2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
40 #include "blk-cgroup.h"
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split
);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
49 DEFINE_IDA(blk_queue_ida
);
52 * For the allocated request tables
54 struct kmem_cache
*request_cachep
= NULL
;
57 * For queue allocation
59 struct kmem_cache
*blk_requestq_cachep
;
62 * Controlling structure to kblockd
64 static struct workqueue_struct
*kblockd_workqueue
;
66 void blk_queue_congestion_threshold(struct request_queue
*q
)
70 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
71 if (nr
> q
->nr_requests
)
73 q
->nr_congestion_on
= nr
;
75 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
78 q
->nr_congestion_off
= nr
;
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
85 * Locates the passed device's request queue and returns the address of its
88 * Will return NULL if the request queue cannot be located.
90 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
92 struct backing_dev_info
*ret
= NULL
;
93 struct request_queue
*q
= bdev_get_queue(bdev
);
96 ret
= &q
->backing_dev_info
;
99 EXPORT_SYMBOL(blk_get_backing_dev_info
);
101 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
103 memset(rq
, 0, sizeof(*rq
));
105 INIT_LIST_HEAD(&rq
->queuelist
);
106 INIT_LIST_HEAD(&rq
->timeout_list
);
109 rq
->__sector
= (sector_t
) -1;
110 INIT_HLIST_NODE(&rq
->hash
);
111 RB_CLEAR_NODE(&rq
->rb_node
);
113 rq
->cmd_len
= BLK_MAX_CDB
;
115 rq
->start_time
= jiffies
;
116 set_start_time_ns(rq
);
119 EXPORT_SYMBOL(blk_rq_init
);
121 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
122 unsigned int nbytes
, int error
)
125 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
126 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
129 if (unlikely(rq
->cmd_flags
& REQ_QUIET
))
130 set_bit(BIO_QUIET
, &bio
->bi_flags
);
132 bio_advance(bio
, nbytes
);
134 /* don't actually finish bio if it's part of flush sequence */
135 if (bio
->bi_iter
.bi_size
== 0 && !(rq
->cmd_flags
& REQ_FLUSH_SEQ
))
136 bio_endio(bio
, error
);
139 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
143 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%llx\n", msg
,
144 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
145 (unsigned long long) rq
->cmd_flags
);
147 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
148 (unsigned long long)blk_rq_pos(rq
),
149 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
150 printk(KERN_INFO
" bio %p, biotail %p, len %u\n",
151 rq
->bio
, rq
->biotail
, blk_rq_bytes(rq
));
153 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
154 printk(KERN_INFO
" cdb: ");
155 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
156 printk("%02x ", rq
->cmd
[bit
]);
160 EXPORT_SYMBOL(blk_dump_rq_flags
);
162 static void blk_delay_work(struct work_struct
*work
)
164 struct request_queue
*q
;
166 q
= container_of(work
, struct request_queue
, delay_work
.work
);
167 spin_lock_irq(q
->queue_lock
);
169 spin_unlock_irq(q
->queue_lock
);
173 * blk_delay_queue - restart queueing after defined interval
174 * @q: The &struct request_queue in question
175 * @msecs: Delay in msecs
178 * Sometimes queueing needs to be postponed for a little while, to allow
179 * resources to come back. This function will make sure that queueing is
180 * restarted around the specified time. Queue lock must be held.
182 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
184 if (likely(!blk_queue_dead(q
)))
185 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
186 msecs_to_jiffies(msecs
));
188 EXPORT_SYMBOL(blk_delay_queue
);
191 * blk_start_queue - restart a previously stopped queue
192 * @q: The &struct request_queue in question
195 * blk_start_queue() will clear the stop flag on the queue, and call
196 * the request_fn for the queue if it was in a stopped state when
197 * entered. Also see blk_stop_queue(). Queue lock must be held.
199 void blk_start_queue(struct request_queue
*q
)
201 WARN_ON(!irqs_disabled());
203 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
206 EXPORT_SYMBOL(blk_start_queue
);
209 * blk_stop_queue - stop a queue
210 * @q: The &struct request_queue in question
213 * The Linux block layer assumes that a block driver will consume all
214 * entries on the request queue when the request_fn strategy is called.
215 * Often this will not happen, because of hardware limitations (queue
216 * depth settings). If a device driver gets a 'queue full' response,
217 * or if it simply chooses not to queue more I/O at one point, it can
218 * call this function to prevent the request_fn from being called until
219 * the driver has signalled it's ready to go again. This happens by calling
220 * blk_start_queue() to restart queue operations. Queue lock must be held.
222 void blk_stop_queue(struct request_queue
*q
)
224 cancel_delayed_work(&q
->delay_work
);
225 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
227 EXPORT_SYMBOL(blk_stop_queue
);
230 * blk_sync_queue - cancel any pending callbacks on a queue
234 * The block layer may perform asynchronous callback activity
235 * on a queue, such as calling the unplug function after a timeout.
236 * A block device may call blk_sync_queue to ensure that any
237 * such activity is cancelled, thus allowing it to release resources
238 * that the callbacks might use. The caller must already have made sure
239 * that its ->make_request_fn will not re-add plugging prior to calling
242 * This function does not cancel any asynchronous activity arising
243 * out of elevator or throttling code. That would require elevaotor_exit()
244 * and blkcg_exit_queue() to be called with queue lock initialized.
247 void blk_sync_queue(struct request_queue
*q
)
249 del_timer_sync(&q
->timeout
);
252 struct blk_mq_hw_ctx
*hctx
;
255 queue_for_each_hw_ctx(q
, hctx
, i
) {
256 cancel_delayed_work_sync(&hctx
->run_work
);
257 cancel_delayed_work_sync(&hctx
->delay_work
);
260 cancel_delayed_work_sync(&q
->delay_work
);
263 EXPORT_SYMBOL(blk_sync_queue
);
266 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
267 * @q: The queue to run
270 * Invoke request handling on a queue if there are any pending requests.
271 * May be used to restart request handling after a request has completed.
272 * This variant runs the queue whether or not the queue has been
273 * stopped. Must be called with the queue lock held and interrupts
274 * disabled. See also @blk_run_queue.
276 inline void __blk_run_queue_uncond(struct request_queue
*q
)
278 if (unlikely(blk_queue_dead(q
)))
282 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
283 * the queue lock internally. As a result multiple threads may be
284 * running such a request function concurrently. Keep track of the
285 * number of active request_fn invocations such that blk_drain_queue()
286 * can wait until all these request_fn calls have finished.
288 q
->request_fn_active
++;
290 q
->request_fn_active
--;
294 * __blk_run_queue - run a single device queue
295 * @q: The queue to run
298 * See @blk_run_queue. This variant must be called with the queue lock
299 * held and interrupts disabled.
301 void __blk_run_queue(struct request_queue
*q
)
303 if (unlikely(blk_queue_stopped(q
)))
306 __blk_run_queue_uncond(q
);
308 EXPORT_SYMBOL(__blk_run_queue
);
311 * blk_run_queue_async - run a single device queue in workqueue context
312 * @q: The queue to run
315 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
316 * of us. The caller must hold the queue lock.
318 void blk_run_queue_async(struct request_queue
*q
)
320 if (likely(!blk_queue_stopped(q
) && !blk_queue_dead(q
)))
321 mod_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
323 EXPORT_SYMBOL(blk_run_queue_async
);
326 * blk_run_queue - run a single device queue
327 * @q: The queue to run
330 * Invoke request handling on this queue, if it has pending work to do.
331 * May be used to restart queueing when a request has completed.
333 void blk_run_queue(struct request_queue
*q
)
337 spin_lock_irqsave(q
->queue_lock
, flags
);
339 spin_unlock_irqrestore(q
->queue_lock
, flags
);
341 EXPORT_SYMBOL(blk_run_queue
);
343 void blk_put_queue(struct request_queue
*q
)
345 kobject_put(&q
->kobj
);
347 EXPORT_SYMBOL(blk_put_queue
);
350 * __blk_drain_queue - drain requests from request_queue
352 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
354 * Drain requests from @q. If @drain_all is set, all requests are drained.
355 * If not, only ELVPRIV requests are drained. The caller is responsible
356 * for ensuring that no new requests which need to be drained are queued.
358 static void __blk_drain_queue(struct request_queue
*q
, bool drain_all
)
359 __releases(q
->queue_lock
)
360 __acquires(q
->queue_lock
)
364 lockdep_assert_held(q
->queue_lock
);
370 * The caller might be trying to drain @q before its
371 * elevator is initialized.
374 elv_drain_elevator(q
);
376 blkcg_drain_queue(q
);
379 * This function might be called on a queue which failed
380 * driver init after queue creation or is not yet fully
381 * active yet. Some drivers (e.g. fd and loop) get unhappy
382 * in such cases. Kick queue iff dispatch queue has
383 * something on it and @q has request_fn set.
385 if (!list_empty(&q
->queue_head
) && q
->request_fn
)
388 drain
|= q
->nr_rqs_elvpriv
;
389 drain
|= q
->request_fn_active
;
392 * Unfortunately, requests are queued at and tracked from
393 * multiple places and there's no single counter which can
394 * be drained. Check all the queues and counters.
397 drain
|= !list_empty(&q
->queue_head
);
398 for (i
= 0; i
< 2; i
++) {
399 drain
|= q
->nr_rqs
[i
];
400 drain
|= q
->in_flight
[i
];
401 drain
|= !list_empty(&q
->flush_queue
[i
]);
408 spin_unlock_irq(q
->queue_lock
);
412 spin_lock_irq(q
->queue_lock
);
416 * With queue marked dead, any woken up waiter will fail the
417 * allocation path, so the wakeup chaining is lost and we're
418 * left with hung waiters. We need to wake up those waiters.
421 struct request_list
*rl
;
423 blk_queue_for_each_rl(rl
, q
)
424 for (i
= 0; i
< ARRAY_SIZE(rl
->wait
); i
++)
425 wake_up_all(&rl
->wait
[i
]);
430 * blk_queue_bypass_start - enter queue bypass mode
431 * @q: queue of interest
433 * In bypass mode, only the dispatch FIFO queue of @q is used. This
434 * function makes @q enter bypass mode and drains all requests which were
435 * throttled or issued before. On return, it's guaranteed that no request
436 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
437 * inside queue or RCU read lock.
439 void blk_queue_bypass_start(struct request_queue
*q
)
443 spin_lock_irq(q
->queue_lock
);
444 drain
= !q
->bypass_depth
++;
445 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
446 spin_unlock_irq(q
->queue_lock
);
449 spin_lock_irq(q
->queue_lock
);
450 __blk_drain_queue(q
, false);
451 spin_unlock_irq(q
->queue_lock
);
453 /* ensure blk_queue_bypass() is %true inside RCU read lock */
457 EXPORT_SYMBOL_GPL(blk_queue_bypass_start
);
460 * blk_queue_bypass_end - leave queue bypass mode
461 * @q: queue of interest
463 * Leave bypass mode and restore the normal queueing behavior.
