nfs: add minor version to nfs_server_key for fscache
[linux/fpc-iii.git] / fs / aio.c
blobb5fbf2061868ce9ed84b2415df8c37d988907629
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
10 * See ../COPYING for licensing terms.
12 #define pr_fmt(fmt) "%s: " fmt, __func__
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 #include <linux/nospec.h>
50 #include "internal.h"
52 #define KIOCB_KEY 0
54 #define AIO_RING_MAGIC 0xa10a10a1
55 #define AIO_RING_COMPAT_FEATURES 1
56 #define AIO_RING_INCOMPAT_FEATURES 0
57 struct aio_ring {
58 unsigned id; /* kernel internal index number */
59 unsigned nr; /* number of io_events */
60 unsigned head; /* Written to by userland or under ring_lock
61 * mutex by aio_read_events_ring(). */
62 unsigned tail;
64 unsigned magic;
65 unsigned compat_features;
66 unsigned incompat_features;
67 unsigned header_length; /* size of aio_ring */
70 struct io_event io_events[0];
71 }; /* 128 bytes + ring size */
73 #define AIO_RING_PAGES 8
75 struct kioctx_table {
76 struct rcu_head rcu;
77 unsigned nr;
78 struct kioctx __rcu *table[];
81 struct kioctx_cpu {
82 unsigned reqs_available;
85 struct ctx_rq_wait {
86 struct completion comp;
87 atomic_t count;
90 struct kioctx {
91 struct percpu_ref users;
92 atomic_t dead;
94 struct percpu_ref reqs;
96 unsigned long user_id;
98 struct __percpu kioctx_cpu *cpu;
101 * For percpu reqs_available, number of slots we move to/from global
102 * counter at a time:
104 unsigned req_batch;
106 * This is what userspace passed to io_setup(), it's not used for
107 * anything but counting against the global max_reqs quota.
109 * The real limit is nr_events - 1, which will be larger (see
110 * aio_setup_ring())
112 unsigned max_reqs;
114 /* Size of ringbuffer, in units of struct io_event */
115 unsigned nr_events;
117 unsigned long mmap_base;
118 unsigned long mmap_size;
120 struct page **ring_pages;
121 long nr_pages;
123 struct rcu_work free_rwork; /* see free_ioctx() */
126 * signals when all in-flight requests are done
128 struct ctx_rq_wait *rq_wait;
130 struct {
132 * This counts the number of available slots in the ringbuffer,
133 * so we avoid overflowing it: it's decremented (if positive)
134 * when allocating a kiocb and incremented when the resulting
135 * io_event is pulled off the ringbuffer.
137 * We batch accesses to it with a percpu version.
139 atomic_t reqs_available;
140 } ____cacheline_aligned_in_smp;
142 struct {
143 spinlock_t ctx_lock;
144 struct list_head active_reqs; /* used for cancellation */
145 } ____cacheline_aligned_in_smp;
147 struct {
148 struct mutex ring_lock;
149 wait_queue_head_t wait;
150 } ____cacheline_aligned_in_smp;
152 struct {
153 unsigned tail;
154 unsigned completed_events;
155 spinlock_t completion_lock;
156 } ____cacheline_aligned_in_smp;
158 struct page *internal_pages[AIO_RING_PAGES];
159 struct file *aio_ring_file;
161 unsigned id;
165 * First field must be the file pointer in all the
166 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
168 struct fsync_iocb {
169 struct file *file;
170 struct work_struct work;
171 bool datasync;
174 struct poll_iocb {
175 struct file *file;
176 struct wait_queue_head *head;
177 __poll_t events;
178 bool done;
179 bool cancelled;
180 struct wait_queue_entry wait;
181 struct work_struct work;
185 * NOTE! Each of the iocb union members has the file pointer
186 * as the first entry in their struct definition. So you can
187 * access the file pointer through any of the sub-structs,
188 * or directly as just 'ki_filp' in this struct.
190 struct aio_kiocb {
191 union {
192 struct file *ki_filp;
193 struct kiocb rw;
194 struct fsync_iocb fsync;
195 struct poll_iocb poll;
198 struct kioctx *ki_ctx;
199 kiocb_cancel_fn *ki_cancel;
201 struct io_event ki_res;
203 struct list_head ki_list; /* the aio core uses this
204 * for cancellation */
205 refcount_t ki_refcnt;
208 * If the aio_resfd field of the userspace iocb is not zero,
209 * this is the underlying eventfd context to deliver events to.
211 struct eventfd_ctx *ki_eventfd;
214 /*------ sysctl variables----*/
215 static DEFINE_SPINLOCK(aio_nr_lock);
216 unsigned long aio_nr; /* current system wide number of aio requests */
217 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
218 /*----end sysctl variables---*/
220 static struct kmem_cache *kiocb_cachep;
221 static struct kmem_cache *kioctx_cachep;
223 static struct vfsmount *aio_mnt;
225 static const struct file_operations aio_ring_fops;
226 static const struct address_space_operations aio_ctx_aops;
228 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
230 struct file *file;
231 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
232 if (IS_ERR(inode))
233 return ERR_CAST(inode);
235 inode->i_mapping->a_ops = &aio_ctx_aops;
236 inode->i_mapping->private_data = ctx;
237 inode->i_size = PAGE_SIZE * nr_pages;
239 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
240 O_RDWR, &aio_ring_fops);
241 if (IS_ERR(file))
242 iput(inode);
243 return file;
246 static struct dentry *aio_mount(struct file_system_type *fs_type,
247 int flags, const char *dev_name, void *data)
249 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, NULL,
250 AIO_RING_MAGIC);
252 if (!IS_ERR(root))
253 root->d_sb->s_iflags |= SB_I_NOEXEC;
254 return root;
257 /* aio_setup
258 * Creates the slab caches used by the aio routines, panic on
259 * failure as this is done early during the boot sequence.
261 static int __init aio_setup(void)
263 static struct file_system_type aio_fs = {
264 .name = "aio",
265 .mount = aio_mount,
266 .kill_sb = kill_anon_super,
268 aio_mnt = kern_mount(&aio_fs);
269 if (IS_ERR(aio_mnt))
270 panic("Failed to create aio fs mount.");
272 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
273 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
274 return 0;
276 __initcall(aio_setup);
278 static void put_aio_ring_file(struct kioctx *ctx)
280 struct file *aio_ring_file = ctx->aio_ring_file;
281 struct address_space *i_mapping;
283 if (aio_ring_file) {
284 truncate_setsize(file_inode(aio_ring_file), 0);
286 /* Prevent further access to the kioctx from migratepages */
287 i_mapping = aio_ring_file->f_mapping;
288 spin_lock(&i_mapping->private_lock);
289 i_mapping->private_data = NULL;
290 ctx->aio_ring_file = NULL;
291 spin_unlock(&i_mapping->private_lock);
293 fput(aio_ring_file);
297 static void aio_free_ring(struct kioctx *ctx)
299 int i;
301 /* Disconnect the kiotx from the ring file. This prevents future
302 * accesses to the kioctx from page migration.
