Revert "microblaze_mmu_v2: Update signal returning address"
[linux/fpc-iii.git] / kernel / trace / ring_buffer.c
blob49491fa7daa2d35546a6e5ba46d73103594c384e
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
23 #include <asm/local.h>
24 #include "trace.h"
26 static void update_pages_handler(struct work_struct *work);
29 * The ring buffer header is special. We must manually up keep it.
31 int ring_buffer_print_entry_header(struct trace_seq *s)
33 int ret;
35 ret = trace_seq_printf(s, "# compressed entry header\n");
36 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
37 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
38 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
39 ret = trace_seq_printf(s, "\n");
40 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
47 return ret;
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
64 * Here's some silly ASCII art.
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
114 * We will be using cmpxchg soon to make all this lockless.
119 * A fast way to enable or disable all ring buffers is to
120 * call tracing_on or tracing_off. Turning off the ring buffers
121 * prevents all ring buffers from being recorded to.
122 * Turning this switch on, makes it OK to write to the
123 * ring buffer, if the ring buffer is enabled itself.
125 * There's three layers that must be on in order to write
126 * to the ring buffer.
128 * 1) This global flag must be set.
129 * 2) The ring buffer must be enabled for recording.
130 * 3) The per cpu buffer must be enabled for recording.
132 * In case of an anomaly, this global flag has a bit set that
133 * will permantly disable all ring buffers.
137 * Global flag to disable all recording to ring buffers
138 * This has two bits: ON, DISABLED
140 * ON DISABLED
141 * ---- ----------
142 * 0 0 : ring buffers are off
143 * 1 0 : ring buffers are on
144 * X 1 : ring buffers are permanently disabled
147 enum {
148 RB_BUFFERS_ON_BIT = 0,
149 RB_BUFFERS_DISABLED_BIT = 1,
152 enum {
153 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
154 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF (1 << 20)
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
165 * tracing_off_permanent - permanently disable ring buffers
167 * This function, once called, will disable all ring buffers
168 * permanently.
170 void tracing_off_permanent(void)
172 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT 4U
177 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
180 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
181 # define RB_FORCE_8BYTE_ALIGNMENT 0
182 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT 1
185 # define RB_ARCH_ALIGNMENT 8U
186 #endif
188 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
189 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
191 enum {
192 RB_LEN_TIME_EXTEND = 8,
193 RB_LEN_TIME_STAMP = 16,
196 #define skip_time_extend(event) \
197 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
199 static inline int rb_null_event(struct ring_buffer_event *event)
201 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
204 static void rb_event_set_padding(struct ring_buffer_event *event)
206 /* padding has a NULL time_delta */
207 event->type_len = RINGBUF_TYPE_PADDING;
208 event->time_delta = 0;
211 static unsigned
212 rb_event_data_length(struct ring_buffer_event *event)
214 unsigned length;
216 if (event->type_len)
217 length = event->type_len * RB_ALIGNMENT;
218 else
219 length = event->array[0];
220 return length + RB_EVNT_HDR_SIZE;
224 * Return the length of the given event. Will return
225 * the length of the time extend if the event is a
226 * time extend.
228 static inline unsigned
229 rb_event_length(struct ring_buffer_event *event)
231 switch (event->type_len) {
232 case RINGBUF_TYPE_PADDING:
233 if (rb_null_event(event))
234 /* undefined */
235 return -1;
236 return event->array[0] + RB_EVNT_HDR_SIZE;
238 case RINGBUF_TYPE_TIME_EXTEND:
239 return RB_LEN_TIME_EXTEND;
241 case RINGBUF_TYPE_TIME_STAMP:
242 return RB_LEN_TIME_STAMP;
244 case RINGBUF_TYPE_DATA:
245 return rb_event_data_length(event);
246 default:
247 BUG();
249 /* not hit */
250 return 0;
254 * Return total length of time extend and data,
255 * or just the event length for all other events.
257 static inline unsigned
258 rb_event_ts_length(struct ring_buffer_event *event)
260 unsigned len = 0;
262 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
263 /* time extends include the data event after it */
264 len = RB_LEN_TIME_EXTEND;
265 event = skip_time_extend(event);
267 return len + rb_event_length(event);
271 * ring_buffer_event_length - return the length of the event
272 * @event: the event to get the length of
274 * Returns the size of the data load of a data event.
275 * If the event is something other than a data event, it
276 * returns the size of the event itself. With the exception
277 * of a TIME EXTEND, where it still returns the size of the
278 * data load of the data event after it.
280 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
282 unsigned length;
284 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
285 event = skip_time_extend(event);
287 length = rb_event_length(event);
288 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
289 return length;
290 length -= RB_EVNT_HDR_SIZE;
291 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
292 length -= sizeof(event->array[0]);
293 return length;
295 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
297 /* inline for ring buffer fast paths */
298 static void *
299 rb_event_data(struct ring_buffer_event *event)
301 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
302 event = skip_time_extend(event);
303 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
304 /* If length is in len field, then array[0] has the data */
305 if (event->type_len)
306 return (void *)&event->array[0];
307 /* Otherwise length is in array[0] and array[1] has the data */
308 return (void *)&event->array[1];
312 * ring_buffer_event_data - return the data of the event
313 * @event: the event to get the data from
315 void *ring_buffer_event_data(struct ring_buffer_event *event)
317 return rb_event_data(event);
319 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
321 #define for_each_buffer_cpu(buffer, cpu) \
322 for_each_cpu(cpu, buffer->cpumask)
324 #define TS_SHIFT 27
325 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
326 #define TS_DELTA_TEST (~TS_MASK)
328 /* Flag when events were overwritten */
329 #define RB_MISSED_EVENTS (1 << 31)
330 /* Missed count stored at end */
331 #define RB_MISSED_STORED (1 << 30)
333 struct buffer_data_page {
334 u64 time_stamp; /* page time stamp */
335 local_t commit; /* write committed index */
336 unsigned char data[]; /* data of buffer page */
340 * Note, the buffer_page list must be first. The buffer pages
341 * are allocated in cache lines, which means that each buffer
342 * page will be at the beginning of a cache line, and thus
343 * the least significant bits will be zero. We use this to
344 * add flags in the list struct pointers, to make the ring buffer
345 * lockless.
347 struct buffer_page {
348 struct list_head list; /* list of buffer pages */
349 local_t write; /* index for next write */
350 unsigned read; /* index for next read */
351 local_t entries; /* entries on this page */
352 unsigned long real_end; /* real end of data */
353 struct buffer_data_page *page; /* Actual data page */
357 * The buffer page counters, write and entries, must be reset
358 * atomically when crossing page boundaries. To synchronize this
359 * update, two counters are inserted into the number. One is
360 * the actual counter for the write position or count on the page.
362 * The other is a counter of updaters. Before an update happens
363 * the update partition of the counter is incremented. This will
364 * allow the updater to update the counter atomically.
366 * The counter is 20 bits, and the state data is 12.
368 #define RB_WRITE_MASK 0xfffff
369 #define RB_WRITE_INTCNT (1 << 20)
371 static void rb_init_page(struct buffer_data_page *bpage)
373 local_set(&bpage->commit, 0);
377 * ring_buffer_page_len - the size of data on the page.
378 * @page: The page to read
380 * Returns the amount of data on the page, including buffer page header.
382 size_t ring_buffer_page_len(void *page)
384 return local_read(&((struct buffer_data_page *)page)->commit)
385 + BUF_PAGE_HDR_SIZE;
389 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
390 * this issue out.
392 static void free_buffer_page(struct buffer_page *bpage)
394 free_page((unsigned long)bpage->page);
395 kfree(bpage);
399 * We need to fit the time_stamp delta into 27 bits.
401 static inline int test_time_stamp(u64 delta)
403 if (delta & TS_DELTA_TEST)
404 return 1;
405 return 0;
408 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
410 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
411 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
413 int ring_buffer_print_page_header(struct trace_seq *s)
415 struct buffer_data_page field;
416 int ret;
418 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
419 "offset:0;\tsize:%u;\tsigned:%u;\n",
420 (unsigned int)sizeof(field.time_stamp),
421 (unsigned int)is_signed_type(u64));
423 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
424 "offset:%u;\tsize:%u;\tsigned:%u;\n",
425 (unsigned int)offsetof(typeof(field), commit),
426 (unsigned int)sizeof(field.commit),
427 (unsigned int)is_signed_type(long));
429 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field), commit),
433 (unsigned int)is_signed_type(long));
435 ret = trace_seq_printf(s, "\tfield: char data;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field), data),
438 (unsigned int)BUF_PAGE_SIZE,
439 (unsigned int)is_signed_type(char));
441 return ret;
445 * head_page == tail_page && head == tail then buffer is empty.
447 struct ring_buffer_per_cpu {
448 int cpu;
449 atomic_t record_disabled;
450 struct ring_buffer *buffer;
451 raw_spinlock_t reader_lock; /* serialize readers */
452 arch_spinlock_t lock;
453 struct lock_class_key lock_key;
454 unsigned int nr_pages;
455 struct list_head *pages;
456 struct buffer_page *head_page; /* read from head */
457 struct buffer_page *tail_page; /* write to tail */
458 struct buffer_page *commit_page; /* committed pages */
459 struct buffer_page *reader_page;
460 unsigned long lost_events;
461 unsigned long last_overrun;
462 local_t entries_bytes;
463 local_t commit_overrun;
464 local_t overrun;
465 local_t entries;
466 local_t committing;
467 local_t commits;
468 unsigned long read;
469 unsigned long read_bytes;
470 u64 write_stamp;
471 u64 read_stamp;
472 /* ring buffer pages to update, > 0 to add, < 0 to remove */
473 int nr_pages_to_update;
474 struct list_head new_pages; /* new pages to add */
475 struct work_struct update_pages_work;
476 struct completion update_done;
479 struct ring_buffer {
480 unsigned flags;
481 int cpus;
482 atomic_t record_disabled;
483 atomic_t resize_disabled;
484 cpumask_var_t cpumask;
486 struct lock_class_key *reader_lock_key;
488 struct mutex mutex;
490 struct ring_buffer_per_cpu **buffers;
492 #ifdef CONFIG_HOTPLUG_CPU
493 struct notifier_block cpu_notify;
494 #endif
495 u64 (*clock)(void);
498 struct ring_buffer_iter {
499 struct ring_buffer_per_cpu *cpu_buffer;
500 unsigned long head;
501 struct buffer_page *head_page;
502 struct buffer_page *cache_reader_page;
503 unsigned long cache_read;
504 u64 read_stamp;
507 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
508 #define RB_WARN_ON(b, cond) \
509 ({ \
510 int _____ret = unlikely(cond); \
511 if (_____ret) { \
512 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
513 struct ring_buffer_per_cpu *__b = \
514 (void *)b; \
515 atomic_inc(&__b->buffer->record_disabled); \
516 } else \
517 atomic_inc(&b->record_disabled); \
518 WARN_ON(1); \
520 _____ret; \
523 /* Up this if you want to test the TIME_EXTENTS and normalization */
524 #define DEBUG_SHIFT 0
526 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
528 /* shift to debug/test normalization and TIME_EXTENTS */
529 return buffer->clock() << DEBUG_SHIFT;
532 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
534 u64 time;
536 preempt_disable_notrace();
537 time = rb_time_stamp(buffer);
538 preempt_enable_no_resched_notrace();
540 return time;
542 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
544 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
545 int cpu, u64 *ts)
547 /* Just stupid testing the normalize function and deltas */
548 *ts >>= DEBUG_SHIFT;
550 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
553 * Making the ring buffer lockless makes things tricky.
554 * Although writes only happen on the CPU that they are on,
555 * and they only need to worry about interrupts. Reads can
556 * happen on any CPU.
558 * The reader page is always off the ring buffer, but when the
559 * reader finishes with a page, it needs to swap its page with
560 * a new one from the buffer. The reader needs to take from
561 * the head (writes go to the tail). But if a writer is in overwrite
562 * mode and wraps, it must push the head page forward.
564 * Here lies the problem.
566 * The reader must be careful to replace only the head page, and
567 * not another one. As described at the top of the file in the
568 * ASCII art, the reader sets its old page to point to the next
569 * page after head. It then sets the page after head to point to
570 * the old reader page. But if the writer moves the head page
571 * during this operation, the reader could end up with the tail.
573 * We use cmpxchg to help prevent this race. We also do something
574 * special with the page before head. We set the LSB to 1.
576 * When the writer must push the page forward, it will clear the
577 * bit that points to the head page, move the head, and then set
578 * the bit that points to the new head page.
580 * We also don't want an interrupt coming in and moving the head
581 * page on another writer. Thus we use the second LSB to catch
582 * that too. Thus:
584 * head->list->prev->next bit 1 bit 0
585 * ------- -------
586 * Normal page 0 0
587 * Points to head page 0 1
588 * New head page 1 0
590 * Note we can not trust the prev pointer of the head page, because:
592 * +----+ +-----+ +-----+
593 * | |------>| T |---X--->| N |
594 * | |<------| | | |
595 * +----+ +-----+ +-----+
596 * ^ ^ |
597 * | +-----+ | |
598 * +----------| R |----------+ |
599 * | |<-----------+
600 * +-----+
602 * Key: ---X--> HEAD flag set in pointer
603 * T Tail page
604 * R Reader page
605 * N Next page
607 * (see __rb_reserve_next() to see where this happens)
609 * What the above shows is that the reader just swapped out
610 * the reader page with a page in the buffer, but before it
611 * could make the new header point back to the new page added
612 * it was preempted by a writer. The writer moved forward onto
613 * the new page added by the reader and is about to move forward
614 * again.
616 * You can see, it is legitimate for the previous pointer of
617 * the head (or any page) not to point back to itself. But only
618 * temporarially.
