2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
61 #include <asm/tlbflush.h>
65 static struct kmem_cache
*anon_vma_cachep
;
66 static struct kmem_cache
*anon_vma_chain_cachep
;
68 static inline struct anon_vma
*anon_vma_alloc(void)
70 struct anon_vma
*anon_vma
;
72 anon_vma
= kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
74 atomic_set(&anon_vma
->refcount
, 1);
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
79 anon_vma
->root
= anon_vma
;
85 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
87 VM_BUG_ON(atomic_read(&anon_vma
->refcount
));
90 * Synchronize against page_lock_anon_vma_read() such that
91 * we can safely hold the lock without the anon_vma getting
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
101 * atomic_read() rwsem_is_locked()
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
107 if (rwsem_is_locked(&anon_vma
->root
->rwsem
)) {
108 anon_vma_lock_write(anon_vma
);
109 anon_vma_unlock_write(anon_vma
);
112 kmem_cache_free(anon_vma_cachep
, anon_vma
);
115 static inline struct anon_vma_chain
*anon_vma_chain_alloc(gfp_t gfp
)
117 return kmem_cache_alloc(anon_vma_chain_cachep
, gfp
);
120 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
122 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
125 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
126 struct anon_vma_chain
*avc
,
127 struct anon_vma
*anon_vma
)
130 avc
->anon_vma
= anon_vma
;
131 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
132 anon_vma_interval_tree_insert(avc
, &anon_vma
->rb_root
);
136 * anon_vma_prepare - attach an anon_vma to a memory region
137 * @vma: the memory region in question
139 * This makes sure the memory mapping described by 'vma' has
140 * an 'anon_vma' attached to it, so that we can associate the
141 * anonymous pages mapped into it with that anon_vma.
143 * The common case will be that we already have one, but if
144 * not we either need to find an adjacent mapping that we
145 * can re-use the anon_vma from (very common when the only
146 * reason for splitting a vma has been mprotect()), or we
147 * allocate a new one.
149 * Anon-vma allocations are very subtle, because we may have
150 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
151 * and that may actually touch the spinlock even in the newly
152 * allocated vma (it depends on RCU to make sure that the
153 * anon_vma isn't actually destroyed).
155 * As a result, we need to do proper anon_vma locking even
156 * for the new allocation. At the same time, we do not want
157 * to do any locking for the common case of already having
160 * This must be called with the mmap_sem held for reading.
162 int anon_vma_prepare(struct vm_area_struct
*vma
)
164 struct anon_vma
*anon_vma
= vma
->anon_vma
;
165 struct anon_vma_chain
*avc
;
168 if (unlikely(!anon_vma
)) {
169 struct mm_struct
*mm
= vma
->vm_mm
;
170 struct anon_vma
*allocated
;
172 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
176 anon_vma
= find_mergeable_anon_vma(vma
);
179 anon_vma
= anon_vma_alloc();
180 if (unlikely(!anon_vma
))
181 goto out_enomem_free_avc
;
182 allocated
= anon_vma
;
185 anon_vma_lock_write(anon_vma
);
186 /* page_table_lock to protect against threads */
187 spin_lock(&mm
->page_table_lock
);
188 if (likely(!vma
->anon_vma
)) {
189 vma
->anon_vma
= anon_vma
;
190 anon_vma_chain_link(vma
, avc
, anon_vma
);
194 spin_unlock(&mm
->page_table_lock
);
195 anon_vma_unlock_write(anon_vma
);
197 if (unlikely(allocated
))
198 put_anon_vma(allocated
);
200 anon_vma_chain_free(avc
);
205 anon_vma_chain_free(avc
);
211 * This is a useful helper function for locking the anon_vma root as
212 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
215 * Such anon_vma's should have the same root, so you'd expect to see
216 * just a single mutex_lock for the whole traversal.
218 static inline struct anon_vma
*lock_anon_vma_root(struct anon_vma
*root
, struct anon_vma
*anon_vma
)
220 struct anon_vma
*new_root
= anon_vma
->root
;
221 if (new_root
!= root
) {
222 if (WARN_ON_ONCE(root
))
223 up_write(&root
->rwsem
);
225 down_write(&root
->rwsem
);
230 static inline void unlock_anon_vma_root(struct anon_vma
*root
)
233 up_write(&root
->rwsem
);
237 * Attach the anon_vmas from src to dst.
238 * Returns 0 on success, -ENOMEM on failure.
240 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
242 struct anon_vma_chain
*avc
, *pavc
;
243 struct anon_vma
*root
= NULL
;
245 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
246 struct anon_vma
*anon_vma
;
248 avc
= anon_vma_chain_alloc(GFP_NOWAIT
| __GFP_NOWARN
);
249 if (unlikely(!avc
)) {
250 unlock_anon_vma_root(root
);
252 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
256 anon_vma
= pavc
->anon_vma
;
257 root
= lock_anon_vma_root(root
, anon_vma
);
258 anon_vma_chain_link(dst
, avc
, anon_vma
);
260 unlock_anon_vma_root(root
);
264 unlink_anon_vmas(dst
);
269 * Attach vma to its own anon_vma, as well as to the anon_vmas that
270 * the corresponding VMA in the parent process is attached to.
271 * Returns 0 on success, non-zero on failure.
273 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
275 struct anon_vma_chain
*avc
;
276 struct anon_vma
*anon_vma
;
278 /* Don't bother if the parent process has no anon_vma here. */
283 * First, attach the new VMA to the parent VMA's anon_vmas,
284 * so rmap can find non-COWed pages in child processes.