304 put_aio_ring_file(ctx);
306 for (i = 0; i < ctx->nr_pages; i++) {
307 struct page *page;
308 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
309 page_count(ctx->ring_pages[i]));
310 page = ctx->ring_pages[i];
311 if (!page)
312 continue;
313 ctx->ring_pages[i] = NULL;
314 put_page(page);
317 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
318 kfree(ctx->ring_pages);
319 ctx->ring_pages = NULL;
323 static int aio_ring_mremap(struct vm_area_struct *vma)
325 struct file *file = vma->vm_file;
326 struct mm_struct *mm = vma->vm_mm;
327 struct kioctx_table *table;
328 int i, res = -EINVAL;
330 spin_lock(&mm->ioctx_lock);
331 rcu_read_lock();
332 table = rcu_dereference(mm->ioctx_table);
333 for (i = 0; i < table->nr; i++) {
334 struct kioctx *ctx;
336 ctx = rcu_dereference(table->table[i]);
337 if (ctx && ctx->aio_ring_file == file) {
338 if (!atomic_read(&ctx->dead)) {
339 ctx->user_id = ctx->mmap_base = vma->vm_start;
340 res = 0;
342 break;
346 rcu_read_unlock();
347 spin_unlock(&mm->ioctx_lock);
348 return res;
351 static const struct vm_operations_struct aio_ring_vm_ops = {
352 .mremap = aio_ring_mremap,
353 #if IS_ENABLED(CONFIG_MMU)
354 .fault = filemap_fault,
355 .map_pages = filemap_map_pages,
356 .page_mkwrite = filemap_page_mkwrite,
357 #endif
360 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
362 vma->vm_flags |= VM_DONTEXPAND;
363 vma->vm_ops = &aio_ring_vm_ops;
364 return 0;
367 static const struct file_operations aio_ring_fops = {
368 .mmap = aio_ring_mmap,
371 #if IS_ENABLED(CONFIG_MIGRATION)
372 static int aio_migratepage(struct address_space *mapping, struct page *new,
373 struct page *old, enum migrate_mode mode)
375 struct kioctx *ctx;
376 unsigned long flags;
377 pgoff_t idx;
378 int rc;
381 * We cannot support the _NO_COPY case here, because copy needs to
382 * happen under the ctx->completion_lock. That does not work with the
383 * migration workflow of MIGRATE_SYNC_NO_COPY.
385 if (mode == MIGRATE_SYNC_NO_COPY)
386 return -EINVAL;
388 rc = 0;
390 /* mapping->private_lock here protects against the kioctx teardown. */
391 spin_lock(&mapping->private_lock);
392 ctx = mapping->private_data;
393 if (!ctx) {
394 rc = -EINVAL;
395 goto out;
398 /* The ring_lock mutex. The prevents aio_read_events() from writing
399 * to the ring's head, and prevents page migration from mucking in
400 * a partially initialized kiotx.
402 if (!mutex_trylock(&ctx->ring_lock)) {
403 rc = -EAGAIN;
404 goto out;
407 idx = old->index;
408 if (idx < (pgoff_t)ctx->nr_pages) {
409 /* Make sure the old page hasn't already been changed */
410 if (ctx->ring_pages[idx] != old)
411 rc = -EAGAIN;
412 } else
413 rc = -EINVAL;
415 if (rc != 0)
416 goto out_unlock;
418 /* Writeback must be complete */
419 BUG_ON(PageWriteback(old));
420 get_page(new);
422 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
423 if (rc != MIGRATEPAGE_SUCCESS) {
424 put_page(new);
425 goto out_unlock;
428 /* Take completion_lock to prevent other writes to the ring buffer
429 * while the old page is copied to the new. This prevents new
430 * events from being lost.
432 spin_lock_irqsave(&ctx->completion_lock, flags);
433 migrate_page_copy(new, old);
434 BUG_ON(ctx->ring_pages[idx] != old);
435 ctx->ring_pages[idx] = new;
436 spin_unlock_irqrestore(&ctx->completion_lock, flags);
438 /* The old page is no longer accessible. */
439 put_page(old);
441 out_unlock:
442 mutex_unlock(&ctx->ring_lock);
443 out:
444 spin_unlock(&mapping->private_lock);
445 return rc;
447 #endif
449 static const struct address_space_operations aio_ctx_aops = {
450 .set_page_dirty = __set_page_dirty_no_writeback,
451 #if IS_ENABLED(CONFIG_MIGRATION)
452 .migratepage = aio_migratepage,
453 #endif
456 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
458 struct aio_ring *ring;
459 struct mm_struct *mm = current->mm;
460 unsigned long size, unused;
461 int nr_pages;
462 int i;
463 struct file *file;
465 /* Compensate for the ring buffer's head/tail overlap entry */
466 nr_events += 2; /* 1 is required, 2 for good luck */
468 size = sizeof(struct aio_ring);
469 size += sizeof(struct io_event) * nr_events;
471 nr_pages = PFN_UP(size);
472 if (nr_pages < 0)
473 return -EINVAL;
475 file = aio_private_file(ctx, nr_pages);
476 if (IS_ERR(file)) {
477 ctx->aio_ring_file = NULL;
478 return -ENOMEM;
481 ctx->aio_ring_file = file;
482 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
483 / sizeof(struct io_event);
485 ctx->ring_pages = ctx->internal_pages;
486 if (nr_pages > AIO_RING_PAGES) {
487 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
488 GFP_KERNEL);
489 if (!ctx->ring_pages) {
490 put_aio_ring_file(ctx);
491 return -ENOMEM;
495 for (i = 0; i < nr_pages; i++) {
496 struct page *page;
497 page = find_or_create_page(file->f_mapping,
498 i, GFP_HIGHUSER | __GFP_ZERO);
499 if (!page)
500 break;
501 pr_debug("pid(%d) page[%d]->count=%d\n",
502 current->pid, i, page_count(page));
503 SetPageUptodate(page);
504 unlock_page(page);
506 ctx->ring_pages[i] = page;
508 ctx->nr_pages = i;
510 if (unlikely(i != nr_pages)) {
511 aio_free_ring(ctx);
512 return -ENOMEM;
515 ctx->mmap_size = nr_pages * PAGE_SIZE;
516 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
518 if (down_write_killable(&mm->mmap_sem)) {
519 ctx->mmap_size = 0;
520 aio_free_ring(ctx);
521 return -EINTR;
524 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
525 PROT_READ | PROT_WRITE,
526 MAP_SHARED, 0, &unused, NULL);
527 up_write(&mm->mmap_sem);
528 if (IS_ERR((void *)ctx->mmap_base)) {
529 ctx->mmap_size = 0;
530 aio_free_ring(ctx);
531 return -ENOMEM;
534 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
536 ctx->user_id = ctx->mmap_base;
537 ctx->nr_events = nr_events; /* trusted copy */
539 ring = kmap_atomic(ctx->ring_pages[0]);
540 ring->nr = nr_events; /* user copy */
541 ring->id = ~0U;
542 ring->head = ring->tail = 0;
543 ring->magic = AIO_RING_MAGIC;
544 ring->compat_features = AIO_RING_COMPAT_FEATURES;
545 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
546 ring->header_length = sizeof(struct aio_ring);
547 kunmap_atomic(ring);
548 flush_dcache_page(ctx->ring_pages[0]);
550 return 0;
553 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
554 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
555 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
557 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
559 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
560 struct kioctx *ctx = req->ki_ctx;
561 unsigned long flags;
563 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
564 return;
566 spin_lock_irqsave(&ctx->ctx_lock, flags);
567 list_add_tail(&req->ki_list, &ctx->active_reqs);
568 req->ki_cancel = cancel;
569 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
571 EXPORT_SYMBOL(kiocb_set_cancel_fn);
574 * free_ioctx() should be RCU delayed to synchronize against the RCU
575 * protected lookup_ioctx() and also needs process context to call
576 * aio_free_ring(). Use rcu_work.