465 void blk_queue_bypass_end(struct request_queue
*q
)
467 spin_lock_irq(q
->queue_lock
);
468 if (!--q
->bypass_depth
)
469 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
470 WARN_ON_ONCE(q
->bypass_depth
< 0);
471 spin_unlock_irq(q
->queue_lock
);
473 EXPORT_SYMBOL_GPL(blk_queue_bypass_end
);
476 * blk_cleanup_queue - shutdown a request queue
477 * @q: request queue to shutdown
479 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
480 * put it. All future requests will be failed immediately with -ENODEV.
482 void blk_cleanup_queue(struct request_queue
*q
)
484 spinlock_t
*lock
= q
->queue_lock
;
486 /* mark @q DYING, no new request or merges will be allowed afterwards */
487 mutex_lock(&q
->sysfs_lock
);
488 queue_flag_set_unlocked(QUEUE_FLAG_DYING
, q
);
492 * A dying queue is permanently in bypass mode till released. Note
493 * that, unlike blk_queue_bypass_start(), we aren't performing
494 * synchronize_rcu() after entering bypass mode to avoid the delay
495 * as some drivers create and destroy a lot of queues while
496 * probing. This is still safe because blk_release_queue() will be
497 * called only after the queue refcnt drops to zero and nothing,
498 * RCU or not, would be traversing the queue by then.
501 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
503 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
504 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
505 queue_flag_set(QUEUE_FLAG_DYING
, q
);
506 spin_unlock_irq(lock
);
507 mutex_unlock(&q
->sysfs_lock
);
510 * Drain all requests queued before DYING marking. Set DEAD flag to
511 * prevent that q->request_fn() gets invoked after draining finished.
514 blk_mq_drain_queue(q
);
518 __blk_drain_queue(q
, true);
520 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
521 spin_unlock_irq(lock
);
523 /* @q won't process any more request, flush async actions */
524 del_timer_sync(&q
->backing_dev_info
.laptop_mode_wb_timer
);
528 blk_mq_free_queue(q
);
531 if (q
->queue_lock
!= &q
->__queue_lock
)
532 q
->queue_lock
= &q
->__queue_lock
;
533 spin_unlock_irq(lock
);
535 /* @q is and will stay empty, shutdown and put */
538 EXPORT_SYMBOL(blk_cleanup_queue
);
540 int blk_init_rl(struct request_list
*rl
, struct request_queue
*q
,
543 if (unlikely(rl
->rq_pool
))
547 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
548 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
549 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
550 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
552 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
553 mempool_free_slab
, request_cachep
,
561 void blk_exit_rl(struct request_list
*rl
)
564 mempool_destroy(rl
->rq_pool
);
567 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
569 return blk_alloc_queue_node(gfp_mask
, NUMA_NO_NODE
);
571 EXPORT_SYMBOL(blk_alloc_queue
);
573 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
575 struct request_queue
*q
;
578 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
579 gfp_mask
| __GFP_ZERO
, node_id
);
583 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
587 q
->backing_dev_info
.ra_pages
=
588 (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
589 q
->backing_dev_info
.state
= 0;
590 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
591 q
->backing_dev_info
.name
= "block";
594 err
= bdi_init(&q
->backing_dev_info
);
598 setup_timer(&q
->backing_dev_info
.laptop_mode_wb_timer
,
599 laptop_mode_timer_fn
, (unsigned long) q
);
600 setup_timer(&q
->timeout
, blk_rq_timed_out_timer
, (unsigned long) q
);
601 INIT_LIST_HEAD(&q
->queue_head
);
602 INIT_LIST_HEAD(&q
->timeout_list
);
603 INIT_LIST_HEAD(&q
->icq_list
);
604 #ifdef CONFIG_BLK_CGROUP
605 INIT_LIST_HEAD(&q
->blkg_list
);
607 INIT_LIST_HEAD(&q
->flush_queue
[0]);
608 INIT_LIST_HEAD(&q
->flush_queue
[1]);
609 INIT_LIST_HEAD(&q
->flush_data_in_flight
);
610 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
612 kobject_init(&q
->kobj
, &blk_queue_ktype
);
614 mutex_init(&q
->sysfs_lock
);
615 spin_lock_init(&q
->__queue_lock
);
618 * By default initialize queue_lock to internal lock and driver can
619 * override it later if need be.
621 q
->queue_lock
= &q
->__queue_lock
;
624 * A queue starts its life with bypass turned on to avoid
625 * unnecessary bypass on/off overhead and nasty surprises during
626 * init. The initial bypass will be finished when the queue is
627 * registered by blk_register_queue().
630 __set_bit(QUEUE_FLAG_BYPASS
, &q
->queue_flags
);
632 init_waitqueue_head(&q
->mq_freeze_wq
);
634 if (blkcg_init_queue(q
))
640 bdi_destroy(&q
->backing_dev_info
);
642 ida_simple_remove(&blk_queue_ida
, q
->id
);
644 kmem_cache_free(blk_requestq_cachep
, q
);
647 EXPORT_SYMBOL(blk_alloc_queue_node
);
650 * blk_init_queue - prepare a request queue for use with a block device
651 * @rfn: The function to be called to process requests that have been
652 * placed on the queue.
653 * @lock: Request queue spin lock
656 * If a block device wishes to use the standard request handling procedures,
657 * which sorts requests and coalesces adjacent requests, then it must
658 * call blk_init_queue(). The function @rfn will be called when there
659 * are requests on the queue that need to be processed. If the device
660 * supports plugging, then @rfn may not be called immediately when requests
661 * are available on the queue, but may be called at some time later instead.
662 * Plugged queues are generally unplugged when a buffer belonging to one
663 * of the requests on the queue is needed, or due to memory pressure.
665 * @rfn is not required, or even expected, to remove all requests off the
666 * queue, but only as many as it can handle at a time. If it does leave
667 * requests on the queue, it is responsible for arranging that the requests
668 * get dealt with eventually.
670 * The queue spin lock must be held while manipulating the requests on the
671 * request queue; this lock will be taken also from interrupt context, so irq
672 * disabling is needed for it.
674 * Function returns a pointer to the initialized request queue, or %NULL if
678 * blk_init_queue() must be paired with a blk_cleanup_queue() call
679 * when the block device is deactivated (such as at module unload).
682 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
684 return blk_init_queue_node(rfn
, lock
, NUMA_NO_NODE
);
686 EXPORT_SYMBOL(blk_init_queue
);
688 struct request_queue
*
689 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
691 struct request_queue
*uninit_q
, *q
;
693 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
697 q
= blk_init_allocated_queue(uninit_q
, rfn
, lock
);
699 blk_cleanup_queue(uninit_q
);
703 EXPORT_SYMBOL(blk_init_queue_node
);
705 struct request_queue
*
706 blk_init_allocated_queue(struct request_queue
*q
, request_fn_proc
*rfn
,
712 q
->flush_rq
= kzalloc(sizeof(struct request
), GFP_KERNEL
);
716 if (blk_init_rl(&q
->root_rl
, q
, GFP_KERNEL
))
720 q
->prep_rq_fn
= NULL
;
721 q
->unprep_rq_fn
= NULL
;
722 q
->queue_flags
|= QUEUE_FLAG_DEFAULT
;
724 /* Override internal queue lock with supplied lock pointer */
726 q
->queue_lock
= lock
;
729 * This also sets hw/phys segments, boundary and size
731 blk_queue_make_request(q
, blk_queue_bio
);
733 q
->sg_reserved_size
= INT_MAX
;
735 /* Protect q->elevator from elevator_change */
736 mutex_lock(&q
->sysfs_lock
);
739 if (elevator_init(q
, NULL
)) {
740 mutex_unlock(&q
->sysfs_lock
);
744 mutex_unlock(&q
->sysfs_lock
);
752 EXPORT_SYMBOL(blk_init_allocated_queue
);
754 bool blk_get_queue(struct request_queue
*q
)
756 if (likely(!blk_queue_dying(q
))) {
763 EXPORT_SYMBOL(blk_get_queue
);
765 static inline void blk_free_request(struct request_list
*rl
, struct request
*rq
)
767 if (rq
->cmd_flags
& REQ_ELVPRIV
) {
768 elv_put_request(rl
->q
, rq
);
770 put_io_context(rq
->elv
.icq
->ioc
);
773 mempool_free(rq
, rl
->rq_pool
);
777 * ioc_batching returns true if the ioc is a valid batching request and
778 * should be given priority access to a request.
780 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
786 * Make sure the process is able to allocate at least 1 request
787 * even if the batch times out, otherwise we could theoretically
790 return ioc
->nr_batch_requests
== q
->nr_batching
||
791 (ioc
->nr_batch_requests
> 0
792 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
796 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
797 * will cause the process to be a "batcher" on all queues in the system. This
798 * is the behaviour we want though - once it gets a wakeup it should be given
801 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
803 if (!ioc
|| ioc_batching(q
, ioc
))
806 ioc
->nr_batch_requests
= q
->nr_batching
;
807 ioc
->last_waited
= jiffies
;
810 static void __freed_request(struct request_list
*rl
, int sync
)
812 struct request_queue
*q
= rl
->q
;
815 * bdi isn't aware of blkcg yet. As all async IOs end up root
816 * blkcg anyway, just use root blkcg state.
818 if (rl
== &q
->root_rl
&&
819 rl
->count
[sync
] < queue_congestion_off_threshold(q
))
820 blk_clear_queue_congested(q
, sync
);
822 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
823 if (waitqueue_active(&rl
->wait
[sync
]))
824 wake_up(&rl
->wait
[sync
]);
826 blk_clear_rl_full(rl
, sync
);
831 * A request has just been released. Account for it, update the full and
832 * congestion status, wake up any waiters. Called under q->queue_lock.
