2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
29 #include <asm/pgtable.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
38 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
39 unsigned long hugepages_treat_as_movable
;
41 int hugetlb_max_hstate __read_mostly
;
42 unsigned int default_hstate_idx
;
43 struct hstate hstates
[HUGE_MAX_HSTATE
];
45 __initdata
LIST_HEAD(huge_boot_pages
);
47 /* for command line parsing */
48 static struct hstate
* __initdata parsed_hstate
;
49 static unsigned long __initdata default_hstate_max_huge_pages
;
50 static unsigned long __initdata default_hstate_size
;
53 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
54 * free_huge_pages, and surplus_huge_pages.
56 DEFINE_SPINLOCK(hugetlb_lock
);
59 * Serializes faults on the same logical page. This is used to
60 * prevent spurious OOMs when the hugepage pool is fully utilized.
62 static int num_fault_mutexes
;
63 static struct mutex
*htlb_fault_mutex_table ____cacheline_aligned_in_smp
;
65 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
67 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
69 spin_unlock(&spool
->lock
);
71 /* If no pages are used, and no other handles to the subpool
72 * remain, free the subpool the subpool remain */
77 struct hugepage_subpool
*hugepage_new_subpool(long nr_blocks
)
79 struct hugepage_subpool
*spool
;
81 spool
= kmalloc(sizeof(*spool
), GFP_KERNEL
);
85 spin_lock_init(&spool
->lock
);
87 spool
->max_hpages
= nr_blocks
;
88 spool
->used_hpages
= 0;
93 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
95 spin_lock(&spool
->lock
);
96 BUG_ON(!spool
->count
);
98 unlock_or_release_subpool(spool
);
101 static int hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
109 spin_lock(&spool
->lock
);
110 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
) {
111 spool
->used_hpages
+= delta
;
115 spin_unlock(&spool
->lock
);
120 static void hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
126 spin_lock(&spool
->lock
);
127 spool
->used_hpages
-= delta
;
128 /* If hugetlbfs_put_super couldn't free spool due to
129 * an outstanding quota reference, free it now. */
130 unlock_or_release_subpool(spool
);
133 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
135 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
138 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
140 return subpool_inode(file_inode(vma
->vm_file
));
144 * Region tracking -- allows tracking of reservations and instantiated pages
145 * across the pages in a mapping.
147 * The region data structures are embedded into a resv_map and
148 * protected by a resv_map's lock
151 struct list_head link
;
156 static long region_add(struct resv_map
*resv
, long f
, long t
)
158 struct list_head
*head
= &resv
->regions
;
159 struct file_region
*rg
, *nrg
, *trg
;
161 spin_lock(&resv
->lock
);
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg
, head
, link
)
167 /* Round our left edge to the current segment if it encloses us. */
171 /* Check for and consume any regions we now overlap with. */
173 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
174 if (&rg
->link
== head
)
179 /* If this area reaches higher then extend our area to
180 * include it completely. If this is not the first area
181 * which we intend to reuse, free it. */
191 spin_unlock(&resv
->lock
);
195 static long region_chg(struct resv_map
*resv
, long f
, long t
)
197 struct list_head
*head
= &resv
->regions
;
198 struct file_region
*rg
, *nrg
= NULL
;
202 spin_lock(&resv
->lock
);
203 /* Locate the region we are before or in. */
204 list_for_each_entry(rg
, head
, link
)
208 /* If we are below the current region then a new region is required.
209 * Subtle, allocate a new region at the position but make it zero
210 * size such that we can guarantee to record the reservation. */
211 if (&rg
->link
== head
|| t
< rg
->from
) {
213 spin_unlock(&resv
->lock
);
214 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
220 INIT_LIST_HEAD(&nrg
->link
);
224 list_add(&nrg
->link
, rg
->link
.prev
);
229 /* Round our left edge to the current segment if it encloses us. */
234 /* Check for and consume any regions we now overlap with. */
235 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
236 if (&rg
->link
== head
)
241 /* We overlap with this area, if it extends further than
242 * us then we must extend ourselves. Account for its
243 * existing reservation. */
248 chg
-= rg
->to
- rg
->from
;
252 spin_unlock(&resv
->lock
);
253 /* We already know we raced and no longer need the new region */
257 spin_unlock(&resv
->lock
);
261 static long region_truncate(struct resv_map
*resv
, long end
)
263 struct list_head
*head
= &resv
->regions
;
264 struct file_region
*rg
, *trg
;
267 spin_lock(&resv
->lock
);
268 /* Locate the region we are either in or before. */
269 list_for_each_entry(rg
, head
, link
)
272 if (&rg
->link
== head
)
275 /* If we are in the middle of a region then adjust it. */
276 if (end
> rg
->from
) {
279 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
282 /* Drop any remaining regions. */
283 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
284 if (&rg
->link
== head
)
286 chg
+= rg
->to
- rg
->from
;
292 spin_unlock(&resv
->lock
);
296 static long region_count(struct resv_map
*resv
, long f
, long t
)
298 struct list_head
*head
= &resv
->regions
;
299 struct file_region
*rg
;
302 spin_lock(&resv
->lock
);
303 /* Locate each segment we overlap with, and count that overlap. */
304 list_for_each_entry(rg
, head
, link
) {
313 seg_from
= max(rg
->from
, f
);
314 seg_to
= min(rg
->to
, t
);
316 chg
+= seg_to
- seg_from
;
318 spin_unlock(&resv
->lock
);
324 * Convert the address within this vma to the page offset within
325 * the mapping, in pagecache page units; huge pages here.
327 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
328 struct vm_area_struct
*vma
, unsigned long address
)
330 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
331 (vma
->vm_pgoff
>> huge_page_order(h
));
334 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
335 unsigned long address
)
337 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
341 * Return the size of the pages allocated when backing a VMA. In the majority
342 * cases this will be same size as used by the page table entries.
344 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
346 struct hstate
*hstate
;
348 if (!is_vm_hugetlb_page(vma
))
351 hstate
= hstate_vma(vma
);
353 return 1UL << huge_page_shift(hstate
);
355 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
358 * Return the page size being used by the MMU to back a VMA. In the majority
359 * of cases, the page size used by the kernel matches the MMU size. On
360 * architectures where it differs, an architecture-specific version of this
361 * function is required.
363 #ifndef vma_mmu_pagesize
364 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
366 return vma_kernel_pagesize(vma
);
371 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
372 * bits of the reservation map pointer, which are always clear due to
375 #define HPAGE_RESV_OWNER (1UL << 0)
376 #define HPAGE_RESV_UNMAPPED (1UL << 1)
377 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
380 * These helpers are used to track how many pages are reserved for
381 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
382 * is guaranteed to have their future faults succeed.
384 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
385 * the reserve counters are updated with the hugetlb_lock held. It is safe
386 * to reset the VMA at fork() time as it is not in use yet and there is no
387 * chance of the global counters getting corrupted as a result of the values.
389 * The private mapping reservation is represented in a subtly different
390 * manner to a shared mapping. A shared mapping has a region map associated
391 * with the underlying file, this region map represents the backing file
392 * pages which have ever had a reservation assigned which this persists even
393 * after the page is instantiated. A private mapping has a region map
394 * associated with the original mmap which is attached to all VMAs which
395 * reference it, this region map represents those offsets which have consumed
396 * reservation ie. where pages have been instantiated.
398 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
400 return (unsigned long)vma
->vm_private_data
;
403 static void set_vma_private_data(struct vm_area_struct
*vma
,
406 vma
->vm_private_data
= (void *)value
;
409 struct resv_map
*resv_map_alloc(void)
411 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
415 kref_init(&resv_map
->refs
);
416 spin_lock_init(&resv_map
->lock
);
417 INIT_LIST_HEAD(&resv_map
->regions
);
422 void resv_map_release(struct kref
*ref
)
424 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
426 /* Clear out any active regions before we release the map. */
427 region_truncate(resv_map
, 0);
431 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
433 return inode
->i_mapping
->private_data
;
436 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
438 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
439 if (vma
->vm_flags
& VM_MAYSHARE
) {
440 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
441 struct inode
*inode
= mapping
->host
;
443 return inode_resv_map(inode
);
446 return (struct resv_map
*)(get_vma_private_data(vma
) &
451 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
453 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
454 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
456 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
457 HPAGE_RESV_MASK
) | (unsigned long)map
);
460 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
462 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
463 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
465 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
468 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
470 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
472 return (get_vma_private_data(vma
) & flag
) != 0;
475 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
476 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
478 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
479 if (!(vma
->vm_flags
& VM_MAYSHARE
))
480 vma
->vm_private_data
= (void *)0;
483 /* Returns true if the VMA has associated reserve pages */
484 static int vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
486 if (vma
->vm_flags
& VM_NORESERVE
) {
488 * This address is already reserved by other process(chg == 0),
489 * so, we should decrement reserved count. Without decrementing,
490 * reserve count remains after releasing inode, because this
491 * allocated page will go into page cache and is regarded as
492 * coming from reserved pool in releasing step. Currently, we
493 * don't have any other solution to deal with this situation
494 * properly, so add work-around here.
496 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
502 /* Shared mappings always use reserves */
503 if (vma
->vm_flags
& VM_MAYSHARE
)
507 * Only the process that called mmap() has reserves for
510 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
516 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
518 int nid
= page_to_nid(page
);
519 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
520 h
->free_huge_pages
++;
521 h
->free_huge_pages_node
[nid
]++;
524 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
528 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
529 if (!is_migrate_isolate_page(page
))
532 * if 'non-isolated free hugepage' not found on the list,
533 * the allocation fails.
535 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
537 list_move(&page
->lru
, &h
->hugepage_activelist
);
538 set_page_refcounted(page
);
539 h
->free_huge_pages
--;
540 h
->free_huge_pages_node
[nid
]--;
544 /* Movability of hugepages depends on migration support. */
545 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
547 if (hugepages_treat_as_movable
|| hugepage_migration_supported(h
))
548 return GFP_HIGHUSER_MOVABLE
;
553 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
554 struct vm_area_struct
*vma
,
555 unsigned long address
, int avoid_reserve
,
558 struct page
*page
= NULL
;
559 struct mempolicy
*mpol
;
560 nodemask_t
*nodemask
;
561 struct zonelist
*zonelist
;
564 unsigned int cpuset_mems_cookie
;
567 * A child process with MAP_PRIVATE mappings created by their parent
568 * have no page reserves. This check ensures that reservations are
569 * not "stolen". The child may still get SIGKILLed
571 if (!vma_has_reserves(vma
, chg
) &&
572 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
575 /* If reserves cannot be used, ensure enough pages are in the pool */
576 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
580 cpuset_mems_cookie
= read_mems_allowed_begin();
581 zonelist
= huge_zonelist(vma
, address
,
582 htlb_alloc_mask(h
), &mpol
, &nodemask
);
584 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
585 MAX_NR_ZONES
- 1, nodemask
) {
586 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask(h
))) {
587 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
591 if (!vma_has_reserves(vma
, chg
))
594 SetPagePrivate(page
);
595 h
->resv_huge_pages
--;
602 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
611 * common helper functions for hstate_next_node_to_{alloc|free}.
