2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
24 #include <trace/events/block.h>
26 #include <linux/blk-mq.h>
29 #include "blk-mq-tag.h"
31 static DEFINE_MUTEX(all_q_mutex
);
32 static LIST_HEAD(all_q_list
);
34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
);
37 * Check if any of the ctx's have pending work in this hardware queue
39 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
43 for (i
= 0; i
< hctx
->ctx_map
.map_size
; i
++)
44 if (hctx
->ctx_map
.map
[i
].word
)
50 static inline struct blk_align_bitmap
*get_bm(struct blk_mq_hw_ctx
*hctx
,
51 struct blk_mq_ctx
*ctx
)
53 return &hctx
->ctx_map
.map
[ctx
->index_hw
/ hctx
->ctx_map
.bits_per_word
];
56 #define CTX_TO_BIT(hctx, ctx) \
57 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60 * Mark this ctx as having pending work in this hardware queue
62 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
63 struct blk_mq_ctx
*ctx
)
65 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
67 if (!test_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
))
68 set_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
71 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
72 struct blk_mq_ctx
*ctx
)
74 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
76 clear_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
79 static int blk_mq_queue_enter(struct request_queue
*q
)
84 if (percpu_ref_tryget_live(&q
->mq_usage_counter
))
87 ret
= wait_event_interruptible(q
->mq_freeze_wq
,
88 !q
->mq_freeze_depth
|| blk_queue_dying(q
));
89 if (blk_queue_dying(q
))
96 static void blk_mq_queue_exit(struct request_queue
*q
)
98 percpu_ref_put(&q
->mq_usage_counter
);
101 static void blk_mq_usage_counter_release(struct percpu_ref
*ref
)
103 struct request_queue
*q
=
104 container_of(ref
, struct request_queue
, mq_usage_counter
);
106 wake_up_all(&q
->mq_freeze_wq
);
110 * Guarantee no request is in use, so we can change any data structure of
111 * the queue afterward.
113 void blk_mq_freeze_queue(struct request_queue
*q
)
117 spin_lock_irq(q
->queue_lock
);
118 freeze
= !q
->mq_freeze_depth
++;
119 spin_unlock_irq(q
->queue_lock
);
122 percpu_ref_kill(&q
->mq_usage_counter
);
123 blk_mq_run_queues(q
, false);
125 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->mq_usage_counter
));
128 static void blk_mq_unfreeze_queue(struct request_queue
*q
)
132 spin_lock_irq(q
->queue_lock
);
133 wake
= !--q
->mq_freeze_depth
;
134 WARN_ON_ONCE(q
->mq_freeze_depth
< 0);
135 spin_unlock_irq(q
->queue_lock
);
137 percpu_ref_reinit(&q
->mq_usage_counter
);
138 wake_up_all(&q
->mq_freeze_wq
);
142 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
144 return blk_mq_has_free_tags(hctx
->tags
);
146 EXPORT_SYMBOL(blk_mq_can_queue
);
148 static void blk_mq_rq_ctx_init(struct request_queue
*q
, struct blk_mq_ctx
*ctx
,
149 struct request
*rq
, unsigned int rw_flags
)
151 if (blk_queue_io_stat(q
))
152 rw_flags
|= REQ_IO_STAT
;
154 INIT_LIST_HEAD(&rq
->queuelist
);
155 /* csd/requeue_work/fifo_time is initialized before use */
158 rq
->cmd_flags
|= rw_flags
;
159 /* do not touch atomic flags, it needs atomic ops against the timer */
161 INIT_HLIST_NODE(&rq
->hash
);
162 RB_CLEAR_NODE(&rq
->rb_node
);
165 rq
->start_time
= jiffies
;
166 #ifdef CONFIG_BLK_CGROUP
168 set_start_time_ns(rq
);
169 rq
->io_start_time_ns
= 0;
171 rq
->nr_phys_segments
= 0;
172 #if defined(CONFIG_BLK_DEV_INTEGRITY)
173 rq
->nr_integrity_segments
= 0;
176 /* tag was already set */
186 INIT_LIST_HEAD(&rq
->timeout_list
);
190 rq
->end_io_data
= NULL
;
193 ctx
->rq_dispatched
[rw_is_sync(rw_flags
)]++;
196 static struct request
*
197 __blk_mq_alloc_request(struct blk_mq_alloc_data
*data
, int rw
)
202 tag
= blk_mq_get_tag(data
);
203 if (tag
!= BLK_MQ_TAG_FAIL
) {
204 rq
= data
->hctx
->tags
->rqs
[tag
];
207 if (blk_mq_tag_busy(data
->hctx
)) {
208 rq
->cmd_flags
= REQ_MQ_INFLIGHT
;
209 atomic_inc(&data
->hctx
->nr_active
);
213 blk_mq_rq_ctx_init(data
->q
, data
->ctx
, rq
, rw
);
220 struct request
*blk_mq_alloc_request(struct request_queue
*q
, int rw
, gfp_t gfp
,
223 struct blk_mq_ctx
*ctx
;
224 struct blk_mq_hw_ctx
*hctx
;
226 struct blk_mq_alloc_data alloc_data
;
228 if (blk_mq_queue_enter(q
))
231 ctx
= blk_mq_get_ctx(q
);
232 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
233 blk_mq_set_alloc_data(&alloc_data
, q
, gfp
& ~__GFP_WAIT
,
234 reserved
, ctx
, hctx
);
236 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
237 if (!rq
&& (gfp
& __GFP_WAIT
)) {
238 __blk_mq_run_hw_queue(hctx
);
241 ctx
= blk_mq_get_ctx(q
);
242 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
243 blk_mq_set_alloc_data(&alloc_data
, q
, gfp
, reserved
, ctx
,
245 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
246 ctx
= alloc_data
.ctx
;
251 EXPORT_SYMBOL(blk_mq_alloc_request
);
253 static void __blk_mq_free_request(struct blk_mq_hw_ctx
*hctx
,
254 struct blk_mq_ctx
*ctx
, struct request
*rq
)
256 const int tag
= rq
->tag
;
257 struct request_queue
*q
= rq
->q
;
259 if (rq
->cmd_flags
& REQ_MQ_INFLIGHT
)
260 atomic_dec(&hctx
->nr_active
);
262 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
263 blk_mq_put_tag(hctx
, tag
, &ctx
->last_tag
);
264 blk_mq_queue_exit(q
);
267 void blk_mq_free_request(struct request
*rq
)
269 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
270 struct blk_mq_hw_ctx
*hctx
;
271 struct request_queue
*q
= rq
->q
;
273 ctx
->rq_completed
[rq_is_sync(rq
)]++;
275 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
276 __blk_mq_free_request(hctx
, ctx
, rq
);
280 * Clone all relevant state from a request that has been put on hold in
281 * the flush state machine into the preallocated flush request that hangs
282 * off the request queue.
