1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
62 #include <net/tcp_memcontrol.h>
65 #include <asm/uaccess.h>
67 #include <trace/events/vmscan.h>
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
70 EXPORT_SYMBOL(memory_cgrp_subsys
);
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup
*root_mem_cgroup __read_mostly
;
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly
;
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata
= 1;
83 static int really_do_swap_account __initdata
;
87 #define do_swap_account 0
91 static const char * const mem_cgroup_stat_names
[] = {
100 enum mem_cgroup_events_index
{
101 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS
,
108 static const char * const mem_cgroup_events_names
[] = {
115 static const char * const mem_cgroup_lru_names
[] = {
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
129 enum mem_cgroup_events_target
{
130 MEM_CGROUP_TARGET_THRESH
,
131 MEM_CGROUP_TARGET_SOFTLIMIT
,
132 MEM_CGROUP_TARGET_NUMAINFO
,
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
139 struct mem_cgroup_stat_cpu
{
140 long count
[MEM_CGROUP_STAT_NSTATS
];
141 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
142 unsigned long nr_page_events
;
143 unsigned long targets
[MEM_CGROUP_NTARGETS
];
146 struct mem_cgroup_reclaim_iter
{
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
151 struct mem_cgroup
*last_visited
;
154 /* scan generation, increased every round-trip */
155 unsigned int generation
;
159 * per-zone information in memory controller.
161 struct mem_cgroup_per_zone
{
162 struct lruvec lruvec
;
163 unsigned long lru_size
[NR_LRU_LISTS
];
165 struct mem_cgroup_reclaim_iter reclaim_iter
[DEF_PRIORITY
+ 1];
167 struct rb_node tree_node
; /* RB tree node */
168 unsigned long long usage_in_excess
;/* Set to the value by which */
169 /* the soft limit is exceeded*/
171 struct mem_cgroup
*memcg
; /* Back pointer, we cannot */
172 /* use container_of */
175 struct mem_cgroup_per_node
{
176 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
184 struct mem_cgroup_tree_per_zone
{
185 struct rb_root rb_root
;
189 struct mem_cgroup_tree_per_node
{
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
193 struct mem_cgroup_tree
{
194 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
199 struct mem_cgroup_threshold
{
200 struct eventfd_ctx
*eventfd
;
205 struct mem_cgroup_threshold_ary
{
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold
;
208 /* Size of entries[] */
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries
[0];
214 struct mem_cgroup_thresholds
{
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary
*primary
;
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
222 struct mem_cgroup_threshold_ary
*spare
;
226 struct mem_cgroup_eventfd_list
{
227 struct list_head list
;
228 struct eventfd_ctx
*eventfd
;
232 * cgroup_event represents events which userspace want to receive.
234 struct mem_cgroup_event
{
236 * memcg which the event belongs to.
238 struct mem_cgroup
*memcg
;
240 * eventfd to signal userspace about the event.
242 struct eventfd_ctx
*eventfd
;
244 * Each of these stored in a list by the cgroup.
246 struct list_head list
;
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
252 int (*register_event
)(struct mem_cgroup
*memcg
,
253 struct eventfd_ctx
*eventfd
, const char *args
);
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
259 void (*unregister_event
)(struct mem_cgroup
*memcg
,
260 struct eventfd_ctx
*eventfd
);
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
266 wait_queue_head_t
*wqh
;
268 struct work_struct remove
;
271 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
272 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
286 struct cgroup_subsys_state css
;
288 * the counter to account for memory usage
290 struct res_counter res
;
292 /* vmpressure notifications */
293 struct vmpressure vmpressure
;
295 /* css_online() has been completed */
299 * the counter to account for mem+swap usage.
301 struct res_counter memsw
;
304 * the counter to account for kernel memory usage.
306 struct res_counter kmem
;
308 * Should the accounting and control be hierarchical, per subtree?
311 unsigned long kmem_account_flags
; /* See KMEM_ACCOUNTED_*, below */
315 atomic_t oom_wakeups
;
318 /* OOM-Killer disable */
319 int oom_kill_disable
;
321 /* set when res.limit == memsw.limit */
322 bool memsw_is_minimum
;
324 /* protect arrays of thresholds */
325 struct mutex thresholds_lock
;
327 /* thresholds for memory usage. RCU-protected */
328 struct mem_cgroup_thresholds thresholds
;
330 /* thresholds for mem+swap usage. RCU-protected */
331 struct mem_cgroup_thresholds memsw_thresholds
;
333 /* For oom notifier event fd */
334 struct list_head oom_notify
;
337 * Should we move charges of a task when a task is moved into this
338 * mem_cgroup ? And what type of charges should we move ?
340 unsigned long move_charge_at_immigrate
;
342 * set > 0 if pages under this cgroup are moving to other cgroup.
344 atomic_t moving_account
;
345 /* taken only while moving_account > 0 */
346 spinlock_t move_lock
;
350 struct mem_cgroup_stat_cpu __percpu
*stat
;
352 * used when a cpu is offlined or other synchronizations
353 * See mem_cgroup_read_stat().
355 struct mem_cgroup_stat_cpu nocpu_base
;
356 spinlock_t pcp_counter_lock
;
359 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
360 struct cg_proto tcp_mem
;
362 #if defined(CONFIG_MEMCG_KMEM)
363 /* analogous to slab_common's slab_caches list, but per-memcg;
364 * protected by memcg_slab_mutex */
365 struct list_head memcg_slab_caches
;
366 /* Index in the kmem_cache->memcg_params->memcg_caches array */
370 int last_scanned_node
;
372 nodemask_t scan_nodes
;
373 atomic_t numainfo_events
;
374 atomic_t numainfo_updating
;
377 /* List of events which userspace want to receive */
378 struct list_head event_list
;
379 spinlock_t event_list_lock
;
381 struct mem_cgroup_per_node
*nodeinfo
[0];
382 /* WARNING: nodeinfo must be the last member here */
385 /* internal only representation about the status of kmem accounting. */
387 KMEM_ACCOUNTED_ACTIVE
, /* accounted by this cgroup itself */
388 KMEM_ACCOUNTED_DEAD
, /* dead memcg with pending kmem charges */
391 #ifdef CONFIG_MEMCG_KMEM
392 static inline void memcg_kmem_set_active(struct mem_cgroup
*memcg
)
394 set_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
);
397 static bool memcg_kmem_is_active(struct mem_cgroup
*memcg
)
399 return test_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
);
402 static void memcg_kmem_mark_dead(struct mem_cgroup
*memcg
)
405 * Our caller must use css_get() first, because memcg_uncharge_kmem()
406 * will call css_put() if it sees the memcg is dead.
409 if (test_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
))
410 set_bit(KMEM_ACCOUNTED_DEAD
, &memcg
->kmem_account_flags
);
413 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup
*memcg
)
415 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD
,
416 &memcg
->kmem_account_flags
);
420 /* Stuffs for move charges at task migration. */
422 * Types of charges to be moved. "move_charge_at_immitgrate" and
423 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
426 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
427 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
431 /* "mc" and its members are protected by cgroup_mutex */
432 static struct move_charge_struct
{
433 spinlock_t lock
; /* for from, to */
434 struct mem_cgroup
*from
;
435 struct mem_cgroup
*to
;
436 unsigned long immigrate_flags
;
437 unsigned long precharge
;
438 unsigned long moved_charge
;
439 unsigned long moved_swap
;
440 struct task_struct
*moving_task
; /* a task moving charges */
441 wait_queue_head_t waitq
; /* a waitq for other context */
443 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
444 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
447 static bool move_anon(void)
449 return test_bit(MOVE_CHARGE_TYPE_ANON
, &mc
.immigrate_flags
);
452 static bool move_file(void)
454 return test_bit(MOVE_CHARGE_TYPE_FILE
, &mc
.immigrate_flags
);
458 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
459 * limit reclaim to prevent infinite loops, if they ever occur.
461 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
462 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
465 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
466 MEM_CGROUP_CHARGE_TYPE_ANON
,
467 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
468 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
472 /* for encoding cft->private value on file */
480 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
481 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
482 #define MEMFILE_ATTR(val) ((val) & 0xffff)
483 /* Used for OOM nofiier */
484 #define OOM_CONTROL (0)
487 * Reclaim flags for mem_cgroup_hierarchical_reclaim
489 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
490 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
491 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
492 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
495 * The memcg_create_mutex will be held whenever a new cgroup is created.
496 * As a consequence, any change that needs to protect against new child cgroups
497 * appearing has to hold it as well.
499 static DEFINE_MUTEX(memcg_create_mutex
);
501 struct mem_cgroup
*mem_cgroup_from_css(struct cgroup_subsys_state
*s
)
503 return s
? container_of(s
, struct mem_cgroup
, css
) : NULL
;
506 /* Some nice accessors for the vmpressure. */
507 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
510 memcg
= root_mem_cgroup
;
511 return &memcg
->vmpressure
;
514 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
516 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
519 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
521 return (memcg
== root_mem_cgroup
);
525 * We restrict the id in the range of [1, 65535], so it can fit into
528 #define MEM_CGROUP_ID_MAX USHRT_MAX
530 static inline unsigned short mem_cgroup_id(struct mem_cgroup
*memcg
)
532 return memcg
->css
.id
;
535 static inline struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
537 struct cgroup_subsys_state
*css
;
539 css
= css_from_id(id
, &memory_cgrp_subsys
);
540 return mem_cgroup_from_css(css
);
543 /* Writing them here to avoid exposing memcg's inner layout */
544 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
546 void sock_update_memcg(struct sock
*sk
)
548 if (mem_cgroup_sockets_enabled
) {
549 struct mem_cgroup
*memcg
;
550 struct cg_proto
*cg_proto
;
552 BUG_ON(!sk
->sk_prot
->proto_cgroup
);
554 /* Socket cloning can throw us here with sk_cgrp already
555 * filled. It won't however, necessarily happen from
556 * process context. So the test for root memcg given
557 * the current task's memcg won't help us in this case.
559 * Respecting the original socket's memcg is a better
560 * decision in this case.
563 BUG_ON(mem_cgroup_is_root(sk
->sk_cgrp
->memcg
));
564 css_get(&sk
->sk_cgrp
->memcg
->css
);
569 memcg
= mem_cgroup_from_task(current
);
570 cg_proto
= sk
->sk_prot
->proto_cgroup(memcg
);
571 if (!mem_cgroup_is_root(memcg
) &&
572 memcg_proto_active(cg_proto
) &&
573 css_tryget_online(&memcg
->css
)) {
574 sk
->sk_cgrp
= cg_proto
;
579 EXPORT_SYMBOL(sock_update_memcg
);
581 void sock_release_memcg(struct sock
*sk
)
583 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
) {
584 struct mem_cgroup
*memcg
;
585 WARN_ON(!sk
->sk_cgrp
->memcg
);
586 memcg
= sk
->sk_cgrp
->memcg
;
587 css_put(&sk
->sk_cgrp
->memcg
->css
);
591 struct cg_proto
*tcp_proto_cgroup(struct mem_cgroup
*memcg
)
593 if (!memcg
|| mem_cgroup_is_root(memcg
))
596 return &memcg
->tcp_mem
;
598 EXPORT_SYMBOL(tcp_proto_cgroup
);
600 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
602 if (!memcg_proto_activated(&memcg
->tcp_mem
))
604 static_key_slow_dec(&memcg_socket_limit_enabled
);
607 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
612 #ifdef CONFIG_MEMCG_KMEM
614 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
615 * The main reason for not using cgroup id for this:
616 * this works better in sparse environments, where we have a lot of memcgs,
617 * but only a few kmem-limited. Or also, if we have, for instance, 200
618 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
619 * 200 entry array for that.
621 * The current size of the caches array is stored in
622 * memcg_limited_groups_array_size. It will double each time we have to
625 static DEFINE_IDA(kmem_limited_groups
);
626 int memcg_limited_groups_array_size
;
629 * MIN_SIZE is different than 1, because we would like to avoid going through
630 * the alloc/free process all the time. In a small machine, 4 kmem-limited
631 * cgroups is a reasonable guess. In the future, it could be a parameter or
632 * tunable, but that is strictly not necessary.
634 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
635 * this constant directly from cgroup, but it is understandable that this is
636 * better kept as an internal representation in cgroup.c. In any case, the
637 * cgrp_id space is not getting any smaller, and we don't have to necessarily
638 * increase ours as well if it increases.
640 #define MEMCG_CACHES_MIN_SIZE 4
641 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
644 * A lot of the calls to the cache allocation functions are expected to be
645 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
646 * conditional to this static branch, we'll have to allow modules that does
647 * kmem_cache_alloc and the such to see this symbol as well
649 struct static_key memcg_kmem_enabled_key
;
650 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
652 static void disarm_kmem_keys(struct mem_cgroup
*memcg
)
654 if (memcg_kmem_is_active(memcg
)) {
655 static_key_slow_dec(&memcg_kmem_enabled_key
);
656 ida_simple_remove(&kmem_limited_groups
, memcg
->kmemcg_id
);
659 * This check can't live in kmem destruction function,
660 * since the charges will outlive the cgroup
662 WARN_ON(res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) != 0);
665 static void disarm_kmem_keys(struct mem_cgroup
*memcg
)
668 #endif /* CONFIG_MEMCG_KMEM */
670 static void disarm_static_keys(struct mem_cgroup
*memcg
)
672 disarm_sock_keys(memcg
);
673 disarm_kmem_keys(memcg
);
676 static void drain_all_stock_async(struct mem_cgroup
*memcg
);
678 static struct mem_cgroup_per_zone
*
679 mem_cgroup_zone_zoneinfo(struct mem_cgroup
*memcg
, struct zone
*zone
)
681 int nid
= zone_to_nid(zone
);
682 int zid
= zone_idx(zone
);
684 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
687 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*memcg
)
692 static struct mem_cgroup_per_zone
*
693 mem_cgroup_page_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
695 int nid
= page_to_nid(page
);
696 int zid
= page_zonenum(page
);
698 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
701 static struct mem_cgroup_tree_per_zone
*
702 soft_limit_tree_node_zone(int nid
, int zid
)
704 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
707 static struct mem_cgroup_tree_per_zone
*
708 soft_limit_tree_from_page(struct page
*page
)
710 int nid
= page_to_nid(page
);
711 int zid
= page_zonenum(page
);
713 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
716 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone
*mz
,
717 struct mem_cgroup_tree_per_zone
*mctz
,
718 unsigned long long new_usage_in_excess
)
720 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
721 struct rb_node
*parent
= NULL
;
722 struct mem_cgroup_per_zone
*mz_node
;
727 mz
->usage_in_excess
= new_usage_in_excess
;
728 if (!mz
->usage_in_excess
)
732 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
734 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
737 * We can't avoid mem cgroups that are over their soft
738 * limit by the same amount
740 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
743 rb_link_node(&mz
->tree_node
, parent
, p
);
744 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
748 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone
*mz
,
749 struct mem_cgroup_tree_per_zone
*mctz
)
753 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
757 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone
*mz
,
758 struct mem_cgroup_tree_per_zone
*mctz
)
760 spin_lock(&mctz
->lock
);
761 __mem_cgroup_remove_exceeded(mz
, mctz
);
762 spin_unlock(&mctz
->lock
);
766 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
768 unsigned long long excess
;
769 struct mem_cgroup_per_zone
*mz
;
770 struct mem_cgroup_tree_per_zone
*mctz
;
772 mctz
= soft_limit_tree_from_page(page
);
774 * Necessary to update all ancestors when hierarchy is used.
775 * because their event counter is not touched.
777 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
778 mz
= mem_cgroup_page_zoneinfo(memcg
, page
);
779 excess
= res_counter_soft_limit_excess(&memcg
->res
);
781 * We have to update the tree if mz is on RB-tree or
782 * mem is over its softlimit.
784 if (excess
|| mz
->on_tree
) {
785 spin_lock(&mctz
->lock
);
786 /* if on-tree, remove it */
788 __mem_cgroup_remove_exceeded(mz
, mctz
);
790 * Insert again. mz->usage_in_excess will be updated.
791 * If excess is 0, no tree ops.
793 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
794 spin_unlock(&mctz
->lock
);
799 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
801 struct mem_cgroup_tree_per_zone
*mctz
;
802 struct mem_cgroup_per_zone
*mz
;
806 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
807 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
808 mctz
= soft_limit_tree_node_zone(nid
, zid
);
809 mem_cgroup_remove_exceeded(mz
, mctz
);
814 static struct mem_cgroup_per_zone
*
815 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
817 struct rb_node
*rightmost
= NULL
;
818 struct mem_cgroup_per_zone
*mz
;
822 rightmost
= rb_last(&mctz
->rb_root
);
824 goto done
; /* Nothing to reclaim from */
826 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
828 * Remove the node now but someone else can add it back,
829 * we will to add it back at the end of reclaim to its correct
830 * position in the tree.
832 __mem_cgroup_remove_exceeded(mz
, mctz
);
833 if (!res_counter_soft_limit_excess(&mz
->memcg
->res
) ||
834 !css_tryget_online(&mz
->memcg
->css
))
840 static struct mem_cgroup_per_zone
*
841 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
843 struct mem_cgroup_per_zone
*mz
;
845 spin_lock(&mctz
->lock
);
846 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
847 spin_unlock(&mctz
->lock
);
852 * Implementation Note: reading percpu statistics for memcg.
854 * Both of vmstat[] and percpu_counter has threshold and do periodic
855 * synchronization to implement "quick" read. There are trade-off between
856 * reading cost and precision of value. Then, we may have a chance to implement
857 * a periodic synchronizion of counter in memcg's counter.
859 * But this _read() function is used for user interface now. The user accounts
860 * memory usage by memory cgroup and he _always_ requires exact value because
861 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
862 * have to visit all online cpus and make sum. So, for now, unnecessary
863 * synchronization is not implemented. (just implemented for cpu hotplug)
865 * If there are kernel internal actions which can make use of some not-exact
866 * value, and reading all cpu value can be performance bottleneck in some
867 * common workload, threashold and synchonization as vmstat[] should be
870 static long mem_cgroup_read_stat(struct mem_cgroup
*memcg
,
871 enum mem_cgroup_stat_index idx
)
877 for_each_online_cpu(cpu
)
878 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
879 #ifdef CONFIG_HOTPLUG_CPU
880 spin_lock(&memcg
->pcp_counter_lock
);
881 val
+= memcg
->nocpu_base
.count
[idx
];
882 spin_unlock(&memcg
->pcp_counter_lock
);
888 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
891 int val
= (charge
) ? 1 : -1;
892 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAP
], val
);
895 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
896 enum mem_cgroup_events_index idx
)
898 unsigned long val
= 0;
902 for_each_online_cpu(cpu
)
903 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
904 #ifdef CONFIG_HOTPLUG_CPU
905 spin_lock(&memcg
->pcp_counter_lock
);
906 val
+= memcg
->nocpu_base
.events
[idx
];
907 spin_unlock(&memcg
->pcp_counter_lock
);
913 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
915 bool anon
, int nr_pages
)
918 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
919 * counted as CACHE even if it's on ANON LRU.
922 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
925 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
928 if (PageTransHuge(page
))
929 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
932 /* pagein of a big page is an event. So, ignore page size */
934 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
936 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
937 nr_pages
= -nr_pages
; /* for event */
940 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
943 unsigned long mem_cgroup_get_lru_size(struct lruvec
*lruvec
, enum lru_list lru
)
945 struct mem_cgroup_per_zone
*mz
;
947 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
948 return mz
->lru_size
[lru
];
951 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
953 unsigned int lru_mask
)
955 unsigned long nr
= 0;
958 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
960 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
961 struct mem_cgroup_per_zone
*mz
;
965 if (!(BIT(lru
) & lru_mask
))
967 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
968 nr
+= mz
->lru_size
[lru
];
974 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
975 unsigned int lru_mask
)
977 unsigned long nr
= 0;
980 for_each_node_state(nid
, N_MEMORY
)
981 nr
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
985 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
986 enum mem_cgroup_events_target target
)
988 unsigned long val
, next
;
990 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
991 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
992 /* from time_after() in jiffies.h */
993 if ((long)next
- (long)val
< 0) {
995 case MEM_CGROUP_TARGET_THRESH
:
996 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
998 case MEM_CGROUP_TARGET_SOFTLIMIT
:
999 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
1001 case MEM_CGROUP_TARGET_NUMAINFO
:
1002 next
= val
+ NUMAINFO_EVENTS_TARGET
;
1007 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
1014 * Check events in order.
1017 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
1020 /* threshold event is triggered in finer grain than soft limit */
1021 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
1022 MEM_CGROUP_TARGET_THRESH
))) {
1024 bool do_numainfo __maybe_unused
;
1026 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
1027 MEM_CGROUP_TARGET_SOFTLIMIT
);
1028 #if MAX_NUMNODES > 1
1029 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
1030 MEM_CGROUP_TARGET_NUMAINFO
);
1034 mem_cgroup_threshold(memcg
);
1035 if (unlikely(do_softlimit
))
1036 mem_cgroup_update_tree(memcg
, page
);
1037 #if MAX_NUMNODES > 1
1038 if (unlikely(do_numainfo
))
1039 atomic_inc(&memcg
->numainfo_events
);
1045 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
1048 * mm_update_next_owner() may clear mm->owner to NULL
1049 * if it races with swapoff, page migration, etc.
1050 * So this can be called with p == NULL.
1055 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
1058 static struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
1060 struct mem_cgroup
*memcg
= NULL
;
1065 * Page cache insertions can happen withou an
1066 * actual mm context, e.g. during disk probing
1067 * on boot, loopback IO, acct() writes etc.
