crypto: cavium/nitrox - no need to check return value of debugfs_create functions
[linux/fpc-iii.git] / fs / iomap.c
bloba3088fae567ba3092735667e4f9ac2595a1814b1
1 /*
2 * Copyright (C) 2010 Red Hat, Inc.
3 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 #include <linux/module.h>
15 #include <linux/compiler.h>
16 #include <linux/fs.h>
17 #include <linux/iomap.h>
18 #include <linux/uaccess.h>
19 #include <linux/gfp.h>
20 #include <linux/migrate.h>
21 #include <linux/mm.h>
22 #include <linux/mm_inline.h>
23 #include <linux/swap.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/backing-dev.h>
29 #include <linux/buffer_head.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/dax.h>
32 #include <linux/sched/signal.h>
34 #include "internal.h"
37 * Execute a iomap write on a segment of the mapping that spans a
38 * contiguous range of pages that have identical block mapping state.
40 * This avoids the need to map pages individually, do individual allocations
41 * for each page and most importantly avoid the need for filesystem specific
42 * locking per page. Instead, all the operations are amortised over the entire
43 * range of pages. It is assumed that the filesystems will lock whatever
44 * resources they require in the iomap_begin call, and release them in the
45 * iomap_end call.
47 loff_t
48 iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags,
49 const struct iomap_ops *ops, void *data, iomap_actor_t actor)
51 struct iomap iomap = { 0 };
52 loff_t written = 0, ret;
55 * Need to map a range from start position for length bytes. This can
56 * span multiple pages - it is only guaranteed to return a range of a
57 * single type of pages (e.g. all into a hole, all mapped or all
58 * unwritten). Failure at this point has nothing to undo.
60 * If allocation is required for this range, reserve the space now so
61 * that the allocation is guaranteed to succeed later on. Once we copy
62 * the data into the page cache pages, then we cannot fail otherwise we
63 * expose transient stale data. If the reserve fails, we can safely
64 * back out at this point as there is nothing to undo.
66 ret = ops->iomap_begin(inode, pos, length, flags, &iomap);
67 if (ret)
68 return ret;
69 if (WARN_ON(iomap.offset > pos))
70 return -EIO;
71 if (WARN_ON(iomap.length == 0))
72 return -EIO;
75 * Cut down the length to the one actually provided by the filesystem,
76 * as it might not be able to give us the whole size that we requested.
78 if (iomap.offset + iomap.length < pos + length)
79 length = iomap.offset + iomap.length - pos;
82 * Now that we have guaranteed that the space allocation will succeed.
83 * we can do the copy-in page by page without having to worry about
84 * failures exposing transient data.
86 written = actor(inode, pos, length, data, &iomap);
89 * Now the data has been copied, commit the range we've copied. This
90 * should not fail unless the filesystem has had a fatal error.
92 if (ops->iomap_end) {
93 ret = ops->iomap_end(inode, pos, length,
94 written > 0 ? written : 0,
95 flags, &iomap);
98 return written ? written : ret;
101 static sector_t
102 iomap_sector(struct iomap *iomap, loff_t pos)
104 return (iomap->addr + pos - iomap->offset) >> SECTOR_SHIFT;
107 static struct iomap_page *
108 iomap_page_create(struct inode *inode, struct page *page)
110 struct iomap_page *iop = to_iomap_page(page);
112 if (iop || i_blocksize(inode) == PAGE_SIZE)
113 return iop;
115 iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
116 atomic_set(&iop->read_count, 0);
117 atomic_set(&iop->write_count, 0);
118 bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
119 set_page_private(page, (unsigned long)iop);
120 SetPagePrivate(page);
121 return iop;
124 static void
125 iomap_page_release(struct page *page)
127 struct iomap_page *iop = to_iomap_page(page);
129 if (!iop)
130 return;
131 WARN_ON_ONCE(atomic_read(&iop->read_count));
132 WARN_ON_ONCE(atomic_read(&iop->write_count));
133 ClearPagePrivate(page);
134 set_page_private(page, 0);
135 kfree(iop);
139 * Calculate the range inside the page that we actually need to read.
141 static void
142 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
143 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
145 loff_t orig_pos = *pos;
146 loff_t isize = i_size_read(inode);
147 unsigned block_bits = inode->i_blkbits;
148 unsigned block_size = (1 << block_bits);
149 unsigned poff = offset_in_page(*pos);
150 unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
151 unsigned first = poff >> block_bits;
152 unsigned last = (poff + plen - 1) >> block_bits;
155 * If the block size is smaller than the page size we need to check the
156 * per-block uptodate status and adjust the offset and length if needed
157 * to avoid reading in already uptodate ranges.
