2 * Copyright 2012 Marvell International Ltd.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/interrupt.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/slab.h>
16 #include <linux/dmaengine.h>
17 #include <linux/platform_device.h>
18 #include <linux/device.h>
19 #include <linux/platform_data/mmp_dma.h>
20 #include <linux/dmapool.h>
21 #include <linux/of_device.h>
22 #include <linux/of_dma.h>
24 #include <linux/dma/mmp-pdma.h>
26 #include "dmaengine.h"
32 #define DSADR(n) (0x0204 + ((n) << 4))
33 #define DTADR(n) (0x0208 + ((n) << 4))
36 #define DCSR_RUN BIT(31) /* Run Bit (read / write) */
37 #define DCSR_NODESC BIT(30) /* No-Descriptor Fetch (read / write) */
38 #define DCSR_STOPIRQEN BIT(29) /* Stop Interrupt Enable (read / write) */
39 #define DCSR_REQPEND BIT(8) /* Request Pending (read-only) */
40 #define DCSR_STOPSTATE BIT(3) /* Stop State (read-only) */
41 #define DCSR_ENDINTR BIT(2) /* End Interrupt (read / write) */
42 #define DCSR_STARTINTR BIT(1) /* Start Interrupt (read / write) */
43 #define DCSR_BUSERR BIT(0) /* Bus Error Interrupt (read / write) */
45 #define DCSR_EORIRQEN BIT(28) /* End of Receive Interrupt Enable (R/W) */
46 #define DCSR_EORJMPEN BIT(27) /* Jump to next descriptor on EOR */
47 #define DCSR_EORSTOPEN BIT(26) /* STOP on an EOR */
48 #define DCSR_SETCMPST BIT(25) /* Set Descriptor Compare Status */
49 #define DCSR_CLRCMPST BIT(24) /* Clear Descriptor Compare Status */
50 #define DCSR_CMPST BIT(10) /* The Descriptor Compare Status */
51 #define DCSR_EORINTR BIT(9) /* The end of Receive */
53 #define DRCMR(n) ((((n) < 64) ? 0x0100 : 0x1100) + (((n) & 0x3f) << 2))
54 #define DRCMR_MAPVLD BIT(7) /* Map Valid (read / write) */
55 #define DRCMR_CHLNUM 0x1f /* mask for Channel Number (read / write) */
57 #define DDADR_DESCADDR 0xfffffff0 /* Address of next descriptor (mask) */
58 #define DDADR_STOP BIT(0) /* Stop (read / write) */
60 #define DCMD_INCSRCADDR BIT(31) /* Source Address Increment Setting. */
61 #define DCMD_INCTRGADDR BIT(30) /* Target Address Increment Setting. */
62 #define DCMD_FLOWSRC BIT(29) /* Flow Control by the source. */
63 #define DCMD_FLOWTRG BIT(28) /* Flow Control by the target. */
64 #define DCMD_STARTIRQEN BIT(22) /* Start Interrupt Enable */
65 #define DCMD_ENDIRQEN BIT(21) /* End Interrupt Enable */
66 #define DCMD_ENDIAN BIT(18) /* Device Endian-ness. */
67 #define DCMD_BURST8 (1 << 16) /* 8 byte burst */
68 #define DCMD_BURST16 (2 << 16) /* 16 byte burst */
69 #define DCMD_BURST32 (3 << 16) /* 32 byte burst */
70 #define DCMD_WIDTH1 (1 << 14) /* 1 byte width */
71 #define DCMD_WIDTH2 (2 << 14) /* 2 byte width (HalfWord) */
72 #define DCMD_WIDTH4 (3 << 14) /* 4 byte width (Word) */
73 #define DCMD_LENGTH 0x01fff /* length mask (max = 8K - 1) */
75 #define PDMA_MAX_DESC_BYTES DCMD_LENGTH
77 struct mmp_pdma_desc_hw
{
78 u32 ddadr
; /* Points to the next descriptor + flags */
79 u32 dsadr
; /* DSADR value for the current transfer */
80 u32 dtadr
; /* DTADR value for the current transfer */
81 u32 dcmd
; /* DCMD value for the current transfer */
84 struct mmp_pdma_desc_sw
{
85 struct mmp_pdma_desc_hw desc
;
86 struct list_head node
;
87 struct list_head tx_list
;
88 struct dma_async_tx_descriptor async_tx
;
