jme: Fix device PM wakeup API usage
[linux/fpc-iii.git] / block / blk-core.c
blob0b4831a556fc79270428d0668df966a08edc1978
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
49 DEFINE_IDA(blk_queue_ida);
52 * For the allocated request tables
54 struct kmem_cache *request_cachep = NULL;
57 * For queue allocation
59 struct kmem_cache *blk_requestq_cachep;
62 * Controlling structure to kblockd
64 static struct workqueue_struct *kblockd_workqueue;
66 void blk_queue_congestion_threshold(struct request_queue *q)
68 int nr;
70 nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (nr > q->nr_requests)
72 nr = q->nr_requests;
73 q->nr_congestion_on = nr;
75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 if (nr < 1)
77 nr = 1;
78 q->nr_congestion_off = nr;
81 /**
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83 * @bdev: device
85 * Locates the passed device's request queue and returns the address of its
86 * backing_dev_info
88 * Will return NULL if the request queue cannot be located.
90 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
92 struct backing_dev_info *ret = NULL;
93 struct request_queue *q = bdev_get_queue(bdev);
95 if (q)
96 ret = &q->backing_dev_info;
97 return ret;
99 EXPORT_SYMBOL(blk_get_backing_dev_info);
101 void blk_rq_init(struct request_queue *q, struct request *rq)
103 memset(rq, 0, sizeof(*rq));
105 INIT_LIST_HEAD(&rq->queuelist);
106 INIT_LIST_HEAD(&rq->timeout_list);
107 rq->cpu = -1;
108 rq->q = q;
109 rq->__sector = (sector_t) -1;
110 INIT_HLIST_NODE(&rq->hash);
111 RB_CLEAR_NODE(&rq->rb_node);
112 rq->cmd = rq->__cmd;
113 rq->cmd_len = BLK_MAX_CDB;
114 rq->tag = -1;
115 rq->start_time = jiffies;
116 set_start_time_ns(rq);
117 rq->part = NULL;
119 EXPORT_SYMBOL(blk_rq_init);
121 static void req_bio_endio(struct request *rq, struct bio *bio,
122 unsigned int nbytes, int error)
124 if (error)
125 clear_bit(BIO_UPTODATE, &bio->bi_flags);
126 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
127 error = -EIO;
129 if (unlikely(rq->cmd_flags & REQ_QUIET))
130 set_bit(BIO_QUIET, &bio->bi_flags);
132 bio_advance(bio, nbytes);
134 /* don't actually finish bio if it's part of flush sequence */
135 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
136 bio_endio(bio, error);
139 void blk_dump_rq_flags(struct request *rq, char *msg)
141 int bit;
143 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
144 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
145 (unsigned long long) rq->cmd_flags);
147 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
148 (unsigned long long)blk_rq_pos(rq),
149 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
150 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
151 rq->bio, rq->biotail, blk_rq_bytes(rq));
153 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
154 printk(KERN_INFO " cdb: ");
155 for (bit = 0; bit < BLK_MAX_CDB; bit++)
156 printk("%02x ", rq->cmd[bit]);
157 printk("\n");
160 EXPORT_SYMBOL(blk_dump_rq_flags);
162 static void blk_delay_work(struct work_struct *work)
164 struct request_queue *q;
166 q = container_of(work, struct request_queue, delay_work.work);
167 spin_lock_irq(q->queue_lock);
168 __blk_run_queue(q);
169 spin_unlock_irq(q->queue_lock);
173 * blk_delay_queue - restart queueing after defined interval
174 * @q: The &struct request_queue in question
175 * @msecs: Delay in msecs
177 * Description:
178 * Sometimes queueing needs to be postponed for a little while, to allow
179 * resources to come back. This function will make sure that queueing is
180 * restarted around the specified time. Queue lock must be held.
182 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
184 if (likely(!blk_queue_dead(q)))
185 queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 msecs_to_jiffies(msecs));
188 EXPORT_SYMBOL(blk_delay_queue);
191 * blk_start_queue - restart a previously stopped queue
192 * @q: The &struct request_queue in question
194 * Description:
195 * blk_start_queue() will clear the stop flag on the queue, and call
196 * the request_fn for the queue if it was in a stopped state when
197 * entered. Also see blk_stop_queue(). Queue lock must be held.
199 void blk_start_queue(struct request_queue *q)
201 WARN_ON(!irqs_disabled());
203 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
204 __blk_run_queue(q);
206 EXPORT_SYMBOL(blk_start_queue);
209 * blk_stop_queue - stop a queue
210 * @q: The &struct request_queue in question
212 * Description:
213 * The Linux block layer assumes that a block driver will consume all
214 * entries on the request queue when the request_fn strategy is called.
215 * Often this will not happen, because of hardware limitations (queue
216 * depth settings). If a device driver gets a 'queue full' response,
217 * or if it simply chooses not to queue more I/O at one point, it can
218 * call this function to prevent the request_fn from being called until
219 * the driver has signalled it's ready to go again. This happens by calling
220 * blk_start_queue() to restart queue operations. Queue lock must be held.
222 void blk_stop_queue(struct request_queue *q)
224 cancel_delayed_work(&q->delay_work);
225 queue_flag_set(QUEUE_FLAG_STOPPED, q);
227 EXPORT_SYMBOL(blk_stop_queue);
230 * blk_sync_queue - cancel any pending callbacks on a queue
231 * @q: the queue
233 * Description:
234 * The block layer may perform asynchronous callback activity
235 * on a queue, such as calling the unplug function after a timeout.
236 * A block device may call blk_sync_queue to ensure that any
237 * such activity is cancelled, thus allowing it to release resources
238 * that the callbacks might use. The caller must already have made sure
239 * that its ->make_request_fn will not re-add plugging prior to calling
240 * this function.
242 * This function does not cancel any asynchronous activity arising
243 * out of elevator or throttling code. That would require elevaotor_exit()
244 * and blkcg_exit_queue() to be called with queue lock initialized.
247 void blk_sync_queue(struct request_queue *q)
249 del_timer_sync(&q->timeout);
251 if (q->mq_ops) {
252 struct blk_mq_hw_ctx *hctx;
253 int i;
255 queue_for_each_hw_ctx(q, hctx, i) {
256 cancel_delayed_work_sync(&hctx->run_work);
257 cancel_delayed_work_sync(&hctx->delay_work);
259 } else {
260 cancel_delayed_work_sync(&q->delay_work);
263 EXPORT_SYMBOL(blk_sync_queue);
266 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
267 * @q: The queue to run
269 * Description:
270 * Invoke request handling on a queue if there are any pending requests.
271 * May be used to restart request handling after a request has completed.
272 * This variant runs the queue whether or not the queue has been
273 * stopped. Must be called with the queue lock held and interrupts
274 * disabled. See also @blk_run_queue.
276 inline void __blk_run_queue_uncond(struct request_queue *q)
278 if (unlikely(blk_queue_dead(q)))
279 return;
282 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
283 * the queue lock internally. As a result multiple threads may be
284 * running such a request function concurrently. Keep track of the
285 * number of active request_fn invocations such that blk_drain_queue()
286 * can wait until all these request_fn calls have finished.
288 q->request_fn_active++;
289 q->request_fn(q);
290 q->request_fn_active--;
294 * __blk_run_queue - run a single device queue
295 * @q: The queue to run
297 * Description:
298 * See @blk_run_queue. This variant must be called with the queue lock
299 * held and interrupts disabled.
301 void __blk_run_queue(struct request_queue *q)
303 if (unlikely(blk_queue_stopped(q)))
304 return;
306 __blk_run_queue_uncond(q);
308 EXPORT_SYMBOL(__blk_run_queue);
311 * blk_run_queue_async - run a single device queue in workqueue context
312 * @q: The queue to run
314 * Description:
315 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
316 * of us. The caller must hold the queue lock.
318 void blk_run_queue_async(struct request_queue *q)
320 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
321 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
323 EXPORT_SYMBOL(blk_run_queue_async);
326 * blk_run_queue - run a single device queue
327 * @q: The queue to run
329 * Description:
330 * Invoke request handling on this queue, if it has pending work to do.
331 * May be used to restart queueing when a request has completed.
333 void blk_run_queue(struct request_queue *q)
335 unsigned long flags;
337 spin_lock_irqsave(q->queue_lock, flags);
338 __blk_run_queue(q);
339 spin_unlock_irqrestore(q->queue_lock, flags);
341 EXPORT_SYMBOL(blk_run_queue);
343 void blk_put_queue(struct request_queue *q)
345 kobject_put(&q->kobj);
347 EXPORT_SYMBOL(blk_put_queue);
350 * __blk_drain_queue - drain requests from request_queue
351 * @q: queue to drain
352 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
354 * Drain requests from @q. If @drain_all is set, all requests are drained.
355 * If not, only ELVPRIV requests are drained. The caller is responsible
356 * for ensuring that no new requests which need to be drained are queued.
358 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
359 __releases(q->queue_lock)
360 __acquires(q->queue_lock)
362 int i;
364 lockdep_assert_held(q->queue_lock);
366 while (true) {
367 bool drain = false;
370 * The caller might be trying to drain @q before its
371 * elevator is initialized.
373 if (q->elevator)
374 elv_drain_elevator(q);
376 blkcg_drain_queue(q);
379 * This function might be called on a queue which failed
380 * driver init after queue creation or is not yet fully
381 * active yet. Some drivers (e.g. fd and loop) get unhappy
382 * in such cases. Kick queue iff dispatch queue has
383 * something on it and @q has request_fn set.
385 if (!list_empty(&q->queue_head) && q->request_fn)
386 __blk_run_queue(q);
388 drain |= q->nr_rqs_elvpriv;
389 drain |= q->request_fn_active;
392 * Unfortunately, requests are queued at and tracked from
393 * multiple places and there's no single counter which can
394 * be drained. Check all the queues and counters.
396 if (drain_all) {
397 drain |= !list_empty(&q->queue_head);
398 for (i = 0; i < 2; i++) {
399 drain |= q->nr_rqs[i];
400 drain |= q->in_flight[i];
401 drain |= !list_empty(&q->flush_queue[i]);
405 if (!drain)
406 break;
408 spin_unlock_irq(q->queue_lock);
410 msleep(10);
412 spin_lock_irq(q->queue_lock);
416 * With queue marked dead, any woken up waiter will fail the
417 * allocation path, so the wakeup chaining is lost and we're
418 * left with hung waiters. We need to wake up those waiters.
420 if (q->request_fn) {
421 struct request_list *rl;
423 blk_queue_for_each_rl(rl, q)
424 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
425 wake_up_all(&rl->wait[i]);
430 * blk_queue_bypass_start - enter queue bypass mode
431 * @q: queue of interest
433 * In bypass mode, only the dispatch FIFO queue of @q is used. This
434 * function makes @q enter bypass mode and drains all requests which were
435 * throttled or issued before. On return, it's guaranteed that no request
436 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
437 * inside queue or RCU read lock.
439 void blk_queue_bypass_start(struct request_queue *q)
441 bool drain;
443 spin_lock_irq(q->queue_lock);
444 drain = !q->bypass_depth++;
445 queue_flag_set(QUEUE_FLAG_BYPASS, q);
446 spin_unlock_irq(q->queue_lock);
448 if (drain) {
449 spin_lock_irq(q->queue_lock);
450 __blk_drain_queue(q, false);
451 spin_unlock_irq(q->queue_lock);
453 /* ensure blk_queue_bypass() is %true inside RCU read lock */
454 synchronize_rcu();
457 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
460 * blk_queue_bypass_end - leave queue bypass mode
461 * @q: queue of interest
463 * Leave bypass mode and restore the normal queueing behavior.