578 static void free_ioctx(struct work_struct *work)
580 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
581 free_rwork);
582 pr_debug("freeing %p\n", ctx);
584 aio_free_ring(ctx);
585 free_percpu(ctx->cpu);
586 percpu_ref_exit(&ctx->reqs);
587 percpu_ref_exit(&ctx->users);
588 kmem_cache_free(kioctx_cachep, ctx);
591 static void free_ioctx_reqs(struct percpu_ref *ref)
593 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
595 /* At this point we know that there are no any in-flight requests */
596 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
597 complete(&ctx->rq_wait->comp);
599 /* Synchronize against RCU protected table->table[] dereferences */
600 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
601 queue_rcu_work(system_wq, &ctx->free_rwork);
605 * When this function runs, the kioctx has been removed from the "hash table"
606 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
607 * now it's safe to cancel any that need to be.
609 static void free_ioctx_users(struct percpu_ref *ref)
611 struct kioctx *ctx = container_of(ref, struct kioctx, users);
612 struct aio_kiocb *req;
614 spin_lock_irq(&ctx->ctx_lock);
616 while (!list_empty(&ctx->active_reqs)) {
617 req = list_first_entry(&ctx->active_reqs,
618 struct aio_kiocb, ki_list);
619 req->ki_cancel(&req->rw);
620 list_del_init(&req->ki_list);
623 spin_unlock_irq(&ctx->ctx_lock);
625 percpu_ref_kill(&ctx->reqs);
626 percpu_ref_put(&ctx->reqs);
629 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
631 unsigned i, new_nr;
632 struct kioctx_table *table, *old;
633 struct aio_ring *ring;
635 spin_lock(&mm->ioctx_lock);
636 table = rcu_dereference_raw(mm->ioctx_table);
638 while (1) {
639 if (table)
640 for (i = 0; i < table->nr; i++)
641 if (!rcu_access_pointer(table->table[i])) {
642 ctx->id = i;
643 rcu_assign_pointer(table->table[i], ctx);
644 spin_unlock(&mm->ioctx_lock);
646 /* While kioctx setup is in progress,
647 * we are protected from page migration
648 * changes ring_pages by ->ring_lock.
650 ring = kmap_atomic(ctx->ring_pages[0]);
651 ring->id = ctx->id;
652 kunmap_atomic(ring);
653 return 0;
656 new_nr = (table ? table->nr : 1) * 4;
657 spin_unlock(&mm->ioctx_lock);
659 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
660 new_nr, GFP_KERNEL);
661 if (!table)
662 return -ENOMEM;
664 table->nr = new_nr;
666 spin_lock(&mm->ioctx_lock);
667 old = rcu_dereference_raw(mm->ioctx_table);
669 if (!old) {
670 rcu_assign_pointer(mm->ioctx_table, table);
671 } else if (table->nr > old->nr) {
672 memcpy(table->table, old->table,
673 old->nr * sizeof(struct kioctx *));
675 rcu_assign_pointer(mm->ioctx_table, table);
676 kfree_rcu(old, rcu);
677 } else {
678 kfree(table);
679 table = old;
684 static void aio_nr_sub(unsigned nr)
686 spin_lock(&aio_nr_lock);
687 if (WARN_ON(aio_nr - nr > aio_nr))
688 aio_nr = 0;
689 else
690 aio_nr -= nr;
691 spin_unlock(&aio_nr_lock);
694 /* ioctx_alloc
695 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
697 static struct kioctx *ioctx_alloc(unsigned nr_events)
699 struct mm_struct *mm = current->mm;
700 struct kioctx *ctx;
701 int err = -ENOMEM;
704 * Store the original nr_events -- what userspace passed to io_setup(),
705 * for counting against the global limit -- before it changes.
707 unsigned int max_reqs = nr_events;
710 * We keep track of the number of available ringbuffer slots, to prevent
711 * overflow (reqs_available), and we also use percpu counters for this.
713 * So since up to half the slots might be on other cpu's percpu counters
714 * and unavailable, double nr_events so userspace sees what they
715 * expected: additionally, we move req_batch slots to/from percpu
716 * counters at a time, so make sure that isn't 0:
718 nr_events = max(nr_events, num_possible_cpus() * 4);
719 nr_events *= 2;
721 /* Prevent overflows */
722 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
723 pr_debug("ENOMEM: nr_events too high\n");
724 return ERR_PTR(-EINVAL);
727 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
728 return ERR_PTR(-EAGAIN);
730 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
731 if (!ctx)
732 return ERR_PTR(-ENOMEM);
734 ctx->max_reqs = max_reqs;
736 spin_lock_init(&ctx->ctx_lock);
737 spin_lock_init(&ctx->completion_lock);
738 mutex_init(&ctx->ring_lock);
739 /* Protect against page migration throughout kiotx setup by keeping
740 * the ring_lock mutex held until setup is complete. */
741 mutex_lock(&ctx->ring_lock);
742 init_waitqueue_head(&ctx->wait);
744 INIT_LIST_HEAD(&ctx->active_reqs);
746 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
747 goto err;
749 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
750 goto err;
752 ctx->cpu = alloc_percpu(struct kioctx_cpu);
753 if (!ctx->cpu)
754 goto err;
756 err = aio_setup_ring(ctx, nr_events);
757 if (err < 0)
758 goto err;
760 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
761 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
762 if (ctx->req_batch < 1)
763 ctx->req_batch = 1;
765 /* limit the number of system wide aios */
766 spin_lock(&aio_nr_lock);
767 if (aio_nr + ctx->max_reqs > aio_max_nr ||
768 aio_nr + ctx->max_reqs < aio_nr) {
769 spin_unlock(&aio_nr_lock);
770 err = -EAGAIN;
771 goto err_ctx;
773 aio_nr += ctx->max_reqs;
774 spin_unlock(&aio_nr_lock);
776 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
777 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
779 err = ioctx_add_table(ctx, mm);
780 if (err)
781 goto err_cleanup;
783 /* Release the ring_lock mutex now that all setup is complete. */
784 mutex_unlock(&ctx->ring_lock);
786 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
787 ctx, ctx->user_id, mm, ctx->nr_events);
788 return ctx;
790 err_cleanup:
791 aio_nr_sub(ctx->max_reqs);
792 err_ctx:
793 atomic_set(&ctx->dead, 1);
794 if (ctx->mmap_size)
795 vm_munmap(ctx->mmap_base, ctx->mmap_size);
796 aio_free_ring(ctx);
797 err:
798 mutex_unlock(&ctx->ring_lock);
799 free_percpu(ctx->cpu);
800 percpu_ref_exit(&ctx->reqs);
801 percpu_ref_exit(&ctx->users);
802 kmem_cache_free(kioctx_cachep, ctx);
803 pr_debug("error allocating ioctx %d\n", err);
804 return ERR_PTR(err);
807 /* kill_ioctx
808 * Cancels all outstanding aio requests on an aio context. Used
809 * when the processes owning a context have all exited to encourage
810 * the rapid destruction of the kioctx.
812 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
813 struct ctx_rq_wait *wait)
815 struct kioctx_table *table;
817 spin_lock(&mm->ioctx_lock);
818 if (atomic_xchg(&ctx->dead, 1)) {
819 spin_unlock(&mm->ioctx_lock);
820 return -EINVAL;
823 table = rcu_dereference_raw(mm->ioctx_table);
824 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
825 RCU_INIT_POINTER(table->table[ctx->id], NULL);
826 spin_unlock(&mm->ioctx_lock);
828 /* free_ioctx_reqs() will do the necessary RCU synchronization */
829 wake_up_all(&ctx->wait);
832 * It'd be more correct to do this in free_ioctx(), after all
833 * the outstanding kiocbs have finished - but by then io_destroy
834 * has already returned, so io_setup() could potentially return
835 * -EAGAIN with no ioctxs actually in use (as far as userspace
836 * could tell).