93 struct mmp_pdma_chan
{
96 struct dma_async_tx_descriptor desc
;
97 struct mmp_pdma_phy
*phy
;
98 enum dma_transfer_direction dir
;
99 struct dma_slave_config slave_config
;
101 struct mmp_pdma_desc_sw
*cyclic_first
; /* first desc_sw if channel
102 * is in cyclic mode */
104 /* channel's basic info */
105 struct tasklet_struct tasklet
;
111 spinlock_t desc_lock
; /* Descriptor list lock */
112 struct list_head chain_pending
; /* Link descriptors queue for pending */
113 struct list_head chain_running
; /* Link descriptors queue for running */
114 bool idle
; /* channel statue machine */
117 struct dma_pool
*desc_pool
; /* Descriptors pool */
120 struct mmp_pdma_phy
{
123 struct mmp_pdma_chan
*vchan
;
126 struct mmp_pdma_device
{
130 struct dma_device device
;
131 struct mmp_pdma_phy
*phy
;
132 spinlock_t phy_lock
; /* protect alloc/free phy channels */
135 #define tx_to_mmp_pdma_desc(tx) \
136 container_of(tx, struct mmp_pdma_desc_sw, async_tx)
137 #define to_mmp_pdma_desc(lh) \
138 container_of(lh, struct mmp_pdma_desc_sw, node)
139 #define to_mmp_pdma_chan(dchan) \
140 container_of(dchan, struct mmp_pdma_chan, chan)
141 #define to_mmp_pdma_dev(dmadev) \
142 container_of(dmadev, struct mmp_pdma_device, device)
144 static int mmp_pdma_config_write(struct dma_chan
*dchan
,
145 struct dma_slave_config
*cfg
,
146 enum dma_transfer_direction direction
);
148 static void set_desc(struct mmp_pdma_phy
*phy
, dma_addr_t addr
)
150 u32 reg
= (phy
->idx
<< 4) + DDADR
;
152 writel(addr
, phy
->base
+ reg
);
155 static void enable_chan(struct mmp_pdma_phy
*phy
)
162 reg
= DRCMR(phy
->vchan
->drcmr
);
163 writel(DRCMR_MAPVLD
| phy
->idx
, phy
->base
+ reg
);
165 dalgn
= readl(phy
->base
+ DALGN
);
166 if (phy
->vchan
->byte_align
)
167 dalgn
|= 1 << phy
->idx
;
169 dalgn
&= ~(1 << phy
->idx
);
170 writel(dalgn
, phy
->base
+ DALGN
);
172 reg
= (phy
->idx
<< 2) + DCSR
;
173 writel(readl(phy
->base
+ reg
) | DCSR_RUN
, phy
->base
+ reg
);
176 static void disable_chan(struct mmp_pdma_phy
*phy
)
183 reg
= (phy
->idx
<< 2) + DCSR
;
184 writel(readl(phy
->base
+ reg
) & ~DCSR_RUN
, phy
->base
+ reg
);
187 static int clear_chan_irq(struct mmp_pdma_phy
*phy
)
190 u32 dint
= readl(phy
->base
+ DINT
);
191 u32 reg
= (phy
->idx
<< 2) + DCSR
;
193 if (!(dint
& BIT(phy
->idx
)))
197 dcsr
= readl(phy
->base
+ reg
);
198 writel(dcsr
, phy
->base
+ reg
);
199 if ((dcsr
& DCSR_BUSERR
) && (phy
->vchan
))
200 dev_warn(phy
->vchan
->dev
, "DCSR_BUSERR\n");
205 static irqreturn_t
mmp_pdma_chan_handler(int irq
, void *dev_id
)
207 struct mmp_pdma_phy
*phy
= dev_id
;
209 if (clear_chan_irq(phy
) != 0)
212 tasklet_schedule(&phy
->vchan
->tasklet
);
216 static irqreturn_t
mmp_pdma_int_handler(int irq
, void *dev_id
)
218 struct mmp_pdma_device
*pdev
= dev_id
;
219 struct mmp_pdma_phy
*phy
;
220 u32 dint
= readl(pdev
->base
+ DINT
);
226 /* only handle interrupts belonging to pdma driver*/
227 if (i
>= pdev
->dma_channels
)
231 ret
= mmp_pdma_chan_handler(irq
, phy
);
232 if (ret
== IRQ_HANDLED
)
242 /* lookup free phy channel as descending priority */
243 static struct mmp_pdma_phy
*lookup_phy(struct mmp_pdma_chan
*pchan
)
246 struct mmp_pdma_device
*pdev
= to_mmp_pdma_dev(pchan
->chan
.device
);
247 struct mmp_pdma_phy
