jme: Fix device PM wakeup API usage
[linux/fpc-iii.git] / mm / memcontrol.c
blob2bfd852934ac14661cb94101369c2603525e51cd
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
65 #include <asm/uaccess.h>
67 #include <trace/events/vmscan.h>
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
86 #else
87 #define do_swap_account 0
88 #endif
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
146 struct mem_cgroup_reclaim_iter {
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
151 struct mem_cgroup *last_visited;
152 int last_dead_count;
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
159 * per-zone information in memory controller.
161 struct mem_cgroup_per_zone {
162 struct lruvec lruvec;
163 unsigned long lru_size[NR_LRU_LISTS];
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
172 /* use container_of */
175 struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
184 struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
189 struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
193 struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
199 struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold;
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
214 struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
222 struct mem_cgroup_threshold_ary *spare;
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
232 * cgroup_event represents events which userspace want to receive.
234 struct mem_cgroup_event {
236 * memcg which the event belongs to.
238 struct mem_cgroup *memcg;
240 * eventfd to signal userspace about the event.
242 struct eventfd_ctx *eventfd;
244 * Each of these stored in a list by the cgroup.
246 struct list_head list;
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
252 int (*register_event)(struct mem_cgroup *memcg,
253 struct eventfd_ctx *eventfd, const char *args);
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
259 void (*unregister_event)(struct mem_cgroup *memcg,
260 struct eventfd_ctx *eventfd);
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
285 struct mem_cgroup {
286 struct cgroup_subsys_state css;
288 * the counter to account for memory usage
290 struct res_counter res;
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
295 /* css_online() has been completed */
296 int initialized;
299 * the counter to account for mem+swap usage.
301 struct res_counter memsw;
304 * the counter to account for kernel memory usage.
306 struct res_counter kmem;
308 * Should the accounting and control be hierarchical, per subtree?
310 bool use_hierarchy;
311 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
313 bool oom_lock;
314 atomic_t under_oom;
315 atomic_t oom_wakeups;
317 int swappiness;
318 /* OOM-Killer disable */
319 int oom_kill_disable;
321 /* set when res.limit == memsw.limit */
322 bool memsw_is_minimum;
324 /* protect arrays of thresholds */
325 struct mutex thresholds_lock;
327 /* thresholds for memory usage. RCU-protected */
328 struct mem_cgroup_thresholds thresholds;
330 /* thresholds for mem+swap usage. RCU-protected */
331 struct mem_cgroup_thresholds memsw_thresholds;
333 /* For oom notifier event fd */
334 struct list_head oom_notify;
337 * Should we move charges of a task when a task is moved into this
338 * mem_cgroup ? And what type of charges should we move ?
340 unsigned long move_charge_at_immigrate;
342 * set > 0 if pages under this cgroup are moving to other cgroup.
344 atomic_t moving_account;
345 /* taken only while moving_account > 0 */
346 spinlock_t move_lock;
348 * percpu counter.
350 struct mem_cgroup_stat_cpu __percpu *stat;
352 * used when a cpu is offlined or other synchronizations
353 * See mem_cgroup_read_stat().
355 struct mem_cgroup_stat_cpu nocpu_base;
356 spinlock_t pcp_counter_lock;
358 atomic_t dead_count;
359 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
360 struct cg_proto tcp_mem;
361 #endif
362 #if defined(CONFIG_MEMCG_KMEM)
363 /* analogous to slab_common's slab_caches list, but per-memcg;
364 * protected by memcg_slab_mutex */
365 struct list_head memcg_slab_caches;
366 /* Index in the kmem_cache->memcg_params->memcg_caches array */
367 int kmemcg_id;
368 #endif
370 int last_scanned_node;
371 #if MAX_NUMNODES > 1
372 nodemask_t scan_nodes;
373 atomic_t numainfo_events;
374 atomic_t numainfo_updating;
375 #endif
377 /* List of events which userspace want to receive */
378 struct list_head event_list;
379 spinlock_t event_list_lock;
381 struct mem_cgroup_per_node *nodeinfo[0];
382 /* WARNING: nodeinfo must be the last member here */
385 /* internal only representation about the status of kmem accounting. */
386 enum {
387 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
388 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
391 #ifdef CONFIG_MEMCG_KMEM
392 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
394 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
399 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
402 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
405 * Our caller must use css_get() first, because memcg_uncharge_kmem()
406 * will call css_put() if it sees the memcg is dead.
408 smp_wmb();
409 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
410 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
413 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
415 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
416 &memcg->kmem_account_flags);
418 #endif
420 /* Stuffs for move charges at task migration. */
422 * Types of charges to be moved. "move_charge_at_immitgrate" and
423 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
425 enum move_type {
426 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
427 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
428 NR_MOVE_TYPE,
431 /* "mc" and its members are protected by cgroup_mutex */
432 static struct move_charge_struct {
433 spinlock_t lock; /* for from, to */
434 struct mem_cgroup *from;
435 struct mem_cgroup *to;
436 unsigned long immigrate_flags;
437 unsigned long precharge;
438 unsigned long moved_charge;
439 unsigned long moved_swap;
440 struct task_struct *moving_task; /* a task moving charges */
441 wait_queue_head_t waitq; /* a waitq for other context */
442 } mc = {
443 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
444 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
447 static bool move_anon(void)
449 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
452 static bool move_file(void)
454 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
458 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
459 * limit reclaim to prevent infinite loops, if they ever occur.
461 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
462 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
464 enum charge_type {
465 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
466 MEM_CGROUP_CHARGE_TYPE_ANON,
467 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
468 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
469 NR_CHARGE_TYPE,
472 /* for encoding cft->private value on file */
473 enum res_type {
474 _MEM,
475 _MEMSWAP,
476 _OOM_TYPE,
477 _KMEM,
480 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
481 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
482 #define MEMFILE_ATTR(val) ((val) & 0xffff)
483 /* Used for OOM nofiier */
484 #define OOM_CONTROL (0)
487 * Reclaim flags for mem_cgroup_hierarchical_reclaim
489 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
490 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
491 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
492 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
495 * The memcg_create_mutex will be held whenever a new cgroup is created.
496 * As a consequence, any change that needs to protect against new child cgroups
497 * appearing has to hold it as well.
499 static DEFINE_MUTEX(memcg_create_mutex);
501 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
503 return s ? container_of(s, struct mem_cgroup, css) : NULL;
506 /* Some nice accessors for the vmpressure. */
507 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
509 if (!memcg)
510 memcg = root_mem_cgroup;
511 return &memcg->vmpressure;
514 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
516 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
519 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
521 return (memcg == root_mem_cgroup);
525 * We restrict the id in the range of [1, 65535], so it can fit into
526 * an unsigned short.
528 #define MEM_CGROUP_ID_MAX USHRT_MAX
530 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
532 return memcg->css.id;
535 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
537 struct cgroup_subsys_state *css;
539 css = css_from_id(id, &memory_cgrp_subsys);
540 return mem_cgroup_from_css(css);
543 /* Writing them here to avoid exposing memcg's inner layout */
544 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
546 void sock_update_memcg(struct sock *sk)
548 if (mem_cgroup_sockets_enabled) {
549 struct mem_cgroup *memcg;
550 struct cg_proto *cg_proto;
552 BUG_ON(!sk->sk_prot->proto_cgroup);
554 /* Socket cloning can throw us here with sk_cgrp already
555 * filled. It won't however, necessarily happen from
556 * process context. So the test for root memcg given
557 * the current task's memcg won't help us in this case.
559 * Respecting the original socket's memcg is a better
560 * decision in this case.
562 if (sk->sk_cgrp) {
563 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
564 css_get(&sk->sk_cgrp->memcg->css);
565 return;
568 rcu_read_lock();
569 memcg = mem_cgroup_from_task(current);
570 cg_proto = sk->sk_prot->proto_cgroup(memcg);
571 if (!mem_cgroup_is_root(memcg) &&
572 memcg_proto_active(cg_proto) &&
573 css_tryget_online(&memcg->css)) {
574 sk->sk_cgrp = cg_proto;
576 rcu_read_unlock();
579 EXPORT_SYMBOL(sock_update_memcg);
581 void sock_release_memcg(struct sock *sk)
583 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
584 struct mem_cgroup *memcg;
585 WARN_ON(!sk->sk_cgrp->memcg);
586 memcg = sk->sk_cgrp->memcg;
587 css_put(&sk->sk_cgrp->memcg->css);
591 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
593 if (!memcg || mem_cgroup_is_root(memcg))
594 return NULL;
596 return &memcg->tcp_mem;
598 EXPORT_SYMBOL(tcp_proto_cgroup);
600 static void disarm_sock_keys(struct mem_cgroup *memcg)
602 if (!memcg_proto_activated(&memcg->tcp_mem))
603 return;
604 static_key_slow_dec(&memcg_socket_limit_enabled);
606 #else
607 static void disarm_sock_keys(struct mem_cgroup *memcg)
610 #endif
612 #ifdef CONFIG_MEMCG_KMEM
614 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
615 * The main reason for not using cgroup id for this:
616 * this works better in sparse environments, where we have a lot of memcgs,
617 * but only a few kmem-limited. Or also, if we have, for instance, 200
618 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
619 * 200 entry array for that.
621 * The current size of the caches array is stored in
622 * memcg_limited_groups_array_size. It will double each time we have to
623 * increase it.
625 static DEFINE_IDA(kmem_limited_groups);
626 int memcg_limited_groups_array_size;
629 * MIN_SIZE is different than 1, because we would like to avoid going through
630 * the alloc/free process all the time. In a small machine, 4 kmem-limited
631 * cgroups is a reasonable guess. In the future, it could be a parameter or
632 * tunable, but that is strictly not necessary.
634 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
635 * this constant directly from cgroup, but it is understandable that this is
636 * better kept as an internal representation in cgroup.c. In any case, the
637 * cgrp_id space is not getting any smaller, and we don't have to necessarily
638 * increase ours as well if it increases.
640 #define MEMCG_CACHES_MIN_SIZE 4
641 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
644 * A lot of the calls to the cache allocation functions are expected to be
645 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
646 * conditional to this static branch, we'll have to allow modules that does
647 * kmem_cache_alloc and the such to see this symbol as well
649 struct static_key memcg_kmem_enabled_key;
650 EXPORT_SYMBOL(memcg_kmem_enabled_key);
652 static void disarm_kmem_keys(struct mem_cgroup *memcg)
654 if (memcg_kmem_is_active(memcg)) {
655 static_key_slow_dec(&memcg_kmem_enabled_key);
656 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
659 * This check can't live in kmem destruction function,
660 * since the charges will outlive the cgroup
662 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
664 #else
665 static void disarm_kmem_keys(struct mem_cgroup *memcg)
668 #endif /* CONFIG_MEMCG_KMEM */
670 static void disarm_static_keys(struct mem_cgroup *memcg)
672 disarm_sock_keys(memcg);
673 disarm_kmem_keys(memcg);
676 static void drain_all_stock_async(struct mem_cgroup *memcg);
678 static struct mem_cgroup_per_zone *
679 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
681 int nid = zone_to_nid(zone);
682 int zid = zone_idx(zone);
684 return &memcg->nodeinfo[nid]->zoneinfo[zid];
687 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
689 return &memcg->css;
692 static struct mem_cgroup_per_zone *
693 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
695 int nid = page_to_nid(page);
696 int zid = page_zonenum(page);
698 return &memcg->nodeinfo[nid]->zoneinfo[zid];
701 static struct mem_cgroup_tree_per_zone *
702 soft_limit_tree_node_zone(int nid, int zid)
704 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
707 static struct mem_cgroup_tree_per_zone *
708 soft_limit_tree_from_page(struct page *page)
710 int nid = page_to_nid(page);
711 int zid = page_zonenum(page);
713 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
716 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz,
718 unsigned long long new_usage_in_excess)
720 struct rb_node **p = &mctz->rb_root.rb_node;
721 struct rb_node *parent = NULL;
722 struct mem_cgroup_per_zone *mz_node;
724 if (mz->on_tree)
725 return;
727 mz->usage_in_excess = new_usage_in_excess;
728 if (!mz->usage_in_excess)
729 return;
730 while (*p) {
731 parent = *p;
732 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
733 tree_node);
734 if (mz->usage_in_excess < mz_node->usage_in_excess)
735 p = &(*p)->rb_left;
737 * We can't avoid mem cgroups that are over their soft
738 * limit by the same amount
740 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
741 p = &(*p)->rb_right;
743 rb_link_node(&mz->tree_node, parent, p);
744 rb_insert_color(&mz->tree_node, &mctz->rb_root);
745 mz->on_tree = true;
748 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
749 struct mem_cgroup_tree_per_zone *mctz)
751 if (!mz->on_tree)
752 return;
753 rb_erase(&mz->tree_node, &mctz->rb_root);
754 mz->on_tree = false;
757 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
758 struct mem_cgroup_tree_per_zone *mctz)
760 spin_lock(&mctz->lock);
761 __mem_cgroup_remove_exceeded(mz, mctz);
762 spin_unlock(&mctz->lock);
766 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
768 unsigned long long excess;
769 struct mem_cgroup_per_zone *mz;
770 struct mem_cgroup_tree_per_zone *mctz;
772 mctz = soft_limit_tree_from_page(page);
774 * Necessary to update all ancestors when hierarchy is used.
775 * because their event counter is not touched.
777 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
778 mz = mem_cgroup_page_zoneinfo(memcg, page);
779 excess = res_counter_soft_limit_excess(&memcg->res);
781 * We have to update the tree if mz is on RB-tree or
782 * mem is over its softlimit.
784 if (excess || mz->on_tree) {
785 spin_lock(&mctz->lock);
786 /* if on-tree, remove it */
787 if (mz->on_tree)
788 __mem_cgroup_remove_exceeded(mz, mctz);
790 * Insert again. mz->usage_in_excess will be updated.
791 * If excess is 0, no tree ops.
793 __mem_cgroup_insert_exceeded(mz, mctz, excess);
794 spin_unlock(&mctz->lock);
799 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
801 struct mem_cgroup_tree_per_zone *mctz;
802 struct mem_cgroup_per_zone *mz;
803 int nid, zid;
805 for_each_node(nid) {
806 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
807 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
808 mctz = soft_limit_tree_node_zone(nid, zid);
809 mem_cgroup_remove_exceeded(mz, mctz);
814 static struct mem_cgroup_per_zone *
815 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
817 struct rb_node *rightmost = NULL;
818 struct mem_cgroup_per_zone *mz;
820 retry:
821 mz = NULL;
822 rightmost = rb_last(&mctz->rb_root);
823 if (!rightmost)
824 goto done; /* Nothing to reclaim from */
826 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
828 * Remove the node now but someone else can add it back,
829 * we will to add it back at the end of reclaim to its correct
830 * position in the tree.
832 __mem_cgroup_remove_exceeded(mz, mctz);
833 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
834 !css_tryget_online(&mz->memcg->css))
835 goto retry;
836 done:
837 return mz;
840 static struct mem_cgroup_per_zone *
841 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
843 struct mem_cgroup_per_zone *mz;
845 spin_lock(&mctz->lock);
846 mz = __mem_cgroup_largest_soft_limit_node(mctz);
847 spin_unlock(&mctz->lock);
848 return mz;
852 * Implementation Note: reading percpu statistics for memcg.
854 * Both of vmstat[] and percpu_counter has threshold and do periodic
855 * synchronization to implement "quick" read. There are trade-off between
856 * reading cost and precision of value. Then, we may have a chance to implement
857 * a periodic synchronizion of counter in memcg's counter.
859 * But this _read() function is used for user interface now. The user accounts
860 * memory usage by memory cgroup and he _always_ requires exact value because
861 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
862 * have to visit all online cpus and make sum. So, for now, unnecessary
863 * synchronization is not implemented. (just implemented for cpu hotplug)
865 * If there are kernel internal actions which can make use of some not-exact
866 * value, and reading all cpu value can be performance bottleneck in some
867 * common workload, threashold and synchonization as vmstat[] should be
868 * implemented.
870 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
871 enum mem_cgroup_stat_index idx)
873 long val = 0;
874 int cpu;
876 get_online_cpus();
877 for_each_online_cpu(cpu)
878 val += per_cpu(memcg->stat->count[idx], cpu);
879 #ifdef CONFIG_HOTPLUG_CPU
880 spin_lock(&memcg->pcp_counter_lock);
881 val += memcg->nocpu_base.count[idx];
882 spin_unlock(&memcg->pcp_counter_lock);
883 #endif
884 put_online_cpus();
885 return val;
888 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
889 bool charge)
891 int val = (charge) ? 1 : -1;
892 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
895 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
896 enum mem_cgroup_events_index idx)
898 unsigned long val = 0;
899 int cpu;
901 get_online_cpus();
902 for_each_online_cpu(cpu)
903 val += per_cpu(memcg->stat->events[idx], cpu);
904 #ifdef CONFIG_HOTPLUG_CPU
905 spin_lock(&memcg->pcp_counter_lock);
906 val += memcg->nocpu_base.events[idx];
907 spin_unlock(&memcg->pcp_counter_lock);
908 #endif
909 put_online_cpus();
910 return val;
913 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
914 struct page *page,
915 bool anon, int nr_pages)
918 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
919 * counted as CACHE even if it's on ANON LRU.
921 if (anon)
922 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
923 nr_pages);
924 else
925 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
926 nr_pages);
928 if (PageTransHuge(page))
929 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
930 nr_pages);
932 /* pagein of a big page is an event. So, ignore page size */
933 if (nr_pages > 0)
934 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
935 else {
936 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
937 nr_pages = -nr_pages; /* for event */
940 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
943 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
945 struct mem_cgroup_per_zone *mz;
947 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
948 return mz->lru_size[lru];
951 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
952 int nid,
953 unsigned int lru_mask)
955 unsigned long nr = 0;
956 int zid;
958 VM_BUG_ON((unsigned)nid >= nr_node_ids);
960 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
961 struct mem_cgroup_per_zone *mz;
962 enum lru_list lru;
964 for_each_lru(lru) {
965 if (!(BIT(lru) & lru_mask))
966 continue;
967 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
968 nr += mz->lru_size[lru];
971 return nr;
974 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
975 unsigned int lru_mask)
977 unsigned long nr = 0;
978 int nid;
980 for_each_node_state(nid, N_MEMORY)
981 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
982 return nr;
985 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
986 enum mem_cgroup_events_target target)
988 unsigned long val, next;
990 val = __this_cpu_read(memcg->stat->nr_page_events);
991 next = __this_cpu_read(memcg->stat->targets[target]);
992 /* from time_after() in jiffies.h */
993 if ((long)next - (long)val < 0) {
994 switch (target) {
995 case MEM_CGROUP_TARGET_THRESH:
996 next = val + THRESHOLDS_EVENTS_TARGET;
997 break;
998 case MEM_CGROUP_TARGET_SOFTLIMIT:
999 next = val + SOFTLIMIT_EVENTS_TARGET;
1000 break;
1001 case MEM_CGROUP_TARGET_NUMAINFO:
1002 next = val + NUMAINFO_EVENTS_TARGET;
1003 break;
1004 default:
1005 break;
1007 __this_cpu_write(memcg->stat->targets[target], next);
1008 return true;
1010 return false;
1014 * Check events in order.
1017 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1019 preempt_disable();
1020 /* threshold event is triggered in finer grain than soft limit */
1021 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1022 MEM_CGROUP_TARGET_THRESH))) {
1023 bool do_softlimit;
1024 bool do_numainfo __maybe_unused;
1026 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1027 MEM_CGROUP_TARGET_SOFTLIMIT);
1028 #if MAX_NUMNODES > 1
1029 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1030 MEM_CGROUP_TARGET_NUMAINFO);
1031 #endif
1032 preempt_enable();
1034 mem_cgroup_threshold(memcg);
1035 if (unlikely(do_softlimit))
1036 mem_cgroup_update_tree(memcg, page);
1037 #if MAX_NUMNODES > 1
1038 if (unlikely(do_numainfo))
1039 atomic_inc(&memcg->numainfo_events);
1040 #endif
1041 } else
1042 preempt_enable();
1045 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1048 * mm_update_next_owner() may clear mm->owner to NULL
1049 * if it races with swapoff, page migration, etc.
1050 * So this can be called with p == NULL.
1052 if (unlikely(!p))
1053 return NULL;
1055 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1058 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1060 struct mem_cgroup *memcg = NULL;
1062 rcu_read_lock();
1063 do {
1065 * Page cache insertions can happen withou an
1066 * actual mm context, e.g. during disk probing
1067 * on boot, loopback IO, acct() writes etc.
1069 if (unlikely(!mm))
1070 memcg = root_mem_cgroup;
1071 else {
1072 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1073 if (unlikely(!memcg))
1074 memcg = root_mem_cgroup;
1076 } while (!css_tryget_online(&memcg->css));
1077 rcu_read_unlock();
1078 return memcg;
1082 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1083 * ref. count) or NULL if the whole root's subtree has been visited.
1085 * helper function to be used by mem_cgroup_iter
1087 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1088 struct mem_cgroup *last_visited)
1090 struct cgroup_subsys_state *prev_css, *next_css;
1092 prev_css = last_visited ? &last_visited->css : NULL;
1093 skip_node:
1094 next_css = css_next_descendant_pre(prev_css, &root->css);
1097 * Even if we found a group we have to make sure it is
1098 * alive. css && !memcg means that the groups should be
1099 * skipped and we should continue the tree walk.
1100 * last_visited css is safe to use because it is
1101 * protected by css_get and the tree walk is rcu safe.
1103 * We do not take a reference on the root of the tree walk
1104 * because we might race with the root removal when it would
1105 * be the only node in the iterated hierarchy and mem_cgroup_iter
1106 * would end up in an endless loop because it expects that at
1107 * least one valid node will be returned. Root cannot disappear
1108 * because caller of the iterator should hold it already so
1109 * skipping css reference should be safe.
1111 if (next_css) {
1112 struct mem_cgroup *memcg = mem_cgroup_from_css(next_css);
1114 if (next_css == &root->css)
1115 return memcg;
1117 if (css_tryget_online(next_css)) {
1119 * Make sure the memcg is initialized:
1120 * mem_cgroup_css_online() orders the the
1121 * initialization against setting the flag.
1123 if (smp_load_acquire(&memcg->initialized))
1124 return memcg;
1125 css_put(next_css);
1128 prev_css = next_css;
1129 goto skip_node;
1132 return NULL;
1135 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1138 * When a group in the hierarchy below root is destroyed, the
1139 * hierarchy iterator can no longer be trusted since it might
1140 * have pointed to the destroyed group. Invalidate it.