612 * We may have allocated or freed a huge page based on a different
613 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
614 * be outside of *nodes_allowed. Ensure that we use an allowed
615 * node for alloc or free.
617 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
619 nid
= next_node(nid
, *nodes_allowed
);
620 if (nid
== MAX_NUMNODES
)
621 nid
= first_node(*nodes_allowed
);
622 VM_BUG_ON(nid
>= MAX_NUMNODES
);
627 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
629 if (!node_isset(nid
, *nodes_allowed
))
630 nid
= next_node_allowed(nid
, nodes_allowed
);
635 * returns the previously saved node ["this node"] from which to
636 * allocate a persistent huge page for the pool and advance the
637 * next node from which to allocate, handling wrap at end of node
640 static int hstate_next_node_to_alloc(struct hstate
*h
,
641 nodemask_t
*nodes_allowed
)
645 VM_BUG_ON(!nodes_allowed
);
647 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
648 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
654 * helper for free_pool_huge_page() - return the previously saved
655 * node ["this node"] from which to free a huge page. Advance the
656 * next node id whether or not we find a free huge page to free so
657 * that the next attempt to free addresses the next node.
659 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
663 VM_BUG_ON(!nodes_allowed
);
665 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
666 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
671 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
672 for (nr_nodes = nodes_weight(*mask); \
674 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
677 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
678 for (nr_nodes = nodes_weight(*mask); \
680 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
683 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
684 static void destroy_compound_gigantic_page(struct page
*page
,
688 int nr_pages
= 1 << order
;
689 struct page
*p
= page
+ 1;
691 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
693 set_page_refcounted(p
);
694 p
->first_page
= NULL
;
697 set_compound_order(page
, 0);
698 __ClearPageHead(page
);
701 static void free_gigantic_page(struct page
*page
, unsigned order
)
703 free_contig_range(page_to_pfn(page
), 1 << order
);
706 static int __alloc_gigantic_page(unsigned long start_pfn
,
707 unsigned long nr_pages
)
709 unsigned long end_pfn
= start_pfn
+ nr_pages
;
710 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
);
713 static bool pfn_range_valid_gigantic(unsigned long start_pfn
,
714 unsigned long nr_pages
)
716 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
719 for (i
= start_pfn
; i
< end_pfn
; i
++) {
723 page
= pfn_to_page(i
);
725 if (PageReserved(page
))
728 if (page_count(page
) > 0)
738 static bool zone_spans_last_pfn(const struct zone
*zone
,
739 unsigned long start_pfn
, unsigned long nr_pages
)
741 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
742 return zone_spans_pfn(zone
, last_pfn
);
745 static struct page
*alloc_gigantic_page(int nid
, unsigned order
)
747 unsigned long nr_pages
= 1 << order
;
748 unsigned long ret
, pfn
, flags
;
751 z
= NODE_DATA(nid
)->node_zones
;
752 for (; z
- NODE_DATA(nid
)->node_zones
< MAX_NR_ZONES
; z
++) {
753 spin_lock_irqsave(&z
->lock
, flags
);
755 pfn
= ALIGN(z
->zone_start_pfn
, nr_pages
);
756 while (zone_spans_last_pfn(z
, pfn
, nr_pages
)) {
757 if (pfn_range_valid_gigantic(pfn
, nr_pages
)) {
759 * We release the zone lock here because
760 * alloc_contig_range() will also lock the zone
761 * at some point. If there's an allocation
762 * spinning on this lock, it may win the race
763 * and cause alloc_contig_range() to fail...
765 spin_unlock_irqrestore(&z
->lock
, flags
);
766 ret
= __alloc_gigantic_page(pfn
, nr_pages
);
768 return pfn_to_page(pfn
);
769 spin_lock_irqsave(&z
->lock
, flags
);
774 spin_unlock_irqrestore(&z
->lock
, flags
);
780 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
781 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
);
783 static struct page
*alloc_fresh_gigantic_page_node(struct hstate
*h
, int nid
)
787 page
= alloc_gigantic_page(nid
, huge_page_order(h
));
789 prep_compound_gigantic_page(page
, huge_page_order(h
));
790 prep_new_huge_page(h
, page
, nid
);
796 static int alloc_fresh_gigantic_page(struct hstate
*h
,
797 nodemask_t
*nodes_allowed
)
799 struct page
*page
= NULL
;
802 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
803 page
= alloc_fresh_gigantic_page_node(h
, node
);
811 static inline bool gigantic_page_supported(void) { return true; }
813 static inline bool gigantic_page_supported(void) { return false; }
814 static inline void free_gigantic_page(struct page
*page
, unsigned order
) { }
815 static inline void destroy_compound_gigantic_page(struct page
*page
,
816 unsigned long order
) { }
817 static inline int alloc_fresh_gigantic_page(struct hstate
*h
,
818 nodemask_t
*nodes_allowed
) { return 0; }
821 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
825 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
829 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
830 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
831 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
832 1 << PG_referenced
| 1 << PG_dirty
|
833 1 << PG_active
| 1 << PG_private
|
836 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
837 set_compound_page_dtor(page
, NULL
);
838 set_page_refcounted(page
);
839 if (hstate_is_gigantic(h
)) {
840 destroy_compound_gigantic_page(page
, huge_page_order(h
));
841 free_gigantic_page(page
, huge_page_order(h
));
843 arch_release_hugepage(page
);
844 __free_pages(page
, huge_page_order(h
));
848 struct hstate
*size_to_hstate(unsigned long size
)
853 if (huge_page_size(h
) == size
)
859 static void free_huge_page(struct page
*page
)
862 * Can't pass hstate in here because it is called from the
863 * compound page destructor.
865 struct hstate
*h
= page_hstate(page
);
866 int nid
= page_to_nid(page
);
867 struct hugepage_subpool
*spool
=
868 (struct hugepage_subpool
*)page_private(page
);
869 bool restore_reserve
;
871 set_page_private(page
, 0);
872 page
->mapping
= NULL
;
873 BUG_ON(page_count(page
));
874 BUG_ON(page_mapcount(page
));
875 restore_reserve
= PagePrivate(page
);
876 ClearPagePrivate(page
);
878 spin_lock(&hugetlb_lock
);
879 hugetlb_cgroup_uncharge_page(hstate_index(h
),
880 pages_per_huge_page(h
), page
);
882 h
->resv_huge_pages
++;
884 if (h
->surplus_huge_pages_node
[nid
]) {
885 /* remove the page from active list */
886 list_del(&page
->lru
);
887 update_and_free_page(h
, page
);
888 h
->surplus_huge_pages
--;
889 h
->surplus_huge_pages_node
[nid
]--;
891 arch_clear_hugepage_flags(page
);
892 enqueue_huge_page(h
, page
);
894 spin_unlock(&hugetlb_lock
);
895 hugepage_subpool_put_pages(spool
, 1);
898 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
900 INIT_LIST_HEAD(&page
->lru
);
901 set_compound_page_dtor(page
, free_huge_page
);
902 spin_lock(&hugetlb_lock
);
903 set_hugetlb_cgroup(page
, NULL
);
905 h
->nr_huge_pages_node
[nid
]++;
906 spin_unlock(&hugetlb_lock
);
907 put_page(page
); /* free it into the hugepage allocator */
910 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
913 int nr_pages
= 1 << order
;
914 struct page
*p
= page
+ 1;
916 /* we rely on prep_new_huge_page to set the destructor */
917 set_compound_order(page
, order
);
919 __ClearPageReserved(page
);
920 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
923 * For gigantic hugepages allocated through bootmem at
924 * boot, it's safer to be consistent with the not-gigantic
925 * hugepages and clear the PG_reserved bit from all tail pages
926 * too. Otherwse drivers using get_user_pages() to access tail
927 * pages may get the reference counting wrong if they see
928 * PG_reserved set on a tail page (despite the head page not
929 * having PG_reserved set). Enforcing this consistency between
930 * head and tail pages allows drivers to optimize away a check
931 * on the head page when they need know if put_page() is needed
932 * after get_user_pages().
934 __ClearPageReserved(p
);
935 set_page_count(p
, 0);
936 p
->first_page
= page
;
941 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
942 * transparent huge pages. See the PageTransHuge() documentation for more
945 int PageHuge(struct page
*page
)
947 if (!PageCompound(page
))
950 page
= compound_head(page
);
951 return get_compound_page_dtor(page
) == free_huge_page
;
953 EXPORT_SYMBOL_GPL(PageHuge
);
956 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
957 * normal or transparent huge pages.
959 int PageHeadHuge(struct page
*page_head
)
961 if (!PageHead(page_head
))
964 return get_compound_page_dtor(page_head
) == free_huge_page
;
967 pgoff_t
__basepage_index(struct page
*page
)
969 struct page
*page_head
= compound_head(page
);
970 pgoff_t index
= page_index(page_head
);
971 unsigned long compound_idx
;
973 if (!PageHuge(page_head
))
974 return page_index(page
);
976 if (compound_order(page_head
) >= MAX_ORDER
)
977 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
979 compound_idx
= page
- page_head
;
981 return (index
<< compound_order(page_head
)) + compound_idx
;
984 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
988 page
= alloc_pages_exact_node(nid
,
989 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
990 __GFP_REPEAT
|__GFP_NOWARN
,
993 if (arch_prepare_hugepage(page
)) {
994 __free_pages(page
, huge_page_order(h
));
997 prep_new_huge_page(h
, page
, nid
);
1003 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1009 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1010 page
= alloc_fresh_huge_page_node(h
, node
);
1018 count_vm_event(HTLB_BUDDY_PGALLOC
);
1020 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1026 * Free huge page from pool from next node to free.
1027 * Attempt to keep persistent huge pages more or less
1028 * balanced over allowed nodes.
1029 * Called with hugetlb_lock locked.
1031 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1037 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1039 * If we're returning unused surplus pages, only examine
1040 * nodes with surplus pages.
1042 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1043 !list_empty(&h
->hugepage_freelists
[node
])) {
1045 list_entry(h
->hugepage_freelists
[node
].next
,
1047 list_del(&page
->lru
);
1048 h
->free_huge_pages
--;
1049 h
->free_huge_pages_node
[node
]--;
1051 h
->surplus_huge_pages
--;
1052 h
->surplus_huge_pages_node
[node
]--;
1054 update_and_free_page(h
, page
);
1064 * Dissolve a given free hugepage into free buddy pages. This function does
1065 * nothing for in-use (including surplus) hugepages.