286 if (anon_vma_clone(vma
, pvma
))
289 /* Then add our own anon_vma. */
290 anon_vma
= anon_vma_alloc();
293 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
295 goto out_error_free_anon_vma
;
298 * The root anon_vma's spinlock is the lock actually used when we
299 * lock any of the anon_vmas in this anon_vma tree.
301 anon_vma
->root
= pvma
->anon_vma
->root
;
303 * With refcounts, an anon_vma can stay around longer than the
304 * process it belongs to. The root anon_vma needs to be pinned until
305 * this anon_vma is freed, because the lock lives in the root.
307 get_anon_vma(anon_vma
->root
);
308 /* Mark this anon_vma as the one where our new (COWed) pages go. */
309 vma
->anon_vma
= anon_vma
;
310 anon_vma_lock_write(anon_vma
);
311 anon_vma_chain_link(vma
, avc
, anon_vma
);
312 anon_vma_unlock_write(anon_vma
);
316 out_error_free_anon_vma
:
317 put_anon_vma(anon_vma
);
319 unlink_anon_vmas(vma
);
323 void unlink_anon_vmas(struct vm_area_struct
*vma
)
325 struct anon_vma_chain
*avc
, *next
;
326 struct anon_vma
*root
= NULL
;
329 * Unlink each anon_vma chained to the VMA. This list is ordered
330 * from newest to oldest, ensuring the root anon_vma gets freed last.
332 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
333 struct anon_vma
*anon_vma
= avc
->anon_vma
;
335 root
= lock_anon_vma_root(root
, anon_vma
);
336 anon_vma_interval_tree_remove(avc
, &anon_vma
->rb_root
);
339 * Leave empty anon_vmas on the list - we'll need
340 * to free them outside the lock.
342 if (RB_EMPTY_ROOT(&anon_vma
->rb_root
))
345 list_del(&avc
->same_vma
);
346 anon_vma_chain_free(avc
);
348 unlock_anon_vma_root(root
);
351 * Iterate the list once more, it now only contains empty and unlinked
352 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
353 * needing to write-acquire the anon_vma->root->rwsem.
355 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
356 struct anon_vma
*anon_vma
= avc
->anon_vma
;
358 put_anon_vma(anon_vma
);
360 list_del(&avc
->same_vma
);
361 anon_vma_chain_free(avc
);
365 static void anon_vma_ctor(void *data
)
367 struct anon_vma
*anon_vma
= data
;
369 init_rwsem(&anon_vma
->rwsem
);
370 atomic_set(&anon_vma
->refcount
, 0);
371 anon_vma
->rb_root
= RB_ROOT
;
374 void __init
anon_vma_init(void)
376 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
377 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
378 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
, SLAB_PANIC
);
382 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
384 * Since there is no serialization what so ever against page_remove_rmap()
385 * the best this function can do is return a locked anon_vma that might
386 * have been relevant to this page.
388 * The page might have been remapped to a different anon_vma or the anon_vma
389 * returned may already be freed (and even reused).
391 * In case it was remapped to a different anon_vma, the new anon_vma will be a
392 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
393 * ensure that any anon_vma obtained from the page will still be valid for as
394 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
396 * All users of this function must be very careful when walking the anon_vma
397 * chain and verify that the page in question is indeed mapped in it
398 * [ something equivalent to page_mapped_in_vma() ].
400 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
401 * that the anon_vma pointer from page->mapping is valid if there is a
402 * mapcount, we can dereference the anon_vma after observing those.
404 struct anon_vma
*page_get_anon_vma(struct page
*page
)
406 struct anon_vma
*anon_vma
= NULL
;
407 unsigned long anon_mapping
;
410 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
411 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
413 if (!page_mapped(page
))
416 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
417 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
423 * If this page is still mapped, then its anon_vma cannot have been
424 * freed. But if it has been unmapped, we have no security against the
425 * anon_vma structure being freed and reused (for another anon_vma:
426 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
427 * above cannot corrupt).
429 if (!page_mapped(page
)) {
431 put_anon_vma(anon_vma
);
441 * Similar to page_get_anon_vma() except it locks the anon_vma.
443 * Its a little more complex as it tries to keep the fast path to a single
444 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
445 * reference like with page_get_anon_vma() and then block on the mutex.
447 struct anon_vma
*page_lock_anon_vma_read(struct page
*page
)
449 struct anon_vma
*anon_vma
= NULL
;
450 struct anon_vma
*root_anon_vma
;
451 unsigned long anon_mapping
;
454 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
455 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
457 if (!page_mapped(page
))
460 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
461 root_anon_vma
= ACCESS_ONCE(anon_vma
->root
);
462 if (down_read_trylock(&root_anon_vma
->rwsem
)) {
464 * If the page is still mapped, then this anon_vma is still
465 * its anon_vma, and holding the mutex ensures that it will
466 * not go away, see anon_vma_free().
468 if (!page_mapped(page
)) {
469 up_read(&root_anon_vma
->rwsem
);
475 /* trylock failed, we got to sleep */
476 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
481 if (!page_mapped(page
)) {
483 put_anon_vma(anon_vma
);
487 /* we pinned the anon_vma, its safe to sleep */
489 anon_vma_lock_read(anon_vma
);
491 if (atomic_dec_and_test(&anon_vma
->refcount
)) {
493 * Oops, we held the last refcount, release the lock
494 * and bail -- can't simply use put_anon_vma() because
495 * we'll deadlock on the anon_vma_lock_write() recursion.
497 anon_vma_unlock_read(anon_vma
);
498 __put_anon_vma(anon_vma
);
509 void page_unlock_anon_vma_read(struct anon_vma
*anon_vma
)
511 anon_vma_unlock_read(anon_vma
);
515 * At what user virtual address is page expected in @vma?