621 #define RB_PAGE_NORMAL 0UL
622 #define RB_PAGE_HEAD 1UL
623 #define RB_PAGE_UPDATE 2UL
626 #define RB_FLAG_MASK 3UL
628 /* PAGE_MOVED is not part of the mask */
629 #define RB_PAGE_MOVED 4UL
632 * rb_list_head - remove any bit
634 static struct list_head *rb_list_head(struct list_head *list)
636 unsigned long val = (unsigned long)list;
638 return (struct list_head *)(val & ~RB_FLAG_MASK);
642 * rb_is_head_page - test if the given page is the head page
644 * Because the reader may move the head_page pointer, we can
645 * not trust what the head page is (it may be pointing to
646 * the reader page). But if the next page is a header page,
647 * its flags will be non zero.
649 static inline int
650 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
651 struct buffer_page *page, struct list_head *list)
653 unsigned long val;
655 val = (unsigned long)list->next;
657 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
658 return RB_PAGE_MOVED;
660 return val & RB_FLAG_MASK;
664 * rb_is_reader_page
666 * The unique thing about the reader page, is that, if the
667 * writer is ever on it, the previous pointer never points
668 * back to the reader page.
670 static int rb_is_reader_page(struct buffer_page *page)
672 struct list_head *list = page->list.prev;
674 return rb_list_head(list->next) != &page->list;
678 * rb_set_list_to_head - set a list_head to be pointing to head.
680 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
681 struct list_head *list)
683 unsigned long *ptr;
685 ptr = (unsigned long *)&list->next;
686 *ptr |= RB_PAGE_HEAD;
687 *ptr &= ~RB_PAGE_UPDATE;
691 * rb_head_page_activate - sets up head page
693 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
695 struct buffer_page *head;
697 head = cpu_buffer->head_page;
698 if (!head)
699 return;
702 * Set the previous list pointer to have the HEAD flag.
704 rb_set_list_to_head(cpu_buffer, head->list.prev);
707 static void rb_list_head_clear(struct list_head *list)
709 unsigned long *ptr = (unsigned long *)&list->next;
711 *ptr &= ~RB_FLAG_MASK;
715 * rb_head_page_dactivate - clears head page ptr (for free list)
717 static void
718 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
720 struct list_head *hd;
722 /* Go through the whole list and clear any pointers found. */
723 rb_list_head_clear(cpu_buffer->pages);
725 list_for_each(hd, cpu_buffer->pages)
726 rb_list_head_clear(hd);
729 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
730 struct buffer_page *head,
731 struct buffer_page *prev,
732 int old_flag, int new_flag)
734 struct list_head *list;
735 unsigned long val = (unsigned long)&head->list;
736 unsigned long ret;
738 list = &prev->list;
740 val &= ~RB_FLAG_MASK;
742 ret = cmpxchg((unsigned long *)&list->next,
743 val | old_flag, val | new_flag);
745 /* check if the reader took the page */
746 if ((ret & ~RB_FLAG_MASK) != val)
747 return RB_PAGE_MOVED;
749 return ret & RB_FLAG_MASK;
752 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
753 struct buffer_page *head,
754 struct buffer_page *prev,
755 int old_flag)
757 return rb_head_page_set(cpu_buffer, head, prev,
758 old_flag, RB_PAGE_UPDATE);
761 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
762 struct buffer_page *head,
763 struct buffer_page *prev,
764 int old_flag)
766 return rb_head_page_set(cpu_buffer, head, prev,
767 old_flag, RB_PAGE_HEAD);
770 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
771 struct buffer_page *head,
772 struct buffer_page *prev,
773 int old_flag)
775 return rb_head_page_set(cpu_buffer, head, prev,
776 old_flag, RB_PAGE_NORMAL);
779 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
780 struct buffer_page **bpage)
782 struct list_head *p = rb_list_head((*bpage)->list.next);
784 *bpage = list_entry(p, struct buffer_page, list);
787 static struct buffer_page *
788 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
790 struct buffer_page *head;
791 struct buffer_page *page;
792 struct list_head *list;
793 int i;
795 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
796 return NULL;
798 /* sanity check */
799 list = cpu_buffer->pages;
800 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
801 return NULL;
803 page = head = cpu_buffer->head_page;
805 * It is possible that the writer moves the header behind
806 * where we started, and we miss in one loop.
807 * A second loop should grab the header, but we'll do
808 * three loops just because I'm paranoid.
810 for (i = 0; i < 3; i++) {
811 do {
812 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
813 cpu_buffer->head_page = page;
814 return page;
816 rb_inc_page(cpu_buffer, &page);
817 } while (page != head);
820 RB_WARN_ON(cpu_buffer, 1);
822 return NULL;
825 static int rb_head_page_replace(struct buffer_page *old,
826 struct buffer_page *new)
828 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
829 unsigned long val;
830 unsigned long ret;
832 val = *ptr & ~RB_FLAG_MASK;
833 val |= RB_PAGE_HEAD;
835 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
837 return ret == val;
841 * rb_tail_page_update - move the tail page forward
843 * Returns 1 if moved tail page, 0 if someone else did.
845 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
846 struct buffer_page *tail_page,
847 struct buffer_page *next_page)
849 struct buffer_page *old_tail;
850 unsigned long old_entries;
851 unsigned long old_write;
852 int ret = 0;
855 * The tail page now needs to be moved forward.
857 * We need to reset the tail page, but without messing
858 * with possible erasing of data brought in by interrupts
859 * that have moved the tail page and are currently on it.
861 * We add a counter to the write field to denote this.
863 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
864 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
867 * Just make sure we have seen our old_write and synchronize
868 * with any interrupts that come in.
870 barrier();
873 * If the tail page is still the same as what we think
874 * it is, then it is up to us to update the tail
875 * pointer.
877 if (tail_page == cpu_buffer->tail_page) {
878 /* Zero the write counter */
879 unsigned long val = old_write & ~RB_WRITE_MASK;
880 unsigned long eval = old_entries & ~RB_WRITE_MASK;
883 * This will only succeed if an interrupt did
884 * not come in and change it. In which case, we
885 * do not want to modify it.
887 * We add (void) to let the compiler know that we do not care
888 * about the return value of these functions. We use the
889 * cmpxchg to only update if an interrupt did not already
890 * do it for us. If the cmpxchg fails, we don't care.
892 (void)local_cmpxchg(&next_page->write, old_write, val);
893 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
896 * No need to worry about races with clearing out the commit.
897 * it only can increment when a commit takes place. But that
898 * only happens in the outer most nested commit.
900 local_set(&next_page->page->commit, 0);
902 old_tail = cmpxchg(&cpu_buffer->tail_page,
903 tail_page, next_page);
905 if (old_tail == tail_page)
906 ret = 1;
909 return ret;
912 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
913 struct buffer_page *bpage)
915 unsigned long val = (unsigned long)bpage;
917 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
918 return 1;
920 return 0;
924 * rb_check_list - make sure a pointer to a list has the last bits zero
926 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
927 struct list_head *list)
929 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
930 return 1;
931 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
932 return 1;
933 return 0;
937 * check_pages - integrity check of buffer pages
938 * @cpu_buffer: CPU buffer with pages to test
940 * As a safety measure we check to make sure the data pages have not
941 * been corrupted.
943 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
945 struct list_head *head = cpu_buffer->pages;
946 struct buffer_page *bpage, *tmp;
948 /* Reset the head page if it exists */
949 if (cpu_buffer->head_page)
950 rb_set_head_page(cpu_buffer);
952 rb_head_page_deactivate(cpu_buffer);
954 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
955 return -1;
956 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
957 return -1;
959 if (rb_check_list(cpu_buffer, head))
960 return -1;
962 list_for_each_entry_safe(bpage, tmp, head, list) {
963 if (RB_WARN_ON(cpu_buffer,
964 bpage->list.next->prev != &bpage->list))
965 return -1;
966 if (RB_WARN_ON(cpu_buffer,
967 bpage->list.prev->next != &bpage->list))
968 return -1;
969 if (rb_check_list(cpu_buffer, &bpage->list))
970 return -1;
973 rb_head_page_activate(cpu_buffer);
975 return 0;
978 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
980 int i;
981 struct buffer_page *bpage, *tmp;
983 for (i = 0; i < nr_pages; i++) {
984 struct page *page;
986 * __GFP_NORETRY flag makes sure that the allocation fails
987 * gracefully without invoking oom-killer and the system is
988 * not destabilized.
990 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
991 GFP_KERNEL | __GFP_NORETRY,
992 cpu_to_node(cpu));
993 if (!bpage)
994 goto free_pages;
996 list_add(&bpage->list, pages);
998 page = alloc_pages_node(cpu_to_node(cpu),
999 GFP_KERNEL | __GFP_NORETRY, 0);
1000 if (!page)
1001 goto free_pages;
1002 bpage->page = page_address(page);
1003 rb_init_page(bpage->page);
1006 return 0;
1008 free_pages:
1009 list_for_each_entry_safe(bpage, tmp, pages, list) {
1010 list_del_init(&bpage->list);
1011 free_buffer_page(bpage);
1014 return -ENOMEM;
1017 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1018 unsigned nr_pages)
1020 LIST_HEAD(pages);
1022 WARN_ON(!nr_pages);
1024 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1025 return -ENOMEM;
1028 * The ring buffer page list is a circular list that does not
1029 * start and end with a list head. All page list items point to
1030 * other pages.
1032 cpu_buffer->pages = pages.next;
1033 list_del(&pages);
1035 cpu_buffer->nr_pages = nr_pages;
1037 rb_check_pages(cpu_buffer);
1039 return 0;
1042 static struct ring_buffer_per_cpu *
1043 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1045 struct ring_buffer_per_cpu *cpu_buffer;
1046 struct buffer_page *bpage;
1047 struct page *page;
1048 int ret;
1050 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1051 GFP_KERNEL, cpu_to_node(cpu));
1052 if (!cpu_buffer)
1053 return NULL;
1055 cpu_buffer->cpu = cpu;
1056 cpu_buffer->buffer = buffer;
1057 raw_spin_lock_init(&cpu_buffer->reader_lock);
1058 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1059 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1060 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1061 init_completion(&cpu_buffer->update_done);
1063 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1064 GFP_KERNEL, cpu_to_node(cpu));
1065 if (!bpage)
1066 goto fail_free_buffer;
1068 rb_check_bpage(cpu_buffer, bpage);
1070 cpu_buffer->reader_page = bpage;
1071 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1072 if (!page)
1073 goto fail_free_reader;
1074 bpage->page = page_address(page);
1075 rb_init_page(bpage->page);
1077 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1078 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1080 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1081 if (ret < 0)
1082 goto fail_free_reader;
1084 cpu_buffer->head_page
1085 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1086 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1088 rb_head_page_activate(cpu_buffer);
1090 return cpu_buffer;
1092 fail_free_reader:
1093 free_buffer_page(cpu_buffer->reader_page);
1095 fail_free_buffer:
1096 kfree(cpu_buffer);
1097 return NULL;
1100 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1102 struct list_head *head = cpu_buffer->pages;
1103 struct buffer_page *bpage, *tmp;
1105 free_buffer_page(cpu_buffer->reader_page);
1107 rb_head_page_deactivate(cpu_buffer);
1109 if (head) {
1110 list_for_each_entry_safe(bpage, tmp, head, list) {
1111 list_del_init(&bpage->list);
1112 free_buffer_page(bpage);
1114 bpage = list_entry(head, struct buffer_page, list);
1115 free_buffer_page(bpage);
1118 kfree(cpu_buffer);
1121 #ifdef CONFIG_HOTPLUG_CPU
1122 static int rb_cpu_notify(struct notifier_block *self,
1123 unsigned long action, void *hcpu);
1124 #endif
1127 * ring_buffer_alloc - allocate a new ring_buffer
1128 * @size: the size in bytes per cpu that is needed.
1129 * @flags: attributes to set for the ring buffer.
1131 * Currently the only flag that is available is the RB_FL_OVERWRITE
1132 * flag. This flag means that the buffer will overwrite old data
1133 * when the buffer wraps. If this flag is not set, the buffer will
1134 * drop data when the tail hits the head.
1136 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1137 struct lock_class_key *key)
1139 struct ring_buffer *buffer;
1140 int bsize;
1141 int cpu, nr_pages;
1143 /* keep it in its own cache line */
1144 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1145 GFP_KERNEL);
1146 if (!buffer)
1147 return NULL;
1149 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1150 goto fail_free_buffer;
1152 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1153 buffer->flags = flags;
1154 buffer->clock = trace_clock_local;
1155 buffer->reader_lock_key = key;
1157 /* need at least two pages */
1158 if (nr_pages < 2)
1159 nr_pages = 2;
1162 * In case of non-hotplug cpu, if the ring-buffer is allocated
1163 * in early initcall, it will not be notified of secondary cpus.
1164 * In that off case, we need to allocate for all possible cpus.
1166 #ifdef CONFIG_HOTPLUG_CPU
1167 get_online_cpus();
1168 cpumask_copy(buffer->cpumask, cpu_online_mask);
1169 #else
1170 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1171 #endif
1172 buffer->cpus = nr_cpu_ids;
1174 bsize = sizeof(void *) * nr_cpu_ids;
1175 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1176 GFP_KERNEL);
1177 if (!buffer->buffers)
1178 goto fail_free_cpumask;
1180 for_each_buffer_cpu(buffer, cpu) {
1181 buffer->buffers[cpu] =
1182 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1183 if (!buffer->buffers[cpu])
1184 goto fail_free_buffers;
1187 #ifdef CONFIG_HOTPLUG_CPU
1188 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1189 buffer->cpu_notify.priority = 0;
1190 register_cpu_notifier(&buffer->cpu_notify);
1191 #endif
1193 put_online_cpus();
1194 mutex_init(&buffer->mutex);
1196 return buffer;
1198 fail_free_buffers:
1199 for_each_buffer_cpu(buffer, cpu) {
1200 if (buffer->buffers[cpu])
1201 rb_free_cpu_buffer(buffer->buffers[cpu]);
1203 kfree(buffer->buffers);
1205 fail_free_cpumask:
1206 free_cpumask_var(buffer->cpumask);
1207 put_online_cpus();
1209 fail_free_buffer:
1210 kfree(buffer);
1211 return NULL;
1213 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1216 * ring_buffer_free - free a ring buffer.