838 aio_nr_sub(ctx->max_reqs);
840 if (ctx->mmap_size)
841 vm_munmap(ctx->mmap_base, ctx->mmap_size);
843 ctx->rq_wait = wait;
844 percpu_ref_kill(&ctx->users);
845 return 0;
849 * exit_aio: called when the last user of mm goes away. At this point, there is
850 * no way for any new requests to be submited or any of the io_* syscalls to be
851 * called on the context.
853 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
854 * them.
856 void exit_aio(struct mm_struct *mm)
858 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
859 struct ctx_rq_wait wait;
860 int i, skipped;
862 if (!table)
863 return;
865 atomic_set(&wait.count, table->nr);
866 init_completion(&wait.comp);
868 skipped = 0;
869 for (i = 0; i < table->nr; ++i) {
870 struct kioctx *ctx =
871 rcu_dereference_protected(table->table[i], true);
873 if (!ctx) {
874 skipped++;
875 continue;
879 * We don't need to bother with munmap() here - exit_mmap(mm)
880 * is coming and it'll unmap everything. And we simply can't,
881 * this is not necessarily our ->mm.
882 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
883 * that it needs to unmap the area, just set it to 0.
885 ctx->mmap_size = 0;
886 kill_ioctx(mm, ctx, &wait);
889 if (!atomic_sub_and_test(skipped, &wait.count)) {
890 /* Wait until all IO for the context are done. */
891 wait_for_completion(&wait.comp);
894 RCU_INIT_POINTER(mm->ioctx_table, NULL);
895 kfree(table);
898 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
900 struct kioctx_cpu *kcpu;
901 unsigned long flags;
903 local_irq_save(flags);
904 kcpu = this_cpu_ptr(ctx->cpu);
905 kcpu->reqs_available += nr;
907 while (kcpu->reqs_available >= ctx->req_batch * 2) {
908 kcpu->reqs_available -= ctx->req_batch;
909 atomic_add(ctx->req_batch, &ctx->reqs_available);
912 local_irq_restore(flags);
915 static bool __get_reqs_available(struct kioctx *ctx)
917 struct kioctx_cpu *kcpu;
918 bool ret = false;
919 unsigned long flags;
921 local_irq_save(flags);
922 kcpu = this_cpu_ptr(ctx->cpu);
923 if (!kcpu->reqs_available) {
924 int old, avail = atomic_read(&ctx->reqs_available);
926 do {
927 if (avail < ctx->req_batch)
928 goto out;
930 old = avail;
931 avail = atomic_cmpxchg(&ctx->reqs_available,
932 avail, avail - ctx->req_batch);
933 } while (avail != old);
935 kcpu->reqs_available += ctx->req_batch;
938 ret = true;
939 kcpu->reqs_available--;
940 out:
941 local_irq_restore(flags);
942 return ret;
945 /* refill_reqs_available
946 * Updates the reqs_available reference counts used for tracking the
947 * number of free slots in the completion ring. This can be called
948 * from aio_complete() (to optimistically update reqs_available) or
949 * from aio_get_req() (the we're out of events case). It must be
950 * called holding ctx->completion_lock.
952 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
953 unsigned tail)
955 unsigned events_in_ring, completed;
957 /* Clamp head since userland can write to it. */
958 head %= ctx->nr_events;
959 if (head <= tail)
960 events_in_ring = tail - head;
961 else
962 events_in_ring = ctx->nr_events - (head - tail);
964 completed = ctx->completed_events;
965 if (events_in_ring < completed)
966 completed -= events_in_ring;
967 else
968 completed = 0;
970 if (!completed)
971 return;
973 ctx->completed_events -= completed;
974 put_reqs_available(ctx, completed);
977 /* user_refill_reqs_available
978 * Called to refill reqs_available when aio_get_req() encounters an
979 * out of space in the completion ring.
981 static void user_refill_reqs_available(struct kioctx *ctx)
983 spin_lock_irq(&ctx->completion_lock);
984 if (ctx->completed_events) {
985 struct aio_ring *ring;
986 unsigned head;
988 /* Access of ring->head may race with aio_read_events_ring()
989 * here, but that's okay since whether we read the old version
990 * or the new version, and either will be valid. The important
991 * part is that head cannot pass tail since we prevent
992 * aio_complete() from updating tail by holding
993 * ctx->completion_lock. Even if head is invalid, the check
994 * against ctx->completed_events below will make sure we do the
995 * safe/right thing.
997 ring = kmap_atomic(ctx->ring_pages[0]);
998 head = ring->head;
999 kunmap_atomic(ring);
1001 refill_reqs_available(ctx, head, ctx->tail);
1004 spin_unlock_irq(&ctx->completion_lock);
1007 static bool get_reqs_available(struct kioctx *ctx)
1009 if (__get_reqs_available(ctx))
1010 return true;
1011 user_refill_reqs_available(ctx);
1012 return __get_reqs_available(ctx);
1015 /* aio_get_req
1016 * Allocate a slot for an aio request.
1017 * Returns NULL if no requests are free.
1019 * The refcount is initialized to 2 - one for the async op completion,
1020 * one for the synchronous code that does this.
1022 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1024 struct aio_kiocb *req;
1026 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1027 if (unlikely(!req))
1028 return NULL;
1030 percpu_ref_get(&ctx->reqs);
1031 req->ki_ctx = ctx;
1032 INIT_LIST_HEAD(&req->ki_list);
1033 refcount_set(&req->ki_refcnt, 2);
1034 req->ki_eventfd = NULL;
1035 return req;
1038 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1040 struct aio_ring __user *ring = (void __user *)ctx_id;
1041 struct mm_struct *mm = current->mm;
1042 struct kioctx *ctx, *ret = NULL;
1043 struct kioctx_table *table;
1044 unsigned id;
1046 if (get_user(id, &ring->id))
1047 return NULL;
1049 rcu_read_lock();
1050 table = rcu_dereference(mm->ioctx_table);
1052 if (!table || id >= table->nr)
1053 goto out;
1055 id = array_index_nospec(id, table->nr);
1056 ctx = rcu_dereference(table->table[id]);
1057 if (ctx && ctx->user_id == ctx_id) {
1058 if (percpu_ref_tryget_live(&ctx->users))
1059 ret = ctx;
1061 out:
1062 rcu_read_unlock();
1063 return ret;
1066 static inline void iocb_destroy(struct aio_kiocb *iocb)
1068 if (iocb->ki_filp)
1069 fput(iocb->ki_filp);
1070 percpu_ref_put(&iocb->ki_ctx->reqs);
1071 kmem_cache_free(kiocb_cachep, iocb);
1074 /* aio_complete
1075 * Called when the io request on the given iocb is complete.
1077 static void aio_complete(struct aio_kiocb *iocb)
1079 struct kioctx *ctx = iocb->ki_ctx;
1080 struct aio_ring *ring;
1081 struct io_event *ev_page, *event;
1082 unsigned tail, pos, head;
1083 unsigned long flags;
1086 * Add a completion event to the ring buffer. Must be done holding
1087 * ctx->completion_lock to prevent other code from messing with the tail
1088 * pointer since we might be called from irq context.
1090 spin_lock_irqsave(&ctx->completion_lock, flags);
1092 tail = ctx->tail;
1093 pos = tail + AIO_EVENTS_OFFSET;
1095 if (++tail >= ctx->nr_events)
1096 tail = 0;
1098 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1099 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1101 *event = iocb->ki_res;
1103 kunmap_atomic(ev_page);
1104 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1106 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1107 (void __user *)(unsigned long)iocb->ki_res.obj,
1108 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1110 /* after flagging the request as done, we
1111 * must never even look at it again
1113 smp_wmb(); /* make event visible before updating tail */
1115 ctx->tail = tail;
1117 ring = kmap_atomic(ctx->ring_pages[0]);
1118 head = ring->head;
1119 ring->tail = tail;
1120 kunmap_atomic(ring);
1121 flush_dcache_page(ctx->ring_pages[0]);
1123 ctx->completed_events++;
1124 if (ctx->completed_events > 1)
1125 refill_reqs_available(ctx, head, tail);
1126 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1128 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1131 * Check if the user asked us to deliver the result through an
1132 * eventfd. The eventfd_signal() function is safe to be called
1133 * from IRQ context.