159 if (iop) {
160 unsigned int i;
162 /* move forward for each leading block marked uptodate */
163 for (i = first; i <= last; i++) {
164 if (!test_bit(i, iop->uptodate))
165 break;
166 *pos += block_size;
167 poff += block_size;
168 plen -= block_size;
169 first++;
172 /* truncate len if we find any trailing uptodate block(s) */
173 for ( ; i <= last; i++) {
174 if (test_bit(i, iop->uptodate)) {
175 plen -= (last - i + 1) * block_size;
176 last = i - 1;
177 break;
183 * If the extent spans the block that contains the i_size we need to
184 * handle both halves separately so that we properly zero data in the
185 * page cache for blocks that are entirely outside of i_size.
187 if (orig_pos <= isize && orig_pos + length > isize) {
188 unsigned end = offset_in_page(isize - 1) >> block_bits;
190 if (first <= end && last > end)
191 plen -= (last - end) * block_size;
194 *offp = poff;
195 *lenp = plen;
198 static void
199 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
201 struct iomap_page *iop = to_iomap_page(page);
202 struct inode *inode = page->mapping->host;
203 unsigned first = off >> inode->i_blkbits;
204 unsigned last = (off + len - 1) >> inode->i_blkbits;
205 unsigned int i;
206 bool uptodate = true;
208 if (iop) {
209 for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
210 if (i >= first && i <= last)
211 set_bit(i, iop->uptodate);
212 else if (!test_bit(i, iop->uptodate))
213 uptodate = false;
217 if (uptodate && !PageError(page))
218 SetPageUptodate(page);
221 static void
222 iomap_read_finish(struct iomap_page *iop, struct page *page)
224 if (!iop || atomic_dec_and_test(&iop->read_count))
225 unlock_page(page);
228 static void
229 iomap_read_page_end_io(struct bio_vec *bvec, int error)
231 struct page *page = bvec->bv_page;
232 struct iomap_page *iop = to_iomap_page(page);
234 if (unlikely(error)) {
235 ClearPageUptodate(page);
236 SetPageError(page);
237 } else {
238 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
241 iomap_read_finish(iop, page);
244 static void
245 iomap_read_inline_data(struct inode *inode, struct page *page,
246 struct iomap *iomap)
248 size_t size = i_size_read(inode);
249 void *addr;
251 if (PageUptodate(page))
252 return;
254 BUG_ON(page->index);
255 BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
257 addr = kmap_atomic(page);
258 memcpy(addr, iomap->inline_data, size);
259 memset(addr + size, 0, PAGE_SIZE - size);
260 kunmap_atomic(addr);
261 SetPageUptodate(page);
264 static void
265 iomap_read_end_io(struct bio *bio)
267 int error = blk_status_to_errno(bio->bi_status);
268 struct bio_vec *bvec;
269 int i;
271 bio_for_each_segment_all(bvec, bio, i)
272 iomap_read_page_end_io(bvec, error);
273 bio_put(bio);
276 struct iomap_readpage_ctx {
277 struct page *cur_page;
278 bool cur_page_in_bio;
279 bool is_readahead;
280 struct bio *bio;
281 struct list_head *pages;
284 static loff_t
285 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
286 struct iomap *iomap)
288 struct iomap_readpage_ctx *ctx = data;
289 struct page *page = ctx->cur_page;
290 struct iomap_page *iop = iomap_page_create(inode, page);
291 bool is_contig = false;
292 loff_t orig_pos = pos;
293 unsigned poff, plen;
294 sector_t sector;
296 if (iomap->type == IOMAP_INLINE) {
297 WARN_ON_ONCE(pos);
298 iomap_read_inline_data(inode, page, iomap);
299 return PAGE_SIZE;
302 /* zero post-eof blocks as the page may be mapped */
303 iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
304 if (plen == 0)
305 goto done;
307 if (iomap->type != IOMAP_MAPPED || pos >= i_size_read(inode)) {
308 zero_user(page, poff, plen);
309 iomap_set_range_uptodate(page, poff, plen);
310 goto done;
313 ctx->cur_page_in_bio = true;
316 * Try to merge into a previous segment if we can.
318 sector = iomap_sector(iomap, pos);
319 if (ctx->bio && bio_end_sector(ctx->bio) == sector) {
320 if (__bio_try_merge_page(ctx->bio, page, plen, poff))
321 goto done;
322 is_contig = true;
326 * If we start a new segment we need to increase the read count, and we
327 * need to do so before submitting any previous full bio to make sure
328 * that we don't prematurely unlock the page.