*phy
, *found
= NULL
;
251 * dma channel priorities
252 * ch 0 - 3, 16 - 19 <--> (0)
253 * ch 4 - 7, 20 - 23 <--> (1)
254 * ch 8 - 11, 24 - 27 <--> (2)
255 * ch 12 - 15, 28 - 31 <--> (3)
258 spin_lock_irqsave(&pdev
->phy_lock
, flags
);
259 for (prio
= 0; prio
<= ((pdev
->dma_channels
- 1) & 0xf) >> 2; prio
++) {
260 for (i
= 0; i
< pdev
->dma_channels
; i
++) {
261 if (prio
!= (i
& 0xf) >> 2)
273 spin_unlock_irqrestore(&pdev
->phy_lock
, flags
);
277 static void mmp_pdma_free_phy(struct mmp_pdma_chan
*pchan
)
279 struct mmp_pdma_device
*pdev
= to_mmp_pdma_dev(pchan
->chan
.device
);
286 /* clear the channel mapping in DRCMR */
287 reg
= DRCMR(pchan
->drcmr
);
288 writel(0, pchan
->phy
->base
+ reg
);
290 spin_lock_irqsave(&pdev
->phy_lock
, flags
);
291 pchan
->phy
->vchan
= NULL
;
293 spin_unlock_irqrestore(&pdev
->phy_lock
, flags
);
297 * start_pending_queue - transfer any pending transactions
298 * pending list ==> running list
300 static void start_pending_queue(struct mmp_pdma_chan
*chan
)
302 struct mmp_pdma_desc_sw
*desc
;
304 /* still in running, irq will start the pending list */
306 dev_dbg(chan
->dev
, "DMA controller still busy\n");
310 if (list_empty(&chan
->chain_pending
)) {
311 /* chance to re-fetch phy channel with higher prio */
312 mmp_pdma_free_phy(chan
);
313 dev_dbg(chan
->dev
, "no pending list\n");
318 chan
->phy
= lookup_phy(chan
);
320 dev_dbg(chan
->dev
, "no free dma channel\n");
327 * reintilize pending list
329 desc
= list_first_entry(&chan
->chain_pending
,
330 struct mmp_pdma_desc_sw
, node
);
331 list_splice_tail_init(&chan
->chain_pending
, &chan
->chain_running
);
334 * Program the descriptor's address into the DMA controller,
335 * then start the DMA transaction
337 set_desc(chan
->phy
, desc
->async_tx
.phys
);
338 enable_chan(chan
->phy
);
343 /* desc->tx_list ==> pending list */
344 static dma_cookie_t
mmp_pdma_tx_submit(struct dma_async_tx_descriptor
*tx
)
346 struct mmp_pdma_chan
*chan
= to_mmp_pdma_chan(tx
->chan
);
347 struct mmp_pdma_desc_sw
*desc
= tx_to_mmp_pdma_desc(tx
);
348 struct mmp_pdma_desc_sw
*child
;
350 dma_cookie_t cookie
= -EBUSY
;
352 spin_lock_irqsave(&chan
->desc_lock
, flags
);
354 list_for_each_entry(child
, &desc
->tx_list
, node
) {
355 cookie
= dma_cookie_assign(&child
->async_tx
);
358 /* softly link to pending list - desc->tx_list ==> pending list */
359 list_splice_tail_init(&desc
->tx_list
, &chan
->chain_pending
);
361 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
366 static struct mmp_pdma_desc_sw
*
367 mmp_pdma_alloc_descriptor(struct mmp_pdma_chan
*chan
)
369 struct mmp_pdma_desc_sw
*desc
;
372 desc
= dma_pool_zalloc(chan
->desc_pool
, GFP_ATOMIC
, &pdesc
);
374 dev_err(chan
->dev
, "out of memory for link descriptor\n");
378 INIT_LIST_HEAD(&desc
->tx_list
);
379 dma_async_tx_descriptor_init(&desc
->async_tx
, &chan
->chan
);
380 /* each desc has submit */
381 desc
->async_tx
.tx_submit
= mmp_pdma_tx_submit
;
382 desc
->async_tx
.phys
= pdesc
;
388 * mmp_pdma_alloc_chan_resources - Allocate resources for DMA channel.
390 * This function will create a dma pool for descriptor allocation.
391 * Request irq only when channel is requested
392 * Return - The number of allocated descriptors.