517 static inline unsigned long
518 __vma_address(struct page
*page
, struct vm_area_struct
*vma
)
520 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
522 if (unlikely(is_vm_hugetlb_page(vma
)))
523 pgoff
= page
->index
<< huge_page_order(page_hstate(page
));
525 return vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
529 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
531 unsigned long address
= __vma_address(page
, vma
);
533 /* page should be within @vma mapping range */
534 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
540 * At what user virtual address is page expected in vma?
541 * Caller should check the page is actually part of the vma.
543 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
545 unsigned long address
;
546 if (PageAnon(page
)) {
547 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
549 * Note: swapoff's unuse_vma() is more efficient with this
550 * check, and needs it to match anon_vma when KSM is active.
552 if (!vma
->anon_vma
|| !page__anon_vma
||
553 vma
->anon_vma
->root
!= page__anon_vma
->root
)
555 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
557 vma
->vm_file
->f_mapping
!= page
->mapping
)
561 address
= __vma_address(page
, vma
);
562 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
567 pmd_t
*mm_find_pmd(struct mm_struct
*mm
, unsigned long address
)
573 pgd
= pgd_offset(mm
, address
);
574 if (!pgd_present(*pgd
))
577 pud
= pud_offset(pgd
, address
);
578 if (!pud_present(*pud
))
581 pmd
= pmd_offset(pud
, address
);
582 if (!pmd_present(*pmd
))
589 * Check that @page is mapped at @address into @mm.
591 * If @sync is false, page_check_address may perform a racy check to avoid
592 * the page table lock when the pte is not present (helpful when reclaiming
593 * highly shared pages).
595 * On success returns with pte mapped and locked.
597 pte_t
*__page_check_address(struct page
*page
, struct mm_struct
*mm
,
598 unsigned long address
, spinlock_t
**ptlp
, int sync
)
604 if (unlikely(PageHuge(page
))) {
605 /* when pud is not present, pte will be NULL */
606 pte
= huge_pte_offset(mm
, address
);
610 ptl
= huge_pte_lockptr(page_hstate(page
), mm
, pte
);
614 pmd
= mm_find_pmd(mm
, address
);
618 if (pmd_trans_huge(*pmd
))
621 pte
= pte_offset_map(pmd
, address
);
622 /* Make a quick check before getting the lock */
623 if (!sync
&& !pte_present(*pte
)) {
628 ptl
= pte_lockptr(mm
, pmd
);
631 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
635 pte_unmap_unlock(pte
, ptl
);
640 * page_mapped_in_vma - check whether a page is really mapped in a VMA
641 * @page: the page to test
642 * @vma: the VMA to test
644 * Returns 1 if the page is mapped into the page tables of the VMA, 0
645 * if the page is not mapped into the page tables of this VMA. Only
646 * valid for normal file or anonymous VMAs.
648 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
650 unsigned long address
;
654 address
= __vma_address(page
, vma
);
655 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
657 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
658 if (!pte
) /* the page is not in this mm */
660 pte_unmap_unlock(pte
, ptl
);
665 struct page_referenced_arg
{
668 unsigned long vm_flags
;
669 struct mem_cgroup
*memcg
;
672 * arg: page_referenced_arg will be passed
674 static int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
675 unsigned long address
, void *arg
)
677 struct mm_struct
*mm
= vma
->vm_mm
;
680 struct page_referenced_arg
*pra
= arg
;
682 if (unlikely(PageTransHuge(page
))) {
686 * rmap might return false positives; we must filter
687 * these out using page_check_address_pmd().
689 pmd
= page_check_address_pmd(page
, mm
, address
,
690 PAGE_CHECK_ADDRESS_PMD_FLAG
, &ptl
);
694 if (vma
->vm_flags
& VM_LOCKED
) {
696 pra
->vm_flags
|= VM_LOCKED
;
697 return SWAP_FAIL
; /* To break the loop */
700 /* go ahead even if the pmd is pmd_trans_splitting() */
701 if (pmdp_clear_flush_young_notify(vma
, address
, pmd
))
708 * rmap might return false positives; we must filter
709 * these out using page_check_address().
711 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
715 if (vma
->vm_flags
& VM_LOCKED
) {
716 pte_unmap_unlock(pte
, ptl
);
717 pra
->vm_flags
|= VM_LOCKED
;
718 return SWAP_FAIL
; /* To break the loop */
721 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
723 * Don't treat a reference through a sequentially read
724 * mapping as such. If the page has been used in
725 * another mapping, we will catch it; if this other
726 * mapping is already gone, the unmap path will have
727 * set PG_referenced or activated the page.
729 if (likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
732 pte_unmap_unlock(pte
, ptl
);
737 pra
->vm_flags
|= vma
->vm_flags
;
742 return SWAP_SUCCESS
; /* To break the loop */
747 static bool invalid_page_referenced_vma(struct vm_area_struct
*vma
, void *arg
)
749 struct page_referenced_arg
*pra
= arg
;
750 struct mem_cgroup
*memcg
= pra
->memcg
;
752 if (!mm_match_cgroup(vma
->vm_mm
, memcg
))
759 * page_referenced - test if the page was referenced
760 * @page: the page to test
761 * @is_locked: caller holds lock on the page
762 * @memcg: target memory cgroup
763 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
765 * Quick test_and_clear_referenced for all mappings to a page,
766 * returns the number of ptes which referenced the page.