1067 static void dissolve_free_huge_page(struct page
*page
)
1069 spin_lock(&hugetlb_lock
);
1070 if (PageHuge(page
) && !page_count(page
)) {
1071 struct hstate
*h
= page_hstate(page
);
1072 int nid
= page_to_nid(page
);
1073 list_del(&page
->lru
);
1074 h
->free_huge_pages
--;
1075 h
->free_huge_pages_node
[nid
]--;
1076 update_and_free_page(h
, page
);
1078 spin_unlock(&hugetlb_lock
);
1082 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1083 * make specified memory blocks removable from the system.
1084 * Note that start_pfn should aligned with (minimum) hugepage size.
1086 void dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1088 unsigned int order
= 8 * sizeof(void *);
1092 /* Set scan step to minimum hugepage size */
1094 if (order
> huge_page_order(h
))
1095 order
= huge_page_order(h
);
1096 VM_BUG_ON(!IS_ALIGNED(start_pfn
, 1 << order
));
1097 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << order
)
1098 dissolve_free_huge_page(pfn_to_page(pfn
));
1101 static struct page
*alloc_buddy_huge_page(struct hstate
*h
, int nid
)
1106 if (hstate_is_gigantic(h
))
1110 * Assume we will successfully allocate the surplus page to
1111 * prevent racing processes from causing the surplus to exceed
1114 * This however introduces a different race, where a process B
1115 * tries to grow the static hugepage pool while alloc_pages() is
1116 * called by process A. B will only examine the per-node
1117 * counters in determining if surplus huge pages can be
1118 * converted to normal huge pages in adjust_pool_surplus(). A
1119 * won't be able to increment the per-node counter, until the
1120 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1121 * no more huge pages can be converted from surplus to normal
1122 * state (and doesn't try to convert again). Thus, we have a
1123 * case where a surplus huge page exists, the pool is grown, and
1124 * the surplus huge page still exists after, even though it
1125 * should just have been converted to a normal huge page. This
1126 * does not leak memory, though, as the hugepage will be freed
1127 * once it is out of use. It also does not allow the counters to
1128 * go out of whack in adjust_pool_surplus() as we don't modify
1129 * the node values until we've gotten the hugepage and only the
1130 * per-node value is checked there.
1132 spin_lock(&hugetlb_lock
);
1133 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1134 spin_unlock(&hugetlb_lock
);
1138 h
->surplus_huge_pages
++;
1140 spin_unlock(&hugetlb_lock
);
1142 if (nid
== NUMA_NO_NODE
)
1143 page
= alloc_pages(htlb_alloc_mask(h
)|__GFP_COMP
|
1144 __GFP_REPEAT
|__GFP_NOWARN
,
1145 huge_page_order(h
));
1147 page
= alloc_pages_exact_node(nid
,
1148 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
1149 __GFP_REPEAT
|__GFP_NOWARN
, huge_page_order(h
));
1151 if (page
&& arch_prepare_hugepage(page
)) {
1152 __free_pages(page
, huge_page_order(h
));
1156 spin_lock(&hugetlb_lock
);
1158 INIT_LIST_HEAD(&page
->lru
);
1159 r_nid
= page_to_nid(page
);
1160 set_compound_page_dtor(page
, free_huge_page
);
1161 set_hugetlb_cgroup(page
, NULL
);
1163 * We incremented the global counters already
1165 h
->nr_huge_pages_node
[r_nid
]++;
1166 h
->surplus_huge_pages_node
[r_nid
]++;
1167 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1170 h
->surplus_huge_pages
--;
1171 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1173 spin_unlock(&hugetlb_lock
);
1179 * This allocation function is useful in the context where vma is irrelevant.
1180 * E.g. soft-offlining uses this function because it only cares physical
1181 * address of error page.
1183 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1185 struct page
*page
= NULL
;
1187 spin_lock(&hugetlb_lock
);
1188 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1189 page
= dequeue_huge_page_node(h
, nid
);
1190 spin_unlock(&hugetlb_lock
);
1193 page
= alloc_buddy_huge_page(h
, nid
);
1199 * Increase the hugetlb pool such that it can accommodate a reservation
1202 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1204 struct list_head surplus_list
;
1205 struct page
*page
, *tmp
;
1207 int needed
, allocated
;
1208 bool alloc_ok
= true;
1210 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1212 h
->resv_huge_pages
+= delta
;
1217 INIT_LIST_HEAD(&surplus_list
);
1221 spin_unlock(&hugetlb_lock
);
1222 for (i
= 0; i
< needed
; i
++) {
1223 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1228 list_add(&page
->lru
, &surplus_list
);
1233 * After retaking hugetlb_lock, we need to recalculate 'needed'
1234 * because either resv_huge_pages or free_huge_pages may have changed.
1236 spin_lock(&hugetlb_lock
);
1237 needed
= (h
->resv_huge_pages
+ delta
) -
1238 (h
->free_huge_pages
+ allocated
);
1243 * We were not able to allocate enough pages to
1244 * satisfy the entire reservation so we free what
1245 * we've allocated so far.
1250 * The surplus_list now contains _at_least_ the number of extra pages
1251 * needed to accommodate the reservation. Add the appropriate number
1252 * of pages to the hugetlb pool and free the extras back to the buddy
1253 * allocator. Commit the entire reservation here to prevent another
1254 * process from stealing the pages as they are added to the pool but
1255 * before they are reserved.
1257 needed
+= allocated
;
1258 h
->resv_huge_pages
+= delta
;
1261 /* Free the needed pages to the hugetlb pool */
1262 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1266 * This page is now managed by the hugetlb allocator and has
1267 * no users -- drop the buddy allocator's reference.
1269 put_page_testzero(page
);
1270 VM_BUG_ON_PAGE(page_count(page
), page
);
1271 enqueue_huge_page(h
, page
);
1274 spin_unlock(&hugetlb_lock
);
1276 /* Free unnecessary surplus pages to the buddy allocator */
1277 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1279 spin_lock(&hugetlb_lock
);
1285 * When releasing a hugetlb pool reservation, any surplus pages that were
1286 * allocated to satisfy the reservation must be explicitly freed if they were
1288 * Called with hugetlb_lock held.
1290 static void return_unused_surplus_pages(struct hstate
*h
,
1291 unsigned long unused_resv_pages
)
1293 unsigned long nr_pages
;
1295 /* Uncommit the reservation */
1296 h
->resv_huge_pages
-= unused_resv_pages
;
1298 /* Cannot return gigantic pages currently */
1299 if (hstate_is_gigantic(h
))
1302 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1305 * We want to release as many surplus pages as possible, spread
1306 * evenly across all nodes with memory. Iterate across these nodes
1307 * until we can no longer free unreserved surplus pages. This occurs
1308 * when the nodes with surplus pages have no free pages.
1309 * free_pool_huge_page() will balance the the freed pages across the
1310 * on-line nodes with memory and will handle the hstate accounting.
1312 while (nr_pages
--) {
1313 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1315 cond_resched_lock(&hugetlb_lock
);
1320 * Determine if the huge page at addr within the vma has an associated
1321 * reservation. Where it does not we will need to logically increase
1322 * reservation and actually increase subpool usage before an allocation
1323 * can occur. Where any new reservation would be required the
1324 * reservation change is prepared, but not committed. Once the page
1325 * has been allocated from the subpool and instantiated the change should
1326 * be committed via vma_commit_reservation. No action is required on
1329 static long vma_needs_reservation(struct hstate
*h
,
1330 struct vm_area_struct
*vma
, unsigned long addr
)
1332 struct resv_map
*resv
;
1336 resv
= vma_resv_map(vma
);
1340 idx
= vma_hugecache_offset(h
, vma
, addr
);
1341 chg
= region_chg(resv
, idx
, idx
+ 1);
1343 if (vma
->vm_flags
& VM_MAYSHARE
)
1346 return chg
< 0 ? chg
: 0;
1348 static void vma_commit_reservation(struct hstate
*h
,
1349 struct vm_area_struct
*vma
, unsigned long addr
)
1351 struct resv_map
*resv
;
1354 resv
= vma_resv_map(vma
);
1358 idx
= vma_hugecache_offset(h
, vma
, addr
);
1359 region_add(resv
, idx
, idx
+ 1);
1362 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1363 unsigned long addr
, int avoid_reserve
)
1365 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1366 struct hstate
*h
= hstate_vma(vma
);
1370 struct hugetlb_cgroup
*h_cg
;
1372 idx
= hstate_index(h
);
1374 * Processes that did not create the mapping will have no
1375 * reserves and will not have accounted against subpool
1376 * limit. Check that the subpool limit can be made before
1377 * satisfying the allocation MAP_NORESERVE mappings may also
1378 * need pages and subpool limit allocated allocated if no reserve
1381 chg
= vma_needs_reservation(h
, vma
, addr
);
1383 return ERR_PTR(-ENOMEM
);
1384 if (chg
|| avoid_reserve
)
1385 if (hugepage_subpool_get_pages(spool
, 1))
1386 return ERR_PTR(-ENOSPC
);
1388 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
1390 goto out_subpool_put
;
1392 spin_lock(&hugetlb_lock
);
1393 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, chg
);
1395 spin_unlock(&hugetlb_lock
);
1396 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1398 goto out_uncharge_cgroup
;
1400 spin_lock(&hugetlb_lock
);
1401 list_move(&page
->lru
, &h
->hugepage_activelist
);
1404 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
1405 spin_unlock(&hugetlb_lock
);
1407 set_page_private(page
, (unsigned long)spool
);
1409 vma_commit_reservation(h
, vma
, addr
);
1412 out_uncharge_cgroup
:
1413 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
1415 if (chg
|| avoid_reserve
)
1416 hugepage_subpool_put_pages(spool
, 1);
1417 return ERR_PTR(-ENOSPC
);
1421 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1422 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1423 * where no ERR_VALUE is expected to be returned.
1425 struct page
*alloc_huge_page_noerr(struct vm_area_struct
*vma
,
1426 unsigned long addr
, int avoid_reserve
)
1428 struct page
*page
= alloc_huge_page(vma
, addr
, avoid_reserve
);
1434 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1436 struct huge_bootmem_page
*m
;
1439 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
1442 addr
= memblock_virt_alloc_try_nid_nopanic(
1443 huge_page_size(h
), huge_page_size(h
),
1444 0, BOOTMEM_ALLOC_ACCESSIBLE
, node
);
1447 * Use the beginning of the huge page to store the
1448 * huge_bootmem_page struct (until gather_bootmem
1449 * puts them into the mem_map).