330 if (iop)
331 atomic_inc(&iop->read_count);
333 if (!ctx->bio || !is_contig || bio_full(ctx->bio)) {
334 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
335 int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
337 if (ctx->bio)
338 submit_bio(ctx->bio);
340 if (ctx->is_readahead) /* same as readahead_gfp_mask */
341 gfp |= __GFP_NORETRY | __GFP_NOWARN;
342 ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
343 ctx->bio->bi_opf = REQ_OP_READ;
344 if (ctx->is_readahead)
345 ctx->bio->bi_opf |= REQ_RAHEAD;
346 ctx->bio->bi_iter.bi_sector = sector;
347 bio_set_dev(ctx->bio, iomap->bdev);
348 ctx->bio->bi_end_io = iomap_read_end_io;
351 __bio_add_page(ctx->bio, page, plen, poff);
352 done:
354 * Move the caller beyond our range so that it keeps making progress.
355 * For that we have to include any leading non-uptodate ranges, but
356 * we can skip trailing ones as they will be handled in the next
357 * iteration.
359 return pos - orig_pos + plen;
363 iomap_readpage(struct page *page, const struct iomap_ops *ops)
365 struct iomap_readpage_ctx ctx = { .cur_page = page };
366 struct inode *inode = page->mapping->host;
367 unsigned poff;
368 loff_t ret;
370 for (poff = 0; poff < PAGE_SIZE; poff += ret) {
371 ret = iomap_apply(inode, page_offset(page) + poff,
372 PAGE_SIZE - poff, 0, ops, &ctx,
373 iomap_readpage_actor);
374 if (ret <= 0) {
375 WARN_ON_ONCE(ret == 0);
376 SetPageError(page);
377 break;
381 if (ctx.bio) {
382 submit_bio(ctx.bio);
383 WARN_ON_ONCE(!ctx.cur_page_in_bio);
384 } else {
385 WARN_ON_ONCE(ctx.cur_page_in_bio);
386 unlock_page(page);
390 * Just like mpage_readpages and block_read_full_page we always
391 * return 0 and just mark the page as PageError on errors. This
392 * should be cleaned up all through the stack eventually.
394 return 0;
396 EXPORT_SYMBOL_GPL(iomap_readpage);
398 static struct page *
399 iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
400 loff_t length, loff_t *done)
402 while (!list_empty(pages)) {
403 struct page *page = lru_to_page(pages);
405 if (page_offset(page) >= (u64)pos + length)
406 break;
408 list_del(&page->lru);
409 if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
410 GFP_NOFS))
411 return page;
414 * If we already have a page in the page cache at index we are
415 * done. Upper layers don't care if it is uptodate after the
416 * readpages call itself as every page gets checked again once
417 * actually needed.
419 *done += PAGE_SIZE;
420 put_page(page);
423 return NULL;
426 static loff_t
427 iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
428 void *data, struct iomap *iomap)
430 struct iomap_readpage_ctx *ctx = data;
431 loff_t done, ret;
433 for (done = 0; done < length; done += ret) {
434 if (ctx->cur_page && offset_in_page(pos + done) == 0) {
435 if (!ctx->cur_page_in_bio)
436 unlock_page(ctx->cur_page);
437 put_page(ctx->cur_page);
438 ctx->cur_page = NULL;
440 if (!ctx->cur_page) {
441 ctx->cur_page = iomap_next_page(inode, ctx->pages,
442 pos, length, &done);
443 if (!ctx->cur_page)
444 break;
445 ctx->cur_page_in_bio = false;
447 ret = iomap_readpage_actor(inode, pos + done, length - done,
448 ctx, iomap);
451 return done;
455 iomap_readpages(struct address_space *mapping, struct list_head *pages,
456 unsigned nr_pages, const struct iomap_ops *ops)
458 struct iomap_readpage_ctx ctx = {
459 .pages = pages,
460 .is_readahead = true,
462 loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
463 loff_t last = page_offset(list_entry(pages->next, struct page, lru));
464 loff_t length = last - pos + PAGE_SIZE, ret = 0;
466 while (length > 0) {
467 ret = iomap_apply(mapping->host, pos, length, 0, ops,
468 &ctx, iomap_readpages_actor);
469 if (ret <= 0) {
470 WARN_ON_ONCE(ret == 0);
471 goto done;
473 pos += ret;
474 length -= ret;
476 ret = 0;
477 done:
478 if (ctx.bio)
479 submit_bio(ctx.bio);
480 if (ctx.cur_page) {
481 if (!ctx.cur_page_in_bio)
482 unlock_page(ctx.cur_page);
483 put_page(ctx.cur_page);
487 * Check that we didn't lose a page due to the arcance calling
488 * conventions..
490 WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
491 return ret;
493 EXPORT_SYMBOL_GPL(iomap_readpages);
496 * iomap_is_partially_uptodate checks whether blocks within a page are
497 * uptodate or not.
499 * Returns true if all blocks which correspond to a file portion
500 * we want to read within the page are uptodate.