834 static void freed_request(struct request_list
*rl
, unsigned int flags
)
836 struct request_queue
*q
= rl
->q
;
837 int sync
= rw_is_sync(flags
);
841 if (flags
& REQ_ELVPRIV
)
844 __freed_request(rl
, sync
);
846 if (unlikely(rl
->starved
[sync
^ 1]))
847 __freed_request(rl
, sync
^ 1);
850 int blk_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
852 struct request_list
*rl
;
854 spin_lock_irq(q
->queue_lock
);
856 blk_queue_congestion_threshold(q
);
858 /* congestion isn't cgroup aware and follows root blkcg for now */
861 if (rl
->count
[BLK_RW_SYNC
] >= queue_congestion_on_threshold(q
))
862 blk_set_queue_congested(q
, BLK_RW_SYNC
);
863 else if (rl
->count
[BLK_RW_SYNC
] < queue_congestion_off_threshold(q
))
864 blk_clear_queue_congested(q
, BLK_RW_SYNC
);
866 if (rl
->count
[BLK_RW_ASYNC
] >= queue_congestion_on_threshold(q
))
867 blk_set_queue_congested(q
, BLK_RW_ASYNC
);
868 else if (rl
->count
[BLK_RW_ASYNC
] < queue_congestion_off_threshold(q
))
869 blk_clear_queue_congested(q
, BLK_RW_ASYNC
);
871 blk_queue_for_each_rl(rl
, q
) {
872 if (rl
->count
[BLK_RW_SYNC
] >= q
->nr_requests
) {
873 blk_set_rl_full(rl
, BLK_RW_SYNC
);
875 blk_clear_rl_full(rl
, BLK_RW_SYNC
);
876 wake_up(&rl
->wait
[BLK_RW_SYNC
]);
879 if (rl
->count
[BLK_RW_ASYNC
] >= q
->nr_requests
) {
880 blk_set_rl_full(rl
, BLK_RW_ASYNC
);
882 blk_clear_rl_full(rl
, BLK_RW_ASYNC
);
883 wake_up(&rl
->wait
[BLK_RW_ASYNC
]);
887 spin_unlock_irq(q
->queue_lock
);
892 * Determine if elevator data should be initialized when allocating the
893 * request associated with @bio.
895 static bool blk_rq_should_init_elevator(struct bio
*bio
)
901 * Flush requests do not use the elevator so skip initialization.
902 * This allows a request to share the flush and elevator data.
904 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
))
911 * rq_ioc - determine io_context for request allocation
912 * @bio: request being allocated is for this bio (can be %NULL)
914 * Determine io_context to use for request allocation for @bio. May return
915 * %NULL if %current->io_context doesn't exist.
917 static struct io_context
*rq_ioc(struct bio
*bio
)
919 #ifdef CONFIG_BLK_CGROUP
920 if (bio
&& bio
->bi_ioc
)
923 return current
->io_context
;
927 * __get_request - get a free request
928 * @rl: request list to allocate from
929 * @rw_flags: RW and SYNC flags
930 * @bio: bio to allocate request for (can be %NULL)
931 * @gfp_mask: allocation mask
933 * Get a free request from @q. This function may fail under memory
934 * pressure or if @q is dead.
936 * Must be callled with @q->queue_lock held and,
937 * Returns %NULL on failure, with @q->queue_lock held.
938 * Returns !%NULL on success, with @q->queue_lock *not held*.
940 static struct request
*__get_request(struct request_list
*rl
, int rw_flags
,
941 struct bio
*bio
, gfp_t gfp_mask
)
943 struct request_queue
*q
= rl
->q
;
945 struct elevator_type
*et
= q
->elevator
->type
;
946 struct io_context
*ioc
= rq_ioc(bio
);
947 struct io_cq
*icq
= NULL
;
948 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
951 if (unlikely(blk_queue_dying(q
)))
954 may_queue
= elv_may_queue(q
, rw_flags
);
955 if (may_queue
== ELV_MQUEUE_NO
)
958 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
959 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
961 * The queue will fill after this allocation, so set
962 * it as full, and mark this process as "batching".
963 * This process will be allowed to complete a batch of
964 * requests, others will be blocked.
966 if (!blk_rl_full(rl
, is_sync
)) {
967 ioc_set_batching(q
, ioc
);
968 blk_set_rl_full(rl
, is_sync
);
970 if (may_queue
!= ELV_MQUEUE_MUST
971 && !ioc_batching(q
, ioc
)) {
973 * The queue is full and the allocating
974 * process is not a "batcher", and not
975 * exempted by the IO scheduler
982 * bdi isn't aware of blkcg yet. As all async IOs end up
983 * root blkcg anyway, just use root blkcg state.
985 if (rl
== &q
->root_rl
)
986 blk_set_queue_congested(q
, is_sync
);
990 * Only allow batching queuers to allocate up to 50% over the defined
991 * limit of requests, otherwise we could have thousands of requests
992 * allocated with any setting of ->nr_requests
994 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
997 q
->nr_rqs
[is_sync
]++;
998 rl
->count
[is_sync
]++;
999 rl
->starved
[is_sync
] = 0;
1002 * Decide whether the new request will be managed by elevator. If
1003 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1004 * prevent the current elevator from being destroyed until the new
1005 * request is freed. This guarantees icq's won't be destroyed and
1006 * makes creating new ones safe.
1008 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1009 * it will be created after releasing queue_lock.
1011 if (blk_rq_should_init_elevator(bio
) && !blk_queue_bypass(q
)) {
1012 rw_flags
|= REQ_ELVPRIV
;
1013 q
->nr_rqs_elvpriv
++;
1014 if (et
->icq_cache
&& ioc
)
1015 icq
= ioc_lookup_icq(ioc
, q
);
1018 if (blk_queue_io_stat(q
))
1019 rw_flags
|= REQ_IO_STAT
;
1020 spin_unlock_irq(q
->queue_lock
);
1022 /* allocate and init request */
1023 rq
= mempool_alloc(rl
->rq_pool
, gfp_mask
);
1028 blk_rq_set_rl(rq
, rl
);
1029 rq
->cmd_flags
= rw_flags
| REQ_ALLOCED
;
1032 if (rw_flags
& REQ_ELVPRIV
) {
1033 if (unlikely(et
->icq_cache
&& !icq
)) {
1035 icq
= ioc_create_icq(ioc
, q
, gfp_mask
);
1041 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
)))
1044 /* @rq->elv.icq holds io_context until @rq is freed */
1046 get_io_context(icq
->ioc
);
1050 * ioc may be NULL here, and ioc_batching will be false. That's
1051 * OK, if the queue is under the request limit then requests need
1052 * not count toward the nr_batch_requests limit. There will always
1053 * be some limit enforced by BLK_BATCH_TIME.
1055 if (ioc_batching(q
, ioc
))
1056 ioc
->nr_batch_requests
--;
1058 trace_block_getrq(q
, bio
, rw_flags
& 1);
1063 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1064 * and may fail indefinitely under memory pressure and thus
1065 * shouldn't stall IO. Treat this request as !elvpriv. This will
1066 * disturb iosched and blkcg but weird is bettern than dead.
1068 printk_ratelimited(KERN_WARNING
"%s: request aux data allocation failed, iosched may be disturbed\n",
1069 dev_name(q
->backing_dev_info
.dev
));
1071 rq
->cmd_flags
&= ~REQ_ELVPRIV
;
1074 spin_lock_irq(q
->queue_lock
);
1075 q
->nr_rqs_elvpriv
--;
1076 spin_unlock_irq(q
->queue_lock
);
1081 * Allocation failed presumably due to memory. Undo anything we
1082 * might have messed up.
1084 * Allocating task should really be put onto the front of the wait
1085 * queue, but this is pretty rare.
1087 spin_lock_irq(q
->queue_lock
);
1088 freed_request(rl
, rw_flags
);
1091 * in the very unlikely event that allocation failed and no
1092 * requests for this direction was pending, mark us starved so that
1093 * freeing of a request in the other direction will notice
1094 * us. another possible fix would be to split the rq mempool into
1098 if (unlikely(rl
->count
[is_sync
] == 0))
1099 rl
->starved
[is_sync
] = 1;
1104 * get_request - get a free request
1105 * @q: request_queue to allocate request from
1106 * @rw_flags: RW and SYNC flags
1107 * @bio: bio to allocate request for (can be %NULL)
1108 * @gfp_mask: allocation mask
1110 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1111 * function keeps retrying under memory pressure and fails iff @q is dead.
1113 * Must be callled with @q->queue_lock held and,
1114 * Returns %NULL on failure, with @q->queue_lock held.
1115 * Returns !%NULL on success, with @q->queue_lock *not held*.
1117 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
1118 struct bio
*bio
, gfp_t gfp_mask
)
1120 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
1122 struct request_list
*rl
;
1125 rl
= blk_get_rl(q
, bio
); /* transferred to @rq on success */
1127 rq
= __get_request(rl
, rw_flags
, bio
, gfp_mask
);
1131 if (!(gfp_mask
& __GFP_WAIT
) || unlikely(blk_queue_dying(q
))) {
1136 /* wait on @rl and retry */
1137 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
1138 TASK_UNINTERRUPTIBLE
);
1140 trace_block_sleeprq(q
, bio
, rw_flags
& 1);
1142 spin_unlock_irq(q
->queue_lock
);
1146 * After sleeping, we become a "batching" process and will be able
1147 * to allocate at least one request, and up to a big batch of them
1148 * for a small period time. See ioc_batching, ioc_set_batching
1150 ioc_set_batching(q
, current
->io_context
);
1152 spin_lock_irq(q
->queue_lock
);
1153 finish_wait(&rl
->wait
[is_sync
], &wait
);
1158 static struct request
*blk_old_get_request(struct request_queue
*q
, int rw
,
1163 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
1165 /* create ioc upfront */
1166 create_io_context(gfp_mask
, q
->node
);
1168 spin_lock_irq(q
->queue_lock
);
1169 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
1171 spin_unlock_irq(q
->queue_lock
);
1172 /* q->queue_lock is unlocked at this point */
1177 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
1180 return blk_mq_alloc_request(q
, rw
, gfp_mask
, false);
1182 return blk_old_get_request(q
, rw
, gfp_mask
);
1184 EXPORT_SYMBOL(blk_get_request
);
1187 * blk_make_request - given a bio, allocate a corresponding struct request.
1188 * @q: target request queue
1189 * @bio: The bio describing the memory mappings that will be submitted for IO.
1190 * It may be a chained-bio properly constructed by block/bio layer.
1191 * @gfp_mask: gfp flags to be used for memory allocation
1193 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1194 * type commands. Where the struct request needs to be farther initialized by
1195 * the caller. It is passed a &struct bio, which describes the memory info of
1198 * The caller of blk_make_request must make sure that bi_io_vec
1199 * are set to describe the memory buffers. That bio_data_dir() will return
1200 * the needed direction of the request. (And all bio's in the passed bio-chain
1201 * are properly set accordingly)
1203 * If called under none-sleepable conditions, mapped bio buffers must not
1204 * need bouncing, by calling the appropriate masked or flagged allocator,
1205 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1208 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1209 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1210 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1211 * completion of a bio that hasn't been submitted yet, thus resulting in a
1212 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1213 * of bio_alloc(), as that avoids the mempool deadlock.
1214 * If possible a big IO should be split into smaller parts when allocation
1215 * fails. Partial allocation should not be an error, or you risk a live-lock.