284 * For a driver the flush request should be invisible, that's why we are
285 * impersonating the original request here.
287 void blk_mq_clone_flush_request(struct request
*flush_rq
,
288 struct request
*orig_rq
)
290 struct blk_mq_hw_ctx
*hctx
=
291 orig_rq
->q
->mq_ops
->map_queue(orig_rq
->q
, orig_rq
->mq_ctx
->cpu
);
293 flush_rq
->mq_ctx
= orig_rq
->mq_ctx
;
294 flush_rq
->tag
= orig_rq
->tag
;
295 memcpy(blk_mq_rq_to_pdu(flush_rq
), blk_mq_rq_to_pdu(orig_rq
),
299 inline void __blk_mq_end_io(struct request
*rq
, int error
)
301 blk_account_io_done(rq
);
304 rq
->end_io(rq
, error
);
306 if (unlikely(blk_bidi_rq(rq
)))
307 blk_mq_free_request(rq
->next_rq
);
308 blk_mq_free_request(rq
);
311 EXPORT_SYMBOL(__blk_mq_end_io
);
313 void blk_mq_end_io(struct request
*rq
, int error
)
315 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
317 __blk_mq_end_io(rq
, error
);
319 EXPORT_SYMBOL(blk_mq_end_io
);
321 static void __blk_mq_complete_request_remote(void *data
)
323 struct request
*rq
= data
;
325 rq
->q
->softirq_done_fn(rq
);
328 static void blk_mq_ipi_complete_request(struct request
*rq
)
330 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
334 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
335 rq
->q
->softirq_done_fn(rq
);
340 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
341 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
343 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
344 rq
->csd
.func
= __blk_mq_complete_request_remote
;
347 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
349 rq
->q
->softirq_done_fn(rq
);
354 void __blk_mq_complete_request(struct request
*rq
)
356 struct request_queue
*q
= rq
->q
;
358 if (!q
->softirq_done_fn
)
359 blk_mq_end_io(rq
, rq
->errors
);
361 blk_mq_ipi_complete_request(rq
);
365 * blk_mq_complete_request - end I/O on a request
366 * @rq: the request being processed
369 * Ends all I/O on a request. It does not handle partial completions.
370 * The actual completion happens out-of-order, through a IPI handler.
372 void blk_mq_complete_request(struct request
*rq
)
374 struct request_queue
*q
= rq
->q
;
376 if (unlikely(blk_should_fake_timeout(q
)))
378 if (!blk_mark_rq_complete(rq
))
379 __blk_mq_complete_request(rq
);
381 EXPORT_SYMBOL(blk_mq_complete_request
);
383 static void blk_mq_start_request(struct request
*rq
, bool last
)
385 struct request_queue
*q
= rq
->q
;
387 trace_block_rq_issue(q
, rq
);
389 rq
->resid_len
= blk_rq_bytes(rq
);
390 if (unlikely(blk_bidi_rq(rq
)))
391 rq
->next_rq
->resid_len
= blk_rq_bytes(rq
->next_rq
);
396 * Mark us as started and clear complete. Complete might have been
397 * set if requeue raced with timeout, which then marked it as
398 * complete. So be sure to clear complete again when we start
399 * the request, otherwise we'll ignore the completion event.
401 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
402 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
403 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
404 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
406 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
408 * Make sure space for the drain appears. We know we can do
409 * this because max_hw_segments has been adjusted to be one
410 * fewer than the device can handle.
412 rq
->nr_phys_segments
++;
416 * Flag the last request in the series so that drivers know when IO
417 * should be kicked off, if they don't do it on a per-request basis.
419 * Note: the flag isn't the only condition drivers should do kick off.
420 * If drive is busy, the last request might not have the bit set.
423 rq
->cmd_flags
|= REQ_END
;
426 static void __blk_mq_requeue_request(struct request
*rq
)
428 struct request_queue
*q
= rq
->q
;
430 trace_block_rq_requeue(q
, rq
);
431 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
433 rq
->cmd_flags
&= ~REQ_END
;
435 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
436 rq
->nr_phys_segments
--;
439 void blk_mq_requeue_request(struct request
*rq
)
441 __blk_mq_requeue_request(rq
);
442 blk_clear_rq_complete(rq
);
444 BUG_ON(blk_queued_rq(rq
));
445 blk_mq_add_to_requeue_list(rq
, true);
447 EXPORT_SYMBOL(blk_mq_requeue_request
);
449 static void blk_mq_requeue_work(struct work_struct
*work
)
451 struct request_queue
*q
=
452 container_of(work
, struct request_queue
, requeue_work
);
454 struct request
*rq
, *next
;
457 spin_lock_irqsave(&q
->requeue_lock
, flags
);
458 list_splice_init(&q
->requeue_list
, &rq_list
);
459 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
461 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
462 if (!(rq
->cmd_flags
& REQ_SOFTBARRIER
))
465 rq
->cmd_flags
&= ~REQ_SOFTBARRIER
;
466 list_del_init(&rq
->queuelist
);
467 blk_mq_insert_request(rq
, true, false, false);
470 while (!list_empty(&rq_list
)) {
471 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
472 list_del_init(&rq
->queuelist
);
473 blk_mq_insert_request(rq
, false, false, false);
476 blk_mq_run_queues(q
, false);
479 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
)
481 struct request_queue
*q
= rq
->q
;
485 * We abuse this flag that is otherwise used by the I/O scheduler to
486 * request head insertation from the workqueue.
