2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/fixmap.h>
26 #include <asm/sections.h>
27 #include <asm/setup.h>
28 #include <asm/smp_plat.h>
30 #include <asm/highmem.h>
31 #include <asm/system_info.h>
32 #include <asm/traps.h>
33 #include <asm/procinfo.h>
34 #include <asm/memory.h>
36 #include <asm/mach/arch.h>
37 #include <asm/mach/map.h>
38 #include <asm/mach/pci.h>
39 #include <asm/fixmap.h>
46 * empty_zero_page is a special page that is used for
47 * zero-initialized data and COW.
49 struct page
*empty_zero_page
;
50 EXPORT_SYMBOL(empty_zero_page
);
53 * The pmd table for the upper-most set of pages.
57 pmdval_t user_pmd_table
= _PAGE_USER_TABLE
;
59 #define CPOLICY_UNCACHED 0
60 #define CPOLICY_BUFFERED 1
61 #define CPOLICY_WRITETHROUGH 2
62 #define CPOLICY_WRITEBACK 3
63 #define CPOLICY_WRITEALLOC 4
65 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
66 static unsigned int ecc_mask __initdata
= 0;
68 pgprot_t pgprot_kernel
;
69 pgprot_t pgprot_hyp_device
;
71 pgprot_t pgprot_s2_device
;
73 EXPORT_SYMBOL(pgprot_user
);
74 EXPORT_SYMBOL(pgprot_kernel
);
77 const char policy
[16];
84 #ifdef CONFIG_ARM_LPAE
85 #define s2_policy(policy) policy
87 #define s2_policy(policy) 0
90 unsigned long kimage_voffset __ro_after_init
;
92 static struct cachepolicy cache_policies
[] __initdata
= {
96 .pmd
= PMD_SECT_UNCACHED
,
97 .pte
= L_PTE_MT_UNCACHED
,
98 .pte_s2
= s2_policy(L_PTE_S2_MT_UNCACHED
),
100 .policy
= "buffered",
102 .pmd
= PMD_SECT_BUFFERED
,
103 .pte
= L_PTE_MT_BUFFERABLE
,
104 .pte_s2
= s2_policy(L_PTE_S2_MT_UNCACHED
),
106 .policy
= "writethrough",
109 .pte
= L_PTE_MT_WRITETHROUGH
,
110 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITETHROUGH
),
112 .policy
= "writeback",
115 .pte
= L_PTE_MT_WRITEBACK
,
116 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITEBACK
),
118 .policy
= "writealloc",
120 .pmd
= PMD_SECT_WBWA
,
121 .pte
= L_PTE_MT_WRITEALLOC
,
122 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITEBACK
),
126 #ifdef CONFIG_CPU_CP15
127 static unsigned long initial_pmd_value __initdata
= 0;
130 * Initialise the cache_policy variable with the initial state specified
131 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
132 * the C code sets the page tables up with the same policy as the head
133 * assembly code, which avoids an illegal state where the TLBs can get
134 * confused. See comments in early_cachepolicy() for more information.
136 void __init
init_default_cache_policy(unsigned long pmd
)
140 initial_pmd_value
= pmd
;
142 pmd
&= PMD_SECT_CACHE_MASK
;
144 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++)
145 if (cache_policies
[i
].pmd
== pmd
) {
150 if (i
== ARRAY_SIZE(cache_policies
))
151 pr_err("ERROR: could not find cache policy\n");
155 * These are useful for identifying cache coherency problems by allowing
156 * the cache or the cache and writebuffer to be turned off. (Note: the
157 * write buffer should not be on and the cache off).
159 static int __init
early_cachepolicy(char *p
)
161 int i
, selected
= -1;
163 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
164 int len
= strlen(cache_policies
[i
].policy
);
166 if (memcmp(p
, cache_policies
[i
].policy
, len
) == 0) {
173 pr_err("ERROR: unknown or unsupported cache policy\n");
176 * This restriction is partly to do with the way we boot; it is
177 * unpredictable to have memory mapped using two different sets of
178 * memory attributes (shared, type, and cache attribs). We can not
179 * change these attributes once the initial assembly has setup the
182 if (cpu_architecture() >= CPU_ARCH_ARMv6
&& selected
!= cachepolicy
) {
183 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
184 cache_policies
[cachepolicy
].policy
);
188 if (selected
!= cachepolicy
) {
189 unsigned long cr
= __clear_cr(cache_policies
[selected
].cr_mask
);
190 cachepolicy
= selected
;
196 early_param("cachepolicy", early_cachepolicy
);
198 static int __init
early_nocache(char *__unused
)
200 char *p
= "buffered";
201 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p
);
202 early_cachepolicy(p
);
205 early_param("nocache", early_nocache
);
207 static int __init
early_nowrite(char *__unused
)
209 char *p
= "uncached";
210 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p
);
211 early_cachepolicy(p
);
214 early_param("nowb", early_nowrite
);
216 #ifndef CONFIG_ARM_LPAE
217 static int __init
early_ecc(char *p
)
219 if (memcmp(p
, "on", 2) == 0)
220 ecc_mask
= PMD_PROTECTION
;
221 else if (memcmp(p
, "off", 3) == 0)
225 early_param("ecc", early_ecc
);
228 #else /* ifdef CONFIG_CPU_CP15 */
230 static int __init
early_cachepolicy(char *p
)
232 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
234 early_param("cachepolicy", early_cachepolicy
);
236 static int __init
noalign_setup(char *__unused
)
238 pr_warn("noalign kernel parameter not supported without cp15\n");
240 __setup("noalign", noalign_setup
);
242 #endif /* ifdef CONFIG_CPU_CP15 / else */
244 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
245 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
246 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
248 static struct mem_type mem_types
[] __ro_after_init
= {
249 [MT_DEVICE
] = { /* Strongly ordered / ARMv6 shared device */
250 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_SHARED
|
252 .prot_pte_s2
= s2_policy(PROT_PTE_S2_DEVICE
) |
253 s2_policy(L_PTE_S2_MT_DEV_SHARED
) |
255 .prot_l1
= PMD_TYPE_TABLE
,
256 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_S
,
259 [MT_DEVICE_NONSHARED
] = { /* ARMv6 non-shared device */
260 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_NONSHARED
,
261 .prot_l1
= PMD_TYPE_TABLE
,
262 .prot_sect
