Revert "microblaze_mmu_v2: Update signal returning address"
[linux/fpc-iii.git] / crypto / async_tx / async_raid6_recov.c
bloba9f08a6a582ebccce298f718d0bbf5db8b1e1a7a
1 /*
2 * Asynchronous RAID-6 recovery calculations ASYNC_TX API.
3 * Copyright(c) 2009 Intel Corporation
5 * based on raid6recov.c:
6 * Copyright 2002 H. Peter Anvin
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 51
20 * Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
23 #include <linux/kernel.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/raid/pq.h>
28 #include <linux/async_tx.h>
30 static struct dma_async_tx_descriptor *
31 async_sum_product(struct page *dest, struct page **srcs, unsigned char *coef,
32 size_t len, struct async_submit_ctl *submit)
34 struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
35 &dest, 1, srcs, 2, len);
36 struct dma_device *dma = chan ? chan->device : NULL;
37 const u8 *amul, *bmul;
38 u8 ax, bx;
39 u8 *a, *b, *c;
41 if (dma) {
42 dma_addr_t dma_dest[2];
43 dma_addr_t dma_src[2];
44 struct device *dev = dma->dev;
45 struct dma_async_tx_descriptor *tx;
46 enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
48 if (submit->flags & ASYNC_TX_FENCE)
49 dma_flags |= DMA_PREP_FENCE;
50 dma_dest[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
51 dma_src[0] = dma_map_page(dev, srcs[0], 0, len, DMA_TO_DEVICE);
52 dma_src[1] = dma_map_page(dev, srcs[1], 0, len, DMA_TO_DEVICE);
53 tx = dma->device_prep_dma_pq(chan, dma_dest, dma_src, 2, coef,
54 len, dma_flags);
55 if (tx) {
56 async_tx_submit(chan, tx, submit);
57 return tx;
60 /* could not get a descriptor, unmap and fall through to
61 * the synchronous path
63 dma_unmap_page(dev, dma_dest[1], len, DMA_BIDIRECTIONAL);
64 dma_unmap_page(dev, dma_src[0], len, DMA_TO_DEVICE);
65 dma_unmap_page(dev, dma_src[1], len, DMA_TO_DEVICE);
68 /* run the operation synchronously */
69 async_tx_quiesce(&submit->depend_tx);
70 amul = raid6_gfmul[coef[0]];
71 bmul = raid6_gfmul[coef[1]];
72 a = page_address(srcs[0]);
73 b = page_address(srcs[1]);
74 c = page_address(dest);
76 while (len--) {
77 ax = amul[*a++];
78 bx = bmul[*b++];
79 *c++ = ax ^ bx;
82 return NULL;
85 static struct dma_async_tx_descriptor *
86 async_mult(struct page *dest, struct page *src, u8 coef, size_t len,
87 struct async_submit_ctl *submit)
89 struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
90 &dest, 1, &src, 1, len);
91 struct dma_device *dma = chan ? chan->device : NULL;
92 const u8 *qmul; /* Q multiplier table */
93 u8 *d, *s;
95 if (dma) {
96 dma_addr_t dma_dest[2];
97 dma_addr_t dma_src[1];
98 struct device *dev = dma->dev;
99 struct dma_async_tx_descriptor *tx;
100 enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
102 if (submit->flags & ASYNC_TX_FENCE)
103 dma_flags |= DMA_PREP_FENCE;
104 dma_dest[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
105 dma_src[0] = dma_map_page(dev, src, 0, len, DMA_TO_DEVICE);
106 tx = dma->device_prep_dma_pq(chan, dma_dest, dma_src, 1, &coef,
107 len, dma_flags);
108 if (tx) {
109 async_tx_submit(chan, tx, submit);
110 return tx;
113 /* could not get a descriptor, unmap and fall through to
114 * the synchronous path
116 dma_unmap_page(dev, dma_dest[1], len, DMA_BIDIRECTIONAL);
117 dma_unmap_page(dev, dma_src[0], len, DMA_TO_DEVICE);
120 /* no channel available, or failed to allocate a descriptor, so
121 * perform the operation synchronously
123 async_tx_quiesce(&submit->depend_tx);
124 qmul = raid6_gfmul[coef];
125 d = page_address(dest);
126 s = page_address(src);
128 while (len--)
129 *d++ = qmul[*s++];