1142 atomic_inc(&root->dead_count);
1145 static struct mem_cgroup *
1146 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1147 struct mem_cgroup *root,
1148 int *sequence)
1150 struct mem_cgroup *position = NULL;
1152 * A cgroup destruction happens in two stages: offlining and
1153 * release. They are separated by a RCU grace period.
1155 * If the iterator is valid, we may still race with an
1156 * offlining. The RCU lock ensures the object won't be
1157 * released, tryget will fail if we lost the race.
1159 *sequence = atomic_read(&root->dead_count);
1160 if (iter->last_dead_count == *sequence) {
1161 smp_rmb();
1162 position = iter->last_visited;
1165 * We cannot take a reference to root because we might race
1166 * with root removal and returning NULL would end up in
1167 * an endless loop on the iterator user level when root
1168 * would be returned all the time.
1170 if (position && position != root &&
1171 !css_tryget_online(&position->css))
1172 position = NULL;
1174 return position;
1177 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1178 struct mem_cgroup *last_visited,
1179 struct mem_cgroup *new_position,
1180 struct mem_cgroup *root,
1181 int sequence)
1183 /* root reference counting symmetric to mem_cgroup_iter_load */
1184 if (last_visited && last_visited != root)
1185 css_put(&last_visited->css);
1187 * We store the sequence count from the time @last_visited was
1188 * loaded successfully instead of rereading it here so that we
1189 * don't lose destruction events in between. We could have
1190 * raced with the destruction of @new_position after all.
1192 iter->last_visited = new_position;
1193 smp_wmb();
1194 iter->last_dead_count = sequence;
1198 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1199 * @root: hierarchy root
1200 * @prev: previously returned memcg, NULL on first invocation
1201 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1203 * Returns references to children of the hierarchy below @root, or
1204 * @root itself, or %NULL after a full round-trip.
1206 * Caller must pass the return value in @prev on subsequent
1207 * invocations for reference counting, or use mem_cgroup_iter_break()
1208 * to cancel a hierarchy walk before the round-trip is complete.
1210 * Reclaimers can specify a zone and a priority level in @reclaim to
1211 * divide up the memcgs in the hierarchy among all concurrent
1212 * reclaimers operating on the same zone and priority.
1214 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1215 struct mem_cgroup *prev,
1216 struct mem_cgroup_reclaim_cookie *reclaim)
1218 struct mem_cgroup *memcg = NULL;
1219 struct mem_cgroup *last_visited = NULL;
1221 if (mem_cgroup_disabled())
1222 return NULL;
1224 if (!root)
1225 root = root_mem_cgroup;
1227 if (prev && !reclaim)
1228 last_visited = prev;
1230 if (!root->use_hierarchy && root != root_mem_cgroup) {
1231 if (prev)
1232 goto out_css_put;
1233 return root;
1236 rcu_read_lock();
1237 while (!memcg) {
1238 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1239 int uninitialized_var(seq);
1241 if (reclaim) {
1242 struct mem_cgroup_per_zone *mz;
1244 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1245 iter = &mz->reclaim_iter[reclaim->priority];
1246 if (prev && reclaim->generation != iter->generation) {
1247 iter->last_visited = NULL;
1248 goto out_unlock;
1251 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1254 memcg = __mem_cgroup_iter_next(root, last_visited);
1256 if (reclaim) {
1257 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1258 seq);
1260 if (!memcg)
1261 iter->generation++;
1262 else if (!prev && memcg)
1263 reclaim->generation = iter->generation;
1266 if (prev && !memcg)
1267 goto out_unlock;
1269 out_unlock:
1270 rcu_read_unlock();
1271 out_css_put:
1272 if (prev && prev != root)
1273 css_put(&prev->css);
1275 return memcg;
1279 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1280 * @root: hierarchy root
1281 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1283 void mem_cgroup_iter_break(struct mem_cgroup *root,
1284 struct mem_cgroup *prev)
1286 if (!root)
1287 root = root_mem_cgroup;
1288 if (prev && prev != root)
1289 css_put(&prev->css);
1293 * Iteration constructs for visiting all cgroups (under a tree). If
1294 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1295 * be used for reference counting.
1297 #define for_each_mem_cgroup_tree(iter, root) \
1298 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1299 iter != NULL; \
1300 iter = mem_cgroup_iter(root, iter, NULL))
1302 #define for_each_mem_cgroup(iter) \
1303 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1304 iter != NULL; \
1305 iter = mem_cgroup_iter(NULL, iter, NULL))
1307 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1309 struct mem_cgroup *memcg;
1311 rcu_read_lock();
1312 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1313 if (unlikely(!memcg))
1314 goto out;
1316 switch (idx) {
1317 case PGFAULT:
1318 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1319 break;
1320 case PGMAJFAULT:
1321 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1322 break;
1323 default:
1324 BUG();
1326 out:
1327 rcu_read_unlock();
1329 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1332 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1333 * @zone: zone of the wanted lruvec
1334 * @memcg: memcg of the wanted lruvec
1336 * Returns the lru list vector holding pages for the given @zone and
1337 * @mem. This can be the global zone lruvec, if the memory controller
1338 * is disabled.
1340 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1341 struct mem_cgroup *memcg)
1343 struct mem_cgroup_per_zone *mz;
1344 struct lruvec *lruvec;
1346 if (mem_cgroup_disabled()) {
1347 lruvec = &zone->lruvec;
1348 goto out;
1351 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1352 lruvec = &mz->lruvec;
1353 out:
1355 * Since a node can be onlined after the mem_cgroup was created,
1356 * we have to be prepared to initialize lruvec->zone here;
1357 * and if offlined then reonlined, we need to reinitialize it.
1359 if (unlikely(lruvec->zone != zone))
1360 lruvec->zone = zone;
1361 return lruvec;
1365 * Following LRU functions are allowed to be used without PCG_LOCK.
1366 * Operations are called by routine of global LRU independently from memcg.
1367 * What we have to take care of here is validness of pc->mem_cgroup.
1369 * Changes to pc->mem_cgroup happens when
1370 * 1. charge
1371 * 2. moving account
1372 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1373 * It is added to LRU before charge.
1374 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1375 * When moving account, the page is not on LRU. It's isolated.
1379 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1380 * @page: the page
1381 * @zone: zone of the page
1383 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1385 struct mem_cgroup_per_zone *mz;
1386 struct mem_cgroup *memcg;
1387 struct page_cgroup *pc;
1388 struct lruvec *lruvec;
1390 if (mem_cgroup_disabled()) {
1391 lruvec = &zone->lruvec;
1392 goto out;
1395 pc = lookup_page_cgroup(page);
1396 memcg = pc->mem_cgroup;
1399 * Surreptitiously switch any uncharged offlist page to root:
1400 * an uncharged page off lru does nothing to secure
1401 * its former mem_cgroup from sudden removal.
1403 * Our caller holds lru_lock, and PageCgroupUsed is updated
1404 * under page_cgroup lock: between them, they make all uses
1405 * of pc->mem_cgroup safe.
1407 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1408 pc->mem_cgroup = memcg = root_mem_cgroup;
1410 mz = mem_cgroup_page_zoneinfo(memcg, page);
1411 lruvec = &mz->lruvec;
1412 out:
1414 * Since a node can be onlined after the mem_cgroup was created,
1415 * we have to be prepared to initialize lruvec->zone here;
1416 * and if offlined then reonlined, we need to reinitialize it.
1418 if (unlikely(lruvec->zone != zone))
1419 lruvec->zone = zone;
1420 return lruvec;
1424 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1425 * @lruvec: mem_cgroup per zone lru vector
1426 * @lru: index of lru list the page is sitting on
1427 * @nr_pages: positive when adding or negative when removing
1429 * This function must be called when a page is added to or removed from an
1430 * lru list.
1432 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1433 int nr_pages)
1435 struct mem_cgroup_per_zone *mz;
1436 unsigned long *lru_size;
1438 if (mem_cgroup_disabled())
1439 return;
1441 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1442 lru_size = mz->lru_size + lru;
1443 *lru_size += nr_pages;
1444 VM_BUG_ON((long)(*lru_size) < 0);
1448 * Checks whether given mem is same or in the root_mem_cgroup's
1449 * hierarchy subtree
1451 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1452 struct mem_cgroup *memcg)
1454 if (root_memcg == memcg)
1455 return true;
1456 if (!root_memcg->use_hierarchy || !memcg)
1457 return false;
1458 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1461 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1462 struct mem_cgroup *memcg)
1464 bool ret;
1466 rcu_read_lock();
1467 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1468 rcu_read_unlock();
1469 return ret;
1472 bool task_in_mem_cgroup(struct task_struct *task,
1473 const struct mem_cgroup *memcg)
1475 struct mem_cgroup *curr = NULL;
1476 struct task_struct *p;
1477 bool ret;
1479 p = find_lock_task_mm(task);
1480 if (p) {
1481 curr = get_mem_cgroup_from_mm(p->mm);
1482 task_unlock(p);
1483 } else {
1485 * All threads may have already detached their mm's, but the oom
1486 * killer still needs to detect if they have already been oom
1487 * killed to prevent needlessly killing additional tasks.
1489 rcu_read_lock();
1490 curr = mem_cgroup_from_task(task);
1491 if (curr)
1492 css_get(&curr->css);
1493 rcu_read_unlock();
1496 * We should check use_hierarchy of "memcg" not "curr". Because checking
1497 * use_hierarchy of "curr" here make this function true if hierarchy is
1498 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1499 * hierarchy(even if use_hierarchy is disabled in "memcg").
1501 ret = mem_cgroup_same_or_subtree(memcg, curr);
1502 css_put(&curr->css);
1503 return ret;
1506 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1508 unsigned long inactive_ratio;
1509 unsigned long inactive;
1510 unsigned long active;
1511 unsigned long gb;
1513 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1514 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1516 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1517 if (gb)
1518 inactive_ratio = int_sqrt(10 * gb);
1519 else
1520 inactive_ratio = 1;
1522 return inactive * inactive_ratio < active;
1525 #define mem_cgroup_from_res_counter(counter, member) \
1526 container_of(counter, struct mem_cgroup, member)
1529 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1530 * @memcg: the memory cgroup
1532 * Returns the maximum amount of memory @mem can be charged with, in
1533 * pages.
1535 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1537 unsigned long long margin;
1539 margin = res_counter_margin(&memcg->res);
1540 if (do_swap_account)
1541 margin = min(margin, res_counter_margin(&memcg->memsw));
1542 return margin >> PAGE_SHIFT;
1545 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1547 /* root ? */
1548 if (mem_cgroup_disabled() || !memcg->css.parent)
1549 return vm_swappiness;
1551 return memcg->swappiness;
1555 * memcg->moving_account is used for checking possibility that some thread is
1556 * calling move_account(). When a thread on CPU-A starts moving pages under
1557 * a memcg, other threads should check memcg->moving_account under
1558 * rcu_read_lock(), like this:
1560 * CPU-A CPU-B
1561 * rcu_read_lock()
1562 * memcg->moving_account+1 if (memcg->mocing_account)
1563 * take heavy locks.
1564 * synchronize_rcu() update something.
1565 * rcu_read_unlock()
1566 * start move here.
1569 /* for quick checking without looking up memcg */
1570 atomic_t memcg_moving __read_mostly;
1572 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1574 atomic_inc(&memcg_moving);
1575 atomic_inc(&memcg->moving_account);
1576 synchronize_rcu();
1579 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1582 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1583 * We check NULL in callee rather than caller.
1585 if (memcg) {
1586 atomic_dec(&memcg_moving);
1587 atomic_dec(&memcg->moving_account);
1592 * A routine for checking "mem" is under move_account() or not.
1594 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1595 * moving cgroups. This is for waiting at high-memory pressure
1596 * caused by "move".
1598 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1600 struct mem_cgroup *from;
1601 struct mem_cgroup *to;
1602 bool ret = false;
1604 * Unlike task_move routines, we access mc.to, mc.from not under
1605 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1607 spin_lock(&mc.lock);
1608 from = mc.from;
1609 to = mc.to;
1610 if (!from)
1611 goto unlock;
1613 ret = mem_cgroup_same_or_subtree(memcg, from)
1614 || mem_cgroup_same_or_subtree(memcg, to);
1615 unlock:
1616 spin_unlock(&mc.lock);
1617 return ret;
1620 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1622 if (mc.moving_task && current != mc.moving_task) {
1623 if (mem_cgroup_under_move(memcg)) {
1624 DEFINE_WAIT(wait);
1625 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1626 /* moving charge context might have finished. */
1627 if (mc.moving_task)
1628 schedule();
1629 finish_wait(&mc.waitq, &wait);
1630 return true;
1633 return false;
1637 * Take this lock when
1638 * - a code tries to modify page's memcg while it's USED.
1639 * - a code tries to modify page state accounting in a memcg.
1641 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1642 unsigned long *flags)
1644 spin_lock_irqsave(&memcg->move_lock, *flags);
1647 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1648 unsigned long *flags)
1650 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1653 #define K(x) ((x) << (PAGE_SHIFT-10))
1655 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1656 * @memcg: The memory cgroup that went over limit
1657 * @p: Task that is going to be killed
1659 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1660 * enabled
1662 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1664 /* oom_info_lock ensures that parallel ooms do not interleave */
1665 static DEFINE_MUTEX(oom_info_lock);
1666 struct mem_cgroup *iter;
1667 unsigned int i;
1669 if (!p)
1670 return;
1672 mutex_lock(&oom_info_lock);
1673 rcu_read_lock();
1675 pr_info("Task in ");
1676 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1677 pr_cont(" killed as a result of limit of ");
1678 pr_cont_cgroup_path(memcg->css.cgroup);
1679 pr_cont("\n");
1681 rcu_read_unlock();
1683 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1684 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1685 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1686 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1687 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1688 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1689 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1690 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1691 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1692 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1693 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1694 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1696 for_each_mem_cgroup_tree(iter, memcg) {
1697 pr_info("Memory cgroup stats for ");
1698 pr_cont_cgroup_path(iter->css.cgroup);
1699 pr_cont(":");
1701 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1702 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1703 continue;
1704 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1705 K(mem_cgroup_read_stat(iter, i)));
1708 for (i = 0; i < NR_LRU_LISTS; i++)
1709 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1710 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1712 pr_cont("\n");
1714 mutex_unlock(&oom_info_lock);
1718 * This function returns the number of memcg under hierarchy tree. Returns
1719 * 1(self count) if no children.
1721 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1723 int num = 0;
1724 struct mem_cgroup *iter;
1726 for_each_mem_cgroup_tree(iter, memcg)
1727 num++;
1728 return num;
1732 * Return the memory (and swap, if configured) limit for a memcg.
1734 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1736 u64 limit;
1738 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1741 * Do not consider swap space if we cannot swap due to swappiness
1743 if (mem_cgroup_swappiness(memcg)) {
1744 u64 memsw;
1746 limit += total_swap_pages << PAGE_SHIFT;
1747 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1750 * If memsw is finite and limits the amount of swap space
1751 * available to this memcg, return that limit.
1753 limit = min(limit, memsw);
1756 return limit;
1759 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1760 int order)
1762 struct mem_cgroup *iter;
1763 unsigned long chosen_points = 0;
1764 unsigned long totalpages;
1765 unsigned int points = 0;
1766 struct task_struct *chosen = NULL;
1769 * If current has a pending SIGKILL or is exiting, then automatically
1770 * select it. The goal is to allow it to allocate so that it may
1771 * quickly exit and free its memory.
1773 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1774 set_thread_flag(TIF_MEMDIE);
1775 return;
1778 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1779 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1780 for_each_mem_cgroup_tree(iter, memcg) {
1781 struct css_task_iter it;
1782 struct task_struct *task;
1784 css_task_iter_start(&iter->css, &it);
1785 while ((task = css_task_iter_next(&it))) {
1786 switch (oom_scan_process_thread(task, totalpages, NULL,
1787 false)) {
1788 case OOM_SCAN_SELECT:
1789 if (chosen)
1790 put_task_struct(chosen);
1791 chosen = task;
1792 chosen_points = ULONG_MAX;
1793 get_task_struct(chosen);
1794 /* fall through */
1795 case OOM_SCAN_CONTINUE:
1796 continue;
1797 case OOM_SCAN_ABORT:
1798 css_task_iter_end(&it);
1799 mem_cgroup_iter_break(memcg, iter);
1800 if (chosen)
1801 put_task_struct(chosen);
1802 return;
1803 case OOM_SCAN_OK:
1804 break;
1806 points = oom_badness(task, memcg, NULL, totalpages);
1807 if (!points || points < chosen_points)
1808 continue;
1809 /* Prefer thread group leaders for display purposes */
1810 if (points == chosen_points &&
1811 thread_group_leader(chosen))
1812 continue;
1814 if (chosen)
1815 put_task_struct(chosen);
1816 chosen = task;
1817 chosen_points = points;
1818 get_task_struct(chosen);
1820 css_task_iter_end(&it);
1823 if (!chosen)
1824 return;
1825 points = chosen_points * 1000 / totalpages;
1826 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1827 NULL, "Memory cgroup out of memory");
1830 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1831 gfp_t gfp_mask,
1832 unsigned long flags)
1834 unsigned long total = 0;
1835 bool noswap = false;
1836 int loop;
1838 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1839 noswap = true;
1840 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1841 noswap = true;
1843 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1844 if (loop)
1845 drain_all_stock_async(memcg);
1846 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1848 * Allow limit shrinkers, which are triggered directly
1849 * by userspace, to catch signals and stop reclaim
1850 * after minimal progress, regardless of the margin.
1852 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1853 break;
1854 if (mem_cgroup_margin(memcg))
1855 break;
1857 * If nothing was reclaimed after two attempts, there
1858 * may be no reclaimable pages in this hierarchy.
1860 if (loop && !total)
1861 break;
1863 return total;
1867 * test_mem_cgroup_node_reclaimable
1868 * @memcg: the target memcg
1869 * @nid: the node ID to be checked.
1870 * @noswap : specify true here if the user wants flle only information.
1872 * This function returns whether the specified memcg contains any
1873 * reclaimable pages on a node. Returns true if there are any reclaimable
1874 * pages in the node.
1876 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1877 int nid, bool noswap)
1879 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1880 return true;
1881 if (noswap || !total_swap_pages)
1882 return false;
1883 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1884 return true;
1885 return false;
1888 #if MAX_NUMNODES > 1
1891 * Always updating the nodemask is not very good - even if we have an empty
1892 * list or the wrong list here, we can start from some node and traverse all
1893 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1896 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1898 int nid;
1900 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1901 * pagein/pageout changes since the last update.
1903 if (!atomic_read(&memcg->numainfo_events))
1904 return;
1905 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1906 return;
1908 /* make a nodemask where this memcg uses memory from */
1909 memcg->scan_nodes = node_states[N_MEMORY];
1911 for_each_node_mask(nid, node_states[N_MEMORY]) {
1913 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1914 node_clear(nid, memcg->scan_nodes);
1917 atomic_set(&memcg->numainfo_events, 0);
1918 atomic_set(&memcg->numainfo_updating, 0);
1922 * Selecting a node where we start reclaim from. Because what we need is just
1923 * reducing usage counter, start from anywhere is O,K. Considering
1924 * memory reclaim from current node, there are pros. and cons.
1926 * Freeing memory from current node means freeing memory from a node which
1927 * we'll use or we've used. So, it may make LRU bad. And if several threads
1928 * hit limits, it will see a contention on a node. But freeing from remote
1929 * node means more costs for memory reclaim because of memory latency.
1931 * Now, we use round-robin. Better algorithm is welcomed.
1933 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1935 int node;
1937 mem_cgroup_may_update_nodemask(memcg);
1938 node = memcg->last_scanned_node;
1940 node = next_node(node, memcg->scan_nodes);
1941 if (node == MAX_NUMNODES)
1942 node = first_node(memcg->scan_nodes);
1944 * We call this when we hit limit, not when pages are added to LRU.
1945 * No LRU may hold pages because all pages are UNEVICTABLE or
1946 * memcg is too small and all pages are not on LRU. In that case,
1947 * we use curret node.
1949 if (unlikely(node == MAX_NUMNODES))
1950 node = numa_node_id();
1952 memcg->last_scanned_node = node;
1953 return node;
1957 * Check all nodes whether it contains reclaimable pages or not.
1958 * For quick scan, we make use of scan_nodes. This will allow us to skip
1959 * unused nodes. But scan_nodes is lazily updated and may not cotain
1960 * enough new information. We need to do double check.
1962 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1964 int nid;
1967 * quick check...making use of scan_node.
1968 * We can skip unused nodes.
1970 if (!nodes_empty(memcg->scan_nodes)) {
1971 for (nid = first_node(memcg->scan_nodes);
1972 nid < MAX_NUMNODES;
1973 nid = next_node(nid, memcg->scan_nodes)) {
1975 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1976 return true;
1980 * Check rest of nodes.
1982 for_each_node_state(nid, N_MEMORY) {
1983 if (node_isset(nid, memcg->scan_nodes))
1984 continue;
1985 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1986 return true;
1988 return false;
1991 #else
1992 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1994 return 0;
1997 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1999 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2001 #endif
2003 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2004 struct zone *zone,
2005 gfp_t gfp_mask,
2006 unsigned long *total_scanned)
2008 struct mem_cgroup *victim = NULL;
2009 int total = 0;
2010 int loop = 0;
2011 unsigned long excess;
2012 unsigned long nr_scanned;
2013 struct mem_cgroup_reclaim_cookie reclaim = {
2014 .zone = zone,
2015 .priority = 0,
2018 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2020 while (1) {
2021 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2022 if (!victim) {
2023 loop++;
2024 if (loop >= 2) {
2026 * If we have not been able to reclaim
2027 * anything, it might because there are
2028 * no reclaimable pages under this hierarchy
2030 if (!total)
2031 break;
2033 * We want to do more targeted reclaim.
2034 * excess >> 2 is not to excessive so as to
2035 * reclaim too much, nor too less that we keep
2036 * coming back to reclaim from this cgroup
2038 if (total >= (excess >> 2) ||
2039 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2040 break;
2042 continue;
2044 if (!mem_cgroup_reclaimable(victim, false))
2045 continue;
2046 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2047 zone, &nr_scanned);
2048 *total_scanned += nr_scanned;
2049 if (!res_counter_soft_limit_excess(&root_memcg->res))
2050 break;
2052 mem_cgroup_iter_break(root_memcg, victim);
2053 return total;
2056 #ifdef CONFIG_LOCKDEP
2057 static struct lockdep_map memcg_oom_lock_dep_map = {
2058 .name = "memcg_oom_lock",
2060 #endif
2062 static DEFINE_SPINLOCK(memcg_oom_lock);
2065 * Check OOM-Killer is already running under our hierarchy.