1070 memcg
= root_mem_cgroup
;
1072 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1073 if (unlikely(!memcg
))
1074 memcg
= root_mem_cgroup
;
1076 } while (!css_tryget_online(&memcg
->css
));
1082 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1083 * ref. count) or NULL if the whole root's subtree has been visited.
1085 * helper function to be used by mem_cgroup_iter
1087 static struct mem_cgroup
*__mem_cgroup_iter_next(struct mem_cgroup
*root
,
1088 struct mem_cgroup
*last_visited
)
1090 struct cgroup_subsys_state
*prev_css
, *next_css
;
1092 prev_css
= last_visited
? &last_visited
->css
: NULL
;
1094 next_css
= css_next_descendant_pre(prev_css
, &root
->css
);
1097 * Even if we found a group we have to make sure it is
1098 * alive. css && !memcg means that the groups should be
1099 * skipped and we should continue the tree walk.
1100 * last_visited css is safe to use because it is
1101 * protected by css_get and the tree walk is rcu safe.
1103 * We do not take a reference on the root of the tree walk
1104 * because we might race with the root removal when it would
1105 * be the only node in the iterated hierarchy and mem_cgroup_iter
1106 * would end up in an endless loop because it expects that at
1107 * least one valid node will be returned. Root cannot disappear
1108 * because caller of the iterator should hold it already so
1109 * skipping css reference should be safe.
1112 struct mem_cgroup
*memcg
= mem_cgroup_from_css(next_css
);
1114 if (next_css
== &root
->css
)
1117 if (css_tryget_online(next_css
)) {
1119 * Make sure the memcg is initialized:
1120 * mem_cgroup_css_online() orders the the
1121 * initialization against setting the flag.
1123 if (smp_load_acquire(&memcg
->initialized
))
1128 prev_css
= next_css
;
1135 static void mem_cgroup_iter_invalidate(struct mem_cgroup
*root
)
1138 * When a group in the hierarchy below root is destroyed, the
1139 * hierarchy iterator can no longer be trusted since it might
1140 * have pointed to the destroyed group. Invalidate it.
1142 atomic_inc(&root
->dead_count
);
1145 static struct mem_cgroup
*
1146 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter
*iter
,
1147 struct mem_cgroup
*root
,
1150 struct mem_cgroup
*position
= NULL
;
1152 * A cgroup destruction happens in two stages: offlining and
1153 * release. They are separated by a RCU grace period.
1155 * If the iterator is valid, we may still race with an
1156 * offlining. The RCU lock ensures the object won't be
1157 * released, tryget will fail if we lost the race.
1159 *sequence
= atomic_read(&root
->dead_count
);
1160 if (iter
->last_dead_count
== *sequence
) {
1162 position
= iter
->last_visited
;
1165 * We cannot take a reference to root because we might race
1166 * with root removal and returning NULL would end up in
1167 * an endless loop on the iterator user level when root
1168 * would be returned all the time.
1170 if (position
&& position
!= root
&&
1171 !css_tryget_online(&position
->css
))
1177 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter
*iter
,
1178 struct mem_cgroup
*last_visited
,
1179 struct mem_cgroup
*new_position
,
1180 struct mem_cgroup
*root
,
1183 /* root reference counting symmetric to mem_cgroup_iter_load */
1184 if (last_visited
&& last_visited
!= root
)
1185 css_put(&last_visited
->css
);
1187 * We store the sequence count from the time @last_visited was
1188 * loaded successfully instead of rereading it here so that we
1189 * don't lose destruction events in between. We could have
1190 * raced with the destruction of @new_position after all.
1192 iter
->last_visited
= new_position
;
1194 iter
->last_dead_count
= sequence
;
1198 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1199 * @root: hierarchy root
1200 * @prev: previously returned memcg, NULL on first invocation
1201 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1203 * Returns references to children of the hierarchy below @root, or
1204 * @root itself, or %NULL after a full round-trip.
1206 * Caller must pass the return value in @prev on subsequent
1207 * invocations for reference counting, or use mem_cgroup_iter_break()
1208 * to cancel a hierarchy walk before the round-trip is complete.
1210 * Reclaimers can specify a zone and a priority level in @reclaim to
1211 * divide up the memcgs in the hierarchy among all concurrent
1212 * reclaimers operating on the same zone and priority.
1214 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
1215 struct mem_cgroup
*prev
,
1216 struct mem_cgroup_reclaim_cookie
*reclaim
)
1218 struct mem_cgroup
*memcg
= NULL
;
1219 struct mem_cgroup
*last_visited
= NULL
;
1221 if (mem_cgroup_disabled())
1225 root
= root_mem_cgroup
;
1227 if (prev
&& !reclaim
)
1228 last_visited
= prev
;
1230 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
1238 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
1239 int uninitialized_var(seq
);
1242 struct mem_cgroup_per_zone
*mz
;
1244 mz
= mem_cgroup_zone_zoneinfo(root
, reclaim
->zone
);
1245 iter
= &mz
->reclaim_iter
[reclaim
->priority
];
1246 if (prev
&& reclaim
->generation
!= iter
->generation
) {
1247 iter
->last_visited
= NULL
;
1251 last_visited
= mem_cgroup_iter_load(iter
, root
, &seq
);
1254 memcg
= __mem_cgroup_iter_next(root
, last_visited
);
1257 mem_cgroup_iter_update(iter
, last_visited
, memcg
, root
,
1262 else if (!prev
&& memcg
)
1263 reclaim
->generation
= iter
->generation
;
1272 if (prev
&& prev
!= root
)
1273 css_put(&prev
->css
);
1279 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1280 * @root: hierarchy root
1281 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1283 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
1284 struct mem_cgroup
*prev
)
1287 root
= root_mem_cgroup
;
1288 if (prev
&& prev
!= root
)
1289 css_put(&prev
->css
);
1293 * Iteration constructs for visiting all cgroups (under a tree). If
1294 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1295 * be used for reference counting.
1297 #define for_each_mem_cgroup_tree(iter, root) \
1298 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1300 iter = mem_cgroup_iter(root, iter, NULL))
1302 #define for_each_mem_cgroup(iter) \
1303 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1305 iter = mem_cgroup_iter(NULL, iter, NULL))
1307 void __mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
1309 struct mem_cgroup
*memcg
;
1312 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1313 if (unlikely(!memcg
))
1318 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
]);
1321 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
]);
1329 EXPORT_SYMBOL(__mem_cgroup_count_vm_event
);
1332 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1333 * @zone: zone of the wanted lruvec
1334 * @memcg: memcg of the wanted lruvec
1336 * Returns the lru list vector holding pages for the given @zone and
1337 * @mem. This can be the global zone lruvec, if the memory controller
1340 struct lruvec
*mem_cgroup_zone_lruvec(struct zone
*zone
,
1341 struct mem_cgroup
*memcg
)
1343 struct mem_cgroup_per_zone
*mz
;
1344 struct lruvec
*lruvec
;
1346 if (mem_cgroup_disabled()) {
1347 lruvec
= &zone
->lruvec
;
1351 mz
= mem_cgroup_zone_zoneinfo(memcg
, zone
);
1352 lruvec
= &mz
->lruvec
;
1355 * Since a node can be onlined after the mem_cgroup was created,
1356 * we have to be prepared to initialize lruvec->zone here;
1357 * and if offlined then reonlined, we need to reinitialize it.
1359 if (unlikely(lruvec
->zone
!= zone
))
1360 lruvec
->zone
= zone
;
1365 * Following LRU functions are allowed to be used without PCG_LOCK.
1366 * Operations are called by routine of global LRU independently from memcg.
1367 * What we have to take care of here is validness of pc->mem_cgroup.
1369 * Changes to pc->mem_cgroup happens when
1372 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1373 * It is added to LRU before charge.
1374 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1375 * When moving account, the page is not on LRU. It's isolated.
1379 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1381 * @zone: zone of the page
1383 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct zone
*zone
)
1385 struct mem_cgroup_per_zone
*mz
;
1386 struct mem_cgroup
*memcg
;
1387 struct page_cgroup
*pc
;
1388 struct lruvec
*lruvec
;
1390 if (mem_cgroup_disabled()) {
1391 lruvec
= &zone
->lruvec
;
1395 pc
= lookup_page_cgroup(page
);
1396 memcg
= pc
->mem_cgroup
;
1399 * Surreptitiously switch any uncharged offlist page to root:
1400 * an uncharged page off lru does nothing to secure
1401 * its former mem_cgroup from sudden removal.
1403 * Our caller holds lru_lock, and PageCgroupUsed is updated
1404 * under page_cgroup lock: between them, they make all uses
1405 * of pc->mem_cgroup safe.
1407 if (!PageLRU(page
) && !PageCgroupUsed(pc
) && memcg
!= root_mem_cgroup
)
1408 pc
->mem_cgroup
= memcg
= root_mem_cgroup
;
1410 mz
= mem_cgroup_page_zoneinfo(memcg
, page
);
1411 lruvec
= &mz
->lruvec
;
1414 * Since a node can be onlined after the mem_cgroup was created,
1415 * we have to be prepared to initialize lruvec->zone here;
1416 * and if offlined then reonlined, we need to reinitialize it.
1418 if (unlikely(lruvec
->zone
!= zone
))
1419 lruvec
->zone
= zone
;
1424 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1425 * @lruvec: mem_cgroup per zone lru vector
1426 * @lru: index of lru list the page is sitting on
1427 * @nr_pages: positive when adding or negative when removing
1429 * This function must be called when a page is added to or removed from an
1432 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1435 struct mem_cgroup_per_zone
*mz
;
1436 unsigned long *lru_size
;
1438 if (mem_cgroup_disabled())
1441 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
1442 lru_size
= mz
->lru_size
+ lru
;
1443 *lru_size
+= nr_pages
;
1444 VM_BUG_ON((long)(*lru_size
) < 0);
1448 * Checks whether given mem is same or in the root_mem_cgroup's
1451 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1452 struct mem_cgroup
*memcg
)
1454 if (root_memcg
== memcg
)
1456 if (!root_memcg
->use_hierarchy
|| !memcg
)
1458 return cgroup_is_descendant(memcg
->css
.cgroup
, root_memcg
->css
.cgroup
);
1461 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1462 struct mem_cgroup
*memcg
)
1467 ret
= __mem_cgroup_same_or_subtree(root_memcg
, memcg
);
1472 bool task_in_mem_cgroup(struct task_struct
*task
,
1473 const struct mem_cgroup
*memcg
)
1475 struct mem_cgroup
*curr
= NULL
;
1476 struct task_struct
*p
;
1479 p
= find_lock_task_mm(task
);
1481 curr
= get_mem_cgroup_from_mm(p
->mm
);
1485 * All threads may have already detached their mm's, but the oom
1486 * killer still needs to detect if they have already been oom
1487 * killed to prevent needlessly killing additional tasks.
1490 curr
= mem_cgroup_from_task(task
);
1492 css_get(&curr
->css
);
1496 * We should check use_hierarchy of "memcg" not "curr". Because checking
1497 * use_hierarchy of "curr" here make this function true if hierarchy is
1498 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1499 * hierarchy(even if use_hierarchy is disabled in "memcg").
1501 ret
= mem_cgroup_same_or_subtree(memcg
, curr
);
1502 css_put(&curr
->css
);
1506 int mem_cgroup_inactive_anon_is_low(struct lruvec
*lruvec
)
1508 unsigned long inactive_ratio
;
1509 unsigned long inactive
;
1510 unsigned long active
;
1513 inactive
= mem_cgroup_get_lru_size(lruvec
, LRU_INACTIVE_ANON
);
1514 active
= mem_cgroup_get_lru_size(lruvec
, LRU_ACTIVE_ANON
);
1516 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1518 inactive_ratio
= int_sqrt(10 * gb
);
1522 return inactive
* inactive_ratio
< active
;
1525 #define mem_cgroup_from_res_counter(counter, member) \
1526 container_of(counter, struct mem_cgroup, member)
1529 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1530 * @memcg: the memory cgroup
1532 * Returns the maximum amount of memory @mem can be charged with, in
1535 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1537 unsigned long long margin
;
1539 margin
= res_counter_margin(&memcg
->res
);
1540 if (do_swap_account
)
1541 margin
= min(margin
, res_counter_margin(&memcg
->memsw
));
1542 return margin
>> PAGE_SHIFT
;
1545 int mem_cgroup_swappiness(struct mem_cgroup
*memcg
)
1548 if (mem_cgroup_disabled() || !memcg
->css
.parent
)
1549 return vm_swappiness
;
1551 return memcg
->swappiness
;
1555 * memcg->moving_account is used for checking possibility that some thread is
1556 * calling move_account(). When a thread on CPU-A starts moving pages under
1557 * a memcg, other threads should check memcg->moving_account under
1558 * rcu_read_lock(), like this:
1562 * memcg->moving_account+1 if (memcg->mocing_account)
1564 * synchronize_rcu() update something.
1569 /* for quick checking without looking up memcg */
1570 atomic_t memcg_moving __read_mostly
;
1572 static void mem_cgroup_start_move(struct mem_cgroup
*memcg
)
1574 atomic_inc(&memcg_moving
);
1575 atomic_inc(&memcg
->moving_account
);
1579 static void mem_cgroup_end_move(struct mem_cgroup
*memcg
)
1582 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1583 * We check NULL in callee rather than caller.
1586 atomic_dec(&memcg_moving
);
1587 atomic_dec(&memcg
->moving_account
);
1592 * A routine for checking "mem" is under move_account() or not.
1594 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1595 * moving cgroups. This is for waiting at high-memory pressure
1598 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1600 struct mem_cgroup
*from
;
1601 struct mem_cgroup
*to
;
1604 * Unlike task_move routines, we access mc.to, mc.from not under
1605 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1607 spin_lock(&mc
.lock
);
1613 ret
= mem_cgroup_same_or_subtree(memcg
, from
)
1614 || mem_cgroup_same_or_subtree(memcg
, to
);
1616 spin_unlock(&mc
.lock
);
1620 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1622 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1623 if (mem_cgroup_under_move(memcg
)) {
1625 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1626 /* moving charge context might have finished. */
1629 finish_wait(&mc
.waitq
, &wait
);
1637 * Take this lock when
1638 * - a code tries to modify page's memcg while it's USED.
1639 * - a code tries to modify page state accounting in a memcg.
1641 static void move_lock_mem_cgroup(struct mem_cgroup
*memcg
,
1642 unsigned long *flags
)
1644 spin_lock_irqsave(&memcg
->move_lock
, *flags
);
1647 static void move_unlock_mem_cgroup(struct mem_cgroup
*memcg
,
1648 unsigned long *flags
)
1650 spin_unlock_irqrestore(&memcg
->move_lock
, *flags
);
1653 #define K(x) ((x) << (PAGE_SHIFT-10))
1655 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1656 * @memcg: The memory cgroup that went over limit
1657 * @p: Task that is going to be killed
1659 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1662 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1664 /* oom_info_lock ensures that parallel ooms do not interleave */
1665 static DEFINE_MUTEX(oom_info_lock
);
1666 struct mem_cgroup
*iter
;
1672 mutex_lock(&oom_info_lock
);
1675 pr_info("Task in ");
1676 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1677 pr_cont(" killed as a result of limit of ");
1678 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1683 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1684 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1685 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1686 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1687 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1688 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1689 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1690 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1691 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1692 res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) >> 10,
1693 res_counter_read_u64(&memcg
->kmem
, RES_LIMIT
) >> 10,
1694 res_counter_read_u64(&memcg
->kmem
, RES_FAILCNT
));
1696 for_each_mem_cgroup_tree(iter
, memcg
) {
1697 pr_info("Memory cgroup stats for ");
1698 pr_cont_cgroup_path(iter
->css
.cgroup
);
1701 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
1702 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
1704 pr_cont(" %s:%ldKB", mem_cgroup_stat_names
[i
],
1705 K(mem_cgroup_read_stat(iter
, i
)));
1708 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1709 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1710 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1714 mutex_unlock(&oom_info_lock
);
1718 * This function returns the number of memcg under hierarchy tree. Returns
1719 * 1(self count) if no children.
1721 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1724 struct mem_cgroup
*iter
;
1726 for_each_mem_cgroup_tree(iter
, memcg
)
1732 * Return the memory (and swap, if configured) limit for a memcg.
1734 static u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1738 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1741 * Do not consider swap space if we cannot swap due to swappiness
1743 if (mem_cgroup_swappiness(memcg
)) {
1746 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1747 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1750 * If memsw is finite and limits the amount of swap space
1751 * available to this memcg, return that limit.
1753 limit
= min(limit
, memsw
);
1759 static void mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1762 struct mem_cgroup
*iter
;
1763 unsigned long chosen_points
= 0;
1764 unsigned long totalpages
;
1765 unsigned int points
= 0;
1766 struct task_struct
*chosen
= NULL
;
1769 * If current has a pending SIGKILL or is exiting, then automatically
1770 * select it. The goal is to allow it to allocate so that it may
1771 * quickly exit and free its memory.
1773 if (fatal_signal_pending(current
) || current
->flags
& PF_EXITING
) {
1774 set_thread_flag(TIF_MEMDIE
);
1778 check_panic_on_oom(CONSTRAINT_MEMCG
, gfp_mask
, order
, NULL
);
1779 totalpages
= mem_cgroup_get_limit(memcg
) >> PAGE_SHIFT
? : 1;
1780 for_each_mem_cgroup_tree(iter
, memcg
) {
1781 struct css_task_iter it
;
1782 struct task_struct
*task
;
1784 css_task_iter_start(&iter
->css
, &it
);
1785 while ((task
= css_task_iter_next(&it
))) {
1786 switch (oom_scan_process_thread(task
, totalpages
, NULL
,
1788 case OOM_SCAN_SELECT
:
1790 put_task_struct(chosen
);
1792 chosen_points
= ULONG_MAX
;
1793 get_task_struct(chosen
);
1795 case OOM_SCAN_CONTINUE
:
1797 case OOM_SCAN_ABORT
:
1798 css_task_iter_end(&it
);
1799 mem_cgroup_iter_break(memcg
, iter
);
1801 put_task_struct(chosen
);
1806 points
= oom_badness(task
, memcg
, NULL
, totalpages
);
1807 if (!points
|| points
< chosen_points
)
1809 /* Prefer thread group leaders for display purposes */
1810 if (points
== chosen_points
&&
1811 thread_group_leader(chosen
))
1815 put_task_struct(chosen
);
1817 chosen_points
= points
;
1818 get_task_struct(chosen
);
1820 css_task_iter_end(&it
);
1825 points
= chosen_points
* 1000 / totalpages
;
1826 oom_kill_process(chosen
, gfp_mask
, order
, points
, totalpages
, memcg
,
1827 NULL
, "Memory cgroup out of memory");
1830 static unsigned long mem_cgroup_reclaim(struct mem_cgroup
*memcg
,
1832 unsigned long flags
)
1834 unsigned long total
= 0;
1835 bool noswap
= false;
1838 if (flags
& MEM_CGROUP_RECLAIM_NOSWAP
)
1840 if (!(flags
& MEM_CGROUP_RECLAIM_SHRINK
) && memcg
->memsw_is_minimum
)
1843 for (loop
= 0; loop
< MEM_CGROUP_MAX_RECLAIM_LOOPS
; loop
++) {
1845 drain_all_stock_async(memcg
);
1846 total
+= try_to_free_mem_cgroup_pages(memcg
, gfp_mask
, noswap
);
1848 * Allow limit shrinkers, which are triggered directly
1849 * by userspace, to catch signals and stop reclaim
1850 * after minimal progress, regardless of the margin.
1852 if (total
&& (flags
& MEM_CGROUP_RECLAIM_SHRINK
))
1854 if (mem_cgroup_margin(memcg
))
1857 * If nothing was reclaimed after two attempts, there
1858 * may be no reclaimable pages in this hierarchy.
1867 * test_mem_cgroup_node_reclaimable
1868 * @memcg: the target memcg
1869 * @nid: the node ID to be checked.
1870 * @noswap : specify true here if the user wants flle only information.
1872 * This function returns whether the specified memcg contains any
1873 * reclaimable pages on a node. Returns true if there are any reclaimable
1874 * pages in the node.
1876 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1877 int nid
, bool noswap
)
1879 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1881 if (noswap
|| !total_swap_pages
)
1883 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1888 #if MAX_NUMNODES > 1
1891 * Always updating the nodemask is not very good - even if we have an empty
1892 * list or the wrong list here, we can start from some node and traverse all
1893 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1896 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1900 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1901 * pagein/pageout changes since the last update.
1903 if (!atomic_read(&memcg
->numainfo_events
))
1905 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1908 /* make a nodemask where this memcg uses memory from */
1909 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1911 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1913 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1914 node_clear(nid
, memcg
->scan_nodes
);
1917 atomic_set(&memcg
->numainfo_events
, 0);
1918 atomic_set(&memcg
->numainfo_updating
, 0);
1922 * Selecting a node where we start reclaim from. Because what we need is just
1923 * reducing usage counter, start from anywhere is O,K. Considering
1924 * memory reclaim from current node, there are pros. and cons.
1926 * Freeing memory from current node means freeing memory from a node which
1927 * we'll use or we've used. So, it may make LRU bad. And if several threads
1928 * hit limits, it will see a contention on a node. But freeing from remote
1929 * node means more costs for memory reclaim because of memory latency.
1931 * Now, we use round-robin. Better algorithm is welcomed.
1933 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1937 mem_cgroup_may_update_nodemask(memcg
);
1938 node
= memcg
->last_scanned_node
;
1940 node
= next_node(node
, memcg
->scan_nodes
);
1941 if (node
== MAX_NUMNODES
)
1942 node
= first_node(memcg
->scan_nodes
);
1944 * We call this when we hit limit, not when pages are added to LRU.