768 int page_referenced(struct page
*page
,
770 struct mem_cgroup
*memcg
,
771 unsigned long *vm_flags
)
775 struct page_referenced_arg pra
= {
776 .mapcount
= page_mapcount(page
),
779 struct rmap_walk_control rwc
= {
780 .rmap_one
= page_referenced_one
,
782 .anon_lock
= page_lock_anon_vma_read
,
786 if (!page_mapped(page
))
789 if (!page_rmapping(page
))
792 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
793 we_locked
= trylock_page(page
);
799 * If we are reclaiming on behalf of a cgroup, skip
800 * counting on behalf of references from different
804 rwc
.invalid_vma
= invalid_page_referenced_vma
;
807 ret
= rmap_walk(page
, &rwc
);
808 *vm_flags
= pra
.vm_flags
;
813 return pra
.referenced
;
816 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
817 unsigned long address
, void *arg
)
819 struct mm_struct
*mm
= vma
->vm_mm
;
825 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
829 if (pte_dirty(*pte
) || pte_write(*pte
)) {
832 flush_cache_page(vma
, address
, pte_pfn(*pte
));
833 entry
= ptep_clear_flush(vma
, address
, pte
);
834 entry
= pte_wrprotect(entry
);
835 entry
= pte_mkclean(entry
);
836 set_pte_at(mm
, address
, pte
, entry
);
840 pte_unmap_unlock(pte
, ptl
);
843 mmu_notifier_invalidate_page(mm
, address
);
850 static bool invalid_mkclean_vma(struct vm_area_struct
*vma
, void *arg
)
852 if (vma
->vm_flags
& VM_SHARED
)
858 int page_mkclean(struct page
*page
)
861 struct address_space
*mapping
;
862 struct rmap_walk_control rwc
= {
863 .arg
= (void *)&cleaned
,
864 .rmap_one
= page_mkclean_one
,
865 .invalid_vma
= invalid_mkclean_vma
,
868 BUG_ON(!PageLocked(page
));
870 if (!page_mapped(page
))
873 mapping
= page_mapping(page
);
877 rmap_walk(page
, &rwc
);
881 EXPORT_SYMBOL_GPL(page_mkclean
);
884 * page_move_anon_rmap - move a page to our anon_vma
885 * @page: the page to move to our anon_vma
886 * @vma: the vma the page belongs to
887 * @address: the user virtual address mapped
889 * When a page belongs exclusively to one process after a COW event,
890 * that page can be moved into the anon_vma that belongs to just that
891 * process, so the rmap code will not search the parent or sibling
894 void page_move_anon_rmap(struct page
*page
,
895 struct vm_area_struct
*vma
, unsigned long address
)
897 struct anon_vma
*anon_vma
= vma
->anon_vma
;
899 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
900 VM_BUG_ON(!anon_vma
);
901 VM_BUG_ON_PAGE(page
->index
!= linear_page_index(vma
, address
), page
);
903 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
904 page
->mapping
= (struct address_space
*) anon_vma
;
908 * __page_set_anon_rmap - set up new anonymous rmap
909 * @page: Page to add to rmap
910 * @vma: VM area to add page to.
911 * @address: User virtual address of the mapping
912 * @exclusive: the page is exclusively owned by the current process
914 static void __page_set_anon_rmap(struct page
*page
,
915 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
917 struct anon_vma
*anon_vma
= vma
->anon_vma
;
925 * If the page isn't exclusively mapped into this vma,
926 * we must use the _oldest_ possible anon_vma for the
930 anon_vma
= anon_vma
->root
;
932 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
933 page
->mapping
= (struct address_space
*) anon_vma
;
934 page
->index
= linear_page_index(vma
, address
);
938 * __page_check_anon_rmap - sanity check anonymous rmap addition
939 * @page: the page to add the mapping to
940 * @vma: the vm area in which the mapping is added
941 * @address: the user virtual address mapped
943 static void __page_check_anon_rmap(struct page
*page
,
944 struct vm_area_struct
*vma
, unsigned long address
)
946 #ifdef CONFIG_DEBUG_VM
948 * The page's anon-rmap details (mapping and index) are guaranteed to
949 * be set up correctly at this point.
951 * We have exclusion against page_add_anon_rmap because the caller
952 * always holds the page locked, except if called from page_dup_rmap,
953 * in which case the page is already known to be setup.
955 * We have exclusion against page_add_new_anon_rmap because those pages
956 * are initially only visible via the pagetables, and the pte is locked
957 * over the call to page_add_new_anon_rmap.
959 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
960 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
965 * page_add_anon_rmap - add pte mapping to an anonymous page
966 * @page: the page to add the mapping to
967 * @vma: the vm area in which the mapping is added
968 * @address: the user virtual address mapped
970 * The caller needs to hold the pte lock, and the page must be locked in
971 * the anon_vma case: to serialize mapping,index checking after setting,
972 * and to ensure that PageAnon is not being upgraded racily to PageKsm
973 * (but PageKsm is never downgraded to PageAnon).
975 void page_add_anon_rmap(struct page
*page
,
976 struct vm_area_struct
*vma
, unsigned long address
)
978 do_page_add_anon_rmap(page
, vma
, address
, 0);
982 * Special version of the above for do_swap_page, which often runs
983 * into pages that are exclusively owned by the current process.
984 * Everybody else should continue to use page_add_anon_rmap above.
986 void do_page_add_anon_rmap(struct page
*page
,
987 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
989 int first
= atomic_inc_and_test(&page
->_mapcount
);
992 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
993 * these counters are not modified in interrupt context, and
994 * pte lock(a spinlock) is held, which implies preemption
997 if (PageTransHuge(page
))
998 __inc_zone_page_state(page
,
999 NR_ANON_TRANSPARENT_HUGEPAGES
);
1000 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1001 hpage_nr_pages(page
));
1003 if (unlikely(PageKsm(page
)))
1006 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1007 /* address might be in next vma when migration races vma_adjust */
1009 __page_set_anon_rmap(page
, vma
, address
, exclusive
);
1011 __page_check_anon_rmap(page
, vma
, address
);
1015 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1016 * @page: the page to add the mapping to
1017 * @vma: the vm area in which the mapping is added
1018 * @address: the user virtual address mapped
1020 * Same as page_add_anon_rmap but must only be called on *new* pages.