2066 * If someone is running, return false.
2068 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2070 struct mem_cgroup *iter, *failed = NULL;
2072 spin_lock(&memcg_oom_lock);
2074 for_each_mem_cgroup_tree(iter, memcg) {
2075 if (iter->oom_lock) {
2077 * this subtree of our hierarchy is already locked
2078 * so we cannot give a lock.
2080 failed = iter;
2081 mem_cgroup_iter_break(memcg, iter);
2082 break;
2083 } else
2084 iter->oom_lock = true;
2087 if (failed) {
2089 * OK, we failed to lock the whole subtree so we have
2090 * to clean up what we set up to the failing subtree
2092 for_each_mem_cgroup_tree(iter, memcg) {
2093 if (iter == failed) {
2094 mem_cgroup_iter_break(memcg, iter);
2095 break;
2097 iter->oom_lock = false;
2099 } else
2100 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2102 spin_unlock(&memcg_oom_lock);
2104 return !failed;
2107 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2109 struct mem_cgroup *iter;
2111 spin_lock(&memcg_oom_lock);
2112 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2113 for_each_mem_cgroup_tree(iter, memcg)
2114 iter->oom_lock = false;
2115 spin_unlock(&memcg_oom_lock);
2118 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2120 struct mem_cgroup *iter;
2122 for_each_mem_cgroup_tree(iter, memcg)
2123 atomic_inc(&iter->under_oom);
2126 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2128 struct mem_cgroup *iter;
2131 * When a new child is created while the hierarchy is under oom,
2132 * mem_cgroup_oom_lock() may not be called. We have to use
2133 * atomic_add_unless() here.
2135 for_each_mem_cgroup_tree(iter, memcg)
2136 atomic_add_unless(&iter->under_oom, -1, 0);
2139 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2141 struct oom_wait_info {
2142 struct mem_cgroup *memcg;
2143 wait_queue_t wait;
2146 static int memcg_oom_wake_function(wait_queue_t *wait,
2147 unsigned mode, int sync, void *arg)
2149 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2150 struct mem_cgroup *oom_wait_memcg;
2151 struct oom_wait_info *oom_wait_info;
2153 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2154 oom_wait_memcg = oom_wait_info->memcg;
2157 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2158 * Then we can use css_is_ancestor without taking care of RCU.
2160 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2161 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2162 return 0;
2163 return autoremove_wake_function(wait, mode, sync, arg);
2166 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2168 atomic_inc(&memcg->oom_wakeups);
2169 /* for filtering, pass "memcg" as argument. */
2170 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2173 static void memcg_oom_recover(struct mem_cgroup *memcg)
2175 if (memcg && atomic_read(&memcg->under_oom))
2176 memcg_wakeup_oom(memcg);
2179 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2181 if (!current->memcg_oom.may_oom)
2182 return;
2184 * We are in the middle of the charge context here, so we
2185 * don't want to block when potentially sitting on a callstack
2186 * that holds all kinds of filesystem and mm locks.
2188 * Also, the caller may handle a failed allocation gracefully
2189 * (like optional page cache readahead) and so an OOM killer
2190 * invocation might not even be necessary.
2192 * That's why we don't do anything here except remember the
2193 * OOM context and then deal with it at the end of the page
2194 * fault when the stack is unwound, the locks are released,
2195 * and when we know whether the fault was overall successful.
2197 css_get(&memcg->css);
2198 current->memcg_oom.memcg = memcg;
2199 current->memcg_oom.gfp_mask = mask;
2200 current->memcg_oom.order = order;
2204 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2205 * @handle: actually kill/wait or just clean up the OOM state
2207 * This has to be called at the end of a page fault if the memcg OOM
2208 * handler was enabled.
2210 * Memcg supports userspace OOM handling where failed allocations must
2211 * sleep on a waitqueue until the userspace task resolves the
2212 * situation. Sleeping directly in the charge context with all kinds
2213 * of locks held is not a good idea, instead we remember an OOM state
2214 * in the task and mem_cgroup_oom_synchronize() has to be called at
2215 * the end of the page fault to complete the OOM handling.
2217 * Returns %true if an ongoing memcg OOM situation was detected and
2218 * completed, %false otherwise.
2220 bool mem_cgroup_oom_synchronize(bool handle)
2222 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2223 struct oom_wait_info owait;
2224 bool locked;
2226 /* OOM is global, do not handle */
2227 if (!memcg)
2228 return false;
2230 if (!handle)
2231 goto cleanup;
2233 owait.memcg = memcg;
2234 owait.wait.flags = 0;
2235 owait.wait.func = memcg_oom_wake_function;
2236 owait.wait.private = current;
2237 INIT_LIST_HEAD(&owait.wait.task_list);
2239 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2240 mem_cgroup_mark_under_oom(memcg);
2242 locked = mem_cgroup_oom_trylock(memcg);
2244 if (locked)
2245 mem_cgroup_oom_notify(memcg);
2247 if (locked && !memcg->oom_kill_disable) {
2248 mem_cgroup_unmark_under_oom(memcg);
2249 finish_wait(&memcg_oom_waitq, &owait.wait);
2250 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2251 current->memcg_oom.order);
2252 } else {
2253 schedule();
2254 mem_cgroup_unmark_under_oom(memcg);
2255 finish_wait(&memcg_oom_waitq, &owait.wait);
2258 if (locked) {
2259 mem_cgroup_oom_unlock(memcg);
2261 * There is no guarantee that an OOM-lock contender
2262 * sees the wakeups triggered by the OOM kill
2263 * uncharges. Wake any sleepers explicitely.
2265 memcg_oom_recover(memcg);
2267 cleanup:
2268 current->memcg_oom.memcg = NULL;
2269 css_put(&memcg->css);
2270 return true;
2274 * Used to update mapped file or writeback or other statistics.
2276 * Notes: Race condition
2278 * We usually use lock_page_cgroup() for accessing page_cgroup member but
2279 * it tends to be costly. But considering some conditions, we doesn't need
2280 * to do so _always_.
2282 * Considering "charge", lock_page_cgroup() is not required because all
2283 * file-stat operations happen after a page is attached to radix-tree. There
2284 * are no race with "charge".
2286 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2287 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2288 * if there are race with "uncharge". Statistics itself is properly handled
2289 * by flags.
2291 * Considering "move", this is an only case we see a race. To make the race
2292 * small, we check memcg->moving_account and detect there are possibility
2293 * of race or not. If there is, we take a lock.
2296 void __mem_cgroup_begin_update_page_stat(struct page *page,
2297 bool *locked, unsigned long *flags)
2299 struct mem_cgroup *memcg;
2300 struct page_cgroup *pc;
2302 pc = lookup_page_cgroup(page);
2303 again:
2304 memcg = pc->mem_cgroup;
2305 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2306 return;
2308 * If this memory cgroup is not under account moving, we don't
2309 * need to take move_lock_mem_cgroup(). Because we already hold
2310 * rcu_read_lock(), any calls to move_account will be delayed until
2311 * rcu_read_unlock().
2313 VM_BUG_ON(!rcu_read_lock_held());
2314 if (atomic_read(&memcg->moving_account) <= 0)
2315 return;
2317 move_lock_mem_cgroup(memcg, flags);
2318 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2319 move_unlock_mem_cgroup(memcg, flags);
2320 goto again;
2322 *locked = true;
2325 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2327 struct page_cgroup *pc = lookup_page_cgroup(page);
2330 * It's guaranteed that pc->mem_cgroup never changes while
2331 * lock is held because a routine modifies pc->mem_cgroup
2332 * should take move_lock_mem_cgroup().
2334 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2337 void mem_cgroup_update_page_stat(struct page *page,
2338 enum mem_cgroup_stat_index idx, int val)
2340 struct mem_cgroup *memcg;
2341 struct page_cgroup *pc = lookup_page_cgroup(page);
2342 unsigned long uninitialized_var(flags);
2344 if (mem_cgroup_disabled())
2345 return;
2347 VM_BUG_ON(!rcu_read_lock_held());
2348 memcg = pc->mem_cgroup;
2349 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2350 return;
2352 this_cpu_add(memcg->stat->count[idx], val);
2356 * size of first charge trial. "32" comes from vmscan.c's magic value.
2357 * TODO: maybe necessary to use big numbers in big irons.
2359 #define CHARGE_BATCH 32U
2360 struct memcg_stock_pcp {
2361 struct mem_cgroup *cached; /* this never be root cgroup */
2362 unsigned int nr_pages;
2363 struct work_struct work;
2364 unsigned long flags;
2365 #define FLUSHING_CACHED_CHARGE 0
2367 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2368 static DEFINE_MUTEX(percpu_charge_mutex);
2371 * consume_stock: Try to consume stocked charge on this cpu.
2372 * @memcg: memcg to consume from.
2373 * @nr_pages: how many pages to charge.
2375 * The charges will only happen if @memcg matches the current cpu's memcg
2376 * stock, and at least @nr_pages are available in that stock. Failure to
2377 * service an allocation will refill the stock.
2379 * returns true if successful, false otherwise.
2381 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2383 struct memcg_stock_pcp *stock;
2384 bool ret = true;
2386 if (nr_pages > CHARGE_BATCH)
2387 return false;
2389 stock = &get_cpu_var(memcg_stock);
2390 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2391 stock->nr_pages -= nr_pages;
2392 else /* need to call res_counter_charge */
2393 ret = false;
2394 put_cpu_var(memcg_stock);
2395 return ret;
2399 * Returns stocks cached in percpu to res_counter and reset cached information.
2401 static void drain_stock(struct memcg_stock_pcp *stock)
2403 struct mem_cgroup *old = stock->cached;
2405 if (stock->nr_pages) {
2406 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2408 res_counter_uncharge(&old->res, bytes);
2409 if (do_swap_account)
2410 res_counter_uncharge(&old->memsw, bytes);
2411 stock->nr_pages = 0;
2413 stock->cached = NULL;
2417 * This must be called under preempt disabled or must be called by
2418 * a thread which is pinned to local cpu.
2420 static void drain_local_stock(struct work_struct *dummy)
2422 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2423 drain_stock(stock);
2424 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2427 static void __init memcg_stock_init(void)
2429 int cpu;
2431 for_each_possible_cpu(cpu) {
2432 struct memcg_stock_pcp *stock =
2433 &per_cpu(memcg_stock, cpu);
2434 INIT_WORK(&stock->work, drain_local_stock);
2439 * Cache charges(val) which is from res_counter, to local per_cpu area.
2440 * This will be consumed by consume_stock() function, later.
2442 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2444 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2446 if (stock->cached != memcg) { /* reset if necessary */
2447 drain_stock(stock);
2448 stock->cached = memcg;
2450 stock->nr_pages += nr_pages;
2451 put_cpu_var(memcg_stock);
2455 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2456 * of the hierarchy under it. sync flag says whether we should block
2457 * until the work is done.
2459 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2461 int cpu, curcpu;
2463 /* Notify other cpus that system-wide "drain" is running */
2464 get_online_cpus();
2465 curcpu = get_cpu();
2466 for_each_online_cpu(cpu) {
2467 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2468 struct mem_cgroup *memcg;
2470 memcg = stock->cached;
2471 if (!memcg || !stock->nr_pages)
2472 continue;
2473 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2474 continue;
2475 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2476 if (cpu == curcpu)
2477 drain_local_stock(&stock->work);
2478 else
2479 schedule_work_on(cpu, &stock->work);
2482 put_cpu();
2484 if (!sync)
2485 goto out;
2487 for_each_online_cpu(cpu) {
2488 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2489 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2490 flush_work(&stock->work);
2492 out:
2493 put_online_cpus();
2497 * Tries to drain stocked charges in other cpus. This function is asynchronous
2498 * and just put a work per cpu for draining localy on each cpu. Caller can
2499 * expects some charges will be back to res_counter later but cannot wait for
2500 * it.
2502 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2505 * If someone calls draining, avoid adding more kworker runs.
2507 if (!mutex_trylock(&percpu_charge_mutex))
2508 return;
2509 drain_all_stock(root_memcg, false);
2510 mutex_unlock(&percpu_charge_mutex);
2513 /* This is a synchronous drain interface. */
2514 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2516 /* called when force_empty is called */
2517 mutex_lock(&percpu_charge_mutex);
2518 drain_all_stock(root_memcg, true);
2519 mutex_unlock(&percpu_charge_mutex);
2523 * This function drains percpu counter value from DEAD cpu and
2524 * move it to local cpu. Note that this function can be preempted.
2526 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2528 int i;
2530 spin_lock(&memcg->pcp_counter_lock);
2531 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2532 long x = per_cpu(memcg->stat->count[i], cpu);
2534 per_cpu(memcg->stat->count[i], cpu) = 0;
2535 memcg->nocpu_base.count[i] += x;
2537 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2538 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2540 per_cpu(memcg->stat->events[i], cpu) = 0;
2541 memcg->nocpu_base.events[i] += x;
2543 spin_unlock(&memcg->pcp_counter_lock);
2546 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2547 unsigned long action,
2548 void *hcpu)
2550 int cpu = (unsigned long)hcpu;
2551 struct memcg_stock_pcp *stock;
2552 struct mem_cgroup *iter;
2554 if (action == CPU_ONLINE)
2555 return NOTIFY_OK;
2557 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2558 return NOTIFY_OK;
2560 for_each_mem_cgroup(iter)
2561 mem_cgroup_drain_pcp_counter(iter, cpu);
2563 stock = &per_cpu(memcg_stock, cpu);
2564 drain_stock(stock);
2565 return NOTIFY_OK;
2569 /* See mem_cgroup_try_charge() for details */
2570 enum {
2571 CHARGE_OK, /* success */
2572 CHARGE_RETRY, /* need to retry but retry is not bad */
2573 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2574 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2577 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2578 unsigned int nr_pages, unsigned int min_pages,
2579 bool invoke_oom)
2581 unsigned long csize = nr_pages * PAGE_SIZE;
2582 struct mem_cgroup *mem_over_limit;
2583 struct res_counter *fail_res;
2584 unsigned long flags = 0;
2585 int ret;
2587 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2589 if (likely(!ret)) {
2590 if (!do_swap_account)
2591 return CHARGE_OK;
2592 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2593 if (likely(!ret))
2594 return CHARGE_OK;
2596 res_counter_uncharge(&memcg->res, csize);
2597 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2598 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2599 } else
2600 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2602 * Never reclaim on behalf of optional batching, retry with a
2603 * single page instead.
2605 if (nr_pages > min_pages)
2606 return CHARGE_RETRY;
2608 if (!(gfp_mask & __GFP_WAIT))
2609 return CHARGE_WOULDBLOCK;
2611 if (gfp_mask & __GFP_NORETRY)
2612 return CHARGE_NOMEM;
2614 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2615 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2616 return CHARGE_RETRY;
2618 * Even though the limit is exceeded at this point, reclaim
2619 * may have been able to free some pages. Retry the charge
2620 * before killing the task.
2622 * Only for regular pages, though: huge pages are rather
2623 * unlikely to succeed so close to the limit, and we fall back
2624 * to regular pages anyway in case of failure.
2626 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2627 return CHARGE_RETRY;
2630 * At task move, charge accounts can be doubly counted. So, it's
2631 * better to wait until the end of task_move if something is going on.
2633 if (mem_cgroup_wait_acct_move(mem_over_limit))
2634 return CHARGE_RETRY;
2636 if (invoke_oom)
2637 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2639 return CHARGE_NOMEM;
2643 * mem_cgroup_try_charge - try charging a memcg
2644 * @memcg: memcg to charge
2645 * @nr_pages: number of pages to charge
2646 * @oom: trigger OOM if reclaim fails
2648 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
2649 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
2651 static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
2652 gfp_t gfp_mask,
2653 unsigned int nr_pages,
2654 bool oom)
2656 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2657 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2658 int ret;
2660 if (mem_cgroup_is_root(memcg))
2661 goto done;
2663 * Unlike in global OOM situations, memcg is not in a physical
2664 * memory shortage. Allow dying and OOM-killed tasks to
2665 * bypass the last charges so that they can exit quickly and
2666 * free their memory.
2668 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2669 fatal_signal_pending(current) ||
2670 current->flags & PF_EXITING))
2671 goto bypass;
2673 if (unlikely(task_in_memcg_oom(current)))
2674 goto nomem;
2676 if (gfp_mask & __GFP_NOFAIL)
2677 oom = false;
2678 again:
2679 if (consume_stock(memcg, nr_pages))
2680 goto done;
2682 do {
2683 bool invoke_oom = oom && !nr_oom_retries;
2685 /* If killed, bypass charge */
2686 if (fatal_signal_pending(current))
2687 goto bypass;
2689 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2690 nr_pages, invoke_oom);
2691 switch (ret) {
2692 case CHARGE_OK:
2693 break;
2694 case CHARGE_RETRY: /* not in OOM situation but retry */
2695 batch = nr_pages;
2696 goto again;
2697 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2698 goto nomem;
2699 case CHARGE_NOMEM: /* OOM routine works */
2700 if (!oom || invoke_oom)
2701 goto nomem;
2702 nr_oom_retries--;
2703 break;
2705 } while (ret != CHARGE_OK);
2707 if (batch > nr_pages)
2708 refill_stock(memcg, batch - nr_pages);
2709 done:
2710 return 0;
2711 nomem:
2712 if (!(gfp_mask & __GFP_NOFAIL))
2713 return -ENOMEM;
2714 bypass:
2715 return -EINTR;
2719 * mem_cgroup_try_charge_mm - try charging a mm
2720 * @mm: mm_struct to charge
2721 * @nr_pages: number of pages to charge
2722 * @oom: trigger OOM if reclaim fails
2724 * Returns the charged mem_cgroup associated with the given mm_struct or
2725 * NULL the charge failed.
2727 static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
2728 gfp_t gfp_mask,
2729 unsigned int nr_pages,
2730 bool oom)
2733 struct mem_cgroup *memcg;
2734 int ret;
2736 memcg = get_mem_cgroup_from_mm(mm);
2737 ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
2738 css_put(&memcg->css);
2739 if (ret == -EINTR)
2740 memcg = root_mem_cgroup;
2741 else if (ret)
2742 memcg = NULL;
2744 return memcg;
2748 * Somemtimes we have to undo a charge we got by try_charge().
2749 * This function is for that and do uncharge, put css's refcnt.
2750 * gotten by try_charge().
2752 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2753 unsigned int nr_pages)
2755 if (!mem_cgroup_is_root(memcg)) {
2756 unsigned long bytes = nr_pages * PAGE_SIZE;
2758 res_counter_uncharge(&memcg->res, bytes);
2759 if (do_swap_account)
2760 res_counter_uncharge(&memcg->memsw, bytes);
2765 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2766 * This is useful when moving usage to parent cgroup.
2768 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2769 unsigned int nr_pages)
2771 unsigned long bytes = nr_pages * PAGE_SIZE;
2773 if (mem_cgroup_is_root(memcg))
2774 return;
2776 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2777 if (do_swap_account)
2778 res_counter_uncharge_until(&memcg->memsw,
2779 memcg->memsw.parent, bytes);
2783 * A helper function to get mem_cgroup from ID. must be called under
2784 * rcu_read_lock(). The caller is responsible for calling
2785 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2786 * refcnt from swap can be called against removed memcg.)
2788 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2790 /* ID 0 is unused ID */
2791 if (!id)
2792 return NULL;
2793 return mem_cgroup_from_id(id);
2796 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2798 struct mem_cgroup *memcg = NULL;
2799 struct page_cgroup *pc;
2800 unsigned short id;
2801 swp_entry_t ent;
2803 VM_BUG_ON_PAGE(!PageLocked(page), page);
2805 pc = lookup_page_cgroup(page);
2806 lock_page_cgroup(pc);
2807 if (PageCgroupUsed(pc)) {
2808 memcg = pc->mem_cgroup;
2809 if (memcg && !css_tryget_online(&memcg->css))
2810 memcg = NULL;
2811 } else if (PageSwapCache(page)) {
2812 ent.val = page_private(page);
2813 id = lookup_swap_cgroup_id(ent);
2814 rcu_read_lock();
2815 memcg = mem_cgroup_lookup(id);
2816 if (memcg && !css_tryget_online(&memcg->css))
2817 memcg = NULL;
2818 rcu_read_unlock();
2820 unlock_page_cgroup(pc);
2821 return memcg;
2824 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2825 struct page *page,
2826 unsigned int nr_pages,
2827 enum charge_type ctype,
2828 bool lrucare)
2830 struct page_cgroup *pc = lookup_page_cgroup(page);
2831 struct zone *uninitialized_var(zone);
2832 struct lruvec *lruvec;
2833 bool was_on_lru = false;
2834 bool anon;
2836 lock_page_cgroup(pc);
2837 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2839 * we don't need page_cgroup_lock about tail pages, becase they are not
2840 * accessed by any other context at this point.
2844 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2845 * may already be on some other mem_cgroup's LRU. Take care of it.
2847 if (lrucare) {
2848 zone = page_zone(page);
2849 spin_lock_irq(&zone->lru_lock);
2850 if (PageLRU(page)) {
2851 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2852 ClearPageLRU(page);
2853 del_page_from_lru_list(page, lruvec, page_lru(page));
2854 was_on_lru = true;
2858 pc->mem_cgroup = memcg;
2860 * We access a page_cgroup asynchronously without lock_page_cgroup().
2861 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2862 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2863 * before USED bit, we need memory barrier here.
2864 * See mem_cgroup_add_lru_list(), etc.
2866 smp_wmb();
2867 SetPageCgroupUsed(pc);
2869 if (lrucare) {
2870 if (was_on_lru) {
2871 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2872 VM_BUG_ON_PAGE(PageLRU(page), page);
2873 SetPageLRU(page);
2874 add_page_to_lru_list(page, lruvec, page_lru(page));
2876 spin_unlock_irq(&zone->lru_lock);
2879 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2880 anon = true;
2881 else
2882 anon = false;
2884 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2885 unlock_page_cgroup(pc);
2888 * "charge_statistics" updated event counter. Then, check it.
2889 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2890 * if they exceeds softlimit.