1135 if (iocb->ki_eventfd) {
1136 eventfd_signal(iocb->ki_eventfd, 1);
1137 eventfd_ctx_put(iocb->ki_eventfd);
1141 * We have to order our ring_info tail store above and test
1142 * of the wait list below outside the wait lock. This is
1143 * like in wake_up_bit() where clearing a bit has to be
1144 * ordered with the unlocked test.
1146 smp_mb();
1148 if (waitqueue_active(&ctx->wait))
1149 wake_up(&ctx->wait);
1152 static inline void iocb_put(struct aio_kiocb *iocb)
1154 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1155 aio_complete(iocb);
1156 iocb_destroy(iocb);
1160 /* aio_read_events_ring
1161 * Pull an event off of the ioctx's event ring. Returns the number of
1162 * events fetched
1164 static long aio_read_events_ring(struct kioctx *ctx,
1165 struct io_event __user *event, long nr)
1167 struct aio_ring *ring;
1168 unsigned head, tail, pos;
1169 long ret = 0;
1170 int copy_ret;
1173 * The mutex can block and wake us up and that will cause
1174 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1175 * and repeat. This should be rare enough that it doesn't cause
1176 * peformance issues. See the comment in read_events() for more detail.
1178 sched_annotate_sleep();
1179 mutex_lock(&ctx->ring_lock);
1181 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1182 ring = kmap_atomic(ctx->ring_pages[0]);
1183 head = ring->head;
1184 tail = ring->tail;
1185 kunmap_atomic(ring);
1188 * Ensure that once we've read the current tail pointer, that
1189 * we also see the events that were stored up to the tail.
1191 smp_rmb();
1193 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1195 if (head == tail)
1196 goto out;
1198 head %= ctx->nr_events;
1199 tail %= ctx->nr_events;
1201 while (ret < nr) {
1202 long avail;
1203 struct io_event *ev;
1204 struct page *page;
1206 avail = (head <= tail ? tail : ctx->nr_events) - head;
1207 if (head == tail)
1208 break;
1210 pos = head + AIO_EVENTS_OFFSET;
1211 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1212 pos %= AIO_EVENTS_PER_PAGE;
1214 avail = min(avail, nr - ret);
1215 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1217 ev = kmap(page);
1218 copy_ret = copy_to_user(event + ret, ev + pos,
1219 sizeof(*ev) * avail);
1220 kunmap(page);
1222 if (unlikely(copy_ret)) {
1223 ret = -EFAULT;
1224 goto out;
1227 ret += avail;
1228 head += avail;
1229 head %= ctx->nr_events;
1232 ring = kmap_atomic(ctx->ring_pages[0]);
1233 ring->head = head;
1234 kunmap_atomic(ring);
1235 flush_dcache_page(ctx->ring_pages[0]);
1237 pr_debug("%li h%u t%u\n", ret, head, tail);
1238 out:
1239 mutex_unlock(&ctx->ring_lock);
1241 return ret;
1244 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1245 struct io_event __user *event, long *i)
1247 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1249 if (ret > 0)
1250 *i += ret;
1252 if (unlikely(atomic_read(&ctx->dead)))
1253 ret = -EINVAL;
1255 if (!*i)
1256 *i = ret;
1258 return ret < 0 || *i >= min_nr;
1261 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1262 struct io_event __user *event,
1263 ktime_t until)
1265 long ret = 0;
1268 * Note that aio_read_events() is being called as the conditional - i.e.
1269 * we're calling it after prepare_to_wait() has set task state to
1270 * TASK_INTERRUPTIBLE.
1272 * But aio_read_events() can block, and if it blocks it's going to flip
1273 * the task state back to TASK_RUNNING.
1275 * This should be ok, provided it doesn't flip the state back to
1276 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1277 * will only happen if the mutex_lock() call blocks, and we then find
1278 * the ringbuffer empty. So in practice we should be ok, but it's
1279 * something to be aware of when touching this code.
1281 if (until == 0)
1282 aio_read_events(ctx, min_nr, nr, event, &ret);
1283 else
1284 wait_event_interruptible_hrtimeout(ctx->wait,
1285 aio_read_events(ctx, min_nr, nr, event, &ret),
1286 until);
1287 return ret;
1290 /* sys_io_setup:
1291 * Create an aio_context capable of receiving at least nr_events.
1292 * ctxp must not point to an aio_context that already exists, and
1293 * must be initialized to 0 prior to the call. On successful
1294 * creation of the aio_context, *ctxp is filled in with the resulting
1295 * handle. May fail with -EINVAL if *ctxp is not initialized,
1296 * if the specified nr_events exceeds internal limits. May fail
1297 * with -EAGAIN if the specified nr_events exceeds the user's limit
1298 * of available events. May fail with -ENOMEM if insufficient kernel
1299 * resources are available. May fail with -EFAULT if an invalid
1300 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1301 * implemented.
1303 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1305 struct kioctx *ioctx = NULL;
1306 unsigned long ctx;
1307 long ret;
1309 ret = get_user(ctx, ctxp);
1310 if (unlikely(ret))
1311 goto out;
1313 ret = -EINVAL;
1314 if (unlikely(ctx || nr_events == 0)) {
1315 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1316 ctx, nr_events);
1317 goto out;
1320 ioctx = ioctx_alloc(nr_events);
1321 ret = PTR_ERR(ioctx);
1322 if (!IS_ERR(ioctx)) {
1323 ret = put_user(ioctx->user_id, ctxp);
1324 if (ret)
1325 kill_ioctx(current->mm, ioctx, NULL);
1326 percpu_ref_put(&ioctx->users);
1329 out:
1330 return ret;
1333 #ifdef CONFIG_COMPAT
1334 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1336 struct kioctx *ioctx = NULL;
1337 unsigned long ctx;
1338 long ret;
1340 ret = get_user(ctx, ctx32p);
1341 if (unlikely(ret))
1342 goto out;
1344 ret = -EINVAL;
1345 if (unlikely(ctx || nr_events == 0)) {
1346 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1347 ctx, nr_events);
1348 goto out;
1351 ioctx = ioctx_alloc(nr_events);
1352 ret = PTR_ERR(ioctx);
1353 if (!IS_ERR(ioctx)) {
1354 /* truncating is ok because it's a user address */
1355 ret = put_user((u32)ioctx->user_id, ctx32p);
1356 if (ret)
1357 kill_ioctx(current->mm, ioctx, NULL);
1358 percpu_ref_put(&ioctx->users);
1361 out:
1362 return ret;
1364 #endif
1366 /* sys_io_destroy:
1367 * Destroy the aio_context specified. May cancel any outstanding
1368 * AIOs and block on completion. Will fail with -ENOSYS if not
1369 * implemented. May fail with -EINVAL if the context pointed to
1370 * is invalid.
1372 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1374 struct kioctx *ioctx = lookup_ioctx(ctx);
1375 if (likely(NULL != ioctx)) {
1376 struct ctx_rq_wait wait;
1377 int ret;
1379 init_completion(&wait.comp);
1380 atomic_set(&wait.count, 1);
1382 /* Pass requests_done to kill_ioctx() where it can be set
1383 * in a thread-safe way. If we try to set it here then we have
1384 * a race condition if two io_destroy() called simultaneously.