465 void blk_queue_bypass_end(struct request_queue *q)
467 spin_lock_irq(q->queue_lock);
468 if (!--q->bypass_depth)
469 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
470 WARN_ON_ONCE(q->bypass_depth < 0);
471 spin_unlock_irq(q->queue_lock);
473 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
476 * blk_cleanup_queue - shutdown a request queue
477 * @q: request queue to shutdown
479 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
480 * put it. All future requests will be failed immediately with -ENODEV.
482 void blk_cleanup_queue(struct request_queue *q)
484 spinlock_t *lock = q->queue_lock;
486 /* mark @q DYING, no new request or merges will be allowed afterwards */
487 mutex_lock(&q->sysfs_lock);
488 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
489 spin_lock_irq(lock);
492 * A dying queue is permanently in bypass mode till released. Note
493 * that, unlike blk_queue_bypass_start(), we aren't performing
494 * synchronize_rcu() after entering bypass mode to avoid the delay
495 * as some drivers create and destroy a lot of queues while
496 * probing. This is still safe because blk_release_queue() will be
497 * called only after the queue refcnt drops to zero and nothing,
498 * RCU or not, would be traversing the queue by then.
500 q->bypass_depth++;
501 queue_flag_set(QUEUE_FLAG_BYPASS, q);
503 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
504 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
505 queue_flag_set(QUEUE_FLAG_DYING, q);
506 spin_unlock_irq(lock);
507 mutex_unlock(&q->sysfs_lock);
510 * Drain all requests queued before DYING marking. Set DEAD flag to
511 * prevent that q->request_fn() gets invoked after draining finished.
513 if (q->mq_ops) {
514 blk_mq_drain_queue(q);
515 spin_lock_irq(lock);
516 } else {
517 spin_lock_irq(lock);
518 __blk_drain_queue(q, true);
520 queue_flag_set(QUEUE_FLAG_DEAD, q);
521 spin_unlock_irq(lock);
523 /* @q won't process any more request, flush async actions */
524 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
525 blk_sync_queue(q);
527 if (q->mq_ops)
528 blk_mq_free_queue(q);
530 spin_lock_irq(lock);
531 if (q->queue_lock != &q->__queue_lock)
532 q->queue_lock = &q->__queue_lock;
533 spin_unlock_irq(lock);
535 /* @q is and will stay empty, shutdown and put */
536 blk_put_queue(q);
538 EXPORT_SYMBOL(blk_cleanup_queue);
540 int blk_init_rl(struct request_list *rl, struct request_queue *q,
541 gfp_t gfp_mask)
543 if (unlikely(rl->rq_pool))
544 return 0;
546 rl->q = q;
547 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
548 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
549 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
550 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
552 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
553 mempool_free_slab, request_cachep,
554 gfp_mask, q->node);
555 if (!rl->rq_pool)
556 return -ENOMEM;
558 return 0;
561 void blk_exit_rl(struct request_list *rl)
563 if (rl->rq_pool)
564 mempool_destroy(rl->rq_pool);
567 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
569 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
571 EXPORT_SYMBOL(blk_alloc_queue);
573 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
575 struct request_queue *q;
576 int err;
578 q = kmem_cache_alloc_node(blk_requestq_cachep,
579 gfp_mask | __GFP_ZERO, node_id);
580 if (!q)
581 return NULL;
583 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
584 if (q->id < 0)
585 goto fail_q;
587 q->backing_dev_info.ra_pages =
588 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
589 q->backing_dev_info.state = 0;
590 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
591 q->backing_dev_info.name = "block";
592 q->node = node_id;
594 err = bdi_init(&q->backing_dev_info);
595 if (err)
596 goto fail_id;
598 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
599 laptop_mode_timer_fn, (unsigned long) q);
600 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
601 INIT_LIST_HEAD(&q->queue_head);
602 INIT_LIST_HEAD(&q->timeout_list);
603 INIT_LIST_HEAD(&q->icq_list);
604 #ifdef CONFIG_BLK_CGROUP
605 INIT_LIST_HEAD(&q->blkg_list);
606 #endif
607 INIT_LIST_HEAD(&q->flush_queue[0]);
608 INIT_LIST_HEAD(&q->flush_queue[1]);
609 INIT_LIST_HEAD(&q->flush_data_in_flight);
610 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
612 kobject_init(&q->kobj, &blk_queue_ktype);
614 mutex_init(&q->sysfs_lock);
615 spin_lock_init(&q->__queue_lock);
618 * By default initialize queue_lock to internal lock and driver can
619 * override it later if need be.
621 q->queue_lock = &q->__queue_lock;
624 * A queue starts its life with bypass turned on to avoid
625 * unnecessary bypass on/off overhead and nasty surprises during
626 * init. The initial bypass will be finished when the queue is
627 * registered by blk_register_queue().
629 q->bypass_depth = 1;
630 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
632 init_waitqueue_head(&q->mq_freeze_wq);
634 if (blkcg_init_queue(q))
635 goto fail_bdi;
637 return q;
639 fail_bdi:
640 bdi_destroy(&q->backing_dev_info);
641 fail_id:
642 ida_simple_remove(&blk_queue_ida, q->id);
643 fail_q:
644 kmem_cache_free(blk_requestq_cachep, q);
645 return NULL;
647 EXPORT_SYMBOL(blk_alloc_queue_node);
650 * blk_init_queue - prepare a request queue for use with a block device
651 * @rfn: The function to be called to process requests that have been
652 * placed on the queue.
653 * @lock: Request queue spin lock
655 * Description:
656 * If a block device wishes to use the standard request handling procedures,
657 * which sorts requests and coalesces adjacent requests, then it must
658 * call blk_init_queue(). The function @rfn will be called when there
659 * are requests on the queue that need to be processed. If the device
660 * supports plugging, then @rfn may not be called immediately when requests
661 * are available on the queue, but may be called at some time later instead.
662 * Plugged queues are generally unplugged when a buffer belonging to one
663 * of the requests on the queue is needed, or due to memory pressure.
665 * @rfn is not required, or even expected, to remove all requests off the
666 * queue, but only as many as it can handle at a time. If it does leave
667 * requests on the queue, it is responsible for arranging that the requests
668 * get dealt with eventually.
670 * The queue spin lock must be held while manipulating the requests on the
671 * request queue; this lock will be taken also from interrupt context, so irq
672 * disabling is needed for it.
674 * Function returns a pointer to the initialized request queue, or %NULL if
675 * it didn't succeed.
677 * Note:
678 * blk_init_queue() must be paired with a blk_cleanup_queue() call
679 * when the block device is deactivated (such as at module unload).
682 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
684 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
686 EXPORT_SYMBOL(blk_init_queue);
688 struct request_queue *
689 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
691 struct request_queue *uninit_q, *q;
693 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
694 if (!uninit_q)
695 return NULL;
697 q = blk_init_allocated_queue(uninit_q, rfn, lock);
698 if (!q)
699 blk_cleanup_queue(uninit_q);
701 return q;
703 EXPORT_SYMBOL(blk_init_queue_node);
705 struct request_queue *
706 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
707 spinlock_t *lock)
709 if (!q)
710 return NULL;
712 q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
713 if (!q->flush_rq)
714 return NULL;
716 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
717 goto fail;
719 q->request_fn = rfn;
720 q->prep_rq_fn = NULL;
721 q->unprep_rq_fn = NULL;
722 q->queue_flags |= QUEUE_FLAG_DEFAULT;
724 /* Override internal queue lock with supplied lock pointer */
725 if (lock)
726 q->queue_lock = lock;
729 * This also sets hw/phys segments, boundary and size
731 blk_queue_make_request(q, blk_queue_bio);
733 q->sg_reserved_size = INT_MAX;
735 /* Protect q->elevator from elevator_change */
736 mutex_lock(&q->sysfs_lock);
738 /* init elevator */
739 if (elevator_init(q, NULL)) {
740 mutex_unlock(&q->sysfs_lock);
741 goto fail;
744 mutex_unlock(&q->sysfs_lock);
746 return q;
748 fail:
749 kfree(q->flush_rq);
750 return NULL;
752 EXPORT_SYMBOL(blk_init_allocated_queue);
754 bool blk_get_queue(struct request_queue *q)
756 if (likely(!blk_queue_dying(q))) {
757 __blk_get_queue(q);
758 return true;
761 return false;
763 EXPORT_SYMBOL(blk_get_queue);
765 static inline void blk_free_request(struct request_list *rl, struct request *rq)
767 if (rq->cmd_flags & REQ_ELVPRIV) {
768 elv_put_request(rl->q, rq);
769 if (rq->elv.icq)
770 put_io_context(rq->elv.icq->ioc);
773 mempool_free(rq, rl->rq_pool);
777 * ioc_batching returns true if the ioc is a valid batching request and
778 * should be given priority access to a request.
780 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
782 if (!ioc)
783 return 0;
786 * Make sure the process is able to allocate at least 1 request
787 * even if the batch times out, otherwise we could theoretically
788 * lose wakeups.
790 return ioc->nr_batch_requests == q->nr_batching ||
791 (ioc->nr_batch_requests > 0
792 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
796 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
797 * will cause the process to be a "batcher" on all queues in the system. This
798 * is the behaviour we want though - once it gets a wakeup it should be given
799 * a nice run.
801 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
803 if (!ioc || ioc_batching(q, ioc))
804 return;
806 ioc->nr_batch_requests = q->nr_batching;
807 ioc->last_waited = jiffies;
810 static void __freed_request(struct request_list *rl, int sync)
812 struct request_queue *q = rl->q;
815 * bdi isn't aware of blkcg yet. As all async IOs end up root
816 * blkcg anyway, just use root blkcg state.
818 if (rl == &q->root_rl &&
819 rl->count[sync] < queue_congestion_off_threshold(q))
820 blk_clear_queue_congested(q, sync);
822 if (rl->count[sync] + 1 <= q->nr_requests) {
823 if (waitqueue_active(&rl->wait[sync]))
824 wake_up(&rl->wait[sync]);
826 blk_clear_rl_full(rl, sync);
831 * A request has just been released. Account for it, update the full and
832 * congestion status, wake up any waiters. Called under q->queue_lock.