2892 memcg_check_events(memcg, page);
2895 static DEFINE_MUTEX(set_limit_mutex);
2897 #ifdef CONFIG_MEMCG_KMEM
2899 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2900 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2902 static DEFINE_MUTEX(memcg_slab_mutex);
2904 static DEFINE_MUTEX(activate_kmem_mutex);
2906 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2908 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2909 memcg_kmem_is_active(memcg);
2913 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2914 * in the memcg_cache_params struct.
2916 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2918 struct kmem_cache *cachep;
2920 VM_BUG_ON(p->is_root_cache);
2921 cachep = p->root_cache;
2922 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2925 #ifdef CONFIG_SLABINFO
2926 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2928 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2929 struct memcg_cache_params *params;
2931 if (!memcg_can_account_kmem(memcg))
2932 return -EIO;
2934 print_slabinfo_header(m);
2936 mutex_lock(&memcg_slab_mutex);
2937 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2938 cache_show(memcg_params_to_cache(params), m);
2939 mutex_unlock(&memcg_slab_mutex);
2941 return 0;
2943 #endif
2945 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2947 struct res_counter *fail_res;
2948 int ret = 0;
2950 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2951 if (ret)
2952 return ret;
2954 ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
2955 oom_gfp_allowed(gfp));
2956 if (ret == -EINTR) {
2958 * mem_cgroup_try_charge() chosed to bypass to root due to
2959 * OOM kill or fatal signal. Since our only options are to
2960 * either fail the allocation or charge it to this cgroup, do
2961 * it as a temporary condition. But we can't fail. From a
2962 * kmem/slab perspective, the cache has already been selected,
2963 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2964 * our minds.
2966 * This condition will only trigger if the task entered
2967 * memcg_charge_kmem in a sane state, but was OOM-killed during
2968 * mem_cgroup_try_charge() above. Tasks that were already
2969 * dying when the allocation triggers should have been already
2970 * directed to the root cgroup in memcontrol.h
2972 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2973 if (do_swap_account)
2974 res_counter_charge_nofail(&memcg->memsw, size,
2975 &fail_res);
2976 ret = 0;
2977 } else if (ret)
2978 res_counter_uncharge(&memcg->kmem, size);
2980 return ret;
2983 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2985 res_counter_uncharge(&memcg->res, size);
2986 if (do_swap_account)
2987 res_counter_uncharge(&memcg->memsw, size);
2989 /* Not down to 0 */
2990 if (res_counter_uncharge(&memcg->kmem, size))
2991 return;
2994 * Releases a reference taken in kmem_cgroup_css_offline in case
2995 * this last uncharge is racing with the offlining code or it is
2996 * outliving the memcg existence.
2998 * The memory barrier imposed by test&clear is paired with the
2999 * explicit one in memcg_kmem_mark_dead().
3001 if (memcg_kmem_test_and_clear_dead(memcg))
3002 css_put(&memcg->css);
3006 * helper for acessing a memcg's index. It will be used as an index in the
3007 * child cache array in kmem_cache, and also to derive its name. This function
3008 * will return -1 when this is not a kmem-limited memcg.
3010 int memcg_cache_id(struct mem_cgroup *memcg)
3012 return memcg ? memcg->kmemcg_id : -1;
3015 static size_t memcg_caches_array_size(int num_groups)
3017 ssize_t size;
3018 if (num_groups <= 0)
3019 return 0;
3021 size = 2 * num_groups;
3022 if (size < MEMCG_CACHES_MIN_SIZE)
3023 size = MEMCG_CACHES_MIN_SIZE;
3024 else if (size > MEMCG_CACHES_MAX_SIZE)
3025 size = MEMCG_CACHES_MAX_SIZE;
3027 return size;
3031 * We should update the current array size iff all caches updates succeed. This
3032 * can only be done from the slab side. The slab mutex needs to be held when
3033 * calling this.
3035 void memcg_update_array_size(int num)
3037 if (num > memcg_limited_groups_array_size)
3038 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3041 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3043 struct memcg_cache_params *cur_params = s->memcg_params;
3045 VM_BUG_ON(!is_root_cache(s));
3047 if (num_groups > memcg_limited_groups_array_size) {
3048 int i;
3049 struct memcg_cache_params *new_params;
3050 ssize_t size = memcg_caches_array_size(num_groups);
3052 size *= sizeof(void *);
3053 size += offsetof(struct memcg_cache_params, memcg_caches);
3055 new_params = kzalloc(size, GFP_KERNEL);
3056 if (!new_params)
3057 return -ENOMEM;
3059 new_params->is_root_cache = true;
3062 * There is the chance it will be bigger than
3063 * memcg_limited_groups_array_size, if we failed an allocation
3064 * in a cache, in which case all caches updated before it, will
3065 * have a bigger array.
3067 * But if that is the case, the data after
3068 * memcg_limited_groups_array_size is certainly unused
3070 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3071 if (!cur_params->memcg_caches[i])
3072 continue;
3073 new_params->memcg_caches[i] =
3074 cur_params->memcg_caches[i];
3078 * Ideally, we would wait until all caches succeed, and only
3079 * then free the old one. But this is not worth the extra
3080 * pointer per-cache we'd have to have for this.
3082 * It is not a big deal if some caches are left with a size
3083 * bigger than the others. And all updates will reset this
3084 * anyway.
3086 rcu_assign_pointer(s->memcg_params, new_params);
3087 if (cur_params)
3088 kfree_rcu(cur_params, rcu_head);
3090 return 0;
3093 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3094 struct kmem_cache *root_cache)
3096 size_t size;
3098 if (!memcg_kmem_enabled())
3099 return 0;
3101 if (!memcg) {
3102 size = offsetof(struct memcg_cache_params, memcg_caches);
3103 size += memcg_limited_groups_array_size * sizeof(void *);
3104 } else
3105 size = sizeof(struct memcg_cache_params);
3107 s->memcg_params = kzalloc(size, GFP_KERNEL);
3108 if (!s->memcg_params)
3109 return -ENOMEM;
3111 if (memcg) {
3112 s->memcg_params->memcg = memcg;
3113 s->memcg_params->root_cache = root_cache;
3114 css_get(&memcg->css);
3115 } else
3116 s->memcg_params->is_root_cache = true;
3118 return 0;
3121 void memcg_free_cache_params(struct kmem_cache *s)
3123 if (!s->memcg_params)
3124 return;
3125 if (!s->memcg_params->is_root_cache)
3126 css_put(&s->memcg_params->memcg->css);
3127 kfree(s->memcg_params);
3130 static void memcg_register_cache(struct mem_cgroup *memcg,
3131 struct kmem_cache *root_cache)
3133 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
3134 memcg_slab_mutex */
3135 struct kmem_cache *cachep;
3136 int id;
3138 lockdep_assert_held(&memcg_slab_mutex);
3140 id = memcg_cache_id(memcg);
3143 * Since per-memcg caches are created asynchronously on first
3144 * allocation (see memcg_kmem_get_cache()), several threads can try to
3145 * create the same cache, but only one of them may succeed.
3147 if (cache_from_memcg_idx(root_cache, id))
3148 return;
3150 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
3151 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
3153 * If we could not create a memcg cache, do not complain, because
3154 * that's not critical at all as we can always proceed with the root
3155 * cache.
3157 if (!cachep)
3158 return;
3160 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3163 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3164 * barrier here to ensure nobody will see the kmem_cache partially
3165 * initialized.
3167 smp_wmb();
3169 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
3170 root_cache->memcg_params->memcg_caches[id] = cachep;
3173 static void memcg_unregister_cache(struct kmem_cache *cachep)
3175 struct kmem_cache *root_cache;
3176 struct mem_cgroup *memcg;
3177 int id;
3179 lockdep_assert_held(&memcg_slab_mutex);
3181 BUG_ON(is_root_cache(cachep));
3183 root_cache = cachep->memcg_params->root_cache;
3184 memcg = cachep->memcg_params->memcg;
3185 id = memcg_cache_id(memcg);
3187 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
3188 root_cache->memcg_params->memcg_caches[id] = NULL;
3190 list_del(&cachep->memcg_params->list);
3192 kmem_cache_destroy(cachep);
3196 * During the creation a new cache, we need to disable our accounting mechanism
3197 * altogether. This is true even if we are not creating, but rather just
3198 * enqueing new caches to be created.
3200 * This is because that process will trigger allocations; some visible, like
3201 * explicit kmallocs to auxiliary data structures, name strings and internal
3202 * cache structures; some well concealed, like INIT_WORK() that can allocate
3203 * objects during debug.
3205 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3206 * to it. This may not be a bounded recursion: since the first cache creation
3207 * failed to complete (waiting on the allocation), we'll just try to create the
3208 * cache again, failing at the same point.
3210 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3211 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3212 * inside the following two functions.
3214 static inline void memcg_stop_kmem_account(void)
3216 VM_BUG_ON(!current->mm);
3217 current->memcg_kmem_skip_account++;
3220 static inline void memcg_resume_kmem_account(void)
3222 VM_BUG_ON(!current->mm);
3223 current->memcg_kmem_skip_account--;
3226 int __memcg_cleanup_cache_params(struct kmem_cache *s)
3228 struct kmem_cache *c;
3229 int i, failed = 0;
3231 mutex_lock(&memcg_slab_mutex);
3232 for_each_memcg_cache_index(i) {
3233 c = cache_from_memcg_idx(s, i);
3234 if (!c)
3235 continue;
3237 memcg_unregister_cache(c);
3239 if (cache_from_memcg_idx(s, i))
3240 failed++;
3242 mutex_unlock(&memcg_slab_mutex);
3243 return failed;
3246 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3248 struct kmem_cache *cachep;
3249 struct memcg_cache_params *params, *tmp;
3251 if (!memcg_kmem_is_active(memcg))
3252 return;
3254 mutex_lock(&memcg_slab_mutex);
3255 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
3256 cachep = memcg_params_to_cache(params);
3257 kmem_cache_shrink(cachep);
3258 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3259 memcg_unregister_cache(cachep);
3261 mutex_unlock(&memcg_slab_mutex);
3264 struct memcg_register_cache_work {
3265 struct mem_cgroup *memcg;
3266 struct kmem_cache *cachep;
3267 struct work_struct work;
3270 static void memcg_register_cache_func(struct work_struct *w)
3272 struct memcg_register_cache_work *cw =
3273 container_of(w, struct memcg_register_cache_work, work);
3274 struct mem_cgroup *memcg = cw->memcg;
3275 struct kmem_cache *cachep = cw->cachep;
3277 mutex_lock(&memcg_slab_mutex);
3278 memcg_register_cache(memcg, cachep);
3279 mutex_unlock(&memcg_slab_mutex);
3281 css_put(&memcg->css);
3282 kfree(cw);
3286 * Enqueue the creation of a per-memcg kmem_cache.
3288 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3289 struct kmem_cache *cachep)
3291 struct memcg_register_cache_work *cw;
3293 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3294 if (cw == NULL) {
3295 css_put(&memcg->css);
3296 return;
3299 cw->memcg = memcg;
3300 cw->cachep = cachep;
3302 INIT_WORK(&cw->work, memcg_register_cache_func);
3303 schedule_work(&cw->work);
3306 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3307 struct kmem_cache *cachep)
3310 * We need to stop accounting when we kmalloc, because if the
3311 * corresponding kmalloc cache is not yet created, the first allocation
3312 * in __memcg_schedule_register_cache will recurse.
3314 * However, it is better to enclose the whole function. Depending on
3315 * the debugging options enabled, INIT_WORK(), for instance, can
3316 * trigger an allocation. This too, will make us recurse. Because at
3317 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3318 * the safest choice is to do it like this, wrapping the whole function.
3320 memcg_stop_kmem_account();
3321 __memcg_schedule_register_cache(memcg, cachep);
3322 memcg_resume_kmem_account();
3325 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3327 int res;
3329 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3330 PAGE_SIZE << order);
3331 if (!res)
3332 atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3333 return res;
3336 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3338 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3339 atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3343 * Return the kmem_cache we're supposed to use for a slab allocation.
3344 * We try to use the current memcg's version of the cache.
3346 * If the cache does not exist yet, if we are the first user of it,
3347 * we either create it immediately, if possible, or create it asynchronously
3348 * in a workqueue.
3349 * In the latter case, we will let the current allocation go through with
3350 * the original cache.
3352 * Can't be called in interrupt context or from kernel threads.
3353 * This function needs to be called with rcu_read_lock() held.
3355 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3356 gfp_t gfp)
3358 struct mem_cgroup *memcg;
3359 struct kmem_cache *memcg_cachep;
3361 VM_BUG_ON(!cachep->memcg_params);
3362 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3364 if (!current->mm || current->memcg_kmem_skip_account)
3365 return cachep;
3367 rcu_read_lock();
3368 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3370 if (!memcg_can_account_kmem(memcg))
3371 goto out;
3373 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3374 if (likely(memcg_cachep)) {
3375 cachep = memcg_cachep;
3376 goto out;
3379 /* The corresponding put will be done in the workqueue. */
3380 if (!css_tryget_online(&memcg->css))
3381 goto out;
3382 rcu_read_unlock();
3385 * If we are in a safe context (can wait, and not in interrupt
3386 * context), we could be be predictable and return right away.
3387 * This would guarantee that the allocation being performed
3388 * already belongs in the new cache.
3390 * However, there are some clashes that can arrive from locking.
3391 * For instance, because we acquire the slab_mutex while doing
3392 * memcg_create_kmem_cache, this means no further allocation
3393 * could happen with the slab_mutex held. So it's better to
3394 * defer everything.
3396 memcg_schedule_register_cache(memcg, cachep);
3397 return cachep;
3398 out:
3399 rcu_read_unlock();
3400 return cachep;
3404 * We need to verify if the allocation against current->mm->owner's memcg is
3405 * possible for the given order. But the page is not allocated yet, so we'll
3406 * need a further commit step to do the final arrangements.
3408 * It is possible for the task to switch cgroups in this mean time, so at
3409 * commit time, we can't rely on task conversion any longer. We'll then use
3410 * the handle argument to return to the caller which cgroup we should commit
3411 * against. We could also return the memcg directly and avoid the pointer
3412 * passing, but a boolean return value gives better semantics considering
3413 * the compiled-out case as well.
3415 * Returning true means the allocation is possible.
3417 bool
3418 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3420 struct mem_cgroup *memcg;
3421 int ret;
3423 *_memcg = NULL;
3426 * Disabling accounting is only relevant for some specific memcg
3427 * internal allocations. Therefore we would initially not have such
3428 * check here, since direct calls to the page allocator that are
3429 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3430 * outside memcg core. We are mostly concerned with cache allocations,
3431 * and by having this test at memcg_kmem_get_cache, we are already able
3432 * to relay the allocation to the root cache and bypass the memcg cache
3433 * altogether.
3435 * There is one exception, though: the SLUB allocator does not create
3436 * large order caches, but rather service large kmallocs directly from
3437 * the page allocator. Therefore, the following sequence when backed by
3438 * the SLUB allocator:
3440 * memcg_stop_kmem_account();
3441 * kmalloc(<large_number>)
3442 * memcg_resume_kmem_account();
3444 * would effectively ignore the fact that we should skip accounting,
3445 * since it will drive us directly to this function without passing
3446 * through the cache selector memcg_kmem_get_cache. Such large
3447 * allocations are extremely rare but can happen, for instance, for the
3448 * cache arrays. We bring this test here.
3450 if (!current->mm || current->memcg_kmem_skip_account)
3451 return true;
3453 memcg = get_mem_cgroup_from_mm(current->mm);
3455 if (!memcg_can_account_kmem(memcg)) {
3456 css_put(&memcg->css);
3457 return true;
3460 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3461 if (!ret)
3462 *_memcg = memcg;
3464 css_put(&memcg->css);
3465 return (ret == 0);
3468 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3469 int order)
3471 struct page_cgroup *pc;
3473 VM_BUG_ON(mem_cgroup_is_root(memcg));
3475 /* The page allocation failed. Revert */
3476 if (!page) {
3477 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3478 return;
3481 pc = lookup_page_cgroup(page);
3482 lock_page_cgroup(pc);
3483 pc->mem_cgroup = memcg;
3484 SetPageCgroupUsed(pc);
3485 unlock_page_cgroup(pc);
3488 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3490 struct mem_cgroup *memcg = NULL;
3491 struct page_cgroup *pc;
3494 pc = lookup_page_cgroup(page);
3496 * Fast unlocked return. Theoretically might have changed, have to
3497 * check again after locking.
3499 if (!PageCgroupUsed(pc))
3500 return;
3502 lock_page_cgroup(pc);
3503 if (PageCgroupUsed(pc)) {
3504 memcg = pc->mem_cgroup;
3505 ClearPageCgroupUsed(pc);
3507 unlock_page_cgroup(pc);
3510 * We trust that only if there is a memcg associated with the page, it
3511 * is a valid allocation
3513 if (!memcg)
3514 return;
3516 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3517 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3519 #else
3520 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3523 #endif /* CONFIG_MEMCG_KMEM */
3525 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3527 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3529 * Because tail pages are not marked as "used", set it. We're under
3530 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3531 * charge/uncharge will be never happen and move_account() is done under
3532 * compound_lock(), so we don't have to take care of races.
3534 void mem_cgroup_split_huge_fixup(struct page *head)
3536 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3537 struct page_cgroup *pc;
3538 struct mem_cgroup *memcg;
3539 int i;
3541 if (mem_cgroup_disabled())
3542 return;
3544 memcg = head_pc->mem_cgroup;
3545 for (i = 1; i < HPAGE_PMD_NR; i++) {
3546 pc = head_pc + i;
3547 pc->mem_cgroup = memcg;
3548 smp_wmb();/* see __commit_charge() */
3549 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3551 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3552 HPAGE_PMD_NR);
3554 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3557 * mem_cgroup_move_account - move account of the page
3558 * @page: the page
3559 * @nr_pages: number of regular pages (>1 for huge pages)
3560 * @pc: page_cgroup of the page.
3561 * @from: mem_cgroup which the page is moved from.
3562 * @to: mem_cgroup which the page is moved to. @from != @to.
3564 * The caller must confirm following.
3565 * - page is not on LRU (isolate_page() is useful.)
3566 * - compound_lock is held when nr_pages > 1
3568 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3569 * from old cgroup.
3571 static int mem_cgroup_move_account(struct page *page,
3572 unsigned int nr_pages,
3573 struct page_cgroup *pc,
3574 struct mem_cgroup *from,
3575 struct mem_cgroup *to)
3577 unsigned long flags;
3578 int ret;
3579 bool anon = PageAnon(page);
3581 VM_BUG_ON(from == to);
3582 VM_BUG_ON_PAGE(PageLRU(page), page);
3584 * The page is isolated from LRU. So, collapse function
3585 * will not handle this page. But page splitting can happen.
3586 * Do this check under compound_page_lock(). The caller should
3587 * hold it.
3589 ret = -EBUSY;
3590 if (nr_pages > 1 && !PageTransHuge(page))
3591 goto out;
3593 lock_page_cgroup(pc);
3595 ret = -EINVAL;
3596 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3597 goto unlock;
3599 move_lock_mem_cgroup(from, &flags);
3601 if (!anon && page_mapped(page)) {
3602 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3603 nr_pages);
3604 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3605 nr_pages);
3608 if (PageWriteback(page)) {
3609 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3610 nr_pages);
3611 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3612 nr_pages);
3615 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3617 /* caller should have done css_get */
3618 pc->mem_cgroup = to;
3619 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3620 move_unlock_mem_cgroup(from, &flags);
3621 ret = 0;
3622 unlock:
3623 unlock_page_cgroup(pc);
3625 * check events
3627 memcg_check_events(to, page);
3628 memcg_check_events(from, page);
3629 out:
3630 return ret;
3634 * mem_cgroup_move_parent - moves page to the parent group
3635 * @page: the page to move
3636 * @pc: page_cgroup of the page
3637 * @child: page's cgroup
3639 * move charges to its parent or the root cgroup if the group has no
3640 * parent (aka use_hierarchy==0).
3641 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3642 * mem_cgroup_move_account fails) the failure is always temporary and
3643 * it signals a race with a page removal/uncharge or migration. In the
3644 * first case the page is on the way out and it will vanish from the LRU
3645 * on the next attempt and the call should be retried later.
3646 * Isolation from the LRU fails only if page has been isolated from
3647 * the LRU since we looked at it and that usually means either global
3648 * reclaim or migration going on. The page will either get back to the
3649 * LRU or vanish.
3650 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3651 * (!PageCgroupUsed) or moved to a different group. The page will
3652 * disappear in the next attempt.
3654 static int mem_cgroup_move_parent(struct page *page,
3655 struct page_cgroup *pc,
3656 struct mem_cgroup *child)
3658 struct mem_cgroup *parent;
3659 unsigned int nr_pages;
3660 unsigned long uninitialized_var(flags);
3661 int ret;
3663 VM_BUG_ON(mem_cgroup_is_root(child));
3665 ret = -EBUSY;
3666 if (!get_page_unless_zero(page))
3667 goto out;
3668 if (isolate_lru_page(page))
3669 goto put;
3671 nr_pages = hpage_nr_pages(page);
3673 parent = parent_mem_cgroup(child);
3675 * If no parent, move charges to root cgroup.
3677 if (!parent)
3678 parent = root_mem_cgroup;
3680 if (nr_pages > 1) {
3681 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3682 flags = compound_lock_irqsave(page);
3685 ret = mem_cgroup_move_account(page, nr_pages,
3686 pc, child, parent);
3687 if (!ret)
3688 __mem_cgroup_cancel_local_charge(child, nr_pages);
3690 if (nr_pages > 1)
3691 compound_unlock_irqrestore(page, flags);
3692 putback_lru_page(page);
3693 put:
3694 put_page(page);
3695 out:
3696 return ret;
3699 int mem_cgroup_charge_anon(struct page *page,
3700 struct mm_struct *mm, gfp_t gfp_mask)
3702 unsigned int nr_pages = 1;
3703 struct mem_cgroup *memcg;
3704 bool oom = true;
3706 if (mem_cgroup_disabled())
3707 return 0;
3709 VM_BUG_ON_PAGE(page_mapped(page), page);
3710 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3711 VM_BUG_ON(!mm);
3713 if (PageTransHuge(page)) {
3714 nr_pages <<= compound_order(page);
3715 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3717 * Never OOM-kill a process for a huge page. The
3718 * fault handler will fall back to regular pages.
3720 oom = false;
3723 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
3724 if (!memcg)
3725 return -ENOMEM;
3726 __mem_cgroup_commit_charge(memcg, page, nr_pages,
3727 MEM_CGROUP_CHARGE_TYPE_ANON, false);
3728 return 0;
3732 * While swap-in, try_charge -> commit or cancel, the page is locked.