503 iomap_is_partially_uptodate(struct page *page, unsigned long from,
504 unsigned long count)
506 struct iomap_page *iop = to_iomap_page(page);
507 struct inode *inode = page->mapping->host;
508 unsigned len, first, last;
509 unsigned i;
511 /* Limit range to one page */
512 len = min_t(unsigned, PAGE_SIZE - from, count);
514 /* First and last blocks in range within page */
515 first = from >> inode->i_blkbits;
516 last = (from + len - 1) >> inode->i_blkbits;
518 if (iop) {
519 for (i = first; i <= last; i++)
520 if (!test_bit(i, iop->uptodate))
521 return 0;
522 return 1;
525 return 0;
527 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
530 iomap_releasepage(struct page *page, gfp_t gfp_mask)
533 * mm accommodates an old ext3 case where clean pages might not have had
534 * the dirty bit cleared. Thus, it can send actual dirty pages to
535 * ->releasepage() via shrink_active_list(), skip those here.
537 if (PageDirty(page) || PageWriteback(page))
538 return 0;
539 iomap_page_release(page);
540 return 1;
542 EXPORT_SYMBOL_GPL(iomap_releasepage);
544 void
545 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
548 * If we are invalidating the entire page, clear the dirty state from it
549 * and release it to avoid unnecessary buildup of the LRU.
551 if (offset == 0 && len == PAGE_SIZE) {
552 WARN_ON_ONCE(PageWriteback(page));
553 cancel_dirty_page(page);
554 iomap_page_release(page);
557 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
559 #ifdef CONFIG_MIGRATION
561 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
562 struct page *page, enum migrate_mode mode)
564 int ret;
566 ret = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
567 if (ret != MIGRATEPAGE_SUCCESS)
568 return ret;
570 if (page_has_private(page)) {
571 ClearPagePrivate(page);
572 set_page_private(newpage, page_private(page));
573 set_page_private(page, 0);
574 SetPagePrivate(newpage);
577 if (mode != MIGRATE_SYNC_NO_COPY)
578 migrate_page_copy(newpage, page);
579 else
580 migrate_page_states(newpage, page);
581 return MIGRATEPAGE_SUCCESS;
583 EXPORT_SYMBOL_GPL(iomap_migrate_page);
584 #endif /* CONFIG_MIGRATION */
586 static void
587 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
589 loff_t i_size = i_size_read(inode);
592 * Only truncate newly allocated pages beyoned EOF, even if the
593 * write started inside the existing inode size.
595 if (pos + len > i_size)
596 truncate_pagecache_range(inode, max(pos, i_size), pos + len);
599 static int
600 iomap_read_page_sync(struct inode *inode, loff_t block_start, struct page *page,
601 unsigned poff, unsigned plen, unsigned from, unsigned to,
602 struct iomap *iomap)
604 struct bio_vec bvec;
605 struct bio bio;
607 if (iomap->type != IOMAP_MAPPED || block_start >= i_size_read(inode)) {
608 zero_user_segments(page, poff, from, to, poff + plen);
609 iomap_set_range_uptodate(page, poff, plen);
610 return 0;
613 bio_init(&bio, &bvec, 1);
614 bio.bi_opf = REQ_OP_READ;
615 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
616 bio_set_dev(&bio, iomap->bdev);
617 __bio_add_page(&bio, page, plen, poff);
618 return submit_bio_wait(&bio);
621 static int
622 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len,
623 struct page *page, struct iomap *iomap)
625 struct iomap_page *iop = iomap_page_create(inode, page);
626 loff_t block_size = i_blocksize(inode);
627 loff_t block_start = pos & ~(block_size - 1);
628 loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
629 unsigned from = offset_in_page(pos), to = from + len, poff, plen;
630 int status = 0;
632 if (PageUptodate(page))
633 return 0;
635 do {
636 iomap_adjust_read_range(inode, iop, &block_start,
637 block_end - block_start, &poff, &plen);
638 if (plen == 0)
639 break;
641 if ((from > poff && from < poff + plen) ||
642 (to > poff && to < poff + plen)) {
643 status = iomap_read_page_sync(inode, block_start, page,
644 poff, plen, from, to, iomap);
645 if (status)
646 break;
649 } while ((block_start += plen) < block_end);
651 return status;
654 static int
655 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
656 struct page **pagep, struct iomap *iomap)
658 pgoff_t index = pos >> PAGE_SHIFT;
659 struct page *page;
660 int status = 0;
662 BUG_ON(pos + len > iomap->offset + iomap->length);
664 if (fatal_signal_pending(current))
665 return -EINTR;
667 page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
668 if (!page)
669 return -ENOMEM;
671 if (iomap->type == IOMAP_INLINE)
672 iomap_read_inline_data(inode, page, iomap);
673 else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
674 status = __block_write_begin_int(page, pos, len, NULL, iomap);
675 else
676 status = __iomap_write_begin(inode, pos, len, page, iomap);
677 if (unlikely(status)) {
678 unlock_page(page);
679 put_page(page);
680 page = NULL;
682 iomap_write_failed(inode, pos, len);
685 *pagep = page;
686 return status;
690 iomap_set_page_dirty(struct page *page)
692 struct address_space *mapping = page_mapping(page);
693 int newly_dirty;
695 if (unlikely(!mapping))
696 return !TestSetPageDirty(page);
699 * Lock out page->mem_cgroup migration to keep PageDirty
700 * synchronized with per-memcg dirty page counters.