395 static int mmp_pdma_alloc_chan_resources(struct dma_chan
*dchan
)
397 struct mmp_pdma_chan
*chan
= to_mmp_pdma_chan(dchan
);
402 chan
->desc_pool
= dma_pool_create(dev_name(&dchan
->dev
->device
),
404 sizeof(struct mmp_pdma_desc_sw
),
405 __alignof__(struct mmp_pdma_desc_sw
),
407 if (!chan
->desc_pool
) {
408 dev_err(chan
->dev
, "unable to allocate descriptor pool\n");
412 mmp_pdma_free_phy(chan
);
418 static void mmp_pdma_free_desc_list(struct mmp_pdma_chan
*chan
,
419 struct list_head
*list
)
421 struct mmp_pdma_desc_sw
*desc
, *_desc
;
423 list_for_each_entry_safe(desc
, _desc
, list
, node
) {
424 list_del(&desc
->node
);
425 dma_pool_free(chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
429 static void mmp_pdma_free_chan_resources(struct dma_chan
*dchan
)
431 struct mmp_pdma_chan
*chan
= to_mmp_pdma_chan(dchan
);
434 spin_lock_irqsave(&chan
->desc_lock
, flags
);
435 mmp_pdma_free_desc_list(chan
, &chan
->chain_pending
);
436 mmp_pdma_free_desc_list(chan
, &chan
->chain_running
);
437 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
439 dma_pool_destroy(chan
->desc_pool
);
440 chan
->desc_pool
= NULL
;
443 mmp_pdma_free_phy(chan
);
447 static struct dma_async_tx_descriptor
*
448 mmp_pdma_prep_memcpy(struct dma_chan
*dchan
,
449 dma_addr_t dma_dst
, dma_addr_t dma_src
,
450 size_t len
, unsigned long flags
)
452 struct mmp_pdma_chan
*chan
;
453 struct mmp_pdma_desc_sw
*first
= NULL
, *prev
= NULL
, *new;
462 chan
= to_mmp_pdma_chan(dchan
);
463 chan
->byte_align
= false;
466 chan
->dir
= DMA_MEM_TO_MEM
;
467 chan
->dcmd
= DCMD_INCTRGADDR
| DCMD_INCSRCADDR
;
468 chan
->dcmd
|= DCMD_BURST32
;
472 /* Allocate the link descriptor from DMA pool */
473 new = mmp_pdma_alloc_descriptor(chan
);
475 dev_err(chan
->dev
, "no memory for desc\n");
479 copy
= min_t(size_t, len
, PDMA_MAX_DESC_BYTES
);
480 if (dma_src
& 0x7 || dma_dst
& 0x7)
481 chan
->byte_align
= true;
483 new->desc
.dcmd
= chan
->dcmd
| (DCMD_LENGTH
& copy
);
484 new->desc
.dsadr
= dma_src
;
485 new->desc
.dtadr
= dma_dst
;
490 prev
->desc
.ddadr
= new->async_tx
.phys
;
492 new->async_tx
.cookie
= 0;
493 async_tx_ack(&new->async_tx
);
498 if (chan
->dir
== DMA_MEM_TO_DEV
) {
500 } else if (chan
->dir
== DMA_DEV_TO_MEM
) {
502 } else if (chan
->dir
== DMA_MEM_TO_MEM
) {
507 /* Insert the link descriptor to the LD ring */
508 list_add_tail(&new->node
, &first
->tx_list
);
511 first
->async_tx
.flags
= flags
; /* client is in control of this ack */
512 first
->async_tx
.cookie
= -EBUSY
;
514 /* last desc and fire IRQ */
515 new->desc
.ddadr
= DDADR_STOP
;
516 new->desc
.dcmd
|= DCMD_ENDIRQEN
;
518 chan
->cyclic_first
= NULL
;
520 return &first
->async_tx
;
524 mmp_pdma_free_desc_list(chan
, &first
->tx_list
);
528 static struct dma_async_tx_descriptor
*
529 mmp_pdma_prep_slave_sg(struct dma_chan
*dchan
, struct scatterlist
*sgl
,
530 unsigned int sg_len
, enum dma_transfer_direction dir
,
531 unsigned long flags
, void *context
)
533 struct mmp_pdma_chan
*chan
= to_mmp_pdma_chan(dchan
);
534 struct mmp_pdma_desc_sw
*first
= NULL
, *prev
= NULL
, *new = NULL
;
536 struct scatterlist
*sg
;
540 if ((sgl
== NULL
) || (sg_len
== 0))
543 chan
->byte_align
= false;
545 mmp_pdma_config_write(dchan
, &chan
->slave_config
, dir
);
547 for_each_sg(sgl
, sg
, sg_len
, i
) {
548 addr
= sg_dma_address(sg
);
549 avail
= sg_dma_len(sgl
);
552 len
= min_t(size_t, avail
, PDMA_MAX_DESC_BYTES
);
554 chan
->byte_align
= true;
556 /* allocate and populate the descriptor */
557 new = mmp_pdma_alloc_descriptor(chan
);
559 dev_err(chan
->dev
, "no memory for desc\n");
563 new->desc
.dcmd
= chan
->dcmd
| (DCMD_LENGTH
& len
);
564 if (dir
== DMA_MEM_TO_DEV
) {
565 new->desc
.dsadr
= addr
;
566 new->desc
.dtadr
= chan
->dev_addr
;
568 new->desc
.dsadr
= chan
->dev_addr
;
569 new->desc
.dtadr
= addr
;
575 prev
->desc
.ddadr
= new->async_tx
.phys
;
577 new->async_tx
.cookie
= 0;
578 async_tx_ack(&new->async_tx
);
581 /* Insert the link descriptor to the LD ring */
582 list_add_tail(&new->node
, &first
->tx_list
);
584 /* update metadata */
590 first
->async_tx
.cookie
= -EBUSY
;
591 first
->async_tx
.flags
= flags
;
593 /* last desc and fire IRQ */