1021 * This means the inc-and-test can be bypassed.
1022 * Page does not have to be locked.
1024 void page_add_new_anon_rmap(struct page
*page
,
1025 struct vm_area_struct
*vma
, unsigned long address
)
1027 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1028 SetPageSwapBacked(page
);
1029 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
1030 if (PageTransHuge(page
))
1031 __inc_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1032 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1033 hpage_nr_pages(page
));
1034 __page_set_anon_rmap(page
, vma
, address
, 1);
1036 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1037 if (likely((vma
->vm_flags
& (VM_LOCKED
| VM_SPECIAL
)) != VM_LOCKED
)) {
1038 SetPageActive(page
);
1039 lru_cache_add(page
);
1043 if (!TestSetPageMlocked(page
)) {
1045 * We use the irq-unsafe __mod_zone_page_stat because this
1046 * counter is not modified from interrupt context, and the pte
1047 * lock is held(spinlock), which implies preemption disabled.
1049 __mod_zone_page_state(page_zone(page
), NR_MLOCK
,
1050 hpage_nr_pages(page
));
1051 count_vm_event(UNEVICTABLE_PGMLOCKED
);
1053 add_page_to_unevictable_list(page
);
1057 * page_add_file_rmap - add pte mapping to a file page
1058 * @page: the page to add the mapping to
1060 * The caller needs to hold the pte lock.
1062 void page_add_file_rmap(struct page
*page
)
1065 unsigned long flags
;
1067 mem_cgroup_begin_update_page_stat(page
, &locked
, &flags
);
1068 if (atomic_inc_and_test(&page
->_mapcount
)) {
1069 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
1070 mem_cgroup_inc_page_stat(page
, MEM_CGROUP_STAT_FILE_MAPPED
);
1072 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1076 * page_remove_rmap - take down pte mapping from a page
1077 * @page: page to remove mapping from
1079 * The caller needs to hold the pte lock.
1081 void page_remove_rmap(struct page
*page
)
1083 bool anon
= PageAnon(page
);
1085 unsigned long flags
;
1088 * The anon case has no mem_cgroup page_stat to update; but may
1089 * uncharge_page() below, where the lock ordering can deadlock if
1090 * we hold the lock against page_stat move: so avoid it on anon.
1093 mem_cgroup_begin_update_page_stat(page
, &locked
, &flags
);
1095 /* page still mapped by someone else? */
1096 if (!atomic_add_negative(-1, &page
->_mapcount
))
1100 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1101 * and not charged by memcg for now.
1103 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1104 * these counters are not modified in interrupt context, and
1105 * these counters are not modified in interrupt context, and
1106 * pte lock(a spinlock) is held, which implies preemption disabled.
1108 if (unlikely(PageHuge(page
)))
1111 mem_cgroup_uncharge_page(page
);
1112 if (PageTransHuge(page
))
1113 __dec_zone_page_state(page
,
1114 NR_ANON_TRANSPARENT_HUGEPAGES
);
1115 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1116 -hpage_nr_pages(page
));
1118 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
1119 mem_cgroup_dec_page_stat(page
, MEM_CGROUP_STAT_FILE_MAPPED
);
1120 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1122 if (unlikely(PageMlocked(page
)))
1123 clear_page_mlock(page
);
1125 * It would be tidy to reset the PageAnon mapping here,
1126 * but that might overwrite a racing page_add_anon_rmap
1127 * which increments mapcount after us but sets mapping
1128 * before us: so leave the reset to free_hot_cold_page,
1129 * and remember that it's only reliable while mapped.
1130 * Leaving it set also helps swapoff to reinstate ptes
1131 * faster for those pages still in swapcache.
1136 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1140 * @arg: enum ttu_flags will be passed to this argument
1142 static int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1143 unsigned long address
, void *arg
)
1145 struct mm_struct
*mm
= vma
->vm_mm
;
1149 int ret
= SWAP_AGAIN
;
1150 enum ttu_flags flags
= (enum ttu_flags
)arg
;
1152 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
1157 * If the page is mlock()d, we cannot swap it out.
1158 * If it's recently referenced (perhaps page_referenced
1159 * skipped over this mm) then we should reactivate it.
1161 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1162 if (vma
->vm_flags
& VM_LOCKED
)
1165 if (flags
& TTU_MUNLOCK
)
1168 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1169 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
1175 /* Nuke the page table entry. */
1176 flush_cache_page(vma
, address
, page_to_pfn(page
));
1177 pteval
= ptep_clear_flush(vma
, address
, pte
);
1179 /* Move the dirty bit to the physical page now the pte is gone. */
1180 if (pte_dirty(pteval
))
1181 set_page_dirty(page
);
1183 /* Update high watermark before we lower rss */
1184 update_hiwater_rss(mm
);
1186 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1187 if (!PageHuge(page
)) {
1189 dec_mm_counter(mm
, MM_ANONPAGES
);
1191 dec_mm_counter(mm
, MM_FILEPAGES
);
1193 set_pte_at(mm
, address
, pte
,
1194 swp_entry_to_pte(make_hwpoison_entry(page
)));
1195 } else if (pte_unused(pteval
)) {
1197 * The guest indicated that the page content is of no
1198 * interest anymore. Simply discard the pte, vmscan
1199 * will take care of the rest.