1386 ret = kill_ioctx(current->mm, ioctx, &wait);
1387 percpu_ref_put(&ioctx->users);
1389 /* Wait until all IO for the context are done. Otherwise kernel
1390 * keep using user-space buffers even if user thinks the context
1391 * is destroyed.
1393 if (!ret)
1394 wait_for_completion(&wait.comp);
1396 return ret;
1398 pr_debug("EINVAL: invalid context id\n");
1399 return -EINVAL;
1402 static void aio_remove_iocb(struct aio_kiocb *iocb)
1404 struct kioctx *ctx = iocb->ki_ctx;
1405 unsigned long flags;
1407 spin_lock_irqsave(&ctx->ctx_lock, flags);
1408 list_del(&iocb->ki_list);
1409 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1412 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1414 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1416 if (!list_empty_careful(&iocb->ki_list))
1417 aio_remove_iocb(iocb);
1419 if (kiocb->ki_flags & IOCB_WRITE) {
1420 struct inode *inode = file_inode(kiocb->ki_filp);
1423 * Tell lockdep we inherited freeze protection from submission
1424 * thread.
1426 if (S_ISREG(inode->i_mode))
1427 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1428 file_end_write(kiocb->ki_filp);
1431 iocb->ki_res.res = res;
1432 iocb->ki_res.res2 = res2;
1433 iocb_put(iocb);
1436 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1438 int ret;
1440 req->ki_complete = aio_complete_rw;
1441 req->private = NULL;
1442 req->ki_pos = iocb->aio_offset;
1443 req->ki_flags = iocb_flags(req->ki_filp);
1444 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1445 req->ki_flags |= IOCB_EVENTFD;
1446 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1447 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1449 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1450 * aio_reqprio is interpreted as an I/O scheduling
1451 * class and priority.
1453 ret = ioprio_check_cap(iocb->aio_reqprio);
1454 if (ret) {
1455 pr_debug("aio ioprio check cap error: %d\n", ret);
1456 return ret;
1459 req->ki_ioprio = iocb->aio_reqprio;
1460 } else
1461 req->ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1463 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1464 if (unlikely(ret))
1465 return ret;
1467 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1468 return 0;
1471 static int aio_setup_rw(int rw, const struct iocb *iocb, struct iovec **iovec,
1472 bool vectored, bool compat, struct iov_iter *iter)
1474 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1475 size_t len = iocb->aio_nbytes;
1477 if (!vectored) {
1478 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1479 *iovec = NULL;
1480 return ret;
1482 #ifdef CONFIG_COMPAT
1483 if (compat)
1484 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1485 iter);
1486 #endif
1487 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1490 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1492 switch (ret) {
1493 case -EIOCBQUEUED:
1494 break;
1495 case -ERESTARTSYS:
1496 case -ERESTARTNOINTR:
1497 case -ERESTARTNOHAND:
1498 case -ERESTART_RESTARTBLOCK:
1500 * There's no easy way to restart the syscall since other AIO's
1501 * may be already running. Just fail this IO with EINTR.
1503 ret = -EINTR;
1504 /*FALLTHRU*/
1505 default:
1506 req->ki_complete(req, ret, 0);
1510 static ssize_t aio_read(struct kiocb *req, const struct iocb *iocb,
1511 bool vectored, bool compat)
1513 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1514 struct iov_iter iter;
1515 struct file *file;
1516 ssize_t ret;
1518 ret = aio_prep_rw(req, iocb);
1519 if (ret)
1520 return ret;
1521 file = req->ki_filp;
1522 if (unlikely(!(file->f_mode & FMODE_READ)))
1523 return -EBADF;
1524 ret = -EINVAL;
1525 if (unlikely(!file->f_op->read_iter))
1526 return -EINVAL;
1528 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1529 if (ret)
1530 return ret;
1531 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1532 if (!ret)
1533 aio_rw_done(req, call_read_iter(file, req, &iter));
1534 kfree(iovec);
1535 return ret;
1538 static ssize_t aio_write(struct kiocb *req, const struct iocb *iocb,
1539 bool vectored, bool compat)
1541 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1542 struct iov_iter iter;
1543 struct file *file;
1544 ssize_t ret;
1546 ret = aio_prep_rw(req, iocb);
1547 if (ret)
1548 return ret;
1549 file = req->ki_filp;
1551 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1552 return -EBADF;
1553 if (unlikely(!file->f_op->write_iter))
1554 return -EINVAL;
1556 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1557 if (ret)
1558 return ret;
1559 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1560 if (!ret) {
1562 * Open-code file_start_write here to grab freeze protection,
1563 * which will be released by another thread in
1564 * aio_complete_rw(). Fool lockdep by telling it the lock got
1565 * released so that it doesn't complain about the held lock when
1566 * we return to userspace.
1568 if (S_ISREG(file_inode(file)->i_mode)) {
1569 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1570 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1572 req->ki_flags |= IOCB_WRITE;
1573 aio_rw_done(req, call_write_iter(file, req, &iter));
1575 kfree(iovec);
1576 return ret;
1579 static void aio_fsync_work(struct work_struct *work)
1581 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1583 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1584 iocb_put(iocb);
1587 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1588 bool datasync)
1590 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1591 iocb->aio_rw_flags))
1592 return -EINVAL;
1594 if (unlikely(!req->file->f_op->fsync))
1595 return -EINVAL;
1597 req->datasync = datasync;
1598 INIT_WORK(&req->work, aio_fsync_work);
1599 schedule_work(&req->work);
1600 return 0;
1603 static void aio_poll_put_work(struct work_struct *work)
1605 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1606 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1608 iocb_put(iocb);
1611 static void aio_poll_complete_work(struct work_struct *work)
1613 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1614 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1615 struct poll_table_struct pt = { ._key = req->events };
1616 struct kioctx *ctx = iocb->ki_ctx;
1617 __poll_t mask = 0;
1619 if (!READ_ONCE(req->cancelled))
1620 mask = vfs_poll(req->file, &pt) & req->events;
1623 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1624 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1625 * synchronize with them. In the cancellation case the list_del_init
1626 * itself is not actually needed, but harmless so we keep it in to
1627 * avoid further branches in the fast path.
1629 spin_lock_irq(&ctx->ctx_lock);
1630 if (!mask && !READ_ONCE(req->cancelled)) {
1631 add_wait_queue(req->head, &req->wait);
1632 spin_unlock_irq(&ctx->ctx_lock);
1633 return;
1635 list_del_init(&iocb->ki_list);
1636 iocb->ki_res.res = mangle_poll(mask);
1637 req->done = true;
1638 spin_unlock_irq(&ctx->ctx_lock);
1640 iocb_put(iocb);
1643 /* assumes we are called with irqs disabled */
1644 static int aio_poll_cancel(struct kiocb *iocb)
1646 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1647 struct poll_iocb *req = &aiocb->poll;
1649 spin_lock(&req->head->lock);
1650 WRITE_ONCE(req->cancelled, true);
1651 if (!list_empty(&req->wait.entry)) {
1652 list_del_init(&req->wait.entry);
1653 schedule_work(&aiocb->poll.work);
1655 spin_unlock(&req->head->lock);
1657 return 0;
1660 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1661 void *key)
1663 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1664 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1665 __poll_t mask = key_to_poll(key);
1666 unsigned long flags;
1668 /* for instances that support it check for an event match first: */
1669 if (mask && !(mask & req->events))
1670 return 0;
1672 list_del_init(&req->wait.entry);
1674 if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1675 struct kioctx *ctx = iocb->ki_ctx;
1678 * Try to complete the iocb inline if we can. Use
1679 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1680 * call this function with IRQs disabled and because IRQs
1681 * have to be disabled before ctx_lock is obtained.