= PROT_SECT_DEVICE
,
265 [MT_DEVICE_CACHED
] = { /* ioremap_cached */
266 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_CACHED
,
267 .prot_l1
= PMD_TYPE_TABLE
,
268 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_WB
,
271 [MT_DEVICE_WC
] = { /* ioremap_wc */
272 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_WC
,
273 .prot_l1
= PMD_TYPE_TABLE
,
274 .prot_sect
= PROT_SECT_DEVICE
,
278 .prot_pte
= PROT_PTE_DEVICE
,
279 .prot_l1
= PMD_TYPE_TABLE
,
280 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
284 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
285 .domain
= DOMAIN_KERNEL
,
287 #ifndef CONFIG_ARM_LPAE
289 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
| PMD_SECT_MINICACHE
,
290 .domain
= DOMAIN_KERNEL
,
294 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
296 .prot_l1
= PMD_TYPE_TABLE
,
297 .domain
= DOMAIN_VECTORS
,
299 [MT_HIGH_VECTORS
] = {
300 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
301 L_PTE_USER
| L_PTE_RDONLY
,
302 .prot_l1
= PMD_TYPE_TABLE
,
303 .domain
= DOMAIN_VECTORS
,
306 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
307 .prot_l1
= PMD_TYPE_TABLE
,
308 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
309 .domain
= DOMAIN_KERNEL
,
312 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
314 .prot_l1
= PMD_TYPE_TABLE
,
315 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
316 .domain
= DOMAIN_KERNEL
,
319 .prot_sect
= PMD_TYPE_SECT
,
320 .domain
= DOMAIN_KERNEL
,
322 [MT_MEMORY_RWX_NONCACHED
] = {
323 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
325 .prot_l1
= PMD_TYPE_TABLE
,
326 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
327 .domain
= DOMAIN_KERNEL
,
329 [MT_MEMORY_RW_DTCM
] = {
330 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
332 .prot_l1
= PMD_TYPE_TABLE
,
333 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
334 .domain
= DOMAIN_KERNEL
,
336 [MT_MEMORY_RWX_ITCM
] = {
337 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
338 .prot_l1
= PMD_TYPE_TABLE
,
339 .domain
= DOMAIN_KERNEL
,
341 [MT_MEMORY_RW_SO
] = {
342 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
343 L_PTE_MT_UNCACHED
| L_PTE_XN
,
344 .prot_l1
= PMD_TYPE_TABLE
,
345 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
| PMD_SECT_S
|
346 PMD_SECT_UNCACHED
| PMD_SECT_XN
,
347 .domain
= DOMAIN_KERNEL
,
349 [MT_MEMORY_DMA_READY
] = {
350 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
352 .prot_l1
= PMD_TYPE_TABLE
,
353 .domain
= DOMAIN_KERNEL
,
357 const struct mem_type
*get_mem_type(unsigned int type
)
359 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
361 EXPORT_SYMBOL(get_mem_type
);
363 static pte_t
*(*pte_offset_fixmap
)(pmd_t
*dir
, unsigned long addr
);
365 static pte_t bm_pte
[PTRS_PER_PTE
+ PTE_HWTABLE_PTRS
]
366 __aligned(PTE_HWTABLE_OFF
+ PTE_HWTABLE_SIZE
) __initdata
;
368 static pte_t
* __init
pte_offset_early_fixmap(pmd_t
*dir
, unsigned long addr
)
370 return &bm_pte
[pte_index(addr
)];
373 static pte_t
*pte_offset_late_fixmap(pmd_t
*dir
, unsigned long addr
)
375 return pte_offset_kernel(dir
, addr
);
378 static inline pmd_t
* __init
fixmap_pmd(unsigned long addr
)
380 pgd_t
*pgd
= pgd_offset_k(addr
);
381 pud_t
*pud
= pud_offset(pgd
, addr
);
382 pmd_t
*pmd
= pmd_offset(pud
, addr
);
387 void __init
early_fixmap_init(void)
392 * The early fixmap range spans multiple pmds, for which
393 * we are not prepared:
395 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region
) >> PMD_SHIFT
)
396 != FIXADDR_TOP
>> PMD_SHIFT
);
398 pmd
= fixmap_pmd(FIXADDR_TOP
);
399 pmd_populate_kernel(&init_mm
, pmd
, bm_pte
);
401 pte_offset_fixmap
= pte_offset_early_fixmap
;
405 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
406 * As a result, this can only be called with preemption disabled, as under
409 void __set_fixmap(enum fixed_addresses idx
, phys_addr_t phys
, pgprot_t prot
)
411 unsigned long vaddr
= __fix_to_virt(idx
);
412 pte_t
*pte
= pte_offset_fixmap(pmd_off_k(vaddr
), vaddr
);
414 /* Make sure fixmap region does not exceed available allocation. */
415 BUILD_BUG_ON(FIXADDR_START
+ (__end_of_fixed_addresses
* PAGE_SIZE
) >
417 BUG_ON(idx
>= __end_of_fixed_addresses
);
419 /* we only support device mappings until pgprot_kernel has been set */
420 if (WARN_ON(pgprot_val(prot
) != pgprot_val(FIXMAP_PAGE_IO
) &&
421 pgprot_val(pgprot_kernel
) == 0))
424 if (pgprot_val(prot
))
425 set_pte_at(NULL
, vaddr
, pte
,
426 pfn_pte(phys
>> PAGE_SHIFT
, prot
));
428 pte_clear(NULL
, vaddr
, pte
);
429 local_flush_tlb_kernel_range(vaddr
, vaddr
+ PAGE_SIZE
);
433 * Adjust the PMD section entries according to the CPU in use.
435 static void __init
build_mem_type_table(void)
437 struct cachepolicy
*cp
;
438 unsigned int cr
= get_cr();
439 pteval_t user_pgprot
, kern_pgprot
, vecs_pgprot
;
440 pteval_t hyp_device_pgprot
, s2_pgprot
, s2_device_pgprot
;
441 int cpu_arch
= cpu_architecture();
444 if (cpu_arch
< CPU_ARCH_ARMv6
) {
445 #if defined(CONFIG_CPU_DCACHE_DISABLE)
446 if (cachepolicy
> CPOLICY_BUFFERED
)
447 cachepolicy
= CPOLICY_BUFFERED
;
448 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
449 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
450 cachepolicy
= CPOLICY_WRITETHROUGH
;
453 if (cpu_arch
< CPU_ARCH_ARMv5
) {
454 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
455 cachepolicy
= CPOLICY_WRITEBACK
;
460 if (cachepolicy
!= CPOLICY_WRITEALLOC
) {
461 pr_warn("Forcing write-allocate cache policy for SMP\n");
462 cachepolicy
= CPOLICY_WRITEALLOC
;
464 if (!(initial_pmd_value
& PMD_SECT_S
)) {
465 pr_warn("Forcing shared mappings for SMP\n");
466 initial_pmd_value
|= PMD_SECT_S
;
471 * Strip out features not present on earlier architectures.