1202 dec_mm_counter(mm
, MM_ANONPAGES
);
1204 dec_mm_counter(mm
, MM_FILEPAGES
);
1205 } else if (PageAnon(page
)) {
1206 swp_entry_t entry
= { .val
= page_private(page
) };
1209 if (PageSwapCache(page
)) {
1211 * Store the swap location in the pte.
1212 * See handle_pte_fault() ...
1214 if (swap_duplicate(entry
) < 0) {
1215 set_pte_at(mm
, address
, pte
, pteval
);
1219 if (list_empty(&mm
->mmlist
)) {
1220 spin_lock(&mmlist_lock
);
1221 if (list_empty(&mm
->mmlist
))
1222 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1223 spin_unlock(&mmlist_lock
);
1225 dec_mm_counter(mm
, MM_ANONPAGES
);
1226 inc_mm_counter(mm
, MM_SWAPENTS
);
1227 } else if (IS_ENABLED(CONFIG_MIGRATION
)) {
1229 * Store the pfn of the page in a special migration
1230 * pte. do_swap_page() will wait until the migration
1231 * pte is removed and then restart fault handling.
1233 BUG_ON(!(flags
& TTU_MIGRATION
));
1234 entry
= make_migration_entry(page
, pte_write(pteval
));
1236 swp_pte
= swp_entry_to_pte(entry
);
1237 if (pte_soft_dirty(pteval
))
1238 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
1239 set_pte_at(mm
, address
, pte
, swp_pte
);
1240 BUG_ON(pte_file(*pte
));
1241 } else if (IS_ENABLED(CONFIG_MIGRATION
) &&
1242 (flags
& TTU_MIGRATION
)) {
1243 /* Establish migration entry for a file page */
1245 entry
= make_migration_entry(page
, pte_write(pteval
));
1246 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1248 dec_mm_counter(mm
, MM_FILEPAGES
);
1250 page_remove_rmap(page
);
1251 page_cache_release(page
);
1254 pte_unmap_unlock(pte
, ptl
);
1255 if (ret
!= SWAP_FAIL
&& !(flags
& TTU_MUNLOCK
))
1256 mmu_notifier_invalidate_page(mm
, address
);
1261 pte_unmap_unlock(pte
, ptl
);
1265 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1266 * unstable result and race. Plus, We can't wait here because
1267 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1268 * if trylock failed, the page remain in evictable lru and later
1269 * vmscan could retry to move the page to unevictable lru if the
1270 * page is actually mlocked.
1272 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1273 if (vma
->vm_flags
& VM_LOCKED
) {
1274 mlock_vma_page(page
);
1277 up_read(&vma
->vm_mm
->mmap_sem
);
1283 * objrmap doesn't work for nonlinear VMAs because the assumption that
1284 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1285 * Consequently, given a particular page and its ->index, we cannot locate the
1286 * ptes which are mapping that page without an exhaustive linear search.
1288 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1289 * maps the file to which the target page belongs. The ->vm_private_data field
1290 * holds the current cursor into that scan. Successive searches will circulate
1291 * around the vma's virtual address space.
1293 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1294 * more scanning pressure is placed against them as well. Eventually pages
1295 * will become fully unmapped and are eligible for eviction.
1297 * For very sparsely populated VMAs this is a little inefficient - chances are
1298 * there there won't be many ptes located within the scan cluster. In this case
1299 * maybe we could scan further - to the end of the pte page, perhaps.
1301 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1302 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1303 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1304 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1306 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1307 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1309 static int try_to_unmap_cluster(unsigned long cursor
, unsigned int *mapcount
,
1310 struct vm_area_struct
*vma
, struct page
*check_page
)
1312 struct mm_struct
*mm
= vma
->vm_mm
;
1318 unsigned long address
;
1319 unsigned long mmun_start
; /* For mmu_notifiers */
1320 unsigned long mmun_end
; /* For mmu_notifiers */
1322 int ret
= SWAP_AGAIN
;
1325 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
1326 end
= address
+ CLUSTER_SIZE
;
1327 if (address
< vma
->vm_start
)
1328 address
= vma
->vm_start
;
1329 if (end
> vma
->vm_end
)
1332 pmd
= mm_find_pmd(mm
, address
);
1336 mmun_start
= address
;
1338 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1341 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1342 * keep the sem while scanning the cluster for mlocking pages.
1344 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1345 locked_vma
= (vma
->vm_flags
& VM_LOCKED
);
1347 up_read(&vma
->vm_mm
->mmap_sem
); /* don't need it */
1350 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1352 /* Update high watermark before we lower rss */
1353 update_hiwater_rss(mm
);
1355 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
1356 if (!pte_present(*pte
))
1358 page
= vm_normal_page(vma
, address
, *pte
);
1359 BUG_ON(!page
|| PageAnon(page
));
1362 if (page
== check_page
) {
1363 /* we know we have check_page locked */
1364 mlock_vma_page(page
);
1366 } else if (trylock_page(page
)) {
1368 * If we can lock the page, perform mlock.
1369 * Otherwise leave the page alone, it will be
1370 * eventually encountered again later.
