appear to want __find_get_block to be non-blocking.
184 * But it's the page lock which protects the buffers. To get around this,
185 * we get exclusion from try_to_free_buffers with the blockdev mapping's
188 * Hack idea: for the blockdev mapping, private_lock contention
189 * may be quite high. This code could TryLock the page, and if that
190 * succeeds, there is no need to take private_lock.
192 static struct buffer_head
*
193 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
195 struct inode
*bd_inode
= bdev
->bd_inode
;
196 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
197 struct buffer_head
*ret
= NULL
;
199 struct buffer_head
*bh
;
200 struct buffer_head
*head
;
204 index
= block
>> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
205 page
= find_get_page_flags(bd_mapping
, index
, FGP_ACCESSED
);
209 spin_lock(&bd_mapping
->private_lock
);
210 if (!page_has_buffers(page
))
212 head
= page_buffers(page
);
215 if (!buffer_mapped(bh
))
217 else if (bh
->b_blocknr
== block
) {
222 bh
= bh
->b_this_page
;
223 } while (bh
!= head
);
225 /* we might be here because some of the buffers on this page are
226 * not mapped. This is due to various races between
227 * file io on the block device and getblk. It gets dealt with
228 * elsewhere, don't buffer_error if we had some unmapped buffers
231 printk("__find_get_block_slow() failed. "
232 "block=%llu, b_blocknr=%llu\n",
233 (unsigned long long)block
,
234 (unsigned long long)bh
->b_blocknr
);
235 printk("b_state=0x%08lx, b_size=%zu\n",
236 bh
->b_state
, bh
->b_size
);
237 printk("device %pg blocksize: %d\n", bdev
,
238 1 << bd_inode
->i_blkbits
);
241 spin_unlock(&bd_mapping
->private_lock
);
248 * I/O completion handler for block_read_full_page() - pages
249 * which come unlocked at the end of I/O.
251 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
254 struct buffer_head
*first
;
255 struct buffer_head
*tmp
;
257 int page_uptodate
= 1;
259 BUG_ON(!buffer_async_read(bh
));
263 set_buffer_uptodate(bh
);
265 clear_buffer_uptodate(bh
);
266 buffer_io_error(bh
, ", async page read");
271 * Be _very_ careful from here on. Bad things can happen if
272 * two buffer heads end IO at almost the same time and both
273 * decide that the page is now completely done.
275 first
= page_buffers(page
);
276 local_irq_save(flags
);
277 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
278 clear_buffer_async_read(bh
);
282 if (!buffer_uptodate(tmp
))
284 if (buffer_async_read(tmp
)) {
285 BUG_ON(!buffer_locked(tmp
));
288 tmp
= tmp
->b_this_page
;
290 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
291 local_irq_restore(flags
);
294 * If none of the buffers had errors and they are all
295 * uptodate then we can set the page uptodate.
297 if (page_uptodate
&& !PageError(page
))
298 SetPageUptodate(page
);
303 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
304 local_irq_restore(flags
);
309 * Completion handler for block_write_full_page() - pages which are unlocked
310 * during I/O, and which have PageWriteback cleared upon I/O completion.
312 void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
315 struct buffer_head
*first
;
316 struct buffer_head
*tmp
;
319 BUG_ON(!buffer_async_write(bh
));
323 set_buffer_uptodate(bh
);
325 buffer_io_error(bh
, ", lost async page write");
326 mark_buffer_write_io_error(bh
);
327 clear_buffer_uptodate(bh
);
331 first
= page_buffers(page
);
332 local_irq_save(flags
);
333 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
335 clear_buffer_async_write(bh
);
337 tmp
= bh
->b_this_page
;
339 if (buffer_async_write(tmp
)) {
340 BUG_ON(!buffer_locked(tmp
));
343 tmp
= tmp
->b_this_page
;
345 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
346 local_irq_restore(flags
);
347 end_page_writeback(page
);
351 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
352 local_irq_restore(flags
);
355 EXPORT_SYMBOL(end_buffer_async_write
);
358 * If a page's buffers are under async readin (end_buffer_async_read
359 * completion) then there is a possibility that another thread of
360 * control could lock one of the buffers after it has completed
361 * but while some of the other buffers have not completed. This
362 * locked buffer would confuse end_buffer_async_read() into not unlocking
363 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
364 * that this buffer is not under async I/O.
366 * The page comes unlocked when it has no locked buffer_async buffers
369 * PageLocked prevents anyone starting new async I/O reads any of
372 * PageWriteback is used to prevent simultaneous writeout of the same
375 * PageLocked prevents anyone from starting writeback of a page which is
376 * under read I/O (PageWriteback is only ever set against a locked page).
378 static void mark_buffer_async_read(struct buffer_head
*bh
)
380 bh
->b_end_io
= end_buffer_async_read
;
381 set_buffer_async_read(bh
);
384 static void mark_buffer_async_write_endio(struct buffer_head
*bh
,
385 bh_end_io_t
*handler
)
387 bh
->b_end_io
= handler
;
388 set_buffer_async_write(bh
);
391 void mark_buffer_async_write(struct buffer_head
*bh
)
393 mark_buffer_async_write_endio(bh
, end_buffer_async_write
);
395 EXPORT_SYMBOL(mark_buffer_async_write
);
399 * fs/buffer.c contains helper functions for buffer-backed address space's
400 * fsync functions. A common requirement for buffer-based filesystems is
401 * that certain data from the backing blockdev needs to be written out for
402 * a successful fsync(). For example, ext2 indirect blocks need to be
403 * written back and waited upon before fsync() returns.
405 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
406 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
407 * management of a list of dependent buffers at ->i_mapping->private_list.
409 * Locking is a little subtle: try_to_free_buffers() will remove buffers
410 * from their controlling inode's queue when they are being freed. But
411 * try_to_free_buffers() will be operating against the *blockdev* mapping
412 * at the time, not against the S_ISREG file which depends on those buffers.
413 * So the locking for private_list is via the private_lock in the address_space
414 * which backs the buffers. Which is different from the address_space
415 * against which the buffers are listed. So for a particular address_space,
416 * mapping->private_lock does *not* protect mapping->private_list! In fact,
417 * mapping->private_list will always be protected by the backing blockdev's
420 * Which introduces a requirement: all buffers on an address_space's
421 * ->private_list must be from the same address_space: the blockdev's.
423 * address_spaces which do not place buffers at ->private_list via these
424 * utility functions are free to use private_lock and private_list for
425 * whatever they want. The only requirement is that list_empty(private_list)
426 * be true at clear_inode() time.
428 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
429 * filesystems should do that. invalidate_inode_buffers() should just go
430 * BUG_ON(!list_empty).
432 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
433 * take an address_space, not an inode. And it should be called
434 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
437 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
438 * list if it is already on a list. Because if the buffer is on a list,
439 * it *must* already be on the right one. If not, the filesystem is being
440 * silly. This will save a ton of locking. But first we have to ensure
441 * that buffers are taken *off* the old inode's list when they are freed
442 * (presumably in truncate). That requires careful auditing of all
443 * filesystems (do it inside bforget()). It could also be done by bringing
448 * The buffer's backing address_space's private_lock must be held
450 static void __remove_assoc_queue(struct buffer_head
*bh
)
452 list_del_init(&bh
->b_assoc_buffers
);
453 WARN_ON(!bh
->b_assoc_map
);
454 bh
->b_assoc_map
= NULL
;
457 int inode_has_buffers(struct inode
*inode
)
459 return !list_empty(&inode
->i_data
.private_list
);
463 * osync is designed to support O_SYNC io. It waits synchronously for
464 * all already-submitted IO to complete, but does not queue any new
465 * writes to the disk.
467 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
468 * you dirty the buffers, and then use osync_inode_buffers to wait for
469 * completion. Any other dirty buffers which are not yet queued for
470 * write will not be flushed to disk by the osync.
472 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
474 struct buffer_head
*bh
;
480 list_for_each_prev(p
, list
) {
482 if (buffer_locked(bh
)) {
486 if (!buffer_uptodate(bh
))
497 void emergency_thaw_bdev(struct super_block
*sb
)
499 while (sb
->s_bdev
&& !thaw_bdev(sb
->s_bdev
, sb
))
500 printk(KERN_WARNING
"Emergency Thaw on %pg\n", sb
->s_bdev
);
504 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
505 * @mapping: the mapping which wants those buffers written
507 * Starts I/O against the buffers at mapping->private_list, and waits upon
510 * Basically, this is a convenience function for fsync().
511 * @mapping is a file or directory which needs those buffers to be written for
512 * a successful fsync().
514 int sync_mapping_buffers(struct address_space
*mapping
)
516 struct address_space
*buffer_mapping
= mapping
->private_data
;
518 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
521 return fsync_buffers_list(&buffer_mapping
->private_lock
,
522 &mapping
->private_list
);
524 EXPORT_SYMBOL(sync_mapping_buffers
);
527 * Called when we've recently written block `bblock', and it is known that
528 * `bblock' was for a buffer_boundary() buffer. This means that the block at
529 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
530 * dirty, schedule it for IO. So that indirects merge nicely with their data.
532 void write_boundary_block(struct block_device
*bdev
,
533 sector_t bblock
, unsigned blocksize
)
535 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
537 if (buffer_dirty(bh
))
538 ll_rw_block(REQ_OP_WRITE
, 0, 1, &bh
);
543 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
545 struct address_space
*mapping
= inode
->i_mapping
;
546 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
548 mark_buffer_dirty(bh
);
549 if (!mapping
->private_data
) {
550 mapping
->private_data
= buffer_mapping
;
552 BUG_ON(mapping
->private_data
!= buffer_mapping
);
554 if (!bh
->b_assoc_map
) {
555 spin_lock(&buffer_mapping
->private_lock
);
556 list_move_tail(&bh
->b_assoc_buffers
,
557 &mapping
->private_list
);
558 bh
->b_assoc_map
= mapping
;
559 spin_unlock(&buffer_mapping
->private_lock
);
562 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
565 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
568 * If warn is true, then emit a warning if the page is not uptodate and has
569 * not been truncated.
571 * The caller must hold lock_page_memcg().