131 return NULL;
134 static struct dma_async_tx_descriptor *
135 __2data_recov_4(int disks, size_t bytes, int faila, int failb,
136 struct page **blocks, struct async_submit_ctl *submit)
138 struct dma_async_tx_descriptor *tx = NULL;
139 struct page *p, *q, *a, *b;
140 struct page *srcs[2];
141 unsigned char coef[2];
142 enum async_tx_flags flags = submit->flags;
143 dma_async_tx_callback cb_fn = submit->cb_fn;
144 void *cb_param = submit->cb_param;
145 void *scribble = submit->scribble;
147 p = blocks[disks-2];
148 q = blocks[disks-1];
150 a = blocks[faila];
151 b = blocks[failb];
153 /* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
154 /* Dx = A*(P+Pxy) + B*(Q+Qxy) */
155 srcs[0] = p;
156 srcs[1] = q;
157 coef[0] = raid6_gfexi[failb-faila];
158 coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
159 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
160 tx = async_sum_product(b, srcs, coef, bytes, submit);
162 /* Dy = P+Pxy+Dx */
163 srcs[0] = p;
164 srcs[1] = b;
165 init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
166 cb_param, scribble);
167 tx = async_xor(a, srcs, 0, 2, bytes, submit);
169 return tx;
173 static struct dma_async_tx_descriptor *
174 __2data_recov_5(int disks, size_t bytes, int faila, int failb,
175 struct page **blocks, struct async_submit_ctl *submit)
177 struct dma_async_tx_descriptor *tx = NULL;
178 struct page *p, *q, *g, *dp, *dq;
179 struct page *srcs[2];
180 unsigned char coef[2];
181 enum async_tx_flags flags = submit->flags;
182 dma_async_tx_callback cb_fn = submit->cb_fn;
183 void *cb_param = submit->cb_param;
184 void *scribble = submit->scribble;
185 int good_srcs, good, i;
187 good_srcs = 0;
188 good = -1;
189 for (i = 0; i < disks-2; i++) {
190 if (blocks[i] == NULL)
191 continue;
192 if (i == faila || i == failb)
193 continue;
194 good = i;
195 good_srcs++;
197 BUG_ON(good_srcs > 1);
199 p = blocks[disks-2];
200 q = blocks[disks-1];
201 g = blocks[good];
203 /* Compute syndrome with zero for the missing data pages
204 * Use the dead data pages as temporary storage for delta p and
205 * delta q
207 dp = blocks[faila];
208 dq = blocks[failb];
210 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
211 tx = async_memcpy(dp, g, 0, 0, bytes, submit);
212 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
213 tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
215 /* compute P + Pxy */
216 srcs[0] = dp;
217 srcs[1] = p;
218 init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
219 NULL, NULL, scribble);
220 tx = async_xor(dp, srcs, 0, 2, bytes, submit);
222 /* compute Q + Qxy */
223 srcs[0] = dq;
224 srcs[1] = q;
225 init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
226 NULL, NULL, scribble);
227 tx = async_xor(dq, srcs, 0, 2, bytes, submit);
229 /* Dx = A*(P+Pxy) + B*(Q+Qxy) */
230 srcs[0] = dp;
231 srcs[1] = dq;
232 coef[0] = raid6_gfexi[failb-faila];
233 coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
234 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
235 tx = async_sum_product(dq, srcs, coef, bytes, submit);
237 /* Dy = P+Pxy+Dx */
238 srcs[0] = dp;
239 srcs[1] = dq;
240 init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
241 cb_param, scribble);
242 tx = async_xor(dp, srcs, 0, 2, bytes, submit);
244 return tx;
247 static struct dma_async_tx_descriptor *
248 __2data_recov_n(int disks, size_t bytes, int faila, int failb,
249 struct page **blocks, struct async_submit_ctl *submit)
251 struct dma_async_tx_descriptor *tx = NULL;
252 struct page *p, *q, *dp, *dq;
253 struct page *srcs[2];