834 static void freed_request(struct request_list *rl, unsigned int flags)
836 struct request_queue *q = rl->q;
837 int sync = rw_is_sync(flags);
839 q->nr_rqs[sync]--;
840 rl->count[sync]--;
841 if (flags & REQ_ELVPRIV)
842 q->nr_rqs_elvpriv--;
844 __freed_request(rl, sync);
846 if (unlikely(rl->starved[sync ^ 1]))
847 __freed_request(rl, sync ^ 1);
850 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
852 struct request_list *rl;
854 spin_lock_irq(q->queue_lock);
855 q->nr_requests = nr;
856 blk_queue_congestion_threshold(q);
858 /* congestion isn't cgroup aware and follows root blkcg for now */
859 rl = &q->root_rl;
861 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
862 blk_set_queue_congested(q, BLK_RW_SYNC);
863 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
864 blk_clear_queue_congested(q, BLK_RW_SYNC);
866 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
867 blk_set_queue_congested(q, BLK_RW_ASYNC);
868 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
869 blk_clear_queue_congested(q, BLK_RW_ASYNC);
871 blk_queue_for_each_rl(rl, q) {
872 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
873 blk_set_rl_full(rl, BLK_RW_SYNC);
874 } else {
875 blk_clear_rl_full(rl, BLK_RW_SYNC);
876 wake_up(&rl->wait[BLK_RW_SYNC]);
879 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
880 blk_set_rl_full(rl, BLK_RW_ASYNC);
881 } else {
882 blk_clear_rl_full(rl, BLK_RW_ASYNC);
883 wake_up(&rl->wait[BLK_RW_ASYNC]);
887 spin_unlock_irq(q->queue_lock);
888 return 0;
892 * Determine if elevator data should be initialized when allocating the
893 * request associated with @bio.
895 static bool blk_rq_should_init_elevator(struct bio *bio)
897 if (!bio)
898 return true;
901 * Flush requests do not use the elevator so skip initialization.
902 * This allows a request to share the flush and elevator data.
904 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
905 return false;
907 return true;
911 * rq_ioc - determine io_context for request allocation
912 * @bio: request being allocated is for this bio (can be %NULL)
914 * Determine io_context to use for request allocation for @bio. May return
915 * %NULL if %current->io_context doesn't exist.
917 static struct io_context *rq_ioc(struct bio *bio)
919 #ifdef CONFIG_BLK_CGROUP
920 if (bio && bio->bi_ioc)
921 return bio->bi_ioc;
922 #endif
923 return current->io_context;
927 * __get_request - get a free request
928 * @rl: request list to allocate from
929 * @rw_flags: RW and SYNC flags
930 * @bio: bio to allocate request for (can be %NULL)
931 * @gfp_mask: allocation mask
933 * Get a free request from @q. This function may fail under memory
934 * pressure or if @q is dead.
936 * Must be callled with @q->queue_lock held and,
937 * Returns %NULL on failure, with @q->queue_lock held.
938 * Returns !%NULL on success, with @q->queue_lock *not held*.
940 static struct request *__get_request(struct request_list *rl, int rw_flags,
941 struct bio *bio, gfp_t gfp_mask)
943 struct request_queue *q = rl->q;
944 struct request *rq;
945 struct elevator_type *et = q->elevator->type;
946 struct io_context *ioc = rq_ioc(bio);
947 struct io_cq *icq = NULL;
948 const bool is_sync = rw_is_sync(rw_flags) != 0;
949 int may_queue;
951 if (unlikely(blk_queue_dying(q)))
952 return NULL;
954 may_queue = elv_may_queue(q, rw_flags);
955 if (may_queue == ELV_MQUEUE_NO)
956 goto rq_starved;
958 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
959 if (rl->count[is_sync]+1 >= q->nr_requests) {
961 * The queue will fill after this allocation, so set
962 * it as full, and mark this process as "batching".
963 * This process will be allowed to complete a batch of
964 * requests, others will be blocked.
966 if (!blk_rl_full(rl, is_sync)) {
967 ioc_set_batching(q, ioc);
968 blk_set_rl_full(rl, is_sync);
969 } else {
970 if (may_queue != ELV_MQUEUE_MUST
971 && !ioc_batching(q, ioc)) {
973 * The queue is full and the allocating
974 * process is not a "batcher", and not
975 * exempted by the IO scheduler
977 return NULL;
982 * bdi isn't aware of blkcg yet. As all async IOs end up
983 * root blkcg anyway, just use root blkcg state.
985 if (rl == &q->root_rl)
986 blk_set_queue_congested(q, is_sync);
990 * Only allow batching queuers to allocate up to 50% over the defined
991 * limit of requests, otherwise we could have thousands of requests
992 * allocated with any setting of ->nr_requests
994 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
995 return NULL;
997 q->nr_rqs[is_sync]++;
998 rl->count[is_sync]++;
999 rl->starved[is_sync] = 0;
1002 * Decide whether the new request will be managed by elevator. If
1003 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1004 * prevent the current elevator from being destroyed until the new
1005 * request is freed. This guarantees icq's won't be destroyed and
1006 * makes creating new ones safe.
1008 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1009 * it will be created after releasing queue_lock.
1011 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1012 rw_flags |= REQ_ELVPRIV;
1013 q->nr_rqs_elvpriv++;
1014 if (et->icq_cache && ioc)
1015 icq = ioc_lookup_icq(ioc, q);
1018 if (blk_queue_io_stat(q))
1019 rw_flags |= REQ_IO_STAT;
1020 spin_unlock_irq(q->queue_lock);
1022 /* allocate and init request */
1023 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1024 if (!rq)
1025 goto fail_alloc;
1027 blk_rq_init(q, rq);
1028 blk_rq_set_rl(rq, rl);
1029 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1031 /* init elvpriv */
1032 if (rw_flags & REQ_ELVPRIV) {
1033 if (unlikely(et->icq_cache && !icq)) {
1034 if (ioc)
1035 icq = ioc_create_icq(ioc, q, gfp_mask);
1036 if (!icq)
1037 goto fail_elvpriv;
1040 rq->elv.icq = icq;
1041 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1042 goto fail_elvpriv;
1044 /* @rq->elv.icq holds io_context until @rq is freed */
1045 if (icq)
1046 get_io_context(icq->ioc);
1048 out:
1050 * ioc may be NULL here, and ioc_batching will be false. That's
1051 * OK, if the queue is under the request limit then requests need
1052 * not count toward the nr_batch_requests limit. There will always
1053 * be some limit enforced by BLK_BATCH_TIME.
1055 if (ioc_batching(q, ioc))
1056 ioc->nr_batch_requests--;
1058 trace_block_getrq(q, bio, rw_flags & 1);
1059 return rq;
1061 fail_elvpriv:
1063 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1064 * and may fail indefinitely under memory pressure and thus
1065 * shouldn't stall IO. Treat this request as !elvpriv. This will
1066 * disturb iosched and blkcg but weird is bettern than dead.
1068 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1069 dev_name(q->backing_dev_info.dev));
1071 rq->cmd_flags &= ~REQ_ELVPRIV;
1072 rq->elv.icq = NULL;
1074 spin_lock_irq(q->queue_lock);
1075 q->nr_rqs_elvpriv--;
1076 spin_unlock_irq(q->queue_lock);
1077 goto out;
1079 fail_alloc:
1081 * Allocation failed presumably due to memory. Undo anything we
1082 * might have messed up.
1084 * Allocating task should really be put onto the front of the wait
1085 * queue, but this is pretty rare.
1087 spin_lock_irq(q->queue_lock);
1088 freed_request(rl, rw_flags);
1091 * in the very unlikely event that allocation failed and no
1092 * requests for this direction was pending, mark us starved so that
1093 * freeing of a request in the other direction will notice
1094 * us. another possible fix would be to split the rq mempool into
1095 * READ and WRITE
1097 rq_starved:
1098 if (unlikely(rl->count[is_sync] == 0))
1099 rl->starved[is_sync] = 1;
1100 return NULL;
1104 * get_request - get a free request
1105 * @q: request_queue to allocate request from
1106 * @rw_flags: RW and SYNC flags
1107 * @bio: bio to allocate request for (can be %NULL)
1108 * @gfp_mask: allocation mask
1110 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1111 * function keeps retrying under memory pressure and fails iff @q is dead.
1113 * Must be callled with @q->queue_lock held and,
1114 * Returns %NULL on failure, with @q->queue_lock held.
1115 * Returns !%NULL on success, with @q->queue_lock *not held*.
1117 static struct request *get_request(struct request_queue *q, int rw_flags,
1118 struct bio *bio, gfp_t gfp_mask)
1120 const bool is_sync = rw_is_sync(rw_flags) != 0;
1121 DEFINE_WAIT(wait);
1122 struct request_list *rl;
1123 struct request *rq;
1125 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1126 retry:
1127 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1128 if (rq)
1129 return rq;
1131 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1132 blk_put_rl(rl);
1133 return NULL;
1136 /* wait on @rl and retry */
1137 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1138 TASK_UNINTERRUPTIBLE);
1140 trace_block_sleeprq(q, bio, rw_flags & 1);
1142 spin_unlock_irq(q->queue_lock);
1143 io_schedule();
1146 * After sleeping, we become a "batching" process and will be able
1147 * to allocate at least one request, and up to a big batch of them
1148 * for a small period time. See ioc_batching, ioc_set_batching
1150 ioc_set_batching(q, current->io_context);
1152 spin_lock_irq(q->queue_lock);
1153 finish_wait(&rl->wait[is_sync], &wait);
1155 goto retry;
1158 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1159 gfp_t gfp_mask)
1161 struct request *rq;
1163 BUG_ON(rw != READ && rw != WRITE);
1165 /* create ioc upfront */
1166 create_io_context(gfp_mask, q->node);
1168 spin_lock_irq(q->queue_lock);
1169 rq = get_request(q, rw, NULL, gfp_mask);
1170 if (!rq)
1171 spin_unlock_irq(q->queue_lock);
1172 /* q->queue_lock is unlocked at this point */
1174 return rq;
1177 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1179 if (q->mq_ops)
1180 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1181 else
1182 return blk_old_get_request(q, rw, gfp_mask);
1184 EXPORT_SYMBOL(blk_get_request);
1187 * blk_make_request - given a bio, allocate a corresponding struct request.
1188 * @q: target request queue
1189 * @bio: The bio describing the memory mappings that will be submitted for IO.
1190 * It may be a chained-bio properly constructed by block/bio layer.
1191 * @gfp_mask: gfp flags to be used for memory allocation
1193 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1194 * type commands. Where the struct request needs to be farther initialized by
1195 * the caller. It is passed a &struct bio, which describes the memory info of
1196 * the I/O transfer.
1198 * The caller of blk_make_request must make sure that bi_io_vec
1199 * are set to describe the memory buffers. That bio_data_dir() will return
1200 * the needed direction of the request. (And all bio's in the passed bio-chain
1201 * are properly set accordingly)
1203 * If called under none-sleepable conditions, mapped bio buffers must not
1204 * need bouncing, by calling the appropriate masked or flagged allocator,
1205 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1206 * BUG.
1208 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1209 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1210 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1211 * completion of a bio that hasn't been submitted yet, thus resulting in a
1212 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1213 * of bio_alloc(), as that avoids the mempool deadlock.
1214 * If possible a big IO should be split into smaller parts when allocation
1215 * fails. Partial allocation should not be an error, or you risk a live-lock.
1217 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1218 gfp_t gfp_mask)
1220 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1222 if (unlikely(!rq))
1223 return ERR_PTR(-ENOMEM);
1225 blk_rq_set_block_pc(rq);
1227 for_each_bio(bio) {
1228 struct bio *bounce_bio = bio;
1229 int ret;
1231 blk_queue_bounce(q, &bounce_bio);
1232 ret = blk_rq_append_bio(q, rq, bounce_bio);
1233 if (unlikely(ret)) {
1234 blk_put_request(rq);
1235 return ERR_PTR(ret);
1239 return rq;
1241 EXPORT_SYMBOL(blk_make_request);
1244 * blk_rq_set_block_pc - initialize a requeest to type BLOCK_PC
1245 * @rq: request to be initialized
1248 void blk_rq_set_block_pc(struct request *rq)
1250 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1251 rq->__data_len = 0;
1252 rq->__sector = (sector_t) -1;
1253 rq->bio = rq->biotail = NULL;
1254 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1255 rq->cmd = rq->__cmd;
1257 EXPORT_SYMBOL(blk_rq_set_block_pc);
1260 * blk_requeue_request - put a request back on queue
1261 * @q: request queue where request should be inserted
1262 * @rq: request to be inserted
1264 * Description:
1265 * Drivers often keep queueing requests until the hardware cannot accept
1266 * more, when that condition happens we need to put the request back
1267 * on the queue. Must be called with queue lock held.