1683 list_del(&iocb->ki_list);
1684 iocb->ki_res.res = mangle_poll(mask);
1685 req->done = true;
1686 if (iocb->ki_eventfd && eventfd_signal_count()) {
1687 iocb = NULL;
1688 INIT_WORK(&req->work, aio_poll_put_work);
1689 schedule_work(&req->work);
1691 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1692 if (iocb)
1693 iocb_put(iocb);
1694 } else {
1695 schedule_work(&req->work);
1697 return 1;
1700 struct aio_poll_table {
1701 struct poll_table_struct pt;
1702 struct aio_kiocb *iocb;
1703 int error;
1706 static void
1707 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1708 struct poll_table_struct *p)
1710 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1712 /* multiple wait queues per file are not supported */
1713 if (unlikely(pt->iocb->poll.head)) {
1714 pt->error = -EINVAL;
1715 return;
1718 pt->error = 0;
1719 pt->iocb->poll.head = head;
1720 add_wait_queue(head, &pt->iocb->poll.wait);
1723 static ssize_t aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1725 struct kioctx *ctx = aiocb->ki_ctx;
1726 struct poll_iocb *req = &aiocb->poll;
1727 struct aio_poll_table apt;
1728 bool cancel = false;
1729 __poll_t mask;
1731 /* reject any unknown events outside the normal event mask. */
1732 if ((u16)iocb->aio_buf != iocb->aio_buf)
1733 return -EINVAL;
1734 /* reject fields that are not defined for poll */
1735 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1736 return -EINVAL;
1738 INIT_WORK(&req->work, aio_poll_complete_work);
1739 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1741 req->head = NULL;
1742 req->done = false;
1743 req->cancelled = false;
1745 apt.pt._qproc = aio_poll_queue_proc;
1746 apt.pt._key = req->events;
1747 apt.iocb = aiocb;
1748 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1750 /* initialized the list so that we can do list_empty checks */
1751 INIT_LIST_HEAD(&req->wait.entry);
1752 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1754 mask = vfs_poll(req->file, &apt.pt) & req->events;
1755 spin_lock_irq(&ctx->ctx_lock);
1756 if (likely(req->head)) {
1757 spin_lock(&req->head->lock);
1758 if (unlikely(list_empty(&req->wait.entry))) {
1759 if (apt.error)
1760 cancel = true;
1761 apt.error = 0;
1762 mask = 0;
1764 if (mask || apt.error) {
1765 list_del_init(&req->wait.entry);
1766 } else if (cancel) {
1767 WRITE_ONCE(req->cancelled, true);
1768 } else if (!req->done) { /* actually waiting for an event */
1769 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1770 aiocb->ki_cancel = aio_poll_cancel;
1772 spin_unlock(&req->head->lock);
1774 if (mask) { /* no async, we'd stolen it */
1775 aiocb->ki_res.res = mangle_poll(mask);
1776 apt.error = 0;
1778 spin_unlock_irq(&ctx->ctx_lock);
1779 if (mask)
1780 iocb_put(aiocb);
1781 return apt.error;
1784 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1785 struct iocb __user *user_iocb, bool compat)
1787 struct aio_kiocb *req;
1788 ssize_t ret;
1790 /* enforce forwards compatibility on users */
1791 if (unlikely(iocb->aio_reserved2)) {
1792 pr_debug("EINVAL: reserve field set\n");
1793 return -EINVAL;
1796 /* prevent overflows */
1797 if (unlikely(
1798 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1799 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1800 ((ssize_t)iocb->aio_nbytes < 0)
1801 )) {
1802 pr_debug("EINVAL: overflow check\n");
1803 return -EINVAL;
1806 if (!get_reqs_available(ctx))
1807 return -EAGAIN;
1809 ret = -EAGAIN;
1810 req = aio_get_req(ctx);
1811 if (unlikely(!req))
1812 goto out_put_reqs_available;
1814 req->ki_filp = fget(iocb->aio_fildes);
1815 ret = -EBADF;
1816 if (unlikely(!req->ki_filp))
1817 goto out_put_req;
1819 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1821 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1822 * instance of the file* now. The file descriptor must be
1823 * an eventfd() fd, and will be signaled for each completed
1824 * event using the eventfd_signal() function.
1826 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1827 if (IS_ERR(req->ki_eventfd)) {
1828 ret = PTR_ERR(req->ki_eventfd);
1829 req->ki_eventfd = NULL;
1830 goto out_put_req;
1834 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1835 if (unlikely(ret)) {
1836 pr_debug("EFAULT: aio_key\n");
1837 goto out_put_req;
1840 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1841 req->ki_res.data = iocb->aio_data;
1842 req->ki_res.res = 0;
1843 req->ki_res.res2 = 0;
1845 switch (iocb->aio_lio_opcode) {
1846 case IOCB_CMD_PREAD:
1847 ret = aio_read(&req->rw, iocb, false, compat);
1848 break;
1849 case IOCB_CMD_PWRITE:
1850 ret = aio_write(&req->rw, iocb, false, compat);
1851 break;
1852 case IOCB_CMD_PREADV:
1853 ret = aio_read(&req->rw, iocb, true, compat);
1854 break;
1855 case IOCB_CMD_PWRITEV:
1856 ret = aio_write(&req->rw, iocb, true, compat);
1857 break;
1858 case IOCB_CMD_FSYNC:
1859 ret = aio_fsync(&req->fsync, iocb, false);
1860 break;
1861 case IOCB_CMD_FDSYNC:
1862 ret = aio_fsync(&req->fsync, iocb, true);
1863 break;
1864 case IOCB_CMD_POLL:
1865 ret = aio_poll(req, iocb);
1866 break;
1867 default:
1868 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1869 ret = -EINVAL;
1870 break;
1873 /* Done with the synchronous reference */
1874 iocb_put(req);
1877 * If ret is 0, we'd either done aio_complete() ourselves or have
1878 * arranged for that to be done asynchronously. Anything non-zero
1879 * means that we need to destroy req ourselves.
1881 if (!ret)
1882 return 0;
1884 out_put_req:
1885 if (req->ki_eventfd)
1886 eventfd_ctx_put(req->ki_eventfd);
1887 iocb_destroy(req);
1888 out_put_reqs_available:
1889 put_reqs_available(ctx, 1);
1890 return ret;
1893 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1894 bool compat)
1896 struct iocb iocb;
1898 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1899 return -EFAULT;
1901 return __io_submit_one(ctx, &iocb, user_iocb, compat);
1904 /* sys_io_submit:
1905 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1906 * the number of iocbs queued. May return -EINVAL if the aio_context
1907 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1908 * *iocbpp[0] is not properly initialized, if the operation specified
1909 * is invalid for the file descriptor in the iocb. May fail with
1910 * -EFAULT if any of the data structures point to invalid data. May
1911 * fail with -EBADF if the file descriptor specified in the first
1912 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1913 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1914 * fail with -ENOSYS if not implemented.