594 new->desc
.ddadr
= DDADR_STOP
;
595 new->desc
.dcmd
|= DCMD_ENDIRQEN
;
598 chan
->cyclic_first
= NULL
;
600 return &first
->async_tx
;
604 mmp_pdma_free_desc_list(chan
, &first
->tx_list
);
608 static struct dma_async_tx_descriptor
*
609 mmp_pdma_prep_dma_cyclic(struct dma_chan
*dchan
,
610 dma_addr_t buf_addr
, size_t len
, size_t period_len
,
611 enum dma_transfer_direction direction
,
614 struct mmp_pdma_chan
*chan
;
615 struct mmp_pdma_desc_sw
*first
= NULL
, *prev
= NULL
, *new;
616 dma_addr_t dma_src
, dma_dst
;
618 if (!dchan
|| !len
|| !period_len
)
621 /* the buffer length must be a multiple of period_len */
622 if (len
% period_len
!= 0)
625 if (period_len
> PDMA_MAX_DESC_BYTES
)
628 chan
= to_mmp_pdma_chan(dchan
);
629 mmp_pdma_config_write(dchan
, &chan
->slave_config
, direction
);
634 dma_dst
= chan
->dev_addr
;
638 dma_src
= chan
->dev_addr
;
641 dev_err(chan
->dev
, "Unsupported direction for cyclic DMA\n");
645 chan
->dir
= direction
;
648 /* Allocate the link descriptor from DMA pool */
649 new = mmp_pdma_alloc_descriptor(chan
);
651 dev_err(chan
->dev
, "no memory for desc\n");
655 new->desc
.dcmd
= (chan
->dcmd
| DCMD_ENDIRQEN
|
656 (DCMD_LENGTH
& period_len
));
657 new->desc
.dsadr
= dma_src
;
658 new->desc
.dtadr
= dma_dst
;
663 prev
->desc
.ddadr
= new->async_tx
.phys
;
665 new->async_tx
.cookie
= 0;
666 async_tx_ack(&new->async_tx
);
671 if (chan
->dir
== DMA_MEM_TO_DEV
)
672 dma_src
+= period_len
;
674 dma_dst
+= period_len
;
676 /* Insert the link descriptor to the LD ring */
677 list_add_tail(&new->node
, &first
->tx_list
);
680 first
->async_tx
.flags
= flags
; /* client is in control of this ack */
681 first
->async_tx
.cookie
= -EBUSY
;
683 /* make the cyclic link */
684 new->desc
.ddadr
= first
->async_tx
.phys
;
685 chan
->cyclic_first
= first
;
687 return &first
->async_tx
;
691 mmp_pdma_free_desc_list(chan
, &first
->tx_list
);
695 static int mmp_pdma_config_write(struct dma_chan
*dchan
,
696 struct dma_slave_config
*cfg
,
697 enum dma_transfer_direction direction
)
699 struct mmp_pdma_chan
*chan
= to_mmp_pdma_chan(dchan
);
700 u32 maxburst
= 0, addr
= 0;
701 enum dma_slave_buswidth width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
706 if (direction
== DMA_DEV_TO_MEM
) {
707 chan
->dcmd
= DCMD_INCTRGADDR
| DCMD_FLOWSRC
;
708 maxburst
= cfg
->src_maxburst
;
709 width
= cfg
->src_addr_width
;
710 addr
= cfg
->src_addr
;
711 } else if (direction
== DMA_MEM_TO_DEV
) {
712 chan
->dcmd
= DCMD_INCSRCADDR
| DCMD_FLOWTRG
;
713 maxburst
= cfg
->dst_maxburst
;
714 width
= cfg
->dst_addr_width
;
715 addr
= cfg
->dst_addr
;
718 if (width
== DMA_SLAVE_BUSWIDTH_1_BYTE
)
719 chan
->dcmd
|= DCMD_WIDTH1
;
720 else if (width
== DMA_SLAVE_BUSWIDTH_2_BYTES
)
721 chan
->dcmd
|= DCMD_WIDTH2
;
722 else if (width
== DMA_SLAVE_BUSWIDTH_4_BYTES
)
723 chan
->dcmd
|= DCMD_WIDTH4
;
726 chan
->dcmd
|= DCMD_BURST8
;
727 else if (maxburst
== 16)
728 chan
->dcmd
|= DCMD_BURST16
;
729 else if (maxburst
== 32)
730 chan
->dcmd
|= DCMD_BURST32
;
732 chan
->dir
= direction
;
733 chan
->dev_addr
= addr
;
734 /* FIXME: drivers should be ported over to use the filter
735 * function. Once that's done, the following two lines can
739 chan
->drcmr
= cfg
->slave_id
;
744 static int mmp_pdma_config(struct dma_chan
*dchan
,
745 struct dma_slave_config
*cfg
)
747 struct mmp_pdma_chan
*chan
= to_mmp_pdma_chan(dchan
);
749 memcpy(&chan
->slave_config
, cfg
, sizeof(*cfg
));
753 static int mmp_pdma_terminate_all(struct dma_chan
*dchan
)
755 struct mmp_pdma_chan
*chan
= to_mmp_pdma_chan(dchan
);
761 disable_chan(chan
->phy
);
762 mmp_pdma_free_phy(chan
);
763 spin_lock_irqsave(&chan
->desc_lock
, flags
);
764 mmp_pdma_free_desc_list(chan
, &chan
->chain_pending
);
765 mmp_pdma_free_desc_list(chan
, &chan
->chain_running
);
766 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
772 static unsigned int mmp_pdma_residue(struct mmp_pdma_chan
*chan
,
775 struct mmp_pdma_desc_sw
*sw
;
776 u32 curr
, residue
= 0;
778 bool cyclic
= chan
->cyclic_first
!= NULL
;
781 * If the channel does not have a phy pointer anymore, it has already
782 * been completed. Therefore, its residue is 0.