1217 * @buffer: the buffer to free.
1219 void
1220 ring_buffer_free(struct ring_buffer *buffer)
1222 int cpu;
1224 get_online_cpus();
1226 #ifdef CONFIG_HOTPLUG_CPU
1227 unregister_cpu_notifier(&buffer->cpu_notify);
1228 #endif
1230 for_each_buffer_cpu(buffer, cpu)
1231 rb_free_cpu_buffer(buffer->buffers[cpu]);
1233 put_online_cpus();
1235 kfree(buffer->buffers);
1236 free_cpumask_var(buffer->cpumask);
1238 kfree(buffer);
1240 EXPORT_SYMBOL_GPL(ring_buffer_free);
1242 void ring_buffer_set_clock(struct ring_buffer *buffer,
1243 u64 (*clock)(void))
1245 buffer->clock = clock;
1248 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1250 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1252 return local_read(&bpage->entries) & RB_WRITE_MASK;
1255 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1257 return local_read(&bpage->write) & RB_WRITE_MASK;
1260 static int
1261 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1263 struct list_head *tail_page, *to_remove, *next_page;
1264 struct buffer_page *to_remove_page, *tmp_iter_page;
1265 struct buffer_page *last_page, *first_page;
1266 unsigned int nr_removed;
1267 unsigned long head_bit;
1268 int page_entries;
1270 head_bit = 0;
1272 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1273 atomic_inc(&cpu_buffer->record_disabled);
1275 * We don't race with the readers since we have acquired the reader
1276 * lock. We also don't race with writers after disabling recording.
1277 * This makes it easy to figure out the first and the last page to be
1278 * removed from the list. We unlink all the pages in between including
1279 * the first and last pages. This is done in a busy loop so that we
1280 * lose the least number of traces.
1281 * The pages are freed after we restart recording and unlock readers.
1283 tail_page = &cpu_buffer->tail_page->list;
1286 * tail page might be on reader page, we remove the next page
1287 * from the ring buffer
1289 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1290 tail_page = rb_list_head(tail_page->next);
1291 to_remove = tail_page;
1293 /* start of pages to remove */
1294 first_page = list_entry(rb_list_head(to_remove->next),
1295 struct buffer_page, list);
1297 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1298 to_remove = rb_list_head(to_remove)->next;
1299 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1302 next_page = rb_list_head(to_remove)->next;
1305 * Now we remove all pages between tail_page and next_page.
1306 * Make sure that we have head_bit value preserved for the
1307 * next page
1309 tail_page->next = (struct list_head *)((unsigned long)next_page |
1310 head_bit);
1311 next_page = rb_list_head(next_page);
1312 next_page->prev = tail_page;
1314 /* make sure pages points to a valid page in the ring buffer */
1315 cpu_buffer->pages = next_page;
1317 /* update head page */
1318 if (head_bit)
1319 cpu_buffer->head_page = list_entry(next_page,
1320 struct buffer_page, list);
1323 * change read pointer to make sure any read iterators reset
1324 * themselves
1326 cpu_buffer->read = 0;
1328 /* pages are removed, resume tracing and then free the pages */
1329 atomic_dec(&cpu_buffer->record_disabled);
1330 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1332 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1334 /* last buffer page to remove */
1335 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1336 list);
1337 tmp_iter_page = first_page;
1339 do {
1340 to_remove_page = tmp_iter_page;
1341 rb_inc_page(cpu_buffer, &tmp_iter_page);
1343 /* update the counters */
1344 page_entries = rb_page_entries(to_remove_page);
1345 if (page_entries) {
1347 * If something was added to this page, it was full
1348 * since it is not the tail page. So we deduct the
1349 * bytes consumed in ring buffer from here.
1350 * Increment overrun to account for the lost events.
1352 local_add(page_entries, &cpu_buffer->overrun);
1353 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1357 * We have already removed references to this list item, just
1358 * free up the buffer_page and its page
1360 free_buffer_page(to_remove_page);
1361 nr_removed--;
1363 } while (to_remove_page != last_page);
1365 RB_WARN_ON(cpu_buffer, nr_removed);
1367 return nr_removed == 0;
1370 static int
1371 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1373 struct list_head *pages = &cpu_buffer->new_pages;
1374 int retries, success;
1376 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1378 * We are holding the reader lock, so the reader page won't be swapped
1379 * in the ring buffer. Now we are racing with the writer trying to
1380 * move head page and the tail page.
1381 * We are going to adapt the reader page update process where:
1382 * 1. We first splice the start and end of list of new pages between
1383 * the head page and its previous page.
1384 * 2. We cmpxchg the prev_page->next to point from head page to the
1385 * start of new pages list.
1386 * 3. Finally, we update the head->prev to the end of new list.
1388 * We will try this process 10 times, to make sure that we don't keep
1389 * spinning.
1391 retries = 10;
1392 success = 0;
1393 while (retries--) {
1394 struct list_head *head_page, *prev_page, *r;
1395 struct list_head *last_page, *first_page;
1396 struct list_head *head_page_with_bit;
1398 head_page = &rb_set_head_page(cpu_buffer)->list;
1399 prev_page = head_page->prev;
1401 first_page = pages->next;
1402 last_page = pages->prev;
1404 head_page_with_bit = (struct list_head *)
1405 ((unsigned long)head_page | RB_PAGE_HEAD);
1407 last_page->next = head_page_with_bit;
1408 first_page->prev = prev_page;
1410 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1412 if (r == head_page_with_bit) {
1414 * yay, we replaced the page pointer to our new list,
1415 * now, we just have to update to head page's prev
1416 * pointer to point to end of list
1418 head_page->prev = last_page;
1419 success = 1;
1420 break;
1424 if (success)
1425 INIT_LIST_HEAD(pages);
1427 * If we weren't successful in adding in new pages, warn and stop
1428 * tracing
1430 RB_WARN_ON(cpu_buffer, !success);
1431 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1433 /* free pages if they weren't inserted */
1434 if (!success) {
1435 struct buffer_page *bpage, *tmp;
1436 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1437 list) {
1438 list_del_init(&bpage->list);
1439 free_buffer_page(bpage);
1442 return success;
1445 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1447 int success;
1449 if (cpu_buffer->nr_pages_to_update > 0)
1450 success = rb_insert_pages(cpu_buffer);
1451 else
1452 success = rb_remove_pages(cpu_buffer,
1453 -cpu_buffer->nr_pages_to_update);
1455 if (success)
1456 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1459 static void update_pages_handler(struct work_struct *work)
1461 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1462 struct ring_buffer_per_cpu, update_pages_work);
1463 rb_update_pages(cpu_buffer);
1464 complete(&cpu_buffer->update_done);
1468 * ring_buffer_resize - resize the ring buffer
1469 * @buffer: the buffer to resize.
1470 * @size: the new size.
1472 * Minimum size is 2 * BUF_PAGE_SIZE.
1474 * Returns 0 on success and < 0 on failure.
1476 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1477 int cpu_id)
1479 struct ring_buffer_per_cpu *cpu_buffer;
1480 unsigned nr_pages;
1481 int cpu, err = 0;
1484 * Always succeed at resizing a non-existent buffer:
1486 if (!buffer)
1487 return size;
1489 /* Make sure the requested buffer exists */
1490 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1491 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1492 return size;
1494 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1495 size *= BUF_PAGE_SIZE;
1497 /* we need a minimum of two pages */
1498 if (size < BUF_PAGE_SIZE * 2)
1499 size = BUF_PAGE_SIZE * 2;
1501 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1504 * Don't succeed if resizing is disabled, as a reader might be
1505 * manipulating the ring buffer and is expecting a sane state while
1506 * this is true.
1508 if (atomic_read(&buffer->resize_disabled))
1509 return -EBUSY;
1511 /* prevent another thread from changing buffer sizes */
1512 mutex_lock(&buffer->mutex);
1514 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1515 /* calculate the pages to update */
1516 for_each_buffer_cpu(buffer, cpu) {
1517 cpu_buffer = buffer->buffers[cpu];
1519 cpu_buffer->nr_pages_to_update = nr_pages -
1520 cpu_buffer->nr_pages;
1522 * nothing more to do for removing pages or no update
1524 if (cpu_buffer->nr_pages_to_update <= 0)
1525 continue;
1527 * to add pages, make sure all new pages can be
1528 * allocated without receiving ENOMEM
1530 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1531 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1532 &cpu_buffer->new_pages, cpu)) {
1533 /* not enough memory for new pages */
1534 err = -ENOMEM;
1535 goto out_err;
1539 get_online_cpus();
1541 * Fire off all the required work handlers
1542 * We can't schedule on offline CPUs, but it's not necessary
1543 * since we can change their buffer sizes without any race.
1545 for_each_buffer_cpu(buffer, cpu) {
1546 cpu_buffer = buffer->buffers[cpu];
1547 if (!cpu_buffer->nr_pages_to_update)
1548 continue;
1550 if (cpu_online(cpu))
1551 schedule_work_on(cpu,
1552 &cpu_buffer->update_pages_work);
1553 else
1554 rb_update_pages(cpu_buffer);
1557 /* wait for all the updates to complete */
1558 for_each_buffer_cpu(buffer, cpu) {
1559 cpu_buffer = buffer->buffers[cpu];
1560 if (!cpu_buffer->nr_pages_to_update)
1561 continue;
1563 if (cpu_online(cpu))
1564 wait_for_completion(&cpu_buffer->update_done);
1565 cpu_buffer->nr_pages_to_update = 0;
1568 put_online_cpus();
1569 } else {
1570 cpu_buffer = buffer->buffers[cpu_id];
1572 if (nr_pages == cpu_buffer->nr_pages)
1573 goto out;
1575 cpu_buffer->nr_pages_to_update = nr_pages -
1576 cpu_buffer->nr_pages;
1578 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1579 if (cpu_buffer->nr_pages_to_update > 0 &&
1580 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1581 &cpu_buffer->new_pages, cpu_id)) {
1582 err = -ENOMEM;
1583 goto out_err;
1586 get_online_cpus();
1588 if (cpu_online(cpu_id)) {
1589 schedule_work_on(cpu_id,
1590 &cpu_buffer->update_pages_work);
1591 wait_for_completion(&cpu_buffer->update_done);
1592 } else
1593 rb_update_pages(cpu_buffer);
1595 cpu_buffer->nr_pages_to_update = 0;
1596 put_online_cpus();
1599 out:
1601 * The ring buffer resize can happen with the ring buffer
1602 * enabled, so that the update disturbs the tracing as little
1603 * as possible. But if the buffer is disabled, we do not need
1604 * to worry about that, and we can take the time to verify
1605 * that the buffer is not corrupt.
1607 if (atomic_read(&buffer->record_disabled)) {
1608 atomic_inc(&buffer->record_disabled);
1610 * Even though the buffer was disabled, we must make sure
1611 * that it is truly disabled before calling rb_check_pages.
1612 * There could have been a race between checking
1613 * record_disable and incrementing it.
1615 synchronize_sched();
1616 for_each_buffer_cpu(buffer, cpu) {
1617 cpu_buffer = buffer->buffers[cpu];
1618 rb_check_pages(cpu_buffer);
1620 atomic_dec(&buffer->record_disabled);
1623 mutex_unlock(&buffer->mutex);
1624 return size;
1626 out_err:
1627 for_each_buffer_cpu(buffer, cpu) {
1628 struct buffer_page *bpage, *tmp;
1630 cpu_buffer = buffer->buffers[cpu];
1631 cpu_buffer->nr_pages_to_update = 0;
1633 if (list_empty(&cpu_buffer->new_pages))
1634 continue;
1636 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1637 list) {
1638 list_del_init(&bpage->list);
1639 free_buffer_page(bpage);
1642 mutex_unlock(&buffer->mutex);
1643 return err;
1645 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1647 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1649 mutex_lock(&buffer->mutex);
1650 if (val)
1651 buffer->flags |= RB_FL_OVERWRITE;
1652 else
1653 buffer->flags &= ~RB_FL_OVERWRITE;
1654 mutex_unlock(&buffer->mutex);
1656 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1658 static inline void *
1659 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1661 return bpage->data + index;
1664 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1666 return bpage->page->data + index;
1669 static inline struct ring_buffer_event *
1670 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1672 return __rb_page_index(cpu_buffer->reader_page,
1673 cpu_buffer->reader_page->read);
1676 static inline struct ring_buffer_event *
1677 rb_iter_head_event(struct ring_buffer_iter *iter)
1679 return __rb_page_index(iter->head_page, iter->head);
1682 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1684 return local_read(&bpage->page->commit);
1687 /* Size is determined by what has been committed */
1688 static inline unsigned rb_page_size(struct buffer_page *bpage)
1690 return rb_page_commit(bpage);
1693 static inline unsigned
1694 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1696 return rb_page_commit(cpu_buffer->commit_page);
1699 static inline unsigned
1700 rb_event_index(struct ring_buffer_event *event)
1702 unsigned long addr = (unsigned long)event;
1704 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1707 static inline int
1708 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1709 struct ring_buffer_event *event)
1711 unsigned long addr = (unsigned long)event;
1712 unsigned long index;
1714 index = rb_event_index(event);
1715 addr &= PAGE_MASK;
1717 return cpu_buffer->commit_page->page == (void *)addr &&
1718 rb_commit_index(cpu_buffer) == index;
1721 static void
1722 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1724 unsigned long max_count;
1727 * We only race with interrupts and NMIs on this CPU.