1945 * No LRU may hold pages because all pages are UNEVICTABLE or
1946 * memcg is too small and all pages are not on LRU. In that case,
1947 * we use curret node.
1949 if (unlikely(node
== MAX_NUMNODES
))
1950 node
= numa_node_id();
1952 memcg
->last_scanned_node
= node
;
1957 * Check all nodes whether it contains reclaimable pages or not.
1958 * For quick scan, we make use of scan_nodes. This will allow us to skip
1959 * unused nodes. But scan_nodes is lazily updated and may not cotain
1960 * enough new information. We need to do double check.
1962 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1967 * quick check...making use of scan_node.
1968 * We can skip unused nodes.
1970 if (!nodes_empty(memcg
->scan_nodes
)) {
1971 for (nid
= first_node(memcg
->scan_nodes
);
1973 nid
= next_node(nid
, memcg
->scan_nodes
)) {
1975 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1980 * Check rest of nodes.
1982 for_each_node_state(nid
, N_MEMORY
) {
1983 if (node_isset(nid
, memcg
->scan_nodes
))
1985 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1992 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1997 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1999 return test_mem_cgroup_node_reclaimable(memcg
, 0, noswap
);
2003 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
2006 unsigned long *total_scanned
)
2008 struct mem_cgroup
*victim
= NULL
;
2011 unsigned long excess
;
2012 unsigned long nr_scanned
;
2013 struct mem_cgroup_reclaim_cookie reclaim
= {
2018 excess
= res_counter_soft_limit_excess(&root_memcg
->res
) >> PAGE_SHIFT
;
2021 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
2026 * If we have not been able to reclaim
2027 * anything, it might because there are
2028 * no reclaimable pages under this hierarchy
2033 * We want to do more targeted reclaim.
2034 * excess >> 2 is not to excessive so as to
2035 * reclaim too much, nor too less that we keep
2036 * coming back to reclaim from this cgroup
2038 if (total
>= (excess
>> 2) ||
2039 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
2044 if (!mem_cgroup_reclaimable(victim
, false))
2046 total
+= mem_cgroup_shrink_node_zone(victim
, gfp_mask
, false,
2048 *total_scanned
+= nr_scanned
;
2049 if (!res_counter_soft_limit_excess(&root_memcg
->res
))
2052 mem_cgroup_iter_break(root_memcg
, victim
);
2056 #ifdef CONFIG_LOCKDEP
2057 static struct lockdep_map memcg_oom_lock_dep_map
= {
2058 .name
= "memcg_oom_lock",
2062 static DEFINE_SPINLOCK(memcg_oom_lock
);
2065 * Check OOM-Killer is already running under our hierarchy.
2066 * If someone is running, return false.
2068 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
2070 struct mem_cgroup
*iter
, *failed
= NULL
;
2072 spin_lock(&memcg_oom_lock
);
2074 for_each_mem_cgroup_tree(iter
, memcg
) {
2075 if (iter
->oom_lock
) {
2077 * this subtree of our hierarchy is already locked
2078 * so we cannot give a lock.
2081 mem_cgroup_iter_break(memcg
, iter
);
2084 iter
->oom_lock
= true;
2089 * OK, we failed to lock the whole subtree so we have
2090 * to clean up what we set up to the failing subtree
2092 for_each_mem_cgroup_tree(iter
, memcg
) {
2093 if (iter
== failed
) {
2094 mem_cgroup_iter_break(memcg
, iter
);
2097 iter
->oom_lock
= false;
2100 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
2102 spin_unlock(&memcg_oom_lock
);
2107 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
2109 struct mem_cgroup
*iter
;
2111 spin_lock(&memcg_oom_lock
);
2112 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
2113 for_each_mem_cgroup_tree(iter
, memcg
)
2114 iter
->oom_lock
= false;
2115 spin_unlock(&memcg_oom_lock
);
2118 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
2120 struct mem_cgroup
*iter
;
2122 for_each_mem_cgroup_tree(iter
, memcg
)
2123 atomic_inc(&iter
->under_oom
);
2126 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
2128 struct mem_cgroup
*iter
;
2131 * When a new child is created while the hierarchy is under oom,
2132 * mem_cgroup_oom_lock() may not be called. We have to use
2133 * atomic_add_unless() here.
2135 for_each_mem_cgroup_tree(iter
, memcg
)
2136 atomic_add_unless(&iter
->under_oom
, -1, 0);
2139 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
2141 struct oom_wait_info
{
2142 struct mem_cgroup
*memcg
;
2146 static int memcg_oom_wake_function(wait_queue_t
*wait
,
2147 unsigned mode
, int sync
, void *arg
)
2149 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
2150 struct mem_cgroup
*oom_wait_memcg
;
2151 struct oom_wait_info
*oom_wait_info
;
2153 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
2154 oom_wait_memcg
= oom_wait_info
->memcg
;
2157 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2158 * Then we can use css_is_ancestor without taking care of RCU.
2160 if (!mem_cgroup_same_or_subtree(oom_wait_memcg
, wake_memcg
)
2161 && !mem_cgroup_same_or_subtree(wake_memcg
, oom_wait_memcg
))
2163 return autoremove_wake_function(wait
, mode
, sync
, arg
);
2166 static void memcg_wakeup_oom(struct mem_cgroup
*memcg
)
2168 atomic_inc(&memcg
->oom_wakeups
);
2169 /* for filtering, pass "memcg" as argument. */
2170 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
2173 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
2175 if (memcg
&& atomic_read(&memcg
->under_oom
))
2176 memcg_wakeup_oom(memcg
);
2179 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
2181 if (!current
->memcg_oom
.may_oom
)
2184 * We are in the middle of the charge context here, so we
2185 * don't want to block when potentially sitting on a callstack
2186 * that holds all kinds of filesystem and mm locks.
2188 * Also, the caller may handle a failed allocation gracefully
2189 * (like optional page cache readahead) and so an OOM killer
2190 * invocation might not even be necessary.
2192 * That's why we don't do anything here except remember the
2193 * OOM context and then deal with it at the end of the page
2194 * fault when the stack is unwound, the locks are released,
2195 * and when we know whether the fault was overall successful.
2197 css_get(&memcg
->css
);
2198 current
->memcg_oom
.memcg
= memcg
;
2199 current
->memcg_oom
.gfp_mask
= mask
;
2200 current
->memcg_oom
.order
= order
;
2204 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2205 * @handle: actually kill/wait or just clean up the OOM state
2207 * This has to be called at the end of a page fault if the memcg OOM
2208 * handler was enabled.
2210 * Memcg supports userspace OOM handling where failed allocations must
2211 * sleep on a waitqueue until the userspace task resolves the
2212 * situation. Sleeping directly in the charge context with all kinds
2213 * of locks held is not a good idea, instead we remember an OOM state
2214 * in the task and mem_cgroup_oom_synchronize() has to be called at
2215 * the end of the page fault to complete the OOM handling.
2217 * Returns %true if an ongoing memcg OOM situation was detected and
2218 * completed, %false otherwise.
2220 bool mem_cgroup_oom_synchronize(bool handle
)
2222 struct mem_cgroup
*memcg
= current
->memcg_oom
.memcg
;
2223 struct oom_wait_info owait
;
2226 /* OOM is global, do not handle */
2233 owait
.memcg
= memcg
;
2234 owait
.wait
.flags
= 0;
2235 owait
.wait
.func
= memcg_oom_wake_function
;
2236 owait
.wait
.private = current
;
2237 INIT_LIST_HEAD(&owait
.wait
.task_list
);
2239 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
2240 mem_cgroup_mark_under_oom(memcg
);
2242 locked
= mem_cgroup_oom_trylock(memcg
);
2245 mem_cgroup_oom_notify(memcg
);
2247 if (locked
&& !memcg
->oom_kill_disable
) {
2248 mem_cgroup_unmark_under_oom(memcg
);
2249 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
2250 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom
.gfp_mask
,
2251 current
->memcg_oom
.order
);
2254 mem_cgroup_unmark_under_oom(memcg
);
2255 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
2259 mem_cgroup_oom_unlock(memcg
);
2261 * There is no guarantee that an OOM-lock contender
2262 * sees the wakeups triggered by the OOM kill
2263 * uncharges. Wake any sleepers explicitely.
2265 memcg_oom_recover(memcg
);
2268 current
->memcg_oom
.memcg
= NULL
;
2269 css_put(&memcg
->css
);
2274 * Used to update mapped file or writeback or other statistics.
2276 * Notes: Race condition
2278 * We usually use lock_page_cgroup() for accessing page_cgroup member but
2279 * it tends to be costly. But considering some conditions, we doesn't need
2280 * to do so _always_.
2282 * Considering "charge", lock_page_cgroup() is not required because all
2283 * file-stat operations happen after a page is attached to radix-tree. There
2284 * are no race with "charge".
2286 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2287 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2288 * if there are race with "uncharge". Statistics itself is properly handled
2291 * Considering "move", this is an only case we see a race. To make the race
2292 * small, we check memcg->moving_account and detect there are possibility
2293 * of race or not. If there is, we take a lock.
2296 void __mem_cgroup_begin_update_page_stat(struct page
*page
,
2297 bool *locked
, unsigned long *flags
)
2299 struct mem_cgroup
*memcg
;
2300 struct page_cgroup
*pc
;
2302 pc
= lookup_page_cgroup(page
);
2304 memcg
= pc
->mem_cgroup
;
2305 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
2308 * If this memory cgroup is not under account moving, we don't
2309 * need to take move_lock_mem_cgroup(). Because we already hold
2310 * rcu_read_lock(), any calls to move_account will be delayed until
2311 * rcu_read_unlock().
2313 VM_BUG_ON(!rcu_read_lock_held());
2314 if (atomic_read(&memcg
->moving_account
) <= 0)
2317 move_lock_mem_cgroup(memcg
, flags
);
2318 if (memcg
!= pc
->mem_cgroup
|| !PageCgroupUsed(pc
)) {
2319 move_unlock_mem_cgroup(memcg
, flags
);
2325 void __mem_cgroup_end_update_page_stat(struct page
*page
, unsigned long *flags
)
2327 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2330 * It's guaranteed that pc->mem_cgroup never changes while
2331 * lock is held because a routine modifies pc->mem_cgroup
2332 * should take move_lock_mem_cgroup().
2334 move_unlock_mem_cgroup(pc
->mem_cgroup
, flags
);
2337 void mem_cgroup_update_page_stat(struct page
*page
,
2338 enum mem_cgroup_stat_index idx
, int val
)
2340 struct mem_cgroup
*memcg
;
2341 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2342 unsigned long uninitialized_var(flags
);
2344 if (mem_cgroup_disabled())
2347 VM_BUG_ON(!rcu_read_lock_held());
2348 memcg
= pc
->mem_cgroup
;
2349 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
2352 this_cpu_add(memcg
->stat
->count
[idx
], val
);
2356 * size of first charge trial. "32" comes from vmscan.c's magic value.
2357 * TODO: maybe necessary to use big numbers in big irons.
2359 #define CHARGE_BATCH 32U
2360 struct memcg_stock_pcp
{
2361 struct mem_cgroup
*cached
; /* this never be root cgroup */
2362 unsigned int nr_pages
;
2363 struct work_struct work
;
2364 unsigned long flags
;
2365 #define FLUSHING_CACHED_CHARGE 0
2367 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
2368 static DEFINE_MUTEX(percpu_charge_mutex
);
2371 * consume_stock: Try to consume stocked charge on this cpu.
2372 * @memcg: memcg to consume from.
2373 * @nr_pages: how many pages to charge.
2375 * The charges will only happen if @memcg matches the current cpu's memcg
2376 * stock, and at least @nr_pages are available in that stock. Failure to
2377 * service an allocation will refill the stock.
2379 * returns true if successful, false otherwise.
2381 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2383 struct memcg_stock_pcp
*stock
;
2386 if (nr_pages
> CHARGE_BATCH
)
2389 stock
= &get_cpu_var(memcg_stock
);
2390 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
)
2391 stock
->nr_pages
-= nr_pages
;
2392 else /* need to call res_counter_charge */
2394 put_cpu_var(memcg_stock
);
2399 * Returns stocks cached in percpu to res_counter and reset cached information.
2401 static void drain_stock(struct memcg_stock_pcp
*stock
)
2403 struct mem_cgroup
*old
= stock
->cached
;
2405 if (stock
->nr_pages
) {
2406 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
2408 res_counter_uncharge(&old
->res
, bytes
);
2409 if (do_swap_account
)
2410 res_counter_uncharge(&old
->memsw
, bytes
);
2411 stock
->nr_pages
= 0;
2413 stock
->cached
= NULL
;
2417 * This must be called under preempt disabled or must be called by
2418 * a thread which is pinned to local cpu.
2420 static void drain_local_stock(struct work_struct
*dummy
)
2422 struct memcg_stock_pcp
*stock
= this_cpu_ptr(&memcg_stock
);
2424 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2427 static void __init
memcg_stock_init(void)
2431 for_each_possible_cpu(cpu
) {
2432 struct memcg_stock_pcp
*stock
=
2433 &per_cpu(memcg_stock
, cpu
);
2434 INIT_WORK(&stock
->work
, drain_local_stock
);
2439 * Cache charges(val) which is from res_counter, to local per_cpu area.
2440 * This will be consumed by consume_stock() function, later.
2442 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2444 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2446 if (stock
->cached
!= memcg
) { /* reset if necessary */
2448 stock
->cached
= memcg
;
2450 stock
->nr_pages
+= nr_pages
;
2451 put_cpu_var(memcg_stock
);
2455 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2456 * of the hierarchy under it. sync flag says whether we should block
2457 * until the work is done.
2459 static void drain_all_stock(struct mem_cgroup
*root_memcg
, bool sync
)
2463 /* Notify other cpus that system-wide "drain" is running */
2466 for_each_online_cpu(cpu
) {
2467 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2468 struct mem_cgroup
*memcg
;
2470 memcg
= stock
->cached
;
2471 if (!memcg
|| !stock
->nr_pages
)
2473 if (!mem_cgroup_same_or_subtree(root_memcg
, memcg
))
2475 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2477 drain_local_stock(&stock
->work
);
2479 schedule_work_on(cpu
, &stock
->work
);
2487 for_each_online_cpu(cpu
) {
2488 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2489 if (test_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2490 flush_work(&stock
->work
);
2497 * Tries to drain stocked charges in other cpus. This function is asynchronous
2498 * and just put a work per cpu for draining localy on each cpu. Caller can
2499 * expects some charges will be back to res_counter later but cannot wait for
2502 static void drain_all_stock_async(struct mem_cgroup
*root_memcg
)
2505 * If someone calls draining, avoid adding more kworker runs.
2507 if (!mutex_trylock(&percpu_charge_mutex
))
2509 drain_all_stock(root_memcg
, false);
2510 mutex_unlock(&percpu_charge_mutex
);
2513 /* This is a synchronous drain interface. */
2514 static void drain_all_stock_sync(struct mem_cgroup
*root_memcg
)
2516 /* called when force_empty is called */
2517 mutex_lock(&percpu_charge_mutex
);
2518 drain_all_stock(root_memcg
, true);
2519 mutex_unlock(&percpu_charge_mutex
);
2523 * This function drains percpu counter value from DEAD cpu and
2524 * move it to local cpu. Note that this function can be preempted.
2526 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*memcg
, int cpu
)
2530 spin_lock(&memcg
->pcp_counter_lock
);
2531 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
2532 long x
= per_cpu(memcg
->stat
->count
[i
], cpu
);
2534 per_cpu(memcg
->stat
->count
[i
], cpu
) = 0;
2535 memcg
->nocpu_base
.count
[i
] += x
;
2537 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2538 unsigned long x
= per_cpu(memcg
->stat
->events
[i
], cpu
);
2540 per_cpu(memcg
->stat
->events
[i
], cpu
) = 0;
2541 memcg
->nocpu_base
.events
[i
] += x
;
2543 spin_unlock(&memcg
->pcp_counter_lock
);
2546 static int memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2547 unsigned long action
,
2550 int cpu
= (unsigned long)hcpu
;
2551 struct memcg_stock_pcp
*stock
;
2552 struct mem_cgroup
*iter
;
2554 if (action
== CPU_ONLINE
)
2557 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
2560 for_each_mem_cgroup(iter
)
2561 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2563 stock
= &per_cpu(memcg_stock
, cpu
);
2569 /* See mem_cgroup_try_charge() for details */
2571 CHARGE_OK
, /* success */
2572 CHARGE_RETRY
, /* need to retry but retry is not bad */
2573 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
2574 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
2577 static int mem_cgroup_do_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2578 unsigned int nr_pages
, unsigned int min_pages
,
2581 unsigned long csize
= nr_pages
* PAGE_SIZE
;
2582 struct mem_cgroup
*mem_over_limit
;
2583 struct res_counter
*fail_res
;
2584 unsigned long flags
= 0;
2587 ret
= res_counter_charge(&memcg
->res
, csize
, &fail_res
);
2590 if (!do_swap_account
)
2592 ret
= res_counter_charge(&memcg
->memsw
, csize
, &fail_res
);
2596 res_counter_uncharge(&memcg
->res
, csize
);
2597 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2598 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2600 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2602 * Never reclaim on behalf of optional batching, retry with a
2603 * single page instead.
2605 if (nr_pages
> min_pages
)
2606 return CHARGE_RETRY
;
2608 if (!(gfp_mask
& __GFP_WAIT
))
2609 return CHARGE_WOULDBLOCK
;
2611 if (gfp_mask
& __GFP_NORETRY
)
2612 return CHARGE_NOMEM
;
2614 ret
= mem_cgroup_reclaim(mem_over_limit
, gfp_mask
, flags
);
2615 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2616 return CHARGE_RETRY
;
2618 * Even though the limit is exceeded at this point, reclaim
2619 * may have been able to free some pages. Retry the charge
2620 * before killing the task.
2622 * Only for regular pages, though: huge pages are rather
2623 * unlikely to succeed so close to the limit, and we fall back
2624 * to regular pages anyway in case of failure.
2626 if (nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
) && ret
)
2627 return CHARGE_RETRY
;
2630 * At task move, charge accounts can be doubly counted. So, it's
2631 * better to wait until the end of task_move if something is going on.
2633 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2634 return CHARGE_RETRY
;
2637 mem_cgroup_oom(mem_over_limit
, gfp_mask
, get_order(csize
));
2639 return CHARGE_NOMEM
;
2643 * mem_cgroup_try_charge - try charging a memcg
2644 * @memcg: memcg to charge
2645 * @nr_pages: number of pages to charge
2646 * @oom: trigger OOM if reclaim fails
2648 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
2649 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
2651 static int mem_cgroup_try_charge(struct mem_cgroup
*memcg
,
2653 unsigned int nr_pages
,
2656 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2657 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2660 if (mem_cgroup_is_root(memcg
))
2663 * Unlike in global OOM situations, memcg is not in a physical
2664 * memory shortage. Allow dying and OOM-killed tasks to
2665 * bypass the last charges so that they can exit quickly and
2666 * free their memory.
2668 if (unlikely(test_thread_flag(TIF_MEMDIE
) ||
2669 fatal_signal_pending(current
) ||
2670 current
->flags
& PF_EXITING
))
2673 if (unlikely(task_in_memcg_oom(current
)))
2676 if (gfp_mask
& __GFP_NOFAIL
)
2679 if (consume_stock(memcg
, nr_pages
))
2683 bool invoke_oom
= oom
&& !nr_oom_retries
;
2685 /* If killed, bypass charge */
2686 if (fatal_signal_pending(current
))
2689 ret
= mem_cgroup_do_charge(memcg
, gfp_mask
, batch
,
2690 nr_pages
, invoke_oom
);
2694 case CHARGE_RETRY
: /* not in OOM situation but retry */
2697 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2699 case CHARGE_NOMEM
: /* OOM routine works */
2700 if (!oom
|| invoke_oom
)
2705 } while (ret
!= CHARGE_OK
);
2707 if (batch
> nr_pages
)
2708 refill_stock(memcg
, batch
- nr_pages
);
2712 if (!(gfp_mask
& __GFP_NOFAIL
))
2719 * mem_cgroup_try_charge_mm - try charging a mm
2720 * @mm: mm_struct to charge
2721 * @nr_pages: number of pages to charge
2722 * @oom: trigger OOM if reclaim fails
2724 * Returns the charged mem_cgroup associated with the given mm_struct or
2725 * NULL the charge failed.
2727 static struct mem_cgroup
*mem_cgroup_try_charge_mm(struct mm_struct
*mm
,
2729 unsigned int nr_pages
,
2733 struct mem_cgroup
*memcg
;
2736 memcg
= get_mem_cgroup_from_mm(mm
);
2737 ret
= mem_cgroup_try_charge(memcg
, gfp_mask
, nr_pages
, oom
);
2738 css_put(&memcg
->css
);
2740 memcg
= root_mem_cgroup
;
2748 * Somemtimes we have to undo a charge we got by try_charge().
2749 * This function is for that and do uncharge, put css's refcnt.
2750 * gotten by try_charge().
2752 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*memcg
,
2753 unsigned int nr_pages
)
2755 if (!mem_cgroup_is_root(memcg
)) {
2756 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2758 res_counter_uncharge(&memcg
->res
, bytes
);
2759 if (do_swap_account
)
2760 res_counter_uncharge(&memcg
->memsw
, bytes
);
2765 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2766 * This is useful when moving usage to parent cgroup.