472 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
473 * without extended page tables don't have the 'Shared' bit.
475 if (cpu_arch
< CPU_ARCH_ARMv5
)
476 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
477 mem_types
[i
].prot_sect
&= ~PMD_SECT_TEX(7);
478 if ((cpu_arch
< CPU_ARCH_ARMv6
|| !(cr
& CR_XP
)) && !cpu_is_xsc3())
479 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
480 mem_types
[i
].prot_sect
&= ~PMD_SECT_S
;
483 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
484 * "update-able on write" bit on ARM610). However, Xscale and
485 * Xscale3 require this bit to be cleared.
487 if (cpu_is_xscale_family()) {
488 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
489 mem_types
[i
].prot_sect
&= ~PMD_BIT4
;
490 mem_types
[i
].prot_l1
&= ~PMD_BIT4
;
492 } else if (cpu_arch
< CPU_ARCH_ARMv6
) {
493 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
494 if (mem_types
[i
].prot_l1
)
495 mem_types
[i
].prot_l1
|= PMD_BIT4
;
496 if (mem_types
[i
].prot_sect
)
497 mem_types
[i
].prot_sect
|= PMD_BIT4
;
502 * Mark the device areas according to the CPU/architecture.
504 if (cpu_is_xsc3() || (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
))) {
505 if (!cpu_is_xsc3()) {
507 * Mark device regions on ARMv6+ as execute-never
508 * to prevent speculative instruction fetches.
510 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_XN
;
511 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_XN
;
512 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_XN
;
513 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_XN
;
515 /* Also setup NX memory mapping */
516 mem_types
[MT_MEMORY_RW
].prot_sect
|= PMD_SECT_XN
;
518 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
520 * For ARMv7 with TEX remapping,
521 * - shared device is SXCB=1100
522 * - nonshared device is SXCB=0100
523 * - write combine device mem is SXCB=0001
524 * (Uncached Normal memory)
526 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1);
527 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(1);
528 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
529 } else if (cpu_is_xsc3()) {
532 * - shared device is TEXCB=00101
533 * - nonshared device is TEXCB=01000
534 * - write combine device mem is TEXCB=00100
535 * (Inner/Outer Uncacheable in xsc3 parlance)
537 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED
;
538 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
539 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
542 * For ARMv6 and ARMv7 without TEX remapping,
543 * - shared device is TEXCB=00001
544 * - nonshared device is TEXCB=01000
545 * - write combine device mem is TEXCB=00100
546 * (Uncached Normal in ARMv6 parlance).
548 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
549 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
550 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
554 * On others, write combining is "Uncached/Buffered"
556 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
560 * Now deal with the memory-type mappings
562 cp
= &cache_policies
[cachepolicy
];
563 vecs_pgprot
= kern_pgprot
= user_pgprot
= cp
->pte
;
564 s2_pgprot
= cp
->pte_s2
;
565 hyp_device_pgprot
= mem_types
[MT_DEVICE
].prot_pte
;
566 s2_device_pgprot
= mem_types
[MT_DEVICE
].prot_pte_s2
;
568 #ifndef CONFIG_ARM_LPAE
570 * We don't use domains on ARMv6 (since this causes problems with
571 * v6/v7 kernels), so we must use a separate memory type for user
572 * r/o, kernel r/w to map the vectors page.
574 if (cpu_arch
== CPU_ARCH_ARMv6
)
575 vecs_pgprot
|= L_PTE_MT_VECTORS
;
578 * Check is it with support for the PXN bit
579 * in the Short-descriptor translation table format descriptors.
581 if (cpu_arch
== CPU_ARCH_ARMv7
&&
582 (read_cpuid_ext(CPUID_EXT_MMFR0
) & 0xF) >= 4) {
583 user_pmd_table
|= PMD_PXNTABLE
;
588 * ARMv6 and above have extended page tables.
590 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
591 #ifndef CONFIG_ARM_LPAE
593 * Mark cache clean areas and XIP ROM read only
594 * from SVC mode and no access from userspace.
596 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
597 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
598 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
602 * If the initial page tables were created with the S bit
603 * set, then we need to do the same here for the same
604 * reasons given in early_cachepolicy().
606 if (initial_pmd_value
& PMD_SECT_S
) {
607 user_pgprot
|= L_PTE_SHARED
;
608 kern_pgprot
|= L_PTE_SHARED
;
609 vecs_pgprot
|= L_PTE_SHARED
;
610 s2_pgprot
|= L_PTE_SHARED
;
611 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_S
;
612 mem_types
[MT_DEVICE_WC
].prot_pte
|= L_PTE_SHARED
;
613 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_S
;
614 mem_types
[MT_DEVICE_CACHED
].prot_pte
|= L_PTE_SHARED
;
615 mem_types
[MT_MEMORY_RWX
].prot_sect
|= PMD_SECT_S
;
616 mem_types
[MT_MEMORY_RWX
].prot_pte
|= L_PTE_SHARED
;
617 mem_types
[MT_MEMORY_RW
].prot_sect
|= PMD_SECT_S
;
618 mem_types
[MT_MEMORY_RW
].prot_pte
|= L_PTE_SHARED
;
619 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= L_PTE_SHARED
;
620 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= PMD_SECT_S
;
621 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_pte
|= L_PTE_SHARED
;
626 * Non-cacheable Normal - intended for memory areas that must
627 * not cause dirty cache line writebacks when used
629 if (cpu_arch
>= CPU_ARCH_ARMv6
) {
630 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
631 /* Non-cacheable Normal is XCB = 001 */
632 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|=
635 /* For both ARMv6 and non-TEX-remapping ARMv7 */
636 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|=
640 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= PMD_SECT_BUFFERABLE
;
643 #ifdef CONFIG_ARM_LPAE
645 * Do not generate access flag faults for the kernel mappings.