573 void __set_page_dirty(struct page
*page
, struct address_space
*mapping
,
578 xa_lock_irqsave(&mapping
->i_pages
, flags
);
579 if (page
->mapping
) { /* Race with truncate? */
580 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
581 account_page_dirtied(page
, mapping
);
582 radix_tree_tag_set(&mapping
->i_pages
,
583 page_index(page
), PAGECACHE_TAG_DIRTY
);
585 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
587 EXPORT_SYMBOL_GPL(__set_page_dirty
);
590 * Add a page to the dirty page list.
592 * It is a sad fact of life that this function is called from several places
593 * deeply under spinlocking. It may not sleep.
595 * If the page has buffers, the uptodate buffers are set dirty, to preserve
596 * dirty-state coherency between the page and the buffers. It the page does
597 * not have buffers then when they are later attached they will all be set
600 * The buffers are dirtied before the page is dirtied. There's a small race
601 * window in which a writepage caller may see the page cleanness but not the
602 * buffer dirtiness. That's fine. If this code were to set the page dirty
603 * before the buffers, a concurrent writepage caller could clear the page dirty
604 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
605 * page on the dirty page list.
607 * We use private_lock to lock against try_to_free_buffers while using the
608 * page's buffer list. Also use this to protect against clean buffers being
609 * added to the page after it was set dirty.
611 * FIXME: may need to call ->reservepage here as well. That's rather up to the
612 * address_space though.
614 int __set_page_dirty_buffers(struct page
*page
)
617 struct address_space
*mapping
= page_mapping(page
);
619 if (unlikely(!mapping
))
620 return !TestSetPageDirty(page
);
622 spin_lock(&mapping
->private_lock
);
623 if (page_has_buffers(page
)) {
624 struct buffer_head
*head
= page_buffers(page
);
625 struct buffer_head
*bh
= head
;
628 set_buffer_dirty(bh
);
629 bh
= bh
->b_this_page
;
630 } while (bh
!= head
);
633 * Lock out page->mem_cgroup migration to keep PageDirty
634 * synchronized with per-memcg dirty page counters.
636 lock_page_memcg(page
);
637 newly_dirty
= !TestSetPageDirty(page
);
638 spin_unlock(&mapping
->private_lock
);
641 __set_page_dirty(page
, mapping
, 1);
643 unlock_page_memcg(page
);
646 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
650 EXPORT_SYMBOL(__set_page_dirty_buffers
);
653 * Write out and wait upon a list of buffers.
655 * We have conflicting pressures: we want to make sure that all
656 * initially dirty buffers get waited on, but that any subsequently
657 * dirtied buffers don't. After all, we don't want fsync to last
658 * forever if somebody is actively writing to the file.
660 * Do this in two main stages: first we copy dirty buffers to a
661 * temporary inode list, queueing the writes as we go. Then we clean
662 * up, waiting for those writes to complete.
664 * During this second stage, any subsequent updates to the file may end
665 * up refiling the buffer on the original inode's dirty list again, so
666 * there is a chance we will end up with a buffer queued for write but
667 * not yet completed on that list. So, as a final cleanup we go through
668 * the osync code to catch these locked, dirty buffers without requeuing
669 * any newly dirty buffers for write.
671 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
673 struct buffer_head
*bh
;
674 struct list_head tmp
;
675 struct address_space
*mapping
;
677 struct blk_plug plug
;
679 INIT_LIST_HEAD(&tmp
);
680 blk_start_plug(&plug
);
683 while (!list_empty(list
)) {
684 bh
= BH_ENTRY(list
->next
);
685 mapping
= bh
->b_assoc_map
;
686 __remove_assoc_queue(bh
);
687 /* Avoid race with mark_buffer_dirty_inode() which does
688 * a lockless check and we rely on seeing the dirty bit */
690 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
691 list_add(&bh
->b_assoc_buffers
, &tmp
);
692 bh
->b_assoc_map
= mapping
;
693 if (buffer_dirty(bh
)) {
697 * Ensure any pending I/O completes so that
698 * write_dirty_buffer() actually writes the
699 * current contents - it is a noop if I/O is
700 * still in flight on potentially older
703 write_dirty_buffer(bh
, REQ_SYNC
);
706 * Kick off IO for the previous mapping. Note
707 * that we will not run the very last mapping,
708 * wait_on_buffer() will do that for us
709 * through sync_buffer().
718 blk_finish_plug(&plug
);
721 while (!list_empty(&tmp
)) {
722 bh
= BH_ENTRY(tmp
.prev
);
724 mapping
= bh
->b_assoc_map
;
725 __remove_assoc_queue(bh
);
726 /* Avoid race with mark_buffer_dirty_inode() which does
727 * a lockless check and we rely on seeing the dirty bit */
729 if (buffer_dirty(bh
)) {
730 list_add(&bh
->b_assoc_buffers
,
731 &mapping
->private_list
);
732 bh
->b_assoc_map
= mapping
;
736 if (!buffer_uptodate(bh
))
743 err2
= osync_buffers_list(lock
, list
);
751 * Invalidate any and all dirty buffers on a given inode. We are
752 * probably unmounting the fs, but that doesn't mean we have already
753 * done a sync(). Just drop the buffers from the inode list.
755 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
756 * assumes that all the buffers are against the blockdev. Not true
759 void invalidate_inode_buffers(struct inode
*inode
)
761 if (inode_has_buffers(inode
)) {
762 struct address_space
*mapping
= &inode
->i_data
;
763 struct list_head
*list
= &mapping
->private_list
;
764 struct address_space
*buffer_mapping
= mapping
->private_data
;
766 spin_lock(&buffer_mapping
->private_lock
);
767 while (!list_empty(list
))
768 __remove_assoc_queue(BH_ENTRY(list
->next
));
769 spin_unlock(&buffer_mapping
->private_lock
);
772 EXPORT_SYMBOL(invalidate_inode_buffers
);
775 * Remove any clean buffers from the inode's buffer list. This is called
776 * when we're trying to free the inode itself. Those buffers can pin it.
778 * Returns true if all buffers were removed.
780 int remove_inode_buffers(struct inode
*inode
)
784 if (inode_has_buffers(inode
)) {
785 struct address_space
*mapping
= &inode
->i_data
;
786 struct list_head
*list
= &mapping
->private_list
;
787 struct address_space
*buffer_mapping
= mapping
->private_data
;
789 spin_lock(&buffer_mapping
->private_lock
);
790 while (!list_empty(list
)) {
791 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
792 if (buffer_dirty(bh
)) {
796 __remove_assoc_queue(bh
);
798 spin_unlock(&buffer_mapping
->private_lock
);
804 * Create the appropriate buffers when given a page for data area and
805 * the size of each buffer.. Use the bh->b_this_page linked list to
806 * follow the buffers created. Return NULL if unable to create more
809 * The retry flag is used to differentiate async IO (paging, swapping)
810 * which may not fail from ordinary buffer allocations.
812 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
815 struct buffer_head
*bh
, *head
;
816 gfp_t gfp
= GFP_NOFS
;
824 while ((offset
-= size
) >= 0) {
825 bh
= alloc_buffer_head(gfp
);
829 bh
->b_this_page
= head
;
835 /* Link the buffer to its page */
836 set_bh_page(bh
, page
, offset
);
840 * In case anything failed, we just free everything we got.
846 head
= head
->b_this_page
;
847 free_buffer_head(bh
);
853 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
856 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
858 struct buffer_head
*bh
, *tail
;
863 bh
= bh
->b_this_page
;
865 tail
->b_this_page
= head
;
866 attach_page_buffers(page
, head
);
869 static sector_t
blkdev_max_block(struct block_device
*bdev
, unsigned int size
)
871 sector_t retval
= ~((sector_t
)0);
872 loff_t sz
= i_size_read(bdev
->bd_inode
);
875 unsigned int sizebits
= blksize_bits(size
);
876 retval
= (sz
>> sizebits
);
882 * Initialise the state of a blockdev page's buffers.
885 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
886 sector_t block
, int size
)
888 struct buffer_head
*head
= page_buffers(page
);
889 struct buffer_head
*bh
= head
;
890 int uptodate
= PageUptodate(page
);
891 sector_t end_block
= blkdev_max_block(I_BDEV(bdev
->bd_inode
), size
);
894 if (!buffer_mapped(bh
)) {
896 bh
->b_private
= NULL
;
898 bh
->b_blocknr
= block
;
900 set_buffer_uptodate(bh
);
901 if (block
< end_block
)
902 set_buffer_mapped(bh
);
905 bh
= bh
->b_this_page
;
906 } while (bh
!= head
);
909 * Caller needs to validate requested block against end of device.
915 * Create the page-cache page that contains the requested block.
917 * This is used purely for blockdev mappings.
920 grow_dev_page(struct block_device
*bdev
, sector_t block
,
921 pgoff_t index
, int size
, int sizebits
, gfp_t gfp
)
923 struct inode
*inode
= bdev
->bd_inode
;
925 struct buffer_head
*bh
;
927 int ret
= 0; /* Will call free_more_memory() */
930 gfp_mask
= mapping_gfp_constraint(inode
->i_mapping
, ~__GFP_FS
) | gfp
;
933 * XXX: __getblk_slow() can not really deal with failure and
934 * will endlessly loop on improvised global reclaim. Prefer
935 * looping in the allocator rather than here, at least that
936 * code knows what it's doing.
938 gfp_mask
|= __GFP_NOFAIL
;
940 page
= find_or_create_page(inode
->i_mapping
, index
, gfp_mask
);
942 BUG_ON(!PageLocked(page
));
944 if (page_has_buffers(page
)) {
945 bh
= page_buffers(page
);
946 if (bh
->b_size
== size
) {
947 end_block
= init_page_buffers(page
, bdev
,
948 (sector_t
)index
<< sizebits
,
952 if (!try_to_free_buffers(page
))
957 * Allocate some buffers for this page
959 bh
= alloc_page_buffers(page
, size
, true);
962 * Link the page to the buffers and initialise them. Take the
963 * lock to be atomic wrt __find_get_block(), which does not
964 * run under the page lock.
966 spin_lock(&inode
->i_mapping
->private_lock
);
967 link_dev_buffers(page
, bh
);
968 end_block
= init_page_buffers(page
, bdev
, (sector_t
)index
<< sizebits
,
970 spin_unlock(&inode
->i_mapping
->private_lock
);
972 ret
= (block
< end_block
) ? 1 : -ENXIO
;
980 * Create buffers for the specified block device block's page. If
981 * that page was dirty, the buffers are set dirty also.