1372 mlock_vma_page(page
);
1375 continue; /* don't unmap */
1378 if (ptep_clear_flush_young_notify(vma
, address
, pte
))
1381 /* Nuke the page table entry. */
1382 flush_cache_page(vma
, address
, pte_pfn(*pte
));
1383 pteval
= ptep_clear_flush(vma
, address
, pte
);
1385 /* If nonlinear, store the file page offset in the pte. */
1386 if (page
->index
!= linear_page_index(vma
, address
)) {
1387 pte_t ptfile
= pgoff_to_pte(page
->index
);
1388 if (pte_soft_dirty(pteval
))
1389 ptfile
= pte_file_mksoft_dirty(ptfile
);
1390 set_pte_at(mm
, address
, pte
, ptfile
);
1393 /* Move the dirty bit to the physical page now the pte is gone. */
1394 if (pte_dirty(pteval
))
1395 set_page_dirty(page
);
1397 page_remove_rmap(page
);
1398 page_cache_release(page
);
1399 dec_mm_counter(mm
, MM_FILEPAGES
);
1402 pte_unmap_unlock(pte
- 1, ptl
);
1403 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1405 up_read(&vma
->vm_mm
->mmap_sem
);
1409 static int try_to_unmap_nonlinear(struct page
*page
,
1410 struct address_space
*mapping
, void *arg
)
1412 struct vm_area_struct
*vma
;
1413 int ret
= SWAP_AGAIN
;
1414 unsigned long cursor
;
1415 unsigned long max_nl_cursor
= 0;
1416 unsigned long max_nl_size
= 0;
1417 unsigned int mapcount
;
1419 list_for_each_entry(vma
,
1420 &mapping
->i_mmap_nonlinear
, shared
.nonlinear
) {
1422 cursor
= (unsigned long) vma
->vm_private_data
;
1423 if (cursor
> max_nl_cursor
)
1424 max_nl_cursor
= cursor
;
1425 cursor
= vma
->vm_end
- vma
->vm_start
;
1426 if (cursor
> max_nl_size
)
1427 max_nl_size
= cursor
;
1430 if (max_nl_size
== 0) { /* all nonlinears locked or reserved ? */
1435 * We don't try to search for this page in the nonlinear vmas,
1436 * and page_referenced wouldn't have found it anyway. Instead
1437 * just walk the nonlinear vmas trying to age and unmap some.
1438 * The mapcount of the page we came in with is irrelevant,
1439 * but even so use it as a guide to how hard we should try?
1441 mapcount
= page_mapcount(page
);
1447 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
1448 if (max_nl_cursor
== 0)
1449 max_nl_cursor
= CLUSTER_SIZE
;
1452 list_for_each_entry(vma
,
1453 &mapping
->i_mmap_nonlinear
, shared
.nonlinear
) {
1455 cursor
= (unsigned long) vma
->vm_private_data
;
1456 while (cursor
< max_nl_cursor
&&
1457 cursor
< vma
->vm_end
- vma
->vm_start
) {
1458 if (try_to_unmap_cluster(cursor
, &mapcount
,
1459 vma
, page
) == SWAP_MLOCK
)
1461 cursor
+= CLUSTER_SIZE
;
1462 vma
->vm_private_data
= (void *) cursor
;
1463 if ((int)mapcount
<= 0)
1466 vma
->vm_private_data
= (void *) max_nl_cursor
;
1469 max_nl_cursor
+= CLUSTER_SIZE
;
1470 } while (max_nl_cursor
<= max_nl_size
);
1473 * Don't loop forever (perhaps all the remaining pages are
1474 * in locked vmas). Reset cursor on all unreserved nonlinear
1475 * vmas, now forgetting on which ones it had fallen behind.
1477 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.nonlinear
)
1478 vma
->vm_private_data
= NULL
;
1483 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1485 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1490 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1491 VM_STACK_INCOMPLETE_SETUP
)
1497 static bool invalid_migration_vma(struct vm_area_struct
*vma
, void *arg
)
1499 return is_vma_temporary_stack(vma
);
1502 static int page_not_mapped(struct page
*page
)
1504 return !page_mapped(page
);
1508 * try_to_unmap - try to remove all page table mappings to a page
1509 * @page: the page to get unmapped
1510 * @flags: action and flags
1512 * Tries to remove all the page table entries which are mapping this
1513 * page, used in the pageout path. Caller must hold the page lock.
1514 * Return values are:
1516 * SWAP_SUCCESS - we succeeded in removing all mappings
1517 * SWAP_AGAIN - we missed a mapping, try again later
1518 * SWAP_FAIL - the page is unswappable
1519 * SWAP_MLOCK - page is mlocked.
1521 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1524 struct rmap_walk_control rwc
= {
1525 .rmap_one
= try_to_unmap_one
,
1526 .arg
= (void *)flags
,
1527 .done
= page_not_mapped
,
1528 .file_nonlinear
= try_to_unmap_nonlinear
,
1529 .anon_lock
= page_lock_anon_vma_read
,
1532 VM_BUG_ON_PAGE(!PageHuge(page
) && PageTransHuge(page
), page
);
1535 * During exec, a temporary VMA is setup and later moved.
1536 * The VMA is moved under the anon_vma lock but not the
1537 * page tables leading to a race where migration cannot
1538 * find the migration ptes. Rather than increasing the
1539 * locking requirements of exec(), migration skips
1540 * temporary VMAs until after exec() completes.
1542 if ((flags
& TTU_MIGRATION
) && !PageKsm(page
) && PageAnon(page
))
1543 rwc
.invalid_vma
= invalid_migration_vma
;
1545 ret
= rmap_walk(page
, &rwc
);
1547 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1553 * try_to_munlock - try to munlock a page
1554 * @page: the page to be munlocked
1556 * Called from munlock code. Checks all of the VMAs mapping the page
1557 * to make sure nobody else has this page mlocked. The page will be
1558 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1560 * Return values are:
1562 * SWAP_AGAIN - no vma is holding page mlocked, or,
1563 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1564 * SWAP_FAIL - page cannot be located at present
1565 * SWAP_MLOCK - page is now mlocked.