647 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
648 mem_types
[i
].prot_pte
|= PTE_EXT_AF
;
649 if (mem_types
[i
].prot_sect
)
650 mem_types
[i
].prot_sect
|= PMD_SECT_AF
;
652 kern_pgprot
|= PTE_EXT_AF
;
653 vecs_pgprot
|= PTE_EXT_AF
;
656 * Set PXN for user mappings
658 user_pgprot
|= PTE_EXT_PXN
;
661 for (i
= 0; i
< 16; i
++) {
662 pteval_t v
= pgprot_val(protection_map
[i
]);
663 protection_map
[i
] = __pgprot(v
| user_pgprot
);
666 mem_types
[MT_LOW_VECTORS
].prot_pte
|= vecs_pgprot
;
667 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= vecs_pgprot
;
669 pgprot_user
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| user_pgprot
);
670 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
671 L_PTE_DIRTY
| kern_pgprot
);
672 pgprot_s2
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| s2_pgprot
);
673 pgprot_s2_device
= __pgprot(s2_device_pgprot
);
674 pgprot_hyp_device
= __pgprot(hyp_device_pgprot
);
676 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
677 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
678 mem_types
[MT_MEMORY_RWX
].prot_sect
|= ecc_mask
| cp
->pmd
;
679 mem_types
[MT_MEMORY_RWX
].prot_pte
|= kern_pgprot
;
680 mem_types
[MT_MEMORY_RW
].prot_sect
|= ecc_mask
| cp
->pmd
;
681 mem_types
[MT_MEMORY_RW
].prot_pte
|= kern_pgprot
;
682 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= kern_pgprot
;
683 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= ecc_mask
;
684 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
688 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
692 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
695 pr_info("Memory policy: %sData cache %s\n",
696 ecc_mask
? "ECC enabled, " : "", cp
->policy
);
698 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
699 struct mem_type
*t
= &mem_types
[i
];
701 t
->prot_l1
|= PMD_DOMAIN(t
->domain
);
703 t
->prot_sect
|= PMD_DOMAIN(t
->domain
);
707 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
708 pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
709 unsigned long size
, pgprot_t vma_prot
)
712 return pgprot_noncached(vma_prot
);
713 else if (file
->f_flags
& O_SYNC
)
714 return pgprot_writecombine(vma_prot
);
717 EXPORT_SYMBOL(phys_mem_access_prot
);
720 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
722 static void __init
*early_alloc_aligned(unsigned long sz
, unsigned long align
)
724 void *ptr
= __va(memblock_phys_alloc(sz
, align
));
729 static void __init
*early_alloc(unsigned long sz
)
731 return early_alloc_aligned(sz
, sz
);
734 static void *__init
late_alloc(unsigned long sz
)
736 void *ptr
= (void *)__get_free_pages(PGALLOC_GFP
, get_order(sz
));
738 if (!ptr
|| !pgtable_page_ctor(virt_to_page(ptr
)))
743 static pte_t
* __init
arm_pte_alloc(pmd_t
*pmd
, unsigned long addr
,
745 void *(*alloc
)(unsigned long sz
))
747 if (pmd_none(*pmd
)) {
748 pte_t
*pte
= alloc(PTE_HWTABLE_OFF
+ PTE_HWTABLE_SIZE
);
749 __pmd_populate(pmd
, __pa(pte
), prot
);
751 BUG_ON(pmd_bad(*pmd
));
752 return pte_offset_kernel(pmd
, addr
);
755 static pte_t
* __init
early_pte_alloc(pmd_t
*pmd
, unsigned long addr
,
758 return arm_pte_alloc(pmd
, addr
, prot
, early_alloc
);
761 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
762 unsigned long end
, unsigned long pfn
,
763 const struct mem_type
*type
,
764 void *(*alloc
)(unsigned long sz
),
767 pte_t
*pte
= arm_pte_alloc(pmd
, addr
, type
->prot_l1
, alloc
);
769 set_pte_ext(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)),
770 ng
? PTE_EXT_NG
: 0);
772 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
775 static void __init
__map_init_section(pmd_t
*pmd
, unsigned long addr
,
776 unsigned long end
, phys_addr_t phys
,
777 const struct mem_type
*type
, bool ng
)
781 #ifndef CONFIG_ARM_LPAE
783 * In classic MMU format, puds and pmds are folded in to
784 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
785 * group of L1 entries making up one logical pointer to
786 * an L2 table (2MB), where as PMDs refer to the individual
787 * L1 entries (1MB). Hence increment to get the correct
788 * offset for odd 1MB sections.
789 * (See arch/arm/include/asm/pgtable-2level.h)
791 if (addr
& SECTION_SIZE
)
795 *pmd
= __pmd(phys
| type
->prot_sect
| (ng
? PMD_SECT_nG
: 0));
796 phys
+= SECTION_SIZE
;
797 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
802 static void __init
alloc_init_pmd(pud_t
*pud
, unsigned long addr
,
803 unsigned long end
, phys_addr_t phys
,
804 const struct mem_type
*type
,
805 void *(*alloc
)(unsigned long sz
), bool ng
)
807 pmd_t
*pmd
= pmd_offset(pud
, addr
);
812 * With LPAE, we must loop over to map
813 * all the pmds for the given range.
815 next
= pmd_addr_end(addr
, end
);
818 * Try a section mapping - addr, next and phys must all be
819 * aligned to a section boundary.
821 if (type
->prot_sect
&&
822 ((addr
| next
| phys
) & ~SECTION_MASK
) == 0) {
823 __map_init_section(pmd
, addr
, next
, phys
, type
, ng
);
825 alloc_init_pte(pmd
, addr
, next
,
826 __phys_to_pfn(phys
), type
, alloc
, ng
);
831 } while (pmd
++, addr
= next
, addr
!= end
);
834 static void __init
alloc_init_pud(pgd_t
*pgd
, unsigned long addr
,
835 unsigned long end
, phys_addr_t phys
,
836 const struct mem_type
*type
,
837 void *(*alloc
)(unsigned long sz
), bool ng
)
839 pud_t
*pud
= pud_offset(pgd
, addr
);
843 next
= pud_addr_end(addr
, end
);
844 alloc_init_pmd(pud
, addr
, next
, phys
, type
, alloc
, ng
);
846 } while (pud
++, addr
= next
, addr
!= end
);
849 #ifndef CONFIG_ARM_LPAE
850 static void __init
create_36bit_mapping(struct mm_struct
*mm
,
852 const struct mem_type
*type
,
855 unsigned long addr
, length
, end
;
860 phys
= __pfn_to_phys(md
->pfn
);
861 length
= PAGE_ALIGN(md
->length
);
863 if (!(cpu_architecture() >= CPU_ARCH_ARMv6
|| cpu_is_xsc3())) {
864 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
865 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
869 /* N.B. ARMv6 supersections are only defined to work with domain 0.