2768 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup
*memcg
,
2769 unsigned int nr_pages
)
2771 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2773 if (mem_cgroup_is_root(memcg
))
2776 res_counter_uncharge_until(&memcg
->res
, memcg
->res
.parent
, bytes
);
2777 if (do_swap_account
)
2778 res_counter_uncharge_until(&memcg
->memsw
,
2779 memcg
->memsw
.parent
, bytes
);
2783 * A helper function to get mem_cgroup from ID. must be called under
2784 * rcu_read_lock(). The caller is responsible for calling
2785 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2786 * refcnt from swap can be called against removed memcg.)
2788 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2790 /* ID 0 is unused ID */
2793 return mem_cgroup_from_id(id
);
2796 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2798 struct mem_cgroup
*memcg
= NULL
;
2799 struct page_cgroup
*pc
;
2803 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2805 pc
= lookup_page_cgroup(page
);
2806 lock_page_cgroup(pc
);
2807 if (PageCgroupUsed(pc
)) {
2808 memcg
= pc
->mem_cgroup
;
2809 if (memcg
&& !css_tryget_online(&memcg
->css
))
2811 } else if (PageSwapCache(page
)) {
2812 ent
.val
= page_private(page
);
2813 id
= lookup_swap_cgroup_id(ent
);
2815 memcg
= mem_cgroup_lookup(id
);
2816 if (memcg
&& !css_tryget_online(&memcg
->css
))
2820 unlock_page_cgroup(pc
);
2824 static void __mem_cgroup_commit_charge(struct mem_cgroup
*memcg
,
2826 unsigned int nr_pages
,
2827 enum charge_type ctype
,
2830 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2831 struct zone
*uninitialized_var(zone
);
2832 struct lruvec
*lruvec
;
2833 bool was_on_lru
= false;
2836 lock_page_cgroup(pc
);
2837 VM_BUG_ON_PAGE(PageCgroupUsed(pc
), page
);
2839 * we don't need page_cgroup_lock about tail pages, becase they are not
2840 * accessed by any other context at this point.
2844 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2845 * may already be on some other mem_cgroup's LRU. Take care of it.
2848 zone
= page_zone(page
);
2849 spin_lock_irq(&zone
->lru_lock
);
2850 if (PageLRU(page
)) {
2851 lruvec
= mem_cgroup_zone_lruvec(zone
, pc
->mem_cgroup
);
2853 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2858 pc
->mem_cgroup
= memcg
;
2860 * We access a page_cgroup asynchronously without lock_page_cgroup().
2861 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2862 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2863 * before USED bit, we need memory barrier here.
2864 * See mem_cgroup_add_lru_list(), etc.
2867 SetPageCgroupUsed(pc
);
2871 lruvec
= mem_cgroup_zone_lruvec(zone
, pc
->mem_cgroup
);
2872 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2874 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2876 spin_unlock_irq(&zone
->lru_lock
);
2879 if (ctype
== MEM_CGROUP_CHARGE_TYPE_ANON
)
2884 mem_cgroup_charge_statistics(memcg
, page
, anon
, nr_pages
);
2885 unlock_page_cgroup(pc
);
2888 * "charge_statistics" updated event counter. Then, check it.
2889 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2890 * if they exceeds softlimit.
2892 memcg_check_events(memcg
, page
);
2895 static DEFINE_MUTEX(set_limit_mutex
);
2897 #ifdef CONFIG_MEMCG_KMEM
2899 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2900 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2902 static DEFINE_MUTEX(memcg_slab_mutex
);
2904 static DEFINE_MUTEX(activate_kmem_mutex
);
2906 static inline bool memcg_can_account_kmem(struct mem_cgroup
*memcg
)
2908 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg
) &&
2909 memcg_kmem_is_active(memcg
);
2913 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2914 * in the memcg_cache_params struct.
2916 static struct kmem_cache
*memcg_params_to_cache(struct memcg_cache_params
*p
)
2918 struct kmem_cache
*cachep
;
2920 VM_BUG_ON(p
->is_root_cache
);
2921 cachep
= p
->root_cache
;
2922 return cache_from_memcg_idx(cachep
, memcg_cache_id(p
->memcg
));
2925 #ifdef CONFIG_SLABINFO
2926 static int mem_cgroup_slabinfo_read(struct seq_file
*m
, void *v
)
2928 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
2929 struct memcg_cache_params
*params
;
2931 if (!memcg_can_account_kmem(memcg
))
2934 print_slabinfo_header(m
);
2936 mutex_lock(&memcg_slab_mutex
);
2937 list_for_each_entry(params
, &memcg
->memcg_slab_caches
, list
)
2938 cache_show(memcg_params_to_cache(params
), m
);
2939 mutex_unlock(&memcg_slab_mutex
);
2945 static int memcg_charge_kmem(struct mem_cgroup
*memcg
, gfp_t gfp
, u64 size
)
2947 struct res_counter
*fail_res
;
2950 ret
= res_counter_charge(&memcg
->kmem
, size
, &fail_res
);
2954 ret
= mem_cgroup_try_charge(memcg
, gfp
, size
>> PAGE_SHIFT
,
2955 oom_gfp_allowed(gfp
));
2956 if (ret
== -EINTR
) {
2958 * mem_cgroup_try_charge() chosed to bypass to root due to
2959 * OOM kill or fatal signal. Since our only options are to
2960 * either fail the allocation or charge it to this cgroup, do
2961 * it as a temporary condition. But we can't fail. From a
2962 * kmem/slab perspective, the cache has already been selected,
2963 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2966 * This condition will only trigger if the task entered
2967 * memcg_charge_kmem in a sane state, but was OOM-killed during
2968 * mem_cgroup_try_charge() above. Tasks that were already
2969 * dying when the allocation triggers should have been already
2970 * directed to the root cgroup in memcontrol.h
2972 res_counter_charge_nofail(&memcg
->res
, size
, &fail_res
);
2973 if (do_swap_account
)
2974 res_counter_charge_nofail(&memcg
->memsw
, size
,
2978 res_counter_uncharge(&memcg
->kmem
, size
);
2983 static void memcg_uncharge_kmem(struct mem_cgroup
*memcg
, u64 size
)
2985 res_counter_uncharge(&memcg
->res
, size
);
2986 if (do_swap_account
)
2987 res_counter_uncharge(&memcg
->memsw
, size
);
2990 if (res_counter_uncharge(&memcg
->kmem
, size
))
2994 * Releases a reference taken in kmem_cgroup_css_offline in case
2995 * this last uncharge is racing with the offlining code or it is
2996 * outliving the memcg existence.
2998 * The memory barrier imposed by test&clear is paired with the
2999 * explicit one in memcg_kmem_mark_dead().
3001 if (memcg_kmem_test_and_clear_dead(memcg
))
3002 css_put(&memcg
->css
);
3006 * helper for acessing a memcg's index. It will be used as an index in the
3007 * child cache array in kmem_cache, and also to derive its name. This function
3008 * will return -1 when this is not a kmem-limited memcg.
3010 int memcg_cache_id(struct mem_cgroup
*memcg
)
3012 return memcg
? memcg
->kmemcg_id
: -1;
3015 static size_t memcg_caches_array_size(int num_groups
)
3018 if (num_groups
<= 0)
3021 size
= 2 * num_groups
;
3022 if (size
< MEMCG_CACHES_MIN_SIZE
)
3023 size
= MEMCG_CACHES_MIN_SIZE
;
3024 else if (size
> MEMCG_CACHES_MAX_SIZE
)
3025 size
= MEMCG_CACHES_MAX_SIZE
;
3031 * We should update the current array size iff all caches updates succeed. This
3032 * can only be done from the slab side. The slab mutex needs to be held when
3035 void memcg_update_array_size(int num
)
3037 if (num
> memcg_limited_groups_array_size
)
3038 memcg_limited_groups_array_size
= memcg_caches_array_size(num
);
3041 int memcg_update_cache_size(struct kmem_cache
*s
, int num_groups
)
3043 struct memcg_cache_params
*cur_params
= s
->memcg_params
;
3045 VM_BUG_ON(!is_root_cache(s
));
3047 if (num_groups
> memcg_limited_groups_array_size
) {
3049 struct memcg_cache_params
*new_params
;
3050 ssize_t size
= memcg_caches_array_size(num_groups
);
3052 size
*= sizeof(void *);
3053 size
+= offsetof(struct memcg_cache_params
, memcg_caches
);
3055 new_params
= kzalloc(size
, GFP_KERNEL
);
3059 new_params
->is_root_cache
= true;
3062 * There is the chance it will be bigger than
3063 * memcg_limited_groups_array_size, if we failed an allocation
3064 * in a cache, in which case all caches updated before it, will
3065 * have a bigger array.
3067 * But if that is the case, the data after
3068 * memcg_limited_groups_array_size is certainly unused
3070 for (i
= 0; i
< memcg_limited_groups_array_size
; i
++) {
3071 if (!cur_params
->memcg_caches
[i
])
3073 new_params
->memcg_caches
[i
] =
3074 cur_params
->memcg_caches
[i
];
3078 * Ideally, we would wait until all caches succeed, and only
3079 * then free the old one. But this is not worth the extra
3080 * pointer per-cache we'd have to have for this.
3082 * It is not a big deal if some caches are left with a size
3083 * bigger than the others. And all updates will reset this
3086 rcu_assign_pointer(s
->memcg_params
, new_params
);
3088 kfree_rcu(cur_params
, rcu_head
);
3093 int memcg_alloc_cache_params(struct mem_cgroup
*memcg
, struct kmem_cache
*s
,
3094 struct kmem_cache
*root_cache
)
3098 if (!memcg_kmem_enabled())
3102 size
= offsetof(struct memcg_cache_params
, memcg_caches
);
3103 size
+= memcg_limited_groups_array_size
* sizeof(void *);
3105 size
= sizeof(struct memcg_cache_params
);
3107 s
->memcg_params
= kzalloc(size
, GFP_KERNEL
);
3108 if (!s
->memcg_params
)
3112 s
->memcg_params
->memcg
= memcg
;
3113 s
->memcg_params
->root_cache
= root_cache
;
3114 css_get(&memcg
->css
);
3116 s
->memcg_params
->is_root_cache
= true;
3121 void memcg_free_cache_params(struct kmem_cache
*s
)
3123 if (!s
->memcg_params
)
3125 if (!s
->memcg_params
->is_root_cache
)
3126 css_put(&s
->memcg_params
->memcg
->css
);
3127 kfree(s
->memcg_params
);
3130 static void memcg_register_cache(struct mem_cgroup
*memcg
,
3131 struct kmem_cache
*root_cache
)
3133 static char memcg_name_buf
[NAME_MAX
+ 1]; /* protected by
3135 struct kmem_cache
*cachep
;
3138 lockdep_assert_held(&memcg_slab_mutex
);
3140 id
= memcg_cache_id(memcg
);
3143 * Since per-memcg caches are created asynchronously on first
3144 * allocation (see memcg_kmem_get_cache()), several threads can try to
3145 * create the same cache, but only one of them may succeed.
3147 if (cache_from_memcg_idx(root_cache
, id
))
3150 cgroup_name(memcg
->css
.cgroup
, memcg_name_buf
, NAME_MAX
+ 1);
3151 cachep
= memcg_create_kmem_cache(memcg
, root_cache
, memcg_name_buf
);
3153 * If we could not create a memcg cache, do not complain, because
3154 * that's not critical at all as we can always proceed with the root
3160 list_add(&cachep
->memcg_params
->list
, &memcg
->memcg_slab_caches
);
3163 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3164 * barrier here to ensure nobody will see the kmem_cache partially
3169 BUG_ON(root_cache
->memcg_params
->memcg_caches
[id
]);
3170 root_cache
->memcg_params
->memcg_caches
[id
] = cachep
;
3173 static void memcg_unregister_cache(struct kmem_cache
*cachep
)
3175 struct kmem_cache
*root_cache
;
3176 struct mem_cgroup
*memcg
;
3179 lockdep_assert_held(&memcg_slab_mutex
);
3181 BUG_ON(is_root_cache(cachep
));
3183 root_cache
= cachep
->memcg_params
->root_cache
;
3184 memcg
= cachep
->memcg_params
->memcg
;
3185 id
= memcg_cache_id(memcg
);
3187 BUG_ON(root_cache
->memcg_params
->memcg_caches
[id
] != cachep
);
3188 root_cache
->memcg_params
->memcg_caches
[id
] = NULL
;
3190 list_del(&cachep
->memcg_params
->list
);
3192 kmem_cache_destroy(cachep
);
3196 * During the creation a new cache, we need to disable our accounting mechanism
3197 * altogether. This is true even if we are not creating, but rather just
3198 * enqueing new caches to be created.
3200 * This is because that process will trigger allocations; some visible, like
3201 * explicit kmallocs to auxiliary data structures, name strings and internal
3202 * cache structures; some well concealed, like INIT_WORK() that can allocate
3203 * objects during debug.
3205 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3206 * to it. This may not be a bounded recursion: since the first cache creation
3207 * failed to complete (waiting on the allocation), we'll just try to create the
3208 * cache again, failing at the same point.
3210 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3211 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3212 * inside the following two functions.
3214 static inline void memcg_stop_kmem_account(void)
3216 VM_BUG_ON(!current
->mm
);
3217 current
->memcg_kmem_skip_account
++;
3220 static inline void memcg_resume_kmem_account(void)
3222 VM_BUG_ON(!current
->mm
);
3223 current
->memcg_kmem_skip_account
--;
3226 int __memcg_cleanup_cache_params(struct kmem_cache
*s
)
3228 struct kmem_cache
*c
;
3231 mutex_lock(&memcg_slab_mutex
);
3232 for_each_memcg_cache_index(i
) {
3233 c
= cache_from_memcg_idx(s
, i
);
3237 memcg_unregister_cache(c
);
3239 if (cache_from_memcg_idx(s
, i
))
3242 mutex_unlock(&memcg_slab_mutex
);
3246 static void memcg_unregister_all_caches(struct mem_cgroup
*memcg
)
3248 struct kmem_cache
*cachep
;
3249 struct memcg_cache_params
*params
, *tmp
;
3251 if (!memcg_kmem_is_active(memcg
))
3254 mutex_lock(&memcg_slab_mutex
);
3255 list_for_each_entry_safe(params
, tmp
, &memcg
->memcg_slab_caches
, list
) {
3256 cachep
= memcg_params_to_cache(params
);
3257 kmem_cache_shrink(cachep
);
3258 if (atomic_read(&cachep
->memcg_params
->nr_pages
) == 0)
3259 memcg_unregister_cache(cachep
);
3261 mutex_unlock(&memcg_slab_mutex
);
3264 struct memcg_register_cache_work
{
3265 struct mem_cgroup
*memcg
;
3266 struct kmem_cache
*cachep
;
3267 struct work_struct work
;
3270 static void memcg_register_cache_func(struct work_struct
*w
)
3272 struct memcg_register_cache_work
*cw
=
3273 container_of(w
, struct memcg_register_cache_work
, work
);
3274 struct mem_cgroup
*memcg
= cw
->memcg
;
3275 struct kmem_cache
*cachep
= cw
->cachep
;
3277 mutex_lock(&memcg_slab_mutex
);
3278 memcg_register_cache(memcg
, cachep
);
3279 mutex_unlock(&memcg_slab_mutex
);
3281 css_put(&memcg
->css
);
3286 * Enqueue the creation of a per-memcg kmem_cache.
3288 static void __memcg_schedule_register_cache(struct mem_cgroup
*memcg
,
3289 struct kmem_cache
*cachep
)
3291 struct memcg_register_cache_work
*cw
;
3293 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
);
3295 css_put(&memcg
->css
);
3300 cw
->cachep
= cachep
;
3302 INIT_WORK(&cw
->work
, memcg_register_cache_func
);
3303 schedule_work(&cw
->work
);
3306 static void memcg_schedule_register_cache(struct mem_cgroup
*memcg
,
3307 struct kmem_cache
*cachep
)
3310 * We need to stop accounting when we kmalloc, because if the
3311 * corresponding kmalloc cache is not yet created, the first allocation
3312 * in __memcg_schedule_register_cache will recurse.
3314 * However, it is better to enclose the whole function. Depending on
3315 * the debugging options enabled, INIT_WORK(), for instance, can
3316 * trigger an allocation. This too, will make us recurse. Because at
3317 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3318 * the safest choice is to do it like this, wrapping the whole function.
3320 memcg_stop_kmem_account();
3321 __memcg_schedule_register_cache(memcg
, cachep
);
3322 memcg_resume_kmem_account();
3325 int __memcg_charge_slab(struct kmem_cache
*cachep
, gfp_t gfp
, int order
)
3329 res
= memcg_charge_kmem(cachep
->memcg_params
->memcg
, gfp
,
3330 PAGE_SIZE
<< order
);
3332 atomic_add(1 << order
, &cachep
->memcg_params
->nr_pages
);
3336 void __memcg_uncharge_slab(struct kmem_cache
*cachep
, int order
)
3338 memcg_uncharge_kmem(cachep
->memcg_params
->memcg
, PAGE_SIZE
<< order
);
3339 atomic_sub(1 << order
, &cachep
->memcg_params
->nr_pages
);
3343 * Return the kmem_cache we're supposed to use for a slab allocation.
3344 * We try to use the current memcg's version of the cache.
3346 * If the cache does not exist yet, if we are the first user of it,
3347 * we either create it immediately, if possible, or create it asynchronously
3349 * In the latter case, we will let the current allocation go through with
3350 * the original cache.
3352 * Can't be called in interrupt context or from kernel threads.
3353 * This function needs to be called with rcu_read_lock() held.
3355 struct kmem_cache
*__memcg_kmem_get_cache(struct kmem_cache
*cachep
,
3358 struct mem_cgroup
*memcg
;
3359 struct kmem_cache
*memcg_cachep
;
3361 VM_BUG_ON(!cachep
->memcg_params
);
3362 VM_BUG_ON(!cachep
->memcg_params
->is_root_cache
);
3364 if (!current
->mm
|| current
->memcg_kmem_skip_account
)
3368 memcg
= mem_cgroup_from_task(rcu_dereference(current
->mm
->owner
));
3370 if (!memcg_can_account_kmem(memcg
))
3373 memcg_cachep
= cache_from_memcg_idx(cachep
, memcg_cache_id(memcg
));
3374 if (likely(memcg_cachep
)) {
3375 cachep
= memcg_cachep
;
3379 /* The corresponding put will be done in the workqueue. */
3380 if (!css_tryget_online(&memcg
->css
))
3385 * If we are in a safe context (can wait, and not in interrupt
3386 * context), we could be be predictable and return right away.
3387 * This would guarantee that the allocation being performed
3388 * already belongs in the new cache.
3390 * However, there are some clashes that can arrive from locking.
3391 * For instance, because we acquire the slab_mutex while doing
3392 * memcg_create_kmem_cache, this means no further allocation
3393 * could happen with the slab_mutex held. So it's better to
3396 memcg_schedule_register_cache(memcg
, cachep
);
3404 * We need to verify if the allocation against current->mm->owner's memcg is
3405 * possible for the given order. But the page is not allocated yet, so we'll
3406 * need a further commit step to do the final arrangements.
3408 * It is possible for the task to switch cgroups in this mean time, so at
3409 * commit time, we can't rely on task conversion any longer. We'll then use
3410 * the handle argument to return to the caller which cgroup we should commit
3411 * against. We could also return the memcg directly and avoid the pointer
3412 * passing, but a boolean return value gives better semantics considering
3413 * the compiled-out case as well.
3415 * Returning true means the allocation is possible.
3418 __memcg_kmem_newpage_charge(gfp_t gfp
, struct mem_cgroup
**_memcg
, int order
)
3420 struct mem_cgroup
*memcg
;
3426 * Disabling accounting is only relevant for some specific memcg
3427 * internal allocations. Therefore we would initially not have such
3428 * check here, since direct calls to the page allocator that are
3429 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3430 * outside memcg core. We are mostly concerned with cache allocations,
3431 * and by having this test at memcg_kmem_get_cache, we are already able
3432 * to relay the allocation to the root cache and bypass the memcg cache
3435 * There is one exception, though: the SLUB allocator does not create
3436 * large order caches, but rather service large kmallocs directly from
3437 * the page allocator. Therefore, the following sequence when backed by
3438 * the SLUB allocator:
3440 * memcg_stop_kmem_account();
3441 * kmalloc(<large_number>)
3442 * memcg_resume_kmem_account();
3444 * would effectively ignore the fact that we should skip accounting,
3445 * since it will drive us directly to this function without passing
3446 * through the cache selector memcg_kmem_get_cache. Such large
3447 * allocations are extremely rare but can happen, for instance, for the
3448 * cache arrays. We bring this test here.
3450 if (!current
->mm
|| current
->memcg_kmem_skip_account
)
3453 memcg
= get_mem_cgroup_from_mm(current
->mm
);
3455 if (!memcg_can_account_kmem(memcg
)) {
3456 css_put(&memcg
->css
);
3460 ret
= memcg_charge_kmem(memcg
, gfp
, PAGE_SIZE
<< order
);
3464 css_put(&memcg
->css
);
3468 void __memcg_kmem_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
3471 struct page_cgroup
*pc
;
3473 VM_BUG_ON(mem_cgroup_is_root(memcg
));
3475 /* The page allocation failed. Revert */
3477 memcg_uncharge_kmem(memcg
, PAGE_SIZE
<< order
);
3481 pc
= lookup_page_cgroup(page
);
3482 lock_page_cgroup(pc
);
3483 pc
->mem_cgroup
= memcg
;
3484 SetPageCgroupUsed(pc
);
3485 unlock_page_cgroup(pc
);
3488 void __memcg_kmem_uncharge_pages(struct page
*page
, int order
)
3490 struct mem_cgroup
*memcg
= NULL
;
3491 struct page_cgroup
*pc
;
3494 pc
= lookup_page_cgroup(page
);
3496 * Fast unlocked return. Theoretically might have changed, have to
3497 * check again after locking.