1217 struct request
*blk_make_request(struct request_queue
*q
, struct bio
*bio
,
1220 struct request
*rq
= blk_get_request(q
, bio_data_dir(bio
), gfp_mask
);
1223 return ERR_PTR(-ENOMEM
);
1225 blk_rq_set_block_pc(rq
);
1228 struct bio
*bounce_bio
= bio
;
1231 blk_queue_bounce(q
, &bounce_bio
);
1232 ret
= blk_rq_append_bio(q
, rq
, bounce_bio
);
1233 if (unlikely(ret
)) {
1234 blk_put_request(rq
);
1235 return ERR_PTR(ret
);
1241 EXPORT_SYMBOL(blk_make_request
);
1244 * blk_rq_set_block_pc - initialize a requeest to type BLOCK_PC
1245 * @rq: request to be initialized
1248 void blk_rq_set_block_pc(struct request
*rq
)
1250 rq
->cmd_type
= REQ_TYPE_BLOCK_PC
;
1252 rq
->__sector
= (sector_t
) -1;
1253 rq
->bio
= rq
->biotail
= NULL
;
1254 memset(rq
->__cmd
, 0, sizeof(rq
->__cmd
));
1255 rq
->cmd
= rq
->__cmd
;
1257 EXPORT_SYMBOL(blk_rq_set_block_pc
);
1260 * blk_requeue_request - put a request back on queue
1261 * @q: request queue where request should be inserted
1262 * @rq: request to be inserted
1265 * Drivers often keep queueing requests until the hardware cannot accept
1266 * more, when that condition happens we need to put the request back
1267 * on the queue. Must be called with queue lock held.
1269 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
1271 blk_delete_timer(rq
);
1272 blk_clear_rq_complete(rq
);
1273 trace_block_rq_requeue(q
, rq
);
1275 if (blk_rq_tagged(rq
))
1276 blk_queue_end_tag(q
, rq
);
1278 BUG_ON(blk_queued_rq(rq
));
1280 elv_requeue_request(q
, rq
);
1282 EXPORT_SYMBOL(blk_requeue_request
);
1284 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1287 blk_account_io_start(rq
, true);
1288 __elv_add_request(q
, rq
, where
);
1291 static void part_round_stats_single(int cpu
, struct hd_struct
*part
,
1296 if (now
== part
->stamp
)
1299 inflight
= part_in_flight(part
);
1301 __part_stat_add(cpu
, part
, time_in_queue
,
1302 inflight
* (now
- part
->stamp
));
1303 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1309 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1310 * @cpu: cpu number for stats access
1311 * @part: target partition
1313 * The average IO queue length and utilisation statistics are maintained
1314 * by observing the current state of the queue length and the amount of
1315 * time it has been in this state for.
1317 * Normally, that accounting is done on IO completion, but that can result
1318 * in more than a second's worth of IO being accounted for within any one
1319 * second, leading to >100% utilisation. To deal with that, we call this
1320 * function to do a round-off before returning the results when reading
1321 * /proc/diskstats. This accounts immediately for all queue usage up to
1322 * the current jiffies and restarts the counters again.
1324 void part_round_stats(int cpu
, struct hd_struct
*part
)
1326 unsigned long now
= jiffies
;
1329 part_round_stats_single(cpu
, &part_to_disk(part
)->part0
, now
);
1330 part_round_stats_single(cpu
, part
, now
);
1332 EXPORT_SYMBOL_GPL(part_round_stats
);
1334 #ifdef CONFIG_PM_RUNTIME
1335 static void blk_pm_put_request(struct request
*rq
)
1337 if (rq
->q
->dev
&& !(rq
->cmd_flags
& REQ_PM
) && !--rq
->q
->nr_pending
)
1338 pm_runtime_mark_last_busy(rq
->q
->dev
);
1341 static inline void blk_pm_put_request(struct request
*rq
) {}
1345 * queue lock must be held
1347 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1353 blk_mq_free_request(req
);
1357 blk_pm_put_request(req
);
1359 elv_completed_request(q
, req
);
1361 /* this is a bio leak */
1362 WARN_ON(req
->bio
!= NULL
);
1365 * Request may not have originated from ll_rw_blk. if not,
1366 * it didn't come out of our reserved rq pools
1368 if (req
->cmd_flags
& REQ_ALLOCED
) {
1369 unsigned int flags
= req
->cmd_flags
;
1370 struct request_list
*rl
= blk_rq_rl(req
);
1372 BUG_ON(!list_empty(&req
->queuelist
));
1373 BUG_ON(ELV_ON_HASH(req
));
1375 blk_free_request(rl
, req
);
1376 freed_request(rl
, flags
);
1380 EXPORT_SYMBOL_GPL(__blk_put_request
);
1382 void blk_put_request(struct request
*req
)
1384 struct request_queue
*q
= req
->q
;
1387 blk_mq_free_request(req
);
1389 unsigned long flags
;
1391 spin_lock_irqsave(q
->queue_lock
, flags
);
1392 __blk_put_request(q
, req
);
1393 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1396 EXPORT_SYMBOL(blk_put_request
);
1399 * blk_add_request_payload - add a payload to a request
1400 * @rq: request to update
1401 * @page: page backing the payload
1402 * @len: length of the payload.
1404 * This allows to later add a payload to an already submitted request by
1405 * a block driver. The driver needs to take care of freeing the payload
1408 * Note that this is a quite horrible hack and nothing but handling of
1409 * discard requests should ever use it.
1411 void blk_add_request_payload(struct request
*rq
, struct page
*page
,
1414 struct bio
*bio
= rq
->bio
;
1416 bio
->bi_io_vec
->bv_page
= page
;
1417 bio
->bi_io_vec
->bv_offset
= 0;
1418 bio
->bi_io_vec
->bv_len
= len
;
1420 bio
->bi_iter
.bi_size
= len
;
1422 bio
->bi_phys_segments
= 1;
1424 rq
->__data_len
= rq
->resid_len
= len
;
1425 rq
->nr_phys_segments
= 1;
1427 EXPORT_SYMBOL_GPL(blk_add_request_payload
);
1429 bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1432 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1434 if (!ll_back_merge_fn(q
, req
, bio
))
1437 trace_block_bio_backmerge(q
, req
, bio
);
1439 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1440 blk_rq_set_mixed_merge(req
);
1442 req
->biotail
->bi_next
= bio
;
1444 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1445 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1447 blk_account_io_start(req
, false);
1451 bool bio_attempt_front_merge(struct request_queue
*q
, struct request
*req
,
1454 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1456 if (!ll_front_merge_fn(q
, req
, bio
))
1459 trace_block_bio_frontmerge(q
, req
, bio
);
1461 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1462 blk_rq_set_mixed_merge(req
);
1464 bio
->bi_next
= req
->bio
;
1467 req
->__sector
= bio
->bi_iter
.bi_sector
;
1468 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1469 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1471 blk_account_io_start(req
, false);
1476 * blk_attempt_plug_merge - try to merge with %current's plugged list
1477 * @q: request_queue new bio is being queued at
1478 * @bio: new bio being queued
1479 * @request_count: out parameter for number of traversed plugged requests
1481 * Determine whether @bio being queued on @q can be merged with a request
1482 * on %current's plugged list. Returns %true if merge was successful,
1485 * Plugging coalesces IOs from the same issuer for the same purpose without
1486 * going through @q->queue_lock. As such it's more of an issuing mechanism
1487 * than scheduling, and the request, while may have elvpriv data, is not
1488 * added on the elevator at this point. In addition, we don't have
1489 * reliable access to the elevator outside queue lock. Only check basic
1490 * merging parameters without querying the elevator.
1492 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1494 bool blk_attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1495 unsigned int *request_count
)
1497 struct blk_plug
*plug
;
1500 struct list_head
*plug_list
;
1502 plug
= current
->plug
;
1508 plug_list
= &plug
->mq_list
;
1510 plug_list
= &plug
->list
;
1512 list_for_each_entry_reverse(rq
, plug_list
, queuelist
) {
1518 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
1521 el_ret
= blk_try_merge(rq
, bio
);
1522 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1523 ret
= bio_attempt_back_merge(q
, rq
, bio
);
1526 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1527 ret
= bio_attempt_front_merge(q
, rq
, bio
);
1536 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1538 req
->cmd_type
= REQ_TYPE_FS
;
1540 req
->cmd_flags
|= bio
->bi_rw
& REQ_COMMON_MASK
;
1541 if (bio
->bi_rw
& REQ_RAHEAD
)
1542 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1545 req
->__sector
= bio
->bi_iter
.bi_sector
;
1546 req
->ioprio
= bio_prio(bio
);
1547 blk_rq_bio_prep(req
->q
, req
, bio
);
1550 void blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1552 const bool sync
= !!(bio
->bi_rw
& REQ_SYNC
);
1553 struct blk_plug
*plug
;
1554 int el_ret
, rw_flags
, where
= ELEVATOR_INSERT_SORT
;
1555 struct request
*req
;
1556 unsigned int request_count
= 0;
1559 * low level driver can indicate that it wants pages above a
1560 * certain limit bounced to low memory (ie for highmem, or even
1561 * ISA dma in theory)
1563 blk_queue_bounce(q
, &bio
);
1565 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1566 bio_endio(bio
, -EIO
);
1570 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) {
1571 spin_lock_irq(q
->queue_lock
);
1572 where
= ELEVATOR_INSERT_FLUSH
;
1577 * Check if we can merge with the plugged list before grabbing
1580 if (!blk_queue_nomerges(q
) &&
1581 blk_attempt_plug_merge(q
, bio
, &request_count
))
1584 spin_lock_irq(q
->queue_lock
);
1586 el_ret
= elv_merge(q
, &req
, bio
);
1587 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1588 if (bio_attempt_back_merge(q
, req
, bio
)) {
1589 elv_bio_merged(q
, req
, bio
);
1590 if (!attempt_back_merge(q
, req
))
1591 elv_merged_request(q
, req
, el_ret
);
1594 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1595 if (bio_attempt_front_merge(q
, req
, bio
)) {
1596 elv_bio_merged(q
, req
, bio
);
1597 if (!attempt_front_merge(q
, req
))
1598 elv_merged_request(q
, req
, el_ret
);
1605 * This sync check and mask will be re-done in init_request_from_bio(),
1606 * but we need to set it earlier to expose the sync flag to the
1607 * rq allocator and io schedulers.
1609 rw_flags
= bio_data_dir(bio
);
1611 rw_flags
|= REQ_SYNC
;
1614 * Grab a free request. This is might sleep but can not fail.
1615 * Returns with the queue unlocked.
1617 req
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
1618 if (unlikely(!req
)) {
1619 bio_endio(bio
, -ENODEV
); /* @q is dead */
1624 * After dropping the lock and possibly sleeping here, our request
1625 * may now be mergeable after it had proven unmergeable (above).
1626 * We don't worry about that case for efficiency. It won't happen
1627 * often, and the elevators are able to handle it.