870 * Since domain assignments can in fact be arbitrary, the
871 * 'domain == 0' check below is required to insure that ARMv6
872 * supersections are only allocated for domain 0 regardless
873 * of the actual domain assignments in use.
876 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
877 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
881 if ((addr
| length
| __pfn_to_phys(md
->pfn
)) & ~SUPERSECTION_MASK
) {
882 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
883 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
888 * Shift bits [35:32] of address into bits [23:20] of PMD
891 phys
|= (((md
->pfn
>> (32 - PAGE_SHIFT
)) & 0xF) << 20);
893 pgd
= pgd_offset(mm
, addr
);
896 pud_t
*pud
= pud_offset(pgd
, addr
);
897 pmd_t
*pmd
= pmd_offset(pud
, addr
);
900 for (i
= 0; i
< 16; i
++)
901 *pmd
++ = __pmd(phys
| type
->prot_sect
| PMD_SECT_SUPER
|
902 (ng
? PMD_SECT_nG
: 0));
904 addr
+= SUPERSECTION_SIZE
;
905 phys
+= SUPERSECTION_SIZE
;
906 pgd
+= SUPERSECTION_SIZE
>> PGDIR_SHIFT
;
907 } while (addr
!= end
);
909 #endif /* !CONFIG_ARM_LPAE */
911 static void __init
__create_mapping(struct mm_struct
*mm
, struct map_desc
*md
,
912 void *(*alloc
)(unsigned long sz
),
915 unsigned long addr
, length
, end
;
917 const struct mem_type
*type
;
920 type
= &mem_types
[md
->type
];
922 #ifndef CONFIG_ARM_LPAE
924 * Catch 36-bit addresses
926 if (md
->pfn
>= 0x100000) {
927 create_36bit_mapping(mm
, md
, type
, ng
);
932 addr
= md
->virtual & PAGE_MASK
;
933 phys
= __pfn_to_phys(md
->pfn
);
934 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
936 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
937 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
938 (long long)__pfn_to_phys(md
->pfn
), addr
);
942 pgd
= pgd_offset(mm
, addr
);
945 unsigned long next
= pgd_addr_end(addr
, end
);
947 alloc_init_pud(pgd
, addr
, next
, phys
, type
, alloc
, ng
);
951 } while (pgd
++, addr
!= end
);
955 * Create the page directory entries and any necessary
956 * page tables for the mapping specified by `md'. We
957 * are able to cope here with varying sizes and address
958 * offsets, and we take full advantage of sections and
961 static void __init
create_mapping(struct map_desc
*md
)
963 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
964 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
965 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
969 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
970 md
->virtual >= PAGE_OFFSET
&& md
->virtual < FIXADDR_START
&&
971 (md
->virtual < VMALLOC_START
|| md
->virtual >= VMALLOC_END
)) {
972 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
973 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
976 __create_mapping(&init_mm
, md
, early_alloc
, false);
979 void __init
create_mapping_late(struct mm_struct
*mm
, struct map_desc
*md
,
982 #ifdef CONFIG_ARM_LPAE
983 pud_t
*pud
= pud_alloc(mm
, pgd_offset(mm
, md
->virtual), md
->virtual);
986 pmd_alloc(mm
, pud
, 0);
988 __create_mapping(mm
, md
, late_alloc
, ng
);
992 * Create the architecture specific mappings
994 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
997 struct vm_struct
*vm
;
998 struct static_vm
*svm
;
1003 svm
= early_alloc_aligned(sizeof(*svm
) * nr
, __alignof__(*svm
));
1005 for (md
= io_desc
; nr
; md
++, nr
--) {
1009 vm
->addr
= (void *)(md
->virtual & PAGE_MASK
);
1010 vm
->size
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
1011 vm
->phys_addr
= __pfn_to_phys(md
->pfn
);
1012 vm
->flags
= VM_IOREMAP
| VM_ARM_STATIC_MAPPING
;
1013 vm
->flags
|= VM_ARM_MTYPE(md
->type
);
1014 vm
->caller
= iotable_init
;
1015 add_static_vm_early(svm
++);
1019 void __init
vm_reserve_area_early(unsigned long addr
, unsigned long size
,
1022 struct vm_struct
*vm
;
1023 struct static_vm
*svm
;
1025 svm
= early_alloc_aligned(sizeof(*svm
), __alignof__(*svm
));
1028 vm
->addr
= (void *)addr
;
1030 vm
->flags
= VM_IOREMAP
| VM_ARM_EMPTY_MAPPING
;
1031 vm
->caller
= caller
;
1032 add_static_vm_early(svm
);
1035 #ifndef CONFIG_ARM_LPAE
1038 * The Linux PMD is made of two consecutive section entries covering 2MB
1039 * (see definition in include/asm/pgtable-2level.h). However a call to
1040 * create_mapping() may optimize static mappings by using individual
1041 * 1MB section mappings. This leaves the actual PMD potentially half
1042 * initialized if the top or bottom section entry isn't used, leaving it
1043 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1044 * the virtual space left free by that unused section entry.
1046 * Let's avoid the issue by inserting dummy vm entries covering the unused
1047 * PMD halves once the static mappings are in place.
1050 static void __init
pmd_empty_section_gap(unsigned long addr
)
1052 vm_reserve_area_early(addr
, SECTION_SIZE
, pmd_empty_section_gap
);
1055 static void __init
fill_pmd_gaps(void)
1057 struct static_vm
*svm
;
1058 struct vm_struct
*vm
;
1059 unsigned long addr
, next
= 0;
1062 list_for_each_entry(svm
, &static_vmlist
, list
) {
1064 addr
= (unsigned long)vm
->addr
;
1069 * Check if this vm starts on an odd section boundary.