787 if (chan
->dir
== DMA_DEV_TO_MEM
)
788 curr
= readl(chan
->phy
->base
+ DTADR(chan
->phy
->idx
));
790 curr
= readl(chan
->phy
->base
+ DSADR(chan
->phy
->idx
));
792 list_for_each_entry(sw
, &chan
->chain_running
, node
) {
795 if (chan
->dir
== DMA_DEV_TO_MEM
)
796 start
= sw
->desc
.dtadr
;
798 start
= sw
->desc
.dsadr
;
800 len
= sw
->desc
.dcmd
& DCMD_LENGTH
;
804 * 'passed' will be latched once we found the descriptor which
805 * lies inside the boundaries of the curr pointer. All
806 * descriptors that occur in the list _after_ we found that
807 * partially handled descriptor are still to be processed and
808 * are hence added to the residual bytes counter.
813 } else if (curr
>= start
&& curr
<= end
) {
814 residue
+= end
- curr
;
819 * Descriptors that have the ENDIRQEN bit set mark the end of a
820 * transaction chain, and the cookie assigned with it has been
821 * returned previously from mmp_pdma_tx_submit().
823 * In case we have multiple transactions in the running chain,
824 * and the cookie does not match the one the user asked us
825 * about, reset the state variables and start over.
827 * This logic does not apply to cyclic transactions, where all
828 * descriptors have the ENDIRQEN bit set, and for which we
829 * can't have multiple transactions on one channel anyway.
831 if (cyclic
|| !(sw
->desc
.dcmd
& DCMD_ENDIRQEN
))
834 if (sw
->async_tx
.cookie
== cookie
) {
842 /* We should only get here in case of cyclic transactions */
846 static enum dma_status
mmp_pdma_tx_status(struct dma_chan
*dchan
,
848 struct dma_tx_state
*txstate
)
850 struct mmp_pdma_chan
*chan
= to_mmp_pdma_chan(dchan
);
853 ret
= dma_cookie_status(dchan
, cookie
, txstate
);
854 if (likely(ret
!= DMA_ERROR
))
855 dma_set_residue(txstate
, mmp_pdma_residue(chan
, cookie
));
861 * mmp_pdma_issue_pending - Issue the DMA start command
862 * pending list ==> running list
864 static void mmp_pdma_issue_pending(struct dma_chan
*dchan
)
866 struct mmp_pdma_chan
*chan
= to_mmp_pdma_chan(dchan
);
869 spin_lock_irqsave(&chan
->desc_lock
, flags
);
870 start_pending_queue(chan
);
871 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
879 static void dma_do_tasklet(unsigned long data
)
881 struct mmp_pdma_chan
*chan
= (struct mmp_pdma_chan
*)data
;
882 struct mmp_pdma_desc_sw
*desc
, *_desc
;
883 LIST_HEAD(chain_cleanup
);
885 struct dmaengine_desc_callback cb
;
887 if (chan
->cyclic_first
) {
888 spin_lock_irqsave(&chan
->desc_lock
, flags
);
889 desc
= chan
->cyclic_first
;
890 dmaengine_desc_get_callback(&desc
->async_tx
, &cb
);
891 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
893 dmaengine_desc_callback_invoke(&cb
, NULL
);
898 /* submit pending list; callback for each desc; free desc */
899 spin_lock_irqsave(&chan
->desc_lock
, flags
);
901 list_for_each_entry_safe(desc
, _desc
, &chan
->chain_running
, node
) {
903 * move the descriptors to a temporary list so we can drop
904 * the lock during the entire cleanup operation
906 list_move(&desc
->node
, &chain_cleanup
);
909 * Look for the first list entry which has the ENDIRQEN flag
910 * set. That is the descriptor we got an interrupt for, so
911 * complete that transaction and its cookie.
913 if (desc
->desc
.dcmd
& DCMD_ENDIRQEN
) {
914 dma_cookie_t cookie
= desc
->async_tx
.cookie
;
915 dma_cookie_complete(&desc
->async_tx
);
916 dev_dbg(chan
->dev
, "completed_cookie=%d\n", cookie
);
922 * The hardware is idle and ready for more when the
923 * chain_running list is empty.