3499 if (!PageCgroupUsed(pc
))
3502 lock_page_cgroup(pc
);
3503 if (PageCgroupUsed(pc
)) {
3504 memcg
= pc
->mem_cgroup
;
3505 ClearPageCgroupUsed(pc
);
3507 unlock_page_cgroup(pc
);
3510 * We trust that only if there is a memcg associated with the page, it
3511 * is a valid allocation
3516 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
3517 memcg_uncharge_kmem(memcg
, PAGE_SIZE
<< order
);
3520 static inline void memcg_unregister_all_caches(struct mem_cgroup
*memcg
)
3523 #endif /* CONFIG_MEMCG_KMEM */
3525 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3527 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3529 * Because tail pages are not marked as "used", set it. We're under
3530 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3531 * charge/uncharge will be never happen and move_account() is done under
3532 * compound_lock(), so we don't have to take care of races.
3534 void mem_cgroup_split_huge_fixup(struct page
*head
)
3536 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
3537 struct page_cgroup
*pc
;
3538 struct mem_cgroup
*memcg
;
3541 if (mem_cgroup_disabled())
3544 memcg
= head_pc
->mem_cgroup
;
3545 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
3547 pc
->mem_cgroup
= memcg
;
3548 smp_wmb();/* see __commit_charge() */
3549 pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
3551 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
3554 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3557 * mem_cgroup_move_account - move account of the page
3559 * @nr_pages: number of regular pages (>1 for huge pages)
3560 * @pc: page_cgroup of the page.
3561 * @from: mem_cgroup which the page is moved from.
3562 * @to: mem_cgroup which the page is moved to. @from != @to.
3564 * The caller must confirm following.
3565 * - page is not on LRU (isolate_page() is useful.)
3566 * - compound_lock is held when nr_pages > 1
3568 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3571 static int mem_cgroup_move_account(struct page
*page
,
3572 unsigned int nr_pages
,
3573 struct page_cgroup
*pc
,
3574 struct mem_cgroup
*from
,
3575 struct mem_cgroup
*to
)
3577 unsigned long flags
;
3579 bool anon
= PageAnon(page
);
3581 VM_BUG_ON(from
== to
);
3582 VM_BUG_ON_PAGE(PageLRU(page
), page
);
3584 * The page is isolated from LRU. So, collapse function
3585 * will not handle this page. But page splitting can happen.
3586 * Do this check under compound_page_lock(). The caller should
3590 if (nr_pages
> 1 && !PageTransHuge(page
))
3593 lock_page_cgroup(pc
);
3596 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
3599 move_lock_mem_cgroup(from
, &flags
);
3601 if (!anon
&& page_mapped(page
)) {
3602 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
3604 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
3608 if (PageWriteback(page
)) {
3609 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
3611 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
3615 mem_cgroup_charge_statistics(from
, page
, anon
, -nr_pages
);
3617 /* caller should have done css_get */
3618 pc
->mem_cgroup
= to
;
3619 mem_cgroup_charge_statistics(to
, page
, anon
, nr_pages
);
3620 move_unlock_mem_cgroup(from
, &flags
);
3623 unlock_page_cgroup(pc
);
3627 memcg_check_events(to
, page
);
3628 memcg_check_events(from
, page
);
3634 * mem_cgroup_move_parent - moves page to the parent group
3635 * @page: the page to move
3636 * @pc: page_cgroup of the page
3637 * @child: page's cgroup
3639 * move charges to its parent or the root cgroup if the group has no
3640 * parent (aka use_hierarchy==0).
3641 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3642 * mem_cgroup_move_account fails) the failure is always temporary and
3643 * it signals a race with a page removal/uncharge or migration. In the
3644 * first case the page is on the way out and it will vanish from the LRU
3645 * on the next attempt and the call should be retried later.
3646 * Isolation from the LRU fails only if page has been isolated from
3647 * the LRU since we looked at it and that usually means either global
3648 * reclaim or migration going on. The page will either get back to the
3650 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3651 * (!PageCgroupUsed) or moved to a different group. The page will
3652 * disappear in the next attempt.
3654 static int mem_cgroup_move_parent(struct page
*page
,
3655 struct page_cgroup
*pc
,
3656 struct mem_cgroup
*child
)
3658 struct mem_cgroup
*parent
;
3659 unsigned int nr_pages
;
3660 unsigned long uninitialized_var(flags
);
3663 VM_BUG_ON(mem_cgroup_is_root(child
));
3666 if (!get_page_unless_zero(page
))
3668 if (isolate_lru_page(page
))
3671 nr_pages
= hpage_nr_pages(page
);
3673 parent
= parent_mem_cgroup(child
);
3675 * If no parent, move charges to root cgroup.
3678 parent
= root_mem_cgroup
;
3681 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
3682 flags
= compound_lock_irqsave(page
);
3685 ret
= mem_cgroup_move_account(page
, nr_pages
,
3688 __mem_cgroup_cancel_local_charge(child
, nr_pages
);
3691 compound_unlock_irqrestore(page
, flags
);
3692 putback_lru_page(page
);
3699 int mem_cgroup_charge_anon(struct page
*page
,
3700 struct mm_struct
*mm
, gfp_t gfp_mask
)
3702 unsigned int nr_pages
= 1;
3703 struct mem_cgroup
*memcg
;
3706 if (mem_cgroup_disabled())
3709 VM_BUG_ON_PAGE(page_mapped(page
), page
);
3710 VM_BUG_ON_PAGE(page
->mapping
&& !PageAnon(page
), page
);
3713 if (PageTransHuge(page
)) {
3714 nr_pages
<<= compound_order(page
);
3715 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
3717 * Never OOM-kill a process for a huge page. The
3718 * fault handler will fall back to regular pages.
3723 memcg
= mem_cgroup_try_charge_mm(mm
, gfp_mask
, nr_pages
, oom
);
3726 __mem_cgroup_commit_charge(memcg
, page
, nr_pages
,
3727 MEM_CGROUP_CHARGE_TYPE_ANON
, false);
3732 * While swap-in, try_charge -> commit or cancel, the page is locked.
3733 * And when try_charge() successfully returns, one refcnt to memcg without
3734 * struct page_cgroup is acquired. This refcnt will be consumed by
3735 * "commit()" or removed by "cancel()"
3737 static int __mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
3740 struct mem_cgroup
**memcgp
)
3742 struct mem_cgroup
*memcg
= NULL
;
3743 struct page_cgroup
*pc
;
3746 pc
= lookup_page_cgroup(page
);
3748 * Every swap fault against a single page tries to charge the
3749 * page, bail as early as possible. shmem_unuse() encounters
3750 * already charged pages, too. The USED bit is protected by
3751 * the page lock, which serializes swap cache removal, which
3752 * in turn serializes uncharging.
3754 if (PageCgroupUsed(pc
))
3756 if (do_swap_account
)
3757 memcg
= try_get_mem_cgroup_from_page(page
);
3759 memcg
= get_mem_cgroup_from_mm(mm
);
3760 ret
= mem_cgroup_try_charge(memcg
, mask
, 1, true);
3761 css_put(&memcg
->css
);
3763 memcg
= root_mem_cgroup
;
3771 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
, struct page
*page
,
3772 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
)
3774 if (mem_cgroup_disabled()) {
3779 * A racing thread's fault, or swapoff, may have already
3780 * updated the pte, and even removed page from swap cache: in
3781 * those cases unuse_pte()'s pte_same() test will fail; but
3782 * there's also a KSM case which does need to charge the page.
3784 if (!PageSwapCache(page
)) {
3785 struct mem_cgroup
*memcg
;
3787 memcg
= mem_cgroup_try_charge_mm(mm
, gfp_mask
, 1, true);
3793 return __mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, memcgp
);
3796 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*memcg
)
3798 if (mem_cgroup_disabled())
3802 __mem_cgroup_cancel_charge(memcg
, 1);
3806 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*memcg
,
3807 enum charge_type ctype
)
3809 if (mem_cgroup_disabled())
3814 __mem_cgroup_commit_charge(memcg
, page
, 1, ctype
, true);
3816 * Now swap is on-memory. This means this page may be
3817 * counted both as mem and swap....double count.
3818 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3819 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3820 * may call delete_from_swap_cache() before reach here.
3822 if (do_swap_account
&& PageSwapCache(page
)) {
3823 swp_entry_t ent
= {.val
= page_private(page
)};
3824 mem_cgroup_uncharge_swap(ent
);
3828 void mem_cgroup_commit_charge_swapin(struct page
*page
,
3829 struct mem_cgroup
*memcg
)
3831 __mem_cgroup_commit_charge_swapin(page
, memcg
,
3832 MEM_CGROUP_CHARGE_TYPE_ANON
);
3835 int mem_cgroup_charge_file(struct page
*page
, struct mm_struct
*mm
,
3838 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3839 struct mem_cgroup
*memcg
;
3842 if (mem_cgroup_disabled())
3844 if (PageCompound(page
))
3847 if (PageSwapCache(page
)) { /* shmem */
3848 ret
= __mem_cgroup_try_charge_swapin(mm
, page
,
3852 __mem_cgroup_commit_charge_swapin(page
, memcg
, type
);
3856 memcg
= mem_cgroup_try_charge_mm(mm
, gfp_mask
, 1, true);
3859 __mem_cgroup_commit_charge(memcg
, page
, 1, type
, false);
3863 static void mem_cgroup_do_uncharge(struct mem_cgroup
*memcg
,
3864 unsigned int nr_pages
,
3865 const enum charge_type ctype
)
3867 struct memcg_batch_info
*batch
= NULL
;
3868 bool uncharge_memsw
= true;
3870 /* If swapout, usage of swap doesn't decrease */
3871 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
3872 uncharge_memsw
= false;
3874 batch
= ¤t
->memcg_batch
;
3876 * In usual, we do css_get() when we remember memcg pointer.
3877 * But in this case, we keep res->usage until end of a series of
3878 * uncharges. Then, it's ok to ignore memcg's refcnt.
3881 batch
->memcg
= memcg
;
3883 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3884 * In those cases, all pages freed continuously can be expected to be in
3885 * the same cgroup and we have chance to coalesce uncharges.
3886 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3887 * because we want to do uncharge as soon as possible.
3890 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
3891 goto direct_uncharge
;
3894 goto direct_uncharge
;
3897 * In typical case, batch->memcg == mem. This means we can
3898 * merge a series of uncharges to an uncharge of res_counter.
3899 * If not, we uncharge res_counter ony by one.
3901 if (batch
->memcg
!= memcg
)
3902 goto direct_uncharge
;
3903 /* remember freed charge and uncharge it later */
3906 batch
->memsw_nr_pages
++;
3909 res_counter_uncharge(&memcg
->res
, nr_pages
* PAGE_SIZE
);
3911 res_counter_uncharge(&memcg
->memsw
, nr_pages
* PAGE_SIZE
);
3912 if (unlikely(batch
->memcg
!= memcg
))
3913 memcg_oom_recover(memcg
);
3917 * uncharge if !page_mapped(page)
3919 static struct mem_cgroup
*
3920 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
,
3923 struct mem_cgroup
*memcg
= NULL
;
3924 unsigned int nr_pages
= 1;
3925 struct page_cgroup
*pc
;
3928 if (mem_cgroup_disabled())
3931 if (PageTransHuge(page
)) {
3932 nr_pages
<<= compound_order(page
);
3933 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
3936 * Check if our page_cgroup is valid
3938 pc
= lookup_page_cgroup(page
);
3939 if (unlikely(!PageCgroupUsed(pc
)))
3942 lock_page_cgroup(pc
);
3944 memcg
= pc
->mem_cgroup
;
3946 if (!PageCgroupUsed(pc
))
3949 anon
= PageAnon(page
);
3952 case MEM_CGROUP_CHARGE_TYPE_ANON
:
3954 * Generally PageAnon tells if it's the anon statistics to be
3955 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3956 * used before page reached the stage of being marked PageAnon.
3960 case MEM_CGROUP_CHARGE_TYPE_DROP
:
3961 /* See mem_cgroup_prepare_migration() */
3962 if (page_mapped(page
))
3965 * Pages under migration may not be uncharged. But
3966 * end_migration() /must/ be the one uncharging the
3967 * unused post-migration page and so it has to call
3968 * here with the migration bit still set. See the
3969 * res_counter handling below.
3971 if (!end_migration
&& PageCgroupMigration(pc
))
3974 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
3975 if (!PageAnon(page
)) { /* Shared memory */
3976 if (page
->mapping
&& !page_is_file_cache(page
))
3978 } else if (page_mapped(page
)) /* Anon */
3985 mem_cgroup_charge_statistics(memcg
, page
, anon
, -nr_pages
);
3987 ClearPageCgroupUsed(pc
);
3989 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3990 * freed from LRU. This is safe because uncharged page is expected not
3991 * to be reused (freed soon). Exception is SwapCache, it's handled by
3992 * special functions.
3995 unlock_page_cgroup(pc
);
3997 * even after unlock, we have memcg->res.usage here and this memcg
3998 * will never be freed, so it's safe to call css_get().
4000 memcg_check_events(memcg
, page
);
4001 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
4002 mem_cgroup_swap_statistics(memcg
, true);
4003 css_get(&memcg
->css
);
4006 * Migration does not charge the res_counter for the
4007 * replacement page, so leave it alone when phasing out the
4008 * page that is unused after the migration.
4010 if (!end_migration
&& !mem_cgroup_is_root(memcg
))
4011 mem_cgroup_do_uncharge(memcg
, nr_pages
, ctype
);
4016 unlock_page_cgroup(pc
);
4020 void mem_cgroup_uncharge_page(struct page
*page
)
4023 if (page_mapped(page
))
4025 VM_BUG_ON_PAGE(page
->mapping
&& !PageAnon(page
), page
);
4027 * If the page is in swap cache, uncharge should be deferred
4028 * to the swap path, which also properly accounts swap usage
4029 * and handles memcg lifetime.
4031 * Note that this check is not stable and reclaim may add the
4032 * page to swap cache at any time after this. However, if the
4033 * page is not in swap cache by the time page->mapcount hits
4034 * 0, there won't be any page table references to the swap
4035 * slot, and reclaim will free it and not actually write the
4038 if (PageSwapCache(page
))
4040 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_ANON
, false);
4043 void mem_cgroup_uncharge_cache_page(struct page
*page
)
4045 VM_BUG_ON_PAGE(page_mapped(page
), page
);
4046 VM_BUG_ON_PAGE(page
->mapping
, page
);
4047 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
, false);
4051 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4052 * In that cases, pages are freed continuously and we can expect pages
4053 * are in the same memcg. All these calls itself limits the number of
4054 * pages freed at once, then uncharge_start/end() is called properly.
4055 * This may be called prural(2) times in a context,
4058 void mem_cgroup_uncharge_start(void)
4060 current
->memcg_batch
.do_batch
++;
4061 /* We can do nest. */
4062 if (current
->memcg_batch
.do_batch
== 1) {
4063 current
->memcg_batch
.memcg
= NULL
;
4064 current
->memcg_batch
.nr_pages
= 0;
4065 current
->memcg_batch
.memsw_nr_pages
= 0;
4069 void mem_cgroup_uncharge_end(void)
4071 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
4073 if (!batch
->do_batch
)
4077 if (batch
->do_batch
) /* If stacked, do nothing. */
4083 * This "batch->memcg" is valid without any css_get/put etc...
4084 * bacause we hide charges behind us.
4086 if (batch
->nr_pages
)
4087 res_counter_uncharge(&batch
->memcg
->res
,
4088 batch
->nr_pages
* PAGE_SIZE
);
4089 if (batch
->memsw_nr_pages
)
4090 res_counter_uncharge(&batch
->memcg
->memsw
,
4091 batch
->memsw_nr_pages
* PAGE_SIZE
);
4092 memcg_oom_recover(batch
->memcg
);
4093 /* forget this pointer (for sanity check) */
4094 batch
->memcg
= NULL
;
4099 * called after __delete_from_swap_cache() and drop "page" account.
4100 * memcg information is recorded to swap_cgroup of "ent"
4103 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
4105 struct mem_cgroup
*memcg
;
4106 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
4108 if (!swapout
) /* this was a swap cache but the swap is unused ! */
4109 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
4111 memcg
= __mem_cgroup_uncharge_common(page
, ctype
, false);
4114 * record memcg information, if swapout && memcg != NULL,
4115 * css_get() was called in uncharge().
4117 if (do_swap_account
&& swapout
&& memcg
)
4118 swap_cgroup_record(ent
, mem_cgroup_id(memcg
));
4122 #ifdef CONFIG_MEMCG_SWAP
4124 * called from swap_entry_free(). remove record in swap_cgroup and
4125 * uncharge "memsw" account.
4127 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
4129 struct mem_cgroup
*memcg
;
4132 if (!do_swap_account
)
4135 id
= swap_cgroup_record(ent
, 0);
4137 memcg
= mem_cgroup_lookup(id
);
4140 * We uncharge this because swap is freed. This memcg can
4141 * be obsolete one. We avoid calling css_tryget_online().
4143 if (!mem_cgroup_is_root(memcg
))
4144 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
4145 mem_cgroup_swap_statistics(memcg
, false);
4146 css_put(&memcg
->css
);
4152 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4153 * @entry: swap entry to be moved
4154 * @from: mem_cgroup which the entry is moved from
4155 * @to: mem_cgroup which the entry is moved to
4157 * It succeeds only when the swap_cgroup's record for this entry is the same
4158 * as the mem_cgroup's id of @from.
4160 * Returns 0 on success, -EINVAL on failure.
4162 * The caller must have charged to @to, IOW, called res_counter_charge() about
4163 * both res and memsw, and called css_get().
4165 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
4166 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
4168 unsigned short old_id
, new_id
;
4170 old_id
= mem_cgroup_id(from
);
4171 new_id
= mem_cgroup_id(to
);
4173 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
4174 mem_cgroup_swap_statistics(from
, false);
4175 mem_cgroup_swap_statistics(to
, true);
4177 * This function is only called from task migration context now.
4178 * It postpones res_counter and refcount handling till the end
4179 * of task migration(mem_cgroup_clear_mc()) for performance
4180 * improvement. But we cannot postpone css_get(to) because if
4181 * the process that has been moved to @to does swap-in, the
4182 * refcount of @to might be decreased to 0.
4184 * We are in attach() phase, so the cgroup is guaranteed to be
4185 * alive, so we can just call css_get().
4193 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
4194 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
4201 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4204 void mem_cgroup_prepare_migration(struct page
*page
, struct page
*newpage
,
4205 struct mem_cgroup
**memcgp
)
4207 struct mem_cgroup
*memcg
= NULL
;
4208 unsigned int nr_pages
= 1;
4209 struct page_cgroup
*pc
;
4210 enum charge_type ctype
;
4214 if (mem_cgroup_disabled())
4217 if (PageTransHuge(page
))
4218 nr_pages
<<= compound_order(page
);
4220 pc
= lookup_page_cgroup(page
);
4221 lock_page_cgroup(pc
);
4222 if (PageCgroupUsed(pc
)) {
4223 memcg
= pc
->mem_cgroup
;
4224 css_get(&memcg
->css
);
4226 * At migrating an anonymous page, its mapcount goes down
4227 * to 0 and uncharge() will be called. But, even if it's fully
4228 * unmapped, migration may fail and this page has to be
4229 * charged again. We set MIGRATION flag here and delay uncharge
4230 * until end_migration() is called
4232 * Corner Case Thinking
4234 * When the old page was mapped as Anon and it's unmap-and-freed
4235 * while migration was ongoing.
4236 * If unmap finds the old page, uncharge() of it will be delayed
4237 * until end_migration(). If unmap finds a new page, it's
4238 * uncharged when it make mapcount to be 1->0. If unmap code
4239 * finds swap_migration_entry, the new page will not be mapped
4240 * and end_migration() will find it(mapcount==0).
4243 * When the old page was mapped but migraion fails, the kernel
4244 * remaps it. A charge for it is kept by MIGRATION flag even
4245 * if mapcount goes down to 0. We can do remap successfully
4246 * without charging it again.
4249 * The "old" page is under lock_page() until the end of
4250 * migration, so, the old page itself will not be swapped-out.
4251 * If the new page is swapped out before end_migraton, our
4252 * hook to usual swap-out path will catch the event.
4255 SetPageCgroupMigration(pc
);
4257 unlock_page_cgroup(pc
);
4259 * If the page is not charged at this point,
4267 * We charge new page before it's used/mapped. So, even if unlock_page()
4268 * is called before end_migration, we can catch all events on this new
4269 * page. In the case new page is migrated but not remapped, new page's
4270 * mapcount will be finally 0 and we call uncharge in end_migration().
4273 ctype
= MEM_CGROUP_CHARGE_TYPE_ANON
;
4275 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
4277 * The page is committed to the memcg, but it's not actually
4278 * charged to the res_counter since we plan on replacing the
4279 * old one and only one page is going to be left afterwards.
4281 __mem_cgroup_commit_charge(memcg
, newpage
, nr_pages
, ctype
, false);
4284 /* remove redundant charge if migration failed*/
4285 void mem_cgroup_end_migration(struct mem_cgroup
*memcg
,
4286 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
4288 struct page
*used
, *unused
;
4289 struct page_cgroup
*pc
;
4295 if (!migration_ok
) {
4302 anon
= PageAnon(used
);
4303 __mem_cgroup_uncharge_common(unused
,
4304 anon
? MEM_CGROUP_CHARGE_TYPE_ANON
4305 : MEM_CGROUP_CHARGE_TYPE_CACHE
,
4307 css_put(&memcg
->css
);
4309 * We disallowed uncharge of pages under migration because mapcount
4310 * of the page goes down to zero, temporarly.