1458 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
1459 /* Put them into a private list first because mem_map is not up yet */
1460 list_add(&m
->list
, &huge_boot_pages
);
1465 static void __init
prep_compound_huge_page(struct page
*page
, int order
)
1467 if (unlikely(order
> (MAX_ORDER
- 1)))
1468 prep_compound_gigantic_page(page
, order
);
1470 prep_compound_page(page
, order
);
1473 /* Put bootmem huge pages into the standard lists after mem_map is up */
1474 static void __init
gather_bootmem_prealloc(void)
1476 struct huge_bootmem_page
*m
;
1478 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1479 struct hstate
*h
= m
->hstate
;
1482 #ifdef CONFIG_HIGHMEM
1483 page
= pfn_to_page(m
->phys
>> PAGE_SHIFT
);
1484 memblock_free_late(__pa(m
),
1485 sizeof(struct huge_bootmem_page
));
1487 page
= virt_to_page(m
);
1489 WARN_ON(page_count(page
) != 1);
1490 prep_compound_huge_page(page
, h
->order
);
1491 WARN_ON(PageReserved(page
));
1492 prep_new_huge_page(h
, page
, page_to_nid(page
));
1494 * If we had gigantic hugepages allocated at boot time, we need
1495 * to restore the 'stolen' pages to totalram_pages in order to
1496 * fix confusing memory reports from free(1) and another
1497 * side-effects, like CommitLimit going negative.
1499 if (hstate_is_gigantic(h
))
1500 adjust_managed_page_count(page
, 1 << h
->order
);
1504 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1508 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1509 if (hstate_is_gigantic(h
)) {
1510 if (!alloc_bootmem_huge_page(h
))
1512 } else if (!alloc_fresh_huge_page(h
,
1513 &node_states
[N_MEMORY
]))
1516 h
->max_huge_pages
= i
;
1519 static void __init
hugetlb_init_hstates(void)
1523 for_each_hstate(h
) {
1524 /* oversize hugepages were init'ed in early boot */
1525 if (!hstate_is_gigantic(h
))
1526 hugetlb_hstate_alloc_pages(h
);
1530 static char * __init
memfmt(char *buf
, unsigned long n
)
1532 if (n
>= (1UL << 30))
1533 sprintf(buf
, "%lu GB", n
>> 30);
1534 else if (n
>= (1UL << 20))
1535 sprintf(buf
, "%lu MB", n
>> 20);
1537 sprintf(buf
, "%lu KB", n
>> 10);
1541 static void __init
report_hugepages(void)
1545 for_each_hstate(h
) {
1547 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1548 memfmt(buf
, huge_page_size(h
)),
1549 h
->free_huge_pages
);
1553 #ifdef CONFIG_HIGHMEM
1554 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
1555 nodemask_t
*nodes_allowed
)
1559 if (hstate_is_gigantic(h
))
1562 for_each_node_mask(i
, *nodes_allowed
) {
1563 struct page
*page
, *next
;
1564 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1565 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1566 if (count
>= h
->nr_huge_pages
)
1568 if (PageHighMem(page
))
1570 list_del(&page
->lru
);
1571 update_and_free_page(h
, page
);
1572 h
->free_huge_pages
--;
1573 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1578 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
1579 nodemask_t
*nodes_allowed
)
1585 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1586 * balanced by operating on them in a round-robin fashion.
1587 * Returns 1 if an adjustment was made.
1589 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1594 VM_BUG_ON(delta
!= -1 && delta
!= 1);
1597 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1598 if (h
->surplus_huge_pages_node
[node
])
1602 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1603 if (h
->surplus_huge_pages_node
[node
] <
1604 h
->nr_huge_pages_node
[node
])
1611 h
->surplus_huge_pages
+= delta
;
1612 h
->surplus_huge_pages_node
[node
] += delta
;
1616 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1617 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
1618 nodemask_t
*nodes_allowed
)
1620 unsigned long min_count
, ret
;
1622 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
1623 return h
->max_huge_pages
;
1626 * Increase the pool size
1627 * First take pages out of surplus state. Then make up the
1628 * remaining difference by allocating fresh huge pages.
1630 * We might race with alloc_buddy_huge_page() here and be unable
1631 * to convert a surplus huge page to a normal huge page. That is
1632 * not critical, though, it just means the overall size of the
1633 * pool might be one hugepage larger than it needs to be, but
1634 * within all the constraints specified by the sysctls.
1636 spin_lock(&hugetlb_lock
);
1637 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1638 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
1642 while (count
> persistent_huge_pages(h
)) {
1644 * If this allocation races such that we no longer need the
1645 * page, free_huge_page will handle it by freeing the page
1646 * and reducing the surplus.
1648 spin_unlock(&hugetlb_lock
);
1649 if (hstate_is_gigantic(h
))
1650 ret
= alloc_fresh_gigantic_page(h
, nodes_allowed
);
1652 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
1653 spin_lock(&hugetlb_lock
);
1657 /* Bail for signals. Probably ctrl-c from user */
1658 if (signal_pending(current
))
1663 * Decrease the pool size
1664 * First return free pages to the buddy allocator (being careful
1665 * to keep enough around to satisfy reservations). Then place
1666 * pages into surplus state as needed so the pool will shrink
1667 * to the desired size as pages become free.
1669 * By placing pages into the surplus state independent of the
1670 * overcommit value, we are allowing the surplus pool size to
1671 * exceed overcommit. There are few sane options here. Since
1672 * alloc_buddy_huge_page() is checking the global counter,
1673 * though, we'll note that we're not allowed to exceed surplus
1674 * and won't grow the pool anywhere else. Not until one of the
1675 * sysctls are changed, or the surplus pages go out of use.
1677 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1678 min_count
= max(count
, min_count
);
1679 try_to_free_low(h
, min_count
, nodes_allowed
);
1680 while (min_count
< persistent_huge_pages(h
)) {
1681 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
1683 cond_resched_lock(&hugetlb_lock
);
1685 while (count
< persistent_huge_pages(h
)) {
1686 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
1690 ret
= persistent_huge_pages(h
);
1691 spin_unlock(&hugetlb_lock
);
1695 #define HSTATE_ATTR_RO(_name) \
1696 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1698 #define HSTATE_ATTR(_name) \
1699 static struct kobj_attribute _name##_attr = \
1700 __ATTR(_name, 0644, _name##_show, _name##_store)
1702 static struct kobject
*hugepages_kobj
;
1703 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1705 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
1707 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
1711 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1712 if (hstate_kobjs
[i
] == kobj
) {
1714 *nidp
= NUMA_NO_NODE
;
1718 return kobj_to_node_hstate(kobj
, nidp
);
1721 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
1722 struct kobj_attribute
*attr
, char *buf
)
1725 unsigned long nr_huge_pages
;
1728 h
= kobj_to_hstate(kobj
, &nid
);
1729 if (nid
== NUMA_NO_NODE
)
1730 nr_huge_pages
= h
->nr_huge_pages
;
1732 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
1734 return sprintf(buf
, "%lu\n", nr_huge_pages
);
1737 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
1738 struct kobject
*kobj
, struct kobj_attribute
*attr
,
1739 const char *buf
, size_t len
)
1743 unsigned long count
;
1745 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
1747 err
= kstrtoul(buf
, 10, &count
);
1751 h
= kobj_to_hstate(kobj
, &nid
);
1752 if (hstate_is_gigantic(h
) && !gigantic_page_supported()) {
1757 if (nid
== NUMA_NO_NODE
) {
1759 * global hstate attribute
1761 if (!(obey_mempolicy
&&
1762 init_nodemask_of_mempolicy(nodes_allowed
))) {
1763 NODEMASK_FREE(nodes_allowed
);
1764 nodes_allowed
= &node_states
[N_MEMORY
];
1766 } else if (nodes_allowed
) {
1768 * per node hstate attribute: adjust count to global,
1769 * but restrict alloc/free to the specified node.
1771 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
1772 init_nodemask_of_node(nodes_allowed
, nid
);
1774 nodes_allowed
= &node_states
[N_MEMORY
];
1776 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
1778 if (nodes_allowed
!= &node_states
[N_MEMORY
])
1779 NODEMASK_FREE(nodes_allowed
);
1783 NODEMASK_FREE(nodes_allowed
);
1787 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1788 struct kobj_attribute
*attr
, char *buf
)
1790 return nr_hugepages_show_common(kobj
, attr
, buf
);
1793 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1794 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1796 return nr_hugepages_store_common(false, kobj
, attr
, buf
, len
);
1798 HSTATE_ATTR(nr_hugepages
);
1803 * hstate attribute for optionally mempolicy-based constraint on persistent
1804 * huge page alloc/free.
1806 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
1807 struct kobj_attribute
*attr
, char *buf
)
1809 return nr_hugepages_show_common(kobj
, attr
, buf
);
1812 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
1813 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1815 return nr_hugepages_store_common(true, kobj
, attr
, buf
, len
);
1817 HSTATE_ATTR(nr_hugepages_mempolicy
);
1821 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1822 struct kobj_attribute
*attr
, char *buf
)
1824 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1825 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1828 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1829 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1832 unsigned long input
;
1833 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1835 if (hstate_is_gigantic(h
))
1838 err
= kstrtoul(buf
, 10, &input
);
1842 spin_lock(&hugetlb_lock
);
1843 h
->nr_overcommit_huge_pages
= input
;
1844 spin_unlock(&hugetlb_lock
);
1848 HSTATE_ATTR(nr_overcommit_hugepages
);
1850 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1851 struct kobj_attribute
*attr
, char *buf
)
1854 unsigned long free_huge_pages
;
1857 h
= kobj_to_hstate(kobj
, &nid
);
1858 if (nid
== NUMA_NO_NODE
)
1859 free_huge_pages
= h
->free_huge_pages
;
1861 free_huge_pages
= h
->free_huge_pages_node
[nid
];
1863 return sprintf(buf
, "%lu\n", free_huge_pages
);
1865 HSTATE_ATTR_RO(free_hugepages
);
1867 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1868 struct kobj_attribute
*attr
, char *buf
)
1870 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1871 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1873 HSTATE_ATTR_RO(resv_hugepages
);
1875 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1876 struct kobj_attribute
*attr
, char *buf
)
1879 unsigned long surplus_huge_pages
;
1882 h
= kobj_to_hstate(kobj
, &nid
);
1883 if (nid
== NUMA_NO_NODE
)
1884 surplus_huge_pages
= h
->surplus_huge_pages
;
1886 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
1888 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
1890 HSTATE_ATTR_RO(surplus_hugepages
);
1892 static struct attribute
*hstate_attrs
[] = {
1893 &nr_hugepages_attr
.attr
,
1894 &nr_overcommit_hugepages_attr
.attr
,
1895 &free_hugepages_attr
.attr
,
1896 &resv_hugepages_attr
.attr
,
1897 &surplus_hugepages_attr
.attr
,
1899 &nr_hugepages_mempolicy_attr
.attr
,
1904 static struct attribute_group hstate_attr_group
= {
1905 .attrs
= hstate_attrs
,
1908 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
1909 struct kobject
**hstate_kobjs
,
1910 struct attribute_group
*hstate_attr_group
)
1913 int hi
= hstate_index(h
);
1915 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
1916 if (!hstate_kobjs
[hi
])
1919 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
1921 kobject_put(hstate_kobjs
[hi
]);
1926 static void __init
hugetlb_sysfs_init(void)
1931 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1932 if (!hugepages_kobj
)
1935 for_each_hstate(h
) {
1936 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
1937 hstate_kobjs
, &hstate_attr_group
);
1939 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
1946 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1947 * with node devices in node_devices[] using a parallel array. The array
1948 * index of a node device or _hstate == node id.