1728 * If we own the commit event, then we can commit
1729 * all others that interrupted us, since the interruptions
1730 * are in stack format (they finish before they come
1731 * back to us). This allows us to do a simple loop to
1732 * assign the commit to the tail.
1734 again:
1735 max_count = cpu_buffer->nr_pages * 100;
1737 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1738 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1739 return;
1740 if (RB_WARN_ON(cpu_buffer,
1741 rb_is_reader_page(cpu_buffer->tail_page)))
1742 return;
1743 local_set(&cpu_buffer->commit_page->page->commit,
1744 rb_page_write(cpu_buffer->commit_page));
1745 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1746 cpu_buffer->write_stamp =
1747 cpu_buffer->commit_page->page->time_stamp;
1748 /* add barrier to keep gcc from optimizing too much */
1749 barrier();
1751 while (rb_commit_index(cpu_buffer) !=
1752 rb_page_write(cpu_buffer->commit_page)) {
1754 local_set(&cpu_buffer->commit_page->page->commit,
1755 rb_page_write(cpu_buffer->commit_page));
1756 RB_WARN_ON(cpu_buffer,
1757 local_read(&cpu_buffer->commit_page->page->commit) &
1758 ~RB_WRITE_MASK);
1759 barrier();
1762 /* again, keep gcc from optimizing */
1763 barrier();
1766 * If an interrupt came in just after the first while loop
1767 * and pushed the tail page forward, we will be left with
1768 * a dangling commit that will never go forward.
1770 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1771 goto again;
1774 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1776 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1777 cpu_buffer->reader_page->read = 0;
1780 static void rb_inc_iter(struct ring_buffer_iter *iter)
1782 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1785 * The iterator could be on the reader page (it starts there).
1786 * But the head could have moved, since the reader was
1787 * found. Check for this case and assign the iterator
1788 * to the head page instead of next.
1790 if (iter->head_page == cpu_buffer->reader_page)
1791 iter->head_page = rb_set_head_page(cpu_buffer);
1792 else
1793 rb_inc_page(cpu_buffer, &iter->head_page);
1795 iter->read_stamp = iter->head_page->page->time_stamp;
1796 iter->head = 0;
1799 /* Slow path, do not inline */
1800 static noinline struct ring_buffer_event *
1801 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1803 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1805 /* Not the first event on the page? */
1806 if (rb_event_index(event)) {
1807 event->time_delta = delta & TS_MASK;
1808 event->array[0] = delta >> TS_SHIFT;
1809 } else {
1810 /* nope, just zero it */
1811 event->time_delta = 0;
1812 event->array[0] = 0;
1815 return skip_time_extend(event);
1819 * ring_buffer_update_event - update event type and data
1820 * @event: the even to update
1821 * @type: the type of event
1822 * @length: the size of the event field in the ring buffer
1824 * Update the type and data fields of the event. The length
1825 * is the actual size that is written to the ring buffer,
1826 * and with this, we can determine what to place into the
1827 * data field.
1829 static void
1830 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1831 struct ring_buffer_event *event, unsigned length,
1832 int add_timestamp, u64 delta)
1834 /* Only a commit updates the timestamp */
1835 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1836 delta = 0;
1839 * If we need to add a timestamp, then we
1840 * add it to the start of the resevered space.
1842 if (unlikely(add_timestamp)) {
1843 event = rb_add_time_stamp(event, delta);
1844 length -= RB_LEN_TIME_EXTEND;
1845 delta = 0;
1848 event->time_delta = delta;
1849 length -= RB_EVNT_HDR_SIZE;
1850 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1851 event->type_len = 0;
1852 event->array[0] = length;
1853 } else
1854 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1858 * rb_handle_head_page - writer hit the head page
1860 * Returns: +1 to retry page
1861 * 0 to continue
1862 * -1 on error
1864 static int
1865 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1866 struct buffer_page *tail_page,
1867 struct buffer_page *next_page)
1869 struct buffer_page *new_head;
1870 int entries;
1871 int type;
1872 int ret;
1874 entries = rb_page_entries(next_page);
1877 * The hard part is here. We need to move the head
1878 * forward, and protect against both readers on
1879 * other CPUs and writers coming in via interrupts.
1881 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1882 RB_PAGE_HEAD);
1885 * type can be one of four:
1886 * NORMAL - an interrupt already moved it for us
1887 * HEAD - we are the first to get here.
1888 * UPDATE - we are the interrupt interrupting
1889 * a current move.
1890 * MOVED - a reader on another CPU moved the next
1891 * pointer to its reader page. Give up
1892 * and try again.
1895 switch (type) {
1896 case RB_PAGE_HEAD:
1898 * We changed the head to UPDATE, thus
1899 * it is our responsibility to update
1900 * the counters.
1902 local_add(entries, &cpu_buffer->overrun);
1903 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1906 * The entries will be zeroed out when we move the
1907 * tail page.
1910 /* still more to do */
1911 break;
1913 case RB_PAGE_UPDATE:
1915 * This is an interrupt that interrupt the
1916 * previous update. Still more to do.
1918 break;
1919 case RB_PAGE_NORMAL:
1921 * An interrupt came in before the update
1922 * and processed this for us.
1923 * Nothing left to do.
1925 return 1;
1926 case RB_PAGE_MOVED:
1928 * The reader is on another CPU and just did
1929 * a swap with our next_page.
1930 * Try again.
1932 return 1;
1933 default:
1934 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1935 return -1;
1939 * Now that we are here, the old head pointer is
1940 * set to UPDATE. This will keep the reader from
1941 * swapping the head page with the reader page.
1942 * The reader (on another CPU) will spin till
1943 * we are finished.
1945 * We just need to protect against interrupts
1946 * doing the job. We will set the next pointer
1947 * to HEAD. After that, we set the old pointer
1948 * to NORMAL, but only if it was HEAD before.
1949 * otherwise we are an interrupt, and only
1950 * want the outer most commit to reset it.
1952 new_head = next_page;
1953 rb_inc_page(cpu_buffer, &new_head);
1955 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1956 RB_PAGE_NORMAL);
1959 * Valid returns are:
1960 * HEAD - an interrupt came in and already set it.
1961 * NORMAL - One of two things:
1962 * 1) We really set it.
1963 * 2) A bunch of interrupts came in and moved
1964 * the page forward again.
1966 switch (ret) {
1967 case RB_PAGE_HEAD:
1968 case RB_PAGE_NORMAL:
1969 /* OK */
1970 break;
1971 default:
1972 RB_WARN_ON(cpu_buffer, 1);
1973 return -1;
1977 * It is possible that an interrupt came in,
1978 * set the head up, then more interrupts came in
1979 * and moved it again. When we get back here,
1980 * the page would have been set to NORMAL but we
1981 * just set it back to HEAD.
1983 * How do you detect this? Well, if that happened
1984 * the tail page would have moved.
1986 if (ret == RB_PAGE_NORMAL) {
1988 * If the tail had moved passed next, then we need
1989 * to reset the pointer.
1991 if (cpu_buffer->tail_page != tail_page &&
1992 cpu_buffer->tail_page != next_page)
1993 rb_head_page_set_normal(cpu_buffer, new_head,
1994 next_page,
1995 RB_PAGE_HEAD);
1999 * If this was the outer most commit (the one that
2000 * changed the original pointer from HEAD to UPDATE),
2001 * then it is up to us to reset it to NORMAL.
2003 if (type == RB_PAGE_HEAD) {
2004 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2005 tail_page,
2006 RB_PAGE_UPDATE);
2007 if (RB_WARN_ON(cpu_buffer,
2008 ret != RB_PAGE_UPDATE))
2009 return -1;
2012 return 0;
2015 static unsigned rb_calculate_event_length(unsigned length)
2017 struct ring_buffer_event event; /* Used only for sizeof array */
2019 /* zero length can cause confusions */
2020 if (!length)
2021 length = 1;
2023 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2024 length += sizeof(event.array[0]);
2026 length += RB_EVNT_HDR_SIZE;
2027 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2029 return length;
2032 static inline void
2033 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2034 struct buffer_page *tail_page,
2035 unsigned long tail, unsigned long length)
2037 struct ring_buffer_event *event;
2040 * Only the event that crossed the page boundary
2041 * must fill the old tail_page with padding.
2043 if (tail >= BUF_PAGE_SIZE) {
2045 * If the page was filled, then we still need
2046 * to update the real_end. Reset it to zero
2047 * and the reader will ignore it.
2049 if (tail == BUF_PAGE_SIZE)
2050 tail_page->real_end = 0;
2052 local_sub(length, &tail_page->write);
2053 return;
2056 event = __rb_page_index(tail_page, tail);
2057 kmemcheck_annotate_bitfield(event, bitfield);
2059 /* account for padding bytes */
2060 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2063 * Save the original length to the meta data.
2064 * This will be used by the reader to add lost event
2065 * counter.
2067 tail_page->real_end = tail;
2070 * If this event is bigger than the minimum size, then
2071 * we need to be careful that we don't subtract the
2072 * write counter enough to allow another writer to slip
2073 * in on this page.
2074 * We put in a discarded commit instead, to make sure
2075 * that this space is not used again.
2077 * If we are less than the minimum size, we don't need to
2078 * worry about it.
2080 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2081 /* No room for any events */
2083 /* Mark the rest of the page with padding */
2084 rb_event_set_padding(event);
2086 /* Set the write back to the previous setting */
2087 local_sub(length, &tail_page->write);
2088 return;
2091 /* Put in a discarded event */
2092 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2093 event->type_len = RINGBUF_TYPE_PADDING;
2094 /* time delta must be non zero */
2095 event->time_delta = 1;
2097 /* Set write to end of buffer */
2098 length = (tail + length) - BUF_PAGE_SIZE;
2099 local_sub(length, &tail_page->write);
2103 * This is the slow path, force gcc not to inline it.
2105 static noinline struct ring_buffer_event *
2106 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2107 unsigned long length, unsigned long tail,
2108 struct buffer_page *tail_page, u64 ts)
2110 struct buffer_page *commit_page = cpu_buffer->commit_page;
2111 struct ring_buffer *buffer = cpu_buffer->buffer;
2112 struct buffer_page *next_page;
2113 int ret;
2115 next_page = tail_page;
2117 rb_inc_page(cpu_buffer, &next_page);
2120 * If for some reason, we had an interrupt storm that made
2121 * it all the way around the buffer, bail, and warn
2122 * about it.
2124 if (unlikely(next_page == commit_page)) {
2125 local_inc(&cpu_buffer->commit_overrun);
2126 goto out_reset;
2130 * This is where the fun begins!
2132 * We are fighting against races between a reader that
2133 * could be on another CPU trying to swap its reader
2134 * page with the buffer head.
2136 * We are also fighting against interrupts coming in and
2137 * moving the head or tail on us as well.
2139 * If the next page is the head page then we have filled
2140 * the buffer, unless the commit page is still on the
2141 * reader page.
2143 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2146 * If the commit is not on the reader page, then
2147 * move the header page.
2149 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2151 * If we are not in overwrite mode,
2152 * this is easy, just stop here.
2154 if (!(buffer->flags & RB_FL_OVERWRITE))
2155 goto out_reset;
2157 ret = rb_handle_head_page(cpu_buffer,
2158 tail_page,
2159 next_page);
2160 if (ret < 0)
2161 goto out_reset;
2162 if (ret)
2163 goto out_again;
2164 } else {
2166 * We need to be careful here too. The
2167 * commit page could still be on the reader
2168 * page. We could have a small buffer, and
2169 * have filled up the buffer with events
2170 * from interrupts and such, and wrapped.
2172 * Note, if the tail page is also the on the
2173 * reader_page, we let it move out.
2175 if (unlikely((cpu_buffer->commit_page !=
2176 cpu_buffer->tail_page) &&
2177 (cpu_buffer->commit_page ==
2178 cpu_buffer->reader_page))) {
2179 local_inc(&cpu_buffer->commit_overrun);
2180 goto out_reset;
2185 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2186 if (ret) {
2188 * Nested commits always have zero deltas, so
2189 * just reread the time stamp
2191 ts = rb_time_stamp(buffer);
2192 next_page->page->time_stamp = ts;
2195 out_again:
2197 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2199 /* fail and let the caller try again */
2200 return ERR_PTR(-EAGAIN);
2202 out_reset:
2203 /* reset write */
2204 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2206 return NULL;
2209 static struct ring_buffer_event *
2210 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2211 unsigned long length, u64 ts,
2212 u64 delta, int add_timestamp)
2214 struct buffer_page *tail_page;
2215 struct ring_buffer_event *event;
2216 unsigned long tail, write;
2219 * If the time delta since the last event is too big to
2220 * hold in the time field of the event, then we append a
2221 * TIME EXTEND event ahead of the data event.
2223 if (unlikely(add_timestamp))
2224 length += RB_LEN_TIME_EXTEND;
2226 tail_page = cpu_buffer->tail_page;
2227 write = local_add_return(length, &tail_page->write);
2229 /* set write to only the index of the write */
2230 write &= RB_WRITE_MASK;
2231 tail = write - length;
2233 /* See if we shot pass the end of this buffer page */
2234 if (unlikely(write > BUF_PAGE_SIZE))
2235 return rb_move_tail(cpu_buffer, length, tail,
2236 tail_page, ts);
2238 /* We reserved something on the buffer */
2240 event = __rb_page_index(tail_page, tail);
2241 kmemcheck_annotate_bitfield(event, bitfield);
2242 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2244 local_inc(&tail_page->entries);
2247 * If this is the first commit on the page, then update
2248 * its timestamp.