254 unsigned char coef[2];
255 enum async_tx_flags flags = submit->flags;
256 dma_async_tx_callback cb_fn = submit->cb_fn;
257 void *cb_param = submit->cb_param;
258 void *scribble = submit->scribble;
260 p = blocks[disks-2];
261 q = blocks[disks-1];
263 /* Compute syndrome with zero for the missing data pages
264 * Use the dead data pages as temporary storage for
265 * delta p and delta q
267 dp = blocks[faila];
268 blocks[faila] = NULL;
269 blocks[disks-2] = dp;
270 dq = blocks[failb];
271 blocks[failb] = NULL;
272 blocks[disks-1] = dq;
274 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
275 tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
277 /* Restore pointer table */
278 blocks[faila] = dp;
279 blocks[failb] = dq;
280 blocks[disks-2] = p;
281 blocks[disks-1] = q;
283 /* compute P + Pxy */
284 srcs[0] = dp;
285 srcs[1] = p;
286 init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
287 NULL, NULL, scribble);
288 tx = async_xor(dp, srcs, 0, 2, bytes, submit);
290 /* compute Q + Qxy */
291 srcs[0] = dq;
292 srcs[1] = q;
293 init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
294 NULL, NULL, scribble);
295 tx = async_xor(dq, srcs, 0, 2, bytes, submit);
297 /* Dx = A*(P+Pxy) + B*(Q+Qxy) */
298 srcs[0] = dp;
299 srcs[1] = dq;
300 coef[0] = raid6_gfexi[failb-faila];
301 coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
302 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
303 tx = async_sum_product(dq, srcs, coef, bytes, submit);
305 /* Dy = P+Pxy+Dx */
306 srcs[0] = dp;
307 srcs[1] = dq;
308 init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
309 cb_param, scribble);
310 tx = async_xor(dp, srcs, 0, 2, bytes, submit);
312 return tx;
316 * async_raid6_2data_recov - asynchronously calculate two missing data blocks
317 * @disks: number of disks in the RAID-6 array
318 * @bytes: block size
319 * @faila: first failed drive index
320 * @failb: second failed drive index
321 * @blocks: array of source pointers where the last two entries are p and q
322 * @submit: submission/completion modifiers
324 struct dma_async_tx_descriptor *
325 async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
326 struct page **blocks, struct async_submit_ctl *submit)
328 void *scribble = submit->scribble;
329 int non_zero_srcs, i;
331 BUG_ON(faila == failb);
332 if (failb < faila)
333 swap(faila, failb);
335 pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
337 /* if a dma resource is not available or a scribble buffer is not
338 * available punt to the synchronous path. In the 'dma not
339 * available' case be sure to use the scribble buffer to
340 * preserve the content of 'blocks' as the caller intended.
342 if (!async_dma_find_channel(DMA_PQ) || !scribble) {
343 void **ptrs = scribble ? scribble : (void **) blocks;
345 async_tx_quiesce(&submit->depend_tx);
346 for (i = 0; i < disks; i++)
347 if (blocks[i] == NULL)
348 ptrs[i] = (void *) raid6_empty_zero_page;
349 else
350 ptrs[i] = page_address(blocks[i]);
352 raid6_2data_recov(disks, bytes, faila, failb, ptrs);
354 async_tx_sync_epilog(submit);
356 return NULL;
359 non_zero_srcs = 0;
360 for (i = 0; i < disks-2 && non_zero_srcs < 4; i++)
361 if (blocks[i])
362 non_zero_srcs++;
363 switch (non_zero_srcs) {
364 case 0:
365 case 1:
366 /* There must be at least 2 sources - the failed devices. */
367 BUG();
369 case 2:
370 /* dma devices do not uniformly understand a zero source pq
371 * operation (in contrast to the synchronous case), so
372 * explicitly handle the special case of a 4 disk array with
373 * both data disks missing.