1949 * This is here to avoid any static dependency of the node device driver, in
1950 * the base kernel, on the hugetlb module.
1952 struct node_hstate
{
1953 struct kobject
*hugepages_kobj
;
1954 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1956 struct node_hstate node_hstates
[MAX_NUMNODES
];
1959 * A subset of global hstate attributes for node devices
1961 static struct attribute
*per_node_hstate_attrs
[] = {
1962 &nr_hugepages_attr
.attr
,
1963 &free_hugepages_attr
.attr
,
1964 &surplus_hugepages_attr
.attr
,
1968 static struct attribute_group per_node_hstate_attr_group
= {
1969 .attrs
= per_node_hstate_attrs
,
1973 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1974 * Returns node id via non-NULL nidp.
1976 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1980 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
1981 struct node_hstate
*nhs
= &node_hstates
[nid
];
1983 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1984 if (nhs
->hstate_kobjs
[i
] == kobj
) {
1996 * Unregister hstate attributes from a single node device.
1997 * No-op if no hstate attributes attached.
1999 static void hugetlb_unregister_node(struct node
*node
)
2002 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2004 if (!nhs
->hugepages_kobj
)
2005 return; /* no hstate attributes */
2007 for_each_hstate(h
) {
2008 int idx
= hstate_index(h
);
2009 if (nhs
->hstate_kobjs
[idx
]) {
2010 kobject_put(nhs
->hstate_kobjs
[idx
]);
2011 nhs
->hstate_kobjs
[idx
] = NULL
;
2015 kobject_put(nhs
->hugepages_kobj
);
2016 nhs
->hugepages_kobj
= NULL
;
2020 * hugetlb module exit: unregister hstate attributes from node devices
2023 static void hugetlb_unregister_all_nodes(void)
2028 * disable node device registrations.
2030 register_hugetlbfs_with_node(NULL
, NULL
);
2033 * remove hstate attributes from any nodes that have them.
2035 for (nid
= 0; nid
< nr_node_ids
; nid
++)
2036 hugetlb_unregister_node(node_devices
[nid
]);
2040 * Register hstate attributes for a single node device.
2041 * No-op if attributes already registered.
2043 static void hugetlb_register_node(struct node
*node
)
2046 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2049 if (nhs
->hugepages_kobj
)
2050 return; /* already allocated */
2052 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
2054 if (!nhs
->hugepages_kobj
)
2057 for_each_hstate(h
) {
2058 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
2060 &per_node_hstate_attr_group
);
2062 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2063 h
->name
, node
->dev
.id
);
2064 hugetlb_unregister_node(node
);
2071 * hugetlb init time: register hstate attributes for all registered node
2072 * devices of nodes that have memory. All on-line nodes should have
2073 * registered their associated device by this time.
2075 static void hugetlb_register_all_nodes(void)
2079 for_each_node_state(nid
, N_MEMORY
) {
2080 struct node
*node
= node_devices
[nid
];
2081 if (node
->dev
.id
== nid
)
2082 hugetlb_register_node(node
);
2086 * Let the node device driver know we're here so it can
2087 * [un]register hstate attributes on node hotplug.
2089 register_hugetlbfs_with_node(hugetlb_register_node
,
2090 hugetlb_unregister_node
);
2092 #else /* !CONFIG_NUMA */
2094 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2102 static void hugetlb_unregister_all_nodes(void) { }
2104 static void hugetlb_register_all_nodes(void) { }
2108 static void __exit
hugetlb_exit(void)
2112 hugetlb_unregister_all_nodes();
2114 for_each_hstate(h
) {
2115 kobject_put(hstate_kobjs
[hstate_index(h
)]);
2118 kobject_put(hugepages_kobj
);
2119 kfree(htlb_fault_mutex_table
);
2121 module_exit(hugetlb_exit
);
2123 static int __init
hugetlb_init(void)
2127 if (!hugepages_supported())
2130 if (!size_to_hstate(default_hstate_size
)) {
2131 default_hstate_size
= HPAGE_SIZE
;
2132 if (!size_to_hstate(default_hstate_size
))
2133 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
2135 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
2136 if (default_hstate_max_huge_pages
)
2137 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
2139 hugetlb_init_hstates();
2140 gather_bootmem_prealloc();
2143 hugetlb_sysfs_init();
2144 hugetlb_register_all_nodes();
2145 hugetlb_cgroup_file_init();
2148 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
2150 num_fault_mutexes
= 1;
2152 htlb_fault_mutex_table
=
2153 kmalloc(sizeof(struct mutex
) * num_fault_mutexes
, GFP_KERNEL
);
2154 BUG_ON(!htlb_fault_mutex_table
);
2156 for (i
= 0; i
< num_fault_mutexes
; i
++)
2157 mutex_init(&htlb_fault_mutex_table
[i
]);
2160 module_init(hugetlb_init
);
2162 /* Should be called on processing a hugepagesz=... option */
2163 void __init
hugetlb_add_hstate(unsigned order
)
2168 if (size_to_hstate(PAGE_SIZE
<< order
)) {
2169 pr_warning("hugepagesz= specified twice, ignoring\n");
2172 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2174 h
= &hstates
[hugetlb_max_hstate
++];
2176 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2177 h
->nr_huge_pages
= 0;
2178 h
->free_huge_pages
= 0;
2179 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2180 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2181 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2182 h
->next_nid_to_alloc
= first_node(node_states
[N_MEMORY
]);
2183 h
->next_nid_to_free
= first_node(node_states
[N_MEMORY
]);
2184 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2185 huge_page_size(h
)/1024);
2190 static int __init
hugetlb_nrpages_setup(char *s
)
2193 static unsigned long *last_mhp
;
2196 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2197 * so this hugepages= parameter goes to the "default hstate".
2199 if (!hugetlb_max_hstate
)
2200 mhp
= &default_hstate_max_huge_pages
;
2202 mhp
= &parsed_hstate
->max_huge_pages
;
2204 if (mhp
== last_mhp
) {
2205 pr_warning("hugepages= specified twice without "
2206 "interleaving hugepagesz=, ignoring\n");
2210 if (sscanf(s
, "%lu", mhp
) <= 0)
2214 * Global state is always initialized later in hugetlb_init.
2215 * But we need to allocate >= MAX_ORDER hstates here early to still
2216 * use the bootmem allocator.
2218 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2219 hugetlb_hstate_alloc_pages(parsed_hstate
);
2225 __setup("hugepages=", hugetlb_nrpages_setup
);
2227 static int __init
hugetlb_default_setup(char *s
)
2229 default_hstate_size
= memparse(s
, &s
);
2232 __setup("default_hugepagesz=", hugetlb_default_setup
);
2234 static unsigned int cpuset_mems_nr(unsigned int *array
)
2237 unsigned int nr
= 0;
2239 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2245 #ifdef CONFIG_SYSCTL
2246 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2247 struct ctl_table
*table
, int write
,
2248 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2250 struct hstate
*h
= &default_hstate
;
2254 if (!hugepages_supported())
2257 tmp
= h
->max_huge_pages
;
2259 if (write
&& hstate_is_gigantic(h
) && !gigantic_page_supported())
2263 table
->maxlen
= sizeof(unsigned long);
2264 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2269 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
,
2270 GFP_KERNEL
| __GFP_NORETRY
);
2271 if (!(obey_mempolicy
&&
2272 init_nodemask_of_mempolicy(nodes_allowed
))) {
2273 NODEMASK_FREE(nodes_allowed
);
2274 nodes_allowed
= &node_states
[N_MEMORY
];
2276 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
, nodes_allowed
);
2278 if (nodes_allowed
!= &node_states
[N_MEMORY
])
2279 NODEMASK_FREE(nodes_allowed
);
2285 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2286 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2289 return hugetlb_sysctl_handler_common(false, table
, write
,
2290 buffer
, length
, ppos
);
2294 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2295 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2297 return hugetlb_sysctl_handler_common(true, table
, write
,
2298 buffer
, length
, ppos
);
2300 #endif /* CONFIG_NUMA */
2302 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2303 void __user
*buffer
,
2304 size_t *length
, loff_t
*ppos
)
2306 struct hstate
*h
= &default_hstate
;
2310 if (!hugepages_supported())
2313 tmp
= h
->nr_overcommit_huge_pages
;
2315 if (write
&& hstate_is_gigantic(h
))
2319 table
->maxlen
= sizeof(unsigned long);
2320 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2325 spin_lock(&hugetlb_lock
);
2326 h
->nr_overcommit_huge_pages
= tmp
;
2327 spin_unlock(&hugetlb_lock
);
2333 #endif /* CONFIG_SYSCTL */
2335 void hugetlb_report_meminfo(struct seq_file
*m
)
2337 struct hstate
*h
= &default_hstate
;
2338 if (!hugepages_supported())
2341 "HugePages_Total: %5lu\n"
2342 "HugePages_Free: %5lu\n"
2343 "HugePages_Rsvd: %5lu\n"
2344 "HugePages_Surp: %5lu\n"
2345 "Hugepagesize: %8lu kB\n",
2349 h
->surplus_huge_pages
,
2350 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2353 int hugetlb_report_node_meminfo(int nid
, char *buf
)
2355 struct hstate
*h
= &default_hstate
;
2356 if (!hugepages_supported())
2359 "Node %d HugePages_Total: %5u\n"
2360 "Node %d HugePages_Free: %5u\n"
2361 "Node %d HugePages_Surp: %5u\n",
2362 nid
, h
->nr_huge_pages_node
[nid
],
2363 nid
, h
->free_huge_pages_node
[nid
],
2364 nid
, h
->surplus_huge_pages_node
[nid
]);
2367 void hugetlb_show_meminfo(void)
2372 if (!hugepages_supported())
2375 for_each_node_state(nid
, N_MEMORY
)
2377 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2379 h
->nr_huge_pages_node
[nid
],
2380 h
->free_huge_pages_node
[nid
],
2381 h
->surplus_huge_pages_node
[nid
],
2382 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2385 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2386 unsigned long hugetlb_total_pages(void)
2389 unsigned long nr_total_pages
= 0;
2392 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
2393 return nr_total_pages
;
2396 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
2400 spin_lock(&hugetlb_lock
);
2402 * When cpuset is configured, it breaks the strict hugetlb page
2403 * reservation as the accounting is done on a global variable. Such
2404 * reservation is completely rubbish in the presence of cpuset because
2405 * the reservation is not checked against page availability for the
2406 * current cpuset. Application can still potentially OOM'ed by kernel
2407 * with lack of free htlb page in cpuset that the task is in.