4311 * Clear the flag and check the page should be charged.
4313 pc
= lookup_page_cgroup(oldpage
);
4314 lock_page_cgroup(pc
);
4315 ClearPageCgroupMigration(pc
);
4316 unlock_page_cgroup(pc
);
4319 * If a page is a file cache, radix-tree replacement is very atomic
4320 * and we can skip this check. When it was an Anon page, its mapcount
4321 * goes down to 0. But because we added MIGRATION flage, it's not
4322 * uncharged yet. There are several case but page->mapcount check
4323 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4324 * check. (see prepare_charge() also)
4327 mem_cgroup_uncharge_page(used
);
4331 * At replace page cache, newpage is not under any memcg but it's on
4332 * LRU. So, this function doesn't touch res_counter but handles LRU
4333 * in correct way. Both pages are locked so we cannot race with uncharge.
4335 void mem_cgroup_replace_page_cache(struct page
*oldpage
,
4336 struct page
*newpage
)
4338 struct mem_cgroup
*memcg
= NULL
;
4339 struct page_cgroup
*pc
;
4340 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
4342 if (mem_cgroup_disabled())
4345 pc
= lookup_page_cgroup(oldpage
);
4346 /* fix accounting on old pages */
4347 lock_page_cgroup(pc
);
4348 if (PageCgroupUsed(pc
)) {
4349 memcg
= pc
->mem_cgroup
;
4350 mem_cgroup_charge_statistics(memcg
, oldpage
, false, -1);
4351 ClearPageCgroupUsed(pc
);
4353 unlock_page_cgroup(pc
);
4356 * When called from shmem_replace_page(), in some cases the
4357 * oldpage has already been charged, and in some cases not.
4362 * Even if newpage->mapping was NULL before starting replacement,
4363 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4364 * LRU while we overwrite pc->mem_cgroup.
4366 __mem_cgroup_commit_charge(memcg
, newpage
, 1, type
, true);
4369 #ifdef CONFIG_DEBUG_VM
4370 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
4372 struct page_cgroup
*pc
;
4374 pc
= lookup_page_cgroup(page
);
4376 * Can be NULL while feeding pages into the page allocator for
4377 * the first time, i.e. during boot or memory hotplug;
4378 * or when mem_cgroup_disabled().
4380 if (likely(pc
) && PageCgroupUsed(pc
))
4385 bool mem_cgroup_bad_page_check(struct page
*page
)
4387 if (mem_cgroup_disabled())
4390 return lookup_page_cgroup_used(page
) != NULL
;
4393 void mem_cgroup_print_bad_page(struct page
*page
)
4395 struct page_cgroup
*pc
;
4397 pc
= lookup_page_cgroup_used(page
);
4399 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4400 pc
, pc
->flags
, pc
->mem_cgroup
);
4405 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
4406 unsigned long long val
)
4409 u64 memswlimit
, memlimit
;
4411 int children
= mem_cgroup_count_children(memcg
);
4412 u64 curusage
, oldusage
;
4416 * For keeping hierarchical_reclaim simple, how long we should retry
4417 * is depends on callers. We set our retry-count to be function
4418 * of # of children which we should visit in this loop.
4420 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
4422 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
4425 while (retry_count
) {
4426 if (signal_pending(current
)) {
4431 * Rather than hide all in some function, I do this in
4432 * open coded manner. You see what this really does.
4433 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4435 mutex_lock(&set_limit_mutex
);
4436 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4437 if (memswlimit
< val
) {
4439 mutex_unlock(&set_limit_mutex
);
4443 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4447 ret
= res_counter_set_limit(&memcg
->res
, val
);
4449 if (memswlimit
== val
)
4450 memcg
->memsw_is_minimum
= true;
4452 memcg
->memsw_is_minimum
= false;
4454 mutex_unlock(&set_limit_mutex
);
4459 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
4460 MEM_CGROUP_RECLAIM_SHRINK
);
4461 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
4462 /* Usage is reduced ? */
4463 if (curusage
>= oldusage
)
4466 oldusage
= curusage
;
4468 if (!ret
&& enlarge
)
4469 memcg_oom_recover(memcg
);
4474 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
4475 unsigned long long val
)
4478 u64 memlimit
, memswlimit
, oldusage
, curusage
;
4479 int children
= mem_cgroup_count_children(memcg
);
4483 /* see mem_cgroup_resize_res_limit */
4484 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
4485 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
4486 while (retry_count
) {
4487 if (signal_pending(current
)) {
4492 * Rather than hide all in some function, I do this in
4493 * open coded manner. You see what this really does.
4494 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4496 mutex_lock(&set_limit_mutex
);
4497 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4498 if (memlimit
> val
) {
4500 mutex_unlock(&set_limit_mutex
);
4503 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4504 if (memswlimit
< val
)
4506 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
4508 if (memlimit
== val
)
4509 memcg
->memsw_is_minimum
= true;
4511 memcg
->memsw_is_minimum
= false;
4513 mutex_unlock(&set_limit_mutex
);
4518 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
4519 MEM_CGROUP_RECLAIM_NOSWAP
|
4520 MEM_CGROUP_RECLAIM_SHRINK
);
4521 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
4522 /* Usage is reduced ? */
4523 if (curusage
>= oldusage
)
4526 oldusage
= curusage
;
4528 if (!ret
&& enlarge
)
4529 memcg_oom_recover(memcg
);
4533 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
4535 unsigned long *total_scanned
)
4537 unsigned long nr_reclaimed
= 0;
4538 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
4539 unsigned long reclaimed
;
4541 struct mem_cgroup_tree_per_zone
*mctz
;
4542 unsigned long long excess
;
4543 unsigned long nr_scanned
;
4548 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
4550 * This loop can run a while, specially if mem_cgroup's continuously
4551 * keep exceeding their soft limit and putting the system under
4558 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
4563 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, zone
,
4564 gfp_mask
, &nr_scanned
);
4565 nr_reclaimed
+= reclaimed
;
4566 *total_scanned
+= nr_scanned
;
4567 spin_lock(&mctz
->lock
);
4570 * If we failed to reclaim anything from this memory cgroup
4571 * it is time to move on to the next cgroup
4577 * Loop until we find yet another one.
4579 * By the time we get the soft_limit lock
4580 * again, someone might have aded the
4581 * group back on the RB tree. Iterate to
4582 * make sure we get a different mem.
4583 * mem_cgroup_largest_soft_limit_node returns
4584 * NULL if no other cgroup is present on
4588 __mem_cgroup_largest_soft_limit_node(mctz
);
4590 css_put(&next_mz
->memcg
->css
);
4591 else /* next_mz == NULL or other memcg */
4595 __mem_cgroup_remove_exceeded(mz
, mctz
);
4596 excess
= res_counter_soft_limit_excess(&mz
->memcg
->res
);
4598 * One school of thought says that we should not add
4599 * back the node to the tree if reclaim returns 0.
4600 * But our reclaim could return 0, simply because due
4601 * to priority we are exposing a smaller subset of
4602 * memory to reclaim from. Consider this as a longer
4605 /* If excess == 0, no tree ops */
4606 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
4607 spin_unlock(&mctz
->lock
);
4608 css_put(&mz
->memcg
->css
);
4611 * Could not reclaim anything and there are no more
4612 * mem cgroups to try or we seem to be looping without
4613 * reclaiming anything.
4615 if (!nr_reclaimed
&&
4617 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
4619 } while (!nr_reclaimed
);
4621 css_put(&next_mz
->memcg
->css
);
4622 return nr_reclaimed
;
4626 * mem_cgroup_force_empty_list - clears LRU of a group
4627 * @memcg: group to clear
4630 * @lru: lru to to clear
4632 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4633 * reclaim the pages page themselves - pages are moved to the parent (or root)
4636 static void mem_cgroup_force_empty_list(struct mem_cgroup
*memcg
,
4637 int node
, int zid
, enum lru_list lru
)
4639 struct lruvec
*lruvec
;
4640 unsigned long flags
;
4641 struct list_head
*list
;
4645 zone
= &NODE_DATA(node
)->node_zones
[zid
];
4646 lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
4647 list
= &lruvec
->lists
[lru
];
4651 struct page_cgroup
*pc
;
4654 spin_lock_irqsave(&zone
->lru_lock
, flags
);
4655 if (list_empty(list
)) {
4656 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4659 page
= list_entry(list
->prev
, struct page
, lru
);
4661 list_move(&page
->lru
, list
);
4663 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4666 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4668 pc
= lookup_page_cgroup(page
);
4670 if (mem_cgroup_move_parent(page
, pc
, memcg
)) {
4671 /* found lock contention or "pc" is obsolete. */
4676 } while (!list_empty(list
));
4680 * make mem_cgroup's charge to be 0 if there is no task by moving
4681 * all the charges and pages to the parent.
4682 * This enables deleting this mem_cgroup.
4684 * Caller is responsible for holding css reference on the memcg.
4686 static void mem_cgroup_reparent_charges(struct mem_cgroup
*memcg
)
4692 /* This is for making all *used* pages to be on LRU. */
4693 lru_add_drain_all();
4694 drain_all_stock_sync(memcg
);
4695 mem_cgroup_start_move(memcg
);
4696 for_each_node_state(node
, N_MEMORY
) {
4697 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4700 mem_cgroup_force_empty_list(memcg
,
4705 mem_cgroup_end_move(memcg
);
4706 memcg_oom_recover(memcg
);
4710 * Kernel memory may not necessarily be trackable to a specific
4711 * process. So they are not migrated, and therefore we can't
4712 * expect their value to drop to 0 here.
4713 * Having res filled up with kmem only is enough.
4715 * This is a safety check because mem_cgroup_force_empty_list
4716 * could have raced with mem_cgroup_replace_page_cache callers
4717 * so the lru seemed empty but the page could have been added
4718 * right after the check. RES_USAGE should be safe as we always
4719 * charge before adding to the LRU.
4721 usage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
) -
4722 res_counter_read_u64(&memcg
->kmem
, RES_USAGE
);
4723 } while (usage
> 0);
4727 * Test whether @memcg has children, dead or alive. Note that this
4728 * function doesn't care whether @memcg has use_hierarchy enabled and
4729 * returns %true if there are child csses according to the cgroup
4730 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
4732 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
4737 * The lock does not prevent addition or deletion of children, but
4738 * it prevents a new child from being initialized based on this
4739 * parent in css_online(), so it's enough to decide whether
4740 * hierarchically inherited attributes can still be changed or not.
4742 lockdep_assert_held(&memcg_create_mutex
);
4745 ret
= css_next_child(NULL
, &memcg
->css
);
4751 * Reclaims as many pages from the given memcg as possible and moves
4752 * the rest to the parent.
4754 * Caller is responsible for holding css reference for memcg.
4756 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
4758 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
4760 /* we call try-to-free pages for make this cgroup empty */
4761 lru_add_drain_all();
4762 /* try to free all pages in this cgroup */
4763 while (nr_retries
&& res_counter_read_u64(&memcg
->res
, RES_USAGE
) > 0) {
4766 if (signal_pending(current
))
4769 progress
= try_to_free_mem_cgroup_pages(memcg
, GFP_KERNEL
,
4773 /* maybe some writeback is necessary */
4774 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
4782 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
4783 char *buf
, size_t nbytes
,
4786 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
4788 if (mem_cgroup_is_root(memcg
))
4790 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
4793 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
4796 return mem_cgroup_from_css(css
)->use_hierarchy
;
4799 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
4800 struct cftype
*cft
, u64 val
)
4803 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4804 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
4806 mutex_lock(&memcg_create_mutex
);
4808 if (memcg
->use_hierarchy
== val
)
4812 * If parent's use_hierarchy is set, we can't make any modifications
4813 * in the child subtrees. If it is unset, then the change can
4814 * occur, provided the current cgroup has no children.
4816 * For the root cgroup, parent_mem is NULL, we allow value to be
4817 * set if there are no children.
4819 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
4820 (val
== 1 || val
== 0)) {
4821 if (!memcg_has_children(memcg
))
4822 memcg
->use_hierarchy
= val
;
4829 mutex_unlock(&memcg_create_mutex
);
4835 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*memcg
,
4836 enum mem_cgroup_stat_index idx
)
4838 struct mem_cgroup
*iter
;
4841 /* Per-cpu values can be negative, use a signed accumulator */
4842 for_each_mem_cgroup_tree(iter
, memcg
)
4843 val
+= mem_cgroup_read_stat(iter
, idx
);
4845 if (val
< 0) /* race ? */
4850 static inline u64
mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
4854 if (!mem_cgroup_is_root(memcg
)) {
4856 return res_counter_read_u64(&memcg
->res
, RES_USAGE
);
4858 return res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
4862 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4863 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4865 val
= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
4866 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_RSS
);
4869 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_SWAP
);
4871 return val
<< PAGE_SHIFT
;
4874 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
4877 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4882 type
= MEMFILE_TYPE(cft
->private);
4883 name
= MEMFILE_ATTR(cft
->private);
4887 if (name
== RES_USAGE
)
4888 val
= mem_cgroup_usage(memcg
, false);
4890 val
= res_counter_read_u64(&memcg
->res
, name
);
4893 if (name
== RES_USAGE
)
4894 val
= mem_cgroup_usage(memcg
, true);
4896 val
= res_counter_read_u64(&memcg
->memsw
, name
);
4899 val
= res_counter_read_u64(&memcg
->kmem
, name
);
4908 #ifdef CONFIG_MEMCG_KMEM
4909 /* should be called with activate_kmem_mutex held */
4910 static int __memcg_activate_kmem(struct mem_cgroup
*memcg
,
4911 unsigned long long limit
)
4916 if (memcg_kmem_is_active(memcg
))
4920 * We are going to allocate memory for data shared by all memory
4921 * cgroups so let's stop accounting here.
4923 memcg_stop_kmem_account();
4926 * For simplicity, we won't allow this to be disabled. It also can't
4927 * be changed if the cgroup has children already, or if tasks had
4930 * If tasks join before we set the limit, a person looking at
4931 * kmem.usage_in_bytes will have no way to determine when it took
4932 * place, which makes the value quite meaningless.
4934 * After it first became limited, changes in the value of the limit are
4935 * of course permitted.
4937 mutex_lock(&memcg_create_mutex
);
4938 if (cgroup_has_tasks(memcg
->css
.cgroup
) ||
4939 (memcg
->use_hierarchy
&& memcg_has_children(memcg
)))
4941 mutex_unlock(&memcg_create_mutex
);
4945 memcg_id
= ida_simple_get(&kmem_limited_groups
,
4946 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
4953 * Make sure we have enough space for this cgroup in each root cache's
4956 mutex_lock(&memcg_slab_mutex
);
4957 err
= memcg_update_all_caches(memcg_id
+ 1);
4958 mutex_unlock(&memcg_slab_mutex
);
4962 memcg
->kmemcg_id
= memcg_id
;
4963 INIT_LIST_HEAD(&memcg
->memcg_slab_caches
);
4966 * We couldn't have accounted to this cgroup, because it hasn't got the
4967 * active bit set yet, so this should succeed.
4969 err
= res_counter_set_limit(&memcg
->kmem
, limit
);
4972 static_key_slow_inc(&memcg_kmem_enabled_key
);
4974 * Setting the active bit after enabling static branching will
4975 * guarantee no one starts accounting before all call sites are
4978 memcg_kmem_set_active(memcg
);
4980 memcg_resume_kmem_account();
4984 ida_simple_remove(&kmem_limited_groups
, memcg_id
);
4988 static int memcg_activate_kmem(struct mem_cgroup
*memcg
,
4989 unsigned long long limit
)
4993 mutex_lock(&activate_kmem_mutex
);
4994 ret
= __memcg_activate_kmem(memcg
, limit
);
4995 mutex_unlock(&activate_kmem_mutex
);
4999 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
5000 unsigned long long val
)
5004 if (!memcg_kmem_is_active(memcg
))
5005 ret
= memcg_activate_kmem(memcg
, val
);
5007 ret
= res_counter_set_limit(&memcg
->kmem
, val
);
5011 static int memcg_propagate_kmem(struct mem_cgroup
*memcg
)
5014 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
5019 mutex_lock(&activate_kmem_mutex
);
5021 * If the parent cgroup is not kmem-active now, it cannot be activated
5022 * after this point, because it has at least one child already.
5024 if (memcg_kmem_is_active(parent
))
5025 ret
= __memcg_activate_kmem(memcg
, RES_COUNTER_MAX
);
5026 mutex_unlock(&activate_kmem_mutex
);
5030 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
5031 unsigned long long val
)
5035 #endif /* CONFIG_MEMCG_KMEM */
5038 * The user of this function is...
5041 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
5042 char *buf
, size_t nbytes
, loff_t off
)
5044 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5047 unsigned long long val
;
5050 buf
= strstrip(buf
);
5051 type
= MEMFILE_TYPE(of_cft(of
)->private);
5052 name
= MEMFILE_ATTR(of_cft(of
)->private);
5056 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
5060 /* This function does all necessary parse...reuse it */
5061 ret
= res_counter_memparse_write_strategy(buf
, &val
);
5065 ret
= mem_cgroup_resize_limit(memcg
, val
);
5066 else if (type
== _MEMSWAP
)
5067 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
5068 else if (type
== _KMEM
)
5069 ret
= memcg_update_kmem_limit(memcg
, val
);
5073 case RES_SOFT_LIMIT
:
5074 ret
= res_counter_memparse_write_strategy(buf
, &val
);
5078 * For memsw, soft limits are hard to implement in terms
5079 * of semantics, for now, we support soft limits for
5080 * control without swap
5083 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
5088 ret
= -EINVAL
; /* should be BUG() ? */
5091 return ret
?: nbytes
;
5094 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
5095 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
5097 unsigned long long min_limit
, min_memsw_limit
, tmp
;
5099 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
5100 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
5101 if (!memcg
->use_hierarchy
)
5104 while (memcg
->css
.parent
) {
5105 memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
5106 if (!memcg
->use_hierarchy
)
5108 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
5109 min_limit
= min(min_limit
, tmp
);
5110 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
5111 min_memsw_limit
= min(min_memsw_limit
, tmp
);
5114 *mem_limit
= min_limit
;
5115 *memsw_limit
= min_memsw_limit
;
5118 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
5119 size_t nbytes
, loff_t off
)
5121 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5125 type
= MEMFILE_TYPE(of_cft(of
)->private);
5126 name
= MEMFILE_ATTR(of_cft(of
)->private);
5131 res_counter_reset_max(&memcg
->res
);
5132 else if (type
== _MEMSWAP
)
5133 res_counter_reset_max(&memcg
->memsw
);
5134 else if (type
== _KMEM
)
5135 res_counter_reset_max(&memcg
->kmem
);
5141 res_counter_reset_failcnt(&memcg
->res
);
5142 else if (type
== _MEMSWAP
)
5143 res_counter_reset_failcnt(&memcg
->memsw
);
5144 else if (type
== _KMEM
)
5145 res_counter_reset_failcnt(&memcg
->kmem
);
5154 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
5157 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
5161 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
5162 struct cftype
*cft
, u64 val
)
5164 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5166 if (val
>= (1 << NR_MOVE_TYPE
))
5170 * No kind of locking is needed in here, because ->can_attach() will
5171 * check this value once in the beginning of the process, and then carry
5172 * on with stale data. This means that changes to this value will only
5173 * affect task migrations starting after the change.