2250 if (!tail)
2251 tail_page->page->time_stamp = ts;
2253 /* account for these added bytes */
2254 local_add(length, &cpu_buffer->entries_bytes);
2256 return event;
2259 static inline int
2260 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2261 struct ring_buffer_event *event)
2263 unsigned long new_index, old_index;
2264 struct buffer_page *bpage;
2265 unsigned long index;
2266 unsigned long addr;
2268 new_index = rb_event_index(event);
2269 old_index = new_index + rb_event_ts_length(event);
2270 addr = (unsigned long)event;
2271 addr &= PAGE_MASK;
2273 bpage = cpu_buffer->tail_page;
2275 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2276 unsigned long write_mask =
2277 local_read(&bpage->write) & ~RB_WRITE_MASK;
2278 unsigned long event_length = rb_event_length(event);
2280 * This is on the tail page. It is possible that
2281 * a write could come in and move the tail page
2282 * and write to the next page. That is fine
2283 * because we just shorten what is on this page.
2285 old_index += write_mask;
2286 new_index += write_mask;
2287 index = local_cmpxchg(&bpage->write, old_index, new_index);
2288 if (index == old_index) {
2289 /* update counters */
2290 local_sub(event_length, &cpu_buffer->entries_bytes);
2291 return 1;
2295 /* could not discard */
2296 return 0;
2299 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2301 local_inc(&cpu_buffer->committing);
2302 local_inc(&cpu_buffer->commits);
2305 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2307 unsigned long commits;
2309 if (RB_WARN_ON(cpu_buffer,
2310 !local_read(&cpu_buffer->committing)))
2311 return;
2313 again:
2314 commits = local_read(&cpu_buffer->commits);
2315 /* synchronize with interrupts */
2316 barrier();
2317 if (local_read(&cpu_buffer->committing) == 1)
2318 rb_set_commit_to_write(cpu_buffer);
2320 local_dec(&cpu_buffer->committing);
2322 /* synchronize with interrupts */
2323 barrier();
2326 * Need to account for interrupts coming in between the
2327 * updating of the commit page and the clearing of the
2328 * committing counter.
2330 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2331 !local_read(&cpu_buffer->committing)) {
2332 local_inc(&cpu_buffer->committing);
2333 goto again;
2337 static struct ring_buffer_event *
2338 rb_reserve_next_event(struct ring_buffer *buffer,
2339 struct ring_buffer_per_cpu *cpu_buffer,
2340 unsigned long length)
2342 struct ring_buffer_event *event;
2343 u64 ts, delta;
2344 int nr_loops = 0;
2345 int add_timestamp;
2346 u64 diff;
2348 rb_start_commit(cpu_buffer);
2350 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2352 * Due to the ability to swap a cpu buffer from a buffer
2353 * it is possible it was swapped before we committed.
2354 * (committing stops a swap). We check for it here and
2355 * if it happened, we have to fail the write.
2357 barrier();
2358 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2359 local_dec(&cpu_buffer->committing);
2360 local_dec(&cpu_buffer->commits);
2361 return NULL;
2363 #endif
2365 length = rb_calculate_event_length(length);
2366 again:
2367 add_timestamp = 0;
2368 delta = 0;
2371 * We allow for interrupts to reenter here and do a trace.
2372 * If one does, it will cause this original code to loop
2373 * back here. Even with heavy interrupts happening, this
2374 * should only happen a few times in a row. If this happens
2375 * 1000 times in a row, there must be either an interrupt
2376 * storm or we have something buggy.
2377 * Bail!
2379 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2380 goto out_fail;
2382 ts = rb_time_stamp(cpu_buffer->buffer);
2383 diff = ts - cpu_buffer->write_stamp;
2385 /* make sure this diff is calculated here */
2386 barrier();
2388 /* Did the write stamp get updated already? */
2389 if (likely(ts >= cpu_buffer->write_stamp)) {
2390 delta = diff;
2391 if (unlikely(test_time_stamp(delta))) {
2392 int local_clock_stable = 1;
2393 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2394 local_clock_stable = sched_clock_stable;
2395 #endif
2396 WARN_ONCE(delta > (1ULL << 59),
2397 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2398 (unsigned long long)delta,
2399 (unsigned long long)ts,
2400 (unsigned long long)cpu_buffer->write_stamp,
2401 local_clock_stable ? "" :
2402 "If you just came from a suspend/resume,\n"
2403 "please switch to the trace global clock:\n"
2404 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2405 add_timestamp = 1;
2409 event = __rb_reserve_next(cpu_buffer, length, ts,
2410 delta, add_timestamp);
2411 if (unlikely(PTR_ERR(event) == -EAGAIN))
2412 goto again;
2414 if (!event)
2415 goto out_fail;
2417 return event;
2419 out_fail:
2420 rb_end_commit(cpu_buffer);
2421 return NULL;
2424 #ifdef CONFIG_TRACING
2426 #define TRACE_RECURSIVE_DEPTH 16
2428 /* Keep this code out of the fast path cache */
2429 static noinline void trace_recursive_fail(void)
2431 /* Disable all tracing before we do anything else */
2432 tracing_off_permanent();
2434 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2435 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2436 trace_recursion_buffer(),
2437 hardirq_count() >> HARDIRQ_SHIFT,
2438 softirq_count() >> SOFTIRQ_SHIFT,
2439 in_nmi());
2441 WARN_ON_ONCE(1);
2444 static inline int trace_recursive_lock(void)
2446 trace_recursion_inc();
2448 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2449 return 0;
2451 trace_recursive_fail();
2453 return -1;
2456 static inline void trace_recursive_unlock(void)
2458 WARN_ON_ONCE(!trace_recursion_buffer());
2460 trace_recursion_dec();
2463 #else
2465 #define trace_recursive_lock() (0)
2466 #define trace_recursive_unlock() do { } while (0)
2468 #endif
2471 * ring_buffer_lock_reserve - reserve a part of the buffer
2472 * @buffer: the ring buffer to reserve from
2473 * @length: the length of the data to reserve (excluding event header)
2475 * Returns a reseverd event on the ring buffer to copy directly to.
2476 * The user of this interface will need to get the body to write into
2477 * and can use the ring_buffer_event_data() interface.
2479 * The length is the length of the data needed, not the event length
2480 * which also includes the event header.
2482 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2483 * If NULL is returned, then nothing has been allocated or locked.
2485 struct ring_buffer_event *
2486 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2488 struct ring_buffer_per_cpu *cpu_buffer;
2489 struct ring_buffer_event *event;
2490 int cpu;
2492 if (ring_buffer_flags != RB_BUFFERS_ON)
2493 return NULL;
2495 /* If we are tracing schedule, we don't want to recurse */
2496 preempt_disable_notrace();
2498 if (atomic_read(&buffer->record_disabled))
2499 goto out_nocheck;
2501 if (trace_recursive_lock())
2502 goto out_nocheck;
2504 cpu = raw_smp_processor_id();
2506 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2507 goto out;
2509 cpu_buffer = buffer->buffers[cpu];
2511 if (atomic_read(&cpu_buffer->record_disabled))
2512 goto out;
2514 if (length > BUF_MAX_DATA_SIZE)
2515 goto out;
2517 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2518 if (!event)
2519 goto out;
2521 return event;
2523 out:
2524 trace_recursive_unlock();
2526 out_nocheck:
2527 preempt_enable_notrace();
2528 return NULL;
2530 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2532 static void
2533 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2534 struct ring_buffer_event *event)
2536 u64 delta;
2539 * The event first in the commit queue updates the
2540 * time stamp.
2542 if (rb_event_is_commit(cpu_buffer, event)) {
2544 * A commit event that is first on a page
2545 * updates the write timestamp with the page stamp
2547 if (!rb_event_index(event))
2548 cpu_buffer->write_stamp =
2549 cpu_buffer->commit_page->page->time_stamp;
2550 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2551 delta = event->array[0];
2552 delta <<= TS_SHIFT;
2553 delta += event->time_delta;
2554 cpu_buffer->write_stamp += delta;
2555 } else
2556 cpu_buffer->write_stamp += event->time_delta;
2560 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2561 struct ring_buffer_event *event)
2563 local_inc(&cpu_buffer->entries);
2564 rb_update_write_stamp(cpu_buffer, event);
2565 rb_end_commit(cpu_buffer);
2569 * ring_buffer_unlock_commit - commit a reserved
2570 * @buffer: The buffer to commit to
2571 * @event: The event pointer to commit.
2573 * This commits the data to the ring buffer, and releases any locks held.
2575 * Must be paired with ring_buffer_lock_reserve.
2577 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2578 struct ring_buffer_event *event)
2580 struct ring_buffer_per_cpu *cpu_buffer;
2581 int cpu = raw_smp_processor_id();
2583 cpu_buffer = buffer->buffers[cpu];
2585 rb_commit(cpu_buffer, event);
2587 trace_recursive_unlock();
2589 preempt_enable_notrace();
2591 return 0;
2593 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2595 static inline void rb_event_discard(struct ring_buffer_event *event)
2597 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2598 event = skip_time_extend(event);
2600 /* array[0] holds the actual length for the discarded event */
2601 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2602 event->type_len = RINGBUF_TYPE_PADDING;
2603 /* time delta must be non zero */
2604 if (!event->time_delta)
2605 event->time_delta = 1;
2609 * Decrement the entries to the page that an event is on.
2610 * The event does not even need to exist, only the pointer
2611 * to the page it is on. This may only be called before the commit
2612 * takes place.
2614 static inline void
2615 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2616 struct ring_buffer_event *event)
2618 unsigned long addr = (unsigned long)event;
2619 struct buffer_page *bpage = cpu_buffer->commit_page;
2620 struct buffer_page *start;
2622 addr &= PAGE_MASK;
2624 /* Do the likely case first */
2625 if (likely(bpage->page == (void *)addr)) {
2626 local_dec(&bpage->entries);
2627 return;
2631 * Because the commit page may be on the reader page we
2632 * start with the next page and check the end loop there.
2634 rb_inc_page(cpu_buffer, &bpage);
2635 start = bpage;
2636 do {
2637 if (bpage->page == (void *)addr) {
2638 local_dec(&bpage->entries);
2639 return;
2641 rb_inc_page(cpu_buffer, &bpage);
2642 } while (bpage != start);
2644 /* commit not part of this buffer?? */
2645 RB_WARN_ON(cpu_buffer, 1);
2649 * ring_buffer_commit_discard - discard an event that has not been committed
2650 * @buffer: the ring buffer
2651 * @event: non committed event to discard
2653 * Sometimes an event that is in the ring buffer needs to be ignored.
2654 * This function lets the user discard an event in the ring buffer
2655 * and then that event will not be read later.
2657 * This function only works if it is called before the the item has been
2658 * committed. It will try to free the event from the ring buffer
2659 * if another event has not been added behind it.
2661 * If another event has been added behind it, it will set the event
2662 * up as discarded, and perform the commit.
2664 * If this function is called, do not call ring_buffer_unlock_commit on
2665 * the event.
2667 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2668 struct ring_buffer_event *event)
2670 struct ring_buffer_per_cpu *cpu_buffer;
2671 int cpu;
2673 /* The event is discarded regardless */
2674 rb_event_discard(event);
2676 cpu = smp_processor_id();
2677 cpu_buffer = buffer->buffers[cpu];
2680 * This must only be called if the event has not been
2681 * committed yet. Thus we can assume that preemption
2682 * is still disabled.
2684 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2686 rb_decrement_entry(cpu_buffer, event);
2687 if (rb_try_to_discard(cpu_buffer, event))
2688 goto out;
2691 * The commit is still visible by the reader, so we
2692 * must still update the timestamp.
2694 rb_update_write_stamp(cpu_buffer, event);
2695 out:
2696 rb_end_commit(cpu_buffer);
2698 trace_recursive_unlock();
2700 preempt_enable_notrace();
2703 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2706 * ring_buffer_write - write data to the buffer without reserving
2707 * @buffer: The ring buffer to write to.
2708 * @length: The length of the data being written (excluding the event header)
2709 * @data: The data to write to the buffer.
2711 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2712 * one function. If you already have the data to write to the buffer, it
2713 * may be easier to simply call this function.
2715 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2716 * and not the length of the event which would hold the header.
2718 int ring_buffer_write(struct ring_buffer *buffer,
2719 unsigned long length,
2720 void *data)
2722 struct ring_buffer_per_cpu *cpu_buffer;
2723 struct ring_buffer_event *event;
2724 void *body;
2725 int ret = -EBUSY;
2726 int cpu;
2728 if (ring_buffer_flags != RB_BUFFERS_ON)
2729 return -EBUSY;
2731 preempt_disable_notrace();
2733 if (atomic_read(&buffer->record_disabled))
2734 goto out;
2736 cpu = raw_smp_processor_id();
2738 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2739 goto out;
2741 cpu_buffer = buffer->buffers[cpu];
2743 if (atomic_read(&cpu_buffer->record_disabled))
2744 goto out;
2746 if (length > BUF_MAX_DATA_SIZE)
2747 goto out;
2749 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2750 if (!event)
2751 goto out;
2753 body = rb_event_data(event);
2755 memcpy(body, data, length);
2757 rb_commit(cpu_buffer, event);
2759 ret = 0;
2760 out:
2761 preempt_enable_notrace();
2763 return ret;
2765 EXPORT_SYMBOL_GPL(ring_buffer_write);
2767 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2769 struct buffer_page *reader = cpu_buffer->reader_page;
2770 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2771 struct buffer_page *commit = cpu_buffer->commit_page;
2773 /* In case of error, head will be NULL */
2774 if (unlikely(!head))
2775 return 1;
2777 return reader->read == rb_page_commit(reader) &&
2778 (commit == reader ||
2779 (commit == head &&
2780 head->read == rb_page_commit(commit)));
2784 * ring_buffer_record_disable - stop all writes into the buffer
2785 * @buffer: The ring buffer to stop writes to.
2787 * This prevents all writes to the buffer. Any attempt to write
2788 * to the buffer after this will fail and return NULL.
2790 * The caller should call synchronize_sched() after this.