702 lock_page_memcg(page);
703 newly_dirty = !TestSetPageDirty(page);
704 if (newly_dirty)
705 __set_page_dirty(page, mapping, 0);
706 unlock_page_memcg(page);
708 if (newly_dirty)
709 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
710 return newly_dirty;
712 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
714 static int
715 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
716 unsigned copied, struct page *page, struct iomap *iomap)
718 flush_dcache_page(page);
721 * The blocks that were entirely written will now be uptodate, so we
722 * don't have to worry about a readpage reading them and overwriting a
723 * partial write. However if we have encountered a short write and only
724 * partially written into a block, it will not be marked uptodate, so a
725 * readpage might come in and destroy our partial write.
727 * Do the simplest thing, and just treat any short write to a non
728 * uptodate page as a zero-length write, and force the caller to redo
729 * the whole thing.
731 if (unlikely(copied < len && !PageUptodate(page))) {
732 copied = 0;
733 } else {
734 iomap_set_range_uptodate(page, offset_in_page(pos), len);
735 iomap_set_page_dirty(page);
737 return __generic_write_end(inode, pos, copied, page);
740 static int
741 iomap_write_end_inline(struct inode *inode, struct page *page,
742 struct iomap *iomap, loff_t pos, unsigned copied)
744 void *addr;
746 WARN_ON_ONCE(!PageUptodate(page));
747 BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
749 addr = kmap_atomic(page);
750 memcpy(iomap->inline_data + pos, addr + pos, copied);
751 kunmap_atomic(addr);
753 mark_inode_dirty(inode);
754 __generic_write_end(inode, pos, copied, page);
755 return copied;
758 static int
759 iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
760 unsigned copied, struct page *page, struct iomap *iomap)
762 int ret;
764 if (iomap->type == IOMAP_INLINE) {
765 ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
766 } else if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
767 ret = generic_write_end(NULL, inode->i_mapping, pos, len,
768 copied, page, NULL);
769 } else {
770 ret = __iomap_write_end(inode, pos, len, copied, page, iomap);
773 if (iomap->page_done)
774 iomap->page_done(inode, pos, copied, page, iomap);
776 if (ret < len)
777 iomap_write_failed(inode, pos, len);
778 return ret;
781 static loff_t
782 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
783 struct iomap *iomap)
785 struct iov_iter *i = data;
786 long status = 0;
787 ssize_t written = 0;
788 unsigned int flags = AOP_FLAG_NOFS;
790 do {
791 struct page *page;
792 unsigned long offset; /* Offset into pagecache page */
793 unsigned long bytes; /* Bytes to write to page */
794 size_t copied; /* Bytes copied from user */
796 offset = offset_in_page(pos);
797 bytes = min_t(unsigned long, PAGE_SIZE - offset,
798 iov_iter_count(i));
799 again:
800 if (bytes > length)
801 bytes = length;
804 * Bring in the user page that we will copy from _first_.
805 * Otherwise there's a nasty deadlock on copying from the
806 * same page as we're writing to, without it being marked
807 * up-to-date.
809 * Not only is this an optimisation, but it is also required
810 * to check that the address is actually valid, when atomic
811 * usercopies are used, below.
813 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
814 status = -EFAULT;
815 break;
818 status = iomap_write_begin(inode, pos, bytes, flags, &page,
819 iomap);
820 if (unlikely(status))
821 break;
823 if (mapping_writably_mapped(inode->i_mapping))
824 flush_dcache_page(page);
826 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
828 flush_dcache_page(page);
830 status = iomap_write_end(inode, pos, bytes, copied, page,
831 iomap);
832 if (unlikely(status < 0))
833 break;
834 copied = status;
836 cond_resched();
838 iov_iter_advance(i, copied);
839 if (unlikely(copied == 0)) {
841 * If we were unable to copy any data at all, we must
842 * fall back to a single segment length write.
844 * If we didn't fallback here, we could livelock
845 * because not all segments in the iov can be copied at
846 * once without a pagefault.