5175 memcg
->move_charge_at_immigrate
= val
;
5179 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
5180 struct cftype
*cft
, u64 val
)
5187 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
5191 unsigned int lru_mask
;
5194 static const struct numa_stat stats
[] = {
5195 { "total", LRU_ALL
},
5196 { "file", LRU_ALL_FILE
},
5197 { "anon", LRU_ALL_ANON
},
5198 { "unevictable", BIT(LRU_UNEVICTABLE
) },
5200 const struct numa_stat
*stat
;
5203 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5205 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
5206 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
5207 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
5208 for_each_node_state(nid
, N_MEMORY
) {
5209 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
5211 seq_printf(m
, " N%d=%lu", nid
, nr
);
5216 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
5217 struct mem_cgroup
*iter
;
5220 for_each_mem_cgroup_tree(iter
, memcg
)
5221 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
5222 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
5223 for_each_node_state(nid
, N_MEMORY
) {
5225 for_each_mem_cgroup_tree(iter
, memcg
)
5226 nr
+= mem_cgroup_node_nr_lru_pages(
5227 iter
, nid
, stat
->lru_mask
);
5228 seq_printf(m
, " N%d=%lu", nid
, nr
);
5235 #endif /* CONFIG_NUMA */
5237 static inline void mem_cgroup_lru_names_not_uptodate(void)
5239 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
5242 static int memcg_stat_show(struct seq_file
*m
, void *v
)
5244 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5245 struct mem_cgroup
*mi
;
5248 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
5249 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
5251 seq_printf(m
, "%s %ld\n", mem_cgroup_stat_names
[i
],
5252 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
5255 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
5256 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
5257 mem_cgroup_read_events(memcg
, i
));
5259 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
5260 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
5261 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
5263 /* Hierarchical information */
5265 unsigned long long limit
, memsw_limit
;
5266 memcg_get_hierarchical_limit(memcg
, &limit
, &memsw_limit
);
5267 seq_printf(m
, "hierarchical_memory_limit %llu\n", limit
);
5268 if (do_swap_account
)
5269 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
5273 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
5276 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
5278 for_each_mem_cgroup_tree(mi
, memcg
)
5279 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
5280 seq_printf(m
, "total_%s %lld\n", mem_cgroup_stat_names
[i
], val
);
5283 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
5284 unsigned long long val
= 0;
5286 for_each_mem_cgroup_tree(mi
, memcg
)
5287 val
+= mem_cgroup_read_events(mi
, i
);
5288 seq_printf(m
, "total_%s %llu\n",
5289 mem_cgroup_events_names
[i
], val
);
5292 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
5293 unsigned long long val
= 0;
5295 for_each_mem_cgroup_tree(mi
, memcg
)
5296 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
5297 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
5300 #ifdef CONFIG_DEBUG_VM
5303 struct mem_cgroup_per_zone
*mz
;
5304 struct zone_reclaim_stat
*rstat
;
5305 unsigned long recent_rotated
[2] = {0, 0};
5306 unsigned long recent_scanned
[2] = {0, 0};
5308 for_each_online_node(nid
)
5309 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
5310 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
5311 rstat
= &mz
->lruvec
.reclaim_stat
;
5313 recent_rotated
[0] += rstat
->recent_rotated
[0];
5314 recent_rotated
[1] += rstat
->recent_rotated
[1];
5315 recent_scanned
[0] += rstat
->recent_scanned
[0];
5316 recent_scanned
[1] += rstat
->recent_scanned
[1];
5318 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
5319 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
5320 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
5321 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
5328 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
5331 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5333 return mem_cgroup_swappiness(memcg
);
5336 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
5337 struct cftype
*cft
, u64 val
)
5339 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5345 memcg
->swappiness
= val
;
5347 vm_swappiness
= val
;
5352 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
5354 struct mem_cgroup_threshold_ary
*t
;
5360 t
= rcu_dereference(memcg
->thresholds
.primary
);
5362 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
5367 usage
= mem_cgroup_usage(memcg
, swap
);
5370 * current_threshold points to threshold just below or equal to usage.
5371 * If it's not true, a threshold was crossed after last
5372 * call of __mem_cgroup_threshold().
5374 i
= t
->current_threshold
;
5377 * Iterate backward over array of thresholds starting from
5378 * current_threshold and check if a threshold is crossed.
5379 * If none of thresholds below usage is crossed, we read
5380 * only one element of the array here.
5382 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
5383 eventfd_signal(t
->entries
[i
].eventfd
, 1);
5385 /* i = current_threshold + 1 */
5389 * Iterate forward over array of thresholds starting from
5390 * current_threshold+1 and check if a threshold is crossed.
5391 * If none of thresholds above usage is crossed, we read
5392 * only one element of the array here.
5394 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
5395 eventfd_signal(t
->entries
[i
].eventfd
, 1);
5397 /* Update current_threshold */
5398 t
->current_threshold
= i
- 1;
5403 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
5406 __mem_cgroup_threshold(memcg
, false);
5407 if (do_swap_account
)
5408 __mem_cgroup_threshold(memcg
, true);
5410 memcg
= parent_mem_cgroup(memcg
);
5414 static int compare_thresholds(const void *a
, const void *b
)
5416 const struct mem_cgroup_threshold
*_a
= a
;
5417 const struct mem_cgroup_threshold
*_b
= b
;
5419 if (_a
->threshold
> _b
->threshold
)
5422 if (_a
->threshold
< _b
->threshold
)
5428 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
5430 struct mem_cgroup_eventfd_list
*ev
;
5432 spin_lock(&memcg_oom_lock
);
5434 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
5435 eventfd_signal(ev
->eventfd
, 1);
5437 spin_unlock(&memcg_oom_lock
);
5441 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
5443 struct mem_cgroup
*iter
;
5445 for_each_mem_cgroup_tree(iter
, memcg
)
5446 mem_cgroup_oom_notify_cb(iter
);
5449 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
5450 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
5452 struct mem_cgroup_thresholds
*thresholds
;
5453 struct mem_cgroup_threshold_ary
*new;
5454 u64 threshold
, usage
;
5457 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
5461 mutex_lock(&memcg
->thresholds_lock
);
5464 thresholds
= &memcg
->thresholds
;
5465 else if (type
== _MEMSWAP
)
5466 thresholds
= &memcg
->memsw_thresholds
;
5470 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
5472 /* Check if a threshold crossed before adding a new one */
5473 if (thresholds
->primary
)
5474 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
5476 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
5478 /* Allocate memory for new array of thresholds */
5479 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
5487 /* Copy thresholds (if any) to new array */
5488 if (thresholds
->primary
) {
5489 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
5490 sizeof(struct mem_cgroup_threshold
));
5493 /* Add new threshold */
5494 new->entries
[size
- 1].eventfd
= eventfd
;
5495 new->entries
[size
- 1].threshold
= threshold
;
5497 /* Sort thresholds. Registering of new threshold isn't time-critical */
5498 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
5499 compare_thresholds
, NULL
);
5501 /* Find current threshold */
5502 new->current_threshold
= -1;
5503 for (i
= 0; i
< size
; i
++) {
5504 if (new->entries
[i
].threshold
<= usage
) {
5506 * new->current_threshold will not be used until
5507 * rcu_assign_pointer(), so it's safe to increment
5510 ++new->current_threshold
;
5515 /* Free old spare buffer and save old primary buffer as spare */
5516 kfree(thresholds
->spare
);
5517 thresholds
->spare
= thresholds
->primary
;
5519 rcu_assign_pointer(thresholds
->primary
, new);
5521 /* To be sure that nobody uses thresholds */
5525 mutex_unlock(&memcg
->thresholds_lock
);
5530 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
5531 struct eventfd_ctx
*eventfd
, const char *args
)
5533 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
5536 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
5537 struct eventfd_ctx
*eventfd
, const char *args
)
5539 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
5542 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
5543 struct eventfd_ctx
*eventfd
, enum res_type type
)
5545 struct mem_cgroup_thresholds
*thresholds
;
5546 struct mem_cgroup_threshold_ary
*new;
5550 mutex_lock(&memcg
->thresholds_lock
);
5552 thresholds
= &memcg
->thresholds
;
5553 else if (type
== _MEMSWAP
)
5554 thresholds
= &memcg
->memsw_thresholds
;
5558 if (!thresholds
->primary
)
5561 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
5563 /* Check if a threshold crossed before removing */
5564 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
5566 /* Calculate new number of threshold */
5568 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
5569 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
5573 new = thresholds
->spare
;
5575 /* Set thresholds array to NULL if we don't have thresholds */
5584 /* Copy thresholds and find current threshold */
5585 new->current_threshold
= -1;
5586 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
5587 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
5590 new->entries
[j
] = thresholds
->primary
->entries
[i
];
5591 if (new->entries
[j
].threshold
<= usage
) {
5593 * new->current_threshold will not be used
5594 * until rcu_assign_pointer(), so it's safe to increment
5597 ++new->current_threshold
;
5603 /* Swap primary and spare array */
5604 thresholds
->spare
= thresholds
->primary
;
5606 rcu_assign_pointer(thresholds
->primary
, new);
5608 /* To be sure that nobody uses thresholds */
5611 /* If all events are unregistered, free the spare array */
5613 kfree(thresholds
->spare
);
5614 thresholds
->spare
= NULL
;
5617 mutex_unlock(&memcg
->thresholds_lock
);
5620 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
5621 struct eventfd_ctx
*eventfd
)
5623 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
5626 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
5627 struct eventfd_ctx
*eventfd
)
5629 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
5632 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
5633 struct eventfd_ctx
*eventfd
, const char *args
)
5635 struct mem_cgroup_eventfd_list
*event
;
5637 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
5641 spin_lock(&memcg_oom_lock
);
5643 event
->eventfd
= eventfd
;
5644 list_add(&event
->list
, &memcg
->oom_notify
);
5646 /* already in OOM ? */
5647 if (atomic_read(&memcg
->under_oom
))
5648 eventfd_signal(eventfd
, 1);
5649 spin_unlock(&memcg_oom_lock
);
5654 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
5655 struct eventfd_ctx
*eventfd
)
5657 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
5659 spin_lock(&memcg_oom_lock
);
5661 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
5662 if (ev
->eventfd
== eventfd
) {
5663 list_del(&ev
->list
);
5668 spin_unlock(&memcg_oom_lock
);
5671 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
5673 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(sf
));
5675 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
5676 seq_printf(sf
, "under_oom %d\n", (bool)atomic_read(&memcg
->under_oom
));
5680 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
5681 struct cftype
*cft
, u64 val
)
5683 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5685 /* cannot set to root cgroup and only 0 and 1 are allowed */
5686 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
5689 memcg
->oom_kill_disable
= val
;
5691 memcg_oom_recover(memcg
);
5696 #ifdef CONFIG_MEMCG_KMEM
5697 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
5701 memcg
->kmemcg_id
= -1;
5702 ret
= memcg_propagate_kmem(memcg
);
5706 return mem_cgroup_sockets_init(memcg
, ss
);
5709 static void memcg_destroy_kmem(struct mem_cgroup
*memcg
)
5711 mem_cgroup_sockets_destroy(memcg
);
5714 static void kmem_cgroup_css_offline(struct mem_cgroup
*memcg
)
5716 if (!memcg_kmem_is_active(memcg
))
5720 * kmem charges can outlive the cgroup. In the case of slab
5721 * pages, for instance, a page contain objects from various
5722 * processes. As we prevent from taking a reference for every
5723 * such allocation we have to be careful when doing uncharge
5724 * (see memcg_uncharge_kmem) and here during offlining.
5726 * The idea is that that only the _last_ uncharge which sees
5727 * the dead memcg will drop the last reference. An additional
5728 * reference is taken here before the group is marked dead
5729 * which is then paired with css_put during uncharge resp. here.
5731 * Although this might sound strange as this path is called from
5732 * css_offline() when the referencemight have dropped down to 0 and
5733 * shouldn't be incremented anymore (css_tryget_online() would
5734 * fail) we do not have other options because of the kmem
5735 * allocations lifetime.
5737 css_get(&memcg
->css
);
5739 memcg_kmem_mark_dead(memcg
);
5741 if (res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) != 0)
5744 if (memcg_kmem_test_and_clear_dead(memcg
))
5745 css_put(&memcg
->css
);
5748 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
5753 static void memcg_destroy_kmem(struct mem_cgroup
*memcg
)
5757 static void kmem_cgroup_css_offline(struct mem_cgroup
*memcg
)
5763 * DO NOT USE IN NEW FILES.
5765 * "cgroup.event_control" implementation.
5767 * This is way over-engineered. It tries to support fully configurable
5768 * events for each user. Such level of flexibility is completely
5769 * unnecessary especially in the light of the planned unified hierarchy.
5771 * Please deprecate this and replace with something simpler if at all
5776 * Unregister event and free resources.
5778 * Gets called from workqueue.
5780 static void memcg_event_remove(struct work_struct
*work
)
5782 struct mem_cgroup_event
*event
=
5783 container_of(work
, struct mem_cgroup_event
, remove
);
5784 struct mem_cgroup
*memcg
= event
->memcg
;
5786 remove_wait_queue(event
->wqh
, &event
->wait
);
5788 event
->unregister_event(memcg
, event
->eventfd
);
5790 /* Notify userspace the event is going away. */
5791 eventfd_signal(event
->eventfd
, 1);
5793 eventfd_ctx_put(event
->eventfd
);
5795 css_put(&memcg
->css
);
5799 * Gets called on POLLHUP on eventfd when user closes it.
5801 * Called with wqh->lock held and interrupts disabled.
5803 static int memcg_event_wake(wait_queue_t
*wait
, unsigned mode
,
5804 int sync
, void *key
)
5806 struct mem_cgroup_event
*event
=
5807 container_of(wait
, struct mem_cgroup_event
, wait
);
5808 struct mem_cgroup
*memcg
= event
->memcg
;
5809 unsigned long flags
= (unsigned long)key
;
5811 if (flags
& POLLHUP
) {
5813 * If the event has been detached at cgroup removal, we
5814 * can simply return knowing the other side will cleanup
5817 * We can't race against event freeing since the other
5818 * side will require wqh->lock via remove_wait_queue(),
5821 spin_lock(&memcg
->event_list_lock
);
5822 if (!list_empty(&event
->list
)) {
5823 list_del_init(&event
->list
);
5825 * We are in atomic context, but cgroup_event_remove()
5826 * may sleep, so we have to call it in workqueue.
5828 schedule_work(&event
->remove
);
5830 spin_unlock(&memcg
->event_list_lock
);
5836 static void memcg_event_ptable_queue_proc(struct file
*file
,
5837 wait_queue_head_t
*wqh
, poll_table
*pt
)
5839 struct mem_cgroup_event
*event
=
5840 container_of(pt
, struct mem_cgroup_event
, pt
);
5843 add_wait_queue(wqh
, &event
->wait
);
5847 * DO NOT USE IN NEW FILES.
5849 * Parse input and register new cgroup event handler.
5851 * Input must be in format '<event_fd> <control_fd> <args>'.
5852 * Interpretation of args is defined by control file implementation.
5854 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
5855 char *buf
, size_t nbytes
, loff_t off
)
5857 struct cgroup_subsys_state
*css
= of_css(of
);
5858 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5859 struct mem_cgroup_event
*event
;
5860 struct cgroup_subsys_state
*cfile_css
;
5861 unsigned int efd
, cfd
;
5868 buf
= strstrip(buf
);
5870 efd
= simple_strtoul(buf
, &endp
, 10);
5875 cfd
= simple_strtoul(buf
, &endp
, 10);
5876 if ((*endp
!= ' ') && (*endp
!= '\0'))
5880 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
5884 event
->memcg
= memcg
;
5885 INIT_LIST_HEAD(&event
->list
);
5886 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
5887 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
5888 INIT_WORK(&event
->remove
, memcg_event_remove
);
5896 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
5897 if (IS_ERR(event
->eventfd
)) {
5898 ret
= PTR_ERR(event
->eventfd
);
5905 goto out_put_eventfd
;
5908 /* the process need read permission on control file */
5909 /* AV: shouldn't we check that it's been opened for read instead? */
5910 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
5915 * Determine the event callbacks and set them in @event. This used
5916 * to be done via struct cftype but cgroup core no longer knows
5917 * about these events. The following is crude but the whole thing
5918 * is for compatibility anyway.
5920 * DO NOT ADD NEW FILES.
5922 name
= cfile
.file
->f_dentry
->d_name
.name
;
5924 if (!strcmp(name
, "memory.usage_in_bytes")) {
5925 event
->register_event
= mem_cgroup_usage_register_event
;
5926 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
5927 } else if (!strcmp(name
, "memory.oom_control")) {
5928 event
->register_event
= mem_cgroup_oom_register_event
;
5929 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
5930 } else if (!strcmp(name
, "memory.pressure_level")) {
5931 event
->register_event
= vmpressure_register_event
;
5932 event
->unregister_event
= vmpressure_unregister_event
;
5933 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
5934 event
->register_event
= memsw_cgroup_usage_register_event
;
5935 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
5942 * Verify @cfile should belong to @css. Also, remaining events are
5943 * automatically removed on cgroup destruction but the removal is
5944 * asynchronous, so take an extra ref on @css.
5946 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_dentry
->d_parent
,
5947 &memory_cgrp_subsys
);
5949 if (IS_ERR(cfile_css
))
5951 if (cfile_css
!= css
) {
5956 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
5960 efile
.file
->f_op
->poll(efile
.file
, &event
->pt
);
5962 spin_lock(&memcg
->event_list_lock
);
5963 list_add(&event
->list
, &memcg
->event_list
);
5964 spin_unlock(&memcg
->event_list_lock
);
5976 eventfd_ctx_put(event
->eventfd
);
5985 static struct cftype mem_cgroup_files
[] = {
5987 .name
= "usage_in_bytes",
5988 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
5989 .read_u64
= mem_cgroup_read_u64
,
5992 .name
= "max_usage_in_bytes",
5993 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
5994 .write
= mem_cgroup_reset
,
5995 .read_u64
= mem_cgroup_read_u64
,
5998 .name
= "limit_in_bytes",
5999 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
6000 .write
= mem_cgroup_write
,
6001 .read_u64
= mem_cgroup_read_u64
,
6004 .name
= "soft_limit_in_bytes",
6005 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
6006 .write
= mem_cgroup_write
,
6007 .read_u64
= mem_cgroup_read_u64
,
6011 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
6012 .write
= mem_cgroup_reset
,
6013 .read_u64
= mem_cgroup_read_u64
,
6017 .seq_show
= memcg_stat_show
,
6020 .name
= "force_empty",
6021 .write
= mem_cgroup_force_empty_write
,
6024 .name
= "use_hierarchy",
6025 .flags
= CFTYPE_INSANE
,
6026 .write_u64
= mem_cgroup_hierarchy_write
,
6027 .read_u64
= mem_cgroup_hierarchy_read
,
6030 .name
= "cgroup.event_control", /* XXX: for compat */
6031 .write
= memcg_write_event_control
,
6032 .flags
= CFTYPE_NO_PREFIX
,
6036 .name
= "swappiness",
6037 .read_u64
= mem_cgroup_swappiness_read
,
6038 .write_u64
= mem_cgroup_swappiness_write
,
6041 .name
= "move_charge_at_immigrate",
6042 .read_u64
= mem_cgroup_move_charge_read
,
6043 .write_u64
= mem_cgroup_move_charge_write
,
6046 .name
= "oom_control",
6047 .seq_show
= mem_cgroup_oom_control_read
,
6048 .write_u64
= mem_cgroup_oom_control_write
,
6049 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
6052 .name
= "pressure_level",
6056 .name
= "numa_stat",
6057 .seq_show
= memcg_numa_stat_show
,
6060 #ifdef CONFIG_MEMCG_KMEM
6062 .name
= "kmem.limit_in_bytes",
6063 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
6064 .write
= mem_cgroup_write
,
6065 .read_u64
= mem_cgroup_read_u64
,
6068 .name
= "kmem.usage_in_bytes",
6069 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
6070 .read_u64
= mem_cgroup_read_u64
,
6073 .name
= "kmem.failcnt",
6074 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
6075 .write
= mem_cgroup_reset
,
6076 .read_u64
= mem_cgroup_read_u64
,
6079 .name
= "kmem.max_usage_in_bytes",
6080 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
6081 .write
= mem_cgroup_reset
,
6082 .read_u64
= mem_cgroup_read_u64
,
6084 #ifdef CONFIG_SLABINFO
6086 .name
= "kmem.slabinfo",
6087 .seq_show
= mem_cgroup_slabinfo_read
,
6091 { }, /* terminate */
6094 #ifdef CONFIG_MEMCG_SWAP
6095 static struct cftype memsw_cgroup_files
[] = {
6097 .name
= "memsw.usage_in_bytes",
6098 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
6099 .read_u64
= mem_cgroup_read_u64
,
6102 .name
= "memsw.max_usage_in_bytes",
6103 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
6104 .write
= mem_cgroup_reset
,
6105 .read_u64
= mem_cgroup_read_u64
,
6108 .name
= "memsw.limit_in_bytes",
6109 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
6110 .write
= mem_cgroup_write
,
6111 .read_u64
= mem_cgroup_read_u64
,
6114 .name
= "memsw.failcnt",
6115 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
6116 .write
= mem_cgroup_reset
,
6117 .read_u64
= mem_cgroup_read_u64
,
6119 { }, /* terminate */
6122 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
6124 struct mem_cgroup_per_node
*pn
;
6125 struct mem_cgroup_per_zone
*mz
;
6126 int zone
, tmp
= node
;
6128 * This routine is called against possible nodes.
6129 * But it's BUG to call kmalloc() against offline node.
6131 * TODO: this routine can waste much memory for nodes which will
6132 * never be onlined. It's better to use memory hotplug callback
6135 if (!node_state(node
, N_NORMAL_MEMORY
))
6137 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
6141 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
6142 mz
= &pn
->zoneinfo
[zone
];
6143 lruvec_init(&mz
->lruvec
);
6144 mz
->usage_in_excess
= 0;
6145 mz
->on_tree
= false;
6148 memcg
->nodeinfo
[node
] = pn
;
6152 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
6154 kfree(memcg
->nodeinfo
[node
]);
6157 static struct mem_cgroup
*mem_cgroup_alloc(void)
6159 struct mem_cgroup
*memcg
;
6162 size
= sizeof(struct mem_cgroup
);
6163 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
6165 memcg
= kzalloc(size
, GFP_KERNEL
);
6169 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
6172 spin_lock_init(&memcg
->pcp_counter_lock
);
6181 * At destroying mem_cgroup, references from swap_cgroup can remain.
6182 * (scanning all at force_empty is too costly...)
6184 * Instead of clearing all references at force_empty, we remember
6185 * the number of reference from swap_cgroup and free mem_cgroup when
6186 * it goes down to 0.
6188 * Removal of cgroup itself succeeds regardless of refs from swap.
6191 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
6195 mem_cgroup_remove_from_trees(memcg
);
6198 free_mem_cgroup_per_zone_info(memcg
, node
);
6200 free_percpu(memcg
->stat
);
6203 * We need to make sure that (at least for now), the jump label
6204 * destruction code runs outside of the cgroup lock. This is because
6205 * get_online_cpus(), which is called from the static_branch update,
6206 * can't be called inside the cgroup_lock. cpusets are the ones
6207 * enforcing this dependency, so if they ever change, we might as well.