2792 void ring_buffer_record_disable(struct ring_buffer *buffer)
2794 atomic_inc(&buffer->record_disabled);
2796 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2799 * ring_buffer_record_enable - enable writes to the buffer
2800 * @buffer: The ring buffer to enable writes
2802 * Note, multiple disables will need the same number of enables
2803 * to truly enable the writing (much like preempt_disable).
2805 void ring_buffer_record_enable(struct ring_buffer *buffer)
2807 atomic_dec(&buffer->record_disabled);
2809 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2812 * ring_buffer_record_off - stop all writes into the buffer
2813 * @buffer: The ring buffer to stop writes to.
2815 * This prevents all writes to the buffer. Any attempt to write
2816 * to the buffer after this will fail and return NULL.
2818 * This is different than ring_buffer_record_disable() as
2819 * it works like an on/off switch, where as the disable() verison
2820 * must be paired with a enable().
2822 void ring_buffer_record_off(struct ring_buffer *buffer)
2824 unsigned int rd;
2825 unsigned int new_rd;
2827 do {
2828 rd = atomic_read(&buffer->record_disabled);
2829 new_rd = rd | RB_BUFFER_OFF;
2830 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2832 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2835 * ring_buffer_record_on - restart writes into the buffer
2836 * @buffer: The ring buffer to start writes to.
2838 * This enables all writes to the buffer that was disabled by
2839 * ring_buffer_record_off().
2841 * This is different than ring_buffer_record_enable() as
2842 * it works like an on/off switch, where as the enable() verison
2843 * must be paired with a disable().
2845 void ring_buffer_record_on(struct ring_buffer *buffer)
2847 unsigned int rd;
2848 unsigned int new_rd;
2850 do {
2851 rd = atomic_read(&buffer->record_disabled);
2852 new_rd = rd & ~RB_BUFFER_OFF;
2853 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2855 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2858 * ring_buffer_record_is_on - return true if the ring buffer can write
2859 * @buffer: The ring buffer to see if write is enabled
2861 * Returns true if the ring buffer is in a state that it accepts writes.
2863 int ring_buffer_record_is_on(struct ring_buffer *buffer)
2865 return !atomic_read(&buffer->record_disabled);
2869 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2870 * @buffer: The ring buffer to stop writes to.
2871 * @cpu: The CPU buffer to stop
2873 * This prevents all writes to the buffer. Any attempt to write
2874 * to the buffer after this will fail and return NULL.
2876 * The caller should call synchronize_sched() after this.
2878 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2880 struct ring_buffer_per_cpu *cpu_buffer;
2882 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2883 return;
2885 cpu_buffer = buffer->buffers[cpu];
2886 atomic_inc(&cpu_buffer->record_disabled);
2888 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2891 * ring_buffer_record_enable_cpu - enable writes to the buffer
2892 * @buffer: The ring buffer to enable writes
2893 * @cpu: The CPU to enable.
2895 * Note, multiple disables will need the same number of enables
2896 * to truly enable the writing (much like preempt_disable).
2898 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2900 struct ring_buffer_per_cpu *cpu_buffer;
2902 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2903 return;
2905 cpu_buffer = buffer->buffers[cpu];
2906 atomic_dec(&cpu_buffer->record_disabled);
2908 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2911 * The total entries in the ring buffer is the running counter
2912 * of entries entered into the ring buffer, minus the sum of
2913 * the entries read from the ring buffer and the number of
2914 * entries that were overwritten.
2916 static inline unsigned long
2917 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2919 return local_read(&cpu_buffer->entries) -
2920 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2924 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2925 * @buffer: The ring buffer
2926 * @cpu: The per CPU buffer to read from.
2928 unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2930 unsigned long flags;
2931 struct ring_buffer_per_cpu *cpu_buffer;
2932 struct buffer_page *bpage;
2933 unsigned long ret;
2935 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2936 return 0;
2938 cpu_buffer = buffer->buffers[cpu];
2939 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2941 * if the tail is on reader_page, oldest time stamp is on the reader
2942 * page
2944 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2945 bpage = cpu_buffer->reader_page;
2946 else
2947 bpage = rb_set_head_page(cpu_buffer);
2948 ret = bpage->page->time_stamp;
2949 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2951 return ret;
2953 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2956 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2957 * @buffer: The ring buffer
2958 * @cpu: The per CPU buffer to read from.
2960 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2962 struct ring_buffer_per_cpu *cpu_buffer;
2963 unsigned long ret;
2965 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2966 return 0;
2968 cpu_buffer = buffer->buffers[cpu];
2969 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2971 return ret;
2973 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2976 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2977 * @buffer: The ring buffer
2978 * @cpu: The per CPU buffer to get the entries from.
2980 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2982 struct ring_buffer_per_cpu *cpu_buffer;
2984 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2985 return 0;
2987 cpu_buffer = buffer->buffers[cpu];
2989 return rb_num_of_entries(cpu_buffer);
2991 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2994 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2995 * @buffer: The ring buffer
2996 * @cpu: The per CPU buffer to get the number of overruns from
2998 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3000 struct ring_buffer_per_cpu *cpu_buffer;
3001 unsigned long ret;
3003 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3004 return 0;
3006 cpu_buffer = buffer->buffers[cpu];
3007 ret = local_read(&cpu_buffer->overrun);
3009 return ret;
3011 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3014 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
3015 * @buffer: The ring buffer
3016 * @cpu: The per CPU buffer to get the number of overruns from
3018 unsigned long
3019 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3021 struct ring_buffer_per_cpu *cpu_buffer;
3022 unsigned long ret;
3024 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3025 return 0;
3027 cpu_buffer = buffer->buffers[cpu];
3028 ret = local_read(&cpu_buffer->commit_overrun);
3030 return ret;
3032 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3035 * ring_buffer_entries - get the number of entries in a buffer
3036 * @buffer: The ring buffer
3038 * Returns the total number of entries in the ring buffer
3039 * (all CPU entries)
3041 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3043 struct ring_buffer_per_cpu *cpu_buffer;
3044 unsigned long entries = 0;
3045 int cpu;
3047 /* if you care about this being correct, lock the buffer */
3048 for_each_buffer_cpu(buffer, cpu) {
3049 cpu_buffer = buffer->buffers[cpu];
3050 entries += rb_num_of_entries(cpu_buffer);
3053 return entries;
3055 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3058 * ring_buffer_overruns - get the number of overruns in buffer
3059 * @buffer: The ring buffer
3061 * Returns the total number of overruns in the ring buffer
3062 * (all CPU entries)
3064 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3066 struct ring_buffer_per_cpu *cpu_buffer;
3067 unsigned long overruns = 0;
3068 int cpu;
3070 /* if you care about this being correct, lock the buffer */
3071 for_each_buffer_cpu(buffer, cpu) {
3072 cpu_buffer = buffer->buffers[cpu];
3073 overruns += local_read(&cpu_buffer->overrun);
3076 return overruns;
3078 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3080 static void rb_iter_reset(struct ring_buffer_iter *iter)
3082 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3084 /* Iterator usage is expected to have record disabled */
3085 if (list_empty(&cpu_buffer->reader_page->list)) {
3086 iter->head_page = rb_set_head_page(cpu_buffer);
3087 if (unlikely(!iter->head_page))
3088 return;
3089 iter->head = iter->head_page->read;
3090 } else {
3091 iter->head_page = cpu_buffer->reader_page;
3092 iter->head = cpu_buffer->reader_page->read;
3094 if (iter->head)
3095 iter->read_stamp = cpu_buffer->read_stamp;
3096 else
3097 iter->read_stamp = iter->head_page->page->time_stamp;
3098 iter->cache_reader_page = cpu_buffer->reader_page;
3099 iter->cache_read = cpu_buffer->read;
3103 * ring_buffer_iter_reset - reset an iterator
3104 * @iter: The iterator to reset
3106 * Resets the iterator, so that it will start from the beginning
3107 * again.
3109 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3111 struct ring_buffer_per_cpu *cpu_buffer;
3112 unsigned long flags;
3114 if (!iter)
3115 return;
3117 cpu_buffer = iter->cpu_buffer;
3119 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3120 rb_iter_reset(iter);
3121 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3123 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3126 * ring_buffer_iter_empty - check if an iterator has no more to read
3127 * @iter: The iterator to check
3129 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3131 struct ring_buffer_per_cpu *cpu_buffer;
3133 cpu_buffer = iter->cpu_buffer;
3135 return iter->head_page == cpu_buffer->commit_page &&
3136 iter->head == rb_commit_index(cpu_buffer);
3138 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3140 static void
3141 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3142 struct ring_buffer_event *event)
3144 u64 delta;
3146 switch (event->type_len) {
3147 case RINGBUF_TYPE_PADDING:
3148 return;
3150 case RINGBUF_TYPE_TIME_EXTEND:
3151 delta = event->array[0];
3152 delta <<= TS_SHIFT;
3153 delta += event->time_delta;
3154 cpu_buffer->read_stamp += delta;
3155 return;
3157 case RINGBUF_TYPE_TIME_STAMP:
3158 /* FIXME: not implemented */
3159 return;
3161 case RINGBUF_TYPE_DATA:
3162 cpu_buffer->read_stamp += event->time_delta;
3163 return;
3165 default:
3166 BUG();
3168 return;
3171 static void
3172 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3173 struct ring_buffer_event *event)
3175 u64 delta;
3177 switch (event->type_len) {
3178 case RINGBUF_TYPE_PADDING:
3179 return;
3181 case RINGBUF_TYPE_TIME_EXTEND:
3182 delta = event->array[0];
3183 delta <<= TS_SHIFT;
3184 delta += event->time_delta;
3185 iter->read_stamp += delta;
3186 return;
3188 case RINGBUF_TYPE_TIME_STAMP:
3189 /* FIXME: not implemented */
3190 return;
3192 case RINGBUF_TYPE_DATA:
3193 iter->read_stamp += event->time_delta;
3194 return;
3196 default:
3197 BUG();
3199 return;
3202 static struct buffer_page *
3203 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3205 struct buffer_page *reader = NULL;
3206 unsigned long overwrite;
3207 unsigned long flags;
3208 int nr_loops = 0;
3209 int ret;
3211 local_irq_save(flags);
3212 arch_spin_lock(&cpu_buffer->lock);
3214 again:
3216 * This should normally only loop twice. But because the
3217 * start of the reader inserts an empty page, it causes
3218 * a case where we will loop three times. There should be no
3219 * reason to loop four times (that I know of).
3221 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3222 reader = NULL;
3223 goto out;
3226 reader = cpu_buffer->reader_page;
3228 /* If there's more to read, return this page */
3229 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3230 goto out;
3232 /* Never should we have an index greater than the size */
3233 if (RB_WARN_ON(cpu_buffer,
3234 cpu_buffer->reader_page->read > rb_page_size(reader)))
3235 goto out;
3237 /* check if we caught up to the tail */
3238 reader = NULL;
3239 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3240 goto out;
3242 /* Don't bother swapping if the ring buffer is empty */
3243 if (rb_num_of_entries(cpu_buffer) == 0)
3244 goto out;
3247 * Reset the reader page to size zero.
3249 local_set(&cpu_buffer->reader_page->write, 0);
3250 local_set(&cpu_buffer->reader_page->entries, 0);
3251 local_set(&cpu_buffer->reader_page->page->commit, 0);
3252 cpu_buffer->reader_page->real_end = 0;
3254 spin:
3256 * Splice the empty reader page into the list around the head.
3258 reader = rb_set_head_page(cpu_buffer);
3259 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3260 cpu_buffer->reader_page->list.prev = reader->list.prev;
3263 * cpu_buffer->pages just needs to point to the buffer, it
3264 * has no specific buffer page to point to. Lets move it out
3265 * of our way so we don't accidentally swap it.
3267 cpu_buffer->pages = reader->list.prev;
3269 /* The reader page will be pointing to the new head */
3270 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3273 * We want to make sure we read the overruns after we set up our
3274 * pointers to the next object. The writer side does a
3275 * cmpxchg to cross pages which acts as the mb on the writer
3276 * side. Note, the reader will constantly fail the swap
3277 * while the writer is updating the pointers, so this
3278 * guarantees that the overwrite recorded here is the one we
3279 * want to compare with the last_overrun.
3281 smp_mb();
3282 overwrite = local_read(&(cpu_buffer->overrun));
3285 * Here's the tricky part.
3287 * We need to move the pointer past the header page.
3288 * But we can only do that if a writer is not currently
3289 * moving it. The page before the header page has the
3290 * flag bit '1' set if it is pointing to the page we want.
3291 * but if the writer is in the process of moving it
3292 * than it will be '2' or already moved '0'.
3295 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3298 * If we did not convert it, then we must try again.
3300 if (!ret)
3301 goto spin;
3304 * Yeah! We succeeded in replacing the page.
3306 * Now make the new head point back to the reader page.
3308 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3309 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3311 /* Finally update the reader page to the new head */
3312 cpu_buffer->reader_page = reader;
3313 rb_reset_reader_page(cpu_buffer);
3315 if (overwrite != cpu_buffer->last_overrun) {
3316 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3317 cpu_buffer->last_overrun = overwrite;
3320 goto again;
3322 out:
3323 arch_spin_unlock(&cpu_buffer->lock);
3324 local_irq_restore(flags);
3326 return reader;
3329 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3331 struct ring_buffer_event *event;
3332 struct buffer_page *reader;
3333 unsigned length;
3335 reader = rb_get_reader_page(cpu_buffer);
3337 /* This function should not be called when buffer is empty */
3338 if (RB_WARN_ON(cpu_buffer, !reader))
3339 return;
3341 event = rb_reader_event(cpu_buffer);
3343 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3344 cpu_buffer->read++;
3346 rb_update_read_stamp(cpu_buffer, event);
3348 length = rb_event_length(event);
3349 cpu_buffer->reader_page->read += length;
3352 static void rb_advance_iter(struct ring_buffer_iter *iter)
3354 struct ring_buffer_per_cpu *cpu_buffer;
3355 struct ring_buffer_event *event;
3356 unsigned length;
3358 cpu_buffer = iter->cpu_buffer;
3361 * Check if we are at the end of the buffer.