1269 void blk_requeue_request(struct request_queue *q, struct request *rq)
1271 blk_delete_timer(rq);
1272 blk_clear_rq_complete(rq);
1273 trace_block_rq_requeue(q, rq);
1275 if (blk_rq_tagged(rq))
1276 blk_queue_end_tag(q, rq);
1278 BUG_ON(blk_queued_rq(rq));
1280 elv_requeue_request(q, rq);
1282 EXPORT_SYMBOL(blk_requeue_request);
1284 static void add_acct_request(struct request_queue *q, struct request *rq,
1285 int where)
1287 blk_account_io_start(rq, true);
1288 __elv_add_request(q, rq, where);
1291 static void part_round_stats_single(int cpu, struct hd_struct *part,
1292 unsigned long now)
1294 int inflight;
1296 if (now == part->stamp)
1297 return;
1299 inflight = part_in_flight(part);
1300 if (inflight) {
1301 __part_stat_add(cpu, part, time_in_queue,
1302 inflight * (now - part->stamp));
1303 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1305 part->stamp = now;
1309 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1310 * @cpu: cpu number for stats access
1311 * @part: target partition
1313 * The average IO queue length and utilisation statistics are maintained
1314 * by observing the current state of the queue length and the amount of
1315 * time it has been in this state for.
1317 * Normally, that accounting is done on IO completion, but that can result
1318 * in more than a second's worth of IO being accounted for within any one
1319 * second, leading to >100% utilisation. To deal with that, we call this
1320 * function to do a round-off before returning the results when reading
1321 * /proc/diskstats. This accounts immediately for all queue usage up to
1322 * the current jiffies and restarts the counters again.
1324 void part_round_stats(int cpu, struct hd_struct *part)
1326 unsigned long now = jiffies;
1328 if (part->partno)
1329 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1330 part_round_stats_single(cpu, part, now);
1332 EXPORT_SYMBOL_GPL(part_round_stats);
1334 #ifdef CONFIG_PM_RUNTIME
1335 static void blk_pm_put_request(struct request *rq)
1337 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1338 pm_runtime_mark_last_busy(rq->q->dev);
1340 #else
1341 static inline void blk_pm_put_request(struct request *rq) {}
1342 #endif
1345 * queue lock must be held
1347 void __blk_put_request(struct request_queue *q, struct request *req)
1349 if (unlikely(!q))
1350 return;
1352 if (q->mq_ops) {
1353 blk_mq_free_request(req);
1354 return;
1357 blk_pm_put_request(req);
1359 elv_completed_request(q, req);
1361 /* this is a bio leak */
1362 WARN_ON(req->bio != NULL);
1365 * Request may not have originated from ll_rw_blk. if not,
1366 * it didn't come out of our reserved rq pools
1368 if (req->cmd_flags & REQ_ALLOCED) {
1369 unsigned int flags = req->cmd_flags;
1370 struct request_list *rl = blk_rq_rl(req);
1372 BUG_ON(!list_empty(&req->queuelist));
1373 BUG_ON(ELV_ON_HASH(req));
1375 blk_free_request(rl, req);
1376 freed_request(rl, flags);
1377 blk_put_rl(rl);
1380 EXPORT_SYMBOL_GPL(__blk_put_request);
1382 void blk_put_request(struct request *req)
1384 struct request_queue *q = req->q;
1386 if (q->mq_ops)
1387 blk_mq_free_request(req);
1388 else {
1389 unsigned long flags;
1391 spin_lock_irqsave(q->queue_lock, flags);
1392 __blk_put_request(q, req);
1393 spin_unlock_irqrestore(q->queue_lock, flags);
1396 EXPORT_SYMBOL(blk_put_request);
1399 * blk_add_request_payload - add a payload to a request
1400 * @rq: request to update
1401 * @page: page backing the payload
1402 * @len: length of the payload.
1404 * This allows to later add a payload to an already submitted request by
1405 * a block driver. The driver needs to take care of freeing the payload
1406 * itself.
1408 * Note that this is a quite horrible hack and nothing but handling of
1409 * discard requests should ever use it.
1411 void blk_add_request_payload(struct request *rq, struct page *page,
1412 unsigned int len)
1414 struct bio *bio = rq->bio;
1416 bio->bi_io_vec->bv_page = page;
1417 bio->bi_io_vec->bv_offset = 0;
1418 bio->bi_io_vec->bv_len = len;
1420 bio->bi_iter.bi_size = len;
1421 bio->bi_vcnt = 1;
1422 bio->bi_phys_segments = 1;
1424 rq->__data_len = rq->resid_len = len;
1425 rq->nr_phys_segments = 1;
1427 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1429 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1430 struct bio *bio)
1432 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1434 if (!ll_back_merge_fn(q, req, bio))
1435 return false;
1437 trace_block_bio_backmerge(q, req, bio);
1439 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1440 blk_rq_set_mixed_merge(req);
1442 req->biotail->bi_next = bio;
1443 req->biotail = bio;
1444 req->__data_len += bio->bi_iter.bi_size;
1445 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1447 blk_account_io_start(req, false);
1448 return true;
1451 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1452 struct bio *bio)
1454 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1456 if (!ll_front_merge_fn(q, req, bio))
1457 return false;
1459 trace_block_bio_frontmerge(q, req, bio);
1461 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1462 blk_rq_set_mixed_merge(req);
1464 bio->bi_next = req->bio;
1465 req->bio = bio;
1467 req->__sector = bio->bi_iter.bi_sector;
1468 req->__data_len += bio->bi_iter.bi_size;
1469 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1471 blk_account_io_start(req, false);
1472 return true;
1476 * blk_attempt_plug_merge - try to merge with %current's plugged list
1477 * @q: request_queue new bio is being queued at
1478 * @bio: new bio being queued
1479 * @request_count: out parameter for number of traversed plugged requests
1481 * Determine whether @bio being queued on @q can be merged with a request
1482 * on %current's plugged list. Returns %true if merge was successful,
1483 * otherwise %false.
1485 * Plugging coalesces IOs from the same issuer for the same purpose without
1486 * going through @q->queue_lock. As such it's more of an issuing mechanism
1487 * than scheduling, and the request, while may have elvpriv data, is not
1488 * added on the elevator at this point. In addition, we don't have
1489 * reliable access to the elevator outside queue lock. Only check basic
1490 * merging parameters without querying the elevator.
1492 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1494 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1495 unsigned int *request_count)
1497 struct blk_plug *plug;
1498 struct request *rq;
1499 bool ret = false;
1500 struct list_head *plug_list;
1502 plug = current->plug;
1503 if (!plug)
1504 goto out;
1505 *request_count = 0;
1507 if (q->mq_ops)
1508 plug_list = &plug->mq_list;
1509 else
1510 plug_list = &plug->list;
1512 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1513 int el_ret;
1515 if (rq->q == q)
1516 (*request_count)++;
1518 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1519 continue;
1521 el_ret = blk_try_merge(rq, bio);
1522 if (el_ret == ELEVATOR_BACK_MERGE) {
1523 ret = bio_attempt_back_merge(q, rq, bio);
1524 if (ret)
1525 break;
1526 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1527 ret = bio_attempt_front_merge(q, rq, bio);
1528 if (ret)
1529 break;
1532 out:
1533 return ret;
1536 void init_request_from_bio(struct request *req, struct bio *bio)
1538 req->cmd_type = REQ_TYPE_FS;
1540 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1541 if (bio->bi_rw & REQ_RAHEAD)
1542 req->cmd_flags |= REQ_FAILFAST_MASK;
1544 req->errors = 0;
1545 req->__sector = bio->bi_iter.bi_sector;
1546 req->ioprio = bio_prio(bio);
1547 blk_rq_bio_prep(req->q, req, bio);
1550 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1552 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1553 struct blk_plug *plug;
1554 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1555 struct request *req;
1556 unsigned int request_count = 0;
1559 * low level driver can indicate that it wants pages above a
1560 * certain limit bounced to low memory (ie for highmem, or even
1561 * ISA dma in theory)
1563 blk_queue_bounce(q, &bio);
1565 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1566 bio_endio(bio, -EIO);
1567 return;
1570 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1571 spin_lock_irq(q->queue_lock);
1572 where = ELEVATOR_INSERT_FLUSH;
1573 goto get_rq;
1577 * Check if we can merge with the plugged list before grabbing
1578 * any locks.
1580 if (!blk_queue_nomerges(q) &&
1581 blk_attempt_plug_merge(q, bio, &request_count))
1582 return;
1584 spin_lock_irq(q->queue_lock);
1586 el_ret = elv_merge(q, &req, bio);
1587 if (el_ret == ELEVATOR_BACK_MERGE) {
1588 if (bio_attempt_back_merge(q, req, bio)) {
1589 elv_bio_merged(q, req, bio);
1590 if (!attempt_back_merge(q, req))
1591 elv_merged_request(q, req, el_ret);
1592 goto out_unlock;
1594 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1595 if (bio_attempt_front_merge(q, req, bio)) {
1596 elv_bio_merged(q, req, bio);
1597 if (!attempt_front_merge(q, req))
1598 elv_merged_request(q, req, el_ret);
1599 goto out_unlock;
1603 get_rq:
1605 * This sync check and mask will be re-done in init_request_from_bio(),
1606 * but we need to set it earlier to expose the sync flag to the
1607 * rq allocator and io schedulers.
1609 rw_flags = bio_data_dir(bio);
1610 if (sync)
1611 rw_flags |= REQ_SYNC;
1614 * Grab a free request. This is might sleep but can not fail.
1615 * Returns with the queue unlocked.
1617 req = get_request(q, rw_flags, bio, GFP_NOIO);
1618 if (unlikely(!req)) {
1619 bio_endio(bio, -ENODEV); /* @q is dead */
1620 goto out_unlock;
1624 * After dropping the lock and possibly sleeping here, our request
1625 * may now be mergeable after it had proven unmergeable (above).
1626 * We don't worry about that case for efficiency. It won't happen
1627 * often, and the elevators are able to handle it.
1629 init_request_from_bio(req, bio);
1631 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1632 req->cpu = raw_smp_processor_id();
1634 plug = current->plug;
1635 if (plug) {
1637 * If this is the first request added after a plug, fire
1638 * of a plug trace.