984 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
, gfp_t gfp
)
992 } while ((size
<< sizebits
) < PAGE_SIZE
);
994 index
= block
>> sizebits
;
997 * Check for a block which wants to lie outside our maximum possible
998 * pagecache index. (this comparison is done using sector_t types).
1000 if (unlikely(index
!= block
>> sizebits
)) {
1001 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1003 __func__
, (unsigned long long)block
,
1008 /* Create a page with the proper size buffers.. */
1009 return grow_dev_page(bdev
, block
, index
, size
, sizebits
, gfp
);
1012 static struct buffer_head
*
1013 __getblk_slow(struct block_device
*bdev
, sector_t block
,
1014 unsigned size
, gfp_t gfp
)
1016 /* Size must be multiple of hard sectorsize */
1017 if (unlikely(size
& (bdev_logical_block_size(bdev
)-1) ||
1018 (size
< 512 || size
> PAGE_SIZE
))) {
1019 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1021 printk(KERN_ERR
"logical block size: %d\n",
1022 bdev_logical_block_size(bdev
));
1029 struct buffer_head
*bh
;
1032 bh
= __find_get_block(bdev
, block
, size
);
1036 ret
= grow_buffers(bdev
, block
, size
, gfp
);
1043 * The relationship between dirty buffers and dirty pages:
1045 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1046 * the page is tagged dirty in its radix tree.
1048 * At all times, the dirtiness of the buffers represents the dirtiness of
1049 * subsections of the page. If the page has buffers, the page dirty bit is
1050 * merely a hint about the true dirty state.
1052 * When a page is set dirty in its entirety, all its buffers are marked dirty
1053 * (if the page has buffers).
1055 * When a buffer is marked dirty, its page is dirtied, but the page's other
1058 * Also. When blockdev buffers are explicitly read with bread(), they
1059 * individually become uptodate. But their backing page remains not
1060 * uptodate - even if all of its buffers are uptodate. A subsequent
1061 * block_read_full_page() against that page will discover all the uptodate
1062 * buffers, will set the page uptodate and will perform no I/O.
1066 * mark_buffer_dirty - mark a buffer_head as needing writeout
1067 * @bh: the buffer_head to mark dirty
1069 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1070 * backing page dirty, then tag the page as dirty in its address_space's radix
1071 * tree and then attach the address_space's inode to its superblock's dirty
1074 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1075 * i_pages lock and mapping->host->i_lock.
1077 void mark_buffer_dirty(struct buffer_head
*bh
)
1079 WARN_ON_ONCE(!buffer_uptodate(bh
));
1081 trace_block_dirty_buffer(bh
);
1084 * Very *carefully* optimize the it-is-already-dirty case.
1086 * Don't let the final "is it dirty" escape to before we
1087 * perhaps modified the buffer.
1089 if (buffer_dirty(bh
)) {
1091 if (buffer_dirty(bh
))
1095 if (!test_set_buffer_dirty(bh
)) {
1096 struct page
*page
= bh
->b_page
;
1097 struct address_space
*mapping
= NULL
;
1099 lock_page_memcg(page
);
1100 if (!TestSetPageDirty(page
)) {
1101 mapping
= page_mapping(page
);
1103 __set_page_dirty(page
, mapping
, 0);
1105 unlock_page_memcg(page
);
1107 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1110 EXPORT_SYMBOL(mark_buffer_dirty
);
1112 void mark_buffer_write_io_error(struct buffer_head
*bh
)
1114 set_buffer_write_io_error(bh
);
1115 /* FIXME: do we need to set this in both places? */
1116 if (bh
->b_page
&& bh
->b_page
->mapping
)
1117 mapping_set_error(bh
->b_page
->mapping
, -EIO
);
1118 if (bh
->b_assoc_map
)
1119 mapping_set_error(bh
->b_assoc_map
, -EIO
);
1121 EXPORT_SYMBOL(mark_buffer_write_io_error
);
1124 * Decrement a buffer_head's reference count. If all buffers against a page
1125 * have zero reference count, are clean and unlocked, and if the page is clean
1126 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1127 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1128 * a page but it ends up not being freed, and buffers may later be reattached).
1130 void __brelse(struct buffer_head
* buf
)
1132 if (atomic_read(&buf
->b_count
)) {
1136 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1138 EXPORT_SYMBOL(__brelse
);
1141 * bforget() is like brelse(), except it discards any
1142 * potentially dirty data.
1144 void __bforget(struct buffer_head
*bh
)
1146 clear_buffer_dirty(bh
);
1147 if (bh
->b_assoc_map
) {
1148 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1150 spin_lock(&buffer_mapping
->private_lock
);
1151 list_del_init(&bh
->b_assoc_buffers
);
1152 bh
->b_assoc_map
= NULL
;
1153 spin_unlock(&buffer_mapping
->private_lock
);
1157 EXPORT_SYMBOL(__bforget
);
1159 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1162 if (buffer_uptodate(bh
)) {
1167 bh
->b_end_io
= end_buffer_read_sync
;
1168 submit_bh(REQ_OP_READ
, 0, bh
);
1170 if (buffer_uptodate(bh
))
1178 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1179 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1180 * refcount elevated by one when they're in an LRU. A buffer can only appear
1181 * once in a particular CPU's LRU. A single buffer can be present in multiple
1182 * CPU's LRUs at the same time.
1184 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1185 * sb_find_get_block().
1187 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1188 * a local interrupt disable for that.
1191 #define BH_LRU_SIZE 16
1194 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1197 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1200 #define bh_lru_lock() local_irq_disable()
1201 #define bh_lru_unlock() local_irq_enable()
1203 #define bh_lru_lock() preempt_disable()
1204 #define bh_lru_unlock() preempt_enable()
1207 static inline void check_irqs_on(void)
1209 #ifdef irqs_disabled
1210 BUG_ON(irqs_disabled());
1215 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1216 * inserted at the front, and the buffer_head at the back if any is evicted.
1217 * Or, if already in the LRU it is moved to the front.
1219 static void bh_lru_install(struct buffer_head
*bh
)
1221 struct buffer_head
*evictee
= bh
;
1228 b
= this_cpu_ptr(&bh_lrus
);
1229 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1230 swap(evictee
, b
->bhs
[i
]);
1231 if (evictee
== bh
) {
1243 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1245 static struct buffer_head
*
1246 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1248 struct buffer_head
*ret
= NULL
;
1253 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1254 struct buffer_head
*bh
= __this_cpu_read(bh_lrus
.bhs
[i
]);
1256 if (bh
&& bh
->b_blocknr
== block
&& bh
->b_bdev
== bdev
&&
1257 bh
->b_size
== size
) {
1260 __this_cpu_write(bh_lrus
.bhs
[i
],
1261 __this_cpu_read(bh_lrus
.bhs
[i
- 1]));
1264 __this_cpu_write(bh_lrus
.bhs
[0], bh
);
1276 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1277 * it in the LRU and mark it as accessed. If it is not present then return
1280 struct buffer_head
*
1281 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1283 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1286 /* __find_get_block_slow will mark the page accessed */
1287 bh
= __find_get_block_slow(bdev
, block
);
1295 EXPORT_SYMBOL(__find_get_block
);
1298 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1299 * which corresponds to the passed block_device, block and size. The
1300 * returned buffer has its reference count incremented.
1302 * __getblk_gfp() will lock up the machine if grow_dev_page's
1303 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1305 struct buffer_head
*
1306 __getblk_gfp(struct block_device
*bdev
, sector_t block
,
1307 unsigned size
, gfp_t gfp
)
1309 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1313 bh
= __getblk_slow(bdev
, block
, size
, gfp
);
1316 EXPORT_SYMBOL(__getblk_gfp
);
1319 * Do async read-ahead on a buffer..
1321 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1323 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1325 ll_rw_block(REQ_OP_READ
, REQ_RAHEAD
, 1, &bh
);
1329 EXPORT_SYMBOL(__breadahead
);
1332 * __bread_gfp() - reads a specified block and returns the bh
1333 * @bdev: the block_device to read from
1334 * @block: number of block
1335 * @size: size (in bytes) to read
1336 * @gfp: page allocation flag
1338 * Reads a specified block, and returns buffer head that contains it.
1339 * The page cache can be allocated from non-movable area
1340 * not to prevent page migration if you set gfp to zero.
1341 * It returns NULL if the block was unreadable.
1343 struct buffer_head
*
1344 __bread_gfp(struct block_device
*bdev
, sector_t block
,
1345 unsigned size
, gfp_t gfp
)
1347 struct buffer_head
*bh
= __getblk_gfp(bdev
, block
, size
, gfp
);
1349 if (likely(bh
) && !buffer_uptodate(bh
))
1350 bh
= __bread_slow(bh
);
1353 EXPORT_SYMBOL(__bread_gfp
);
1356 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1357 * This doesn't race because it runs in each cpu either in irq
1358 * or with preempt disabled.
1360 static void invalidate_bh_lru(void *arg
)
1362 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1365 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1369 put_cpu_var(bh_lrus
);
1372 static bool has_bh_in_lru(int cpu
, void *dummy
)
1374 struct bh_lru
*b
= per_cpu_ptr(&bh_lrus
, cpu
);
1377 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1385 void invalidate_bh_lrus(void)
1387 on_each_cpu_cond(has_bh_in_lru
, invalidate_bh_lru
, NULL
, 1, GFP_KERNEL
);
1389 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1391 void set_bh_page(struct buffer_head
*bh
,
1392 struct page
*page
, unsigned long offset
)
1395 BUG_ON(offset
>= PAGE_SIZE
);
1396 if (PageHighMem(page
))
1398 * This catches illegal uses and preserves the offset:
1400 bh
->b_data
= (char *)(0 + offset
);
1402 bh
->b_data
= page_address(page
) + offset
;
1404 EXPORT_SYMBOL(set_bh_page
);
1407 * Called when truncating a buffer on a page completely.
1410 /* Bits that are cleared during an invalidate */
1411 #define BUFFER_FLAGS_DISCARD \
1412 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1413 1 << BH_Delay | 1 << BH_Unwritten)
1415 static void discard_buffer(struct buffer_head
* bh
)
1417 unsigned long b_state
, b_state_old
;
1420 clear_buffer_dirty(bh
);
1422 b_state
= bh
->b_state
;
1424 b_state_old
= cmpxchg(&bh
->b_state
, b_state
,
1425 (b_state
& ~BUFFER_FLAGS_DISCARD
));
1426 if (b_state_old
== b_state
)
1428 b_state
= b_state_old
;
1434 * block_invalidatepage - invalidate part or all of a buffer-backed page
1436 * @page: the page which is affected
1437 * @offset: start of the range to invalidate
1438 * @length: length of the range to invalidate
1440 * block_invalidatepage() is called when all or part of the page has become
1441 * invalidated by a truncate operation.