1629 init_request_from_bio(req
, bio
);
1631 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
1632 req
->cpu
= raw_smp_processor_id();
1634 plug
= current
->plug
;
1637 * If this is the first request added after a plug, fire
1641 trace_block_plug(q
);
1643 if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1644 blk_flush_plug_list(plug
, false);
1645 trace_block_plug(q
);
1648 list_add_tail(&req
->queuelist
, &plug
->list
);
1649 blk_account_io_start(req
, true);
1651 spin_lock_irq(q
->queue_lock
);
1652 add_acct_request(q
, req
, where
);
1655 spin_unlock_irq(q
->queue_lock
);
1658 EXPORT_SYMBOL_GPL(blk_queue_bio
); /* for device mapper only */
1661 * If bio->bi_dev is a partition, remap the location
1663 static inline void blk_partition_remap(struct bio
*bio
)
1665 struct block_device
*bdev
= bio
->bi_bdev
;
1667 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1668 struct hd_struct
*p
= bdev
->bd_part
;
1670 bio
->bi_iter
.bi_sector
+= p
->start_sect
;
1671 bio
->bi_bdev
= bdev
->bd_contains
;
1673 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1675 bio
->bi_iter
.bi_sector
- p
->start_sect
);
1679 static void handle_bad_sector(struct bio
*bio
)
1681 char b
[BDEVNAME_SIZE
];
1683 printk(KERN_INFO
"attempt to access beyond end of device\n");
1684 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1685 bdevname(bio
->bi_bdev
, b
),
1687 (unsigned long long)bio_end_sector(bio
),
1688 (long long)(i_size_read(bio
->bi_bdev
->bd_inode
) >> 9));
1690 set_bit(BIO_EOF
, &bio
->bi_flags
);
1693 #ifdef CONFIG_FAIL_MAKE_REQUEST
1695 static DECLARE_FAULT_ATTR(fail_make_request
);
1697 static int __init
setup_fail_make_request(char *str
)
1699 return setup_fault_attr(&fail_make_request
, str
);
1701 __setup("fail_make_request=", setup_fail_make_request
);
1703 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
1705 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
1708 static int __init
fail_make_request_debugfs(void)
1710 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
1711 NULL
, &fail_make_request
);
1713 return PTR_ERR_OR_ZERO(dir
);
1716 late_initcall(fail_make_request_debugfs
);
1718 #else /* CONFIG_FAIL_MAKE_REQUEST */
1720 static inline bool should_fail_request(struct hd_struct
*part
,
1726 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1729 * Check whether this bio extends beyond the end of the device.
1731 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1738 /* Test device or partition size, when known. */
1739 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
1741 sector_t sector
= bio
->bi_iter
.bi_sector
;
1743 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1745 * This may well happen - the kernel calls bread()
1746 * without checking the size of the device, e.g., when
1747 * mounting a device.
1749 handle_bad_sector(bio
);
1757 static noinline_for_stack
bool
1758 generic_make_request_checks(struct bio
*bio
)
1760 struct request_queue
*q
;
1761 int nr_sectors
= bio_sectors(bio
);
1763 char b
[BDEVNAME_SIZE
];
1764 struct hd_struct
*part
;
1768 if (bio_check_eod(bio
, nr_sectors
))
1771 q
= bdev_get_queue(bio
->bi_bdev
);
1774 "generic_make_request: Trying to access "
1775 "nonexistent block-device %s (%Lu)\n",
1776 bdevname(bio
->bi_bdev
, b
),
1777 (long long) bio
->bi_iter
.bi_sector
);
1781 if (likely(bio_is_rw(bio
) &&
1782 nr_sectors
> queue_max_hw_sectors(q
))) {
1783 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1784 bdevname(bio
->bi_bdev
, b
),
1786 queue_max_hw_sectors(q
));
1790 part
= bio
->bi_bdev
->bd_part
;
1791 if (should_fail_request(part
, bio
->bi_iter
.bi_size
) ||
1792 should_fail_request(&part_to_disk(part
)->part0
,
1793 bio
->bi_iter
.bi_size
))
1797 * If this device has partitions, remap block n
1798 * of partition p to block n+start(p) of the disk.
1800 blk_partition_remap(bio
);
1802 if (bio_check_eod(bio
, nr_sectors
))
1806 * Filter flush bio's early so that make_request based
1807 * drivers without flush support don't have to worry
1810 if ((bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) && !q
->flush_flags
) {
1811 bio
->bi_rw
&= ~(REQ_FLUSH
| REQ_FUA
);
1818 if ((bio
->bi_rw
& REQ_DISCARD
) &&
1819 (!blk_queue_discard(q
) ||
1820 ((bio
->bi_rw
& REQ_SECURE
) && !blk_queue_secdiscard(q
)))) {
1825 if (bio
->bi_rw
& REQ_WRITE_SAME
&& !bdev_write_same(bio
->bi_bdev
)) {
1831 * Various block parts want %current->io_context and lazy ioc
1832 * allocation ends up trading a lot of pain for a small amount of
1833 * memory. Just allocate it upfront. This may fail and block
1834 * layer knows how to live with it.
1836 create_io_context(GFP_ATOMIC
, q
->node
);
1838 if (blk_throtl_bio(q
, bio
))
1839 return false; /* throttled, will be resubmitted later */
1841 trace_block_bio_queue(q
, bio
);
1845 bio_endio(bio
, err
);
1850 * generic_make_request - hand a buffer to its device driver for I/O
1851 * @bio: The bio describing the location in memory and on the device.
1853 * generic_make_request() is used to make I/O requests of block
1854 * devices. It is passed a &struct bio, which describes the I/O that needs
1857 * generic_make_request() does not return any status. The
1858 * success/failure status of the request, along with notification of
1859 * completion, is delivered asynchronously through the bio->bi_end_io
1860 * function described (one day) else where.
1862 * The caller of generic_make_request must make sure that bi_io_vec
1863 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1864 * set to describe the device address, and the
1865 * bi_end_io and optionally bi_private are set to describe how
1866 * completion notification should be signaled.
1868 * generic_make_request and the drivers it calls may use bi_next if this
1869 * bio happens to be merged with someone else, and may resubmit the bio to
1870 * a lower device by calling into generic_make_request recursively, which
1871 * means the bio should NOT be touched after the call to ->make_request_fn.
1873 void generic_make_request(struct bio
*bio
)
1875 struct bio_list bio_list_on_stack
;
1877 if (!generic_make_request_checks(bio
))
1881 * We only want one ->make_request_fn to be active at a time, else
1882 * stack usage with stacked devices could be a problem. So use
1883 * current->bio_list to keep a list of requests submited by a
1884 * make_request_fn function. current->bio_list is also used as a
1885 * flag to say if generic_make_request is currently active in this
1886 * task or not. If it is NULL, then no make_request is active. If
1887 * it is non-NULL, then a make_request is active, and new requests
1888 * should be added at the tail
1890 if (current
->bio_list
) {
1891 bio_list_add(current
->bio_list
, bio
);
1895 /* following loop may be a bit non-obvious, and so deserves some
1897 * Before entering the loop, bio->bi_next is NULL (as all callers
1898 * ensure that) so we have a list with a single bio.
1899 * We pretend that we have just taken it off a longer list, so
1900 * we assign bio_list to a pointer to the bio_list_on_stack,
1901 * thus initialising the bio_list of new bios to be
1902 * added. ->make_request() may indeed add some more bios
1903 * through a recursive call to generic_make_request. If it
1904 * did, we find a non-NULL value in bio_list and re-enter the loop
1905 * from the top. In this case we really did just take the bio
1906 * of the top of the list (no pretending) and so remove it from
1907 * bio_list, and call into ->make_request() again.
1909 BUG_ON(bio
->bi_next
);
1910 bio_list_init(&bio_list_on_stack
);
1911 current
->bio_list
= &bio_list_on_stack
;
1913 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
1915 q
->make_request_fn(q
, bio
);
1917 bio
= bio_list_pop(current
->bio_list
);
1919 current
->bio_list
= NULL
; /* deactivate */
1921 EXPORT_SYMBOL(generic_make_request
);
1924 * submit_bio - submit a bio to the block device layer for I/O
1925 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1926 * @bio: The &struct bio which describes the I/O
1928 * submit_bio() is very similar in purpose to generic_make_request(), and
1929 * uses that function to do most of the work. Both are fairly rough
1930 * interfaces; @bio must be presetup and ready for I/O.
1933 void submit_bio(int rw
, struct bio
*bio
)
1938 * If it's a regular read/write or a barrier with data attached,
1939 * go through the normal accounting stuff before submission.
1941 if (bio_has_data(bio
)) {
1944 if (unlikely(rw
& REQ_WRITE_SAME
))
1945 count
= bdev_logical_block_size(bio
->bi_bdev
) >> 9;
1947 count
= bio_sectors(bio
);
1950 count_vm_events(PGPGOUT
, count
);
1952 task_io_account_read(bio
->bi_iter
.bi_size
);
1953 count_vm_events(PGPGIN
, count
);
1956 if (unlikely(block_dump
)) {
1957 char b
[BDEVNAME_SIZE
];
1958 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
1959 current
->comm
, task_pid_nr(current
),
1960 (rw
& WRITE
) ? "WRITE" : "READ",
1961 (unsigned long long)bio
->bi_iter
.bi_sector
,
1962 bdevname(bio
->bi_bdev
, b
),
1967 generic_make_request(bio
);
1969 EXPORT_SYMBOL(submit_bio
);
1972 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1973 * for new the queue limits
1975 * @rq: the request being checked
1978 * @rq may have been made based on weaker limitations of upper-level queues
1979 * in request stacking drivers, and it may violate the limitation of @q.
1980 * Since the block layer and the underlying device driver trust @rq
1981 * after it is inserted to @q, it should be checked against @q before
1982 * the insertion using this generic function.
1984 * Request stacking drivers like request-based dm may change the queue
1985 * limits when retrying requests on other queues. Those requests need
1986 * to be checked against the new queue limits again during dispatch.
1988 static int blk_cloned_rq_check_limits(struct request_queue
*q
,
1991 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, rq
->cmd_flags
)) {
1992 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
1997 * queue's settings related to segment counting like q->bounce_pfn
1998 * may differ from that of other stacking queues.
1999 * Recalculate it to check the request correctly on this queue's
2002 blk_recalc_rq_segments(rq
);
2003 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
2004 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
2012 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2013 * @q: the queue to submit the request
2014 * @rq: the request being queued
2016 int blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
2018 unsigned long flags
;
2019 int where
= ELEVATOR_INSERT_BACK
;
2021 if (blk_cloned_rq_check_limits(q
, rq
))
2025 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
2028 spin_lock_irqsave(q
->queue_lock
, flags
);
2029 if (unlikely(blk_queue_dying(q
))) {
2030 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2035 * Submitting request must be dequeued before calling this function
2036 * because it will be linked to another request_queue
2038 BUG_ON(blk_queued_rq(rq
));
2040 if (rq
->cmd_flags
& (REQ_FLUSH
|REQ_FUA
))
2041 where
= ELEVATOR_INSERT_FLUSH
;
2043 add_acct_request(q
, rq
, where
);
2044 if (where
== ELEVATOR_INSERT_FLUSH
)
2046 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2050 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
2053 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2054 * @rq: request to examine
2057 * A request could be merge of IOs which require different failure
2058 * handling. This function determines the number of bytes which
2059 * can be failed from the beginning of the request without
2060 * crossing into area which need to be retried further.