3363 if (iter->head >= rb_page_size(iter->head_page)) {
3364 /* discarded commits can make the page empty */
3365 if (iter->head_page == cpu_buffer->commit_page)
3366 return;
3367 rb_inc_iter(iter);
3368 return;
3371 event = rb_iter_head_event(iter);
3373 length = rb_event_length(event);
3376 * This should not be called to advance the header if we are
3377 * at the tail of the buffer.
3379 if (RB_WARN_ON(cpu_buffer,
3380 (iter->head_page == cpu_buffer->commit_page) &&
3381 (iter->head + length > rb_commit_index(cpu_buffer))))
3382 return;
3384 rb_update_iter_read_stamp(iter, event);
3386 iter->head += length;
3388 /* check for end of page padding */
3389 if ((iter->head >= rb_page_size(iter->head_page)) &&
3390 (iter->head_page != cpu_buffer->commit_page))
3391 rb_advance_iter(iter);
3394 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3396 return cpu_buffer->lost_events;
3399 static struct ring_buffer_event *
3400 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3401 unsigned long *lost_events)
3403 struct ring_buffer_event *event;
3404 struct buffer_page *reader;
3405 int nr_loops = 0;
3407 again:
3409 * We repeat when a time extend is encountered.
3410 * Since the time extend is always attached to a data event,
3411 * we should never loop more than once.
3412 * (We never hit the following condition more than twice).
3414 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3415 return NULL;
3417 reader = rb_get_reader_page(cpu_buffer);
3418 if (!reader)
3419 return NULL;
3421 event = rb_reader_event(cpu_buffer);
3423 switch (event->type_len) {
3424 case RINGBUF_TYPE_PADDING:
3425 if (rb_null_event(event))
3426 RB_WARN_ON(cpu_buffer, 1);
3428 * Because the writer could be discarding every
3429 * event it creates (which would probably be bad)
3430 * if we were to go back to "again" then we may never
3431 * catch up, and will trigger the warn on, or lock
3432 * the box. Return the padding, and we will release
3433 * the current locks, and try again.
3435 return event;
3437 case RINGBUF_TYPE_TIME_EXTEND:
3438 /* Internal data, OK to advance */
3439 rb_advance_reader(cpu_buffer);
3440 goto again;
3442 case RINGBUF_TYPE_TIME_STAMP:
3443 /* FIXME: not implemented */
3444 rb_advance_reader(cpu_buffer);
3445 goto again;
3447 case RINGBUF_TYPE_DATA:
3448 if (ts) {
3449 *ts = cpu_buffer->read_stamp + event->time_delta;
3450 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3451 cpu_buffer->cpu, ts);
3453 if (lost_events)
3454 *lost_events = rb_lost_events(cpu_buffer);
3455 return event;
3457 default:
3458 BUG();
3461 return NULL;
3463 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3465 static struct ring_buffer_event *
3466 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3468 struct ring_buffer *buffer;
3469 struct ring_buffer_per_cpu *cpu_buffer;
3470 struct ring_buffer_event *event;
3471 int nr_loops = 0;
3473 cpu_buffer = iter->cpu_buffer;
3474 buffer = cpu_buffer->buffer;
3477 * Check if someone performed a consuming read to
3478 * the buffer. A consuming read invalidates the iterator
3479 * and we need to reset the iterator in this case.
3481 if (unlikely(iter->cache_read != cpu_buffer->read ||
3482 iter->cache_reader_page != cpu_buffer->reader_page))
3483 rb_iter_reset(iter);
3485 again:
3486 if (ring_buffer_iter_empty(iter))
3487 return NULL;
3490 * We repeat when a time extend is encountered.
3491 * Since the time extend is always attached to a data event,
3492 * we should never loop more than once.
3493 * (We never hit the following condition more than twice).
3495 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3496 return NULL;
3498 if (rb_per_cpu_empty(cpu_buffer))
3499 return NULL;
3501 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3502 rb_inc_iter(iter);
3503 goto again;
3506 event = rb_iter_head_event(iter);
3508 switch (event->type_len) {
3509 case RINGBUF_TYPE_PADDING:
3510 if (rb_null_event(event)) {
3511 rb_inc_iter(iter);
3512 goto again;
3514 rb_advance_iter(iter);
3515 return event;
3517 case RINGBUF_TYPE_TIME_EXTEND:
3518 /* Internal data, OK to advance */
3519 rb_advance_iter(iter);
3520 goto again;
3522 case RINGBUF_TYPE_TIME_STAMP:
3523 /* FIXME: not implemented */
3524 rb_advance_iter(iter);
3525 goto again;
3527 case RINGBUF_TYPE_DATA:
3528 if (ts) {
3529 *ts = iter->read_stamp + event->time_delta;
3530 ring_buffer_normalize_time_stamp(buffer,
3531 cpu_buffer->cpu, ts);
3533 return event;
3535 default:
3536 BUG();
3539 return NULL;
3541 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3543 static inline int rb_ok_to_lock(void)
3546 * If an NMI die dumps out the content of the ring buffer
3547 * do not grab locks. We also permanently disable the ring
3548 * buffer too. A one time deal is all you get from reading
3549 * the ring buffer from an NMI.
3551 if (likely(!in_nmi()))
3552 return 1;
3554 tracing_off_permanent();
3555 return 0;
3559 * ring_buffer_peek - peek at the next event to be read
3560 * @buffer: The ring buffer to read
3561 * @cpu: The cpu to peak at
3562 * @ts: The timestamp counter of this event.
3563 * @lost_events: a variable to store if events were lost (may be NULL)
3565 * This will return the event that will be read next, but does
3566 * not consume the data.
3568 struct ring_buffer_event *
3569 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3570 unsigned long *lost_events)
3572 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3573 struct ring_buffer_event *event;
3574 unsigned long flags;
3575 int dolock;
3577 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3578 return NULL;
3580 dolock = rb_ok_to_lock();
3581 again:
3582 local_irq_save(flags);
3583 if (dolock)
3584 raw_spin_lock(&cpu_buffer->reader_lock);
3585 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3586 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3587 rb_advance_reader(cpu_buffer);
3588 if (dolock)
3589 raw_spin_unlock(&cpu_buffer->reader_lock);
3590 local_irq_restore(flags);
3592 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3593 goto again;
3595 return event;
3599 * ring_buffer_iter_peek - peek at the next event to be read
3600 * @iter: The ring buffer iterator
3601 * @ts: The timestamp counter of this event.
3603 * This will return the event that will be read next, but does
3604 * not increment the iterator.
3606 struct ring_buffer_event *
3607 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3609 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3610 struct ring_buffer_event *event;
3611 unsigned long flags;
3613 again:
3614 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3615 event = rb_iter_peek(iter, ts);
3616 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3618 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3619 goto again;
3621 return event;
3625 * ring_buffer_consume - return an event and consume it
3626 * @buffer: The ring buffer to get the next event from
3627 * @cpu: the cpu to read the buffer from
3628 * @ts: a variable to store the timestamp (may be NULL)
3629 * @lost_events: a variable to store if events were lost (may be NULL)
3631 * Returns the next event in the ring buffer, and that event is consumed.
3632 * Meaning, that sequential reads will keep returning a different event,
3633 * and eventually empty the ring buffer if the producer is slower.
3635 struct ring_buffer_event *
3636 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3637 unsigned long *lost_events)
3639 struct ring_buffer_per_cpu *cpu_buffer;
3640 struct ring_buffer_event *event = NULL;
3641 unsigned long flags;
3642 int dolock;
3644 dolock = rb_ok_to_lock();
3646 again:
3647 /* might be called in atomic */
3648 preempt_disable();
3650 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3651 goto out;
3653 cpu_buffer = buffer->buffers[cpu];
3654 local_irq_save(flags);
3655 if (dolock)
3656 raw_spin_lock(&cpu_buffer->reader_lock);
3658 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3659 if (event) {
3660 cpu_buffer->lost_events = 0;
3661 rb_advance_reader(cpu_buffer);
3664 if (dolock)
3665 raw_spin_unlock(&cpu_buffer->reader_lock);
3666 local_irq_restore(flags);
3668 out:
3669 preempt_enable();
3671 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3672 goto again;
3674 return event;
3676 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3679 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3680 * @buffer: The ring buffer to read from
3681 * @cpu: The cpu buffer to iterate over
3683 * This performs the initial preparations necessary to iterate
3684 * through the buffer. Memory is allocated, buffer recording
3685 * is disabled, and the iterator pointer is returned to the caller.
3687 * Disabling buffer recordng prevents the reading from being
3688 * corrupted. This is not a consuming read, so a producer is not
3689 * expected.
3691 * After a sequence of ring_buffer_read_prepare calls, the user is
3692 * expected to make at least one call to ring_buffer_prepare_sync.
3693 * Afterwards, ring_buffer_read_start is invoked to get things going
3694 * for real.
3696 * This overall must be paired with ring_buffer_finish.
3698 struct ring_buffer_iter *
3699 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3701 struct ring_buffer_per_cpu *cpu_buffer;
3702 struct ring_buffer_iter *iter;
3704 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3705 return NULL;
3707 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3708 if (!iter)
3709 return NULL;
3711 cpu_buffer = buffer->buffers[cpu];
3713 iter->cpu_buffer = cpu_buffer;
3715 atomic_inc(&buffer->resize_disabled);
3716 atomic_inc(&cpu_buffer->record_disabled);
3718 return iter;
3720 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3723 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3725 * All previously invoked ring_buffer_read_prepare calls to prepare
3726 * iterators will be synchronized. Afterwards, read_buffer_read_start
3727 * calls on those iterators are allowed.
3729 void
3730 ring_buffer_read_prepare_sync(void)
3732 synchronize_sched();
3734 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3737 * ring_buffer_read_start - start a non consuming read of the buffer
3738 * @iter: The iterator returned by ring_buffer_read_prepare
3740 * This finalizes the startup of an iteration through the buffer.
3741 * The iterator comes from a call to ring_buffer_read_prepare and
3742 * an intervening ring_buffer_read_prepare_sync must have been
3743 * performed.
3745 * Must be paired with ring_buffer_finish.
3747 void
3748 ring_buffer_read_start(struct ring_buffer_iter *iter)
3750 struct ring_buffer_per_cpu *cpu_buffer;
3751 unsigned long flags;
3753 if (!iter)
3754 return;
3756 cpu_buffer = iter->cpu_buffer;
3758 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3759 arch_spin_lock(&cpu_buffer->lock);
3760 rb_iter_reset(iter);
3761 arch_spin_unlock(&cpu_buffer->lock);
3762 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3764 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3767 * ring_buffer_finish - finish reading the iterator of the buffer
3768 * @iter: The iterator retrieved by ring_buffer_start
3770 * This re-enables the recording to the buffer, and frees the
3771 * iterator.
3773 void
3774 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3776 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3779 * Ring buffer is disabled from recording, here's a good place
3780 * to check the integrity of the ring buffer.
3782 rb_check_pages(cpu_buffer);
3784 atomic_dec(&cpu_buffer->record_disabled);
3785 atomic_dec(&cpu_buffer->buffer->resize_disabled);
3786 kfree(iter);
3788 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3791 * ring_buffer_read - read the next item in the ring buffer by the iterator
3792 * @iter: The ring buffer iterator
3793 * @ts: The time stamp of the event read.
3795 * This reads the next event in the ring buffer and increments the iterator.
3797 struct ring_buffer_event *
3798 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3800 struct ring_buffer_event *event;
3801 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3802 unsigned long flags;
3804 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3805 again:
3806 event = rb_iter_peek(iter, ts);
3807 if (!event)
3808 goto out;
3810 if (event->type_len == RINGBUF_TYPE_PADDING)
3811 goto again;
3813 rb_advance_iter(iter);
3814 out:
3815 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3817 return event;
3819 EXPORT_SYMBOL_GPL(ring_buffer_read);
3822 * ring_buffer_size - return the size of the ring buffer (in bytes)
3823 * @buffer: The ring buffer.
3825 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
3828 * Earlier, this method returned
3829 * BUF_PAGE_SIZE * buffer->nr_pages
3830 * Since the nr_pages field is now removed, we have converted this to
3831 * return the per cpu buffer value.