1443 * block_invalidatepage() does not have to release all buffers, but it must
1444 * ensure that no dirty buffer is left outside @offset and that no I/O
1445 * is underway against any of the blocks which are outside the truncation
1446 * point. Because the caller is about to free (and possibly reuse) those
1449 void block_invalidatepage(struct page
*page
, unsigned int offset
,
1450 unsigned int length
)
1452 struct buffer_head
*head
, *bh
, *next
;
1453 unsigned int curr_off
= 0;
1454 unsigned int stop
= length
+ offset
;
1456 BUG_ON(!PageLocked(page
));
1457 if (!page_has_buffers(page
))
1461 * Check for overflow
1463 BUG_ON(stop
> PAGE_SIZE
|| stop
< length
);
1465 head
= page_buffers(page
);
1468 unsigned int next_off
= curr_off
+ bh
->b_size
;
1469 next
= bh
->b_this_page
;
1472 * Are we still fully in range ?
1474 if (next_off
> stop
)
1478 * is this block fully invalidated?
1480 if (offset
<= curr_off
)
1482 curr_off
= next_off
;
1484 } while (bh
!= head
);
1487 * We release buffers only if the entire page is being invalidated.
1488 * The get_block cached value has been unconditionally invalidated,
1489 * so real IO is not possible anymore.
1491 if (length
== PAGE_SIZE
)
1492 try_to_release_page(page
, 0);
1496 EXPORT_SYMBOL(block_invalidatepage
);
1500 * We attach and possibly dirty the buffers atomically wrt
1501 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1502 * is already excluded via the page lock.
1504 void create_empty_buffers(struct page
*page
,
1505 unsigned long blocksize
, unsigned long b_state
)
1507 struct buffer_head
*bh
, *head
, *tail
;
1509 head
= alloc_page_buffers(page
, blocksize
, true);
1512 bh
->b_state
|= b_state
;
1514 bh
= bh
->b_this_page
;
1516 tail
->b_this_page
= head
;
1518 spin_lock(&page
->mapping
->private_lock
);
1519 if (PageUptodate(page
) || PageDirty(page
)) {
1522 if (PageDirty(page
))
1523 set_buffer_dirty(bh
);
1524 if (PageUptodate(page
))
1525 set_buffer_uptodate(bh
);
1526 bh
= bh
->b_this_page
;
1527 } while (bh
!= head
);
1529 attach_page_buffers(page
, head
);
1530 spin_unlock(&page
->mapping
->private_lock
);
1532 EXPORT_SYMBOL(create_empty_buffers
);
1535 * clean_bdev_aliases: clean a range of buffers in block device
1536 * @bdev: Block device to clean buffers in
1537 * @block: Start of a range of blocks to clean
1538 * @len: Number of blocks to clean
1540 * We are taking a range of blocks for data and we don't want writeback of any
1541 * buffer-cache aliases starting from return from this function and until the
1542 * moment when something will explicitly mark the buffer dirty (hopefully that
1543 * will not happen until we will free that block ;-) We don't even need to mark
1544 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1545 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1546 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1547 * would confuse anyone who might pick it with bread() afterwards...
1549 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1550 * writeout I/O going on against recently-freed buffers. We don't wait on that
1551 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1552 * need to. That happens here.
1554 void clean_bdev_aliases(struct block_device
*bdev
, sector_t block
, sector_t len
)
1556 struct inode
*bd_inode
= bdev
->bd_inode
;
1557 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
1558 struct pagevec pvec
;
1559 pgoff_t index
= block
>> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
1562 struct buffer_head
*bh
;
1563 struct buffer_head
*head
;
1565 end
= (block
+ len
- 1) >> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
1566 pagevec_init(&pvec
);
1567 while (pagevec_lookup_range(&pvec
, bd_mapping
, &index
, end
)) {
1568 count
= pagevec_count(&pvec
);
1569 for (i
= 0; i
< count
; i
++) {
1570 struct page
*page
= pvec
.pages
[i
];
1572 if (!page_has_buffers(page
))
1575 * We use page lock instead of bd_mapping->private_lock
1576 * to pin buffers here since we can afford to sleep and
1577 * it scales better than a global spinlock lock.
1580 /* Recheck when the page is locked which pins bhs */
1581 if (!page_has_buffers(page
))
1583 head
= page_buffers(page
);
1586 if (!buffer_mapped(bh
) || (bh
->b_blocknr
< block
))
1588 if (bh
->b_blocknr
>= block
+ len
)
1590 clear_buffer_dirty(bh
);
1592 clear_buffer_req(bh
);
1594 bh
= bh
->b_this_page
;
1595 } while (bh
!= head
);
1599 pagevec_release(&pvec
);
1601 /* End of range already reached? */
1602 if (index
> end
|| !index
)
1606 EXPORT_SYMBOL(clean_bdev_aliases
);
1609 * Size is a power-of-two in the range 512..PAGE_SIZE,
1610 * and the case we care about most is PAGE_SIZE.
1612 * So this *could* possibly be written with those
1613 * constraints in mind (relevant mostly if some
1614 * architecture has a slow bit-scan instruction)
1616 static inline int block_size_bits(unsigned int blocksize
)
1618 return ilog2(blocksize
);
1621 static struct buffer_head
*create_page_buffers(struct page
*page
, struct inode
*inode
, unsigned int b_state
)
1623 BUG_ON(!PageLocked(page
));
1625 if (!page_has_buffers(page
))
1626 create_empty_buffers(page
, 1 << READ_ONCE(inode
->i_blkbits
),
1628 return page_buffers(page
);
1632 * NOTE! All mapped/uptodate combinations are valid:
1634 * Mapped Uptodate Meaning
1636 * No No "unknown" - must do get_block()
1637 * No Yes "hole" - zero-filled
1638 * Yes No "allocated" - allocated on disk, not read in
1639 * Yes Yes "valid" - allocated and up-to-date in memory.
1641 * "Dirty" is valid only with the last case (mapped+uptodate).
1645 * While block_write_full_page is writing back the dirty buffers under
1646 * the page lock, whoever dirtied the buffers may decide to clean them
1647 * again at any time. We handle that by only looking at the buffer
1648 * state inside lock_buffer().
1650 * If block_write_full_page() is called for regular writeback
1651 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1652 * locked buffer. This only can happen if someone has written the buffer
1653 * directly, with submit_bh(). At the address_space level PageWriteback
1654 * prevents this contention from occurring.
1656 * If block_write_full_page() is called with wbc->sync_mode ==
1657 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1658 * causes the writes to be flagged as synchronous writes.
1660 int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1661 get_block_t
*get_block
, struct writeback_control
*wbc
,
1662 bh_end_io_t
*handler
)
1666 sector_t last_block
;
1667 struct buffer_head
*bh
, *head
;
1668 unsigned int blocksize
, bbits
;
1669 int nr_underway
= 0;
1670 int write_flags
= wbc_to_write_flags(wbc
);
1672 head
= create_page_buffers(page
, inode
,
1673 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1676 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1677 * here, and the (potentially unmapped) buffers may become dirty at
1678 * any time. If a buffer becomes dirty here after we've inspected it
1679 * then we just miss that fact, and the page stays dirty.
1681 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1682 * handle that here by just cleaning them.
1686 blocksize
= bh
->b_size
;
1687 bbits
= block_size_bits(blocksize
);
1689 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1690 last_block
= (i_size_read(inode
) - 1) >> bbits
;
1693 * Get all the dirty buffers mapped to disk addresses and
1694 * handle any aliases from the underlying blockdev's mapping.
1697 if (block
> last_block
) {
1699 * mapped buffers outside i_size will occur, because
1700 * this page can be outside i_size when there is a
1701 * truncate in progress.
1704 * The buffer was zeroed by block_write_full_page()
1706 clear_buffer_dirty(bh
);
1707 set_buffer_uptodate(bh
);
1708 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1710 WARN_ON(bh
->b_size
!= blocksize
);
1711 err
= get_block(inode
, block
, bh
, 1);
1714 clear_buffer_delay(bh
);
1715 if (buffer_new(bh
)) {
1716 /* blockdev mappings never come here */
1717 clear_buffer_new(bh
);
1718 clean_bdev_bh_alias(bh
);
1721 bh
= bh
->b_this_page
;
1723 } while (bh
!= head
);
1726 if (!buffer_mapped(bh
))
1729 * If it's a fully non-blocking write attempt and we cannot
1730 * lock the buffer then redirty the page. Note that this can
1731 * potentially cause a busy-wait loop from writeback threads
1732 * and kswapd activity, but those code paths have their own
1733 * higher-level throttling.
1735 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
1737 } else if (!trylock_buffer(bh
)) {
1738 redirty_page_for_writepage(wbc
, page
);
1741 if (test_clear_buffer_dirty(bh
)) {
1742 mark_buffer_async_write_endio(bh
, handler
);
1746 } while ((bh
= bh
->b_this_page
) != head
);
1749 * The page and its buffers are protected by PageWriteback(), so we can
1750 * drop the bh refcounts early.
1752 BUG_ON(PageWriteback(page
));
1753 set_page_writeback(page
);
1756 struct buffer_head
*next
= bh
->b_this_page
;
1757 if (buffer_async_write(bh
)) {
1758 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
,
1759 inode
->i_write_hint
, wbc
);
1763 } while (bh
!= head
);
1768 if (nr_underway
== 0) {
1770 * The page was marked dirty, but the buffers were
1771 * clean. Someone wrote them back by hand with
1772 * ll_rw_block/submit_bh. A rare case.
1774 end_page_writeback(page
);
1777 * The page and buffer_heads can be released at any time from
1785 * ENOSPC, or some other error. We may already have added some
1786 * blocks to the file, so we need to write these out to avoid
1787 * exposing stale data.
1788 * The page is currently locked and not marked for writeback
1791 /* Recovery: lock and submit the mapped buffers */
1793 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1794 !buffer_delay(bh
)) {
1796 mark_buffer_async_write_endio(bh
, handler
);
1799 * The buffer may have been set dirty during
1800 * attachment to a dirty page.