2063 * The number of bytes to fail.
2066 * queue_lock must be held.
2068 unsigned int blk_rq_err_bytes(const struct request
*rq
)
2070 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
2071 unsigned int bytes
= 0;
2074 if (!(rq
->cmd_flags
& REQ_MIXED_MERGE
))
2075 return blk_rq_bytes(rq
);
2078 * Currently the only 'mixing' which can happen is between
2079 * different fastfail types. We can safely fail portions
2080 * which have all the failfast bits that the first one has -
2081 * the ones which are at least as eager to fail as the first
2084 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
2085 if ((bio
->bi_rw
& ff
) != ff
)
2087 bytes
+= bio
->bi_iter
.bi_size
;
2090 /* this could lead to infinite loop */
2091 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
2094 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
2096 void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
2098 if (blk_do_io_stat(req
)) {
2099 const int rw
= rq_data_dir(req
);
2100 struct hd_struct
*part
;
2103 cpu
= part_stat_lock();
2105 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
2110 void blk_account_io_done(struct request
*req
)
2113 * Account IO completion. flush_rq isn't accounted as a
2114 * normal IO on queueing nor completion. Accounting the
2115 * containing request is enough.
2117 if (blk_do_io_stat(req
) && !(req
->cmd_flags
& REQ_FLUSH_SEQ
)) {
2118 unsigned long duration
= jiffies
- req
->start_time
;
2119 const int rw
= rq_data_dir(req
);
2120 struct hd_struct
*part
;
2123 cpu
= part_stat_lock();
2126 part_stat_inc(cpu
, part
, ios
[rw
]);
2127 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
2128 part_round_stats(cpu
, part
);
2129 part_dec_in_flight(part
, rw
);
2131 hd_struct_put(part
);
2136 #ifdef CONFIG_PM_RUNTIME
2138 * Don't process normal requests when queue is suspended
2139 * or in the process of suspending/resuming
2141 static struct request
*blk_pm_peek_request(struct request_queue
*q
,
2144 if (q
->dev
&& (q
->rpm_status
== RPM_SUSPENDED
||
2145 (q
->rpm_status
!= RPM_ACTIVE
&& !(rq
->cmd_flags
& REQ_PM
))))
2151 static inline struct request
*blk_pm_peek_request(struct request_queue
*q
,
2158 void blk_account_io_start(struct request
*rq
, bool new_io
)
2160 struct hd_struct
*part
;
2161 int rw
= rq_data_dir(rq
);
2164 if (!blk_do_io_stat(rq
))
2167 cpu
= part_stat_lock();
2171 part_stat_inc(cpu
, part
, merges
[rw
]);
2173 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
2174 if (!hd_struct_try_get(part
)) {
2176 * The partition is already being removed,
2177 * the request will be accounted on the disk only
2179 * We take a reference on disk->part0 although that
2180 * partition will never be deleted, so we can treat
2181 * it as any other partition.
2183 part
= &rq
->rq_disk
->part0
;
2184 hd_struct_get(part
);
2186 part_round_stats(cpu
, part
);
2187 part_inc_in_flight(part
, rw
);
2195 * blk_peek_request - peek at the top of a request queue
2196 * @q: request queue to peek at
2199 * Return the request at the top of @q. The returned request
2200 * should be started using blk_start_request() before LLD starts
2204 * Pointer to the request at the top of @q if available. Null
2208 * queue_lock must be held.
2210 struct request
*blk_peek_request(struct request_queue
*q
)
2215 while ((rq
= __elv_next_request(q
)) != NULL
) {
2217 rq
= blk_pm_peek_request(q
, rq
);
2221 if (!(rq
->cmd_flags
& REQ_STARTED
)) {
2223 * This is the first time the device driver
2224 * sees this request (possibly after
2225 * requeueing). Notify IO scheduler.
2227 if (rq
->cmd_flags
& REQ_SORTED
)
2228 elv_activate_rq(q
, rq
);
2231 * just mark as started even if we don't start
2232 * it, a request that has been delayed should
2233 * not be passed by new incoming requests
2235 rq
->cmd_flags
|= REQ_STARTED
;
2236 trace_block_rq_issue(q
, rq
);
2239 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
2240 q
->end_sector
= rq_end_sector(rq
);
2241 q
->boundary_rq
= NULL
;
2244 if (rq
->cmd_flags
& REQ_DONTPREP
)
2247 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
2249 * make sure space for the drain appears we
2250 * know we can do this because max_hw_segments
2251 * has been adjusted to be one fewer than the
2254 rq
->nr_phys_segments
++;
2260 ret
= q
->prep_rq_fn(q
, rq
);
2261 if (ret
== BLKPREP_OK
) {
2263 } else if (ret
== BLKPREP_DEFER
) {
2265 * the request may have been (partially) prepped.
2266 * we need to keep this request in the front to
2267 * avoid resource deadlock. REQ_STARTED will
2268 * prevent other fs requests from passing this one.
2270 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
2271 !(rq
->cmd_flags
& REQ_DONTPREP
)) {
2273 * remove the space for the drain we added
2274 * so that we don't add it again
2276 --rq
->nr_phys_segments
;
2281 } else if (ret
== BLKPREP_KILL
) {
2282 rq
->cmd_flags
|= REQ_QUIET
;
2284 * Mark this request as started so we don't trigger
2285 * any debug logic in the end I/O path.
2287 blk_start_request(rq
);
2288 __blk_end_request_all(rq
, -EIO
);
2290 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
2297 EXPORT_SYMBOL(blk_peek_request
);
2299 void blk_dequeue_request(struct request
*rq
)
2301 struct request_queue
*q
= rq
->q
;
2303 BUG_ON(list_empty(&rq
->queuelist
));
2304 BUG_ON(ELV_ON_HASH(rq
));
2306 list_del_init(&rq
->queuelist
);
2309 * the time frame between a request being removed from the lists
2310 * and to it is freed is accounted as io that is in progress at
2313 if (blk_account_rq(rq
)) {
2314 q
->in_flight
[rq_is_sync(rq
)]++;
2315 set_io_start_time_ns(rq
);
2320 * blk_start_request - start request processing on the driver
2321 * @req: request to dequeue
2324 * Dequeue @req and start timeout timer on it. This hands off the
2325 * request to the driver.
2327 * Block internal functions which don't want to start timer should
2328 * call blk_dequeue_request().
2331 * queue_lock must be held.
2333 void blk_start_request(struct request
*req
)
2335 blk_dequeue_request(req
);
2338 * We are now handing the request to the hardware, initialize
2339 * resid_len to full count and add the timeout handler.
2341 req
->resid_len
= blk_rq_bytes(req
);
2342 if (unlikely(blk_bidi_rq(req
)))
2343 req
->next_rq
->resid_len
= blk_rq_bytes(req
->next_rq
);
2345 BUG_ON(test_bit(REQ_ATOM_COMPLETE
, &req
->atomic_flags
));
2348 EXPORT_SYMBOL(blk_start_request
);
2351 * blk_fetch_request - fetch a request from a request queue
2352 * @q: request queue to fetch a request from
2355 * Return the request at the top of @q. The request is started on
2356 * return and LLD can start processing it immediately.
2359 * Pointer to the request at the top of @q if available. Null
2363 * queue_lock must be held.
2365 struct request
*blk_fetch_request(struct request_queue
*q
)
2369 rq
= blk_peek_request(q
);
2371 blk_start_request(rq
);
2374 EXPORT_SYMBOL(blk_fetch_request
);
2377 * blk_update_request - Special helper function for request stacking drivers
2378 * @req: the request being processed
2379 * @error: %0 for success, < %0 for error
2380 * @nr_bytes: number of bytes to complete @req
2383 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2384 * the request structure even if @req doesn't have leftover.
2385 * If @req has leftover, sets it up for the next range of segments.
2387 * This special helper function is only for request stacking drivers
2388 * (e.g. request-based dm) so that they can handle partial completion.
2389 * Actual device drivers should use blk_end_request instead.
2391 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2392 * %false return from this function.
2395 * %false - this request doesn't have any more data
2396 * %true - this request has more data
2398 bool blk_update_request(struct request
*req
, int error
, unsigned int nr_bytes
)
2405 trace_block_rq_complete(req
->q
, req
, nr_bytes
);
2408 * For fs requests, rq is just carrier of independent bio's
2409 * and each partial completion should be handled separately.
2410 * Reset per-request error on each partial completion.
2412 * TODO: tj: This is too subtle. It would be better to let
2413 * low level drivers do what they see fit.
2415 if (req
->cmd_type
== REQ_TYPE_FS
)
2418 if (error
&& req
->cmd_type
== REQ_TYPE_FS
&&
2419 !(req
->cmd_flags
& REQ_QUIET
)) {
2424 error_type
= "recoverable transport";
2427 error_type
= "critical target";
2430 error_type
= "critical nexus";
2433 error_type
= "timeout";
2436 error_type
= "critical space allocation";
2439 error_type
= "critical medium";
2446 printk_ratelimited(KERN_ERR
"end_request: %s error, dev %s, sector %llu\n",
2447 error_type
, req
->rq_disk
?
2448 req
->rq_disk
->disk_name
: "?",
2449 (unsigned long long)blk_rq_pos(req
));
2453 blk_account_io_completion(req
, nr_bytes
);
2457 struct bio
*bio
= req
->bio
;
2458 unsigned bio_bytes
= min(bio
->bi_iter
.bi_size
, nr_bytes
);
2460 if (bio_bytes
== bio
->bi_iter
.bi_size
)
2461 req
->bio
= bio
->bi_next
;
2463 req_bio_endio(req
, bio
, bio_bytes
, error
);
2465 total_bytes
+= bio_bytes
;
2466 nr_bytes
-= bio_bytes
;
2477 * Reset counters so that the request stacking driver
2478 * can find how many bytes remain in the request
2481 req
->__data_len
= 0;
2485 req
->__data_len
-= total_bytes
;
2487 /* update sector only for requests with clear definition of sector */
2488 if (req
->cmd_type
== REQ_TYPE_FS
)
2489 req
->__sector
+= total_bytes
>> 9;
2491 /* mixed attributes always follow the first bio */
2492 if (req
->cmd_flags
& REQ_MIXED_MERGE
) {
2493 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
2494 req
->cmd_flags
|= req
->bio
->bi_rw
& REQ_FAILFAST_MASK
;
2498 * If total number of sectors is less than the first segment
2499 * size, something has gone terribly wrong.