488 BUG_ON(rq
->cmd_flags
& REQ_SOFTBARRIER
);
490 spin_lock_irqsave(&q
->requeue_lock
, flags
);
492 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
493 list_add(&rq
->queuelist
, &q
->requeue_list
);
495 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
497 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
499 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
501 void blk_mq_kick_requeue_list(struct request_queue
*q
)
503 kblockd_schedule_work(&q
->requeue_work
);
505 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
507 static inline bool is_flush_request(struct request
*rq
, unsigned int tag
)
509 return ((rq
->cmd_flags
& REQ_FLUSH_SEQ
) &&
510 rq
->q
->flush_rq
->tag
== tag
);
513 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
515 struct request
*rq
= tags
->rqs
[tag
];
517 if (!is_flush_request(rq
, tag
))
520 return rq
->q
->flush_rq
;
522 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
524 struct blk_mq_timeout_data
{
525 struct blk_mq_hw_ctx
*hctx
;
527 unsigned int *next_set
;
530 static void blk_mq_timeout_check(void *__data
, unsigned long *free_tags
)
532 struct blk_mq_timeout_data
*data
= __data
;
533 struct blk_mq_hw_ctx
*hctx
= data
->hctx
;
536 /* It may not be in flight yet (this is where
537 * the REQ_ATOMIC_STARTED flag comes in). The requests are
538 * statically allocated, so we know it's always safe to access the
539 * memory associated with a bit offset into ->rqs[].
545 tag
= find_next_zero_bit(free_tags
, hctx
->tags
->nr_tags
, tag
);
546 if (tag
>= hctx
->tags
->nr_tags
)
549 rq
= blk_mq_tag_to_rq(hctx
->tags
, tag
++);
550 if (rq
->q
!= hctx
->queue
)
552 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
555 blk_rq_check_expired(rq
, data
->next
, data
->next_set
);
559 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx
*hctx
,
561 unsigned int *next_set
)
563 struct blk_mq_timeout_data data
= {
566 .next_set
= next_set
,
570 * Ask the tagging code to iterate busy requests, so we can
571 * check them for timeout.
573 blk_mq_tag_busy_iter(hctx
->tags
, blk_mq_timeout_check
, &data
);
576 static enum blk_eh_timer_return
blk_mq_rq_timed_out(struct request
*rq
)
578 struct request_queue
*q
= rq
->q
;
581 * We know that complete is set at this point. If STARTED isn't set
582 * anymore, then the request isn't active and the "timeout" should
583 * just be ignored. This can happen due to the bitflag ordering.
584 * Timeout first checks if STARTED is set, and if it is, assumes
585 * the request is active. But if we race with completion, then
586 * we both flags will get cleared. So check here again, and ignore
587 * a timeout event with a request that isn't active.
589 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
590 return BLK_EH_NOT_HANDLED
;
592 if (!q
->mq_ops
->timeout
)
593 return BLK_EH_RESET_TIMER
;
595 return q
->mq_ops
->timeout(rq
);
598 static void blk_mq_rq_timer(unsigned long data
)
600 struct request_queue
*q
= (struct request_queue
*) data
;
601 struct blk_mq_hw_ctx
*hctx
;
602 unsigned long next
= 0;
605 queue_for_each_hw_ctx(q
, hctx
, i
) {
607 * If not software queues are currently mapped to this
608 * hardware queue, there's nothing to check
610 if (!hctx
->nr_ctx
|| !hctx
->tags
)
613 blk_mq_hw_ctx_check_timeout(hctx
, &next
, &next_set
);
617 next
= blk_rq_timeout(round_jiffies_up(next
));
618 mod_timer(&q
->timeout
, next
);
620 queue_for_each_hw_ctx(q
, hctx
, i
)
621 blk_mq_tag_idle(hctx
);
626 * Reverse check our software queue for entries that we could potentially
627 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
628 * too much time checking for merges.
630 static bool blk_mq_attempt_merge(struct request_queue
*q
,
631 struct blk_mq_ctx
*ctx
, struct bio
*bio
)
636 list_for_each_entry_reverse(rq
, &ctx
->rq_list
, queuelist
) {
642 if (!blk_rq_merge_ok(rq
, bio
))
645 el_ret
= blk_try_merge(rq
, bio
);
646 if (el_ret
== ELEVATOR_BACK_MERGE
) {
647 if (bio_attempt_back_merge(q
, rq
, bio
)) {
652 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
653 if (bio_attempt_front_merge(q
, rq
, bio
)) {
665 * Process software queues that have been marked busy, splicing them
666 * to the for-dispatch
668 static void flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
670 struct blk_mq_ctx
*ctx
;
673 for (i
= 0; i
< hctx
->ctx_map
.map_size
; i
++) {
674 struct blk_align_bitmap
*bm
= &hctx
->ctx_map
.map
[i
];
675 unsigned int off
, bit
;
681 off
= i
* hctx
->ctx_map
.bits_per_word
;
683 bit
= find_next_bit(&bm
->word
, bm
->depth
, bit
);
684 if (bit
>= bm
->depth
)
687 ctx
= hctx
->ctxs
[bit
+ off
];
688 clear_bit(bit
, &bm
->word
);
689 spin_lock(&ctx
->lock
);
690 list_splice_tail_init(&ctx
->rq_list
, list
);
691 spin_unlock(&ctx
->lock
);
699 * Run this hardware queue, pulling any software queues mapped to it in.
700 * Note that this function currently has various problems around ordering
701 * of IO. In particular, we'd like FIFO behaviour on handling existing
702 * items on the hctx->dispatch list. Ignore that for now.
704 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
706 struct request_queue
*q
= hctx
->queue
;
711 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
));
713 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)))
719 * Touch any software queue that has pending entries.
721 flush_busy_ctxs(hctx
, &rq_list
);
724 * If we have previous entries on our dispatch list, grab them
725 * and stuff them at the front for more fair dispatch.
727 if (!list_empty_careful(&hctx
->dispatch
)) {
728 spin_lock(&hctx
->lock
);
729 if (!list_empty(&hctx
->dispatch
))
730 list_splice_init(&hctx
->dispatch
, &rq_list
);
731 spin_unlock(&hctx
->lock
);
735 * Now process all the entries, sending them to the driver.