3733 * And when try_charge() successfully returns, one refcnt to memcg without
3734 * struct page_cgroup is acquired. This refcnt will be consumed by
3735 * "commit()" or removed by "cancel()"
3737 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3738 struct page *page,
3739 gfp_t mask,
3740 struct mem_cgroup **memcgp)
3742 struct mem_cgroup *memcg = NULL;
3743 struct page_cgroup *pc;
3744 int ret;
3746 pc = lookup_page_cgroup(page);
3748 * Every swap fault against a single page tries to charge the
3749 * page, bail as early as possible. shmem_unuse() encounters
3750 * already charged pages, too. The USED bit is protected by
3751 * the page lock, which serializes swap cache removal, which
3752 * in turn serializes uncharging.
3754 if (PageCgroupUsed(pc))
3755 goto out;
3756 if (do_swap_account)
3757 memcg = try_get_mem_cgroup_from_page(page);
3758 if (!memcg)
3759 memcg = get_mem_cgroup_from_mm(mm);
3760 ret = mem_cgroup_try_charge(memcg, mask, 1, true);
3761 css_put(&memcg->css);
3762 if (ret == -EINTR)
3763 memcg = root_mem_cgroup;
3764 else if (ret)
3765 return ret;
3766 out:
3767 *memcgp = memcg;
3768 return 0;
3771 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3772 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3774 if (mem_cgroup_disabled()) {
3775 *memcgp = NULL;
3776 return 0;
3779 * A racing thread's fault, or swapoff, may have already
3780 * updated the pte, and even removed page from swap cache: in
3781 * those cases unuse_pte()'s pte_same() test will fail; but
3782 * there's also a KSM case which does need to charge the page.
3784 if (!PageSwapCache(page)) {
3785 struct mem_cgroup *memcg;
3787 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3788 if (!memcg)
3789 return -ENOMEM;
3790 *memcgp = memcg;
3791 return 0;
3793 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3796 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3798 if (mem_cgroup_disabled())
3799 return;
3800 if (!memcg)
3801 return;
3802 __mem_cgroup_cancel_charge(memcg, 1);
3805 static void
3806 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3807 enum charge_type ctype)
3809 if (mem_cgroup_disabled())
3810 return;
3811 if (!memcg)
3812 return;
3814 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3816 * Now swap is on-memory. This means this page may be
3817 * counted both as mem and swap....double count.
3818 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3819 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3820 * may call delete_from_swap_cache() before reach here.
3822 if (do_swap_account && PageSwapCache(page)) {
3823 swp_entry_t ent = {.val = page_private(page)};
3824 mem_cgroup_uncharge_swap(ent);
3828 void mem_cgroup_commit_charge_swapin(struct page *page,
3829 struct mem_cgroup *memcg)
3831 __mem_cgroup_commit_charge_swapin(page, memcg,
3832 MEM_CGROUP_CHARGE_TYPE_ANON);
3835 int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
3836 gfp_t gfp_mask)
3838 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3839 struct mem_cgroup *memcg;
3840 int ret;
3842 if (mem_cgroup_disabled())
3843 return 0;
3844 if (PageCompound(page))
3845 return 0;
3847 if (PageSwapCache(page)) { /* shmem */
3848 ret = __mem_cgroup_try_charge_swapin(mm, page,
3849 gfp_mask, &memcg);
3850 if (ret)
3851 return ret;
3852 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3853 return 0;
3856 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3857 if (!memcg)
3858 return -ENOMEM;
3859 __mem_cgroup_commit_charge(memcg, page, 1, type, false);
3860 return 0;
3863 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3864 unsigned int nr_pages,
3865 const enum charge_type ctype)
3867 struct memcg_batch_info *batch = NULL;
3868 bool uncharge_memsw = true;
3870 /* If swapout, usage of swap doesn't decrease */
3871 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3872 uncharge_memsw = false;
3874 batch = &current->memcg_batch;
3876 * In usual, we do css_get() when we remember memcg pointer.
3877 * But in this case, we keep res->usage until end of a series of
3878 * uncharges. Then, it's ok to ignore memcg's refcnt.
3880 if (!batch->memcg)
3881 batch->memcg = memcg;
3883 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3884 * In those cases, all pages freed continuously can be expected to be in
3885 * the same cgroup and we have chance to coalesce uncharges.
3886 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3887 * because we want to do uncharge as soon as possible.
3890 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3891 goto direct_uncharge;
3893 if (nr_pages > 1)
3894 goto direct_uncharge;
3897 * In typical case, batch->memcg == mem. This means we can
3898 * merge a series of uncharges to an uncharge of res_counter.
3899 * If not, we uncharge res_counter ony by one.
3901 if (batch->memcg != memcg)
3902 goto direct_uncharge;
3903 /* remember freed charge and uncharge it later */
3904 batch->nr_pages++;
3905 if (uncharge_memsw)
3906 batch->memsw_nr_pages++;
3907 return;
3908 direct_uncharge:
3909 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3910 if (uncharge_memsw)
3911 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3912 if (unlikely(batch->memcg != memcg))
3913 memcg_oom_recover(memcg);
3917 * uncharge if !page_mapped(page)
3919 static struct mem_cgroup *
3920 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3921 bool end_migration)
3923 struct mem_cgroup *memcg = NULL;
3924 unsigned int nr_pages = 1;
3925 struct page_cgroup *pc;
3926 bool anon;
3928 if (mem_cgroup_disabled())
3929 return NULL;
3931 if (PageTransHuge(page)) {
3932 nr_pages <<= compound_order(page);
3933 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3936 * Check if our page_cgroup is valid
3938 pc = lookup_page_cgroup(page);
3939 if (unlikely(!PageCgroupUsed(pc)))
3940 return NULL;
3942 lock_page_cgroup(pc);
3944 memcg = pc->mem_cgroup;
3946 if (!PageCgroupUsed(pc))
3947 goto unlock_out;
3949 anon = PageAnon(page);
3951 switch (ctype) {
3952 case MEM_CGROUP_CHARGE_TYPE_ANON:
3954 * Generally PageAnon tells if it's the anon statistics to be
3955 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3956 * used before page reached the stage of being marked PageAnon.
3958 anon = true;
3959 /* fallthrough */
3960 case MEM_CGROUP_CHARGE_TYPE_DROP:
3961 /* See mem_cgroup_prepare_migration() */
3962 if (page_mapped(page))
3963 goto unlock_out;
3965 * Pages under migration may not be uncharged. But
3966 * end_migration() /must/ be the one uncharging the
3967 * unused post-migration page and so it has to call
3968 * here with the migration bit still set. See the
3969 * res_counter handling below.
3971 if (!end_migration && PageCgroupMigration(pc))
3972 goto unlock_out;
3973 break;
3974 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3975 if (!PageAnon(page)) { /* Shared memory */
3976 if (page->mapping && !page_is_file_cache(page))
3977 goto unlock_out;
3978 } else if (page_mapped(page)) /* Anon */
3979 goto unlock_out;
3980 break;
3981 default:
3982 break;
3985 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
3987 ClearPageCgroupUsed(pc);
3989 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3990 * freed from LRU. This is safe because uncharged page is expected not
3991 * to be reused (freed soon). Exception is SwapCache, it's handled by
3992 * special functions.
3995 unlock_page_cgroup(pc);
3997 * even after unlock, we have memcg->res.usage here and this memcg
3998 * will never be freed, so it's safe to call css_get().
4000 memcg_check_events(memcg, page);
4001 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4002 mem_cgroup_swap_statistics(memcg, true);
4003 css_get(&memcg->css);
4006 * Migration does not charge the res_counter for the
4007 * replacement page, so leave it alone when phasing out the
4008 * page that is unused after the migration.
4010 if (!end_migration && !mem_cgroup_is_root(memcg))
4011 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4013 return memcg;
4015 unlock_out:
4016 unlock_page_cgroup(pc);
4017 return NULL;
4020 void mem_cgroup_uncharge_page(struct page *page)
4022 /* early check. */
4023 if (page_mapped(page))
4024 return;
4025 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4027 * If the page is in swap cache, uncharge should be deferred
4028 * to the swap path, which also properly accounts swap usage
4029 * and handles memcg lifetime.
4031 * Note that this check is not stable and reclaim may add the
4032 * page to swap cache at any time after this. However, if the
4033 * page is not in swap cache by the time page->mapcount hits
4034 * 0, there won't be any page table references to the swap
4035 * slot, and reclaim will free it and not actually write the
4036 * page to disk.
4038 if (PageSwapCache(page))
4039 return;
4040 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4043 void mem_cgroup_uncharge_cache_page(struct page *page)
4045 VM_BUG_ON_PAGE(page_mapped(page), page);
4046 VM_BUG_ON_PAGE(page->mapping, page);
4047 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4051 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4052 * In that cases, pages are freed continuously and we can expect pages
4053 * are in the same memcg. All these calls itself limits the number of
4054 * pages freed at once, then uncharge_start/end() is called properly.
4055 * This may be called prural(2) times in a context,
4058 void mem_cgroup_uncharge_start(void)
4060 current->memcg_batch.do_batch++;
4061 /* We can do nest. */
4062 if (current->memcg_batch.do_batch == 1) {
4063 current->memcg_batch.memcg = NULL;
4064 current->memcg_batch.nr_pages = 0;
4065 current->memcg_batch.memsw_nr_pages = 0;
4069 void mem_cgroup_uncharge_end(void)
4071 struct memcg_batch_info *batch = &current->memcg_batch;
4073 if (!batch->do_batch)
4074 return;
4076 batch->do_batch--;
4077 if (batch->do_batch) /* If stacked, do nothing. */
4078 return;
4080 if (!batch->memcg)
4081 return;
4083 * This "batch->memcg" is valid without any css_get/put etc...
4084 * bacause we hide charges behind us.
4086 if (batch->nr_pages)
4087 res_counter_uncharge(&batch->memcg->res,
4088 batch->nr_pages * PAGE_SIZE);
4089 if (batch->memsw_nr_pages)
4090 res_counter_uncharge(&batch->memcg->memsw,
4091 batch->memsw_nr_pages * PAGE_SIZE);
4092 memcg_oom_recover(batch->memcg);
4093 /* forget this pointer (for sanity check) */
4094 batch->memcg = NULL;
4097 #ifdef CONFIG_SWAP
4099 * called after __delete_from_swap_cache() and drop "page" account.
4100 * memcg information is recorded to swap_cgroup of "ent"
4102 void
4103 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4105 struct mem_cgroup *memcg;
4106 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4108 if (!swapout) /* this was a swap cache but the swap is unused ! */
4109 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4111 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4114 * record memcg information, if swapout && memcg != NULL,
4115 * css_get() was called in uncharge().
4117 if (do_swap_account && swapout && memcg)
4118 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4120 #endif
4122 #ifdef CONFIG_MEMCG_SWAP
4124 * called from swap_entry_free(). remove record in swap_cgroup and
4125 * uncharge "memsw" account.
4127 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4129 struct mem_cgroup *memcg;
4130 unsigned short id;
4132 if (!do_swap_account)
4133 return;
4135 id = swap_cgroup_record(ent, 0);
4136 rcu_read_lock();
4137 memcg = mem_cgroup_lookup(id);
4138 if (memcg) {
4140 * We uncharge this because swap is freed. This memcg can
4141 * be obsolete one. We avoid calling css_tryget_online().
4143 if (!mem_cgroup_is_root(memcg))
4144 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4145 mem_cgroup_swap_statistics(memcg, false);
4146 css_put(&memcg->css);
4148 rcu_read_unlock();
4152 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4153 * @entry: swap entry to be moved
4154 * @from: mem_cgroup which the entry is moved from
4155 * @to: mem_cgroup which the entry is moved to
4157 * It succeeds only when the swap_cgroup's record for this entry is the same
4158 * as the mem_cgroup's id of @from.
4160 * Returns 0 on success, -EINVAL on failure.
4162 * The caller must have charged to @to, IOW, called res_counter_charge() about
4163 * both res and memsw, and called css_get().
4165 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4166 struct mem_cgroup *from, struct mem_cgroup *to)
4168 unsigned short old_id, new_id;
4170 old_id = mem_cgroup_id(from);
4171 new_id = mem_cgroup_id(to);
4173 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4174 mem_cgroup_swap_statistics(from, false);
4175 mem_cgroup_swap_statistics(to, true);
4177 * This function is only called from task migration context now.
4178 * It postpones res_counter and refcount handling till the end
4179 * of task migration(mem_cgroup_clear_mc()) for performance
4180 * improvement. But we cannot postpone css_get(to) because if
4181 * the process that has been moved to @to does swap-in, the
4182 * refcount of @to might be decreased to 0.
4184 * We are in attach() phase, so the cgroup is guaranteed to be
4185 * alive, so we can just call css_get().
4187 css_get(&to->css);
4188 return 0;
4190 return -EINVAL;
4192 #else
4193 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4194 struct mem_cgroup *from, struct mem_cgroup *to)
4196 return -EINVAL;
4198 #endif
4201 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4202 * page belongs to.
4204 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4205 struct mem_cgroup **memcgp)
4207 struct mem_cgroup *memcg = NULL;
4208 unsigned int nr_pages = 1;
4209 struct page_cgroup *pc;
4210 enum charge_type ctype;
4212 *memcgp = NULL;
4214 if (mem_cgroup_disabled())
4215 return;
4217 if (PageTransHuge(page))
4218 nr_pages <<= compound_order(page);
4220 pc = lookup_page_cgroup(page);
4221 lock_page_cgroup(pc);
4222 if (PageCgroupUsed(pc)) {
4223 memcg = pc->mem_cgroup;
4224 css_get(&memcg->css);
4226 * At migrating an anonymous page, its mapcount goes down
4227 * to 0 and uncharge() will be called. But, even if it's fully
4228 * unmapped, migration may fail and this page has to be
4229 * charged again. We set MIGRATION flag here and delay uncharge
4230 * until end_migration() is called
4232 * Corner Case Thinking
4233 * A)
4234 * When the old page was mapped as Anon and it's unmap-and-freed
4235 * while migration was ongoing.
4236 * If unmap finds the old page, uncharge() of it will be delayed
4237 * until end_migration(). If unmap finds a new page, it's
4238 * uncharged when it make mapcount to be 1->0. If unmap code
4239 * finds swap_migration_entry, the new page will not be mapped
4240 * and end_migration() will find it(mapcount==0).
4242 * B)
4243 * When the old page was mapped but migraion fails, the kernel
4244 * remaps it. A charge for it is kept by MIGRATION flag even
4245 * if mapcount goes down to 0. We can do remap successfully
4246 * without charging it again.
4248 * C)
4249 * The "old" page is under lock_page() until the end of
4250 * migration, so, the old page itself will not be swapped-out.
4251 * If the new page is swapped out before end_migraton, our
4252 * hook to usual swap-out path will catch the event.
4254 if (PageAnon(page))
4255 SetPageCgroupMigration(pc);
4257 unlock_page_cgroup(pc);
4259 * If the page is not charged at this point,
4260 * we return here.
4262 if (!memcg)
4263 return;
4265 *memcgp = memcg;
4267 * We charge new page before it's used/mapped. So, even if unlock_page()
4268 * is called before end_migration, we can catch all events on this new
4269 * page. In the case new page is migrated but not remapped, new page's
4270 * mapcount will be finally 0 and we call uncharge in end_migration().
4272 if (PageAnon(page))
4273 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4274 else
4275 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4277 * The page is committed to the memcg, but it's not actually
4278 * charged to the res_counter since we plan on replacing the
4279 * old one and only one page is going to be left afterwards.
4281 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4284 /* remove redundant charge if migration failed*/
4285 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4286 struct page *oldpage, struct page *newpage, bool migration_ok)
4288 struct page *used, *unused;
4289 struct page_cgroup *pc;
4290 bool anon;
4292 if (!memcg)
4293 return;
4295 if (!migration_ok) {
4296 used = oldpage;
4297 unused = newpage;
4298 } else {
4299 used = newpage;
4300 unused = oldpage;
4302 anon = PageAnon(used);
4303 __mem_cgroup_uncharge_common(unused,
4304 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4305 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4306 true);
4307 css_put(&memcg->css);
4309 * We disallowed uncharge of pages under migration because mapcount
4310 * of the page goes down to zero, temporarly.
4311 * Clear the flag and check the page should be charged.
4313 pc = lookup_page_cgroup(oldpage);
4314 lock_page_cgroup(pc);
4315 ClearPageCgroupMigration(pc);
4316 unlock_page_cgroup(pc);
4319 * If a page is a file cache, radix-tree replacement is very atomic
4320 * and we can skip this check. When it was an Anon page, its mapcount
4321 * goes down to 0. But because we added MIGRATION flage, it's not
4322 * uncharged yet. There are several case but page->mapcount check
4323 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4324 * check. (see prepare_charge() also)
4326 if (anon)
4327 mem_cgroup_uncharge_page(used);
4331 * At replace page cache, newpage is not under any memcg but it's on
4332 * LRU. So, this function doesn't touch res_counter but handles LRU
4333 * in correct way. Both pages are locked so we cannot race with uncharge.
4335 void mem_cgroup_replace_page_cache(struct page *oldpage,
4336 struct page *newpage)
4338 struct mem_cgroup *memcg = NULL;
4339 struct page_cgroup *pc;
4340 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4342 if (mem_cgroup_disabled())
4343 return;
4345 pc = lookup_page_cgroup(oldpage);
4346 /* fix accounting on old pages */
4347 lock_page_cgroup(pc);
4348 if (PageCgroupUsed(pc)) {
4349 memcg = pc->mem_cgroup;
4350 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4351 ClearPageCgroupUsed(pc);
4353 unlock_page_cgroup(pc);
4356 * When called from shmem_replace_page(), in some cases the
4357 * oldpage has already been charged, and in some cases not.
4359 if (!memcg)
4360 return;
4362 * Even if newpage->mapping was NULL before starting replacement,
4363 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4364 * LRU while we overwrite pc->mem_cgroup.
4366 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4369 #ifdef CONFIG_DEBUG_VM
4370 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4372 struct page_cgroup *pc;
4374 pc = lookup_page_cgroup(page);
4376 * Can be NULL while feeding pages into the page allocator for
4377 * the first time, i.e. during boot or memory hotplug;
4378 * or when mem_cgroup_disabled().
4380 if (likely(pc) && PageCgroupUsed(pc))
4381 return pc;
4382 return NULL;
4385 bool mem_cgroup_bad_page_check(struct page *page)
4387 if (mem_cgroup_disabled())
4388 return false;
4390 return lookup_page_cgroup_used(page) != NULL;
4393 void mem_cgroup_print_bad_page(struct page *page)
4395 struct page_cgroup *pc;
4397 pc = lookup_page_cgroup_used(page);
4398 if (pc) {
4399 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4400 pc, pc->flags, pc->mem_cgroup);
4403 #endif
4405 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4406 unsigned long long val)
4408 int retry_count;
4409 u64 memswlimit, memlimit;
4410 int ret = 0;
4411 int children = mem_cgroup_count_children(memcg);
4412 u64 curusage, oldusage;
4413 int enlarge;
4416 * For keeping hierarchical_reclaim simple, how long we should retry
4417 * is depends on callers. We set our retry-count to be function
4418 * of # of children which we should visit in this loop.
4420 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4422 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4424 enlarge = 0;
4425 while (retry_count) {
4426 if (signal_pending(current)) {
4427 ret = -EINTR;
4428 break;
4431 * Rather than hide all in some function, I do this in
4432 * open coded manner. You see what this really does.
4433 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4435 mutex_lock(&set_limit_mutex);
4436 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4437 if (memswlimit < val) {
4438 ret = -EINVAL;
4439 mutex_unlock(&set_limit_mutex);
4440 break;
4443 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4444 if (memlimit < val)
4445 enlarge = 1;
4447 ret = res_counter_set_limit(&memcg->res, val);
4448 if (!ret) {
4449 if (memswlimit == val)
4450 memcg->memsw_is_minimum = true;
4451 else
4452 memcg->memsw_is_minimum = false;
4454 mutex_unlock(&set_limit_mutex);
4456 if (!ret)
4457 break;
4459 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4460 MEM_CGROUP_RECLAIM_SHRINK);
4461 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4462 /* Usage is reduced ? */
4463 if (curusage >= oldusage)
4464 retry_count--;
4465 else
4466 oldusage = curusage;
4468 if (!ret && enlarge)
4469 memcg_oom_recover(memcg);
4471 return ret;
4474 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4475 unsigned long long val)
4477 int retry_count;
4478 u64 memlimit, memswlimit, oldusage, curusage;
4479 int children = mem_cgroup_count_children(memcg);
4480 int ret = -EBUSY;
4481 int enlarge = 0;
4483 /* see mem_cgroup_resize_res_limit */
4484 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4485 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4486 while (retry_count) {
4487 if (signal_pending(current)) {
4488 ret = -EINTR;
4489 break;
4492 * Rather than hide all in some function, I do this in
4493 * open coded manner. You see what this really does.
4494 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4496 mutex_lock(&set_limit_mutex);
4497 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4498 if (memlimit > val) {
4499 ret = -EINVAL;
4500 mutex_unlock(&set_limit_mutex);
4501 break;
4503 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4504 if (memswlimit < val)
4505 enlarge = 1;
4506 ret = res_counter_set_limit(&memcg->memsw, val);
4507 if (!ret) {
4508 if (memlimit == val)
4509 memcg->memsw_is_minimum = true;
4510 else
4511 memcg->memsw_is_minimum = false;
4513 mutex_unlock(&set_limit_mutex);
4515 if (!ret)
4516 break;
4518 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4519 MEM_CGROUP_RECLAIM_NOSWAP |
4520 MEM_CGROUP_RECLAIM_SHRINK);
4521 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4522 /* Usage is reduced ? */
4523 if (curusage >= oldusage)
4524 retry_count--;
4525 else
4526 oldusage = curusage;
4528 if (!ret && enlarge)
4529 memcg_oom_recover(memcg);
4530 return ret;
4533 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4534 gfp_t gfp_mask,
4535 unsigned long *total_scanned)
4537 unsigned long nr_reclaimed = 0;
4538 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4539 unsigned long reclaimed;
4540 int loop = 0;
4541 struct mem_cgroup_tree_per_zone *mctz;
4542 unsigned long long excess;
4543 unsigned long nr_scanned;
4545 if (order > 0)
4546 return 0;
4548 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4550 * This loop can run a while, specially if mem_cgroup's continuously
4551 * keep exceeding their soft limit and putting the system under
4552 * pressure
4554 do {
4555 if (next_mz)
4556 mz = next_mz;
4557 else
4558 mz = mem_cgroup_largest_soft_limit_node(mctz);
4559 if (!mz)
4560 break;
4562 nr_scanned = 0;
4563 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4564 gfp_mask, &nr_scanned);
4565 nr_reclaimed += reclaimed;
4566 *total_scanned += nr_scanned;
4567 spin_lock(&mctz->lock);
4570 * If we failed to reclaim anything from this memory cgroup
4571 * it is time to move on to the next cgroup
4573 next_mz = NULL;
4574 if (!reclaimed) {
4575 do {
4577 * Loop until we find yet another one.