1640 if (!request_count)
1641 trace_block_plug(q);
1642 else {
1643 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1644 blk_flush_plug_list(plug, false);
1645 trace_block_plug(q);
1648 list_add_tail(&req->queuelist, &plug->list);
1649 blk_account_io_start(req, true);
1650 } else {
1651 spin_lock_irq(q->queue_lock);
1652 add_acct_request(q, req, where);
1653 __blk_run_queue(q);
1654 out_unlock:
1655 spin_unlock_irq(q->queue_lock);
1658 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1661 * If bio->bi_dev is a partition, remap the location
1663 static inline void blk_partition_remap(struct bio *bio)
1665 struct block_device *bdev = bio->bi_bdev;
1667 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1668 struct hd_struct *p = bdev->bd_part;
1670 bio->bi_iter.bi_sector += p->start_sect;
1671 bio->bi_bdev = bdev->bd_contains;
1673 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1674 bdev->bd_dev,
1675 bio->bi_iter.bi_sector - p->start_sect);
1679 static void handle_bad_sector(struct bio *bio)
1681 char b[BDEVNAME_SIZE];
1683 printk(KERN_INFO "attempt to access beyond end of device\n");
1684 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1685 bdevname(bio->bi_bdev, b),
1686 bio->bi_rw,
1687 (unsigned long long)bio_end_sector(bio),
1688 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1690 set_bit(BIO_EOF, &bio->bi_flags);
1693 #ifdef CONFIG_FAIL_MAKE_REQUEST
1695 static DECLARE_FAULT_ATTR(fail_make_request);
1697 static int __init setup_fail_make_request(char *str)
1699 return setup_fault_attr(&fail_make_request, str);
1701 __setup("fail_make_request=", setup_fail_make_request);
1703 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1705 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1708 static int __init fail_make_request_debugfs(void)
1710 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1711 NULL, &fail_make_request);
1713 return PTR_ERR_OR_ZERO(dir);
1716 late_initcall(fail_make_request_debugfs);
1718 #else /* CONFIG_FAIL_MAKE_REQUEST */
1720 static inline bool should_fail_request(struct hd_struct *part,
1721 unsigned int bytes)
1723 return false;
1726 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1729 * Check whether this bio extends beyond the end of the device.
1731 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1733 sector_t maxsector;
1735 if (!nr_sectors)
1736 return 0;
1738 /* Test device or partition size, when known. */
1739 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1740 if (maxsector) {
1741 sector_t sector = bio->bi_iter.bi_sector;
1743 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1745 * This may well happen - the kernel calls bread()
1746 * without checking the size of the device, e.g., when
1747 * mounting a device.
1749 handle_bad_sector(bio);
1750 return 1;
1754 return 0;
1757 static noinline_for_stack bool
1758 generic_make_request_checks(struct bio *bio)
1760 struct request_queue *q;
1761 int nr_sectors = bio_sectors(bio);
1762 int err = -EIO;
1763 char b[BDEVNAME_SIZE];
1764 struct hd_struct *part;
1766 might_sleep();
1768 if (bio_check_eod(bio, nr_sectors))
1769 goto end_io;
1771 q = bdev_get_queue(bio->bi_bdev);
1772 if (unlikely(!q)) {
1773 printk(KERN_ERR
1774 "generic_make_request: Trying to access "
1775 "nonexistent block-device %s (%Lu)\n",
1776 bdevname(bio->bi_bdev, b),
1777 (long long) bio->bi_iter.bi_sector);
1778 goto end_io;
1781 if (likely(bio_is_rw(bio) &&
1782 nr_sectors > queue_max_hw_sectors(q))) {
1783 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1784 bdevname(bio->bi_bdev, b),
1785 bio_sectors(bio),
1786 queue_max_hw_sectors(q));
1787 goto end_io;
1790 part = bio->bi_bdev->bd_part;
1791 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1792 should_fail_request(&part_to_disk(part)->part0,
1793 bio->bi_iter.bi_size))
1794 goto end_io;
1797 * If this device has partitions, remap block n
1798 * of partition p to block n+start(p) of the disk.
1800 blk_partition_remap(bio);
1802 if (bio_check_eod(bio, nr_sectors))
1803 goto end_io;
1806 * Filter flush bio's early so that make_request based
1807 * drivers without flush support don't have to worry
1808 * about them.
1810 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1811 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1812 if (!nr_sectors) {
1813 err = 0;
1814 goto end_io;
1818 if ((bio->bi_rw & REQ_DISCARD) &&
1819 (!blk_queue_discard(q) ||
1820 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1821 err = -EOPNOTSUPP;
1822 goto end_io;
1825 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1826 err = -EOPNOTSUPP;
1827 goto end_io;
1831 * Various block parts want %current->io_context and lazy ioc
1832 * allocation ends up trading a lot of pain for a small amount of
1833 * memory. Just allocate it upfront. This may fail and block
1834 * layer knows how to live with it.
1836 create_io_context(GFP_ATOMIC, q->node);
1838 if (blk_throtl_bio(q, bio))
1839 return false; /* throttled, will be resubmitted later */
1841 trace_block_bio_queue(q, bio);
1842 return true;
1844 end_io:
1845 bio_endio(bio, err);
1846 return false;
1850 * generic_make_request - hand a buffer to its device driver for I/O
1851 * @bio: The bio describing the location in memory and on the device.
1853 * generic_make_request() is used to make I/O requests of block
1854 * devices. It is passed a &struct bio, which describes the I/O that needs
1855 * to be done.
1857 * generic_make_request() does not return any status. The
1858 * success/failure status of the request, along with notification of
1859 * completion, is delivered asynchronously through the bio->bi_end_io
1860 * function described (one day) else where.
1862 * The caller of generic_make_request must make sure that bi_io_vec
1863 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1864 * set to describe the device address, and the
1865 * bi_end_io and optionally bi_private are set to describe how
1866 * completion notification should be signaled.
1868 * generic_make_request and the drivers it calls may use bi_next if this
1869 * bio happens to be merged with someone else, and may resubmit the bio to
1870 * a lower device by calling into generic_make_request recursively, which
1871 * means the bio should NOT be touched after the call to ->make_request_fn.
1873 void generic_make_request(struct bio *bio)
1875 struct bio_list bio_list_on_stack;
1877 if (!generic_make_request_checks(bio))
1878 return;
1881 * We only want one ->make_request_fn to be active at a time, else
1882 * stack usage with stacked devices could be a problem. So use
1883 * current->bio_list to keep a list of requests submited by a
1884 * make_request_fn function. current->bio_list is also used as a
1885 * flag to say if generic_make_request is currently active in this
1886 * task or not. If it is NULL, then no make_request is active. If
1887 * it is non-NULL, then a make_request is active, and new requests
1888 * should be added at the tail
1890 if (current->bio_list) {
1891 bio_list_add(current->bio_list, bio);
1892 return;
1895 /* following loop may be a bit non-obvious, and so deserves some
1896 * explanation.
1897 * Before entering the loop, bio->bi_next is NULL (as all callers
1898 * ensure that) so we have a list with a single bio.
1899 * We pretend that we have just taken it off a longer list, so
1900 * we assign bio_list to a pointer to the bio_list_on_stack,
1901 * thus initialising the bio_list of new bios to be
1902 * added. ->make_request() may indeed add some more bios
1903 * through a recursive call to generic_make_request. If it
1904 * did, we find a non-NULL value in bio_list and re-enter the loop
1905 * from the top. In this case we really did just take the bio
1906 * of the top of the list (no pretending) and so remove it from
1907 * bio_list, and call into ->make_request() again.
1909 BUG_ON(bio->bi_next);
1910 bio_list_init(&bio_list_on_stack);
1911 current->bio_list = &bio_list_on_stack;
1912 do {
1913 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1915 q->make_request_fn(q, bio);
1917 bio = bio_list_pop(current->bio_list);
1918 } while (bio);
1919 current->bio_list = NULL; /* deactivate */
1921 EXPORT_SYMBOL(generic_make_request);
1924 * submit_bio - submit a bio to the block device layer for I/O
1925 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1926 * @bio: The &struct bio which describes the I/O
1928 * submit_bio() is very similar in purpose to generic_make_request(), and
1929 * uses that function to do most of the work. Both are fairly rough
1930 * interfaces; @bio must be presetup and ready for I/O.
1933 void submit_bio(int rw, struct bio *bio)
1935 bio->bi_rw |= rw;
1938 * If it's a regular read/write or a barrier with data attached,
1939 * go through the normal accounting stuff before submission.
1941 if (bio_has_data(bio)) {
1942 unsigned int count;
1944 if (unlikely(rw & REQ_WRITE_SAME))
1945 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1946 else
1947 count = bio_sectors(bio);
1949 if (rw & WRITE) {
1950 count_vm_events(PGPGOUT, count);
1951 } else {
1952 task_io_account_read(bio->bi_iter.bi_size);
1953 count_vm_events(PGPGIN, count);
1956 if (unlikely(block_dump)) {
1957 char b[BDEVNAME_SIZE];
1958 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1959 current->comm, task_pid_nr(current),
1960 (rw & WRITE) ? "WRITE" : "READ",
1961 (unsigned long long)bio->bi_iter.bi_sector,
1962 bdevname(bio->bi_bdev, b),
1963 count);
1967 generic_make_request(bio);
1969 EXPORT_SYMBOL(submit_bio);
1972 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1973 * for new the queue limits
1974 * @q: the queue
1975 * @rq: the request being checked
1977 * Description:
1978 * @rq may have been made based on weaker limitations of upper-level queues
1979 * in request stacking drivers, and it may violate the limitation of @q.
1980 * Since the block layer and the underlying device driver trust @rq
1981 * after it is inserted to @q, it should be checked against @q before
1982 * the insertion using this generic function.
1984 * Request stacking drivers like request-based dm may change the queue
1985 * limits when retrying requests on other queues. Those requests need
1986 * to be checked against the new queue limits again during dispatch.
1988 static int blk_cloned_rq_check_limits(struct request_queue *q,
1989 struct request *rq)
1991 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1992 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1993 return -EIO;
1997 * queue's settings related to segment counting like q->bounce_pfn
1998 * may differ from that of other stacking queues.
1999 * Recalculate it to check the request correctly on this queue's
2000 * limitation.
2002 blk_recalc_rq_segments(rq);
2003 if (rq->nr_phys_segments > queue_max_segments(q)) {
2004 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2005 return -EIO;
2008 return 0;
2012 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2013 * @q: the queue to submit the request
2014 * @rq: the request being queued
2016 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2018 unsigned long flags;
2019 int where = ELEVATOR_INSERT_BACK;
2021 if (blk_cloned_rq_check_limits(q, rq))
2022 return -EIO;
2024 if (rq->rq_disk &&
2025 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2026 return -EIO;
2028 spin_lock_irqsave(q->queue_lock, flags);
2029 if (unlikely(blk_queue_dying(q))) {
2030 spin_unlock_irqrestore(q->queue_lock, flags);
2031 return -ENODEV;
2035 * Submitting request must be dequeued before calling this function
2036 * because it will be linked to another request_queue
2038 BUG_ON(blk_queued_rq(rq));
2040 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2041 where = ELEVATOR_INSERT_FLUSH;
2043 add_acct_request(q, rq, where);
2044 if (where == ELEVATOR_INSERT_FLUSH)
2045 __blk_run_queue(q);
2046 spin_unlock_irqrestore(q->queue_lock, flags);
2048 return 0;
2050 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2053 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2054 * @rq: request to examine
2056 * Description:
2057 * A request could be merge of IOs which require different failure
2058 * handling. This function determines the number of bytes which
2059 * can be failed from the beginning of the request without
2060 * crossing into area which need to be retried further.
2062 * Return:
2063 * The number of bytes to fail.
2065 * Context:
2066 * queue_lock must be held.