1802 clear_buffer_dirty(bh
);
1804 } while ((bh
= bh
->b_this_page
) != head
);
1806 BUG_ON(PageWriteback(page
));
1807 mapping_set_error(page
->mapping
, err
);
1808 set_page_writeback(page
);
1810 struct buffer_head
*next
= bh
->b_this_page
;
1811 if (buffer_async_write(bh
)) {
1812 clear_buffer_dirty(bh
);
1813 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
,
1814 inode
->i_write_hint
, wbc
);
1818 } while (bh
!= head
);
1822 EXPORT_SYMBOL(__block_write_full_page
);
1825 * If a page has any new buffers, zero them out here, and mark them uptodate
1826 * and dirty so they'll be written out (in order to prevent uninitialised
1827 * block data from leaking). And clear the new bit.
1829 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1831 unsigned int block_start
, block_end
;
1832 struct buffer_head
*head
, *bh
;
1834 BUG_ON(!PageLocked(page
));
1835 if (!page_has_buffers(page
))
1838 bh
= head
= page_buffers(page
);
1841 block_end
= block_start
+ bh
->b_size
;
1843 if (buffer_new(bh
)) {
1844 if (block_end
> from
&& block_start
< to
) {
1845 if (!PageUptodate(page
)) {
1846 unsigned start
, size
;
1848 start
= max(from
, block_start
);
1849 size
= min(to
, block_end
) - start
;
1851 zero_user(page
, start
, size
);
1852 set_buffer_uptodate(bh
);
1855 clear_buffer_new(bh
);
1856 mark_buffer_dirty(bh
);
1860 block_start
= block_end
;
1861 bh
= bh
->b_this_page
;
1862 } while (bh
!= head
);
1864 EXPORT_SYMBOL(page_zero_new_buffers
);
1867 iomap_to_bh(struct inode
*inode
, sector_t block
, struct buffer_head
*bh
,
1868 struct iomap
*iomap
)
1870 loff_t offset
= block
<< inode
->i_blkbits
;
1872 bh
->b_bdev
= iomap
->bdev
;
1875 * Block points to offset in file we need to map, iomap contains
1876 * the offset at which the map starts. If the map ends before the
1877 * current block, then do not map the buffer and let the caller
1880 BUG_ON(offset
>= iomap
->offset
+ iomap
->length
);
1882 switch (iomap
->type
) {
1885 * If the buffer is not up to date or beyond the current EOF,
1886 * we need to mark it as new to ensure sub-block zeroing is
1887 * executed if necessary.
1889 if (!buffer_uptodate(bh
) ||
1890 (offset
>= i_size_read(inode
)))
1893 case IOMAP_DELALLOC
:
1894 if (!buffer_uptodate(bh
) ||
1895 (offset
>= i_size_read(inode
)))
1897 set_buffer_uptodate(bh
);
1898 set_buffer_mapped(bh
);
1899 set_buffer_delay(bh
);
1901 case IOMAP_UNWRITTEN
:
1903 * For unwritten regions, we always need to ensure that
1904 * sub-block writes cause the regions in the block we are not
1905 * writing to are zeroed. Set the buffer as new to ensure this.
1908 set_buffer_unwritten(bh
);
1911 if (offset
>= i_size_read(inode
))
1913 bh
->b_blocknr
= (iomap
->addr
+ offset
- iomap
->offset
) >>
1915 set_buffer_mapped(bh
);
1920 int __block_write_begin_int(struct page
*page
, loff_t pos
, unsigned len
,
1921 get_block_t
*get_block
, struct iomap
*iomap
)
1923 unsigned from
= pos
& (PAGE_SIZE
- 1);
1924 unsigned to
= from
+ len
;
1925 struct inode
*inode
= page
->mapping
->host
;
1926 unsigned block_start
, block_end
;
1929 unsigned blocksize
, bbits
;
1930 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1932 BUG_ON(!PageLocked(page
));
1933 BUG_ON(from
> PAGE_SIZE
);
1934 BUG_ON(to
> PAGE_SIZE
);
1937 head
= create_page_buffers(page
, inode
, 0);
1938 blocksize
= head
->b_size
;
1939 bbits
= block_size_bits(blocksize
);
1941 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1943 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1944 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1945 block_end
= block_start
+ blocksize
;
1946 if (block_end
<= from
|| block_start
>= to
) {
1947 if (PageUptodate(page
)) {
1948 if (!buffer_uptodate(bh
))
1949 set_buffer_uptodate(bh
);
1954 clear_buffer_new(bh
);
1955 if (!buffer_mapped(bh
)) {
1956 WARN_ON(bh
->b_size
!= blocksize
);
1958 err
= get_block(inode
, block
, bh
, 1);
1962 iomap_to_bh(inode
, block
, bh
, iomap
);
1965 if (buffer_new(bh
)) {
1966 clean_bdev_bh_alias(bh
);
1967 if (PageUptodate(page
)) {
1968 clear_buffer_new(bh
);
1969 set_buffer_uptodate(bh
);
1970 mark_buffer_dirty(bh
);
1973 if (block_end
> to
|| block_start
< from
)
1974 zero_user_segments(page
,
1980 if (PageUptodate(page
)) {
1981 if (!buffer_uptodate(bh
))
1982 set_buffer_uptodate(bh
);
1985 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1986 !buffer_unwritten(bh
) &&
1987 (block_start
< from
|| block_end
> to
)) {
1988 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
1993 * If we issued read requests - let them complete.
1995 while(wait_bh
> wait
) {
1996 wait_on_buffer(*--wait_bh
);
1997 if (!buffer_uptodate(*wait_bh
))
2001 page_zero_new_buffers(page
, from
, to
);
2005 int __block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
2006 get_block_t
*get_block
)
2008 return __block_write_begin_int(page
, pos
, len
, get_block
, NULL
);
2010 EXPORT_SYMBOL(__block_write_begin
);
2012 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
2013 unsigned from
, unsigned to
)
2015 unsigned block_start
, block_end
;
2018 struct buffer_head
*bh
, *head
;
2020 bh
= head
= page_buffers(page
);
2021 blocksize
= bh
->b_size
;
2025 block_end
= block_start
+ blocksize
;
2026 if (block_end
<= from
|| block_start
>= to
) {
2027 if (!buffer_uptodate(bh
))
2030 set_buffer_uptodate(bh
);
2031 mark_buffer_dirty(bh
);
2033 clear_buffer_new(bh
);
2035 block_start
= block_end
;
2036 bh
= bh
->b_this_page
;
2037 } while (bh
!= head
);
2040 * If this is a partial write which happened to make all buffers
2041 * uptodate then we can optimize away a bogus readpage() for
2042 * the next read(). Here we 'discover' whether the page went
2043 * uptodate as a result of this (potentially partial) write.
2046 SetPageUptodate(page
);
2051 * block_write_begin takes care of the basic task of block allocation and
2052 * bringing partial write blocks uptodate first.
2054 * The filesystem needs to handle block truncation upon failure.
2056 int block_write_begin(struct address_space
*mapping
, loff_t pos
, unsigned len
,
2057 unsigned flags
, struct page
**pagep
, get_block_t
*get_block
)
2059 pgoff_t index
= pos
>> PAGE_SHIFT
;
2063 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2067 status
= __block_write_begin(page
, pos
, len
, get_block
);
2068 if (unlikely(status
)) {
2077 EXPORT_SYMBOL(block_write_begin
);
2079 int block_write_end(struct file
*file
, struct address_space
*mapping
,
2080 loff_t pos
, unsigned len
, unsigned copied
,
2081 struct page
*page
, void *fsdata
)
2083 struct inode
*inode
= mapping
->host
;
2086 start
= pos
& (PAGE_SIZE
- 1);
2088 if (unlikely(copied
< len
)) {
2090 * The buffers that were written will now be uptodate, so we
2091 * don't have to worry about a readpage reading them and
2092 * overwriting a partial write. However if we have encountered
2093 * a short write and only partially written into a buffer, it
2094 * will not be marked uptodate, so a readpage might come in and
2095 * destroy our partial write.
2097 * Do the simplest thing, and just treat any short write to a
2098 * non uptodate page as a zero-length write, and force the
2099 * caller to redo the whole thing.
2101 if (!PageUptodate(page
))
2104 page_zero_new_buffers(page
, start
+copied
, start
+len
);
2106 flush_dcache_page(page
);
2108 /* This could be a short (even 0-length) commit */
2109 __block_commit_write(inode
, page
, start
, start
+copied
);
2113 EXPORT_SYMBOL(block_write_end
);
2115 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2116 loff_t pos
, unsigned len
, unsigned copied
,
2117 struct page
*page
, void *fsdata
)
2119 struct inode
*inode
= mapping
->host
;
2120 loff_t old_size
= inode
->i_size
;
2121 int i_size_changed
= 0;
2123 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2126 * No need to use i_size_read() here, the i_size
2127 * cannot change under us because we hold i_mutex.
2129 * But it's important to update i_size while still holding page lock:
2130 * page writeout could otherwise come in and zero beyond i_size.
2132 if (pos
+copied
> inode
->i_size
) {
2133 i_size_write(inode
, pos
+copied
);
2141 pagecache_isize_extended(inode
, old_size
, pos
);
2143 * Don't mark the inode dirty under page lock. First, it unnecessarily
2144 * makes the holding time of page lock longer. Second, it forces lock
2145 * ordering of page lock and transaction start for journaling
2149 mark_inode_dirty(inode
);
2153 EXPORT_SYMBOL(generic_write_end
);
2156 * block_is_partially_uptodate checks whether buffers within a page are
2159 * Returns true if all buffers which correspond to a file portion
2160 * we want to read are uptodate.
2162 int block_is_partially_uptodate(struct page
*page
, unsigned long from
,
2163 unsigned long count
)
2165 unsigned block_start
, block_end
, blocksize
;
2167 struct buffer_head
*bh
, *head
;
2170 if (!page_has_buffers(page
))
2173 head
= page_buffers(page
);
2174 blocksize
= head
->b_size
;
2175 to
= min_t(unsigned, PAGE_SIZE
- from
, count
);
2177 if (from
< blocksize
&& to
> PAGE_SIZE
- blocksize
)
2183 block_end
= block_start
+ blocksize
;
2184 if (block_end
> from
&& block_start
< to
) {
2185 if (!buffer_uptodate(bh
)) {
2189 if (block_end
>= to
)
2192 block_start
= block_end
;
2193 bh
= bh
->b_this_page
;
2194 } while (bh
!= head
);
2198 EXPORT_SYMBOL(block_is_partially_uptodate
);
2201 * Generic "read page" function for block devices that have the normal
2202 * get_block functionality. This is most of the block device filesystems.