4579 * By the time we get the soft_limit lock
4580 * again, someone might have aded the
4581 * group back on the RB tree. Iterate to
4582 * make sure we get a different mem.
4583 * mem_cgroup_largest_soft_limit_node returns
4584 * NULL if no other cgroup is present on
4585 * the tree
4587 next_mz =
4588 __mem_cgroup_largest_soft_limit_node(mctz);
4589 if (next_mz == mz)
4590 css_put(&next_mz->memcg->css);
4591 else /* next_mz == NULL or other memcg */
4592 break;
4593 } while (1);
4595 __mem_cgroup_remove_exceeded(mz, mctz);
4596 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4598 * One school of thought says that we should not add
4599 * back the node to the tree if reclaim returns 0.
4600 * But our reclaim could return 0, simply because due
4601 * to priority we are exposing a smaller subset of
4602 * memory to reclaim from. Consider this as a longer
4603 * term TODO.
4605 /* If excess == 0, no tree ops */
4606 __mem_cgroup_insert_exceeded(mz, mctz, excess);
4607 spin_unlock(&mctz->lock);
4608 css_put(&mz->memcg->css);
4609 loop++;
4611 * Could not reclaim anything and there are no more
4612 * mem cgroups to try or we seem to be looping without
4613 * reclaiming anything.
4615 if (!nr_reclaimed &&
4616 (next_mz == NULL ||
4617 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4618 break;
4619 } while (!nr_reclaimed);
4620 if (next_mz)
4621 css_put(&next_mz->memcg->css);
4622 return nr_reclaimed;
4626 * mem_cgroup_force_empty_list - clears LRU of a group
4627 * @memcg: group to clear
4628 * @node: NUMA node
4629 * @zid: zone id
4630 * @lru: lru to to clear
4632 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4633 * reclaim the pages page themselves - pages are moved to the parent (or root)
4634 * group.
4636 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4637 int node, int zid, enum lru_list lru)
4639 struct lruvec *lruvec;
4640 unsigned long flags;
4641 struct list_head *list;
4642 struct page *busy;
4643 struct zone *zone;
4645 zone = &NODE_DATA(node)->node_zones[zid];
4646 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4647 list = &lruvec->lists[lru];
4649 busy = NULL;
4650 do {
4651 struct page_cgroup *pc;
4652 struct page *page;
4654 spin_lock_irqsave(&zone->lru_lock, flags);
4655 if (list_empty(list)) {
4656 spin_unlock_irqrestore(&zone->lru_lock, flags);
4657 break;
4659 page = list_entry(list->prev, struct page, lru);
4660 if (busy == page) {
4661 list_move(&page->lru, list);
4662 busy = NULL;
4663 spin_unlock_irqrestore(&zone->lru_lock, flags);
4664 continue;
4666 spin_unlock_irqrestore(&zone->lru_lock, flags);
4668 pc = lookup_page_cgroup(page);
4670 if (mem_cgroup_move_parent(page, pc, memcg)) {
4671 /* found lock contention or "pc" is obsolete. */
4672 busy = page;
4673 } else
4674 busy = NULL;
4675 cond_resched();
4676 } while (!list_empty(list));
4680 * make mem_cgroup's charge to be 0 if there is no task by moving
4681 * all the charges and pages to the parent.
4682 * This enables deleting this mem_cgroup.
4684 * Caller is responsible for holding css reference on the memcg.
4686 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4688 int node, zid;
4689 u64 usage;
4691 do {
4692 /* This is for making all *used* pages to be on LRU. */
4693 lru_add_drain_all();
4694 drain_all_stock_sync(memcg);
4695 mem_cgroup_start_move(memcg);
4696 for_each_node_state(node, N_MEMORY) {
4697 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4698 enum lru_list lru;
4699 for_each_lru(lru) {
4700 mem_cgroup_force_empty_list(memcg,
4701 node, zid, lru);
4705 mem_cgroup_end_move(memcg);
4706 memcg_oom_recover(memcg);
4707 cond_resched();
4710 * Kernel memory may not necessarily be trackable to a specific
4711 * process. So they are not migrated, and therefore we can't
4712 * expect their value to drop to 0 here.
4713 * Having res filled up with kmem only is enough.
4715 * This is a safety check because mem_cgroup_force_empty_list
4716 * could have raced with mem_cgroup_replace_page_cache callers
4717 * so the lru seemed empty but the page could have been added
4718 * right after the check. RES_USAGE should be safe as we always
4719 * charge before adding to the LRU.
4721 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4722 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4723 } while (usage > 0);
4727 * Test whether @memcg has children, dead or alive. Note that this
4728 * function doesn't care whether @memcg has use_hierarchy enabled and
4729 * returns %true if there are child csses according to the cgroup
4730 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
4732 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4734 bool ret;
4737 * The lock does not prevent addition or deletion of children, but
4738 * it prevents a new child from being initialized based on this
4739 * parent in css_online(), so it's enough to decide whether
4740 * hierarchically inherited attributes can still be changed or not.
4742 lockdep_assert_held(&memcg_create_mutex);
4744 rcu_read_lock();
4745 ret = css_next_child(NULL, &memcg->css);
4746 rcu_read_unlock();
4747 return ret;
4751 * Reclaims as many pages from the given memcg as possible and moves
4752 * the rest to the parent.
4754 * Caller is responsible for holding css reference for memcg.
4756 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4758 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4760 /* we call try-to-free pages for make this cgroup empty */
4761 lru_add_drain_all();
4762 /* try to free all pages in this cgroup */
4763 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4764 int progress;
4766 if (signal_pending(current))
4767 return -EINTR;
4769 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4770 false);
4771 if (!progress) {
4772 nr_retries--;
4773 /* maybe some writeback is necessary */
4774 congestion_wait(BLK_RW_ASYNC, HZ/10);
4779 return 0;
4782 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
4783 char *buf, size_t nbytes,
4784 loff_t off)
4786 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4788 if (mem_cgroup_is_root(memcg))
4789 return -EINVAL;
4790 return mem_cgroup_force_empty(memcg) ?: nbytes;
4793 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4794 struct cftype *cft)
4796 return mem_cgroup_from_css(css)->use_hierarchy;
4799 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4800 struct cftype *cft, u64 val)
4802 int retval = 0;
4803 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4804 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
4806 mutex_lock(&memcg_create_mutex);
4808 if (memcg->use_hierarchy == val)
4809 goto out;
4812 * If parent's use_hierarchy is set, we can't make any modifications
4813 * in the child subtrees. If it is unset, then the change can
4814 * occur, provided the current cgroup has no children.
4816 * For the root cgroup, parent_mem is NULL, we allow value to be
4817 * set if there are no children.
4819 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4820 (val == 1 || val == 0)) {
4821 if (!memcg_has_children(memcg))
4822 memcg->use_hierarchy = val;
4823 else
4824 retval = -EBUSY;
4825 } else
4826 retval = -EINVAL;
4828 out:
4829 mutex_unlock(&memcg_create_mutex);
4831 return retval;
4835 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4836 enum mem_cgroup_stat_index idx)
4838 struct mem_cgroup *iter;
4839 long val = 0;
4841 /* Per-cpu values can be negative, use a signed accumulator */
4842 for_each_mem_cgroup_tree(iter, memcg)
4843 val += mem_cgroup_read_stat(iter, idx);
4845 if (val < 0) /* race ? */
4846 val = 0;
4847 return val;
4850 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4852 u64 val;
4854 if (!mem_cgroup_is_root(memcg)) {
4855 if (!swap)
4856 return res_counter_read_u64(&memcg->res, RES_USAGE);
4857 else
4858 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4862 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4863 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4865 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4866 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4868 if (swap)
4869 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4871 return val << PAGE_SHIFT;
4874 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4875 struct cftype *cft)
4877 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4878 u64 val;
4879 int name;
4880 enum res_type type;
4882 type = MEMFILE_TYPE(cft->private);
4883 name = MEMFILE_ATTR(cft->private);
4885 switch (type) {
4886 case _MEM:
4887 if (name == RES_USAGE)
4888 val = mem_cgroup_usage(memcg, false);
4889 else
4890 val = res_counter_read_u64(&memcg->res, name);
4891 break;
4892 case _MEMSWAP:
4893 if (name == RES_USAGE)
4894 val = mem_cgroup_usage(memcg, true);
4895 else
4896 val = res_counter_read_u64(&memcg->memsw, name);
4897 break;
4898 case _KMEM:
4899 val = res_counter_read_u64(&memcg->kmem, name);
4900 break;
4901 default:
4902 BUG();
4905 return val;
4908 #ifdef CONFIG_MEMCG_KMEM
4909 /* should be called with activate_kmem_mutex held */
4910 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4911 unsigned long long limit)
4913 int err = 0;
4914 int memcg_id;
4916 if (memcg_kmem_is_active(memcg))
4917 return 0;
4920 * We are going to allocate memory for data shared by all memory
4921 * cgroups so let's stop accounting here.
4923 memcg_stop_kmem_account();
4926 * For simplicity, we won't allow this to be disabled. It also can't
4927 * be changed if the cgroup has children already, or if tasks had
4928 * already joined.
4930 * If tasks join before we set the limit, a person looking at
4931 * kmem.usage_in_bytes will have no way to determine when it took
4932 * place, which makes the value quite meaningless.
4934 * After it first became limited, changes in the value of the limit are
4935 * of course permitted.
4937 mutex_lock(&memcg_create_mutex);
4938 if (cgroup_has_tasks(memcg->css.cgroup) ||
4939 (memcg->use_hierarchy && memcg_has_children(memcg)))
4940 err = -EBUSY;
4941 mutex_unlock(&memcg_create_mutex);
4942 if (err)
4943 goto out;
4945 memcg_id = ida_simple_get(&kmem_limited_groups,
4946 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
4947 if (memcg_id < 0) {
4948 err = memcg_id;
4949 goto out;
4953 * Make sure we have enough space for this cgroup in each root cache's
4954 * memcg_params.
4956 mutex_lock(&memcg_slab_mutex);
4957 err = memcg_update_all_caches(memcg_id + 1);
4958 mutex_unlock(&memcg_slab_mutex);
4959 if (err)
4960 goto out_rmid;
4962 memcg->kmemcg_id = memcg_id;
4963 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4966 * We couldn't have accounted to this cgroup, because it hasn't got the
4967 * active bit set yet, so this should succeed.
4969 err = res_counter_set_limit(&memcg->kmem, limit);
4970 VM_BUG_ON(err);
4972 static_key_slow_inc(&memcg_kmem_enabled_key);
4974 * Setting the active bit after enabling static branching will
4975 * guarantee no one starts accounting before all call sites are
4976 * patched.
4978 memcg_kmem_set_active(memcg);
4979 out:
4980 memcg_resume_kmem_account();
4981 return err;
4983 out_rmid:
4984 ida_simple_remove(&kmem_limited_groups, memcg_id);
4985 goto out;
4988 static int memcg_activate_kmem(struct mem_cgroup *memcg,
4989 unsigned long long limit)
4991 int ret;
4993 mutex_lock(&activate_kmem_mutex);
4994 ret = __memcg_activate_kmem(memcg, limit);
4995 mutex_unlock(&activate_kmem_mutex);
4996 return ret;
4999 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5000 unsigned long long val)
5002 int ret;
5004 if (!memcg_kmem_is_active(memcg))
5005 ret = memcg_activate_kmem(memcg, val);
5006 else
5007 ret = res_counter_set_limit(&memcg->kmem, val);
5008 return ret;
5011 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5013 int ret = 0;
5014 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5016 if (!parent)
5017 return 0;
5019 mutex_lock(&activate_kmem_mutex);
5021 * If the parent cgroup is not kmem-active now, it cannot be activated
5022 * after this point, because it has at least one child already.
5024 if (memcg_kmem_is_active(parent))
5025 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5026 mutex_unlock(&activate_kmem_mutex);
5027 return ret;
5029 #else
5030 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5031 unsigned long long val)
5033 return -EINVAL;
5035 #endif /* CONFIG_MEMCG_KMEM */
5038 * The user of this function is...
5039 * RES_LIMIT.
5041 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
5042 char *buf, size_t nbytes, loff_t off)
5044 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5045 enum res_type type;
5046 int name;
5047 unsigned long long val;
5048 int ret;
5050 buf = strstrip(buf);
5051 type = MEMFILE_TYPE(of_cft(of)->private);
5052 name = MEMFILE_ATTR(of_cft(of)->private);
5054 switch (name) {
5055 case RES_LIMIT:
5056 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5057 ret = -EINVAL;
5058 break;
5060 /* This function does all necessary parse...reuse it */
5061 ret = res_counter_memparse_write_strategy(buf, &val);
5062 if (ret)
5063 break;
5064 if (type == _MEM)
5065 ret = mem_cgroup_resize_limit(memcg, val);
5066 else if (type == _MEMSWAP)
5067 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5068 else if (type == _KMEM)
5069 ret = memcg_update_kmem_limit(memcg, val);
5070 else
5071 return -EINVAL;
5072 break;
5073 case RES_SOFT_LIMIT:
5074 ret = res_counter_memparse_write_strategy(buf, &val);
5075 if (ret)
5076 break;
5078 * For memsw, soft limits are hard to implement in terms
5079 * of semantics, for now, we support soft limits for
5080 * control without swap
5082 if (type == _MEM)
5083 ret = res_counter_set_soft_limit(&memcg->res, val);
5084 else
5085 ret = -EINVAL;
5086 break;
5087 default:
5088 ret = -EINVAL; /* should be BUG() ? */
5089 break;
5091 return ret ?: nbytes;
5094 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5095 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5097 unsigned long long min_limit, min_memsw_limit, tmp;
5099 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5100 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5101 if (!memcg->use_hierarchy)
5102 goto out;
5104 while (memcg->css.parent) {
5105 memcg = mem_cgroup_from_css(memcg->css.parent);
5106 if (!memcg->use_hierarchy)
5107 break;
5108 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5109 min_limit = min(min_limit, tmp);
5110 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5111 min_memsw_limit = min(min_memsw_limit, tmp);
5113 out:
5114 *mem_limit = min_limit;
5115 *memsw_limit = min_memsw_limit;
5118 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
5119 size_t nbytes, loff_t off)
5121 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5122 int name;
5123 enum res_type type;
5125 type = MEMFILE_TYPE(of_cft(of)->private);
5126 name = MEMFILE_ATTR(of_cft(of)->private);
5128 switch (name) {
5129 case RES_MAX_USAGE:
5130 if (type == _MEM)
5131 res_counter_reset_max(&memcg->res);
5132 else if (type == _MEMSWAP)
5133 res_counter_reset_max(&memcg->memsw);
5134 else if (type == _KMEM)
5135 res_counter_reset_max(&memcg->kmem);
5136 else
5137 return -EINVAL;
5138 break;
5139 case RES_FAILCNT:
5140 if (type == _MEM)
5141 res_counter_reset_failcnt(&memcg->res);
5142 else if (type == _MEMSWAP)
5143 res_counter_reset_failcnt(&memcg->memsw);
5144 else if (type == _KMEM)
5145 res_counter_reset_failcnt(&memcg->kmem);
5146 else
5147 return -EINVAL;
5148 break;
5151 return nbytes;
5154 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5155 struct cftype *cft)
5157 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5160 #ifdef CONFIG_MMU
5161 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5162 struct cftype *cft, u64 val)
5164 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5166 if (val >= (1 << NR_MOVE_TYPE))
5167 return -EINVAL;
5170 * No kind of locking is needed in here, because ->can_attach() will
5171 * check this value once in the beginning of the process, and then carry
5172 * on with stale data. This means that changes to this value will only
5173 * affect task migrations starting after the change.
5175 memcg->move_charge_at_immigrate = val;
5176 return 0;
5178 #else
5179 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5180 struct cftype *cft, u64 val)
5182 return -ENOSYS;
5184 #endif
5186 #ifdef CONFIG_NUMA
5187 static int memcg_numa_stat_show(struct seq_file *m, void *v)
5189 struct numa_stat {
5190 const char *name;
5191 unsigned int lru_mask;
5194 static const struct numa_stat stats[] = {
5195 { "total", LRU_ALL },
5196 { "file", LRU_ALL_FILE },
5197 { "anon", LRU_ALL_ANON },
5198 { "unevictable", BIT(LRU_UNEVICTABLE) },
5200 const struct numa_stat *stat;
5201 int nid;
5202 unsigned long nr;
5203 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5205 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5206 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5207 seq_printf(m, "%s=%lu", stat->name, nr);
5208 for_each_node_state(nid, N_MEMORY) {
5209 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5210 stat->lru_mask);
5211 seq_printf(m, " N%d=%lu", nid, nr);
5213 seq_putc(m, '\n');
5216 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5217 struct mem_cgroup *iter;
5219 nr = 0;
5220 for_each_mem_cgroup_tree(iter, memcg)
5221 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5222 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5223 for_each_node_state(nid, N_MEMORY) {
5224 nr = 0;
5225 for_each_mem_cgroup_tree(iter, memcg)
5226 nr += mem_cgroup_node_nr_lru_pages(
5227 iter, nid, stat->lru_mask);
5228 seq_printf(m, " N%d=%lu", nid, nr);
5230 seq_putc(m, '\n');
5233 return 0;
5235 #endif /* CONFIG_NUMA */
5237 static inline void mem_cgroup_lru_names_not_uptodate(void)
5239 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5242 static int memcg_stat_show(struct seq_file *m, void *v)
5244 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5245 struct mem_cgroup *mi;
5246 unsigned int i;
5248 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5249 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5250 continue;
5251 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5252 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5255 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5256 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5257 mem_cgroup_read_events(memcg, i));
5259 for (i = 0; i < NR_LRU_LISTS; i++)
5260 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5261 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5263 /* Hierarchical information */
5265 unsigned long long limit, memsw_limit;
5266 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5267 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5268 if (do_swap_account)
5269 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5270 memsw_limit);
5273 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5274 long long val = 0;
5276 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5277 continue;
5278 for_each_mem_cgroup_tree(mi, memcg)
5279 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5280 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5283 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5284 unsigned long long val = 0;
5286 for_each_mem_cgroup_tree(mi, memcg)
5287 val += mem_cgroup_read_events(mi, i);
5288 seq_printf(m, "total_%s %llu\n",
5289 mem_cgroup_events_names[i], val);
5292 for (i = 0; i < NR_LRU_LISTS; i++) {
5293 unsigned long long val = 0;
5295 for_each_mem_cgroup_tree(mi, memcg)
5296 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5297 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5300 #ifdef CONFIG_DEBUG_VM
5302 int nid, zid;
5303 struct mem_cgroup_per_zone *mz;
5304 struct zone_reclaim_stat *rstat;
5305 unsigned long recent_rotated[2] = {0, 0};
5306 unsigned long recent_scanned[2] = {0, 0};
5308 for_each_online_node(nid)
5309 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5310 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
5311 rstat = &mz->lruvec.reclaim_stat;
5313 recent_rotated[0] += rstat->recent_rotated[0];
5314 recent_rotated[1] += rstat->recent_rotated[1];
5315 recent_scanned[0] += rstat->recent_scanned[0];
5316 recent_scanned[1] += rstat->recent_scanned[1];
5318 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5319 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5320 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5321 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5323 #endif
5325 return 0;
5328 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5329 struct cftype *cft)
5331 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5333 return mem_cgroup_swappiness(memcg);
5336 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5337 struct cftype *cft, u64 val)
5339 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5341 if (val > 100)
5342 return -EINVAL;
5344 if (css->parent)
5345 memcg->swappiness = val;
5346 else
5347 vm_swappiness = val;
5349 return 0;
5352 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5354 struct mem_cgroup_threshold_ary *t;
5355 u64 usage;
5356 int i;
5358 rcu_read_lock();
5359 if (!swap)
5360 t = rcu_dereference(memcg->thresholds.primary);
5361 else
5362 t = rcu_dereference(memcg->memsw_thresholds.primary);
5364 if (!t)
5365 goto unlock;
5367 usage = mem_cgroup_usage(memcg, swap);
5370 * current_threshold points to threshold just below or equal to usage.
5371 * If it's not true, a threshold was crossed after last
5372 * call of __mem_cgroup_threshold().
5374 i = t->current_threshold;
5377 * Iterate backward over array of thresholds starting from
5378 * current_threshold and check if a threshold is crossed.
5379 * If none of thresholds below usage is crossed, we read
5380 * only one element of the array here.
5382 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5383 eventfd_signal(t->entries[i].eventfd, 1);
5385 /* i = current_threshold + 1 */
5386 i++;
5389 * Iterate forward over array of thresholds starting from
5390 * current_threshold+1 and check if a threshold is crossed.
5391 * If none of thresholds above usage is crossed, we read
5392 * only one element of the array here.