1070 * If so and the first section entry for this PMD is free
1071 * then we block the corresponding virtual address.
1073 if ((addr
& ~PMD_MASK
) == SECTION_SIZE
) {
1074 pmd
= pmd_off_k(addr
);
1076 pmd_empty_section_gap(addr
& PMD_MASK
);
1080 * Then check if this vm ends on an odd section boundary.
1081 * If so and the second section entry for this PMD is empty
1082 * then we block the corresponding virtual address.
1085 if ((addr
& ~PMD_MASK
) == SECTION_SIZE
) {
1086 pmd
= pmd_off_k(addr
) + 1;
1088 pmd_empty_section_gap(addr
);
1091 /* no need to look at any vm entry until we hit the next PMD */
1092 next
= (addr
+ PMD_SIZE
- 1) & PMD_MASK
;
1097 #define fill_pmd_gaps() do { } while (0)
1100 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1101 static void __init
pci_reserve_io(void)
1103 struct static_vm
*svm
;
1105 svm
= find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE
);
1109 vm_reserve_area_early(PCI_IO_VIRT_BASE
, SZ_2M
, pci_reserve_io
);
1112 #define pci_reserve_io() do { } while (0)
1115 #ifdef CONFIG_DEBUG_LL
1116 void __init
debug_ll_io_init(void)
1118 struct map_desc map
;
1120 debug_ll_addr(&map
.pfn
, &map
.virtual);
1121 if (!map
.pfn
|| !map
.virtual)
1123 map
.pfn
= __phys_to_pfn(map
.pfn
);
1124 map
.virtual &= PAGE_MASK
;
1125 map
.length
= PAGE_SIZE
;
1126 map
.type
= MT_DEVICE
;
1127 iotable_init(&map
, 1);
1131 static void * __initdata vmalloc_min
=
1132 (void *)(VMALLOC_END
- (240 << 20) - VMALLOC_OFFSET
);
1135 * vmalloc=size forces the vmalloc area to be exactly 'size'
1136 * bytes. This can be used to increase (or decrease) the vmalloc
1137 * area - the default is 240m.
1139 static int __init
early_vmalloc(char *arg
)
1141 unsigned long vmalloc_reserve
= memparse(arg
, NULL
);
1143 if (vmalloc_reserve
< SZ_16M
) {
1144 vmalloc_reserve
= SZ_16M
;
1145 pr_warn("vmalloc area too small, limiting to %luMB\n",
1146 vmalloc_reserve
>> 20);
1149 if (vmalloc_reserve
> VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
)) {
1150 vmalloc_reserve
= VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
);
1151 pr_warn("vmalloc area is too big, limiting to %luMB\n",
1152 vmalloc_reserve
>> 20);
1155 vmalloc_min
= (void *)(VMALLOC_END
- vmalloc_reserve
);
1158 early_param("vmalloc", early_vmalloc
);
1160 phys_addr_t arm_lowmem_limit __initdata
= 0;
1162 void __init
adjust_lowmem_bounds(void)
1164 phys_addr_t memblock_limit
= 0;
1166 struct memblock_region
*reg
;
1167 phys_addr_t lowmem_limit
= 0;
1170 * Let's use our own (unoptimized) equivalent of __pa() that is
1171 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1172 * The result is used as the upper bound on physical memory address
1173 * and may itself be outside the valid range for which phys_addr_t
1174 * and therefore __pa() is defined.
1176 vmalloc_limit
= (u64
)(uintptr_t)vmalloc_min
- PAGE_OFFSET
+ PHYS_OFFSET
;
1178 for_each_memblock(memory
, reg
) {
1179 phys_addr_t block_start
= reg
->base
;
1180 phys_addr_t block_end
= reg
->base
+ reg
->size
;
1182 if (reg
->base
< vmalloc_limit
) {
1183 if (block_end
> lowmem_limit
)
1185 * Compare as u64 to ensure vmalloc_limit does
1186 * not get truncated. block_end should always
1187 * fit in phys_addr_t so there should be no
1188 * issue with assignment.
1190 lowmem_limit
= min_t(u64
,
1195 * Find the first non-pmd-aligned page, and point
1196 * memblock_limit at it. This relies on rounding the
1197 * limit down to be pmd-aligned, which happens at the
1198 * end of this function.
1200 * With this algorithm, the start or end of almost any
1201 * bank can be non-pmd-aligned. The only exception is
1202 * that the start of the bank 0 must be section-
1203 * aligned, since otherwise memory would need to be
1204 * allocated when mapping the start of bank 0, which
1205 * occurs before any free memory is mapped.
1207 if (!memblock_limit
) {
1208 if (!IS_ALIGNED(block_start
, PMD_SIZE
))
1209 memblock_limit
= block_start
;
1210 else if (!IS_ALIGNED(block_end
, PMD_SIZE
))
1211 memblock_limit
= lowmem_limit
;
1217 arm_lowmem_limit
= lowmem_limit
;
1219 high_memory
= __va(arm_lowmem_limit
- 1) + 1;
1221 if (!memblock_limit
)
1222 memblock_limit
= arm_lowmem_limit
;
1225 * Round the memblock limit down to a pmd size. This
1226 * helps to ensure that we will allocate memory from the
1227 * last full pmd, which should be mapped.
1229 memblock_limit
= round_down(memblock_limit
, PMD_SIZE
);
1231 if (!IS_ENABLED(CONFIG_HIGHMEM
) || cache_is_vipt_aliasing()) {
1232 if (memblock_end_of_DRAM() > arm_lowmem_limit
) {
1233 phys_addr_t end
= memblock_end_of_DRAM();
1235 pr_notice("Ignoring RAM at %pa-%pa\n",
1236 &memblock_limit
, &end
);
1237 pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1239 memblock_remove(memblock_limit
, end
- memblock_limit
);
1243 memblock_set_current_limit(memblock_limit
);
1246 static inline void prepare_page_table(void)
1252 * Clear out all the mappings below the kernel image.
1254 for (addr
= 0; addr
< MODULES_VADDR
; addr
+= PMD_SIZE
)
1255 pmd_clear(pmd_off_k(addr
));
1257 #ifdef CONFIG_XIP_KERNEL
1258 /* The XIP kernel is mapped in the module area -- skip over it */
1259 addr
= ((unsigned long)_exiprom
+ PMD_SIZE
- 1) & PMD_MASK
;
1261 for ( ; addr
< PAGE_OFFSET
; addr
+= PMD_SIZE
)
1262 pmd_clear(pmd_off_k(addr
));
1265 * Find the end of the first block of lowmem.