3833 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3834 return 0;
3836 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
3838 EXPORT_SYMBOL_GPL(ring_buffer_size);
3840 static void
3841 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3843 rb_head_page_deactivate(cpu_buffer);
3845 cpu_buffer->head_page
3846 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3847 local_set(&cpu_buffer->head_page->write, 0);
3848 local_set(&cpu_buffer->head_page->entries, 0);
3849 local_set(&cpu_buffer->head_page->page->commit, 0);
3851 cpu_buffer->head_page->read = 0;
3853 cpu_buffer->tail_page = cpu_buffer->head_page;
3854 cpu_buffer->commit_page = cpu_buffer->head_page;
3856 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3857 INIT_LIST_HEAD(&cpu_buffer->new_pages);
3858 local_set(&cpu_buffer->reader_page->write, 0);
3859 local_set(&cpu_buffer->reader_page->entries, 0);
3860 local_set(&cpu_buffer->reader_page->page->commit, 0);
3861 cpu_buffer->reader_page->read = 0;
3863 local_set(&cpu_buffer->commit_overrun, 0);
3864 local_set(&cpu_buffer->entries_bytes, 0);
3865 local_set(&cpu_buffer->overrun, 0);
3866 local_set(&cpu_buffer->entries, 0);
3867 local_set(&cpu_buffer->committing, 0);
3868 local_set(&cpu_buffer->commits, 0);
3869 cpu_buffer->read = 0;
3870 cpu_buffer->read_bytes = 0;
3872 cpu_buffer->write_stamp = 0;
3873 cpu_buffer->read_stamp = 0;
3875 cpu_buffer->lost_events = 0;
3876 cpu_buffer->last_overrun = 0;
3878 rb_head_page_activate(cpu_buffer);
3882 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3883 * @buffer: The ring buffer to reset a per cpu buffer of
3884 * @cpu: The CPU buffer to be reset
3886 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3888 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3889 unsigned long flags;
3891 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3892 return;
3894 atomic_inc(&buffer->resize_disabled);
3895 atomic_inc(&cpu_buffer->record_disabled);
3897 /* Make sure all commits have finished */
3898 synchronize_sched();
3900 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3902 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3903 goto out;
3905 arch_spin_lock(&cpu_buffer->lock);
3907 rb_reset_cpu(cpu_buffer);
3909 arch_spin_unlock(&cpu_buffer->lock);
3911 out:
3912 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3914 atomic_dec(&cpu_buffer->record_disabled);
3915 atomic_dec(&buffer->resize_disabled);
3917 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3920 * ring_buffer_reset - reset a ring buffer
3921 * @buffer: The ring buffer to reset all cpu buffers
3923 void ring_buffer_reset(struct ring_buffer *buffer)
3925 int cpu;
3927 for_each_buffer_cpu(buffer, cpu)
3928 ring_buffer_reset_cpu(buffer, cpu);
3930 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3933 * rind_buffer_empty - is the ring buffer empty?
3934 * @buffer: The ring buffer to test
3936 int ring_buffer_empty(struct ring_buffer *buffer)
3938 struct ring_buffer_per_cpu *cpu_buffer;
3939 unsigned long flags;
3940 int dolock;
3941 int cpu;
3942 int ret;
3944 dolock = rb_ok_to_lock();
3946 /* yes this is racy, but if you don't like the race, lock the buffer */
3947 for_each_buffer_cpu(buffer, cpu) {
3948 cpu_buffer = buffer->buffers[cpu];
3949 local_irq_save(flags);
3950 if (dolock)
3951 raw_spin_lock(&cpu_buffer->reader_lock);
3952 ret = rb_per_cpu_empty(cpu_buffer);
3953 if (dolock)
3954 raw_spin_unlock(&cpu_buffer->reader_lock);
3955 local_irq_restore(flags);
3957 if (!ret)
3958 return 0;
3961 return 1;
3963 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3966 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3967 * @buffer: The ring buffer
3968 * @cpu: The CPU buffer to test
3970 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3972 struct ring_buffer_per_cpu *cpu_buffer;
3973 unsigned long flags;
3974 int dolock;
3975 int ret;
3977 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3978 return 1;
3980 dolock = rb_ok_to_lock();
3982 cpu_buffer = buffer->buffers[cpu];
3983 local_irq_save(flags);
3984 if (dolock)
3985 raw_spin_lock(&cpu_buffer->reader_lock);
3986 ret = rb_per_cpu_empty(cpu_buffer);
3987 if (dolock)
3988 raw_spin_unlock(&cpu_buffer->reader_lock);
3989 local_irq_restore(flags);
3991 return ret;
3993 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3995 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3997 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3998 * @buffer_a: One buffer to swap with
3999 * @buffer_b: The other buffer to swap with
4001 * This function is useful for tracers that want to take a "snapshot"
4002 * of a CPU buffer and has another back up buffer lying around.
4003 * it is expected that the tracer handles the cpu buffer not being
4004 * used at the moment.
4006 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4007 struct ring_buffer *buffer_b, int cpu)
4009 struct ring_buffer_per_cpu *cpu_buffer_a;
4010 struct ring_buffer_per_cpu *cpu_buffer_b;
4011 int ret = -EINVAL;
4013 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4014 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4015 goto out;
4017 cpu_buffer_a = buffer_a->buffers[cpu];
4018 cpu_buffer_b = buffer_b->buffers[cpu];
4020 /* At least make sure the two buffers are somewhat the same */
4021 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4022 goto out;
4024 ret = -EAGAIN;
4026 if (ring_buffer_flags != RB_BUFFERS_ON)
4027 goto out;
4029 if (atomic_read(&buffer_a->record_disabled))
4030 goto out;
4032 if (atomic_read(&buffer_b->record_disabled))
4033 goto out;
4035 if (atomic_read(&cpu_buffer_a->record_disabled))
4036 goto out;
4038 if (atomic_read(&cpu_buffer_b->record_disabled))
4039 goto out;
4042 * We can't do a synchronize_sched here because this
4043 * function can be called in atomic context.
4044 * Normally this will be called from the same CPU as cpu.
4045 * If not it's up to the caller to protect this.
4047 atomic_inc(&cpu_buffer_a->record_disabled);
4048 atomic_inc(&cpu_buffer_b->record_disabled);
4050 ret = -EBUSY;
4051 if (local_read(&cpu_buffer_a->committing))
4052 goto out_dec;
4053 if (local_read(&cpu_buffer_b->committing))
4054 goto out_dec;
4056 buffer_a->buffers[cpu] = cpu_buffer_b;
4057 buffer_b->buffers[cpu] = cpu_buffer_a;
4059 cpu_buffer_b->buffer = buffer_a;
4060 cpu_buffer_a->buffer = buffer_b;
4062 ret = 0;
4064 out_dec:
4065 atomic_dec(&cpu_buffer_a->record_disabled);
4066 atomic_dec(&cpu_buffer_b->record_disabled);
4067 out:
4068 return ret;
4070 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4071 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4074 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4075 * @buffer: the buffer to allocate for.
4077 * This function is used in conjunction with ring_buffer_read_page.
4078 * When reading a full page from the ring buffer, these functions
4079 * can be used to speed up the process. The calling function should
4080 * allocate a few pages first with this function. Then when it
4081 * needs to get pages from the ring buffer, it passes the result
4082 * of this function into ring_buffer_read_page, which will swap
4083 * the page that was allocated, with the read page of the buffer.
4085 * Returns:
4086 * The page allocated, or NULL on error.
4088 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4090 struct buffer_data_page *bpage;
4091 struct page *page;
4093 page = alloc_pages_node(cpu_to_node(cpu),
4094 GFP_KERNEL | __GFP_NORETRY, 0);
4095 if (!page)
4096 return NULL;
4098 bpage = page_address(page);
4100 rb_init_page(bpage);
4102 return bpage;
4104 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4107 * ring_buffer_free_read_page - free an allocated read page
4108 * @buffer: the buffer the page was allocate for
4109 * @data: the page to free
4111 * Free a page allocated from ring_buffer_alloc_read_page.
4113 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4115 free_page((unsigned long)data);
4117 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4120 * ring_buffer_read_page - extract a page from the ring buffer
4121 * @buffer: buffer to extract from
4122 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4123 * @len: amount to extract
4124 * @cpu: the cpu of the buffer to extract
4125 * @full: should the extraction only happen when the page is full.
4127 * This function will pull out a page from the ring buffer and consume it.
4128 * @data_page must be the address of the variable that was returned
4129 * from ring_buffer_alloc_read_page. This is because the page might be used
4130 * to swap with a page in the ring buffer.
4132 * for example:
4133 * rpage = ring_buffer_alloc_read_page(buffer);
4134 * if (!rpage)
4135 * return error;
4136 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4137 * if (ret >= 0)
4138 * process_page(rpage, ret);
4140 * When @full is set, the function will not return true unless
4141 * the writer is off the reader page.
4143 * Note: it is up to the calling functions to handle sleeps and wakeups.
4144 * The ring buffer can be used anywhere in the kernel and can not
4145 * blindly call wake_up. The layer that uses the ring buffer must be
4146 * responsible for that.
4148 * Returns:
4149 * >=0 if data has been transferred, returns the offset of consumed data.
4150 * <0 if no data has been transferred.
4152 int ring_buffer_read_page(struct ring_buffer *buffer,
4153 void **data_page, size_t len, int cpu, int full)
4155 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4156 struct ring_buffer_event *event;
4157 struct buffer_data_page *bpage;
4158 struct buffer_page *reader;
4159 unsigned long missed_events;
4160 unsigned long flags;
4161 unsigned int commit;
4162 unsigned int read;
4163 u64 save_timestamp;
4164 int ret = -1;
4166 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4167 goto out;
4170 * If len is not big enough to hold the page header, then
4171 * we can not copy anything.
4173 if (len <= BUF_PAGE_HDR_SIZE)
4174 goto out;
4176 len -= BUF_PAGE_HDR_SIZE;
4178 if (!data_page)
4179 goto out;
4181 bpage = *data_page;
4182 if (!bpage)
4183 goto out;
4185 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4187 reader = rb_get_reader_page(cpu_buffer);
4188 if (!reader)
4189 goto out_unlock;
4191 event = rb_reader_event(cpu_buffer);
4193 read = reader->read;
4194 commit = rb_page_commit(reader);
4196 /* Check if any events were dropped */
4197 missed_events = cpu_buffer->lost_events;
4200 * If this page has been partially read or
4201 * if len is not big enough to read the rest of the page or
4202 * a writer is still on the page, then
4203 * we must copy the data from the page to the buffer.
4204 * Otherwise, we can simply swap the page with the one passed in.
4206 if (read || (len < (commit - read)) ||
4207 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4208 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4209 unsigned int rpos = read;
4210 unsigned int pos = 0;
4211 unsigned int size;
4213 if (full)
4214 goto out_unlock;
4216 if (len > (commit - read))
4217 len = (commit - read);
4219 /* Always keep the time extend and data together */
4220 size = rb_event_ts_length(event);
4222 if (len < size)
4223 goto out_unlock;
4225 /* save the current timestamp, since the user will need it */
4226 save_timestamp = cpu_buffer->read_stamp;
4228 /* Need to copy one event at a time */
4229 do {
4230 /* We need the size of one event, because
4231 * rb_advance_reader only advances by one event,
4232 * whereas rb_event_ts_length may include the size of
4233 * one or two events.
4234 * We have already ensured there's enough space if this
4235 * is a time extend. */
4236 size = rb_event_length(event);
4237 memcpy(bpage->data + pos, rpage->data + rpos, size);
4239 len -= size;
4241 rb_advance_reader(cpu_buffer);
4242 rpos = reader->read;
4243 pos += size;
4245 if (rpos >= commit)
4246 break;
4248 event = rb_reader_event(cpu_buffer);
4249 /* Always keep the time extend and data together */
4250 size = rb_event_ts_length(event);
4251 } while (len >= size);
4253 /* update bpage */
4254 local_set(&bpage->commit, pos);
4255 bpage->time_stamp = save_timestamp;
4257 /* we copied everything to the beginning */
4258 read = 0;
4259 } else {
4260 /* update the entry counter */
4261 cpu_buffer->read += rb_page_entries(reader);
4262 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4264 /* swap the pages */
4265 rb_init_page(bpage);
4266 bpage = reader->page;
4267 reader->page = *data_page;
4268 local_set(&reader->write, 0);
4269 local_set(&reader->entries, 0);
4270 reader->read = 0;
4271 *data_page = bpage;
4274 * Use the real_end for the data size,
4275 * This gives us a chance to store the lost events
4276 * on the page.
4278 if (reader->real_end)
4279 local_set(&bpage->commit, reader->real_end);
4281 ret = read;
4283 cpu_buffer->lost_events = 0;
4285 commit = local_read(&bpage->commit);
4287 * Set a flag in the commit field if we lost events
4289 if (missed_events) {
4290 /* If there is room at the end of the page to save the
4291 * missed events, then record it there.
4293 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4294 memcpy(&bpage->data[commit], &missed_events,
4295 sizeof(missed_events));
4296 local_add(RB_MISSED_STORED, &bpage->commit);
4297 commit += sizeof(missed_events);
4299 local_add(RB_MISSED_EVENTS, &bpage->commit);
4303 * This page may be off to user land. Zero it out here.
4305 if (commit < BUF_PAGE_SIZE)
4306 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4308 out_unlock:
4309 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4311 out:
4312 return ret;
4314 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4316 #ifdef CONFIG_HOTPLUG_CPU
4317 static int rb_cpu_notify(struct notifier_block *self,
4318 unsigned long action, void *hcpu)
4320 struct ring_buffer *buffer =
4321 container_of(self, struct ring_buffer, cpu_notify);
4322 long cpu = (long)hcpu;
4323 int cpu_i, nr_pages_same;
4324 unsigned int nr_pages;
4326 switch (action) {
4327 case CPU_UP_PREPARE:
4328 case CPU_UP_PREPARE_FROZEN:
4329 if (cpumask_test_cpu(cpu, buffer->cpumask))
4330 return NOTIFY_OK;
4332 nr_pages = 0;
4333 nr_pages_same = 1;
4334 /* check if all cpu sizes are same */
4335 for_each_buffer_cpu(buffer, cpu_i) {
4336 /* fill in the size from first enabled cpu */
4337 if (nr_pages == 0)
4338 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4339 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4340 nr_pages_same = 0;
4341 break;
4344 /* allocate minimum pages, user can later expand it */
4345 if (!nr_pages_same)
4346 nr_pages = 2;
4347 buffer->buffers[cpu] =
4348 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4349 if (!buffer->buffers[cpu]) {
4350 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4351 cpu);
4352 return NOTIFY_OK;
4354 smp_wmb();
4355 cpumask_set_cpu(cpu, buffer->cpumask);
4356 break;
4357 case CPU_DOWN_PREPARE:
4358 case CPU_DOWN_PREPARE_FROZEN:
4360 * Do nothing.
4361 * If we were to free the buffer, then the user would
4362 * lose any trace that was in the buffer.
4364 break;
4365 default:
4366 break;
4368 return NOTIFY_OK;
4370 #endif