5394 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5395 eventfd_signal(t->entries[i].eventfd, 1);
5397 /* Update current_threshold */
5398 t->current_threshold = i - 1;
5399 unlock:
5400 rcu_read_unlock();
5403 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5405 while (memcg) {
5406 __mem_cgroup_threshold(memcg, false);
5407 if (do_swap_account)
5408 __mem_cgroup_threshold(memcg, true);
5410 memcg = parent_mem_cgroup(memcg);
5414 static int compare_thresholds(const void *a, const void *b)
5416 const struct mem_cgroup_threshold *_a = a;
5417 const struct mem_cgroup_threshold *_b = b;
5419 if (_a->threshold > _b->threshold)
5420 return 1;
5422 if (_a->threshold < _b->threshold)
5423 return -1;
5425 return 0;
5428 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5430 struct mem_cgroup_eventfd_list *ev;
5432 spin_lock(&memcg_oom_lock);
5434 list_for_each_entry(ev, &memcg->oom_notify, list)
5435 eventfd_signal(ev->eventfd, 1);
5437 spin_unlock(&memcg_oom_lock);
5438 return 0;
5441 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5443 struct mem_cgroup *iter;
5445 for_each_mem_cgroup_tree(iter, memcg)
5446 mem_cgroup_oom_notify_cb(iter);
5449 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5450 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5452 struct mem_cgroup_thresholds *thresholds;
5453 struct mem_cgroup_threshold_ary *new;
5454 u64 threshold, usage;
5455 int i, size, ret;
5457 ret = res_counter_memparse_write_strategy(args, &threshold);
5458 if (ret)
5459 return ret;
5461 mutex_lock(&memcg->thresholds_lock);
5463 if (type == _MEM)
5464 thresholds = &memcg->thresholds;
5465 else if (type == _MEMSWAP)
5466 thresholds = &memcg->memsw_thresholds;
5467 else
5468 BUG();
5470 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5472 /* Check if a threshold crossed before adding a new one */
5473 if (thresholds->primary)
5474 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5476 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5478 /* Allocate memory for new array of thresholds */
5479 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5480 GFP_KERNEL);
5481 if (!new) {
5482 ret = -ENOMEM;
5483 goto unlock;
5485 new->size = size;
5487 /* Copy thresholds (if any) to new array */
5488 if (thresholds->primary) {
5489 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5490 sizeof(struct mem_cgroup_threshold));
5493 /* Add new threshold */
5494 new->entries[size - 1].eventfd = eventfd;
5495 new->entries[size - 1].threshold = threshold;
5497 /* Sort thresholds. Registering of new threshold isn't time-critical */
5498 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5499 compare_thresholds, NULL);
5501 /* Find current threshold */
5502 new->current_threshold = -1;
5503 for (i = 0; i < size; i++) {
5504 if (new->entries[i].threshold <= usage) {
5506 * new->current_threshold will not be used until
5507 * rcu_assign_pointer(), so it's safe to increment
5508 * it here.
5510 ++new->current_threshold;
5511 } else
5512 break;
5515 /* Free old spare buffer and save old primary buffer as spare */
5516 kfree(thresholds->spare);
5517 thresholds->spare = thresholds->primary;
5519 rcu_assign_pointer(thresholds->primary, new);
5521 /* To be sure that nobody uses thresholds */
5522 synchronize_rcu();
5524 unlock:
5525 mutex_unlock(&memcg->thresholds_lock);
5527 return ret;
5530 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5531 struct eventfd_ctx *eventfd, const char *args)
5533 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5536 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5537 struct eventfd_ctx *eventfd, const char *args)
5539 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5542 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5543 struct eventfd_ctx *eventfd, enum res_type type)
5545 struct mem_cgroup_thresholds *thresholds;
5546 struct mem_cgroup_threshold_ary *new;
5547 u64 usage;
5548 int i, j, size;
5550 mutex_lock(&memcg->thresholds_lock);
5551 if (type == _MEM)
5552 thresholds = &memcg->thresholds;
5553 else if (type == _MEMSWAP)
5554 thresholds = &memcg->memsw_thresholds;
5555 else
5556 BUG();
5558 if (!thresholds->primary)
5559 goto unlock;
5561 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5563 /* Check if a threshold crossed before removing */
5564 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5566 /* Calculate new number of threshold */
5567 size = 0;
5568 for (i = 0; i < thresholds->primary->size; i++) {
5569 if (thresholds->primary->entries[i].eventfd != eventfd)
5570 size++;
5573 new = thresholds->spare;
5575 /* Set thresholds array to NULL if we don't have thresholds */
5576 if (!size) {
5577 kfree(new);
5578 new = NULL;
5579 goto swap_buffers;
5582 new->size = size;
5584 /* Copy thresholds and find current threshold */
5585 new->current_threshold = -1;
5586 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5587 if (thresholds->primary->entries[i].eventfd == eventfd)
5588 continue;
5590 new->entries[j] = thresholds->primary->entries[i];
5591 if (new->entries[j].threshold <= usage) {
5593 * new->current_threshold will not be used
5594 * until rcu_assign_pointer(), so it's safe to increment
5595 * it here.
5597 ++new->current_threshold;
5599 j++;
5602 swap_buffers:
5603 /* Swap primary and spare array */
5604 thresholds->spare = thresholds->primary;
5606 rcu_assign_pointer(thresholds->primary, new);
5608 /* To be sure that nobody uses thresholds */
5609 synchronize_rcu();
5611 /* If all events are unregistered, free the spare array */
5612 if (!new) {
5613 kfree(thresholds->spare);
5614 thresholds->spare = NULL;
5616 unlock:
5617 mutex_unlock(&memcg->thresholds_lock);
5620 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5621 struct eventfd_ctx *eventfd)
5623 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5626 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5627 struct eventfd_ctx *eventfd)
5629 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5632 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5633 struct eventfd_ctx *eventfd, const char *args)
5635 struct mem_cgroup_eventfd_list *event;
5637 event = kmalloc(sizeof(*event), GFP_KERNEL);
5638 if (!event)
5639 return -ENOMEM;
5641 spin_lock(&memcg_oom_lock);
5643 event->eventfd = eventfd;
5644 list_add(&event->list, &memcg->oom_notify);
5646 /* already in OOM ? */
5647 if (atomic_read(&memcg->under_oom))
5648 eventfd_signal(eventfd, 1);
5649 spin_unlock(&memcg_oom_lock);
5651 return 0;
5654 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5655 struct eventfd_ctx *eventfd)
5657 struct mem_cgroup_eventfd_list *ev, *tmp;
5659 spin_lock(&memcg_oom_lock);
5661 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5662 if (ev->eventfd == eventfd) {
5663 list_del(&ev->list);
5664 kfree(ev);
5668 spin_unlock(&memcg_oom_lock);
5671 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5673 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5675 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5676 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5677 return 0;
5680 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5681 struct cftype *cft, u64 val)
5683 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5685 /* cannot set to root cgroup and only 0 and 1 are allowed */
5686 if (!css->parent || !((val == 0) || (val == 1)))
5687 return -EINVAL;
5689 memcg->oom_kill_disable = val;
5690 if (!val)
5691 memcg_oom_recover(memcg);
5693 return 0;
5696 #ifdef CONFIG_MEMCG_KMEM
5697 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5699 int ret;
5701 memcg->kmemcg_id = -1;
5702 ret = memcg_propagate_kmem(memcg);
5703 if (ret)
5704 return ret;
5706 return mem_cgroup_sockets_init(memcg, ss);
5709 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5711 mem_cgroup_sockets_destroy(memcg);
5714 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5716 if (!memcg_kmem_is_active(memcg))
5717 return;
5720 * kmem charges can outlive the cgroup. In the case of slab
5721 * pages, for instance, a page contain objects from various
5722 * processes. As we prevent from taking a reference for every
5723 * such allocation we have to be careful when doing uncharge
5724 * (see memcg_uncharge_kmem) and here during offlining.
5726 * The idea is that that only the _last_ uncharge which sees
5727 * the dead memcg will drop the last reference. An additional
5728 * reference is taken here before the group is marked dead
5729 * which is then paired with css_put during uncharge resp. here.
5731 * Although this might sound strange as this path is called from
5732 * css_offline() when the referencemight have dropped down to 0 and
5733 * shouldn't be incremented anymore (css_tryget_online() would
5734 * fail) we do not have other options because of the kmem
5735 * allocations lifetime.
5737 css_get(&memcg->css);
5739 memcg_kmem_mark_dead(memcg);
5741 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5742 return;
5744 if (memcg_kmem_test_and_clear_dead(memcg))
5745 css_put(&memcg->css);
5747 #else
5748 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5750 return 0;
5753 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5757 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5760 #endif
5763 * DO NOT USE IN NEW FILES.
5765 * "cgroup.event_control" implementation.
5767 * This is way over-engineered. It tries to support fully configurable
5768 * events for each user. Such level of flexibility is completely
5769 * unnecessary especially in the light of the planned unified hierarchy.
5771 * Please deprecate this and replace with something simpler if at all
5772 * possible.
5776 * Unregister event and free resources.
5778 * Gets called from workqueue.
5780 static void memcg_event_remove(struct work_struct *work)
5782 struct mem_cgroup_event *event =
5783 container_of(work, struct mem_cgroup_event, remove);
5784 struct mem_cgroup *memcg = event->memcg;
5786 remove_wait_queue(event->wqh, &event->wait);
5788 event->unregister_event(memcg, event->eventfd);
5790 /* Notify userspace the event is going away. */
5791 eventfd_signal(event->eventfd, 1);
5793 eventfd_ctx_put(event->eventfd);
5794 kfree(event);
5795 css_put(&memcg->css);
5799 * Gets called on POLLHUP on eventfd when user closes it.
5801 * Called with wqh->lock held and interrupts disabled.
5803 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5804 int sync, void *key)
5806 struct mem_cgroup_event *event =
5807 container_of(wait, struct mem_cgroup_event, wait);
5808 struct mem_cgroup *memcg = event->memcg;
5809 unsigned long flags = (unsigned long)key;
5811 if (flags & POLLHUP) {
5813 * If the event has been detached at cgroup removal, we
5814 * can simply return knowing the other side will cleanup
5815 * for us.
5817 * We can't race against event freeing since the other
5818 * side will require wqh->lock via remove_wait_queue(),
5819 * which we hold.
5821 spin_lock(&memcg->event_list_lock);
5822 if (!list_empty(&event->list)) {
5823 list_del_init(&event->list);
5825 * We are in atomic context, but cgroup_event_remove()
5826 * may sleep, so we have to call it in workqueue.
5828 schedule_work(&event->remove);
5830 spin_unlock(&memcg->event_list_lock);
5833 return 0;
5836 static void memcg_event_ptable_queue_proc(struct file *file,
5837 wait_queue_head_t *wqh, poll_table *pt)
5839 struct mem_cgroup_event *event =
5840 container_of(pt, struct mem_cgroup_event, pt);
5842 event->wqh = wqh;
5843 add_wait_queue(wqh, &event->wait);
5847 * DO NOT USE IN NEW FILES.
5849 * Parse input and register new cgroup event handler.
5851 * Input must be in format '<event_fd> <control_fd> <args>'.
5852 * Interpretation of args is defined by control file implementation.
5854 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5855 char *buf, size_t nbytes, loff_t off)
5857 struct cgroup_subsys_state *css = of_css(of);
5858 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5859 struct mem_cgroup_event *event;
5860 struct cgroup_subsys_state *cfile_css;
5861 unsigned int efd, cfd;
5862 struct fd efile;
5863 struct fd cfile;
5864 const char *name;
5865 char *endp;
5866 int ret;
5868 buf = strstrip(buf);
5870 efd = simple_strtoul(buf, &endp, 10);
5871 if (*endp != ' ')
5872 return -EINVAL;
5873 buf = endp + 1;
5875 cfd = simple_strtoul(buf, &endp, 10);
5876 if ((*endp != ' ') && (*endp != '\0'))
5877 return -EINVAL;
5878 buf = endp + 1;
5880 event = kzalloc(sizeof(*event), GFP_KERNEL);
5881 if (!event)
5882 return -ENOMEM;
5884 event->memcg = memcg;
5885 INIT_LIST_HEAD(&event->list);
5886 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5887 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5888 INIT_WORK(&event->remove, memcg_event_remove);
5890 efile = fdget(efd);
5891 if (!efile.file) {
5892 ret = -EBADF;
5893 goto out_kfree;
5896 event->eventfd = eventfd_ctx_fileget(efile.file);
5897 if (IS_ERR(event->eventfd)) {
5898 ret = PTR_ERR(event->eventfd);
5899 goto out_put_efile;
5902 cfile = fdget(cfd);
5903 if (!cfile.file) {
5904 ret = -EBADF;
5905 goto out_put_eventfd;
5908 /* the process need read permission on control file */
5909 /* AV: shouldn't we check that it's been opened for read instead? */
5910 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5911 if (ret < 0)
5912 goto out_put_cfile;
5915 * Determine the event callbacks and set them in @event. This used
5916 * to be done via struct cftype but cgroup core no longer knows
5917 * about these events. The following is crude but the whole thing
5918 * is for compatibility anyway.
5920 * DO NOT ADD NEW FILES.
5922 name = cfile.file->f_dentry->d_name.name;
5924 if (!strcmp(name, "memory.usage_in_bytes")) {
5925 event->register_event = mem_cgroup_usage_register_event;
5926 event->unregister_event = mem_cgroup_usage_unregister_event;
5927 } else if (!strcmp(name, "memory.oom_control")) {
5928 event->register_event = mem_cgroup_oom_register_event;
5929 event->unregister_event = mem_cgroup_oom_unregister_event;
5930 } else if (!strcmp(name, "memory.pressure_level")) {
5931 event->register_event = vmpressure_register_event;
5932 event->unregister_event = vmpressure_unregister_event;
5933 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5934 event->register_event = memsw_cgroup_usage_register_event;
5935 event->unregister_event = memsw_cgroup_usage_unregister_event;
5936 } else {
5937 ret = -EINVAL;
5938 goto out_put_cfile;
5942 * Verify @cfile should belong to @css. Also, remaining events are
5943 * automatically removed on cgroup destruction but the removal is
5944 * asynchronous, so take an extra ref on @css.
5946 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5947 &memory_cgrp_subsys);
5948 ret = -EINVAL;
5949 if (IS_ERR(cfile_css))
5950 goto out_put_cfile;
5951 if (cfile_css != css) {
5952 css_put(cfile_css);
5953 goto out_put_cfile;
5956 ret = event->register_event(memcg, event->eventfd, buf);
5957 if (ret)
5958 goto out_put_css;
5960 efile.file->f_op->poll(efile.file, &event->pt);
5962 spin_lock(&memcg->event_list_lock);
5963 list_add(&event->list, &memcg->event_list);
5964 spin_unlock(&memcg->event_list_lock);
5966 fdput(cfile);
5967 fdput(efile);
5969 return nbytes;
5971 out_put_css:
5972 css_put(css);
5973 out_put_cfile:
5974 fdput(cfile);
5975 out_put_eventfd:
5976 eventfd_ctx_put(event->eventfd);
5977 out_put_efile:
5978 fdput(efile);
5979 out_kfree:
5980 kfree(event);
5982 return ret;
5985 static struct cftype mem_cgroup_files[] = {
5987 .name = "usage_in_bytes",
5988 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5989 .read_u64 = mem_cgroup_read_u64,
5992 .name = "max_usage_in_bytes",
5993 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5994 .write = mem_cgroup_reset,
5995 .read_u64 = mem_cgroup_read_u64,
5998 .name = "limit_in_bytes",
5999 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6000 .write = mem_cgroup_write,
6001 .read_u64 = mem_cgroup_read_u64,
6004 .name = "soft_limit_in_bytes",
6005 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6006 .write = mem_cgroup_write,
6007 .read_u64 = mem_cgroup_read_u64,
6010 .name = "failcnt",
6011 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6012 .write = mem_cgroup_reset,
6013 .read_u64 = mem_cgroup_read_u64,
6016 .name = "stat",
6017 .seq_show = memcg_stat_show,
6020 .name = "force_empty",
6021 .write = mem_cgroup_force_empty_write,
6024 .name = "use_hierarchy",
6025 .flags = CFTYPE_INSANE,
6026 .write_u64 = mem_cgroup_hierarchy_write,
6027 .read_u64 = mem_cgroup_hierarchy_read,
6030 .name = "cgroup.event_control", /* XXX: for compat */
6031 .write = memcg_write_event_control,
6032 .flags = CFTYPE_NO_PREFIX,
6033 .mode = S_IWUGO,
6036 .name = "swappiness",
6037 .read_u64 = mem_cgroup_swappiness_read,
6038 .write_u64 = mem_cgroup_swappiness_write,
6041 .name = "move_charge_at_immigrate",
6042 .read_u64 = mem_cgroup_move_charge_read,
6043 .write_u64 = mem_cgroup_move_charge_write,
6046 .name = "oom_control",
6047 .seq_show = mem_cgroup_oom_control_read,
6048 .write_u64 = mem_cgroup_oom_control_write,
6049 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6052 .name = "pressure_level",
6054 #ifdef CONFIG_NUMA
6056 .name = "numa_stat",
6057 .seq_show = memcg_numa_stat_show,
6059 #endif
6060 #ifdef CONFIG_MEMCG_KMEM
6062 .name = "kmem.limit_in_bytes",
6063 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6064 .write = mem_cgroup_write,
6065 .read_u64 = mem_cgroup_read_u64,
6068 .name = "kmem.usage_in_bytes",
6069 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6070 .read_u64 = mem_cgroup_read_u64,
6073 .name = "kmem.failcnt",
6074 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6075 .write = mem_cgroup_reset,
6076 .read_u64 = mem_cgroup_read_u64,
6079 .name = "kmem.max_usage_in_bytes",
6080 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6081 .write = mem_cgroup_reset,
6082 .read_u64 = mem_cgroup_read_u64,
6084 #ifdef CONFIG_SLABINFO
6086 .name = "kmem.slabinfo",
6087 .seq_show = mem_cgroup_slabinfo_read,
6089 #endif
6090 #endif
6091 { }, /* terminate */
6094 #ifdef CONFIG_MEMCG_SWAP
6095 static struct cftype memsw_cgroup_files[] = {
6097 .name = "memsw.usage_in_bytes",
6098 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6099 .read_u64 = mem_cgroup_read_u64,
6102 .name = "memsw.max_usage_in_bytes",
6103 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6104 .write = mem_cgroup_reset,
6105 .read_u64 = mem_cgroup_read_u64,
6108 .name = "memsw.limit_in_bytes",
6109 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6110 .write = mem_cgroup_write,
6111 .read_u64 = mem_cgroup_read_u64,
6114 .name = "memsw.failcnt",
6115 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6116 .write = mem_cgroup_reset,
6117 .read_u64 = mem_cgroup_read_u64,
6119 { }, /* terminate */
6121 #endif
6122 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6124 struct mem_cgroup_per_node *pn;
6125 struct mem_cgroup_per_zone *mz;
6126 int zone, tmp = node;
6128 * This routine is called against possible nodes.
6129 * But it's BUG to call kmalloc() against offline node.
6131 * TODO: this routine can waste much memory for nodes which will
6132 * never be onlined. It's better to use memory hotplug callback
6133 * function.
6135 if (!node_state(node, N_NORMAL_MEMORY))
6136 tmp = -1;
6137 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6138 if (!pn)
6139 return 1;
6141 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6142 mz = &pn->zoneinfo[zone];
6143 lruvec_init(&mz->lruvec);
6144 mz->usage_in_excess = 0;
6145 mz->on_tree = false;
6146 mz->memcg = memcg;
6148 memcg->nodeinfo[node] = pn;
6149 return 0;
6152 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6154 kfree(memcg->nodeinfo[node]);
6157 static struct mem_cgroup *mem_cgroup_alloc(void)
6159 struct mem_cgroup *memcg;
6160 size_t size;
6162 size = sizeof(struct mem_cgroup);
6163 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6165 memcg = kzalloc(size, GFP_KERNEL);
6166 if (!memcg)
6167 return NULL;
6169 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6170 if (!memcg->stat)
6171 goto out_free;
6172 spin_lock_init(&memcg->pcp_counter_lock);
6173 return memcg;
6175 out_free:
6176 kfree(memcg);
6177 return NULL;
6181 * At destroying mem_cgroup, references from swap_cgroup can remain.
6182 * (scanning all at force_empty is too costly...)
6184 * Instead of clearing all references at force_empty, we remember
6185 * the number of reference from swap_cgroup and free mem_cgroup when
6186 * it goes down to 0.
6188 * Removal of cgroup itself succeeds regardless of refs from swap.
6191 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6193 int node;
6195 mem_cgroup_remove_from_trees(memcg);
6197 for_each_node(node)
6198 free_mem_cgroup_per_zone_info(memcg, node);
6200 free_percpu(memcg->stat);
6203 * We need to make sure that (at least for now), the jump label
6204 * destruction code runs outside of the cgroup lock. This is because
6205 * get_online_cpus(), which is called from the static_branch update,
6206 * can't be called inside the cgroup_lock. cpusets are the ones
6207 * enforcing this dependency, so if they ever change, we might as well.
6209 * schedule_work() will guarantee this happens. Be careful if you need
6210 * to move this code around, and make sure it is outside
6211 * the cgroup_lock.
6213 disarm_static_keys(memcg);
6214 kfree(memcg);
6218 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6220 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6222 if (!memcg->res.parent)
6223 return NULL;
6224 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6226 EXPORT_SYMBOL(parent_mem_cgroup);
6228 static void __init mem_cgroup_soft_limit_tree_init(void)
6230 struct mem_cgroup_tree_per_node *rtpn;
6231 struct mem_cgroup_tree_per_zone *rtpz;
6232 int tmp, node, zone;
6234 for_each_node(node) {
6235 tmp = node;
6236 if (!node_state(node, N_NORMAL_MEMORY))
6237 tmp = -1;
6238 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6239 BUG_ON(!rtpn);
6241 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6243 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6244 rtpz = &rtpn->rb_tree_per_zone[zone];
6245 rtpz->rb_root = RB_ROOT;
6246 spin_lock_init(&rtpz->lock);
6251 static struct cgroup_subsys_state * __ref
6252 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6254 struct mem_cgroup *memcg;
6255 long error = -ENOMEM;
6256 int node;
6258 memcg = mem_cgroup_alloc();
6259 if (!memcg)
6260 return ERR_PTR(error);
6262 for_each_node(node)
6263 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6264 goto free_out;
6266 /* root ? */
6267 if (parent_css == NULL) {
6268 root_mem_cgroup = memcg;
6269 res_counter_init(&memcg->res, NULL);
6270 res_counter_init(&memcg->memsw, NULL);
6271 res_counter_init(&memcg->kmem, NULL);
6274 memcg->last_scanned_node = MAX_NUMNODES;
6275 INIT_LIST_HEAD(&memcg->oom_notify);
6276 memcg->move_charge_at_immigrate = 0;
6277 mutex_init(&memcg->thresholds_lock);
6278 spin_lock_init(&memcg->move_lock);
6279 vmpressure_init(&memcg->vmpressure);
6280 INIT_LIST_HEAD(&memcg->event_list);
6281 spin_lock_init(&memcg->event_list_lock);
6283 return &memcg->css;
6285 free_out:
6286 __mem_cgroup_free(memcg);
6287 return ERR_PTR(error);
6290 static int
6291 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6293 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6294 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
6295 int ret;
6297 if (css->id > MEM_CGROUP_ID_MAX)
6298 return -ENOSPC;
6300 if (!parent)
6301 return 0;
6303 mutex_lock(&memcg_create_mutex);
6305 memcg->use_hierarchy = parent->use_hierarchy;
6306 memcg->oom_kill_disable = parent->oom_kill_disable;
6307 memcg->swappiness = mem_cgroup_swappiness(parent);
6309 if (parent->use_hierarchy) {
6310 res_counter_init(&memcg->res, &parent->res);
6311 res_counter_init(&memcg->memsw, &parent->memsw);
6312 res_counter_init(&memcg->kmem, &parent->kmem);
6315 * No need to take a reference to the parent because cgroup
6316 * core guarantees its existence.