2068 unsigned int blk_rq_err_bytes(const struct request *rq)
2070 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2071 unsigned int bytes = 0;
2072 struct bio *bio;
2074 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2075 return blk_rq_bytes(rq);
2078 * Currently the only 'mixing' which can happen is between
2079 * different fastfail types. We can safely fail portions
2080 * which have all the failfast bits that the first one has -
2081 * the ones which are at least as eager to fail as the first
2082 * one.
2084 for (bio = rq->bio; bio; bio = bio->bi_next) {
2085 if ((bio->bi_rw & ff) != ff)
2086 break;
2087 bytes += bio->bi_iter.bi_size;
2090 /* this could lead to infinite loop */
2091 BUG_ON(blk_rq_bytes(rq) && !bytes);
2092 return bytes;
2094 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2096 void blk_account_io_completion(struct request *req, unsigned int bytes)
2098 if (blk_do_io_stat(req)) {
2099 const int rw = rq_data_dir(req);
2100 struct hd_struct *part;
2101 int cpu;
2103 cpu = part_stat_lock();
2104 part = req->part;
2105 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2106 part_stat_unlock();
2110 void blk_account_io_done(struct request *req)
2113 * Account IO completion. flush_rq isn't accounted as a
2114 * normal IO on queueing nor completion. Accounting the
2115 * containing request is enough.
2117 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2118 unsigned long duration = jiffies - req->start_time;
2119 const int rw = rq_data_dir(req);
2120 struct hd_struct *part;
2121 int cpu;
2123 cpu = part_stat_lock();
2124 part = req->part;
2126 part_stat_inc(cpu, part, ios[rw]);
2127 part_stat_add(cpu, part, ticks[rw], duration);
2128 part_round_stats(cpu, part);
2129 part_dec_in_flight(part, rw);
2131 hd_struct_put(part);
2132 part_stat_unlock();
2136 #ifdef CONFIG_PM_RUNTIME
2138 * Don't process normal requests when queue is suspended
2139 * or in the process of suspending/resuming
2141 static struct request *blk_pm_peek_request(struct request_queue *q,
2142 struct request *rq)
2144 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2145 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2146 return NULL;
2147 else
2148 return rq;
2150 #else
2151 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2152 struct request *rq)
2154 return rq;
2156 #endif
2158 void blk_account_io_start(struct request *rq, bool new_io)
2160 struct hd_struct *part;
2161 int rw = rq_data_dir(rq);
2162 int cpu;
2164 if (!blk_do_io_stat(rq))
2165 return;
2167 cpu = part_stat_lock();
2169 if (!new_io) {
2170 part = rq->part;
2171 part_stat_inc(cpu, part, merges[rw]);
2172 } else {
2173 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2174 if (!hd_struct_try_get(part)) {
2176 * The partition is already being removed,
2177 * the request will be accounted on the disk only
2179 * We take a reference on disk->part0 although that
2180 * partition will never be deleted, so we can treat
2181 * it as any other partition.
2183 part = &rq->rq_disk->part0;
2184 hd_struct_get(part);
2186 part_round_stats(cpu, part);
2187 part_inc_in_flight(part, rw);
2188 rq->part = part;
2191 part_stat_unlock();
2195 * blk_peek_request - peek at the top of a request queue
2196 * @q: request queue to peek at
2198 * Description:
2199 * Return the request at the top of @q. The returned request
2200 * should be started using blk_start_request() before LLD starts
2201 * processing it.
2203 * Return:
2204 * Pointer to the request at the top of @q if available. Null
2205 * otherwise.
2207 * Context:
2208 * queue_lock must be held.
2210 struct request *blk_peek_request(struct request_queue *q)
2212 struct request *rq;
2213 int ret;
2215 while ((rq = __elv_next_request(q)) != NULL) {
2217 rq = blk_pm_peek_request(q, rq);
2218 if (!rq)
2219 break;
2221 if (!(rq->cmd_flags & REQ_STARTED)) {
2223 * This is the first time the device driver
2224 * sees this request (possibly after
2225 * requeueing). Notify IO scheduler.
2227 if (rq->cmd_flags & REQ_SORTED)
2228 elv_activate_rq(q, rq);
2231 * just mark as started even if we don't start
2232 * it, a request that has been delayed should
2233 * not be passed by new incoming requests
2235 rq->cmd_flags |= REQ_STARTED;
2236 trace_block_rq_issue(q, rq);
2239 if (!q->boundary_rq || q->boundary_rq == rq) {
2240 q->end_sector = rq_end_sector(rq);
2241 q->boundary_rq = NULL;
2244 if (rq->cmd_flags & REQ_DONTPREP)
2245 break;
2247 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2249 * make sure space for the drain appears we
2250 * know we can do this because max_hw_segments
2251 * has been adjusted to be one fewer than the
2252 * device can handle
2254 rq->nr_phys_segments++;
2257 if (!q->prep_rq_fn)
2258 break;
2260 ret = q->prep_rq_fn(q, rq);
2261 if (ret == BLKPREP_OK) {
2262 break;
2263 } else if (ret == BLKPREP_DEFER) {
2265 * the request may have been (partially) prepped.
2266 * we need to keep this request in the front to
2267 * avoid resource deadlock. REQ_STARTED will
2268 * prevent other fs requests from passing this one.
2270 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2271 !(rq->cmd_flags & REQ_DONTPREP)) {
2273 * remove the space for the drain we added
2274 * so that we don't add it again
2276 --rq->nr_phys_segments;
2279 rq = NULL;
2280 break;
2281 } else if (ret == BLKPREP_KILL) {
2282 rq->cmd_flags |= REQ_QUIET;
2284 * Mark this request as started so we don't trigger
2285 * any debug logic in the end I/O path.
2287 blk_start_request(rq);
2288 __blk_end_request_all(rq, -EIO);
2289 } else {
2290 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2291 break;
2295 return rq;
2297 EXPORT_SYMBOL(blk_peek_request);
2299 void blk_dequeue_request(struct request *rq)
2301 struct request_queue *q = rq->q;
2303 BUG_ON(list_empty(&rq->queuelist));
2304 BUG_ON(ELV_ON_HASH(rq));
2306 list_del_init(&rq->queuelist);
2309 * the time frame between a request being removed from the lists
2310 * and to it is freed is accounted as io that is in progress at
2311 * the driver side.
2313 if (blk_account_rq(rq)) {
2314 q->in_flight[rq_is_sync(rq)]++;
2315 set_io_start_time_ns(rq);
2320 * blk_start_request - start request processing on the driver
2321 * @req: request to dequeue
2323 * Description:
2324 * Dequeue @req and start timeout timer on it. This hands off the
2325 * request to the driver.
2327 * Block internal functions which don't want to start timer should
2328 * call blk_dequeue_request().
2330 * Context:
2331 * queue_lock must be held.
2333 void blk_start_request(struct request *req)
2335 blk_dequeue_request(req);
2338 * We are now handing the request to the hardware, initialize
2339 * resid_len to full count and add the timeout handler.
2341 req->resid_len = blk_rq_bytes(req);
2342 if (unlikely(blk_bidi_rq(req)))
2343 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2345 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2346 blk_add_timer(req);
2348 EXPORT_SYMBOL(blk_start_request);
2351 * blk_fetch_request - fetch a request from a request queue
2352 * @q: request queue to fetch a request from
2354 * Description:
2355 * Return the request at the top of @q. The request is started on
2356 * return and LLD can start processing it immediately.
2358 * Return:
2359 * Pointer to the request at the top of @q if available. Null
2360 * otherwise.
2362 * Context:
2363 * queue_lock must be held.
2365 struct request *blk_fetch_request(struct request_queue *q)
2367 struct request *rq;
2369 rq = blk_peek_request(q);
2370 if (rq)
2371 blk_start_request(rq);
2372 return rq;
2374 EXPORT_SYMBOL(blk_fetch_request);
2377 * blk_update_request - Special helper function for request stacking drivers
2378 * @req: the request being processed
2379 * @error: %0 for success, < %0 for error
2380 * @nr_bytes: number of bytes to complete @req
2382 * Description:
2383 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2384 * the request structure even if @req doesn't have leftover.
2385 * If @req has leftover, sets it up for the next range of segments.
2387 * This special helper function is only for request stacking drivers
2388 * (e.g. request-based dm) so that they can handle partial completion.
2389 * Actual device drivers should use blk_end_request instead.
2391 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2392 * %false return from this function.
2394 * Return:
2395 * %false - this request doesn't have any more data
2396 * %true - this request has more data
2398 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2400 int total_bytes;
2402 if (!req->bio)
2403 return false;
2405 trace_block_rq_complete(req->q, req, nr_bytes);
2408 * For fs requests, rq is just carrier of independent bio's
2409 * and each partial completion should be handled separately.
2410 * Reset per-request error on each partial completion.
2412 * TODO: tj: This is too subtle. It would be better to let
2413 * low level drivers do what they see fit.
2415 if (req->cmd_type == REQ_TYPE_FS)
2416 req->errors = 0;
2418 if (error && req->cmd_type == REQ_TYPE_FS &&
2419 !(req->cmd_flags & REQ_QUIET)) {
2420 char *error_type;
2422 switch (error) {
2423 case -ENOLINK:
2424 error_type = "recoverable transport";
2425 break;
2426 case -EREMOTEIO:
2427 error_type = "critical target";
2428 break;
2429 case -EBADE:
2430 error_type = "critical nexus";
2431 break;
2432 case -ETIMEDOUT:
2433 error_type = "timeout";
2434 break;
2435 case -ENOSPC:
2436 error_type = "critical space allocation";
2437 break;
2438 case -ENODATA:
2439 error_type = "critical medium";
2440 break;
2441 case -EIO:
2442 default:
2443 error_type = "I/O";
2444 break;
2446 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2447 error_type, req->rq_disk ?
2448 req->rq_disk->disk_name : "?",
2449 (unsigned long long)blk_rq_pos(req));
2453 blk_account_io_completion(req, nr_bytes);
2455 total_bytes = 0;
2456 while (req->bio) {
2457 struct bio *bio = req->bio;
2458 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2460 if (bio_bytes == bio->bi_iter.bi_size)
2461 req->bio = bio->bi_next;
2463 req_bio_endio(req, bio, bio_bytes, error);
2465 total_bytes += bio_bytes;
2466 nr_bytes -= bio_bytes;
2468 if (!nr_bytes)
2469 break;
2473 * completely done
2475 if (!req->bio) {
2477 * Reset counters so that the request stacking driver
2478 * can find how many bytes remain in the request
2479 * later.
2481 req->__data_len = 0;
2482 return false;
2485 req->__data_len -= total_bytes;
2487 /* update sector only for requests with clear definition of sector */
2488 if (req->cmd_type == REQ_TYPE_FS)
2489 req->__sector += total_bytes >> 9;
2491 /* mixed attributes always follow the first bio */
2492 if (req->cmd_flags & REQ_MIXED_MERGE) {
2493 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2494 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2498 * If total number of sectors is less than the first segment
2499 * size, something has gone terribly wrong.