848 bytes = min_t(unsigned long, PAGE_SIZE - offset,
849 iov_iter_single_seg_count(i));
850 goto again;
852 pos += copied;
853 written += copied;
854 length -= copied;
856 balance_dirty_pages_ratelimited(inode->i_mapping);
857 } while (iov_iter_count(i) && length);
859 return written ? written : status;
862 ssize_t
863 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
864 const struct iomap_ops *ops)
866 struct inode *inode = iocb->ki_filp->f_mapping->host;
867 loff_t pos = iocb->ki_pos, ret = 0, written = 0;
869 while (iov_iter_count(iter)) {
870 ret = iomap_apply(inode, pos, iov_iter_count(iter),
871 IOMAP_WRITE, ops, iter, iomap_write_actor);
872 if (ret <= 0)
873 break;
874 pos += ret;
875 written += ret;
878 return written ? written : ret;
880 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
882 static struct page *
883 __iomap_read_page(struct inode *inode, loff_t offset)
885 struct address_space *mapping = inode->i_mapping;
886 struct page *page;
888 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
889 if (IS_ERR(page))
890 return page;
891 if (!PageUptodate(page)) {
892 put_page(page);
893 return ERR_PTR(-EIO);
895 return page;
898 static loff_t
899 iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
900 struct iomap *iomap)
902 long status = 0;
903 ssize_t written = 0;
905 do {
906 struct page *page, *rpage;
907 unsigned long offset; /* Offset into pagecache page */
908 unsigned long bytes; /* Bytes to write to page */
910 offset = offset_in_page(pos);
911 bytes = min_t(loff_t, PAGE_SIZE - offset, length);
913 rpage = __iomap_read_page(inode, pos);
914 if (IS_ERR(rpage))
915 return PTR_ERR(rpage);
917 status = iomap_write_begin(inode, pos, bytes,
918 AOP_FLAG_NOFS, &page, iomap);
919 put_page(rpage);
920 if (unlikely(status))
921 return status;
923 WARN_ON_ONCE(!PageUptodate(page));
925 status = iomap_write_end(inode, pos, bytes, bytes, page, iomap);
926 if (unlikely(status <= 0)) {
927 if (WARN_ON_ONCE(status == 0))
928 return -EIO;
929 return status;
932 cond_resched();
934 pos += status;
935 written += status;
936 length -= status;
938 balance_dirty_pages_ratelimited(inode->i_mapping);
939 } while (length);
941 return written;
945 iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
946 const struct iomap_ops *ops)
948 loff_t ret;
950 while (len) {
951 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
952 iomap_dirty_actor);
953 if (ret <= 0)
954 return ret;
955 pos += ret;
956 len -= ret;
959 return 0;
961 EXPORT_SYMBOL_GPL(iomap_file_dirty);
963 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
964 unsigned bytes, struct iomap *iomap)
966 struct page *page;
967 int status;
969 status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page,
970 iomap);
971 if (status)
972 return status;
974 zero_user(page, offset, bytes);
975 mark_page_accessed(page);
977 return iomap_write_end(inode, pos, bytes, bytes, page, iomap);
980 static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
981 struct iomap *iomap)
983 return __dax_zero_page_range(iomap->bdev, iomap->dax_dev,
984 iomap_sector(iomap, pos & PAGE_MASK), offset, bytes);
987 static loff_t
988 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
989 void *data, struct iomap *iomap)
991 bool *did_zero = data;
992 loff_t written = 0;
993 int status;
995 /* already zeroed? we're done. */
996 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
997 return count;
999 do {
1000 unsigned offset, bytes;
1002 offset = offset_in_page(pos);
1003 bytes = min_t(loff_t, PAGE_SIZE - offset, count);
1005 if (IS_DAX(inode))
1006 status = iomap_dax_zero(pos, offset, bytes, iomap);
1007 else
1008 status = iomap_zero(inode, pos, offset, bytes, iomap);
1009 if (status < 0)
1010 return status;
1012 pos += bytes;
1013 count -= bytes;
1014 written += bytes;
1015 if (did_zero)
1016 *did_zero = true;
1017 } while (count > 0);
1019 return written;
1023 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1024 const struct iomap_ops *ops)
1026 loff_t ret;
1028 while (len > 0) {
1029 ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
1030 ops, did_zero, iomap_zero_range_actor);
1031 if (ret <= 0)
1032 return ret;
1034 pos += ret;
1035 len -= ret;
1038 return 0;
1040 EXPORT_SYMBOL_GPL(iomap_zero_range);
1043 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1044 const struct iomap_ops *ops)