6209 * schedule_work() will guarantee this happens. Be careful if you need
6210 * to move this code around, and make sure it is outside
6213 disarm_static_keys(memcg
);
6218 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6220 struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
)
6222 if (!memcg
->res
.parent
)
6224 return mem_cgroup_from_res_counter(memcg
->res
.parent
, res
);
6226 EXPORT_SYMBOL(parent_mem_cgroup
);
6228 static void __init
mem_cgroup_soft_limit_tree_init(void)
6230 struct mem_cgroup_tree_per_node
*rtpn
;
6231 struct mem_cgroup_tree_per_zone
*rtpz
;
6232 int tmp
, node
, zone
;
6234 for_each_node(node
) {
6236 if (!node_state(node
, N_NORMAL_MEMORY
))
6238 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
6241 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
6243 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
6244 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
6245 rtpz
->rb_root
= RB_ROOT
;
6246 spin_lock_init(&rtpz
->lock
);
6251 static struct cgroup_subsys_state
* __ref
6252 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
6254 struct mem_cgroup
*memcg
;
6255 long error
= -ENOMEM
;
6258 memcg
= mem_cgroup_alloc();
6260 return ERR_PTR(error
);
6263 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
6267 if (parent_css
== NULL
) {
6268 root_mem_cgroup
= memcg
;
6269 res_counter_init(&memcg
->res
, NULL
);
6270 res_counter_init(&memcg
->memsw
, NULL
);
6271 res_counter_init(&memcg
->kmem
, NULL
);
6274 memcg
->last_scanned_node
= MAX_NUMNODES
;
6275 INIT_LIST_HEAD(&memcg
->oom_notify
);
6276 memcg
->move_charge_at_immigrate
= 0;
6277 mutex_init(&memcg
->thresholds_lock
);
6278 spin_lock_init(&memcg
->move_lock
);
6279 vmpressure_init(&memcg
->vmpressure
);
6280 INIT_LIST_HEAD(&memcg
->event_list
);
6281 spin_lock_init(&memcg
->event_list_lock
);
6286 __mem_cgroup_free(memcg
);
6287 return ERR_PTR(error
);
6291 mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
6293 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6294 struct mem_cgroup
*parent
= mem_cgroup_from_css(css
->parent
);
6297 if (css
->id
> MEM_CGROUP_ID_MAX
)
6303 mutex_lock(&memcg_create_mutex
);
6305 memcg
->use_hierarchy
= parent
->use_hierarchy
;
6306 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
6307 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
6309 if (parent
->use_hierarchy
) {
6310 res_counter_init(&memcg
->res
, &parent
->res
);
6311 res_counter_init(&memcg
->memsw
, &parent
->memsw
);
6312 res_counter_init(&memcg
->kmem
, &parent
->kmem
);
6315 * No need to take a reference to the parent because cgroup
6316 * core guarantees its existence.
6319 res_counter_init(&memcg
->res
, NULL
);
6320 res_counter_init(&memcg
->memsw
, NULL
);
6321 res_counter_init(&memcg
->kmem
, NULL
);
6323 * Deeper hierachy with use_hierarchy == false doesn't make
6324 * much sense so let cgroup subsystem know about this
6325 * unfortunate state in our controller.
6327 if (parent
!= root_mem_cgroup
)
6328 memory_cgrp_subsys
.broken_hierarchy
= true;
6330 mutex_unlock(&memcg_create_mutex
);
6332 ret
= memcg_init_kmem(memcg
, &memory_cgrp_subsys
);
6337 * Make sure the memcg is initialized: mem_cgroup_iter()
6338 * orders reading memcg->initialized against its callers
6339 * reading the memcg members.
6341 smp_store_release(&memcg
->initialized
, 1);
6347 * Announce all parents that a group from their hierarchy is gone.
6349 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup
*memcg
)
6351 struct mem_cgroup
*parent
= memcg
;
6353 while ((parent
= parent_mem_cgroup(parent
)))
6354 mem_cgroup_iter_invalidate(parent
);
6357 * if the root memcg is not hierarchical we have to check it
6360 if (!root_mem_cgroup
->use_hierarchy
)
6361 mem_cgroup_iter_invalidate(root_mem_cgroup
);
6364 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
6366 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6367 struct mem_cgroup_event
*event
, *tmp
;
6368 struct cgroup_subsys_state
*iter
;
6371 * Unregister events and notify userspace.
6372 * Notify userspace about cgroup removing only after rmdir of cgroup
6373 * directory to avoid race between userspace and kernelspace.
6375 spin_lock(&memcg
->event_list_lock
);
6376 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
6377 list_del_init(&event
->list
);
6378 schedule_work(&event
->remove
);
6380 spin_unlock(&memcg
->event_list_lock
);
6382 kmem_cgroup_css_offline(memcg
);
6384 mem_cgroup_invalidate_reclaim_iterators(memcg
);
6387 * This requires that offlining is serialized. Right now that is
6388 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6390 css_for_each_descendant_post(iter
, css
)
6391 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter
));
6393 memcg_unregister_all_caches(memcg
);
6394 vmpressure_cleanup(&memcg
->vmpressure
);
6397 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
6399 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6401 * XXX: css_offline() would be where we should reparent all
6402 * memory to prepare the cgroup for destruction. However,
6403 * memcg does not do css_tryget_online() and res_counter charging
6404 * under the same RCU lock region, which means that charging
6405 * could race with offlining. Offlining only happens to
6406 * cgroups with no tasks in them but charges can show up
6407 * without any tasks from the swapin path when the target
6408 * memcg is looked up from the swapout record and not from the
6409 * current task as it usually is. A race like this can leak
6410 * charges and put pages with stale cgroup pointers into
6414 * lookup_swap_cgroup_id()
6416 * mem_cgroup_lookup()
6417 * css_tryget_online()
6419 * disable css_tryget_online()
6422 * reparent_charges()
6423 * res_counter_charge()
6426 * pc->mem_cgroup = dead memcg
6429 * The bulk of the charges are still moved in offline_css() to
6430 * avoid pinning a lot of pages in case a long-term reference
6431 * like a swapout record is deferring the css_free() to long
6432 * after offlining. But this makes sure we catch any charges
6433 * made after offlining:
6435 mem_cgroup_reparent_charges(memcg
);
6437 memcg_destroy_kmem(memcg
);
6438 __mem_cgroup_free(memcg
);
6442 /* Handlers for move charge at task migration. */
6443 #define PRECHARGE_COUNT_AT_ONCE 256
6444 static int mem_cgroup_do_precharge(unsigned long count
)
6447 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
6448 struct mem_cgroup
*memcg
= mc
.to
;
6450 if (mem_cgroup_is_root(memcg
)) {
6451 mc
.precharge
+= count
;
6452 /* we don't need css_get for root */
6455 /* try to charge at once */
6457 struct res_counter
*dummy
;
6459 * "memcg" cannot be under rmdir() because we've already checked
6460 * by cgroup_lock_live_cgroup() that it is not removed and we
6461 * are still under the same cgroup_mutex. So we can postpone
6464 if (res_counter_charge(&memcg
->res
, PAGE_SIZE
* count
, &dummy
))
6466 if (do_swap_account
&& res_counter_charge(&memcg
->memsw
,
6467 PAGE_SIZE
* count
, &dummy
)) {
6468 res_counter_uncharge(&memcg
->res
, PAGE_SIZE
* count
);
6471 mc
.precharge
+= count
;
6475 /* fall back to one by one charge */
6477 if (signal_pending(current
)) {
6481 if (!batch_count
--) {
6482 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
6485 ret
= mem_cgroup_try_charge(memcg
, GFP_KERNEL
, 1, false);
6487 /* mem_cgroup_clear_mc() will do uncharge later */
6495 * get_mctgt_type - get target type of moving charge
6496 * @vma: the vma the pte to be checked belongs
6497 * @addr: the address corresponding to the pte to be checked
6498 * @ptent: the pte to be checked
6499 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6502 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6503 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6504 * move charge. if @target is not NULL, the page is stored in target->page
6505 * with extra refcnt got(Callers should handle it).
6506 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6507 * target for charge migration. if @target is not NULL, the entry is stored
6510 * Called with pte lock held.
6517 enum mc_target_type
{
6523 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
6524 unsigned long addr
, pte_t ptent
)
6526 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
6528 if (!page
|| !page_mapped(page
))
6530 if (PageAnon(page
)) {
6531 /* we don't move shared anon */
6534 } else if (!move_file())
6535 /* we ignore mapcount for file pages */
6537 if (!get_page_unless_zero(page
))
6544 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
6545 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6547 struct page
*page
= NULL
;
6548 swp_entry_t ent
= pte_to_swp_entry(ptent
);
6550 if (!move_anon() || non_swap_entry(ent
))
6553 * Because lookup_swap_cache() updates some statistics counter,
6554 * we call find_get_page() with swapper_space directly.
6556 page
= find_get_page(swap_address_space(ent
), ent
.val
);
6557 if (do_swap_account
)
6558 entry
->val
= ent
.val
;
6563 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
6564 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6570 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
6571 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6573 struct page
*page
= NULL
;
6574 struct address_space
*mapping
;
6577 if (!vma
->vm_file
) /* anonymous vma */
6582 mapping
= vma
->vm_file
->f_mapping
;
6583 if (pte_none(ptent
))
6584 pgoff
= linear_page_index(vma
, addr
);
6585 else /* pte_file(ptent) is true */
6586 pgoff
= pte_to_pgoff(ptent
);
6588 /* page is moved even if it's not RSS of this task(page-faulted). */
6590 /* shmem/tmpfs may report page out on swap: account for that too. */
6591 if (shmem_mapping(mapping
)) {
6592 page
= find_get_entry(mapping
, pgoff
);
6593 if (radix_tree_exceptional_entry(page
)) {
6594 swp_entry_t swp
= radix_to_swp_entry(page
);
6595 if (do_swap_account
)
6597 page
= find_get_page(swap_address_space(swp
), swp
.val
);
6600 page
= find_get_page(mapping
, pgoff
);
6602 page
= find_get_page(mapping
, pgoff
);
6607 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
6608 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
6610 struct page
*page
= NULL
;
6611 struct page_cgroup
*pc
;
6612 enum mc_target_type ret
= MC_TARGET_NONE
;
6613 swp_entry_t ent
= { .val
= 0 };
6615 if (pte_present(ptent
))
6616 page
= mc_handle_present_pte(vma
, addr
, ptent
);
6617 else if (is_swap_pte(ptent
))
6618 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
6619 else if (pte_none(ptent
) || pte_file(ptent
))
6620 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
6622 if (!page
&& !ent
.val
)
6625 pc
= lookup_page_cgroup(page
);
6627 * Do only loose check w/o page_cgroup lock.
6628 * mem_cgroup_move_account() checks the pc is valid or not under
6631 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
6632 ret
= MC_TARGET_PAGE
;
6634 target
->page
= page
;
6636 if (!ret
|| !target
)
6639 /* There is a swap entry and a page doesn't exist or isn't charged */
6640 if (ent
.val
&& !ret
&&
6641 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
6642 ret
= MC_TARGET_SWAP
;
6649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6651 * We don't consider swapping or file mapped pages because THP does not
6652 * support them for now.
6653 * Caller should make sure that pmd_trans_huge(pmd) is true.
6655 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
6656 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
6658 struct page
*page
= NULL
;
6659 struct page_cgroup
*pc
;
6660 enum mc_target_type ret
= MC_TARGET_NONE
;
6662 page
= pmd_page(pmd
);
6663 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
6666 pc
= lookup_page_cgroup(page
);
6667 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
6668 ret
= MC_TARGET_PAGE
;
6671 target
->page
= page
;
6677 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
6678 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
6680 return MC_TARGET_NONE
;
6684 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
6685 unsigned long addr
, unsigned long end
,
6686 struct mm_walk
*walk
)
6688 struct vm_area_struct
*vma
= walk
->private;
6692 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
6693 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
6694 mc
.precharge
+= HPAGE_PMD_NR
;
6699 if (pmd_trans_unstable(pmd
))
6701 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
6702 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
6703 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
6704 mc
.precharge
++; /* increment precharge temporarily */
6705 pte_unmap_unlock(pte
- 1, ptl
);
6711 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
6713 unsigned long precharge
;
6714 struct vm_area_struct
*vma
;
6716 down_read(&mm
->mmap_sem
);
6717 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
6718 struct mm_walk mem_cgroup_count_precharge_walk
= {
6719 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
6723 if (is_vm_hugetlb_page(vma
))
6725 walk_page_range(vma
->vm_start
, vma
->vm_end
,
6726 &mem_cgroup_count_precharge_walk
);
6728 up_read(&mm
->mmap_sem
);
6730 precharge
= mc
.precharge
;
6736 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
6738 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
6740 VM_BUG_ON(mc
.moving_task
);
6741 mc
.moving_task
= current
;
6742 return mem_cgroup_do_precharge(precharge
);
6745 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6746 static void __mem_cgroup_clear_mc(void)
6748 struct mem_cgroup
*from
= mc
.from
;
6749 struct mem_cgroup
*to
= mc
.to
;
6752 /* we must uncharge all the leftover precharges from mc.to */
6754 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
6758 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6759 * we must uncharge here.
6761 if (mc
.moved_charge
) {
6762 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
6763 mc
.moved_charge
= 0;
6765 /* we must fixup refcnts and charges */
6766 if (mc
.moved_swap
) {
6767 /* uncharge swap account from the old cgroup */
6768 if (!mem_cgroup_is_root(mc
.from
))
6769 res_counter_uncharge(&mc
.from
->memsw
,
6770 PAGE_SIZE
* mc
.moved_swap
);
6772 for (i
= 0; i
< mc
.moved_swap
; i
++)
6773 css_put(&mc
.from
->css
);
6775 if (!mem_cgroup_is_root(mc
.to
)) {
6777 * we charged both to->res and to->memsw, so we should
6780 res_counter_uncharge(&mc
.to
->res
,
6781 PAGE_SIZE
* mc
.moved_swap
);
6783 /* we've already done css_get(mc.to) */
6786 memcg_oom_recover(from
);
6787 memcg_oom_recover(to
);
6788 wake_up_all(&mc
.waitq
);
6791 static void mem_cgroup_clear_mc(void)
6793 struct mem_cgroup
*from
= mc
.from
;
6796 * we must clear moving_task before waking up waiters at the end of
6799 mc
.moving_task
= NULL
;
6800 __mem_cgroup_clear_mc();
6801 spin_lock(&mc
.lock
);
6804 spin_unlock(&mc
.lock
);
6805 mem_cgroup_end_move(from
);
6808 static int mem_cgroup_can_attach(struct cgroup_subsys_state
*css
,
6809 struct cgroup_taskset
*tset
)
6811 struct task_struct
*p
= cgroup_taskset_first(tset
);
6813 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6814 unsigned long move_charge_at_immigrate
;
6817 * We are now commited to this value whatever it is. Changes in this
6818 * tunable will only affect upcoming migrations, not the current one.
6819 * So we need to save it, and keep it going.
6821 move_charge_at_immigrate
= memcg
->move_charge_at_immigrate
;
6822 if (move_charge_at_immigrate
) {
6823 struct mm_struct
*mm
;
6824 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
6826 VM_BUG_ON(from
== memcg
);
6828 mm
= get_task_mm(p
);
6831 /* We move charges only when we move a owner of the mm */
6832 if (mm
->owner
== p
) {
6835 VM_BUG_ON(mc
.precharge
);
6836 VM_BUG_ON(mc
.moved_charge
);
6837 VM_BUG_ON(mc
.moved_swap
);
6838 mem_cgroup_start_move(from
);
6839 spin_lock(&mc
.lock
);
6842 mc
.immigrate_flags
= move_charge_at_immigrate
;
6843 spin_unlock(&mc
.lock
);
6844 /* We set mc.moving_task later */
6846 ret
= mem_cgroup_precharge_mc(mm
);
6848 mem_cgroup_clear_mc();
6855 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state
*css
,
6856 struct cgroup_taskset
*tset
)
6858 mem_cgroup_clear_mc();
6861 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
6862 unsigned long addr
, unsigned long end
,
6863 struct mm_walk
*walk
)
6866 struct vm_area_struct
*vma
= walk
->private;
6869 enum mc_target_type target_type
;
6870 union mc_target target
;
6872 struct page_cgroup
*pc
;
6875 * We don't take compound_lock() here but no race with splitting thp
6877 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6878 * under splitting, which means there's no concurrent thp split,
6879 * - if another thread runs into split_huge_page() just after we
6880 * entered this if-block, the thread must wait for page table lock
6881 * to be unlocked in __split_huge_page_splitting(), where the main
6882 * part of thp split is not executed yet.
6884 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
6885 if (mc
.precharge
< HPAGE_PMD_NR
) {
6889 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
6890 if (target_type
== MC_TARGET_PAGE
) {
6892 if (!isolate_lru_page(page
)) {
6893 pc
= lookup_page_cgroup(page
);
6894 if (!mem_cgroup_move_account(page
, HPAGE_PMD_NR
,
6895 pc
, mc
.from
, mc
.to
)) {
6896 mc
.precharge
-= HPAGE_PMD_NR
;
6897 mc
.moved_charge
+= HPAGE_PMD_NR
;
6899 putback_lru_page(page
);
6907 if (pmd_trans_unstable(pmd
))
6910 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
6911 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
6912 pte_t ptent
= *(pte
++);
6918 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
6919 case MC_TARGET_PAGE
:
6921 if (isolate_lru_page(page
))
6923 pc
= lookup_page_cgroup(page
);
6924 if (!mem_cgroup_move_account(page
, 1, pc
,
6927 /* we uncharge from mc.from later. */
6930 putback_lru_page(page
);
6931 put
: /* get_mctgt_type() gets the page */
6934 case MC_TARGET_SWAP
:
6936 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
6938 /* we fixup refcnts and charges later. */
6946 pte_unmap_unlock(pte
- 1, ptl
);
6951 * We have consumed all precharges we got in can_attach().
6952 * We try charge one by one, but don't do any additional
6953 * charges to mc.to if we have failed in charge once in attach()
6956 ret
= mem_cgroup_do_precharge(1);
6964 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
6966 struct vm_area_struct
*vma
;
6968 lru_add_drain_all();
6970 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
6972 * Someone who are holding the mmap_sem might be waiting in
6973 * waitq. So we cancel all extra charges, wake up all waiters,
6974 * and retry. Because we cancel precharges, we might not be able
6975 * to move enough charges, but moving charge is a best-effort
6976 * feature anyway, so it wouldn't be a big problem.
6978 __mem_cgroup_clear_mc();
6982 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
6984 struct mm_walk mem_cgroup_move_charge_walk
= {
6985 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
6989 if (is_vm_hugetlb_page(vma
))
6991 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
6992 &mem_cgroup_move_charge_walk
);
6995 * means we have consumed all precharges and failed in
6996 * doing additional charge. Just abandon here.
7000 up_read(&mm
->mmap_sem
);
7003 static void mem_cgroup_move_task(struct cgroup_subsys_state
*css
,
7004 struct cgroup_taskset
*tset
)
7006 struct task_struct
*p
= cgroup_taskset_first(tset
);
7007 struct mm_struct
*mm
= get_task_mm(p
);
7011 mem_cgroup_move_charge(mm
);
7015 mem_cgroup_clear_mc();
7017 #else /* !CONFIG_MMU */
7018 static int mem_cgroup_can_attach(struct cgroup_subsys_state
*css
,
7019 struct cgroup_taskset
*tset
)
7023 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state
*css
,
7024 struct cgroup_taskset
*tset
)
7027 static void mem_cgroup_move_task(struct cgroup_subsys_state
*css
,
7028 struct cgroup_taskset
*tset
)
7034 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7035 * to verify sane_behavior flag on each mount attempt.
7037 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
7040 * use_hierarchy is forced with sane_behavior. cgroup core
7041 * guarantees that @root doesn't have any children, so turning it
7042 * on for the root memcg is enough.
7044 if (cgroup_sane_behavior(root_css
->cgroup
))
7045 mem_cgroup_from_css(root_css
)->use_hierarchy
= true;
7048 struct cgroup_subsys memory_cgrp_subsys
= {
7049 .css_alloc
= mem_cgroup_css_alloc
,
7050 .css_online
= mem_cgroup_css_online
,
7051 .css_offline
= mem_cgroup_css_offline
,
7052 .css_free
= mem_cgroup_css_free
,
7053 .can_attach
= mem_cgroup_can_attach
,
7054 .cancel_attach
= mem_cgroup_cancel_attach
,
7055 .attach
= mem_cgroup_move_task
,
7056 .bind
= mem_cgroup_bind
,
7057 .base_cftypes
= mem_cgroup_files
,
7061 #ifdef CONFIG_MEMCG_SWAP
7062 static int __init
enable_swap_account(char *s
)
7064 if (!strcmp(s
, "1"))
7065 really_do_swap_account
= 1;
7066 else if (!strcmp(s
, "0"))
7067 really_do_swap_account
= 0;
7070 __setup("swapaccount=", enable_swap_account
);
7072 static void __init
memsw_file_init(void)
7074 WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys
, memsw_cgroup_files
));
7077 static void __init
enable_swap_cgroup(void)
7079 if (!mem_cgroup_disabled() && really_do_swap_account
) {
7080 do_swap_account
= 1;
7086 static void __init
enable_swap_cgroup(void)
7092 * subsys_initcall() for memory controller.
7094 * Some parts like hotcpu_notifier() have to be initialized from this context
7095 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7096 * everything that doesn't depend on a specific mem_cgroup structure should
7097 * be initialized from here.
7099 static int __init
mem_cgroup_init(void)
7101 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
7102 enable_swap_cgroup();
7103 mem_cgroup_soft_limit_tree_init();
7107 subsys_initcall(mem_cgroup_init
);