925 chan
->idle
= list_empty(&chan
->chain_running
);
927 /* Start any pending transactions automatically */
928 start_pending_queue(chan
);
929 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
931 /* Run the callback for each descriptor, in order */
932 list_for_each_entry_safe(desc
, _desc
, &chain_cleanup
, node
) {
933 struct dma_async_tx_descriptor
*txd
= &desc
->async_tx
;
935 /* Remove from the list of transactions */
936 list_del(&desc
->node
);
937 /* Run the link descriptor callback function */
938 dmaengine_desc_get_callback(txd
, &cb
);
939 dmaengine_desc_callback_invoke(&cb
, NULL
);
941 dma_pool_free(chan
->desc_pool
, desc
, txd
->phys
);
945 static int mmp_pdma_remove(struct platform_device
*op
)
947 struct mmp_pdma_device
*pdev
= platform_get_drvdata(op
);
948 struct mmp_pdma_phy
*phy
;
949 int i
, irq
= 0, irq_num
= 0;
952 for (i
= 0; i
< pdev
->dma_channels
; i
++) {
953 if (platform_get_irq(op
, i
) > 0)
957 if (irq_num
!= pdev
->dma_channels
) {
958 irq
= platform_get_irq(op
, 0);
959 devm_free_irq(&op
->dev
, irq
, pdev
);
961 for (i
= 0; i
< pdev
->dma_channels
; i
++) {
963 irq
= platform_get_irq(op
, i
);
964 devm_free_irq(&op
->dev
, irq
, phy
);
968 dma_async_device_unregister(&pdev
->device
);
972 static int mmp_pdma_chan_init(struct mmp_pdma_device
*pdev
, int idx
, int irq
)
974 struct mmp_pdma_phy
*phy
= &pdev
->phy
[idx
];
975 struct mmp_pdma_chan
*chan
;
978 chan
= devm_kzalloc(pdev
->dev
, sizeof(*chan
), GFP_KERNEL
);
983 phy
->base
= pdev
->base
;
986 ret
= devm_request_irq(pdev
->dev
, irq
, mmp_pdma_chan_handler
,
987 IRQF_SHARED
, "pdma", phy
);
989 dev_err(pdev
->dev
, "channel request irq fail!\n");
994 spin_lock_init(&chan
->desc_lock
);
995 chan
->dev
= pdev
->dev
;
996 chan
->chan
.device
= &pdev
->device
;
997 tasklet_init(&chan
->tasklet
, dma_do_tasklet
, (unsigned long)chan
);
998 INIT_LIST_HEAD(&chan
->chain_pending
);
999 INIT_LIST_HEAD(&chan
->chain_running
);
1001 /* register virt channel to dma engine */
1002 list_add_tail(&chan
->chan
.device_node
, &pdev
->device
.channels
);
1007 static const struct of_device_id mmp_pdma_dt_ids
[] = {
1008 { .compatible
= "marvell,pdma-1.0", },
1011 MODULE_DEVICE_TABLE(of
, mmp_pdma_dt_ids
);
1013 static struct dma_chan
*mmp_pdma_dma_xlate(struct of_phandle_args
*dma_spec
,
1014 struct of_dma
*ofdma
)
1016 struct mmp_pdma_device
*d
= ofdma
->of_dma_data
;
1017 struct dma_chan
*chan
;
1019 chan
= dma_get_any_slave_channel(&d
->device
);
1023 to_mmp_pdma_chan(chan
)->drcmr
= dma_spec
->args
[0];
1028 static int mmp_pdma_probe(struct platform_device
*op
)
1030 struct mmp_pdma_device
*pdev
;
1031 const struct of_device_id
*of_id
;
1032 struct mmp_dma_platdata
*pdata
= dev_get_platdata(&op
->dev
);
1033 struct resource
*iores
;
1034 int i
, ret
, irq
= 0;
1035 int dma_channels
= 0, irq_num
= 0;
1036 const enum dma_slave_buswidth widths
=
1037 DMA_SLAVE_BUSWIDTH_1_BYTE
| DMA_SLAVE_BUSWIDTH_2_BYTES
|
1038 DMA_SLAVE_BUSWIDTH_4_BYTES
;
1040 pdev
= devm_kzalloc(&op
->dev
, sizeof(*pdev
), GFP_KERNEL
);
1044 pdev
->dev
= &op
->dev
;
1046 spin_lock_init(&pdev
->phy_lock
);
1048 iores
= platform_get_resource(op
, IORESOURCE_MEM
, 0);
1049 pdev
->base
= devm_ioremap_resource(pdev
->dev
, iores
);
1050 if (IS_ERR(pdev
->base
))
1051 return PTR_ERR(pdev
->base
);
1053 of_id
= of_match_device(mmp_pdma_dt_ids
, pdev
->dev
);
1055 of_property_read_u32(pdev
->dev