2501 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2502 blk_dump_rq_flags(req, "request botched");
2503 req->__data_len = blk_rq_cur_bytes(req);
2506 /* recalculate the number of segments */
2507 blk_recalc_rq_segments(req);
2509 return true;
2511 EXPORT_SYMBOL_GPL(blk_update_request);
2513 static bool blk_update_bidi_request(struct request *rq, int error,
2514 unsigned int nr_bytes,
2515 unsigned int bidi_bytes)
2517 if (blk_update_request(rq, error, nr_bytes))
2518 return true;
2520 /* Bidi request must be completed as a whole */
2521 if (unlikely(blk_bidi_rq(rq)) &&
2522 blk_update_request(rq->next_rq, error, bidi_bytes))
2523 return true;
2525 if (blk_queue_add_random(rq->q))
2526 add_disk_randomness(rq->rq_disk);
2528 return false;
2532 * blk_unprep_request - unprepare a request
2533 * @req: the request
2535 * This function makes a request ready for complete resubmission (or
2536 * completion). It happens only after all error handling is complete,
2537 * so represents the appropriate moment to deallocate any resources
2538 * that were allocated to the request in the prep_rq_fn. The queue
2539 * lock is held when calling this.
2541 void blk_unprep_request(struct request *req)
2543 struct request_queue *q = req->q;
2545 req->cmd_flags &= ~REQ_DONTPREP;
2546 if (q->unprep_rq_fn)
2547 q->unprep_rq_fn(q, req);
2549 EXPORT_SYMBOL_GPL(blk_unprep_request);
2552 * queue lock must be held
2554 void blk_finish_request(struct request *req, int error)
2556 if (blk_rq_tagged(req))
2557 blk_queue_end_tag(req->q, req);
2559 BUG_ON(blk_queued_rq(req));
2561 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2562 laptop_io_completion(&req->q->backing_dev_info);
2564 blk_delete_timer(req);
2566 if (req->cmd_flags & REQ_DONTPREP)
2567 blk_unprep_request(req);
2569 blk_account_io_done(req);
2571 if (req->end_io)
2572 req->end_io(req, error);
2573 else {
2574 if (blk_bidi_rq(req))
2575 __blk_put_request(req->next_rq->q, req->next_rq);
2577 __blk_put_request(req->q, req);
2580 EXPORT_SYMBOL(blk_finish_request);
2583 * blk_end_bidi_request - Complete a bidi request
2584 * @rq: the request to complete
2585 * @error: %0 for success, < %0 for error
2586 * @nr_bytes: number of bytes to complete @rq
2587 * @bidi_bytes: number of bytes to complete @rq->next_rq
2589 * Description:
2590 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2591 * Drivers that supports bidi can safely call this member for any
2592 * type of request, bidi or uni. In the later case @bidi_bytes is
2593 * just ignored.
2595 * Return:
2596 * %false - we are done with this request
2597 * %true - still buffers pending for this request
2599 static bool blk_end_bidi_request(struct request *rq, int error,
2600 unsigned int nr_bytes, unsigned int bidi_bytes)
2602 struct request_queue *q = rq->q;
2603 unsigned long flags;
2605 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2606 return true;
2608 spin_lock_irqsave(q->queue_lock, flags);
2609 blk_finish_request(rq, error);
2610 spin_unlock_irqrestore(q->queue_lock, flags);
2612 return false;
2616 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2617 * @rq: the request to complete
2618 * @error: %0 for success, < %0 for error
2619 * @nr_bytes: number of bytes to complete @rq
2620 * @bidi_bytes: number of bytes to complete @rq->next_rq
2622 * Description:
2623 * Identical to blk_end_bidi_request() except that queue lock is
2624 * assumed to be locked on entry and remains so on return.
2626 * Return:
2627 * %false - we are done with this request
2628 * %true - still buffers pending for this request
2630 bool __blk_end_bidi_request(struct request *rq, int error,
2631 unsigned int nr_bytes, unsigned int bidi_bytes)
2633 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2634 return true;
2636 blk_finish_request(rq, error);
2638 return false;
2642 * blk_end_request - Helper function for drivers to complete the request.
2643 * @rq: the request being processed
2644 * @error: %0 for success, < %0 for error
2645 * @nr_bytes: number of bytes to complete
2647 * Description:
2648 * Ends I/O on a number of bytes attached to @rq.
2649 * If @rq has leftover, sets it up for the next range of segments.
2651 * Return:
2652 * %false - we are done with this request
2653 * %true - still buffers pending for this request
2655 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2657 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2659 EXPORT_SYMBOL(blk_end_request);
2662 * blk_end_request_all - Helper function for drives to finish the request.
2663 * @rq: the request to finish
2664 * @error: %0 for success, < %0 for error
2666 * Description:
2667 * Completely finish @rq.
2669 void blk_end_request_all(struct request *rq, int error)
2671 bool pending;
2672 unsigned int bidi_bytes = 0;
2674 if (unlikely(blk_bidi_rq(rq)))
2675 bidi_bytes = blk_rq_bytes(rq->next_rq);
2677 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2678 BUG_ON(pending);
2680 EXPORT_SYMBOL(blk_end_request_all);
2683 * blk_end_request_cur - Helper function to finish the current request chunk.
2684 * @rq: the request to finish the current chunk for
2685 * @error: %0 for success, < %0 for error
2687 * Description:
2688 * Complete the current consecutively mapped chunk from @rq.
2690 * Return:
2691 * %false - we are done with this request
2692 * %true - still buffers pending for this request
2694 bool blk_end_request_cur(struct request *rq, int error)
2696 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2698 EXPORT_SYMBOL(blk_end_request_cur);
2701 * blk_end_request_err - Finish a request till the next failure boundary.
2702 * @rq: the request to finish till the next failure boundary for
2703 * @error: must be negative errno
2705 * Description:
2706 * Complete @rq till the next failure boundary.
2708 * Return:
2709 * %false - we are done with this request
2710 * %true - still buffers pending for this request
2712 bool blk_end_request_err(struct request *rq, int error)
2714 WARN_ON(error >= 0);
2715 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2717 EXPORT_SYMBOL_GPL(blk_end_request_err);
2720 * __blk_end_request - Helper function for drivers to complete the request.
2721 * @rq: the request being processed
2722 * @error: %0 for success, < %0 for error
2723 * @nr_bytes: number of bytes to complete
2725 * Description:
2726 * Must be called with queue lock held unlike blk_end_request().
2728 * Return:
2729 * %false - we are done with this request
2730 * %true - still buffers pending for this request
2732 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2734 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2736 EXPORT_SYMBOL(__blk_end_request);
2739 * __blk_end_request_all - Helper function for drives to finish the request.
2740 * @rq: the request to finish
2741 * @error: %0 for success, < %0 for error
2743 * Description:
2744 * Completely finish @rq. Must be called with queue lock held.
2746 void __blk_end_request_all(struct request *rq, int error)
2748 bool pending;
2749 unsigned int bidi_bytes = 0;
2751 if (unlikely(blk_bidi_rq(rq)))
2752 bidi_bytes = blk_rq_bytes(rq->next_rq);
2754 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2755 BUG_ON(pending);
2757 EXPORT_SYMBOL(__blk_end_request_all);
2760 * __blk_end_request_cur - Helper function to finish the current request chunk.
2761 * @rq: the request to finish the current chunk for
2762 * @error: %0 for success, < %0 for error
2764 * Description:
2765 * Complete the current consecutively mapped chunk from @rq. Must
2766 * be called with queue lock held.
2768 * Return:
2769 * %false - we are done with this request
2770 * %true - still buffers pending for this request
2772 bool __blk_end_request_cur(struct request *rq, int error)
2774 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2776 EXPORT_SYMBOL(__blk_end_request_cur);
2779 * __blk_end_request_err - Finish a request till the next failure boundary.
2780 * @rq: the request to finish till the next failure boundary for
2781 * @error: must be negative errno
2783 * Description:
2784 * Complete @rq till the next failure boundary. Must be called
2785 * with queue lock held.
2787 * Return:
2788 * %false - we are done with this request
2789 * %true - still buffers pending for this request
2791 bool __blk_end_request_err(struct request *rq, int error)
2793 WARN_ON(error >= 0);
2794 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2796 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2798 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2799 struct bio *bio)
2801 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2802 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2804 if (bio_has_data(bio))
2805 rq->nr_phys_segments = bio_phys_segments(q, bio);
2807 rq->__data_len = bio->bi_iter.bi_size;
2808 rq->bio = rq->biotail = bio;
2810 if (bio->bi_bdev)
2811 rq->rq_disk = bio->bi_bdev->bd_disk;
2814 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2816 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2817 * @rq: the request to be flushed
2819 * Description:
2820 * Flush all pages in @rq.
2822 void rq_flush_dcache_pages(struct request *rq)
2824 struct req_iterator iter;
2825 struct bio_vec bvec;
2827 rq_for_each_segment(bvec, rq, iter)
2828 flush_dcache_page(bvec.bv_page);
2830 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2831 #endif
2834 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2835 * @q : the queue of the device being checked
2837 * Description:
2838 * Check if underlying low-level drivers of a device are busy.
2839 * If the drivers want to export their busy state, they must set own
2840 * exporting function using blk_queue_lld_busy() first.
2842 * Basically, this function is used only by request stacking drivers
2843 * to stop dispatching requests to underlying devices when underlying
2844 * devices are busy. This behavior helps more I/O merging on the queue
2845 * of the request stacking driver and prevents I/O throughput regression
2846 * on burst I/O load.
2848 * Return:
2849 * 0 - Not busy (The request stacking driver should dispatch request)
2850 * 1 - Busy (The request stacking driver should stop dispatching request)
2852 int blk_lld_busy(struct request_queue *q)
2854 if (q->lld_busy_fn)
2855 return q->lld_busy_fn(q);
2857 return 0;
2859 EXPORT_SYMBOL_GPL(blk_lld_busy);
2862 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2863 * @rq: the clone request to be cleaned up
2865 * Description:
2866 * Free all bios in @rq for a cloned request.
2868 void blk_rq_unprep_clone(struct request *rq)
2870 struct bio *bio;
2872 while ((bio = rq->bio) != NULL) {
2873 rq->bio = bio->bi_next;
2875 bio_put(bio);
2878 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2881 * Copy attributes of the original request to the clone request.
2882 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2884 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2886 dst->cpu = src->cpu;
2887 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2888 dst->cmd_type = src->cmd_type;
2889 dst->__sector = blk_rq_pos(src);
2890 dst->__data_len = blk_rq_bytes(src);
2891 dst->nr_phys_segments = src->nr_phys_segments;
2892 dst->ioprio = src->ioprio;
2893 dst->extra_len = src->extra_len;
2897 * blk_rq_prep_clone - Helper function to setup clone request
2898 * @rq: the request to be setup
2899 * @rq_src: original request to be cloned
2900 * @bs: bio_set that bios for clone are allocated from
2901 * @gfp_mask: memory allocation mask for bio
2902 * @bio_ctr: setup function to be called for each clone bio.
2903 * Returns %0 for success, non %0 for failure.
2904 * @data: private data to be passed to @bio_ctr
2906 * Description:
2907 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2908 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2909 * are not copied, and copying such parts is the caller's responsibility.
2910 * Also, pages which the original bios are pointing to are not copied
2911 * and the cloned bios just point same pages.
2912 * So cloned bios must be completed before original bios, which means
2913 * the caller must complete @rq before @rq_src.