6318 } else {
6319 res_counter_init(&memcg->res, NULL);
6320 res_counter_init(&memcg->memsw, NULL);
6321 res_counter_init(&memcg->kmem, NULL);
6323 * Deeper hierachy with use_hierarchy == false doesn't make
6324 * much sense so let cgroup subsystem know about this
6325 * unfortunate state in our controller.
6327 if (parent != root_mem_cgroup)
6328 memory_cgrp_subsys.broken_hierarchy = true;
6330 mutex_unlock(&memcg_create_mutex);
6332 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
6333 if (ret)
6334 return ret;
6337 * Make sure the memcg is initialized: mem_cgroup_iter()
6338 * orders reading memcg->initialized against its callers
6339 * reading the memcg members.
6341 smp_store_release(&memcg->initialized, 1);
6343 return 0;
6347 * Announce all parents that a group from their hierarchy is gone.
6349 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6351 struct mem_cgroup *parent = memcg;
6353 while ((parent = parent_mem_cgroup(parent)))
6354 mem_cgroup_iter_invalidate(parent);
6357 * if the root memcg is not hierarchical we have to check it
6358 * explicitely.
6360 if (!root_mem_cgroup->use_hierarchy)
6361 mem_cgroup_iter_invalidate(root_mem_cgroup);
6364 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6366 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6367 struct mem_cgroup_event *event, *tmp;
6368 struct cgroup_subsys_state *iter;
6371 * Unregister events and notify userspace.
6372 * Notify userspace about cgroup removing only after rmdir of cgroup
6373 * directory to avoid race between userspace and kernelspace.
6375 spin_lock(&memcg->event_list_lock);
6376 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6377 list_del_init(&event->list);
6378 schedule_work(&event->remove);
6380 spin_unlock(&memcg->event_list_lock);
6382 kmem_cgroup_css_offline(memcg);
6384 mem_cgroup_invalidate_reclaim_iterators(memcg);
6387 * This requires that offlining is serialized. Right now that is
6388 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6390 css_for_each_descendant_post(iter, css)
6391 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6393 memcg_unregister_all_caches(memcg);
6394 vmpressure_cleanup(&memcg->vmpressure);
6397 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6399 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6401 * XXX: css_offline() would be where we should reparent all
6402 * memory to prepare the cgroup for destruction. However,
6403 * memcg does not do css_tryget_online() and res_counter charging
6404 * under the same RCU lock region, which means that charging
6405 * could race with offlining. Offlining only happens to
6406 * cgroups with no tasks in them but charges can show up
6407 * without any tasks from the swapin path when the target
6408 * memcg is looked up from the swapout record and not from the
6409 * current task as it usually is. A race like this can leak
6410 * charges and put pages with stale cgroup pointers into
6411 * circulation:
6413 * #0 #1
6414 * lookup_swap_cgroup_id()
6415 * rcu_read_lock()
6416 * mem_cgroup_lookup()
6417 * css_tryget_online()
6418 * rcu_read_unlock()
6419 * disable css_tryget_online()
6420 * call_rcu()
6421 * offline_css()
6422 * reparent_charges()
6423 * res_counter_charge()
6424 * css_put()
6425 * css_free()
6426 * pc->mem_cgroup = dead memcg
6427 * add page to lru
6429 * The bulk of the charges are still moved in offline_css() to
6430 * avoid pinning a lot of pages in case a long-term reference
6431 * like a swapout record is deferring the css_free() to long
6432 * after offlining. But this makes sure we catch any charges
6433 * made after offlining:
6435 mem_cgroup_reparent_charges(memcg);
6437 memcg_destroy_kmem(memcg);
6438 __mem_cgroup_free(memcg);
6441 #ifdef CONFIG_MMU
6442 /* Handlers for move charge at task migration. */
6443 #define PRECHARGE_COUNT_AT_ONCE 256
6444 static int mem_cgroup_do_precharge(unsigned long count)
6446 int ret = 0;
6447 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6448 struct mem_cgroup *memcg = mc.to;
6450 if (mem_cgroup_is_root(memcg)) {
6451 mc.precharge += count;
6452 /* we don't need css_get for root */
6453 return ret;
6455 /* try to charge at once */
6456 if (count > 1) {
6457 struct res_counter *dummy;
6459 * "memcg" cannot be under rmdir() because we've already checked
6460 * by cgroup_lock_live_cgroup() that it is not removed and we
6461 * are still under the same cgroup_mutex. So we can postpone
6462 * css_get().
6464 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6465 goto one_by_one;
6466 if (do_swap_account && res_counter_charge(&memcg->memsw,
6467 PAGE_SIZE * count, &dummy)) {
6468 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6469 goto one_by_one;
6471 mc.precharge += count;
6472 return ret;
6474 one_by_one:
6475 /* fall back to one by one charge */
6476 while (count--) {
6477 if (signal_pending(current)) {
6478 ret = -EINTR;
6479 break;
6481 if (!batch_count--) {
6482 batch_count = PRECHARGE_COUNT_AT_ONCE;
6483 cond_resched();
6485 ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
6486 if (ret)
6487 /* mem_cgroup_clear_mc() will do uncharge later */
6488 return ret;
6489 mc.precharge++;
6491 return ret;
6495 * get_mctgt_type - get target type of moving charge
6496 * @vma: the vma the pte to be checked belongs
6497 * @addr: the address corresponding to the pte to be checked
6498 * @ptent: the pte to be checked
6499 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6501 * Returns
6502 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6503 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6504 * move charge. if @target is not NULL, the page is stored in target->page
6505 * with extra refcnt got(Callers should handle it).
6506 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6507 * target for charge migration. if @target is not NULL, the entry is stored
6508 * in target->ent.
6510 * Called with pte lock held.
6512 union mc_target {
6513 struct page *page;
6514 swp_entry_t ent;
6517 enum mc_target_type {
6518 MC_TARGET_NONE = 0,
6519 MC_TARGET_PAGE,
6520 MC_TARGET_SWAP,
6523 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6524 unsigned long addr, pte_t ptent)
6526 struct page *page = vm_normal_page(vma, addr, ptent);
6528 if (!page || !page_mapped(page))
6529 return NULL;
6530 if (PageAnon(page)) {
6531 /* we don't move shared anon */
6532 if (!move_anon())
6533 return NULL;
6534 } else if (!move_file())
6535 /* we ignore mapcount for file pages */
6536 return NULL;
6537 if (!get_page_unless_zero(page))
6538 return NULL;
6540 return page;
6543 #ifdef CONFIG_SWAP
6544 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6545 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6547 struct page *page = NULL;
6548 swp_entry_t ent = pte_to_swp_entry(ptent);
6550 if (!move_anon() || non_swap_entry(ent))
6551 return NULL;
6553 * Because lookup_swap_cache() updates some statistics counter,
6554 * we call find_get_page() with swapper_space directly.
6556 page = find_get_page(swap_address_space(ent), ent.val);
6557 if (do_swap_account)
6558 entry->val = ent.val;
6560 return page;
6562 #else
6563 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6564 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6566 return NULL;
6568 #endif
6570 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6571 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6573 struct page *page = NULL;
6574 struct address_space *mapping;
6575 pgoff_t pgoff;
6577 if (!vma->vm_file) /* anonymous vma */
6578 return NULL;
6579 if (!move_file())
6580 return NULL;
6582 mapping = vma->vm_file->f_mapping;
6583 if (pte_none(ptent))
6584 pgoff = linear_page_index(vma, addr);
6585 else /* pte_file(ptent) is true */
6586 pgoff = pte_to_pgoff(ptent);
6588 /* page is moved even if it's not RSS of this task(page-faulted). */
6589 #ifdef CONFIG_SWAP
6590 /* shmem/tmpfs may report page out on swap: account for that too. */
6591 if (shmem_mapping(mapping)) {
6592 page = find_get_entry(mapping, pgoff);
6593 if (radix_tree_exceptional_entry(page)) {
6594 swp_entry_t swp = radix_to_swp_entry(page);
6595 if (do_swap_account)
6596 *entry = swp;
6597 page = find_get_page(swap_address_space(swp), swp.val);
6599 } else
6600 page = find_get_page(mapping, pgoff);
6601 #else
6602 page = find_get_page(mapping, pgoff);
6603 #endif
6604 return page;
6607 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6608 unsigned long addr, pte_t ptent, union mc_target *target)
6610 struct page *page = NULL;
6611 struct page_cgroup *pc;
6612 enum mc_target_type ret = MC_TARGET_NONE;
6613 swp_entry_t ent = { .val = 0 };
6615 if (pte_present(ptent))
6616 page = mc_handle_present_pte(vma, addr, ptent);
6617 else if (is_swap_pte(ptent))
6618 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6619 else if (pte_none(ptent) || pte_file(ptent))
6620 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6622 if (!page && !ent.val)
6623 return ret;
6624 if (page) {
6625 pc = lookup_page_cgroup(page);
6627 * Do only loose check w/o page_cgroup lock.
6628 * mem_cgroup_move_account() checks the pc is valid or not under
6629 * the lock.
6631 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6632 ret = MC_TARGET_PAGE;
6633 if (target)
6634 target->page = page;
6636 if (!ret || !target)
6637 put_page(page);
6639 /* There is a swap entry and a page doesn't exist or isn't charged */
6640 if (ent.val && !ret &&
6641 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6642 ret = MC_TARGET_SWAP;
6643 if (target)
6644 target->ent = ent;
6646 return ret;
6649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6651 * We don't consider swapping or file mapped pages because THP does not
6652 * support them for now.
6653 * Caller should make sure that pmd_trans_huge(pmd) is true.
6655 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6656 unsigned long addr, pmd_t pmd, union mc_target *target)
6658 struct page *page = NULL;
6659 struct page_cgroup *pc;
6660 enum mc_target_type ret = MC_TARGET_NONE;
6662 page = pmd_page(pmd);
6663 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6664 if (!move_anon())
6665 return ret;
6666 pc = lookup_page_cgroup(page);
6667 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6668 ret = MC_TARGET_PAGE;
6669 if (target) {
6670 get_page(page);
6671 target->page = page;
6674 return ret;
6676 #else
6677 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6678 unsigned long addr, pmd_t pmd, union mc_target *target)
6680 return MC_TARGET_NONE;
6682 #endif
6684 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6685 unsigned long addr, unsigned long end,
6686 struct mm_walk *walk)
6688 struct vm_area_struct *vma = walk->private;
6689 pte_t *pte;
6690 spinlock_t *ptl;
6692 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6693 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6694 mc.precharge += HPAGE_PMD_NR;
6695 spin_unlock(ptl);
6696 return 0;
6699 if (pmd_trans_unstable(pmd))
6700 return 0;
6701 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6702 for (; addr != end; pte++, addr += PAGE_SIZE)
6703 if (get_mctgt_type(vma, addr, *pte, NULL))
6704 mc.precharge++; /* increment precharge temporarily */
6705 pte_unmap_unlock(pte - 1, ptl);
6706 cond_resched();
6708 return 0;
6711 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6713 unsigned long precharge;
6714 struct vm_area_struct *vma;
6716 down_read(&mm->mmap_sem);
6717 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6718 struct mm_walk mem_cgroup_count_precharge_walk = {
6719 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6720 .mm = mm,
6721 .private = vma,
6723 if (is_vm_hugetlb_page(vma))
6724 continue;
6725 walk_page_range(vma->vm_start, vma->vm_end,
6726 &mem_cgroup_count_precharge_walk);
6728 up_read(&mm->mmap_sem);
6730 precharge = mc.precharge;
6731 mc.precharge = 0;
6733 return precharge;
6736 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6738 unsigned long precharge = mem_cgroup_count_precharge(mm);
6740 VM_BUG_ON(mc.moving_task);
6741 mc.moving_task = current;
6742 return mem_cgroup_do_precharge(precharge);
6745 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6746 static void __mem_cgroup_clear_mc(void)
6748 struct mem_cgroup *from = mc.from;
6749 struct mem_cgroup *to = mc.to;
6750 int i;
6752 /* we must uncharge all the leftover precharges from mc.to */
6753 if (mc.precharge) {
6754 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6755 mc.precharge = 0;
6758 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6759 * we must uncharge here.
6761 if (mc.moved_charge) {
6762 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6763 mc.moved_charge = 0;
6765 /* we must fixup refcnts and charges */
6766 if (mc.moved_swap) {
6767 /* uncharge swap account from the old cgroup */
6768 if (!mem_cgroup_is_root(mc.from))
6769 res_counter_uncharge(&mc.from->memsw,
6770 PAGE_SIZE * mc.moved_swap);
6772 for (i = 0; i < mc.moved_swap; i++)
6773 css_put(&mc.from->css);
6775 if (!mem_cgroup_is_root(mc.to)) {
6777 * we charged both to->res and to->memsw, so we should
6778 * uncharge to->res.
6780 res_counter_uncharge(&mc.to->res,
6781 PAGE_SIZE * mc.moved_swap);
6783 /* we've already done css_get(mc.to) */
6784 mc.moved_swap = 0;
6786 memcg_oom_recover(from);
6787 memcg_oom_recover(to);
6788 wake_up_all(&mc.waitq);
6791 static void mem_cgroup_clear_mc(void)
6793 struct mem_cgroup *from = mc.from;
6796 * we must clear moving_task before waking up waiters at the end of
6797 * task migration.
6799 mc.moving_task = NULL;
6800 __mem_cgroup_clear_mc();
6801 spin_lock(&mc.lock);
6802 mc.from = NULL;
6803 mc.to = NULL;
6804 spin_unlock(&mc.lock);
6805 mem_cgroup_end_move(from);
6808 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6809 struct cgroup_taskset *tset)
6811 struct task_struct *p = cgroup_taskset_first(tset);
6812 int ret = 0;
6813 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6814 unsigned long move_charge_at_immigrate;
6817 * We are now commited to this value whatever it is. Changes in this
6818 * tunable will only affect upcoming migrations, not the current one.
6819 * So we need to save it, and keep it going.
6821 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6822 if (move_charge_at_immigrate) {
6823 struct mm_struct *mm;
6824 struct mem_cgroup *from = mem_cgroup_from_task(p);
6826 VM_BUG_ON(from == memcg);
6828 mm = get_task_mm(p);
6829 if (!mm)
6830 return 0;
6831 /* We move charges only when we move a owner of the mm */
6832 if (mm->owner == p) {
6833 VM_BUG_ON(mc.from);
6834 VM_BUG_ON(mc.to);
6835 VM_BUG_ON(mc.precharge);
6836 VM_BUG_ON(mc.moved_charge);
6837 VM_BUG_ON(mc.moved_swap);
6838 mem_cgroup_start_move(from);
6839 spin_lock(&mc.lock);
6840 mc.from = from;
6841 mc.to = memcg;
6842 mc.immigrate_flags = move_charge_at_immigrate;
6843 spin_unlock(&mc.lock);
6844 /* We set mc.moving_task later */
6846 ret = mem_cgroup_precharge_mc(mm);
6847 if (ret)
6848 mem_cgroup_clear_mc();
6850 mmput(mm);
6852 return ret;
6855 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6856 struct cgroup_taskset *tset)
6858 mem_cgroup_clear_mc();
6861 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6862 unsigned long addr, unsigned long end,
6863 struct mm_walk *walk)
6865 int ret = 0;
6866 struct vm_area_struct *vma = walk->private;
6867 pte_t *pte;
6868 spinlock_t *ptl;
6869 enum mc_target_type target_type;
6870 union mc_target target;
6871 struct page *page;
6872 struct page_cgroup *pc;
6875 * We don't take compound_lock() here but no race with splitting thp
6876 * happens because:
6877 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6878 * under splitting, which means there's no concurrent thp split,
6879 * - if another thread runs into split_huge_page() just after we
6880 * entered this if-block, the thread must wait for page table lock
6881 * to be unlocked in __split_huge_page_splitting(), where the main
6882 * part of thp split is not executed yet.
6884 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6885 if (mc.precharge < HPAGE_PMD_NR) {
6886 spin_unlock(ptl);
6887 return 0;
6889 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6890 if (target_type == MC_TARGET_PAGE) {
6891 page = target.page;
6892 if (!isolate_lru_page(page)) {
6893 pc = lookup_page_cgroup(page);
6894 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6895 pc, mc.from, mc.to)) {
6896 mc.precharge -= HPAGE_PMD_NR;
6897 mc.moved_charge += HPAGE_PMD_NR;
6899 putback_lru_page(page);
6901 put_page(page);
6903 spin_unlock(ptl);
6904 return 0;
6907 if (pmd_trans_unstable(pmd))
6908 return 0;
6909 retry:
6910 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6911 for (; addr != end; addr += PAGE_SIZE) {
6912 pte_t ptent = *(pte++);
6913 swp_entry_t ent;
6915 if (!mc.precharge)
6916 break;
6918 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6919 case MC_TARGET_PAGE:
6920 page = target.page;
6921 if (isolate_lru_page(page))
6922 goto put;
6923 pc = lookup_page_cgroup(page);
6924 if (!mem_cgroup_move_account(page, 1, pc,
6925 mc.from, mc.to)) {
6926 mc.precharge--;
6927 /* we uncharge from mc.from later. */
6928 mc.moved_charge++;
6930 putback_lru_page(page);
6931 put: /* get_mctgt_type() gets the page */
6932 put_page(page);
6933 break;
6934 case MC_TARGET_SWAP:
6935 ent = target.ent;
6936 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6937 mc.precharge--;
6938 /* we fixup refcnts and charges later. */
6939 mc.moved_swap++;
6941 break;
6942 default:
6943 break;
6946 pte_unmap_unlock(pte - 1, ptl);
6947 cond_resched();
6949 if (addr != end) {
6951 * We have consumed all precharges we got in can_attach().
6952 * We try charge one by one, but don't do any additional
6953 * charges to mc.to if we have failed in charge once in attach()
6954 * phase.
6956 ret = mem_cgroup_do_precharge(1);
6957 if (!ret)
6958 goto retry;
6961 return ret;
6964 static void mem_cgroup_move_charge(struct mm_struct *mm)
6966 struct vm_area_struct *vma;
6968 lru_add_drain_all();
6969 retry:
6970 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6972 * Someone who are holding the mmap_sem might be waiting in
6973 * waitq. So we cancel all extra charges, wake up all waiters,
6974 * and retry. Because we cancel precharges, we might not be able
6975 * to move enough charges, but moving charge is a best-effort
6976 * feature anyway, so it wouldn't be a big problem.
6978 __mem_cgroup_clear_mc();
6979 cond_resched();
6980 goto retry;
6982 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6983 int ret;
6984 struct mm_walk mem_cgroup_move_charge_walk = {
6985 .pmd_entry = mem_cgroup_move_charge_pte_range,
6986 .mm = mm,
6987 .private = vma,
6989 if (is_vm_hugetlb_page(vma))
6990 continue;
6991 ret = walk_page_range(vma->vm_start, vma->vm_end,
6992 &mem_cgroup_move_charge_walk);
6993 if (ret)
6995 * means we have consumed all precharges and failed in
6996 * doing additional charge. Just abandon here.
6998 break;
7000 up_read(&mm->mmap_sem);
7003 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7004 struct cgroup_taskset *tset)
7006 struct task_struct *p = cgroup_taskset_first(tset);
7007 struct mm_struct *mm = get_task_mm(p);
7009 if (mm) {
7010 if (mc.to)
7011 mem_cgroup_move_charge(mm);
7012 mmput(mm);
7014 if (mc.to)
7015 mem_cgroup_clear_mc();
7017 #else /* !CONFIG_MMU */
7018 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7019 struct cgroup_taskset *tset)
7021 return 0;
7023 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7024 struct cgroup_taskset *tset)
7027 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7028 struct cgroup_taskset *tset)
7031 #endif
7034 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7035 * to verify sane_behavior flag on each mount attempt.
7037 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7040 * use_hierarchy is forced with sane_behavior. cgroup core
7041 * guarantees that @root doesn't have any children, so turning it
7042 * on for the root memcg is enough.
7044 if (cgroup_sane_behavior(root_css->cgroup))
7045 mem_cgroup_from_css(root_css)->use_hierarchy = true;
7048 struct cgroup_subsys memory_cgrp_subsys = {
7049 .css_alloc = mem_cgroup_css_alloc,
7050 .css_online = mem_cgroup_css_online,
7051 .css_offline = mem_cgroup_css_offline,
7052 .css_free = mem_cgroup_css_free,
7053 .can_attach = mem_cgroup_can_attach,
7054 .cancel_attach = mem_cgroup_cancel_attach,
7055 .attach = mem_cgroup_move_task,
7056 .bind = mem_cgroup_bind,
7057 .base_cftypes = mem_cgroup_files,
7058 .early_init = 0,
7061 #ifdef CONFIG_MEMCG_SWAP
7062 static int __init enable_swap_account(char *s)
7064 if (!strcmp(s, "1"))
7065 really_do_swap_account = 1;
7066 else if (!strcmp(s, "0"))
7067 really_do_swap_account = 0;
7068 return 1;
7070 __setup("swapaccount=", enable_swap_account);
7072 static void __init memsw_file_init(void)
7074 WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
7077 static void __init enable_swap_cgroup(void)
7079 if (!mem_cgroup_disabled() && really_do_swap_account) {
7080 do_swap_account = 1;
7081 memsw_file_init();
7085 #else
7086 static void __init enable_swap_cgroup(void)
7089 #endif
7092 * subsys_initcall() for memory controller.
7094 * Some parts like hotcpu_notifier() have to be initialized from this context
7095 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7096 * everything that doesn't depend on a specific mem_cgroup structure should
7097 * be initialized from here.
7099 static int __init mem_cgroup_init(void)
7101 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7102 enable_swap_cgroup();
7103 mem_cgroup_soft_limit_tree_init();
7104 memcg_stock_init();
7105 return 0;
7107 subsys_initcall(mem_cgroup_init);