2501 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
2502 blk_dump_rq_flags(req
, "request botched");
2503 req
->__data_len
= blk_rq_cur_bytes(req
);
2506 /* recalculate the number of segments */
2507 blk_recalc_rq_segments(req
);
2511 EXPORT_SYMBOL_GPL(blk_update_request
);
2513 static bool blk_update_bidi_request(struct request
*rq
, int error
,
2514 unsigned int nr_bytes
,
2515 unsigned int bidi_bytes
)
2517 if (blk_update_request(rq
, error
, nr_bytes
))
2520 /* Bidi request must be completed as a whole */
2521 if (unlikely(blk_bidi_rq(rq
)) &&
2522 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
2525 if (blk_queue_add_random(rq
->q
))
2526 add_disk_randomness(rq
->rq_disk
);
2532 * blk_unprep_request - unprepare a request
2535 * This function makes a request ready for complete resubmission (or
2536 * completion). It happens only after all error handling is complete,
2537 * so represents the appropriate moment to deallocate any resources
2538 * that were allocated to the request in the prep_rq_fn. The queue
2539 * lock is held when calling this.
2541 void blk_unprep_request(struct request
*req
)
2543 struct request_queue
*q
= req
->q
;
2545 req
->cmd_flags
&= ~REQ_DONTPREP
;
2546 if (q
->unprep_rq_fn
)
2547 q
->unprep_rq_fn(q
, req
);
2549 EXPORT_SYMBOL_GPL(blk_unprep_request
);
2552 * queue lock must be held
2554 void blk_finish_request(struct request
*req
, int error
)
2556 if (blk_rq_tagged(req
))
2557 blk_queue_end_tag(req
->q
, req
);
2559 BUG_ON(blk_queued_rq(req
));
2561 if (unlikely(laptop_mode
) && req
->cmd_type
== REQ_TYPE_FS
)
2562 laptop_io_completion(&req
->q
->backing_dev_info
);
2564 blk_delete_timer(req
);
2566 if (req
->cmd_flags
& REQ_DONTPREP
)
2567 blk_unprep_request(req
);
2569 blk_account_io_done(req
);
2572 req
->end_io(req
, error
);
2574 if (blk_bidi_rq(req
))
2575 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
2577 __blk_put_request(req
->q
, req
);
2580 EXPORT_SYMBOL(blk_finish_request
);
2583 * blk_end_bidi_request - Complete a bidi request
2584 * @rq: the request to complete
2585 * @error: %0 for success, < %0 for error
2586 * @nr_bytes: number of bytes to complete @rq
2587 * @bidi_bytes: number of bytes to complete @rq->next_rq
2590 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2591 * Drivers that supports bidi can safely call this member for any
2592 * type of request, bidi or uni. In the later case @bidi_bytes is
2596 * %false - we are done with this request
2597 * %true - still buffers pending for this request
2599 static bool blk_end_bidi_request(struct request
*rq
, int error
,
2600 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2602 struct request_queue
*q
= rq
->q
;
2603 unsigned long flags
;
2605 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2608 spin_lock_irqsave(q
->queue_lock
, flags
);
2609 blk_finish_request(rq
, error
);
2610 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2616 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2617 * @rq: the request to complete
2618 * @error: %0 for success, < %0 for error
2619 * @nr_bytes: number of bytes to complete @rq
2620 * @bidi_bytes: number of bytes to complete @rq->next_rq
2623 * Identical to blk_end_bidi_request() except that queue lock is
2624 * assumed to be locked on entry and remains so on return.
2627 * %false - we are done with this request
2628 * %true - still buffers pending for this request
2630 bool __blk_end_bidi_request(struct request
*rq
, int error
,
2631 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2633 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2636 blk_finish_request(rq
, error
);
2642 * blk_end_request - Helper function for drivers to complete the request.
2643 * @rq: the request being processed
2644 * @error: %0 for success, < %0 for error
2645 * @nr_bytes: number of bytes to complete
2648 * Ends I/O on a number of bytes attached to @rq.
2649 * If @rq has leftover, sets it up for the next range of segments.
2652 * %false - we are done with this request
2653 * %true - still buffers pending for this request
2655 bool blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2657 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2659 EXPORT_SYMBOL(blk_end_request
);
2662 * blk_end_request_all - Helper function for drives to finish the request.
2663 * @rq: the request to finish
2664 * @error: %0 for success, < %0 for error
2667 * Completely finish @rq.
2669 void blk_end_request_all(struct request
*rq
, int error
)
2672 unsigned int bidi_bytes
= 0;
2674 if (unlikely(blk_bidi_rq(rq
)))
2675 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2677 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2680 EXPORT_SYMBOL(blk_end_request_all
);
2683 * blk_end_request_cur - Helper function to finish the current request chunk.
2684 * @rq: the request to finish the current chunk for
2685 * @error: %0 for success, < %0 for error
2688 * Complete the current consecutively mapped chunk from @rq.
2691 * %false - we are done with this request
2692 * %true - still buffers pending for this request
2694 bool blk_end_request_cur(struct request
*rq
, int error
)
2696 return blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2698 EXPORT_SYMBOL(blk_end_request_cur
);
2701 * blk_end_request_err - Finish a request till the next failure boundary.
2702 * @rq: the request to finish till the next failure boundary for
2703 * @error: must be negative errno
2706 * Complete @rq till the next failure boundary.
2709 * %false - we are done with this request
2710 * %true - still buffers pending for this request
2712 bool blk_end_request_err(struct request
*rq
, int error
)
2714 WARN_ON(error
>= 0);
2715 return blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2717 EXPORT_SYMBOL_GPL(blk_end_request_err
);
2720 * __blk_end_request - Helper function for drivers to complete the request.
2721 * @rq: the request being processed
2722 * @error: %0 for success, < %0 for error
2723 * @nr_bytes: number of bytes to complete
2726 * Must be called with queue lock held unlike blk_end_request().
2729 * %false - we are done with this request
2730 * %true - still buffers pending for this request
2732 bool __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2734 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2736 EXPORT_SYMBOL(__blk_end_request
);
2739 * __blk_end_request_all - Helper function for drives to finish the request.
2740 * @rq: the request to finish
2741 * @error: %0 for success, < %0 for error
2744 * Completely finish @rq. Must be called with queue lock held.
2746 void __blk_end_request_all(struct request
*rq
, int error
)
2749 unsigned int bidi_bytes
= 0;
2751 if (unlikely(blk_bidi_rq(rq
)))
2752 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2754 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2757 EXPORT_SYMBOL(__blk_end_request_all
);
2760 * __blk_end_request_cur - Helper function to finish the current request chunk.
2761 * @rq: the request to finish the current chunk for
2762 * @error: %0 for success, < %0 for error
2765 * Complete the current consecutively mapped chunk from @rq. Must
2766 * be called with queue lock held.
2769 * %false - we are done with this request
2770 * %true - still buffers pending for this request
2772 bool __blk_end_request_cur(struct request
*rq
, int error
)
2774 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2776 EXPORT_SYMBOL(__blk_end_request_cur
);
2779 * __blk_end_request_err - Finish a request till the next failure boundary.
2780 * @rq: the request to finish till the next failure boundary for
2781 * @error: must be negative errno
2784 * Complete @rq till the next failure boundary. Must be called
2785 * with queue lock held.
2788 * %false - we are done with this request
2789 * %true - still buffers pending for this request
2791 bool __blk_end_request_err(struct request
*rq
, int error
)
2793 WARN_ON(error
>= 0);
2794 return __blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2796 EXPORT_SYMBOL_GPL(__blk_end_request_err
);
2798 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2801 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2802 rq
->cmd_flags
|= bio
->bi_rw
& REQ_WRITE
;
2804 if (bio_has_data(bio
))
2805 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2807 rq
->__data_len
= bio
->bi_iter
.bi_size
;
2808 rq
->bio
= rq
->biotail
= bio
;
2811 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2814 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2816 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2817 * @rq: the request to be flushed
2820 * Flush all pages in @rq.
2822 void rq_flush_dcache_pages(struct request
*rq
)
2824 struct req_iterator iter
;
2825 struct bio_vec bvec
;
2827 rq_for_each_segment(bvec
, rq
, iter
)
2828 flush_dcache_page(bvec
.bv_page
);
2830 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
2834 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2835 * @q : the queue of the device being checked
2838 * Check if underlying low-level drivers of a device are busy.
2839 * If the drivers want to export their busy state, they must set own
2840 * exporting function using blk_queue_lld_busy() first.
2842 * Basically, this function is used only by request stacking drivers
2843 * to stop dispatching requests to underlying devices when underlying
2844 * devices are busy. This behavior helps more I/O merging on the queue
2845 * of the request stacking driver and prevents I/O throughput regression
2846 * on burst I/O load.
2849 * 0 - Not busy (The request stacking driver should dispatch request)
2850 * 1 - Busy (The request stacking driver should stop dispatching request)
2852 int blk_lld_busy(struct request_queue
*q
)
2855 return q
->lld_busy_fn(q
);
2859 EXPORT_SYMBOL_GPL(blk_lld_busy
);
2862 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2863 * @rq: the clone request to be cleaned up
2866 * Free all bios in @rq for a cloned request.
2868 void blk_rq_unprep_clone(struct request
*rq
)
2872 while ((bio
= rq
->bio
) != NULL
) {
2873 rq
->bio
= bio
->bi_next
;
2878 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
2881 * Copy attributes of the original request to the clone request.
2882 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2884 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
2886 dst
->cpu
= src
->cpu
;
2887 dst
->cmd_flags
= (src
->cmd_flags
& REQ_CLONE_MASK
) | REQ_NOMERGE
;
2888 dst
->cmd_type
= src
->cmd_type
;
2889 dst
->__sector
= blk_rq_pos(src
);
2890 dst
->__data_len
= blk_rq_bytes(src
);
2891 dst
->nr_phys_segments
= src
->nr_phys_segments
;
2892 dst
->ioprio
= src
->ioprio
;
2893 dst
->extra_len
= src
->extra_len
;
2897 * blk_rq_prep_clone - Helper function to setup clone request
2898 * @rq: the request to be setup
2899 * @rq_src: original request to be cloned
2900 * @bs: bio_set that bios for clone are allocated from
2901 * @gfp_mask: memory allocation mask for bio
2902 * @bio_ctr: setup function to be called for each clone bio.
2903 * Returns %0 for success, non %0 for failure.
2904 * @data: private data to be passed to @bio_ctr
2907 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2908 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2909 * are not copied, and copying such parts is the caller's responsibility.
2910 * Also, pages which the original bios are pointing to are not copied
2911 * and the cloned bios just point same pages.
2912 * So cloned bios must be completed before original bios, which means
2913 * the caller must complete @rq before @rq_src.