738 while (!list_empty(&rq_list
)) {
741 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
742 list_del_init(&rq
->queuelist
);
744 blk_mq_start_request(rq
, list_empty(&rq_list
));
746 ret
= q
->mq_ops
->queue_rq(hctx
, rq
);
748 case BLK_MQ_RQ_QUEUE_OK
:
751 case BLK_MQ_RQ_QUEUE_BUSY
:
752 list_add(&rq
->queuelist
, &rq_list
);
753 __blk_mq_requeue_request(rq
);
756 pr_err("blk-mq: bad return on queue: %d\n", ret
);
757 case BLK_MQ_RQ_QUEUE_ERROR
:
759 blk_mq_end_io(rq
, rq
->errors
);
763 if (ret
== BLK_MQ_RQ_QUEUE_BUSY
)
768 hctx
->dispatched
[0]++;
769 else if (queued
< (1 << (BLK_MQ_MAX_DISPATCH_ORDER
- 1)))
770 hctx
->dispatched
[ilog2(queued
) + 1]++;
773 * Any items that need requeuing? Stuff them into hctx->dispatch,
774 * that is where we will continue on next queue run.
776 if (!list_empty(&rq_list
)) {
777 spin_lock(&hctx
->lock
);
778 list_splice(&rq_list
, &hctx
->dispatch
);
779 spin_unlock(&hctx
->lock
);
784 * It'd be great if the workqueue API had a way to pass
785 * in a mask and had some smarts for more clever placement.
786 * For now we just round-robin here, switching for every
787 * BLK_MQ_CPU_WORK_BATCH queued items.
789 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
791 int cpu
= hctx
->next_cpu
;
793 if (--hctx
->next_cpu_batch
<= 0) {
796 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
797 if (next_cpu
>= nr_cpu_ids
)
798 next_cpu
= cpumask_first(hctx
->cpumask
);
800 hctx
->next_cpu
= next_cpu
;
801 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
807 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
809 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)))
812 if (!async
&& cpumask_test_cpu(smp_processor_id(), hctx
->cpumask
))
813 __blk_mq_run_hw_queue(hctx
);
814 else if (hctx
->queue
->nr_hw_queues
== 1)
815 kblockd_schedule_delayed_work(&hctx
->run_work
, 0);
819 cpu
= blk_mq_hctx_next_cpu(hctx
);
820 kblockd_schedule_delayed_work_on(cpu
, &hctx
->run_work
, 0);
824 void blk_mq_run_queues(struct request_queue
*q
, bool async
)
826 struct blk_mq_hw_ctx
*hctx
;
829 queue_for_each_hw_ctx(q
, hctx
, i
) {
830 if ((!blk_mq_hctx_has_pending(hctx
) &&
831 list_empty_careful(&hctx
->dispatch
)) ||
832 test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
836 blk_mq_run_hw_queue(hctx
, async
);
840 EXPORT_SYMBOL(blk_mq_run_queues
);
842 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
844 cancel_delayed_work(&hctx
->run_work
);
845 cancel_delayed_work(&hctx
->delay_work
);
846 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
848 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
850 void blk_mq_stop_hw_queues(struct request_queue
*q
)
852 struct blk_mq_hw_ctx
*hctx
;
855 queue_for_each_hw_ctx(q
, hctx
, i
)
856 blk_mq_stop_hw_queue(hctx
);
858 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
860 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
862 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
865 blk_mq_run_hw_queue(hctx
, false);
868 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
870 void blk_mq_start_hw_queues(struct request_queue
*q
)
872 struct blk_mq_hw_ctx
*hctx
;
875 queue_for_each_hw_ctx(q
, hctx
, i
)
876 blk_mq_start_hw_queue(hctx
);
878 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
881 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
883 struct blk_mq_hw_ctx
*hctx
;
886 queue_for_each_hw_ctx(q
, hctx
, i
) {
887 if (!test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
890 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
892 blk_mq_run_hw_queue(hctx
, async
);
896 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
898 static void blk_mq_run_work_fn(struct work_struct
*work
)
900 struct blk_mq_hw_ctx
*hctx
;
902 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
904 __blk_mq_run_hw_queue(hctx
);
907 static void blk_mq_delay_work_fn(struct work_struct
*work
)
909 struct blk_mq_hw_ctx
*hctx
;
911 hctx
= container_of(work
, struct blk_mq_hw_ctx
, delay_work
.work
);
913 if (test_and_clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
914 __blk_mq_run_hw_queue(hctx
);
917 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
919 unsigned long tmo
= msecs_to_jiffies(msecs
);
921 if (hctx
->queue
->nr_hw_queues
== 1)
922 kblockd_schedule_delayed_work(&hctx
->delay_work
, tmo
);
926 cpu
= blk_mq_hctx_next_cpu(hctx
);
927 kblockd_schedule_delayed_work_on(cpu
, &hctx
->delay_work
, tmo
);
930 EXPORT_SYMBOL(blk_mq_delay_queue
);
932 static void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
,
933 struct request
*rq
, bool at_head
)
935 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
937 trace_block_rq_insert(hctx
->queue
, rq
);
940 list_add(&rq
->queuelist
, &ctx
->rq_list
);
942 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
944 blk_mq_hctx_mark_pending(hctx
, ctx
);
947 void blk_mq_insert_request(struct request
*rq
, bool at_head
, bool run_queue
,
950 struct request_queue
*q
= rq
->q
;
951 struct blk_mq_hw_ctx
*hctx
;
952 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
, *current_ctx
;
954 current_ctx
= blk_mq_get_ctx(q
);
955 if (!cpu_online(ctx
->cpu
))
956 rq
->mq_ctx
= ctx
= current_ctx
;
958 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
960 if (rq
->cmd_flags
& (REQ_FLUSH
| REQ_FUA
) &&
961 !(rq
->cmd_flags
& (REQ_FLUSH_SEQ
))) {
962 blk_insert_flush(rq
);
964 spin_lock(&ctx
->lock
);
965 __blk_mq_insert_request(hctx
, rq
, at_head
);
966 spin_unlock(&ctx
->lock
);
970 blk_mq_run_hw_queue(hctx
, async
);
972 blk_mq_put_ctx(current_ctx
);
975 static void blk_mq_insert_requests(struct request_queue
*q
,
976 struct blk_mq_ctx
*ctx
,
977 struct list_head
*list
,
982 struct blk_mq_hw_ctx
*hctx
;
983 struct blk_mq_ctx
*current_ctx
;
985 trace_block_unplug(q
, depth
, !from_schedule
);
987 current_ctx
= blk_mq_get_ctx(q
);
989 if (!cpu_online(ctx
->cpu
))
991 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
994 * preemption doesn't flush plug list, so it's possible ctx->cpu is
997 spin_lock(&ctx
->lock
);
998 while (!list_empty(list
)) {
1001 rq
= list_first_entry(list
, struct request
, queuelist
);
1002 list_del_init(&rq
->queuelist
);
1004 __blk_mq_insert_request(hctx
, rq
, false);
1006 spin_unlock(&ctx
->lock
);
1008 blk_mq_run_hw_queue(hctx
, from_schedule
);
1009 blk_mq_put_ctx(current_ctx
);
1012 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1014 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1015 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1017 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1018 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1019 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1022 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1024 struct blk_mq_ctx
*this_ctx
;
1025 struct request_queue
*this_q
;
1028 LIST_HEAD(ctx_list
);
1031 list_splice_init(&plug
->mq_list
, &list
);
1033 list_sort(NULL
, &list
, plug_ctx_cmp
);
1039 while (!list_empty(&list
)) {
1040 rq
= list_entry_rq(list
.next
);
1041 list_del_init(&rq
->queuelist
);
1043 if (rq
->mq_ctx
!= this_ctx
) {
1045 blk_mq_insert_requests(this_q
, this_ctx
,
1050 this_ctx
= rq
->mq_ctx
;
1056 list_add_tail(&rq
->queuelist
, &ctx_list
);
1060 * If 'this_ctx' is set, we know we have entries to complete
1061 * on 'ctx_list'. Do those.