2203 * Reads the page asynchronously --- the unlock_buffer() and
2204 * set/clear_buffer_uptodate() functions propagate buffer state into the
2205 * page struct once IO has completed.
2207 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2209 struct inode
*inode
= page
->mapping
->host
;
2210 sector_t iblock
, lblock
;
2211 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2212 unsigned int blocksize
, bbits
;
2214 int fully_mapped
= 1;
2216 head
= create_page_buffers(page
, inode
, 0);
2217 blocksize
= head
->b_size
;
2218 bbits
= block_size_bits(blocksize
);
2220 iblock
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
2221 lblock
= (i_size_read(inode
)+blocksize
-1) >> bbits
;
2227 if (buffer_uptodate(bh
))
2230 if (!buffer_mapped(bh
)) {
2234 if (iblock
< lblock
) {
2235 WARN_ON(bh
->b_size
!= blocksize
);
2236 err
= get_block(inode
, iblock
, bh
, 0);
2240 if (!buffer_mapped(bh
)) {
2241 zero_user(page
, i
* blocksize
, blocksize
);
2243 set_buffer_uptodate(bh
);
2247 * get_block() might have updated the buffer
2250 if (buffer_uptodate(bh
))
2254 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2257 SetPageMappedToDisk(page
);
2261 * All buffers are uptodate - we can set the page uptodate
2262 * as well. But not if get_block() returned an error.
2264 if (!PageError(page
))
2265 SetPageUptodate(page
);
2270 /* Stage two: lock the buffers */
2271 for (i
= 0; i
< nr
; i
++) {
2274 mark_buffer_async_read(bh
);
2278 * Stage 3: start the IO. Check for uptodateness
2279 * inside the buffer lock in case another process reading
2280 * the underlying blockdev brought it uptodate (the sct fix).
2282 for (i
= 0; i
< nr
; i
++) {
2284 if (buffer_uptodate(bh
))
2285 end_buffer_async_read(bh
, 1);
2287 submit_bh(REQ_OP_READ
, 0, bh
);
2291 EXPORT_SYMBOL(block_read_full_page
);
2293 /* utility function for filesystems that need to do work on expanding
2294 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2295 * deal with the hole.
2297 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2299 struct address_space
*mapping
= inode
->i_mapping
;
2304 err
= inode_newsize_ok(inode
, size
);
2308 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2309 AOP_FLAG_CONT_EXPAND
, &page
, &fsdata
);
2313 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2319 EXPORT_SYMBOL(generic_cont_expand_simple
);
2321 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2322 loff_t pos
, loff_t
*bytes
)
2324 struct inode
*inode
= mapping
->host
;
2325 unsigned int blocksize
= i_blocksize(inode
);
2328 pgoff_t index
, curidx
;
2330 unsigned zerofrom
, offset
, len
;
2333 index
= pos
>> PAGE_SHIFT
;
2334 offset
= pos
& ~PAGE_MASK
;
2336 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_SHIFT
)) {
2337 zerofrom
= curpos
& ~PAGE_MASK
;
2338 if (zerofrom
& (blocksize
-1)) {
2339 *bytes
|= (blocksize
-1);
2342 len
= PAGE_SIZE
- zerofrom
;
2344 err
= pagecache_write_begin(file
, mapping
, curpos
, len
, 0,
2348 zero_user(page
, zerofrom
, len
);
2349 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2356 balance_dirty_pages_ratelimited(mapping
);
2358 if (unlikely(fatal_signal_pending(current
))) {
2364 /* page covers the boundary, find the boundary offset */
2365 if (index
== curidx
) {
2366 zerofrom
= curpos
& ~PAGE_MASK
;
2367 /* if we will expand the thing last block will be filled */
2368 if (offset
<= zerofrom
) {
2371 if (zerofrom
& (blocksize
-1)) {
2372 *bytes
|= (blocksize
-1);
2375 len
= offset
- zerofrom
;
2377 err
= pagecache_write_begin(file
, mapping
, curpos
, len
, 0,
2381 zero_user(page
, zerofrom
, len
);
2382 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2394 * For moronic filesystems that do not allow holes in file.
2395 * We may have to extend the file.
2397 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2398 loff_t pos
, unsigned len
, unsigned flags
,
2399 struct page
**pagep
, void **fsdata
,
2400 get_block_t
*get_block
, loff_t
*bytes
)
2402 struct inode
*inode
= mapping
->host
;
2403 unsigned int blocksize
= i_blocksize(inode
);
2404 unsigned int zerofrom
;
2407 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2411 zerofrom
= *bytes
& ~PAGE_MASK
;
2412 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2413 *bytes
|= (blocksize
-1);
2417 return block_write_begin(mapping
, pos
, len
, flags
, pagep
, get_block
);
2419 EXPORT_SYMBOL(cont_write_begin
);
2421 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2423 struct inode
*inode
= page
->mapping
->host
;
2424 __block_commit_write(inode
,page
,from
,to
);
2427 EXPORT_SYMBOL(block_commit_write
);
2430 * block_page_mkwrite() is not allowed to change the file size as it gets
2431 * called from a page fault handler when a page is first dirtied. Hence we must
2432 * be careful to check for EOF conditions here. We set the page up correctly
2433 * for a written page which means we get ENOSPC checking when writing into
2434 * holes and correct delalloc and unwritten extent mapping on filesystems that
2435 * support these features.
2437 * We are not allowed to take the i_mutex here so we have to play games to
2438 * protect against truncate races as the page could now be beyond EOF. Because
2439 * truncate writes the inode size before removing pages, once we have the
2440 * page lock we can determine safely if the page is beyond EOF. If it is not
2441 * beyond EOF, then the page is guaranteed safe against truncation until we
2444 * Direct callers of this function should protect against filesystem freezing
2445 * using sb_start_pagefault() - sb_end_pagefault() functions.
2447 int block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2448 get_block_t get_block
)
2450 struct page
*page
= vmf
->page
;
2451 struct inode
*inode
= file_inode(vma
->vm_file
);
2457 size
= i_size_read(inode
);
2458 if ((page
->mapping
!= inode
->i_mapping
) ||
2459 (page_offset(page
) > size
)) {
2460 /* We overload EFAULT to mean page got truncated */
2465 /* page is wholly or partially inside EOF */
2466 if (((page
->index
+ 1) << PAGE_SHIFT
) > size
)
2467 end
= size
& ~PAGE_MASK
;
2471 ret
= __block_write_begin(page
, 0, end
, get_block
);
2473 ret
= block_commit_write(page
, 0, end
);
2475 if (unlikely(ret
< 0))
2477 set_page_dirty(page
);
2478 wait_for_stable_page(page
);
2484 EXPORT_SYMBOL(block_page_mkwrite
);
2487 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2488 * immediately, while under the page lock. So it needs a special end_io
2489 * handler which does not touch the bh after unlocking it.
2491 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2493 __end_buffer_read_notouch(bh
, uptodate
);
2497 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2498 * the page (converting it to circular linked list and taking care of page
2501 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2503 struct buffer_head
*bh
;
2505 BUG_ON(!PageLocked(page
));
2507 spin_lock(&page
->mapping
->private_lock
);
2510 if (PageDirty(page
))
2511 set_buffer_dirty(bh
);
2512 if (!bh
->b_this_page
)
2513 bh
->b_this_page
= head
;
2514 bh
= bh
->b_this_page
;
2515 } while (bh
!= head
);
2516 attach_page_buffers(page
, head
);
2517 spin_unlock(&page
->mapping
->private_lock
);
2521 * On entry, the page is fully not uptodate.
2522 * On exit the page is fully uptodate in the areas outside (from,to)
2523 * The filesystem needs to handle block truncation upon failure.
2525 int nobh_write_begin(struct address_space
*mapping
,
2526 loff_t pos
, unsigned len
, unsigned flags
,
2527 struct page
**pagep
, void **fsdata
,
2528 get_block_t
*get_block
)
2530 struct inode
*inode
= mapping
->host
;
2531 const unsigned blkbits
= inode
->i_blkbits
;
2532 const unsigned blocksize
= 1 << blkbits
;
2533 struct buffer_head
*head
, *bh
;
2537 unsigned block_in_page
;
2538 unsigned block_start
, block_end
;
2539 sector_t block_in_file
;
2542 int is_mapped_to_disk
= 1;
2544 index
= pos
>> PAGE_SHIFT
;
2545 from
= pos
& (PAGE_SIZE
- 1);
2548 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2554 if (page_has_buffers(page
)) {
2555 ret
= __block_write_begin(page
, pos
, len
, get_block
);
2561 if (PageMappedToDisk(page
))
2565 * Allocate buffers so that we can keep track of state, and potentially
2566 * attach them to the page if an error occurs. In the common case of
2567 * no error, they will just be freed again without ever being attached
2568 * to the page (which is all OK, because we're under the page lock).
2570 * Be careful: the buffer linked list is a NULL terminated one, rather
2571 * than the circular one we're used to.
2573 head
= alloc_page_buffers(page
, blocksize
, false);
2579 block_in_file
= (sector_t
)page
->index
<< (PAGE_SHIFT
- blkbits
);
2582 * We loop across all blocks in the page, whether or not they are
2583 * part of the affected region. This is so we can discover if the
2584 * page is fully mapped-to-disk.
2586 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2587 block_start
< PAGE_SIZE
;
2588 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2591 block_end
= block_start
+ blocksize
;
2594 if (block_start
>= to
)
2596 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2600 if (!buffer_mapped(bh
))
2601 is_mapped_to_disk
= 0;
2603 clean_bdev_bh_alias(bh
);
2604 if (PageUptodate(page
)) {
2605 set_buffer_uptodate(bh
);
2608 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2609 zero_user_segments(page
, block_start
, from
,
2613 if (buffer_uptodate(bh
))
2614 continue; /* reiserfs does this */
2615 if (block_start
< from
|| block_end
> to
) {
2617 bh
->b_end_io
= end_buffer_read_nobh
;
2618 submit_bh(REQ_OP_READ
, 0, bh
);
2625 * The page is locked, so these buffers are protected from
2626 * any VM or truncate activity. Hence we don't need to care
2627 * for the buffer_head refcounts.