2408 * Attempt to enforce strict accounting with cpuset is almost
2409 * impossible (or too ugly) because cpuset is too fluid that
2410 * task or memory node can be dynamically moved between cpusets.
2412 * The change of semantics for shared hugetlb mapping with cpuset is
2413 * undesirable. However, in order to preserve some of the semantics,
2414 * we fall back to check against current free page availability as
2415 * a best attempt and hopefully to minimize the impact of changing
2416 * semantics that cpuset has.
2419 if (gather_surplus_pages(h
, delta
) < 0)
2422 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2423 return_unused_surplus_pages(h
, delta
);
2430 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2433 spin_unlock(&hugetlb_lock
);
2437 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2439 struct resv_map
*resv
= vma_resv_map(vma
);
2442 * This new VMA should share its siblings reservation map if present.
2443 * The VMA will only ever have a valid reservation map pointer where
2444 * it is being copied for another still existing VMA. As that VMA
2445 * has a reference to the reservation map it cannot disappear until
2446 * after this open call completes. It is therefore safe to take a
2447 * new reference here without additional locking.
2449 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
2450 kref_get(&resv
->refs
);
2453 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2455 struct hstate
*h
= hstate_vma(vma
);
2456 struct resv_map
*resv
= vma_resv_map(vma
);
2457 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2458 unsigned long reserve
, start
, end
;
2460 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
2463 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2464 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2466 reserve
= (end
- start
) - region_count(resv
, start
, end
);
2468 kref_put(&resv
->refs
, resv_map_release
);
2471 hugetlb_acct_memory(h
, -reserve
);
2472 hugepage_subpool_put_pages(spool
, reserve
);
2477 * We cannot handle pagefaults against hugetlb pages at all. They cause
2478 * handle_mm_fault() to try to instantiate regular-sized pages in the
2479 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2482 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2488 const struct vm_operations_struct hugetlb_vm_ops
= {
2489 .fault
= hugetlb_vm_op_fault
,
2490 .open
= hugetlb_vm_op_open
,
2491 .close
= hugetlb_vm_op_close
,
2494 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
2500 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
2501 vma
->vm_page_prot
)));
2503 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
2504 vma
->vm_page_prot
));
2506 entry
= pte_mkyoung(entry
);
2507 entry
= pte_mkhuge(entry
);
2508 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
2513 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
2514 unsigned long address
, pte_t
*ptep
)
2518 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
2519 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
2520 update_mmu_cache(vma
, address
, ptep
);
2524 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
2525 struct vm_area_struct
*vma
)
2527 pte_t
*src_pte
, *dst_pte
, entry
;
2528 struct page
*ptepage
;
2531 struct hstate
*h
= hstate_vma(vma
);
2532 unsigned long sz
= huge_page_size(h
);
2533 unsigned long mmun_start
; /* For mmu_notifiers */
2534 unsigned long mmun_end
; /* For mmu_notifiers */
2537 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
2539 mmun_start
= vma
->vm_start
;
2540 mmun_end
= vma
->vm_end
;
2542 mmu_notifier_invalidate_range_start(src
, mmun_start
, mmun_end
);
2544 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
2545 spinlock_t
*src_ptl
, *dst_ptl
;
2546 src_pte
= huge_pte_offset(src
, addr
);
2549 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
2555 /* If the pagetables are shared don't copy or take references */
2556 if (dst_pte
== src_pte
)
2559 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
2560 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
2561 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
2562 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
2564 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
2565 entry
= huge_ptep_get(src_pte
);
2566 ptepage
= pte_page(entry
);
2568 page_dup_rmap(ptepage
);
2569 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2571 spin_unlock(src_ptl
);
2572 spin_unlock(dst_ptl
);
2576 mmu_notifier_invalidate_range_end(src
, mmun_start
, mmun_end
);
2581 static int is_hugetlb_entry_migration(pte_t pte
)
2585 if (huge_pte_none(pte
) || pte_present(pte
))
2587 swp
= pte_to_swp_entry(pte
);
2588 if (non_swap_entry(swp
) && is_migration_entry(swp
))
2594 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
2598 if (huge_pte_none(pte
) || pte_present(pte
))
2600 swp
= pte_to_swp_entry(pte
);
2601 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
2607 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
2608 unsigned long start
, unsigned long end
,
2609 struct page
*ref_page
)
2611 int force_flush
= 0;
2612 struct mm_struct
*mm
= vma
->vm_mm
;
2613 unsigned long address
;
2618 struct hstate
*h
= hstate_vma(vma
);
2619 unsigned long sz
= huge_page_size(h
);
2620 const unsigned long mmun_start
= start
; /* For mmu_notifiers */
2621 const unsigned long mmun_end
= end
; /* For mmu_notifiers */
2623 WARN_ON(!is_vm_hugetlb_page(vma
));
2624 BUG_ON(start
& ~huge_page_mask(h
));
2625 BUG_ON(end
& ~huge_page_mask(h
));
2627 tlb_start_vma(tlb
, vma
);
2628 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2630 for (address
= start
; address
< end
; address
+= sz
) {
2631 ptep
= huge_pte_offset(mm
, address
);
2635 ptl
= huge_pte_lock(h
, mm
, ptep
);
2636 if (huge_pmd_unshare(mm
, &address
, ptep
))
2639 pte
= huge_ptep_get(ptep
);
2640 if (huge_pte_none(pte
))
2644 * HWPoisoned hugepage is already unmapped and dropped reference
2646 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
2647 huge_pte_clear(mm
, address
, ptep
);
2651 page
= pte_page(pte
);
2653 * If a reference page is supplied, it is because a specific
2654 * page is being unmapped, not a range. Ensure the page we
2655 * are about to unmap is the actual page of interest.
2658 if (page
!= ref_page
)
2662 * Mark the VMA as having unmapped its page so that
2663 * future faults in this VMA will fail rather than
2664 * looking like data was lost
2666 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
2669 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2670 tlb_remove_tlb_entry(tlb
, ptep
, address
);
2671 if (huge_pte_dirty(pte
))
2672 set_page_dirty(page
);
2674 page_remove_rmap(page
);
2675 force_flush
= !__tlb_remove_page(tlb
, page
);
2680 /* Bail out after unmapping reference page if supplied */
2689 * mmu_gather ran out of room to batch pages, we break out of
2690 * the PTE lock to avoid doing the potential expensive TLB invalidate
2691 * and page-free while holding it.
2696 if (address
< end
&& !ref_page
)
2699 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2700 tlb_end_vma(tlb
, vma
);
2703 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
2704 struct vm_area_struct
*vma
, unsigned long start
,
2705 unsigned long end
, struct page
*ref_page
)
2707 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
2710 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2711 * test will fail on a vma being torn down, and not grab a page table
2712 * on its way out. We're lucky that the flag has such an appropriate
2713 * name, and can in fact be safely cleared here. We could clear it
2714 * before the __unmap_hugepage_range above, but all that's necessary
2715 * is to clear it before releasing the i_mmap_mutex. This works
2716 * because in the context this is called, the VMA is about to be
2717 * destroyed and the i_mmap_mutex is held.
2719 vma
->vm_flags
&= ~VM_MAYSHARE
;
2722 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2723 unsigned long end
, struct page
*ref_page
)
2725 struct mm_struct
*mm
;
2726 struct mmu_gather tlb
;
2730 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2731 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
2732 tlb_finish_mmu(&tlb
, start
, end
);
2736 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2737 * mappping it owns the reserve page for. The intention is to unmap the page
2738 * from other VMAs and let the children be SIGKILLed if they are faulting the
2741 static int unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2742 struct page
*page
, unsigned long address
)
2744 struct hstate
*h
= hstate_vma(vma
);
2745 struct vm_area_struct
*iter_vma
;
2746 struct address_space
*mapping
;
2750 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2751 * from page cache lookup which is in HPAGE_SIZE units.
2753 address
= address
& huge_page_mask(h
);
2754 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
2756 mapping
= file_inode(vma
->vm_file
)->i_mapping
;
2759 * Take the mapping lock for the duration of the table walk. As
2760 * this mapping should be shared between all the VMAs,
2761 * __unmap_hugepage_range() is called as the lock is already held
2763 mutex_lock(&mapping
->i_mmap_mutex
);
2764 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
2765 /* Do not unmap the current VMA */
2766 if (iter_vma
== vma
)
2770 * Unmap the page from other VMAs without their own reserves.
2771 * They get marked to be SIGKILLed if they fault in these
2772 * areas. This is because a future no-page fault on this VMA
2773 * could insert a zeroed page instead of the data existing
2774 * from the time of fork. This would look like data corruption
2776 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
2777 unmap_hugepage_range(iter_vma
, address
,
2778 address
+ huge_page_size(h
), page
);
2780 mutex_unlock(&mapping
->i_mmap_mutex
);
2786 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2787 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2788 * cannot race with other handlers or page migration.
2789 * Keep the pte_same checks anyway to make transition from the mutex easier.
2791 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2792 unsigned long address
, pte_t
*ptep
, pte_t pte
,
2793 struct page
*pagecache_page
, spinlock_t
*ptl
)
2795 struct hstate
*h
= hstate_vma(vma
);
2796 struct page
*old_page
, *new_page
;
2797 int outside_reserve
= 0;
2798 unsigned long mmun_start
; /* For mmu_notifiers */
2799 unsigned long mmun_end
; /* For mmu_notifiers */
2801 old_page
= pte_page(pte
);
2804 /* If no-one else is actually using this page, avoid the copy
2805 * and just make the page writable */
2806 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
2807 page_move_anon_rmap(old_page
, vma
, address
);
2808 set_huge_ptep_writable(vma
, address
, ptep
);
2813 * If the process that created a MAP_PRIVATE mapping is about to
2814 * perform a COW due to a shared page count, attempt to satisfy
2815 * the allocation without using the existing reserves. The pagecache
2816 * page is used to determine if the reserve at this address was
2817 * consumed or not. If reserves were used, a partial faulted mapping
2818 * at the time of fork() could consume its reserves on COW instead
2819 * of the full address range.
2821 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
2822 old_page
!= pagecache_page
)
2823 outside_reserve
= 1;
2825 page_cache_get(old_page
);
2827 /* Drop page table lock as buddy allocator may be called */
2829 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
2831 if (IS_ERR(new_page
)) {
2832 long err
= PTR_ERR(new_page
);
2833 page_cache_release(old_page
);
2836 * If a process owning a MAP_PRIVATE mapping fails to COW,
2837 * it is due to references held by a child and an insufficient
2838 * huge page pool. To guarantee the original mappers
2839 * reliability, unmap the page from child processes. The child
2840 * may get SIGKILLed if it later faults.