1064 blk_mq_insert_requests(this_q
, this_ctx
, &ctx_list
, depth
,
1069 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1071 init_request_from_bio(rq
, bio
);
1073 if (blk_do_io_stat(rq
))
1074 blk_account_io_start(rq
, 1);
1077 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx
*hctx
)
1079 return (hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
1080 !blk_queue_nomerges(hctx
->queue
);
1083 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx
*hctx
,
1084 struct blk_mq_ctx
*ctx
,
1085 struct request
*rq
, struct bio
*bio
)
1087 if (!hctx_allow_merges(hctx
)) {
1088 blk_mq_bio_to_request(rq
, bio
);
1089 spin_lock(&ctx
->lock
);
1091 __blk_mq_insert_request(hctx
, rq
, false);
1092 spin_unlock(&ctx
->lock
);
1095 struct request_queue
*q
= hctx
->queue
;
1097 spin_lock(&ctx
->lock
);
1098 if (!blk_mq_attempt_merge(q
, ctx
, bio
)) {
1099 blk_mq_bio_to_request(rq
, bio
);
1103 spin_unlock(&ctx
->lock
);
1104 __blk_mq_free_request(hctx
, ctx
, rq
);
1109 struct blk_map_ctx
{
1110 struct blk_mq_hw_ctx
*hctx
;
1111 struct blk_mq_ctx
*ctx
;
1114 static struct request
*blk_mq_map_request(struct request_queue
*q
,
1116 struct blk_map_ctx
*data
)
1118 struct blk_mq_hw_ctx
*hctx
;
1119 struct blk_mq_ctx
*ctx
;
1121 int rw
= bio_data_dir(bio
);
1122 struct blk_mq_alloc_data alloc_data
;
1124 if (unlikely(blk_mq_queue_enter(q
))) {
1125 bio_endio(bio
, -EIO
);
1129 ctx
= blk_mq_get_ctx(q
);
1130 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1132 if (rw_is_sync(bio
->bi_rw
))
1135 trace_block_getrq(q
, bio
, rw
);
1136 blk_mq_set_alloc_data(&alloc_data
, q
, GFP_ATOMIC
, false, ctx
,
1138 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1139 if (unlikely(!rq
)) {
1140 __blk_mq_run_hw_queue(hctx
);
1141 blk_mq_put_ctx(ctx
);
1142 trace_block_sleeprq(q
, bio
, rw
);
1144 ctx
= blk_mq_get_ctx(q
);
1145 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1146 blk_mq_set_alloc_data(&alloc_data
, q
,
1147 __GFP_WAIT
|GFP_ATOMIC
, false, ctx
, hctx
);
1148 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1149 ctx
= alloc_data
.ctx
;
1150 hctx
= alloc_data
.hctx
;
1160 * Multiple hardware queue variant. This will not use per-process plugs,
1161 * but will attempt to bypass the hctx queueing if we can go straight to
1162 * hardware for SYNC IO.
1164 static void blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1166 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1167 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1168 struct blk_map_ctx data
;
1171 blk_queue_bounce(q
, &bio
);
1173 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1174 bio_endio(bio
, -EIO
);
1178 rq
= blk_mq_map_request(q
, bio
, &data
);
1182 if (unlikely(is_flush_fua
)) {
1183 blk_mq_bio_to_request(rq
, bio
);
1184 blk_insert_flush(rq
);
1191 blk_mq_bio_to_request(rq
, bio
);
1192 blk_mq_start_request(rq
, true);
1195 * For OK queue, we are done. For error, kill it. Any other
1196 * error (busy), just add it to our list as we previously
1199 ret
= q
->mq_ops
->queue_rq(data
.hctx
, rq
);
1200 if (ret
== BLK_MQ_RQ_QUEUE_OK
)
1203 __blk_mq_requeue_request(rq
);
1205 if (ret
== BLK_MQ_RQ_QUEUE_ERROR
) {
1207 blk_mq_end_io(rq
, rq
->errors
);
1213 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1215 * For a SYNC request, send it to the hardware immediately. For
1216 * an ASYNC request, just ensure that we run it later on. The
1217 * latter allows for merging opportunities and more efficient
1221 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1224 blk_mq_put_ctx(data
.ctx
);
1228 * Single hardware queue variant. This will attempt to use any per-process
1229 * plug for merging and IO deferral.
1231 static void blk_sq_make_request(struct request_queue
*q
, struct bio
*bio
)
1233 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1234 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1235 unsigned int use_plug
, request_count
= 0;
1236 struct blk_map_ctx data
;
1240 * If we have multiple hardware queues, just go directly to
1241 * one of those for sync IO.
1243 use_plug
= !is_flush_fua
&& !is_sync
;
1245 blk_queue_bounce(q
, &bio
);
1247 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1248 bio_endio(bio
, -EIO
);
1252 if (use_plug
&& !blk_queue_nomerges(q
) &&
1253 blk_attempt_plug_merge(q
, bio
, &request_count
))
1256 rq
= blk_mq_map_request(q
, bio
, &data
);
1260 if (unlikely(is_flush_fua
)) {
1261 blk_mq_bio_to_request(rq
, bio
);
1262 blk_insert_flush(rq
);
1267 * A task plug currently exists. Since this is completely lockless,
1268 * utilize that to temporarily store requests until the task is
1269 * either done or scheduled away.