2629 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2631 if (!buffer_uptodate(bh
))
2638 if (is_mapped_to_disk
)
2639 SetPageMappedToDisk(page
);
2641 *fsdata
= head
; /* to be released by nobh_write_end */
2648 * Error recovery is a bit difficult. We need to zero out blocks that
2649 * were newly allocated, and dirty them to ensure they get written out.
2650 * Buffers need to be attached to the page at this point, otherwise
2651 * the handling of potential IO errors during writeout would be hard
2652 * (could try doing synchronous writeout, but what if that fails too?)
2654 attach_nobh_buffers(page
, head
);
2655 page_zero_new_buffers(page
, from
, to
);
2664 EXPORT_SYMBOL(nobh_write_begin
);
2666 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2667 loff_t pos
, unsigned len
, unsigned copied
,
2668 struct page
*page
, void *fsdata
)
2670 struct inode
*inode
= page
->mapping
->host
;
2671 struct buffer_head
*head
= fsdata
;
2672 struct buffer_head
*bh
;
2673 BUG_ON(fsdata
!= NULL
&& page_has_buffers(page
));
2675 if (unlikely(copied
< len
) && head
)
2676 attach_nobh_buffers(page
, head
);
2677 if (page_has_buffers(page
))
2678 return generic_write_end(file
, mapping
, pos
, len
,
2679 copied
, page
, fsdata
);
2681 SetPageUptodate(page
);
2682 set_page_dirty(page
);
2683 if (pos
+copied
> inode
->i_size
) {
2684 i_size_write(inode
, pos
+copied
);
2685 mark_inode_dirty(inode
);
2693 head
= head
->b_this_page
;
2694 free_buffer_head(bh
);
2699 EXPORT_SYMBOL(nobh_write_end
);
2702 * nobh_writepage() - based on block_full_write_page() except
2703 * that it tries to operate without attaching bufferheads to
2706 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2707 struct writeback_control
*wbc
)
2709 struct inode
* const inode
= page
->mapping
->host
;
2710 loff_t i_size
= i_size_read(inode
);
2711 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2715 /* Is the page fully inside i_size? */
2716 if (page
->index
< end_index
)
2719 /* Is the page fully outside i_size? (truncate in progress) */
2720 offset
= i_size
& (PAGE_SIZE
-1);
2721 if (page
->index
>= end_index
+1 || !offset
) {
2723 * The page may have dirty, unmapped buffers. For example,
2724 * they may have been added in ext3_writepage(). Make them
2725 * freeable here, so the page does not leak.
2728 /* Not really sure about this - do we need this ? */
2729 if (page
->mapping
->a_ops
->invalidatepage
)
2730 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2733 return 0; /* don't care */
2737 * The page straddles i_size. It must be zeroed out on each and every
2738 * writepage invocation because it may be mmapped. "A file is mapped
2739 * in multiples of the page size. For a file that is not a multiple of
2740 * the page size, the remaining memory is zeroed when mapped, and
2741 * writes to that region are not written out to the file."
2743 zero_user_segment(page
, offset
, PAGE_SIZE
);
2745 ret
= mpage_writepage(page
, get_block
, wbc
);
2747 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
,
2748 end_buffer_async_write
);
2751 EXPORT_SYMBOL(nobh_writepage
);
2753 int nobh_truncate_page(struct address_space
*mapping
,
2754 loff_t from
, get_block_t
*get_block
)
2756 pgoff_t index
= from
>> PAGE_SHIFT
;
2757 unsigned offset
= from
& (PAGE_SIZE
-1);
2760 unsigned length
, pos
;
2761 struct inode
*inode
= mapping
->host
;
2763 struct buffer_head map_bh
;
2766 blocksize
= i_blocksize(inode
);
2767 length
= offset
& (blocksize
- 1);
2769 /* Block boundary? Nothing to do */
2773 length
= blocksize
- length
;
2774 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2776 page
= grab_cache_page(mapping
, index
);
2781 if (page_has_buffers(page
)) {
2785 return block_truncate_page(mapping
, from
, get_block
);
2788 /* Find the buffer that contains "offset" */
2790 while (offset
>= pos
) {
2795 map_bh
.b_size
= blocksize
;
2797 err
= get_block(inode
, iblock
, &map_bh
, 0);
2800 /* unmapped? It's a hole - nothing to do */
2801 if (!buffer_mapped(&map_bh
))
2804 /* Ok, it's mapped. Make sure it's up-to-date */
2805 if (!PageUptodate(page
)) {
2806 err
= mapping
->a_ops
->readpage(NULL
, page
);
2812 if (!PageUptodate(page
)) {
2816 if (page_has_buffers(page
))
2819 zero_user(page
, offset
, length
);
2820 set_page_dirty(page
);
2829 EXPORT_SYMBOL(nobh_truncate_page
);
2831 int block_truncate_page(struct address_space
*mapping
,
2832 loff_t from
, get_block_t
*get_block
)
2834 pgoff_t index
= from
>> PAGE_SHIFT
;
2835 unsigned offset
= from
& (PAGE_SIZE
-1);
2838 unsigned length
, pos
;
2839 struct inode
*inode
= mapping
->host
;
2841 struct buffer_head
*bh
;
2844 blocksize
= i_blocksize(inode
);
2845 length
= offset
& (blocksize
- 1);
2847 /* Block boundary? Nothing to do */
2851 length
= blocksize
- length
;
2852 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2854 page
= grab_cache_page(mapping
, index
);
2859 if (!page_has_buffers(page
))
2860 create_empty_buffers(page
, blocksize
, 0);
2862 /* Find the buffer that contains "offset" */
2863 bh
= page_buffers(page
);
2865 while (offset
>= pos
) {
2866 bh
= bh
->b_this_page
;
2872 if (!buffer_mapped(bh
)) {
2873 WARN_ON(bh
->b_size
!= blocksize
);
2874 err
= get_block(inode
, iblock
, bh
, 0);
2877 /* unmapped? It's a hole - nothing to do */
2878 if (!buffer_mapped(bh
))
2882 /* Ok, it's mapped. Make sure it's up-to-date */
2883 if (PageUptodate(page
))
2884 set_buffer_uptodate(bh
);
2886 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2888 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2890 /* Uhhuh. Read error. Complain and punt. */
2891 if (!buffer_uptodate(bh
))
2895 zero_user(page
, offset
, length
);
2896 mark_buffer_dirty(bh
);
2905 EXPORT_SYMBOL(block_truncate_page
);
2908 * The generic ->writepage function for buffer-backed address_spaces
2910 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2911 struct writeback_control
*wbc
)
2913 struct inode
* const inode
= page
->mapping
->host
;
2914 loff_t i_size
= i_size_read(inode
);
2915 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2918 /* Is the page fully inside i_size? */
2919 if (page
->index
< end_index
)
2920 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2921 end_buffer_async_write
);
2923 /* Is the page fully outside i_size? (truncate in progress) */
2924 offset
= i_size
& (PAGE_SIZE
-1);
2925 if (page
->index
>= end_index
+1 || !offset
) {
2927 * The page may have dirty, unmapped buffers. For example,
2928 * they may have been added in ext3_writepage(). Make them
2929 * freeable here, so the page does not leak.
2931 do_invalidatepage(page
, 0, PAGE_SIZE
);
2933 return 0; /* don't care */
2937 * The page straddles i_size. It must be zeroed out on each and every
2938 * writepage invocation because it may be mmapped. "A file is mapped
2939 * in multiples of the page size. For a file that is not a multiple of
2940 * the page size, the remaining memory is zeroed when mapped, and
2941 * writes to that region are not written out to the file."
2943 zero_user_segment(page
, offset
, PAGE_SIZE
);
2944 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2945 end_buffer_async_write
);
2947 EXPORT_SYMBOL(block_write_full_page
);
2949 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2950 get_block_t
*get_block
)
2952 struct inode
*inode
= mapping
->host
;
2953 struct buffer_head tmp
= {
2954 .b_size
= i_blocksize(inode
),
2957 get_block(inode
, block
, &tmp
, 0);
2958 return tmp
.b_blocknr
;
2960 EXPORT_SYMBOL(generic_block_bmap
);
2962 static void end_bio_bh_io_sync(struct bio
*bio
)
2964 struct buffer_head
*bh
= bio
->bi_private
;
2966 if (unlikely(bio_flagged(bio
, BIO_QUIET
)))
2967 set_bit(BH_Quiet
, &bh
->b_state
);
2969 bh
->b_end_io(bh
, !bio
->bi_status
);
2974 * This allows us to do IO even on the odd last sectors
2975 * of a device, even if the block size is some multiple
2976 * of the physical sector size.
2978 * We'll just truncate the bio to the size of the device,
2979 * and clear the end of the buffer head manually.
2981 * Truly out-of-range accesses will turn into actual IO
2982 * errors, this only handles the "we need to be able to
2983 * do IO at the final sector" case.