1046 unsigned int blocksize = i_blocksize(inode);
1047 unsigned int off = pos & (blocksize - 1);
1049 /* Block boundary? Nothing to do */
1050 if (!off)
1051 return 0;
1052 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1054 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1056 static loff_t
1057 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1058 void *data, struct iomap *iomap)
1060 struct page *page = data;
1061 int ret;
1063 if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1064 ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1065 if (ret)
1066 return ret;
1067 block_commit_write(page, 0, length);
1068 } else {
1069 WARN_ON_ONCE(!PageUptodate(page));
1070 iomap_page_create(inode, page);
1071 set_page_dirty(page);
1074 return length;
1077 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1079 struct page *page = vmf->page;
1080 struct inode *inode = file_inode(vmf->vma->vm_file);
1081 unsigned long length;
1082 loff_t offset, size;
1083 ssize_t ret;
1085 lock_page(page);
1086 size = i_size_read(inode);
1087 if ((page->mapping != inode->i_mapping) ||
1088 (page_offset(page) > size)) {
1089 /* We overload EFAULT to mean page got truncated */
1090 ret = -EFAULT;
1091 goto out_unlock;
1094 /* page is wholly or partially inside EOF */
1095 if (((page->index + 1) << PAGE_SHIFT) > size)
1096 length = offset_in_page(size);
1097 else
1098 length = PAGE_SIZE;
1100 offset = page_offset(page);
1101 while (length > 0) {
1102 ret = iomap_apply(inode, offset, length,
1103 IOMAP_WRITE | IOMAP_FAULT, ops, page,
1104 iomap_page_mkwrite_actor);
1105 if (unlikely(ret <= 0))
1106 goto out_unlock;
1107 offset += ret;
1108 length -= ret;
1111 wait_for_stable_page(page);
1112 return VM_FAULT_LOCKED;
1113 out_unlock:
1114 unlock_page(page);
1115 return block_page_mkwrite_return(ret);
1117 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1119 struct fiemap_ctx {
1120 struct fiemap_extent_info *fi;
1121 struct iomap prev;
1124 static int iomap_to_fiemap(struct fiemap_extent_info *fi,
1125 struct iomap *iomap, u32 flags)
1127 switch (iomap->type) {
1128 case IOMAP_HOLE:
1129 /* skip holes */
1130 return 0;
1131 case IOMAP_DELALLOC:
1132 flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN;
1133 break;
1134 case IOMAP_MAPPED:
1135 break;
1136 case IOMAP_UNWRITTEN:
1137 flags |= FIEMAP_EXTENT_UNWRITTEN;
1138 break;
1139 case IOMAP_INLINE:
1140 flags |= FIEMAP_EXTENT_DATA_INLINE;
1141 break;
1144 if (iomap->flags & IOMAP_F_MERGED)
1145 flags |= FIEMAP_EXTENT_MERGED;
1146 if (iomap->flags & IOMAP_F_SHARED)
1147 flags |= FIEMAP_EXTENT_SHARED;
1149 return fiemap_fill_next_extent(fi, iomap->offset,
1150 iomap->addr != IOMAP_NULL_ADDR ? iomap->addr : 0,
1151 iomap->length, flags);
1154 static loff_t
1155 iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1156 struct iomap *iomap)
1158 struct fiemap_ctx *ctx = data;
1159 loff_t ret = length;
1161 if (iomap->type == IOMAP_HOLE)
1162 return length;
1164 ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0);
1165 ctx->prev = *iomap;
1166 switch (ret) {
1167 case 0: /* success */
1168 return length;
1169 case 1: /* extent array full */
1170 return 0;
1171 default:
1172 return ret;
1176 int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi,
1177 loff_t start, loff_t len, const struct iomap_ops *ops)
1179 struct fiemap_ctx ctx;
1180 loff_t ret;
1182 memset(&ctx, 0, sizeof(ctx));
1183 ctx.fi = fi;
1184 ctx.prev.type = IOMAP_HOLE;
1186 ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC);
1187 if (ret)
1188 return ret;
1190 if (fi->fi_flags & FIEMAP_FLAG_SYNC) {
1191 ret = filemap_write_and_wait(inode->i_mapping);
1192 if (ret)
1193 return ret;
1196 while (len > 0) {
1197 ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx,
1198 iomap_fiemap_actor);
1199 /* inode with no (attribute) mapping will give ENOENT */
1200 if (ret == -ENOENT)
1201 break;
1202 if (ret < 0)
1203 return ret;
1204 if (ret == 0)
1205 break;
1207 start += ret;
1208 len -= ret;
1211 if (ctx.prev.type != IOMAP_HOLE) {
1212 ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST);
1213 if (ret < 0)
1214 return ret;
1217 return 0;
1219 EXPORT_SYMBOL_GPL(iomap_fiemap);
1222 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
1223 * Returns true if found and updates @lastoff to the offset in file.