1567 int try_to_munlock(struct page
*page
)
1570 struct rmap_walk_control rwc
= {
1571 .rmap_one
= try_to_unmap_one
,
1572 .arg
= (void *)TTU_MUNLOCK
,
1573 .done
= page_not_mapped
,
1575 * We don't bother to try to find the munlocked page in
1576 * nonlinears. It's costly. Instead, later, page reclaim logic
1577 * may call try_to_unmap() and recover PG_mlocked lazily.
1579 .file_nonlinear
= NULL
,
1580 .anon_lock
= page_lock_anon_vma_read
,
1584 VM_BUG_ON_PAGE(!PageLocked(page
) || PageLRU(page
), page
);
1586 ret
= rmap_walk(page
, &rwc
);
1590 void __put_anon_vma(struct anon_vma
*anon_vma
)
1592 struct anon_vma
*root
= anon_vma
->root
;
1594 if (root
!= anon_vma
&& atomic_dec_and_test(&root
->refcount
))
1595 anon_vma_free(root
);
1597 anon_vma_free(anon_vma
);
1600 static struct anon_vma
*rmap_walk_anon_lock(struct page
*page
,
1601 struct rmap_walk_control
*rwc
)
1603 struct anon_vma
*anon_vma
;
1606 return rwc
->anon_lock(page
);
1609 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1610 * because that depends on page_mapped(); but not all its usages
1611 * are holding mmap_sem. Users without mmap_sem are required to
1612 * take a reference count to prevent the anon_vma disappearing
1614 anon_vma
= page_anon_vma(page
);
1618 anon_vma_lock_read(anon_vma
);
1623 * rmap_walk_anon - do something to anonymous page using the object-based
1625 * @page: the page to be handled
1626 * @rwc: control variable according to each walk type
1628 * Find all the mappings of a page using the mapping pointer and the vma chains
1629 * contained in the anon_vma struct it points to.
1631 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1632 * where the page was found will be held for write. So, we won't recheck
1633 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1636 static int rmap_walk_anon(struct page
*page
, struct rmap_walk_control
*rwc
)
1638 struct anon_vma
*anon_vma
;
1639 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1640 struct anon_vma_chain
*avc
;
1641 int ret
= SWAP_AGAIN
;
1643 anon_vma
= rmap_walk_anon_lock(page
, rwc
);
1647 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1648 struct vm_area_struct
*vma
= avc
->vma
;
1649 unsigned long address
= vma_address(page
, vma
);
1651 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1654 ret
= rwc
->rmap_one(page
, vma
, address
, rwc
->arg
);
1655 if (ret
!= SWAP_AGAIN
)
1657 if (rwc
->done
&& rwc
->done(page
))
1660 anon_vma_unlock_read(anon_vma
);
1665 * rmap_walk_file - do something to file page using the object-based rmap method
1666 * @page: the page to be handled
1667 * @rwc: control variable according to each walk type
1669 * Find all the mappings of a page using the mapping pointer and the vma chains
1670 * contained in the address_space struct it points to.
1672 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1673 * where the page was found will be held for write. So, we won't recheck
1674 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1677 static int rmap_walk_file(struct page
*page
, struct rmap_walk_control
*rwc
)
1679 struct address_space
*mapping
= page
->mapping
;
1680 pgoff_t pgoff
= page
->index
<< compound_order(page
);
1681 struct vm_area_struct
*vma
;
1682 int ret
= SWAP_AGAIN
;
1685 * The page lock not only makes sure that page->mapping cannot
1686 * suddenly be NULLified by truncation, it makes sure that the
1687 * structure at mapping cannot be freed and reused yet,
1688 * so we can safely take mapping->i_mmap_mutex.
1690 VM_BUG_ON(!PageLocked(page
));
1694 mutex_lock(&mapping
->i_mmap_mutex
);
1695 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1696 unsigned long address
= vma_address(page
, vma
);
1698 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1701 ret
= rwc
->rmap_one(page
, vma
, address
, rwc
->arg
);
1702 if (ret
!= SWAP_AGAIN
)
1704 if (rwc
->done
&& rwc
->done(page
))
1708 if (!rwc
->file_nonlinear
)
1711 if (list_empty(&mapping
->i_mmap_nonlinear
))
1714 ret
= rwc
->file_nonlinear(page
, mapping
, rwc
->arg
);
1717 mutex_unlock(&mapping
->i_mmap_mutex
);
1721 int rmap_walk(struct page
*page
, struct rmap_walk_control
*rwc
)
1723 if (unlikely(PageKsm(page
)))
1724 return rmap_walk_ksm(page
, rwc
);
1725 else if (PageAnon(page
))
1726 return rmap_walk_anon(page
, rwc
);
1728 return rmap_walk_file(page
, rwc
);
1731 #ifdef CONFIG_HUGETLB_PAGE
1733 * The following three functions are for anonymous (private mapped) hugepages.
1734 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1735 * and no lru code, because we handle hugepages differently from common pages.
1737 static void __hugepage_set_anon_rmap(struct page
*page
,
1738 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1740 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1747 anon_vma
= anon_vma
->root
;
1749 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1750 page
->mapping
= (struct address_space
*) anon_vma
;
1751 page
->index
= linear_page_index(vma
, address
);
1754 void hugepage_add_anon_rmap(struct page
*page
,
1755 struct vm_area_struct
*vma
, unsigned long address
)
1757 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1760 BUG_ON(!PageLocked(page
));
1762 /* address might be in next vma when migration races vma_adjust */
1763 first
= atomic_inc_and_test(&page
->_mapcount
);
1765 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
1768 void hugepage_add_new_anon_rmap(struct page
*page
,
1769 struct vm_area_struct
*vma
, unsigned long address
)
1771 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1772 atomic_set(&page
->_mapcount
, 0);
1773 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
1775 #endif /* CONFIG_HUGETLB_PAGE */