1916 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1917 struct iocb __user * __user *, iocbpp)
1919 struct kioctx *ctx;
1920 long ret = 0;
1921 int i = 0;
1922 struct blk_plug plug;
1924 if (unlikely(nr < 0))
1925 return -EINVAL;
1927 ctx = lookup_ioctx(ctx_id);
1928 if (unlikely(!ctx)) {
1929 pr_debug("EINVAL: invalid context id\n");
1930 return -EINVAL;
1933 if (nr > ctx->nr_events)
1934 nr = ctx->nr_events;
1936 blk_start_plug(&plug);
1937 for (i = 0; i < nr; i++) {
1938 struct iocb __user *user_iocb;
1940 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1941 ret = -EFAULT;
1942 break;
1945 ret = io_submit_one(ctx, user_iocb, false);
1946 if (ret)
1947 break;
1949 blk_finish_plug(&plug);
1951 percpu_ref_put(&ctx->users);
1952 return i ? i : ret;
1955 #ifdef CONFIG_COMPAT
1956 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1957 int, nr, compat_uptr_t __user *, iocbpp)
1959 struct kioctx *ctx;
1960 long ret = 0;
1961 int i = 0;
1962 struct blk_plug plug;
1964 if (unlikely(nr < 0))
1965 return -EINVAL;
1967 ctx = lookup_ioctx(ctx_id);
1968 if (unlikely(!ctx)) {
1969 pr_debug("EINVAL: invalid context id\n");
1970 return -EINVAL;
1973 if (nr > ctx->nr_events)
1974 nr = ctx->nr_events;
1976 blk_start_plug(&plug);
1977 for (i = 0; i < nr; i++) {
1978 compat_uptr_t user_iocb;
1980 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1981 ret = -EFAULT;
1982 break;
1985 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1986 if (ret)
1987 break;
1989 blk_finish_plug(&plug);
1991 percpu_ref_put(&ctx->users);
1992 return i ? i : ret;
1994 #endif
1996 /* sys_io_cancel:
1997 * Attempts to cancel an iocb previously passed to io_submit. If
1998 * the operation is successfully cancelled, the resulting event is
1999 * copied into the memory pointed to by result without being placed
2000 * into the completion queue and 0 is returned. May fail with
2001 * -EFAULT if any of the data structures pointed to are invalid.
2002 * May fail with -EINVAL if aio_context specified by ctx_id is
2003 * invalid. May fail with -EAGAIN if the iocb specified was not
2004 * cancelled. Will fail with -ENOSYS if not implemented.
2006 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2007 struct io_event __user *, result)
2009 struct kioctx *ctx;
2010 struct aio_kiocb *kiocb;
2011 int ret = -EINVAL;
2012 u32 key;
2013 u64 obj = (u64)(unsigned long)iocb;
2015 if (unlikely(get_user(key, &iocb->aio_key)))
2016 return -EFAULT;
2017 if (unlikely(key != KIOCB_KEY))
2018 return -EINVAL;
2020 ctx = lookup_ioctx(ctx_id);
2021 if (unlikely(!ctx))
2022 return -EINVAL;
2024 spin_lock_irq(&ctx->ctx_lock);
2025 /* TODO: use a hash or array, this sucks. */
2026 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2027 if (kiocb->ki_res.obj == obj) {
2028 ret = kiocb->ki_cancel(&kiocb->rw);
2029 list_del_init(&kiocb->ki_list);
2030 break;
2033 spin_unlock_irq(&ctx->ctx_lock);
2035 if (!ret) {
2037 * The result argument is no longer used - the io_event is
2038 * always delivered via the ring buffer. -EINPROGRESS indicates
2039 * cancellation is progress:
2041 ret = -EINPROGRESS;
2044 percpu_ref_put(&ctx->users);
2046 return ret;
2049 static long do_io_getevents(aio_context_t ctx_id,
2050 long min_nr,
2051 long nr,
2052 struct io_event __user *events,
2053 struct timespec64 *ts)
2055 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2056 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2057 long ret = -EINVAL;
2059 if (likely(ioctx)) {
2060 if (likely(min_nr <= nr && min_nr >= 0))
2061 ret = read_events(ioctx, min_nr, nr, events, until);
2062 percpu_ref_put(&ioctx->users);
2065 return ret;
2068 /* io_getevents:
2069 * Attempts to read at least min_nr events and up to nr events from
2070 * the completion queue for the aio_context specified by ctx_id. If
2071 * it succeeds, the number of read events is returned. May fail with
2072 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2073 * out of range, if timeout is out of range. May fail with -EFAULT
2074 * if any of the memory specified is invalid. May return 0 or
2075 * < min_nr if the timeout specified by timeout has elapsed
2076 * before sufficient events are available, where timeout == NULL
2077 * specifies an infinite timeout. Note that the timeout pointed to by
2078 * timeout is relative. Will fail with -ENOSYS if not implemented.
2080 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2081 long, min_nr,
2082 long, nr,
2083 struct io_event __user *, events,
2084 struct timespec __user *, timeout)
2086 struct timespec64 ts;
2087 int ret;
2089 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2090 return -EFAULT;
2092 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2093 if (!ret && signal_pending(current))
2094 ret = -EINTR;
2095 return ret;
2098 struct __aio_sigset {
2099 const sigset_t __user *sigmask;
2100 size_t sigsetsize;
2103 SYSCALL_DEFINE6(io_pgetevents,
2104 aio_context_t, ctx_id,
2105 long, min_nr,
2106 long, nr,
2107 struct io_event __user *, events,
2108 struct timespec __user *, timeout,
2109 const struct __aio_sigset __user *, usig)
2111 struct __aio_sigset ksig = { NULL, };
2112 sigset_t ksigmask, sigsaved;
2113 struct timespec64 ts;
2114 int ret;
2116 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2117 return -EFAULT;
2119 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2120 return -EFAULT;
2122 if (ksig.sigmask) {
2123 if (ksig.sigsetsize != sizeof(sigset_t))
2124 return -EINVAL;
2125 if (copy_from_user(&ksigmask, ksig.sigmask, sizeof(ksigmask)))
2126 return -EFAULT;
2127 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2128 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2131 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2132 if (signal_pending(current)) {
2133 if (ksig.sigmask) {
2134 current->saved_sigmask = sigsaved;
2135 set_restore_sigmask();
2138 if (!ret)
2139 ret = -ERESTARTNOHAND;
2140 } else {
2141 if (ksig.sigmask)
2142 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2145 return ret;
2148 #ifdef CONFIG_COMPAT
2149 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
2150 compat_long_t, min_nr,
2151 compat_long_t, nr,
2152 struct io_event __user *, events,
2153 struct compat_timespec __user *, timeout)
2155 struct timespec64 t;
2156 int ret;
2158 if (timeout && compat_get_timespec64(&t, timeout))
2159 return -EFAULT;
2161 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2162 if (!ret && signal_pending(current))
2163 ret = -EINTR;
2164 return ret;
2168 struct __compat_aio_sigset {
2169 compat_sigset_t __user *sigmask;
2170 compat_size_t sigsetsize;
2173 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2174 compat_aio_context_t, ctx_id,
2175 compat_long_t, min_nr,
2176 compat_long_t, nr,
2177 struct io_event __user *, events,
2178 struct compat_timespec __user *, timeout,
2179 const struct __compat_aio_sigset __user *, usig)
2181 struct __compat_aio_sigset ksig = { NULL, };
2182 sigset_t ksigmask, sigsaved;
2183 struct timespec64 t;
2184 int ret;
2186 if (timeout && compat_get_timespec64(&t, timeout))
2187 return -EFAULT;
2189 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2190 return -EFAULT;
2192 if (ksig.sigmask) {
2193 if (ksig.sigsetsize != sizeof(compat_sigset_t))
2194 return -EINVAL;
2195 if (get_compat_sigset(&ksigmask, ksig.sigmask))
2196 return -EFAULT;
2197 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2198 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2201 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2202 if (signal_pending(current)) {
2203 if (ksig.sigmask) {
2204 current->saved_sigmask = sigsaved;
2205 set_restore_sigmask();
2207 if (!ret)
2208 ret = -ERESTARTNOHAND;
2209 } else {
2210 if (ksig.sigmask)
2211 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2214 return ret;
2216 #endif