375 return __2data_recov_4(disks, bytes, faila, failb, blocks, submit);
376 case 3:
377 /* dma devices do not uniformly understand a single
378 * source pq operation (in contrast to the synchronous
379 * case), so explicitly handle the special case of a 5 disk
380 * array with 2 of 3 data disks missing.
382 return __2data_recov_5(disks, bytes, faila, failb, blocks, submit);
383 default:
384 return __2data_recov_n(disks, bytes, faila, failb, blocks, submit);
387 EXPORT_SYMBOL_GPL(async_raid6_2data_recov);
390 * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
391 * @disks: number of disks in the RAID-6 array
392 * @bytes: block size
393 * @faila: failed drive index
394 * @blocks: array of source pointers where the last two entries are p and q
395 * @submit: submission/completion modifiers
397 struct dma_async_tx_descriptor *
398 async_raid6_datap_recov(int disks, size_t bytes, int faila,
399 struct page **blocks, struct async_submit_ctl *submit)
401 struct dma_async_tx_descriptor *tx = NULL;
402 struct page *p, *q, *dq;
403 u8 coef;
404 enum async_tx_flags flags = submit->flags;
405 dma_async_tx_callback cb_fn = submit->cb_fn;
406 void *cb_param = submit->cb_param;
407 void *scribble = submit->scribble;
408 int good_srcs, good, i;
409 struct page *srcs[2];
411 pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
413 /* if a dma resource is not available or a scribble buffer is not
414 * available punt to the synchronous path. In the 'dma not
415 * available' case be sure to use the scribble buffer to
416 * preserve the content of 'blocks' as the caller intended.
418 if (!async_dma_find_channel(DMA_PQ) || !scribble) {
419 void **ptrs = scribble ? scribble : (void **) blocks;
421 async_tx_quiesce(&submit->depend_tx);
422 for (i = 0; i < disks; i++)
423 if (blocks[i] == NULL)
424 ptrs[i] = (void*)raid6_empty_zero_page;
425 else
426 ptrs[i] = page_address(blocks[i]);
428 raid6_datap_recov(disks, bytes, faila, ptrs);
430 async_tx_sync_epilog(submit);
432 return NULL;
435 good_srcs = 0;
436 good = -1;
437 for (i = 0; i < disks-2; i++) {
438 if (i == faila)
439 continue;
440 if (blocks[i]) {
441 good = i;
442 good_srcs++;
443 if (good_srcs > 1)
444 break;
447 BUG_ON(good_srcs == 0);
449 p = blocks[disks-2];
450 q = blocks[disks-1];
452 /* Compute syndrome with zero for the missing data page
453 * Use the dead data page as temporary storage for delta q
455 dq = blocks[faila];
456 blocks[faila] = NULL;
457 blocks[disks-1] = dq;
459 /* in the 4-disk case we only need to perform a single source
460 * multiplication with the one good data block.
462 if (good_srcs == 1) {
463 struct page *g = blocks[good];
465 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
466 scribble);
467 tx = async_memcpy(p, g, 0, 0, bytes, submit);
469 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
470 scribble);
471 tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
472 } else {
473 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
474 scribble);
475 tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
478 /* Restore pointer table */
479 blocks[faila] = dq;
480 blocks[disks-1] = q;
482 /* calculate g^{-faila} */
483 coef = raid6_gfinv[raid6_gfexp[faila]];
485 srcs[0] = dq;
486 srcs[1] = q;
487 init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
488 NULL, NULL, scribble);
489 tx = async_xor(dq, srcs, 0, 2, bytes, submit);
491 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
492 tx = async_mult(dq, dq, coef, bytes, submit);
494 srcs[0] = p;
495 srcs[1] = dq;
496 init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
497 cb_param, scribble);
498 tx = async_xor(p, srcs, 0, 2, bytes, submit);
500 return tx;
502 EXPORT_SYMBOL_GPL(async_raid6_datap_recov);
504 MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
505 MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
506 MODULE_LICENSE("GPL");