1272 struct blk_plug
*plug
= current
->plug
;
1275 blk_mq_bio_to_request(rq
, bio
);
1276 if (list_empty(&plug
->mq_list
))
1277 trace_block_plug(q
);
1278 else if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1279 blk_flush_plug_list(plug
, false);
1280 trace_block_plug(q
);
1282 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1283 blk_mq_put_ctx(data
.ctx
);
1288 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1290 * For a SYNC request, send it to the hardware immediately. For
1291 * an ASYNC request, just ensure that we run it later on. The
1292 * latter allows for merging opportunities and more efficient
1296 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1299 blk_mq_put_ctx(data
.ctx
);
1303 * Default mapping to a software queue, since we use one per CPU.
1305 struct blk_mq_hw_ctx
*blk_mq_map_queue(struct request_queue
*q
, const int cpu
)
1307 return q
->queue_hw_ctx
[q
->mq_map
[cpu
]];
1309 EXPORT_SYMBOL(blk_mq_map_queue
);
1311 static void blk_mq_free_rq_map(struct blk_mq_tag_set
*set
,
1312 struct blk_mq_tags
*tags
, unsigned int hctx_idx
)
1316 if (tags
->rqs
&& set
->ops
->exit_request
) {
1319 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1322 set
->ops
->exit_request(set
->driver_data
, tags
->rqs
[i
],
1327 while (!list_empty(&tags
->page_list
)) {
1328 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1329 list_del_init(&page
->lru
);
1330 __free_pages(page
, page
->private);
1335 blk_mq_free_tags(tags
);
1338 static size_t order_to_size(unsigned int order
)
1340 return (size_t)PAGE_SIZE
<< order
;
1343 static struct blk_mq_tags
*blk_mq_init_rq_map(struct blk_mq_tag_set
*set
,
1344 unsigned int hctx_idx
)
1346 struct blk_mq_tags
*tags
;
1347 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1348 size_t rq_size
, left
;
1350 tags
= blk_mq_init_tags(set
->queue_depth
, set
->reserved_tags
,
1355 INIT_LIST_HEAD(&tags
->page_list
);
1357 tags
->rqs
= kmalloc_node(set
->queue_depth
* sizeof(struct request
*),
1358 GFP_KERNEL
, set
->numa_node
);
1360 blk_mq_free_tags(tags
);
1365 * rq_size is the size of the request plus driver payload, rounded
1366 * to the cacheline size
1368 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1370 left
= rq_size
* set
->queue_depth
;
1372 for (i
= 0; i
< set
->queue_depth
; ) {
1373 int this_order
= max_order
;
1378 while (left
< order_to_size(this_order
- 1) && this_order
)
1382 page
= alloc_pages_node(set
->numa_node
, GFP_KERNEL
,
1388 if (order_to_size(this_order
) < rq_size
)
1395 page
->private = this_order
;
1396 list_add_tail(&page
->lru
, &tags
->page_list
);
1398 p
= page_address(page
);
1399 entries_per_page
= order_to_size(this_order
) / rq_size
;
1400 to_do
= min(entries_per_page
, set
->queue_depth
- i
);
1401 left
-= to_do
* rq_size
;
1402 for (j
= 0; j
< to_do
; j
++) {
1404 if (set
->ops
->init_request
) {
1405 if (set
->ops
->init_request(set
->driver_data
,
1406 tags
->rqs
[i
], hctx_idx
, i
,
1419 pr_warn("%s: failed to allocate requests\n", __func__
);
1420 blk_mq_free_rq_map(set
, tags
, hctx_idx
);
1424 static void blk_mq_free_bitmap(struct blk_mq_ctxmap
*bitmap
)
1429 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap
*bitmap
, int node
)
1431 unsigned int bpw
= 8, total
, num_maps
, i
;
1433 bitmap
->bits_per_word
= bpw
;
1435 num_maps
= ALIGN(nr_cpu_ids
, bpw
) / bpw
;
1436 bitmap
->map
= kzalloc_node(num_maps
* sizeof(struct blk_align_bitmap
),
1441 bitmap
->map_size
= num_maps
;
1444 for (i
= 0; i
< num_maps
; i
++) {
1445 bitmap
->map
[i
].depth
= min(total
, bitmap
->bits_per_word
);
1446 total
-= bitmap
->map
[i
].depth
;
1452 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx
*hctx
, int cpu
)
1454 struct request_queue
*q
= hctx
->queue
;
1455 struct blk_mq_ctx
*ctx
;
1459 * Move ctx entries to new CPU, if this one is going away.