2915 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2916 struct bio_set *bs, gfp_t gfp_mask,
2917 int (*bio_ctr)(struct bio *, struct bio *, void *),
2918 void *data)
2920 struct bio *bio, *bio_src;
2922 if (!bs)
2923 bs = fs_bio_set;
2925 blk_rq_init(NULL, rq);
2927 __rq_for_each_bio(bio_src, rq_src) {
2928 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2929 if (!bio)
2930 goto free_and_out;
2932 if (bio_ctr && bio_ctr(bio, bio_src, data))
2933 goto free_and_out;
2935 if (rq->bio) {
2936 rq->biotail->bi_next = bio;
2937 rq->biotail = bio;
2938 } else
2939 rq->bio = rq->biotail = bio;
2942 __blk_rq_prep_clone(rq, rq_src);
2944 return 0;
2946 free_and_out:
2947 if (bio)
2948 bio_put(bio);
2949 blk_rq_unprep_clone(rq);
2951 return -ENOMEM;
2953 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2955 int kblockd_schedule_work(struct work_struct *work)
2957 return queue_work(kblockd_workqueue, work);
2959 EXPORT_SYMBOL(kblockd_schedule_work);
2961 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2962 unsigned long delay)
2964 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2966 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2968 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2969 unsigned long delay)
2971 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2973 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2976 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2977 * @plug: The &struct blk_plug that needs to be initialized
2979 * Description:
2980 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2981 * pending I/O should the task end up blocking between blk_start_plug() and
2982 * blk_finish_plug(). This is important from a performance perspective, but
2983 * also ensures that we don't deadlock. For instance, if the task is blocking
2984 * for a memory allocation, memory reclaim could end up wanting to free a
2985 * page belonging to that request that is currently residing in our private
2986 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2987 * this kind of deadlock.
2989 void blk_start_plug(struct blk_plug *plug)
2991 struct task_struct *tsk = current;
2993 INIT_LIST_HEAD(&plug->list);
2994 INIT_LIST_HEAD(&plug->mq_list);
2995 INIT_LIST_HEAD(&plug->cb_list);
2998 * If this is a nested plug, don't actually assign it. It will be
2999 * flushed on its own.
3001 if (!tsk->plug) {
3003 * Store ordering should not be needed here, since a potential
3004 * preempt will imply a full memory barrier
3006 tsk->plug = plug;
3009 EXPORT_SYMBOL(blk_start_plug);
3011 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3013 struct request *rqa = container_of(a, struct request, queuelist);
3014 struct request *rqb = container_of(b, struct request, queuelist);
3016 return !(rqa->q < rqb->q ||
3017 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3021 * If 'from_schedule' is true, then postpone the dispatch of requests
3022 * until a safe kblockd context. We due this to avoid accidental big
3023 * additional stack usage in driver dispatch, in places where the originally
3024 * plugger did not intend it.
3026 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3027 bool from_schedule)
3028 __releases(q->queue_lock)
3030 trace_block_unplug(q, depth, !from_schedule);
3032 if (from_schedule)
3033 blk_run_queue_async(q);
3034 else
3035 __blk_run_queue(q);
3036 spin_unlock(q->queue_lock);
3039 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3041 LIST_HEAD(callbacks);
3043 while (!list_empty(&plug->cb_list)) {
3044 list_splice_init(&plug->cb_list, &callbacks);
3046 while (!list_empty(&callbacks)) {
3047 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3048 struct blk_plug_cb,
3049 list);
3050 list_del(&cb->list);
3051 cb->callback(cb, from_schedule);
3056 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3057 int size)
3059 struct blk_plug *plug = current->plug;
3060 struct blk_plug_cb *cb;
3062 if (!plug)
3063 return NULL;
3065 list_for_each_entry(cb, &plug->cb_list, list)
3066 if (cb->callback == unplug && cb->data == data)
3067 return cb;
3069 /* Not currently on the callback list */
3070 BUG_ON(size < sizeof(*cb));
3071 cb = kzalloc(size, GFP_ATOMIC);
3072 if (cb) {
3073 cb->data = data;
3074 cb->callback = unplug;
3075 list_add(&cb->list, &plug->cb_list);
3077 return cb;
3079 EXPORT_SYMBOL(blk_check_plugged);
3081 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3083 struct request_queue *q;
3084 unsigned long flags;
3085 struct request *rq;
3086 LIST_HEAD(list);
3087 unsigned int depth;
3089 flush_plug_callbacks(plug, from_schedule);
3091 if (!list_empty(&plug->mq_list))
3092 blk_mq_flush_plug_list(plug, from_schedule);
3094 if (list_empty(&plug->list))
3095 return;
3097 list_splice_init(&plug->list, &list);
3099 list_sort(NULL, &list, plug_rq_cmp);
3101 q = NULL;
3102 depth = 0;
3105 * Save and disable interrupts here, to avoid doing it for every
3106 * queue lock we have to take.
3108 local_irq_save(flags);
3109 while (!list_empty(&list)) {
3110 rq = list_entry_rq(list.next);
3111 list_del_init(&rq->queuelist);
3112 BUG_ON(!rq->q);
3113 if (rq->q != q) {
3115 * This drops the queue lock
3117 if (q)
3118 queue_unplugged(q, depth, from_schedule);
3119 q = rq->q;
3120 depth = 0;
3121 spin_lock(q->queue_lock);
3125 * Short-circuit if @q is dead
3127 if (unlikely(blk_queue_dying(q))) {
3128 __blk_end_request_all(rq, -ENODEV);
3129 continue;
3133 * rq is already accounted, so use raw insert
3135 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3136 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3137 else
3138 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3140 depth++;
3144 * This drops the queue lock
3146 if (q)
3147 queue_unplugged(q, depth, from_schedule);
3149 local_irq_restore(flags);
3152 void blk_finish_plug(struct blk_plug *plug)
3154 blk_flush_plug_list(plug, false);
3156 if (plug == current->plug)
3157 current->plug = NULL;
3159 EXPORT_SYMBOL(blk_finish_plug);
3161 #ifdef CONFIG_PM_RUNTIME
3163 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3164 * @q: the queue of the device
3165 * @dev: the device the queue belongs to
3167 * Description:
3168 * Initialize runtime-PM-related fields for @q and start auto suspend for
3169 * @dev. Drivers that want to take advantage of request-based runtime PM
3170 * should call this function after @dev has been initialized, and its
3171 * request queue @q has been allocated, and runtime PM for it can not happen
3172 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3173 * cases, driver should call this function before any I/O has taken place.
3175 * This function takes care of setting up using auto suspend for the device,
3176 * the autosuspend delay is set to -1 to make runtime suspend impossible
3177 * until an updated value is either set by user or by driver. Drivers do
3178 * not need to touch other autosuspend settings.
3180 * The block layer runtime PM is request based, so only works for drivers
3181 * that use request as their IO unit instead of those directly use bio's.
3183 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3185 q->dev = dev;
3186 q->rpm_status = RPM_ACTIVE;
3187 pm_runtime_set_autosuspend_delay(q->dev, -1);
3188 pm_runtime_use_autosuspend(q->dev);
3190 EXPORT_SYMBOL(blk_pm_runtime_init);
3193 * blk_pre_runtime_suspend - Pre runtime suspend check
3194 * @q: the queue of the device
3196 * Description:
3197 * This function will check if runtime suspend is allowed for the device
3198 * by examining if there are any requests pending in the queue. If there
3199 * are requests pending, the device can not be runtime suspended; otherwise,
3200 * the queue's status will be updated to SUSPENDING and the driver can
3201 * proceed to suspend the device.
3203 * For the not allowed case, we mark last busy for the device so that
3204 * runtime PM core will try to autosuspend it some time later.
3206 * This function should be called near the start of the device's
3207 * runtime_suspend callback.
3209 * Return:
3210 * 0 - OK to runtime suspend the device
3211 * -EBUSY - Device should not be runtime suspended
3213 int blk_pre_runtime_suspend(struct request_queue *q)
3215 int ret = 0;
3217 if (!q->dev)
3218 return ret;
3220 spin_lock_irq(q->queue_lock);
3221 if (q->nr_pending) {
3222 ret = -EBUSY;
3223 pm_runtime_mark_last_busy(q->dev);
3224 } else {
3225 q->rpm_status = RPM_SUSPENDING;
3227 spin_unlock_irq(q->queue_lock);
3228 return ret;
3230 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3233 * blk_post_runtime_suspend - Post runtime suspend processing
3234 * @q: the queue of the device
3235 * @err: return value of the device's runtime_suspend function
3237 * Description:
3238 * Update the queue's runtime status according to the return value of the
3239 * device's runtime suspend function and mark last busy for the device so
3240 * that PM core will try to auto suspend the device at a later time.
3242 * This function should be called near the end of the device's
3243 * runtime_suspend callback.
3245 void blk_post_runtime_suspend(struct request_queue *q, int err)
3247 if (!q->dev)
3248 return;
3250 spin_lock_irq(q->queue_lock);
3251 if (!err) {
3252 q->rpm_status = RPM_SUSPENDED;
3253 } else {
3254 q->rpm_status = RPM_ACTIVE;
3255 pm_runtime_mark_last_busy(q->dev);
3257 spin_unlock_irq(q->queue_lock);
3259 EXPORT_SYMBOL(blk_post_runtime_suspend);
3262 * blk_pre_runtime_resume - Pre runtime resume processing
3263 * @q: the queue of the device
3265 * Description:
3266 * Update the queue's runtime status to RESUMING in preparation for the
3267 * runtime resume of the device.
3269 * This function should be called near the start of the device's
3270 * runtime_resume callback.
3272 void blk_pre_runtime_resume(struct request_queue *q)
3274 if (!q->dev)
3275 return;
3277 spin_lock_irq(q->queue_lock);
3278 q->rpm_status = RPM_RESUMING;
3279 spin_unlock_irq(q->queue_lock);
3281 EXPORT_SYMBOL(blk_pre_runtime_resume);
3284 * blk_post_runtime_resume - Post runtime resume processing
3285 * @q: the queue of the device
3286 * @err: return value of the device's runtime_resume function
3288 * Description:
3289 * Update the queue's runtime status according to the return value of the
3290 * device's runtime_resume function. If it is successfully resumed, process
3291 * the requests that are queued into the device's queue when it is resuming
3292 * and then mark last busy and initiate autosuspend for it.
3294 * This function should be called near the end of the device's
3295 * runtime_resume callback.
3297 void blk_post_runtime_resume(struct request_queue *q, int err)
3299 if (!q->dev)
3300 return;
3302 spin_lock_irq(q->queue_lock);
3303 if (!err) {
3304 q->rpm_status = RPM_ACTIVE;
3305 __blk_run_queue(q);
3306 pm_runtime_mark_last_busy(q->dev);
3307 pm_request_autosuspend(q->dev);
3308 } else {
3309 q->rpm_status = RPM_SUSPENDED;
3311 spin_unlock_irq(q->queue_lock);
3313 EXPORT_SYMBOL(blk_post_runtime_resume);
3314 #endif
3316 int __init blk_dev_init(void)
3318 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3319 sizeof(((struct request *)0)->cmd_flags));
3321 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3322 kblockd_workqueue = alloc_workqueue("kblockd",
3323 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3324 if (!kblockd_workqueue)
3325 panic("Failed to create kblockd\n");
3327 request_cachep = kmem_cache_create("blkdev_requests",
3328 sizeof(struct request), 0, SLAB_PANIC, NULL);
3330 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3331 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3333 return 0;