2915 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
2916 struct bio_set
*bs
, gfp_t gfp_mask
,
2917 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
2920 struct bio
*bio
, *bio_src
;
2925 blk_rq_init(NULL
, rq
);
2927 __rq_for_each_bio(bio_src
, rq_src
) {
2928 bio
= bio_clone_bioset(bio_src
, gfp_mask
, bs
);
2932 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
2936 rq
->biotail
->bi_next
= bio
;
2939 rq
->bio
= rq
->biotail
= bio
;
2942 __blk_rq_prep_clone(rq
, rq_src
);
2949 blk_rq_unprep_clone(rq
);
2953 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
2955 int kblockd_schedule_work(struct work_struct
*work
)
2957 return queue_work(kblockd_workqueue
, work
);
2959 EXPORT_SYMBOL(kblockd_schedule_work
);
2961 int kblockd_schedule_delayed_work(struct delayed_work
*dwork
,
2962 unsigned long delay
)
2964 return queue_delayed_work(kblockd_workqueue
, dwork
, delay
);
2966 EXPORT_SYMBOL(kblockd_schedule_delayed_work
);
2968 int kblockd_schedule_delayed_work_on(int cpu
, struct delayed_work
*dwork
,
2969 unsigned long delay
)
2971 return queue_delayed_work_on(cpu
, kblockd_workqueue
, dwork
, delay
);
2973 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on
);
2976 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2977 * @plug: The &struct blk_plug that needs to be initialized
2980 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2981 * pending I/O should the task end up blocking between blk_start_plug() and
2982 * blk_finish_plug(). This is important from a performance perspective, but
2983 * also ensures that we don't deadlock. For instance, if the task is blocking
2984 * for a memory allocation, memory reclaim could end up wanting to free a
2985 * page belonging to that request that is currently residing in our private
2986 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2987 * this kind of deadlock.
2989 void blk_start_plug(struct blk_plug
*plug
)
2991 struct task_struct
*tsk
= current
;
2993 INIT_LIST_HEAD(&plug
->list
);
2994 INIT_LIST_HEAD(&plug
->mq_list
);
2995 INIT_LIST_HEAD(&plug
->cb_list
);
2998 * If this is a nested plug, don't actually assign it. It will be
2999 * flushed on its own.
3003 * Store ordering should not be needed here, since a potential
3004 * preempt will imply a full memory barrier
3009 EXPORT_SYMBOL(blk_start_plug
);
3011 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3013 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
3014 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
3016 return !(rqa
->q
< rqb
->q
||
3017 (rqa
->q
== rqb
->q
&& blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
3021 * If 'from_schedule' is true, then postpone the dispatch of requests
3022 * until a safe kblockd context. We due this to avoid accidental big
3023 * additional stack usage in driver dispatch, in places where the originally
3024 * plugger did not intend it.
3026 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
3028 __releases(q
->queue_lock
)
3030 trace_block_unplug(q
, depth
, !from_schedule
);
3033 blk_run_queue_async(q
);
3036 spin_unlock(q
->queue_lock
);
3039 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
3041 LIST_HEAD(callbacks
);
3043 while (!list_empty(&plug
->cb_list
)) {
3044 list_splice_init(&plug
->cb_list
, &callbacks
);
3046 while (!list_empty(&callbacks
)) {
3047 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
3050 list_del(&cb
->list
);
3051 cb
->callback(cb
, from_schedule
);
3056 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
3059 struct blk_plug
*plug
= current
->plug
;
3060 struct blk_plug_cb
*cb
;
3065 list_for_each_entry(cb
, &plug
->cb_list
, list
)
3066 if (cb
->callback
== unplug
&& cb
->data
== data
)
3069 /* Not currently on the callback list */
3070 BUG_ON(size
< sizeof(*cb
));
3071 cb
= kzalloc(size
, GFP_ATOMIC
);
3074 cb
->callback
= unplug
;
3075 list_add(&cb
->list
, &plug
->cb_list
);
3079 EXPORT_SYMBOL(blk_check_plugged
);
3081 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
3083 struct request_queue
*q
;
3084 unsigned long flags
;
3089 flush_plug_callbacks(plug
, from_schedule
);
3091 if (!list_empty(&plug
->mq_list
))
3092 blk_mq_flush_plug_list(plug
, from_schedule
);
3094 if (list_empty(&plug
->list
))
3097 list_splice_init(&plug
->list
, &list
);
3099 list_sort(NULL
, &list
, plug_rq_cmp
);
3105 * Save and disable interrupts here, to avoid doing it for every
3106 * queue lock we have to take.
3108 local_irq_save(flags
);
3109 while (!list_empty(&list
)) {
3110 rq
= list_entry_rq(list
.next
);
3111 list_del_init(&rq
->queuelist
);
3115 * This drops the queue lock
3118 queue_unplugged(q
, depth
, from_schedule
);
3121 spin_lock(q
->queue_lock
);
3125 * Short-circuit if @q is dead
3127 if (unlikely(blk_queue_dying(q
))) {
3128 __blk_end_request_all(rq
, -ENODEV
);
3133 * rq is already accounted, so use raw insert
3135 if (rq
->cmd_flags
& (REQ_FLUSH
| REQ_FUA
))
3136 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
3138 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
3144 * This drops the queue lock
3147 queue_unplugged(q
, depth
, from_schedule
);
3149 local_irq_restore(flags
);
3152 void blk_finish_plug(struct blk_plug
*plug
)
3154 blk_flush_plug_list(plug
, false);
3156 if (plug
== current
->plug
)
3157 current
->plug
= NULL
;
3159 EXPORT_SYMBOL(blk_finish_plug
);
3161 #ifdef CONFIG_PM_RUNTIME
3163 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3164 * @q: the queue of the device
3165 * @dev: the device the queue belongs to
3168 * Initialize runtime-PM-related fields for @q and start auto suspend for
3169 * @dev. Drivers that want to take advantage of request-based runtime PM
3170 * should call this function after @dev has been initialized, and its
3171 * request queue @q has been allocated, and runtime PM for it can not happen
3172 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3173 * cases, driver should call this function before any I/O has taken place.
3175 * This function takes care of setting up using auto suspend for the device,
3176 * the autosuspend delay is set to -1 to make runtime suspend impossible
3177 * until an updated value is either set by user or by driver. Drivers do
3178 * not need to touch other autosuspend settings.
3180 * The block layer runtime PM is request based, so only works for drivers
3181 * that use request as their IO unit instead of those directly use bio's.
3183 void blk_pm_runtime_init(struct request_queue
*q
, struct device
*dev
)
3186 q
->rpm_status
= RPM_ACTIVE
;
3187 pm_runtime_set_autosuspend_delay(q
->dev
, -1);
3188 pm_runtime_use_autosuspend(q
->dev
);
3190 EXPORT_SYMBOL(blk_pm_runtime_init
);
3193 * blk_pre_runtime_suspend - Pre runtime suspend check
3194 * @q: the queue of the device
3197 * This function will check if runtime suspend is allowed for the device
3198 * by examining if there are any requests pending in the queue. If there
3199 * are requests pending, the device can not be runtime suspended; otherwise,
3200 * the queue's status will be updated to SUSPENDING and the driver can
3201 * proceed to suspend the device.
3203 * For the not allowed case, we mark last busy for the device so that
3204 * runtime PM core will try to autosuspend it some time later.
3206 * This function should be called near the start of the device's
3207 * runtime_suspend callback.
3210 * 0 - OK to runtime suspend the device
3211 * -EBUSY - Device should not be runtime suspended
3213 int blk_pre_runtime_suspend(struct request_queue
*q
)
3220 spin_lock_irq(q
->queue_lock
);
3221 if (q
->nr_pending
) {
3223 pm_runtime_mark_last_busy(q
->dev
);
3225 q
->rpm_status
= RPM_SUSPENDING
;
3227 spin_unlock_irq(q
->queue_lock
);
3230 EXPORT_SYMBOL(blk_pre_runtime_suspend
);
3233 * blk_post_runtime_suspend - Post runtime suspend processing
3234 * @q: the queue of the device
3235 * @err: return value of the device's runtime_suspend function
3238 * Update the queue's runtime status according to the return value of the
3239 * device's runtime suspend function and mark last busy for the device so
3240 * that PM core will try to auto suspend the device at a later time.
3242 * This function should be called near the end of the device's
3243 * runtime_suspend callback.
3245 void blk_post_runtime_suspend(struct request_queue
*q
, int err
)
3250 spin_lock_irq(q
->queue_lock
);
3252 q
->rpm_status
= RPM_SUSPENDED
;
3254 q
->rpm_status
= RPM_ACTIVE
;
3255 pm_runtime_mark_last_busy(q
->dev
);
3257 spin_unlock_irq(q
->queue_lock
);
3259 EXPORT_SYMBOL(blk_post_runtime_suspend
);
3262 * blk_pre_runtime_resume - Pre runtime resume processing
3263 * @q: the queue of the device
3266 * Update the queue's runtime status to RESUMING in preparation for the
3267 * runtime resume of the device.
3269 * This function should be called near the start of the device's
3270 * runtime_resume callback.
3272 void blk_pre_runtime_resume(struct request_queue
*q
)
3277 spin_lock_irq(q
->queue_lock
);
3278 q
->rpm_status
= RPM_RESUMING
;
3279 spin_unlock_irq(q
->queue_lock
);
3281 EXPORT_SYMBOL(blk_pre_runtime_resume
);
3284 * blk_post_runtime_resume - Post runtime resume processing
3285 * @q: the queue of the device
3286 * @err: return value of the device's runtime_resume function
3289 * Update the queue's runtime status according to the return value of the
3290 * device's runtime_resume function. If it is successfully resumed, process
3291 * the requests that are queued into the device's queue when it is resuming
3292 * and then mark last busy and initiate autosuspend for it.
3294 * This function should be called near the end of the device's
3295 * runtime_resume callback.
3297 void blk_post_runtime_resume(struct request_queue
*q
, int err
)
3302 spin_lock_irq(q
->queue_lock
);
3304 q
->rpm_status
= RPM_ACTIVE
;
3306 pm_runtime_mark_last_busy(q
->dev
);
3307 pm_request_autosuspend(q
->dev
);
3309 q
->rpm_status
= RPM_SUSPENDED
;
3311 spin_unlock_irq(q
->queue_lock
);
3313 EXPORT_SYMBOL(blk_post_runtime_resume
);
3316 int __init
blk_dev_init(void)
3318 BUILD_BUG_ON(__REQ_NR_BITS
> 8 *
3319 sizeof(((struct request
*)0)->cmd_flags
));
3321 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3322 kblockd_workqueue
= alloc_workqueue("kblockd",
3323 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
3324 if (!kblockd_workqueue
)
3325 panic("Failed to create kblockd\n");
3327 request_cachep
= kmem_cache_create("blkdev_requests",
3328 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
3330 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
3331 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);