->of_node
, "#dma-channels",
1057 else if (pdata
&& pdata
->dma_channels
)
1058 dma_channels
= pdata
->dma_channels
;
1060 dma_channels
= 32; /* default 32 channel */
1061 pdev
->dma_channels
= dma_channels
;
1063 for (i
= 0; i
< dma_channels
; i
++) {
1064 if (platform_get_irq(op
, i
) > 0)
1068 pdev
->phy
= devm_kcalloc(pdev
->dev
, dma_channels
, sizeof(*pdev
->phy
),
1070 if (pdev
->phy
== NULL
)
1073 INIT_LIST_HEAD(&pdev
->device
.channels
);
1075 if (irq_num
!= dma_channels
) {
1076 /* all chan share one irq, demux inside */
1077 irq
= platform_get_irq(op
, 0);
1078 ret
= devm_request_irq(pdev
->dev
, irq
, mmp_pdma_int_handler
,
1079 IRQF_SHARED
, "pdma", pdev
);
1084 for (i
= 0; i
< dma_channels
; i
++) {
1085 irq
= (irq_num
!= dma_channels
) ? 0 : platform_get_irq(op
, i
);
1086 ret
= mmp_pdma_chan_init(pdev
, i
, irq
);
1091 dma_cap_set(DMA_SLAVE
, pdev
->device
.cap_mask
);
1092 dma_cap_set(DMA_MEMCPY
, pdev
->device
.cap_mask
);
1093 dma_cap_set(DMA_CYCLIC
, pdev
->device
.cap_mask
);
1094 dma_cap_set(DMA_PRIVATE
, pdev
->device
.cap_mask
);
1095 pdev
->device
.dev
= &op
->dev
;
1096 pdev
->device
.device_alloc_chan_resources
= mmp_pdma_alloc_chan_resources
;
1097 pdev
->device
.device_free_chan_resources
= mmp_pdma_free_chan_resources
;
1098 pdev
->device
.device_tx_status
= mmp_pdma_tx_status
;
1099 pdev
->device
.device_prep_dma_memcpy
= mmp_pdma_prep_memcpy
;
1100 pdev
->device
.device_prep_slave_sg
= mmp_pdma_prep_slave_sg
;
1101 pdev
->device
.device_prep_dma_cyclic
= mmp_pdma_prep_dma_cyclic
;
1102 pdev
->device
.device_issue_pending
= mmp_pdma_issue_pending
;
1103 pdev
->device
.device_config
= mmp_pdma_config
;
1104 pdev
->device
.device_terminate_all
= mmp_pdma_terminate_all
;
1105 pdev
->device
.copy_align
= DMAENGINE_ALIGN_8_BYTES
;
1106 pdev
->device
.src_addr_widths
= widths
;
1107 pdev
->device
.dst_addr_widths
= widths
;
1108 pdev
->device
.directions
= BIT(DMA_MEM_TO_DEV
) | BIT(DMA_DEV_TO_MEM
);
1109 pdev
->device
.residue_granularity
= DMA_RESIDUE_GRANULARITY_DESCRIPTOR
;
1111 if (pdev
->dev
->coherent_dma_mask
)
1112 dma_set_mask(pdev
->dev
, pdev
->dev
->coherent_dma_mask
);
1114 dma_set_mask(pdev
->dev
, DMA_BIT_MASK(64));
1116 ret
= dma_async_device_register(&pdev
->device
);
1118 dev_err(pdev
->device
.dev
, "unable to register\n");
1122 if (op
->dev
.of_node
) {
1123 /* Device-tree DMA controller registration */
1124 ret
= of_dma_controller_register(op
->dev
.of_node
,
1125 mmp_pdma_dma_xlate
, pdev
);
1127 dev_err(&op
->dev
, "of_dma_controller_register failed\n");
1132 platform_set_drvdata(op
, pdev
);
1133 dev_info(pdev
->device
.dev
, "initialized %d channels\n", dma_channels
);
1137 static const struct platform_device_id mmp_pdma_id_table
[] = {
1142 static struct platform_driver mmp_pdma_driver
= {
1145 .of_match_table
= mmp_pdma_dt_ids
,
1147 .id_table
= mmp_pdma_id_table
,
1148 .probe
= mmp_pdma_probe
,
1149 .remove
= mmp_pdma_remove
,
1152 bool mmp_pdma_filter_fn(struct dma_chan
*chan
, void *param
)
1154 struct mmp_pdma_chan
*c
= to_mmp_pdma_chan(chan
);
1156 if (chan
->device
->dev
->driver
!= &mmp_pdma_driver
.driver
)
1159 c
->drcmr
= *(unsigned int *)param
;
1163 EXPORT_SYMBOL_GPL(mmp_pdma_filter_fn
);
1165 module_platform_driver(mmp_pdma_driver
);
1167 MODULE_DESCRIPTION("MARVELL MMP Peripheral DMA Driver");
1168 MODULE_AUTHOR("Marvell International Ltd.");
1169 MODULE_LICENSE("GPL v2");