1461 ctx
= __blk_mq_get_ctx(q
, cpu
);
1463 spin_lock(&ctx
->lock
);
1464 if (!list_empty(&ctx
->rq_list
)) {
1465 list_splice_init(&ctx
->rq_list
, &tmp
);
1466 blk_mq_hctx_clear_pending(hctx
, ctx
);
1468 spin_unlock(&ctx
->lock
);
1470 if (list_empty(&tmp
))
1473 ctx
= blk_mq_get_ctx(q
);
1474 spin_lock(&ctx
->lock
);
1476 while (!list_empty(&tmp
)) {
1479 rq
= list_first_entry(&tmp
, struct request
, queuelist
);
1481 list_move_tail(&rq
->queuelist
, &ctx
->rq_list
);
1484 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1485 blk_mq_hctx_mark_pending(hctx
, ctx
);
1487 spin_unlock(&ctx
->lock
);
1489 blk_mq_run_hw_queue(hctx
, true);
1490 blk_mq_put_ctx(ctx
);
1494 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx
*hctx
, int cpu
)
1496 struct request_queue
*q
= hctx
->queue
;
1497 struct blk_mq_tag_set
*set
= q
->tag_set
;
1499 if (set
->tags
[hctx
->queue_num
])
1502 set
->tags
[hctx
->queue_num
] = blk_mq_init_rq_map(set
, hctx
->queue_num
);
1503 if (!set
->tags
[hctx
->queue_num
])
1506 hctx
->tags
= set
->tags
[hctx
->queue_num
];
1510 static int blk_mq_hctx_notify(void *data
, unsigned long action
,
1513 struct blk_mq_hw_ctx
*hctx
= data
;
1515 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
1516 return blk_mq_hctx_cpu_offline(hctx
, cpu
);
1517 else if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
)
1518 return blk_mq_hctx_cpu_online(hctx
, cpu
);
1523 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
1524 struct blk_mq_tag_set
*set
, int nr_queue
)
1526 struct blk_mq_hw_ctx
*hctx
;
1529 queue_for_each_hw_ctx(q
, hctx
, i
) {
1533 blk_mq_tag_idle(hctx
);
1535 if (set
->ops
->exit_hctx
)
1536 set
->ops
->exit_hctx(hctx
, i
);
1538 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1540 blk_mq_free_bitmap(&hctx
->ctx_map
);
1545 static void blk_mq_free_hw_queues(struct request_queue
*q
,
1546 struct blk_mq_tag_set
*set
)
1548 struct blk_mq_hw_ctx
*hctx
;
1551 queue_for_each_hw_ctx(q
, hctx
, i
) {
1552 free_cpumask_var(hctx
->cpumask
);
1557 static int blk_mq_init_hw_queues(struct request_queue
*q
,
1558 struct blk_mq_tag_set
*set
)
1560 struct blk_mq_hw_ctx
*hctx
;
1564 * Initialize hardware queues
1566 queue_for_each_hw_ctx(q
, hctx
, i
) {
1569 node
= hctx
->numa_node
;
1570 if (node
== NUMA_NO_NODE
)
1571 node
= hctx
->numa_node
= set
->numa_node
;
1573 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
1574 INIT_DELAYED_WORK(&hctx
->delay_work
, blk_mq_delay_work_fn
);
1575 spin_lock_init(&hctx
->lock
);
1576 INIT_LIST_HEAD(&hctx
->dispatch
);
1578 hctx
->queue_num
= i
;
1579 hctx
->flags
= set
->flags
;
1580 hctx
->cmd_size
= set
->cmd_size
;
1582 blk_mq_init_cpu_notifier(&hctx
->cpu_notifier
,
1583 blk_mq_hctx_notify
, hctx
);
1584 blk_mq_register_cpu_notifier(&hctx
->cpu_notifier
);
1586 hctx
->tags
= set
->tags
[i
];
1589 * Allocate space for all possible cpus to avoid allocation at
1592 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
1597 if (blk_mq_alloc_bitmap(&hctx
->ctx_map
, node
))
1602 if (set
->ops
->init_hctx
&&
1603 set
->ops
->init_hctx(hctx
, set
->driver_data
, i
))
1607 if (i
== q
->nr_hw_queues
)
1613 blk_mq_exit_hw_queues(q
, set
, i
);
1618 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
1619 unsigned int nr_hw_queues
)
1623 for_each_possible_cpu(i
) {
1624 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1625 struct blk_mq_hw_ctx
*hctx
;
1627 memset(__ctx
, 0, sizeof(*__ctx
));
1629 spin_lock_init(&__ctx
->lock
);
1630 INIT_LIST_HEAD(&__ctx
->rq_list
);
1633 /* If the cpu isn't online, the cpu is mapped to first hctx */
1637 hctx
= q
->mq_ops
->map_queue(q
, i
);
1638 cpumask_set_cpu(i
, hctx
->cpumask
);
1642 * Set local node, IFF we have more than one hw queue. If
1643 * not, we remain on the home node of the device
1645 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
1646 hctx
->numa_node
= cpu_to_node(i
);
1650 static void blk_mq_map_swqueue(struct request_queue
*q
)
1653 struct blk_mq_hw_ctx
*hctx
;
1654 struct blk_mq_ctx
*ctx
;
1656 queue_for_each_hw_ctx(q
, hctx
, i
) {
1657 cpumask_clear(hctx
->cpumask
);
1662 * Map software to hardware queues
1664 queue_for_each_ctx(q
, ctx
, i
) {
1665 /* If the cpu isn't online, the cpu is mapped to first hctx */
1669 hctx
= q
->mq_ops
->map_queue(q
, i
);
1670 cpumask_set_cpu(i
, hctx
->cpumask
);
1671 ctx
->index_hw
= hctx
->nr_ctx
;
1672 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
1675 queue_for_each_hw_ctx(q
, hctx
, i
) {
1677 * If no software queues are mapped to this hardware queue,
1678 * disable it and free the request entries.
1680 if (!hctx
->nr_ctx
) {
1681 struct blk_mq_tag_set
*set
= q
->tag_set
;
1684 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
1685 set
->tags
[i
] = NULL
;
1692 * Initialize batch roundrobin counts
1694 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
1695 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1699 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
)
1701 struct blk_mq_hw_ctx
*hctx
;
1702 struct request_queue
*q
;
1706 if (set
->tag_list
.next
== set
->tag_list
.prev
)
1711 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
1712 blk_mq_freeze_queue(q
);
1714 queue_for_each_hw_ctx(q
, hctx
, i
) {
1716 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
1718 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
1720 blk_mq_unfreeze_queue(q
);
1724 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
1726 struct blk_mq_tag_set
*set
= q
->tag_set
;
1728 mutex_lock(&set
->tag_list_lock
);
1729 list_del_init(&q
->tag_set_list
);
1730 blk_mq_update_tag_set_depth(set
);
1731 mutex_unlock(&set
->tag_list_lock
);
1734 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
1735 struct request_queue
*q
)
1739 mutex_lock(&set
->tag_list_lock
);
1740 list_add_tail(&q
->tag_set_list
, &set
->tag_list
);
1741 blk_mq_update_tag_set_depth(set
);
1742 mutex_unlock(&set
->tag_list_lock
);
1745 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
1747 struct blk_mq_hw_ctx
**hctxs
;
1748 struct blk_mq_ctx __percpu
*ctx
;
1749 struct request_queue
*q
;
1753 ctx
= alloc_percpu(struct blk_mq_ctx
);
1755 return ERR_PTR(-ENOMEM
);
1757 hctxs
= kmalloc_node(set
->nr_hw_queues
* sizeof(*hctxs
), GFP_KERNEL
,
1763 map
= blk_mq_make_queue_map(set
);
1767 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
1768 int node
= blk_mq_hw_queue_to_node(map
, i
);
1770 hctxs
[i
] = kzalloc_node(sizeof(struct blk_mq_hw_ctx
),
1775 if (!zalloc_cpumask_var(&hctxs
[i
]->cpumask
, GFP_KERNEL
))
1778 atomic_set(&hctxs
[i
]->nr_active
, 0);
1779 hctxs
[i
]->numa_node
= node
;
1780 hctxs
[i
]->queue_num
= i
;
1783 q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
1787 if (percpu_ref_init(&q
->mq_usage_counter
, blk_mq_usage_counter_release
))
1790 setup_timer(&q
->timeout
, blk_mq_rq_timer
, (unsigned long) q
);
1791 blk_queue_rq_timeout(q
, 30000);
1793 q
->nr_queues
= nr_cpu_ids
;
1794 q
->nr_hw_queues
= set
->nr_hw_queues
;
1798 q
->queue_hw_ctx
= hctxs
;
1800 q
->mq_ops
= set
->ops
;
1801 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
1803 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
1804 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
1806 q
->sg_reserved_size
= INT_MAX
;
1808 INIT_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
1809 INIT_LIST_HEAD(&q
->requeue_list
);
1810 spin_lock_init(&q
->requeue_lock
);
1812 if (q
->nr_hw_queues
> 1)
1813 blk_queue_make_request(q
, blk_mq_make_request
);
1815 blk_queue_make_request(q
, blk_sq_make_request
);
1817 blk_queue_rq_timed_out(q
, blk_mq_rq_timed_out
);
1819 blk_queue_rq_timeout(q
, set
->timeout
);
1822 * Do this after blk_queue_make_request() overrides it...