2842 if (outside_reserve
) {
2843 BUG_ON(huge_pte_none(pte
));
2844 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
2845 BUG_ON(huge_pte_none(pte
));
2847 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2849 pte_same(huge_ptep_get(ptep
), pte
)))
2850 goto retry_avoidcopy
;
2852 * race occurs while re-acquiring page table
2853 * lock, and our job is done.
2860 /* Caller expects lock to be held */
2863 return VM_FAULT_OOM
;
2865 return VM_FAULT_SIGBUS
;
2869 * When the original hugepage is shared one, it does not have
2870 * anon_vma prepared.
2872 if (unlikely(anon_vma_prepare(vma
))) {
2873 page_cache_release(new_page
);
2874 page_cache_release(old_page
);
2875 /* Caller expects lock to be held */
2877 return VM_FAULT_OOM
;
2880 copy_user_huge_page(new_page
, old_page
, address
, vma
,
2881 pages_per_huge_page(h
));
2882 __SetPageUptodate(new_page
);
2884 mmun_start
= address
& huge_page_mask(h
);
2885 mmun_end
= mmun_start
+ huge_page_size(h
);
2886 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2888 * Retake the page table lock to check for racing updates
2889 * before the page tables are altered
2892 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2893 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
2894 ClearPagePrivate(new_page
);
2897 huge_ptep_clear_flush(vma
, address
, ptep
);
2898 set_huge_pte_at(mm
, address
, ptep
,
2899 make_huge_pte(vma
, new_page
, 1));
2900 page_remove_rmap(old_page
);
2901 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
2902 /* Make the old page be freed below */
2903 new_page
= old_page
;
2906 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2907 page_cache_release(new_page
);
2908 page_cache_release(old_page
);
2910 /* Caller expects lock to be held */
2915 /* Return the pagecache page at a given address within a VMA */
2916 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
2917 struct vm_area_struct
*vma
, unsigned long address
)
2919 struct address_space
*mapping
;
2922 mapping
= vma
->vm_file
->f_mapping
;
2923 idx
= vma_hugecache_offset(h
, vma
, address
);
2925 return find_lock_page(mapping
, idx
);
2929 * Return whether there is a pagecache page to back given address within VMA.
2930 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2932 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
2933 struct vm_area_struct
*vma
, unsigned long address
)
2935 struct address_space
*mapping
;
2939 mapping
= vma
->vm_file
->f_mapping
;
2940 idx
= vma_hugecache_offset(h
, vma
, address
);
2942 page
= find_get_page(mapping
, idx
);
2945 return page
!= NULL
;
2948 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2949 struct address_space
*mapping
, pgoff_t idx
,
2950 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
2952 struct hstate
*h
= hstate_vma(vma
);
2953 int ret
= VM_FAULT_SIGBUS
;
2961 * Currently, we are forced to kill the process in the event the
2962 * original mapper has unmapped pages from the child due to a failed
2963 * COW. Warn that such a situation has occurred as it may not be obvious
2965 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
2966 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2972 * Use page lock to guard against racing truncation
2973 * before we get page_table_lock.
2976 page
= find_lock_page(mapping
, idx
);
2978 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2981 page
= alloc_huge_page(vma
, address
, 0);
2983 ret
= PTR_ERR(page
);
2987 ret
= VM_FAULT_SIGBUS
;
2990 clear_huge_page(page
, address
, pages_per_huge_page(h
));
2991 __SetPageUptodate(page
);
2993 if (vma
->vm_flags
& VM_MAYSHARE
) {
2995 struct inode
*inode
= mapping
->host
;
2997 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
3004 ClearPagePrivate(page
);
3006 spin_lock(&inode
->i_lock
);
3007 inode
->i_blocks
+= blocks_per_huge_page(h
);
3008 spin_unlock(&inode
->i_lock
);
3011 if (unlikely(anon_vma_prepare(vma
))) {
3013 goto backout_unlocked
;
3019 * If memory error occurs between mmap() and fault, some process
3020 * don't have hwpoisoned swap entry for errored virtual address.
3021 * So we need to block hugepage fault by PG_hwpoison bit check.
3023 if (unlikely(PageHWPoison(page
))) {
3024 ret
= VM_FAULT_HWPOISON
|
3025 VM_FAULT_SET_HINDEX(hstate_index(h
));
3026 goto backout_unlocked
;
3031 * If we are going to COW a private mapping later, we examine the
3032 * pending reservations for this page now. This will ensure that
3033 * any allocations necessary to record that reservation occur outside
3036 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
))
3037 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3039 goto backout_unlocked
;
3042 ptl
= huge_pte_lockptr(h
, mm
, ptep
);
3044 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3049 if (!huge_pte_none(huge_ptep_get(ptep
)))
3053 ClearPagePrivate(page
);
3054 hugepage_add_new_anon_rmap(page
, vma
, address
);
3056 page_dup_rmap(page
);
3057 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
3058 && (vma
->vm_flags
& VM_SHARED
)));
3059 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
3061 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3062 /* Optimization, do the COW without a second fault */
3063 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
, ptl
);
3080 static u32
fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3081 struct vm_area_struct
*vma
,
3082 struct address_space
*mapping
,
3083 pgoff_t idx
, unsigned long address
)
3085 unsigned long key
[2];
3088 if (vma
->vm_flags
& VM_SHARED
) {
3089 key
[0] = (unsigned long) mapping
;
3092 key
[0] = (unsigned long) mm
;
3093 key
[1] = address
>> huge_page_shift(h
);
3096 hash
= jhash2((u32
*)&key
, sizeof(key
)/sizeof(u32
), 0);
3098 return hash
& (num_fault_mutexes
- 1);
3102 * For uniprocesor systems we always use a single mutex, so just
3103 * return 0 and avoid the hashing overhead.
3105 static u32
fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3106 struct vm_area_struct
*vma
,
3107 struct address_space
*mapping
,
3108 pgoff_t idx
, unsigned long address
)
3114 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3115 unsigned long address
, unsigned int flags
)
3122 struct page
*page
= NULL
;
3123 struct page
*pagecache_page
= NULL
;
3124 struct hstate
*h
= hstate_vma(vma
);
3125 struct address_space
*mapping
;
3127 address
&= huge_page_mask(h
);
3129 ptep
= huge_pte_offset(mm
, address
);
3131 entry
= huge_ptep_get(ptep
);
3132 if (unlikely(is_hugetlb_entry_migration(entry
))) {
3133 migration_entry_wait_huge(vma
, mm
, ptep
);
3135 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
3136 return VM_FAULT_HWPOISON_LARGE
|
3137 VM_FAULT_SET_HINDEX(hstate_index(h
));
3140 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
3142 return VM_FAULT_OOM
;
3144 mapping
= vma
->vm_file
->f_mapping
;
3145 idx
= vma_hugecache_offset(h
, vma
, address
);
3148 * Serialize hugepage allocation and instantiation, so that we don't
3149 * get spurious allocation failures if two CPUs race to instantiate
3150 * the same page in the page cache.
3152 hash
= fault_mutex_hash(h
, mm
, vma
, mapping
, idx
, address
);
3153 mutex_lock(&htlb_fault_mutex_table
[hash
]);
3155 entry
= huge_ptep_get(ptep
);
3156 if (huge_pte_none(entry
)) {
3157 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
3164 * If we are going to COW the mapping later, we examine the pending
3165 * reservations for this page now. This will ensure that any
3166 * allocations necessary to record that reservation occur outside the
3167 * spinlock. For private mappings, we also lookup the pagecache
3168 * page now as it is used to determine if a reservation has been
3171 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
3172 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3177 if (!(vma
->vm_flags
& VM_MAYSHARE
))
3178 pagecache_page
= hugetlbfs_pagecache_page(h
,
3183 * hugetlb_cow() requires page locks of pte_page(entry) and
3184 * pagecache_page, so here we need take the former one
3185 * when page != pagecache_page or !pagecache_page.
3186 * Note that locking order is always pagecache_page -> page,
3187 * so no worry about deadlock.
3189 page
= pte_page(entry
);
3191 if (page
!= pagecache_page
)
3194 ptl
= huge_pte_lockptr(h
, mm
, ptep
);
3196 /* Check for a racing update before calling hugetlb_cow */
3197 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
3201 if (flags
& FAULT_FLAG_WRITE
) {
3202 if (!huge_pte_write(entry
)) {
3203 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
3204 pagecache_page
, ptl
);
3207 entry
= huge_pte_mkdirty(entry
);
3209 entry
= pte_mkyoung(entry
);
3210 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
3211 flags
& FAULT_FLAG_WRITE
))
3212 update_mmu_cache(vma
, address
, ptep
);
3217 if (pagecache_page
) {
3218 unlock_page(pagecache_page
);
3219 put_page(pagecache_page
);
3221 if (page
!= pagecache_page
)
3226 mutex_unlock(&htlb_fault_mutex_table
[hash
]);
3230 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3231 struct page
**pages
, struct vm_area_struct
**vmas
,
3232 unsigned long *position
, unsigned long *nr_pages
,
3233 long i
, unsigned int flags
)
3235 unsigned long pfn_offset
;
3236 unsigned long vaddr
= *position
;
3237 unsigned long remainder
= *nr_pages
;
3238 struct hstate
*h
= hstate_vma(vma
);
3240 while (vaddr
< vma
->vm_end
&& remainder
) {
3242 spinlock_t
*ptl
= NULL
;
3247 * Some archs (sparc64, sh*) have multiple pte_ts to
3248 * each hugepage. We have to make sure we get the
3249 * first, for the page indexing below to work.
3251 * Note that page table lock is not held when pte is null.
3253 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
3255 ptl
= huge_pte_lock(h
, mm
, pte
);
3256 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
3259 * When coredumping, it suits get_dump_page if we just return
3260 * an error where there's an empty slot with no huge pagecache
3261 * to back it. This way, we avoid allocating a hugepage, and
3262 * the sparse dumpfile avoids allocating disk blocks, but its
3263 * huge holes still show up with zeroes where they need to be.
3265 if (absent
&& (flags
& FOLL_DUMP
) &&
3266 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
3274 * We need call hugetlb_fault for both hugepages under migration
3275 * (in which case hugetlb_fault waits for the migration,) and
3276 * hwpoisoned hugepages (in which case we need to prevent the
3277 * caller from accessing to them.) In order to do this, we use
3278 * here is_swap_pte instead of is_hugetlb_entry_migration and
3279 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3280 * both cases, and because we can't follow correct pages
3281 * directly from any kind of swap entries.