1267 end
= memblock
.memory
.regions
[0].base
+ memblock
.memory
.regions
[0].size
;
1268 if (end
>= arm_lowmem_limit
)
1269 end
= arm_lowmem_limit
;
1272 * Clear out all the kernel space mappings, except for the first
1273 * memory bank, up to the vmalloc region.
1275 for (addr
= __phys_to_virt(end
);
1276 addr
< VMALLOC_START
; addr
+= PMD_SIZE
)
1277 pmd_clear(pmd_off_k(addr
));
1280 #ifdef CONFIG_ARM_LPAE
1281 /* the first page is reserved for pgd */
1282 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1283 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1285 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1289 * Reserve the special regions of memory
1291 void __init
arm_mm_memblock_reserve(void)
1294 * Reserve the page tables. These are already in use,
1295 * and can only be in node 0.
1297 memblock_reserve(__pa(swapper_pg_dir
), SWAPPER_PG_DIR_SIZE
);
1299 #ifdef CONFIG_SA1111
1301 * Because of the SA1111 DMA bug, we want to preserve our
1302 * precious DMA-able memory...
1304 memblock_reserve(PHYS_OFFSET
, __pa(swapper_pg_dir
) - PHYS_OFFSET
);
1309 * Set up the device mappings. Since we clear out the page tables for all
1310 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1311 * device mappings. This means earlycon can be used to debug this function
1312 * Any other function or debugging method which may touch any device _will_
1315 static void __init
devicemaps_init(const struct machine_desc
*mdesc
)
1317 struct map_desc map
;
1322 * Allocate the vector page early.
1324 vectors
= early_alloc(PAGE_SIZE
* 2);
1326 early_trap_init(vectors
);
1329 * Clear page table except top pmd used by early fixmaps
1331 for (addr
= VMALLOC_START
; addr
< (FIXADDR_TOP
& PMD_MASK
); addr
+= PMD_SIZE
)
1332 pmd_clear(pmd_off_k(addr
));
1335 * Map the kernel if it is XIP.
1336 * It is always first in the modulearea.
1338 #ifdef CONFIG_XIP_KERNEL
1339 map
.pfn
= __phys_to_pfn(CONFIG_XIP_PHYS_ADDR
& SECTION_MASK
);
1340 map
.virtual = MODULES_VADDR
;
1341 map
.length
= ((unsigned long)_exiprom
- map
.virtual + ~SECTION_MASK
) & SECTION_MASK
;
1343 create_mapping(&map
);
1347 * Map the cache flushing regions.
1350 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
);
1351 map
.virtual = FLUSH_BASE
;
1353 map
.type
= MT_CACHECLEAN
;
1354 create_mapping(&map
);
1356 #ifdef FLUSH_BASE_MINICACHE
1357 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
+ SZ_1M
);
1358 map
.virtual = FLUSH_BASE_MINICACHE
;
1360 map
.type
= MT_MINICLEAN
;
1361 create_mapping(&map
);
1365 * Create a mapping for the machine vectors at the high-vectors
1366 * location (0xffff0000). If we aren't using high-vectors, also
1367 * create a mapping at the low-vectors virtual address.
1369 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
1370 map
.virtual = 0xffff0000;
1371 map
.length
= PAGE_SIZE
;
1372 #ifdef CONFIG_KUSER_HELPERS
1373 map
.type
= MT_HIGH_VECTORS
;
1375 map
.type
= MT_LOW_VECTORS
;
1377 create_mapping(&map
);
1379 if (!vectors_high()) {
1381 map
.length
= PAGE_SIZE
* 2;
1382 map
.type
= MT_LOW_VECTORS
;
1383 create_mapping(&map
);
1386 /* Now create a kernel read-only mapping */
1388 map
.virtual = 0xffff0000 + PAGE_SIZE
;
1389 map
.length
= PAGE_SIZE
;
1390 map
.type
= MT_LOW_VECTORS
;
1391 create_mapping(&map
);
1394 * Ask the machine support to map in the statically mapped devices.
1402 /* Reserve fixed i/o space in VMALLOC region */
1406 * Finally flush the caches and tlb to ensure that we're in a
1407 * consistent state wrt the writebuffer. This also ensures that
1408 * any write-allocated cache lines in the vector page are written
1409 * back. After this point, we can start to touch devices again.