1824 q
->nr_requests
= set
->queue_depth
;
1826 if (set
->ops
->complete
)
1827 blk_queue_softirq_done(q
, set
->ops
->complete
);
1829 blk_mq_init_flush(q
);
1830 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
1832 q
->flush_rq
= kzalloc(round_up(sizeof(struct request
) +
1833 set
->cmd_size
, cache_line_size()),
1838 if (blk_mq_init_hw_queues(q
, set
))
1841 mutex_lock(&all_q_mutex
);
1842 list_add_tail(&q
->all_q_node
, &all_q_list
);
1843 mutex_unlock(&all_q_mutex
);
1845 blk_mq_add_queue_tag_set(set
, q
);
1847 blk_mq_map_swqueue(q
);
1854 blk_cleanup_queue(q
);
1857 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
1860 free_cpumask_var(hctxs
[i
]->cpumask
);
1867 return ERR_PTR(-ENOMEM
);
1869 EXPORT_SYMBOL(blk_mq_init_queue
);
1871 void blk_mq_free_queue(struct request_queue
*q
)
1873 struct blk_mq_tag_set
*set
= q
->tag_set
;
1875 blk_mq_del_queue_tag_set(q
);
1877 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
1878 blk_mq_free_hw_queues(q
, set
);
1880 percpu_ref_exit(&q
->mq_usage_counter
);
1882 free_percpu(q
->queue_ctx
);
1883 kfree(q
->queue_hw_ctx
);
1886 q
->queue_ctx
= NULL
;
1887 q
->queue_hw_ctx
= NULL
;
1890 mutex_lock(&all_q_mutex
);
1891 list_del_init(&q
->all_q_node
);
1892 mutex_unlock(&all_q_mutex
);
1895 /* Basically redo blk_mq_init_queue with queue frozen */
1896 static void blk_mq_queue_reinit(struct request_queue
*q
)
1898 blk_mq_freeze_queue(q
);
1900 blk_mq_sysfs_unregister(q
);
1902 blk_mq_update_queue_map(q
->mq_map
, q
->nr_hw_queues
);
1905 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1906 * we should change hctx numa_node according to new topology (this
1907 * involves free and re-allocate memory, worthy doing?)
1910 blk_mq_map_swqueue(q
);
1912 blk_mq_sysfs_register(q
);
1914 blk_mq_unfreeze_queue(q
);
1917 static int blk_mq_queue_reinit_notify(struct notifier_block
*nb
,
1918 unsigned long action
, void *hcpu
)
1920 struct request_queue
*q
;
1923 * Before new mappings are established, hotadded cpu might already
1924 * start handling requests. This doesn't break anything as we map
1925 * offline CPUs to first hardware queue. We will re-init the queue
1926 * below to get optimal settings.
1928 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
&&
1929 action
!= CPU_ONLINE
&& action
!= CPU_ONLINE_FROZEN
)
1932 mutex_lock(&all_q_mutex
);
1933 list_for_each_entry(q
, &all_q_list
, all_q_node
)
1934 blk_mq_queue_reinit(q
);
1935 mutex_unlock(&all_q_mutex
);
1940 * Alloc a tag set to be associated with one or more request queues.
1941 * May fail with EINVAL for various error conditions. May adjust the
1942 * requested depth down, if if it too large. In that case, the set
1943 * value will be stored in set->queue_depth.
1945 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
1949 if (!set
->nr_hw_queues
)
1951 if (!set
->queue_depth
)
1953 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
1956 if (!set
->nr_hw_queues
|| !set
->ops
->queue_rq
|| !set
->ops
->map_queue
)
1959 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
1960 pr_info("blk-mq: reduced tag depth to %u\n",
1962 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
1965 set
->tags
= kmalloc_node(set
->nr_hw_queues
*
1966 sizeof(struct blk_mq_tags
*),
1967 GFP_KERNEL
, set
->numa_node
);
1971 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
1972 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
1977 mutex_init(&set
->tag_list_lock
);
1978 INIT_LIST_HEAD(&set
->tag_list
);
1984 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
1988 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
1990 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
1994 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
1996 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2001 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2003 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2005 struct blk_mq_tag_set
*set
= q
->tag_set
;
2006 struct blk_mq_hw_ctx
*hctx
;
2009 if (!set
|| nr
> set
->queue_depth
)
2013 queue_for_each_hw_ctx(q
, hctx
, i
) {
2014 ret
= blk_mq_tag_update_depth(hctx
->tags
, nr
);
2020 q
->nr_requests
= nr
;
2025 void blk_mq_disable_hotplug(void)
2027 mutex_lock(&all_q_mutex
);
2030 void blk_mq_enable_hotplug(void)
2032 mutex_unlock(&all_q_mutex
);
2035 static int __init
blk_mq_init(void)
2039 hotcpu_notifier(blk_mq_queue_reinit_notify
, 0);
2043 subsys_initcall(blk_mq_init
);