2985 void guard_bio_eod(int op
, struct bio
*bio
)
2988 struct bio_vec
*bvec
= bio_last_bvec_all(bio
);
2989 unsigned truncated_bytes
;
2990 struct hd_struct
*part
;
2993 part
= __disk_get_part(bio
->bi_disk
, bio
->bi_partno
);
2995 maxsector
= part_nr_sects_read(part
);
2997 maxsector
= get_capacity(bio
->bi_disk
);
3004 * If the *whole* IO is past the end of the device,
3005 * let it through, and the IO layer will turn it into
3008 if (unlikely(bio
->bi_iter
.bi_sector
>= maxsector
))
3011 maxsector
-= bio
->bi_iter
.bi_sector
;
3012 if (likely((bio
->bi_iter
.bi_size
>> 9) <= maxsector
))
3015 /* Uhhuh. We've got a bio that straddles the device size! */
3016 truncated_bytes
= bio
->bi_iter
.bi_size
- (maxsector
<< 9);
3018 /* Truncate the bio.. */
3019 bio
->bi_iter
.bi_size
-= truncated_bytes
;
3020 bvec
->bv_len
-= truncated_bytes
;
3022 /* ..and clear the end of the buffer for reads */
3023 if (op
== REQ_OP_READ
) {
3024 zero_user(bvec
->bv_page
, bvec
->bv_offset
+ bvec
->bv_len
,
3029 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
3030 enum rw_hint write_hint
, struct writeback_control
*wbc
)
3034 BUG_ON(!buffer_locked(bh
));
3035 BUG_ON(!buffer_mapped(bh
));
3036 BUG_ON(!bh
->b_end_io
);
3037 BUG_ON(buffer_delay(bh
));
3038 BUG_ON(buffer_unwritten(bh
));
3041 * Only clear out a write error when rewriting
3043 if (test_set_buffer_req(bh
) && (op
== REQ_OP_WRITE
))
3044 clear_buffer_write_io_error(bh
);
3047 * from here on down, it's all bio -- do the initial mapping,
3048 * submit_bio -> generic_make_request may further map this bio around
3050 bio
= bio_alloc(GFP_NOIO
, 1);
3053 wbc_init_bio(wbc
, bio
);
3054 wbc_account_io(wbc
, bh
->b_page
, bh
->b_size
);
3057 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
3058 bio_set_dev(bio
, bh
->b_bdev
);
3059 bio
->bi_write_hint
= write_hint
;
3061 bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
3062 BUG_ON(bio
->bi_iter
.bi_size
!= bh
->b_size
);
3064 bio
->bi_end_io
= end_bio_bh_io_sync
;
3065 bio
->bi_private
= bh
;
3067 /* Take care of bh's that straddle the end of the device */
3068 guard_bio_eod(op
, bio
);
3070 if (buffer_meta(bh
))
3071 op_flags
|= REQ_META
;
3072 if (buffer_prio(bh
))
3073 op_flags
|= REQ_PRIO
;
3074 bio_set_op_attrs(bio
, op
, op_flags
);
3080 int submit_bh(int op
, int op_flags
, struct buffer_head
*bh
)
3082 return submit_bh_wbc(op
, op_flags
, bh
, 0, NULL
);
3084 EXPORT_SYMBOL(submit_bh
);
3087 * ll_rw_block: low-level access to block devices (DEPRECATED)
3088 * @op: whether to %READ or %WRITE
3089 * @op_flags: req_flag_bits
3090 * @nr: number of &struct buffer_heads in the array
3091 * @bhs: array of pointers to &struct buffer_head
3093 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3094 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3095 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3098 * This function drops any buffer that it cannot get a lock on (with the
3099 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3100 * request, and any buffer that appears to be up-to-date when doing read
3101 * request. Further it marks as clean buffers that are processed for
3102 * writing (the buffer cache won't assume that they are actually clean
3103 * until the buffer gets unlocked).
3105 * ll_rw_block sets b_end_io to simple completion handler that marks
3106 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3109 * All of the buffers must be for the same device, and must also be a
3110 * multiple of the current approved size for the device.
3112 void ll_rw_block(int op
, int op_flags
, int nr
, struct buffer_head
*bhs
[])
3116 for (i
= 0; i
< nr
; i
++) {
3117 struct buffer_head
*bh
= bhs
[i
];
3119 if (!trylock_buffer(bh
))
3122 if (test_clear_buffer_dirty(bh
)) {
3123 bh
->b_end_io
= end_buffer_write_sync
;
3125 submit_bh(op
, op_flags
, bh
);
3129 if (!buffer_uptodate(bh
)) {
3130 bh
->b_end_io
= end_buffer_read_sync
;
3132 submit_bh(op
, op_flags
, bh
);
3139 EXPORT_SYMBOL(ll_rw_block
);
3141 void write_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3144 if (!test_clear_buffer_dirty(bh
)) {
3148 bh
->b_end_io
= end_buffer_write_sync
;
3150 submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3152 EXPORT_SYMBOL(write_dirty_buffer
);
3155 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3156 * and then start new I/O and then wait upon it. The caller must have a ref on
3159 int __sync_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3163 WARN_ON(atomic_read(&bh
->b_count
) < 1);
3165 if (test_clear_buffer_dirty(bh
)) {
3167 bh
->b_end_io
= end_buffer_write_sync
;
3168 ret
= submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3170 if (!ret
&& !buffer_uptodate(bh
))
3177 EXPORT_SYMBOL(__sync_dirty_buffer
);
3179 int sync_dirty_buffer(struct buffer_head
*bh
)
3181 return __sync_dirty_buffer(bh
, REQ_SYNC
);
3183 EXPORT_SYMBOL(sync_dirty_buffer
);
3186 * try_to_free_buffers() checks if all the buffers on this particular page
3187 * are unused, and releases them if so.
3189 * Exclusion against try_to_free_buffers may be obtained by either
3190 * locking the page or by holding its mapping's private_lock.
3192 * If the page is dirty but all the buffers are clean then we need to
3193 * be sure to mark the page clean as well. This is because the page
3194 * may be against a block device, and a later reattachment of buffers
3195 * to a dirty page will set *all* buffers dirty. Which would corrupt
3196 * filesystem data on the same device.
3198 * The same applies to regular filesystem pages: if all the buffers are
3199 * clean then we set the page clean and proceed. To do that, we require
3200 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3203 * try_to_free_buffers() is non-blocking.
3205 static inline int buffer_busy(struct buffer_head
*bh
)
3207 return atomic_read(&bh
->b_count
) |
3208 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3212 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3214 struct buffer_head
*head
= page_buffers(page
);
3215 struct buffer_head
*bh
;
3219 if (buffer_busy(bh
))
3221 bh
= bh
->b_this_page
;
3222 } while (bh
!= head
);
3225 struct buffer_head
*next
= bh
->b_this_page
;
3227 if (bh
->b_assoc_map
)
3228 __remove_assoc_queue(bh
);
3230 } while (bh
!= head
);
3231 *buffers_to_free
= head
;
3232 __clear_page_buffers(page
);
3238 int try_to_free_buffers(struct page
*page
)
3240 struct address_space
* const mapping
= page
->mapping
;
3241 struct buffer_head
*buffers_to_free
= NULL
;
3244 BUG_ON(!PageLocked(page
));
3245 if (PageWriteback(page
))
3248 if (mapping
== NULL
) { /* can this still happen? */
3249 ret
= drop_buffers(page
, &buffers_to_free
);
3253 spin_lock(&mapping
->private_lock
);
3254 ret
= drop_buffers(page
, &buffers_to_free
);
3257 * If the filesystem writes its buffers by hand (eg ext3)
3258 * then we can have clean buffers against a dirty page. We
3259 * clean the page here; otherwise the VM will never notice
3260 * that the filesystem did any IO at all.
3262 * Also, during truncate, discard_buffer will have marked all
3263 * the page's buffers clean. We discover that here and clean
3266 * private_lock must be held over this entire operation in order
3267 * to synchronise against __set_page_dirty_buffers and prevent the
3268 * dirty bit from being lost.
3271 cancel_dirty_page(page
);
3272 spin_unlock(&mapping
->private_lock
);
3274 if (buffers_to_free
) {
3275 struct buffer_head
*bh
= buffers_to_free
;
3278 struct buffer_head
*next
= bh
->b_this_page
;
3279 free_buffer_head(bh
);
3281 } while (bh
!= buffers_to_free
);
3285 EXPORT_SYMBOL(try_to_free_buffers
);
3288 * There are no bdflush tunables left. But distributions are
3289 * still running obsolete flush daemons, so we terminate them here.
3291 * Use of bdflush() is deprecated and will be removed in a future kernel.
3292 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3294 SYSCALL_DEFINE2(bdflush
, int, func
, long, data
)
3296 static int msg_count
;
3298 if (!capable(CAP_SYS_ADMIN
))
3301 if (msg_count
< 5) {
3304 "warning: process `%s' used the obsolete bdflush"
3305 " system call\n", current
->comm
);
3306 printk(KERN_INFO
"Fix your initscripts?\n");
3315 * Buffer-head allocation
3317 static struct kmem_cache
*bh_cachep __read_mostly
;
3320 * Once the number of bh's in the machine exceeds this level, we start
3321 * stripping them in writeback.
3323 static unsigned long max_buffer_heads
;
3325 int buffer_heads_over_limit
;
3327 struct bh_accounting
{
3328 int nr
; /* Number of live bh's */
3329 int ratelimit
; /* Limit cacheline bouncing */
3332 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3334 static void recalc_bh_state(void)
3339 if (__this_cpu_inc_return(bh_accounting
.ratelimit
) - 1 < 4096)
3341 __this_cpu_write(bh_accounting
.ratelimit
, 0);
3342 for_each_online_cpu(i
)
3343 tot
+= per_cpu(bh_accounting
, i
).nr
;
3344 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3347 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3349 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
3351 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3353 __this_cpu_inc(bh_accounting
.nr
);
3359 EXPORT_SYMBOL(alloc_buffer_head
);
3361 void free_buffer_head(struct buffer_head
*bh
)
3363 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3364 kmem_cache_free(bh_cachep
, bh
);
3366 __this_cpu_dec(bh_accounting
.nr
);
3370 EXPORT_SYMBOL(free_buffer_head
);
3372 static int buffer_exit_cpu_dead(unsigned int cpu
)
3375 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3377 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3381 this_cpu_add(bh_accounting
.nr
, per_cpu(bh_accounting
, cpu
).nr
);
3382 per_cpu(bh_accounting
, cpu
).nr
= 0;
3387 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3388 * @bh: struct buffer_head
3390 * Return true if the buffer is up-to-date and false,
3391 * with the buffer locked, if not.
3393 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3395 if (!buffer_uptodate(bh
)) {
3397 if (!buffer_uptodate(bh
))
3403 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3406 * bh_submit_read - Submit a locked buffer for reading
3407 * @bh: struct buffer_head
3409 * Returns zero on success and -EIO on error.
3411 int bh_submit_read(struct buffer_head
*bh
)
3413 BUG_ON(!buffer_locked(bh
));
3415 if (buffer_uptodate(bh
)) {
3421 bh
->b_end_io
= end_buffer_read_sync
;
3422 submit_bh(REQ_OP_READ
, 0, bh
);
3424 if (buffer_uptodate(bh
))
3428 EXPORT_SYMBOL(bh_submit_read
);
3430 void __init
buffer_init(void)
3432 unsigned long nrpages
;
3435 bh_cachep
= kmem_cache_create("buffer_head",
3436 sizeof(struct buffer_head
), 0,
3437 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3442 * Limit the bh occupancy to 10% of ZONE_NORMAL
3444 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3445 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3446 ret
= cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD
, "fs/buffer:dead",
3447 NULL
, buffer_exit_cpu_dead
);