1411 local_flush_tlb_all();
1414 /* Enable asynchronous aborts */
1418 static void __init
kmap_init(void)
1420 #ifdef CONFIG_HIGHMEM
1421 pkmap_page_table
= early_pte_alloc(pmd_off_k(PKMAP_BASE
),
1422 PKMAP_BASE
, _PAGE_KERNEL_TABLE
);
1425 early_pte_alloc(pmd_off_k(FIXADDR_START
), FIXADDR_START
,
1426 _PAGE_KERNEL_TABLE
);
1429 static void __init
map_lowmem(void)
1431 struct memblock_region
*reg
;
1432 phys_addr_t kernel_x_start
= round_down(__pa(KERNEL_START
), SECTION_SIZE
);
1433 phys_addr_t kernel_x_end
= round_up(__pa(__init_end
), SECTION_SIZE
);
1435 /* Map all the lowmem memory banks. */
1436 for_each_memblock(memory
, reg
) {
1437 phys_addr_t start
= reg
->base
;
1438 phys_addr_t end
= start
+ reg
->size
;
1439 struct map_desc map
;
1441 if (memblock_is_nomap(reg
))
1444 if (end
> arm_lowmem_limit
)
1445 end
= arm_lowmem_limit
;
1449 if (end
< kernel_x_start
) {
1450 map
.pfn
= __phys_to_pfn(start
);
1451 map
.virtual = __phys_to_virt(start
);
1452 map
.length
= end
- start
;
1453 map
.type
= MT_MEMORY_RWX
;
1455 create_mapping(&map
);
1456 } else if (start
>= kernel_x_end
) {
1457 map
.pfn
= __phys_to_pfn(start
);
1458 map
.virtual = __phys_to_virt(start
);
1459 map
.length
= end
- start
;
1460 map
.type
= MT_MEMORY_RW
;
1462 create_mapping(&map
);
1464 /* This better cover the entire kernel */
1465 if (start
< kernel_x_start
) {
1466 map
.pfn
= __phys_to_pfn(start
);
1467 map
.virtual = __phys_to_virt(start
);
1468 map
.length
= kernel_x_start
- start
;
1469 map
.type
= MT_MEMORY_RW
;
1471 create_mapping(&map
);
1474 map
.pfn
= __phys_to_pfn(kernel_x_start
);
1475 map
.virtual = __phys_to_virt(kernel_x_start
);
1476 map
.length
= kernel_x_end
- kernel_x_start
;
1477 map
.type
= MT_MEMORY_RWX
;
1479 create_mapping(&map
);
1481 if (kernel_x_end
< end
) {
1482 map
.pfn
= __phys_to_pfn(kernel_x_end
);
1483 map
.virtual = __phys_to_virt(kernel_x_end
);
1484 map
.length
= end
- kernel_x_end
;
1485 map
.type
= MT_MEMORY_RW
;
1487 create_mapping(&map
);
1493 #ifdef CONFIG_ARM_PV_FIXUP
1494 extern unsigned long __atags_pointer
;
1495 typedef void pgtables_remap(long long offset
, unsigned long pgd
, void *bdata
);
1496 pgtables_remap lpae_pgtables_remap_asm
;
1499 * early_paging_init() recreates boot time page table setup, allowing machines
1500 * to switch over to a high (>4G) address space on LPAE systems
1502 static void __init
early_paging_init(const struct machine_desc
*mdesc
)
1504 pgtables_remap
*lpae_pgtables_remap
;
1505 unsigned long pa_pgd
;
1506 unsigned int cr
, ttbcr
;
1510 if (!mdesc
->pv_fixup
)
1513 offset
= mdesc
->pv_fixup();
1518 * Get the address of the remap function in the 1:1 identity
1519 * mapping setup by the early page table assembly code. We
1520 * must get this prior to the pv update. The following barrier
1521 * ensures that this is complete before we fixup any P:V offsets.
1523 lpae_pgtables_remap
= (pgtables_remap
*)(unsigned long)__pa(lpae_pgtables_remap_asm
);
1524 pa_pgd
= __pa(swapper_pg_dir
);
1525 boot_data
= __va(__atags_pointer
);
1528 pr_info("Switching physical address space to 0x%08llx\n",
1529 (u64
)PHYS_OFFSET
+ offset
);
1531 /* Re-set the phys pfn offset, and the pv offset */
1532 __pv_offset
+= offset
;
1533 __pv_phys_pfn_offset
+= PFN_DOWN(offset
);
1535 /* Run the patch stub to update the constants */
1536 fixup_pv_table(&__pv_table_begin
,
1537 (&__pv_table_end
- &__pv_table_begin
) << 2);
1540 * We changing not only the virtual to physical mapping, but also
1541 * the physical addresses used to access memory. We need to flush
1542 * all levels of cache in the system with caching disabled to
1543 * ensure that all data is written back, and nothing is prefetched
1544 * into the caches. We also need to prevent the TLB walkers
1545 * allocating into the caches too. Note that this is ARMv7 LPAE
1549 set_cr(cr
& ~(CR_I
| CR_C
));
1550 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr
));
1551 asm volatile("mcr p15, 0, %0, c2, c0, 2"
1552 : : "r" (ttbcr
& ~(3 << 8 | 3 << 10)));
1556 * Fixup the page tables - this must be in the idmap region as
1557 * we need to disable the MMU to do this safely, and hence it
1558 * needs to be assembly. It's fairly simple, as we're using the
1559 * temporary tables setup by the initial assembly code.
1561 lpae_pgtables_remap(offset
, pa_pgd
, boot_data
);
1563 /* Re-enable the caches and cacheable TLB walks */
1564 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr
));
1570 static void __init
early_paging_init(const struct machine_desc
*mdesc
)
1574 if (!mdesc
->pv_fixup
)
1577 offset
= mdesc
->pv_fixup();
1581 pr_crit("Physical address space modification is only to support Keystone2.\n");
1582 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1583 pr_crit("feature. Your kernel may crash now, have a good day.\n");
1584 add_taint(TAINT_CPU_OUT_OF_SPEC
, LOCKDEP_STILL_OK
);
1589 static void __init
early_fixmap_shutdown(void)
1592 unsigned long va
= fix_to_virt(__end_of_permanent_fixed_addresses
- 1);
1594 pte_offset_fixmap
= pte_offset_late_fixmap
;
1595 pmd_clear(fixmap_pmd(va
));
1596 local_flush_tlb_kernel_page(va
);
1598 for (i
= 0; i
< __end_of_permanent_fixed_addresses
; i
++) {
1600 struct map_desc map
;
1602 map
.virtual = fix_to_virt(i
);
1603 pte
= pte_offset_early_fixmap(pmd_off_k(map
.virtual), map
.virtual);
1605 /* Only i/o device mappings are supported ATM */
1606 if (pte_none(*pte
) ||
1607 (pte_val(*pte
) & L_PTE_MT_MASK
) != L_PTE_MT_DEV_SHARED
)
1610 map
.pfn
= pte_pfn(*pte
);
1611 map
.type
= MT_DEVICE
;
1612 map
.length
= PAGE_SIZE
;
1614 create_mapping(&map
);
1619 * paging_init() sets up the page tables, initialises the zone memory
1620 * maps, and sets up the zero page, bad page and bad page tables.
1622 void __init
paging_init(const struct machine_desc
*mdesc
)
1626 prepare_page_table();
1628 memblock_set_current_limit(arm_lowmem_limit
);
1629 dma_contiguous_remap();
1630 early_fixmap_shutdown();
1631 devicemaps_init(mdesc
);
1635 top_pmd
= pmd_off_k(0xffff0000);
1637 /* allocate the zero page. */
1638 zero_page
= early_alloc(PAGE_SIZE
);
1642 empty_zero_page
= virt_to_page(zero_page
);
1643 __flush_dcache_page(NULL
, empty_zero_page
);
1645 /* Compute the virt/idmap offset, mostly for the sake of KVM */
1646 kimage_voffset
= (unsigned long)&kimage_voffset
- virt_to_idmap(&kimage_voffset
);
1649 void __init
early_mm_init(const struct machine_desc
*mdesc
)
1651 build_mem_type_table();
1652 early_paging_init(mdesc
);