3283 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
3284 ((flags
& FOLL_WRITE
) &&
3285 !huge_pte_write(huge_ptep_get(pte
)))) {
3290 ret
= hugetlb_fault(mm
, vma
, vaddr
,
3291 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
3292 if (!(ret
& VM_FAULT_ERROR
))
3299 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
3300 page
= pte_page(huge_ptep_get(pte
));
3303 pages
[i
] = mem_map_offset(page
, pfn_offset
);
3304 get_page_foll(pages
[i
]);
3314 if (vaddr
< vma
->vm_end
&& remainder
&&
3315 pfn_offset
< pages_per_huge_page(h
)) {
3317 * We use pfn_offset to avoid touching the pageframes
3318 * of this compound page.
3324 *nr_pages
= remainder
;
3327 return i
? i
: -EFAULT
;
3330 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
3331 unsigned long address
, unsigned long end
, pgprot_t newprot
)
3333 struct mm_struct
*mm
= vma
->vm_mm
;
3334 unsigned long start
= address
;
3337 struct hstate
*h
= hstate_vma(vma
);
3338 unsigned long pages
= 0;
3340 BUG_ON(address
>= end
);
3341 flush_cache_range(vma
, address
, end
);
3343 mmu_notifier_invalidate_range_start(mm
, start
, end
);
3344 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
3345 for (; address
< end
; address
+= huge_page_size(h
)) {
3347 ptep
= huge_pte_offset(mm
, address
);
3350 ptl
= huge_pte_lock(h
, mm
, ptep
);
3351 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3356 if (!huge_pte_none(huge_ptep_get(ptep
))) {
3357 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3358 pte
= pte_mkhuge(huge_pte_modify(pte
, newprot
));
3359 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
3360 set_huge_pte_at(mm
, address
, ptep
, pte
);
3366 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3367 * may have cleared our pud entry and done put_page on the page table:
3368 * once we release i_mmap_mutex, another task can do the final put_page
3369 * and that page table be reused and filled with junk.
3371 flush_tlb_range(vma
, start
, end
);
3372 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
3373 mmu_notifier_invalidate_range_end(mm
, start
, end
);
3375 return pages
<< h
->order
;
3378 int hugetlb_reserve_pages(struct inode
*inode
,
3380 struct vm_area_struct
*vma
,
3381 vm_flags_t vm_flags
)
3384 struct hstate
*h
= hstate_inode(inode
);
3385 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3386 struct resv_map
*resv_map
;
3389 * Only apply hugepage reservation if asked. At fault time, an
3390 * attempt will be made for VM_NORESERVE to allocate a page
3391 * without using reserves
3393 if (vm_flags
& VM_NORESERVE
)
3397 * Shared mappings base their reservation on the number of pages that
3398 * are already allocated on behalf of the file. Private mappings need
3399 * to reserve the full area even if read-only as mprotect() may be
3400 * called to make the mapping read-write. Assume !vma is a shm mapping
3402 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
3403 resv_map
= inode_resv_map(inode
);
3405 chg
= region_chg(resv_map
, from
, to
);
3408 resv_map
= resv_map_alloc();
3414 set_vma_resv_map(vma
, resv_map
);
3415 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
3423 /* There must be enough pages in the subpool for the mapping */
3424 if (hugepage_subpool_get_pages(spool
, chg
)) {
3430 * Check enough hugepages are available for the reservation.
3431 * Hand the pages back to the subpool if there are not
3433 ret
= hugetlb_acct_memory(h
, chg
);
3435 hugepage_subpool_put_pages(spool
, chg
);
3440 * Account for the reservations made. Shared mappings record regions
3441 * that have reservations as they are shared by multiple VMAs.
3442 * When the last VMA disappears, the region map says how much
3443 * the reservation was and the page cache tells how much of
3444 * the reservation was consumed. Private mappings are per-VMA and
3445 * only the consumed reservations are tracked. When the VMA
3446 * disappears, the original reservation is the VMA size and the
3447 * consumed reservations are stored in the map. Hence, nothing
3448 * else has to be done for private mappings here
3450 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
3451 region_add(resv_map
, from
, to
);
3454 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3455 kref_put(&resv_map
->refs
, resv_map_release
);
3459 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
3461 struct hstate
*h
= hstate_inode(inode
);
3462 struct resv_map
*resv_map
= inode_resv_map(inode
);
3464 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3467 chg
= region_truncate(resv_map
, offset
);
3468 spin_lock(&inode
->i_lock
);
3469 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
3470 spin_unlock(&inode
->i_lock
);
3472 hugepage_subpool_put_pages(spool
, (chg
- freed
));
3473 hugetlb_acct_memory(h
, -(chg
- freed
));
3476 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3477 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
3478 struct vm_area_struct
*vma
,
3479 unsigned long addr
, pgoff_t idx
)
3481 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
3483 unsigned long sbase
= saddr
& PUD_MASK
;
3484 unsigned long s_end
= sbase
+ PUD_SIZE
;
3486 /* Allow segments to share if only one is marked locked */
3487 unsigned long vm_flags
= vma
->vm_flags
& ~VM_LOCKED
;
3488 unsigned long svm_flags
= svma
->vm_flags
& ~VM_LOCKED
;
3491 * match the virtual addresses, permission and the alignment of the
3494 if (pmd_index(addr
) != pmd_index(saddr
) ||
3495 vm_flags
!= svm_flags
||
3496 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
3502 static int vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
3504 unsigned long base
= addr
& PUD_MASK
;
3505 unsigned long end
= base
+ PUD_SIZE
;
3508 * check on proper vm_flags and page table alignment
3510 if (vma
->vm_flags
& VM_MAYSHARE
&&
3511 vma
->vm_start
<= base
&& end
<= vma
->vm_end
)
3517 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3518 * and returns the corresponding pte. While this is not necessary for the
3519 * !shared pmd case because we can allocate the pmd later as well, it makes the
3520 * code much cleaner. pmd allocation is essential for the shared case because
3521 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3522 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3523 * bad pmd for sharing.
3525 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
3527 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
3528 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
3529 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
3531 struct vm_area_struct
*svma
;
3532 unsigned long saddr
;
3537 if (!vma_shareable(vma
, addr
))
3538 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3540 mutex_lock(&mapping
->i_mmap_mutex
);
3541 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
3545 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
3547 spte
= huge_pte_offset(svma
->vm_mm
, saddr
);
3549 get_page(virt_to_page(spte
));
3558 ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, spte
);
3561 pud_populate(mm
, pud
,
3562 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
3564 put_page(virt_to_page(spte
));
3567 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3568 mutex_unlock(&mapping
->i_mmap_mutex
);
3573 * unmap huge page backed by shared pte.
3575 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3576 * indicated by page_count > 1, unmap is achieved by clearing pud and
3577 * decrementing the ref count. If count == 1, the pte page is not shared.
3579 * called with page table lock held.
3581 * returns: 1 successfully unmapped a shared pte page
3582 * 0 the underlying pte page is not shared, or it is the last user
3584 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
3586 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
3587 pud_t
*pud
= pud_offset(pgd
, *addr
);
3589 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
3590 if (page_count(virt_to_page(ptep
)) == 1)
3594 put_page(virt_to_page(ptep
));
3595 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
3598 #define want_pmd_share() (1)
3599 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3600 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
3604 #define want_pmd_share() (0)
3605 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3607 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3608 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
3609 unsigned long addr
, unsigned long sz
)
3615 pgd
= pgd_offset(mm
, addr
);
3616 pud
= pud_alloc(mm
, pgd
, addr
);
3618 if (sz
== PUD_SIZE
) {
3621 BUG_ON(sz
!= PMD_SIZE
);
3622 if (want_pmd_share() && pud_none(*pud
))
3623 pte
= huge_pmd_share(mm
, addr
, pud
);
3625 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3628 BUG_ON(pte
&& !pte_none(*pte
) && !pte_huge(*pte
));
3633 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
3639 pgd
= pgd_offset(mm
, addr
);
3640 if (pgd_present(*pgd
)) {
3641 pud
= pud_offset(pgd
, addr
);
3642 if (pud_present(*pud
)) {
3644 return (pte_t
*)pud
;
3645 pmd
= pmd_offset(pud
, addr
);
3648 return (pte_t
*) pmd
;
3652 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
3653 pmd_t
*pmd
, int write
)
3657 page
= pte_page(*(pte_t
*)pmd
);
3659 page
+= ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
3664 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
3665 pud_t
*pud
, int write
)
3669 page
= pte_page(*(pte_t
*)pud
);
3671 page
+= ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
3675 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3677 /* Can be overriden by architectures */
3678 struct page
* __weak
3679 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
3680 pud_t
*pud
, int write
)
3686 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3688 #ifdef CONFIG_MEMORY_FAILURE
3690 /* Should be called in hugetlb_lock */
3691 static int is_hugepage_on_freelist(struct page
*hpage
)
3695 struct hstate
*h
= page_hstate(hpage
);
3696 int nid
= page_to_nid(hpage
);
3698 list_for_each_entry_safe(page
, tmp
, &h
->hugepage_freelists
[nid
], lru
)
3705 * This function is called from memory failure code.
3706 * Assume the caller holds page lock of the head page.
3708 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
3710 struct hstate
*h
= page_hstate(hpage
);
3711 int nid
= page_to_nid(hpage
);
3714 spin_lock(&hugetlb_lock
);
3715 if (is_hugepage_on_freelist(hpage
)) {
3717 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3718 * but dangling hpage->lru can trigger list-debug warnings
3719 * (this happens when we call unpoison_memory() on it),
3720 * so let it point to itself with list_del_init().
3722 list_del_init(&hpage
->lru
);
3723 set_page_refcounted(hpage
);
3724 h
->free_huge_pages
--;
3725 h
->free_huge_pages_node
[nid
]--;
3728 spin_unlock(&hugetlb_lock
);
3733 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
3735 VM_BUG_ON_PAGE(!PageHead(page
), page
);
3736 if (!get_page_unless_zero(page
))
3738 spin_lock(&hugetlb_lock
);
3739 list_move_tail(&page
->lru
, list
);
3740 spin_unlock(&hugetlb_lock
);
3744 void putback_active_hugepage(struct page
*page
)
3746 VM_BUG_ON_PAGE(!PageHead(page
), page
);
3747 spin_lock(&hugetlb_lock
);
3748 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
3749 spin_unlock(&hugetlb_lock
);
3753 bool is_hugepage_active(struct page
*page
)
3755 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
3757 * This function can be called for a tail page because the caller,
3758 * scan_movable_pages, scans through a given pfn-range which typically
3759 * covers one memory block. In systems using gigantic hugepage (1GB
3760 * for x86_64,) a hugepage is larger than a memory block, and we don't
3761 * support migrating such large hugepages for now, so return false
3762 * when called for tail pages.
3767 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3768 * so we should return false for them.
3770 if (unlikely(PageHWPoison(page
)))
3772 return page_count(page
) > 0;