1225 static bool
1226 page_seek_hole_data(struct inode *inode, struct page *page, loff_t *lastoff,
1227 int whence)
1229 const struct address_space_operations *ops = inode->i_mapping->a_ops;
1230 unsigned int bsize = i_blocksize(inode), off;
1231 bool seek_data = whence == SEEK_DATA;
1232 loff_t poff = page_offset(page);
1234 if (WARN_ON_ONCE(*lastoff >= poff + PAGE_SIZE))
1235 return false;
1237 if (*lastoff < poff) {
1239 * Last offset smaller than the start of the page means we found
1240 * a hole:
1242 if (whence == SEEK_HOLE)
1243 return true;
1244 *lastoff = poff;
1248 * Just check the page unless we can and should check block ranges:
1250 if (bsize == PAGE_SIZE || !ops->is_partially_uptodate)
1251 return PageUptodate(page) == seek_data;
1253 lock_page(page);
1254 if (unlikely(page->mapping != inode->i_mapping))
1255 goto out_unlock_not_found;
1257 for (off = 0; off < PAGE_SIZE; off += bsize) {
1258 if (offset_in_page(*lastoff) >= off + bsize)
1259 continue;
1260 if (ops->is_partially_uptodate(page, off, bsize) == seek_data) {
1261 unlock_page(page);
1262 return true;
1264 *lastoff = poff + off + bsize;
1267 out_unlock_not_found:
1268 unlock_page(page);
1269 return false;
1273 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
1275 * Within unwritten extents, the page cache determines which parts are holes
1276 * and which are data: uptodate buffer heads count as data; everything else
1277 * counts as a hole.
1279 * Returns the resulting offset on successs, and -ENOENT otherwise.
1281 static loff_t
1282 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
1283 int whence)
1285 pgoff_t index = offset >> PAGE_SHIFT;
1286 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1287 loff_t lastoff = offset;
1288 struct pagevec pvec;
1290 if (length <= 0)
1291 return -ENOENT;
1293 pagevec_init(&pvec);
1295 do {
1296 unsigned nr_pages, i;
1298 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
1299 end - 1);
1300 if (nr_pages == 0)
1301 break;
1303 for (i = 0; i < nr_pages; i++) {
1304 struct page *page = pvec.pages[i];
1306 if (page_seek_hole_data(inode, page, &lastoff, whence))
1307 goto check_range;
1308 lastoff = page_offset(page) + PAGE_SIZE;
1310 pagevec_release(&pvec);
1311 } while (index < end);
1313 /* When no page at lastoff and we are not done, we found a hole. */
1314 if (whence != SEEK_HOLE)
1315 goto not_found;
1317 check_range:
1318 if (lastoff < offset + length)
1319 goto out;
1320 not_found:
1321 lastoff = -ENOENT;
1322 out:
1323 pagevec_release(&pvec);
1324 return lastoff;
1328 static loff_t
1329 iomap_seek_hole_actor(struct inode *inode, loff_t offset, loff_t length,
1330 void *data, struct iomap *iomap)
1332 switch (iomap->type) {
1333 case IOMAP_UNWRITTEN:
1334 offset = page_cache_seek_hole_data(inode, offset, length,
1335 SEEK_HOLE);
1336 if (offset < 0)
1337 return length;
1338 /* fall through */
1339 case IOMAP_HOLE:
1340 *(loff_t *)data = offset;
1341 return 0;
1342 default:
1343 return length;
1347 loff_t
1348 iomap_seek_hole(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1350 loff_t size = i_size_read(inode);
1351 loff_t length = size - offset;
1352 loff_t ret;
1354 /* Nothing to be found before or beyond the end of the file. */
1355 if (offset < 0 || offset >= size)
1356 return -ENXIO;
1358 while (length > 0) {
1359 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1360 &offset, iomap_seek_hole_actor);
1361 if (ret < 0)
1362 return ret;
1363 if (ret == 0)
1364 break;
1366 offset += ret;
1367 length -= ret;
1370 return offset;
1372 EXPORT_SYMBOL_GPL(iomap_seek_hole);
1374 static loff_t
1375 iomap_seek_data_actor(struct inode *inode, loff_t offset, loff_t length,
1376 void *data, struct iomap *iomap)
1378 switch (iomap->type) {
1379 case IOMAP_HOLE:
1380 return length;
1381 case IOMAP_UNWRITTEN:
1382 offset = page_cache_seek_hole_data(inode, offset, length,
1383 SEEK_DATA);
1384 if (offset < 0)
1385 return length;
1386 /*FALLTHRU*/
1387 default:
1388 *(loff_t *)data = offset;
1389 return 0;
1393 loff_t
1394 iomap_seek_data(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1396 loff_t size = i_size_read(inode);
1397 loff_t length = size - offset;
1398 loff_t ret;
1400 /* Nothing to be found before or beyond the end of the file. */
1401 if (offset < 0 || offset >= size)
1402 return -ENXIO;
1404 while (length > 0) {
1405 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1406 &offset, iomap_seek_data_actor);
1407 if (ret < 0)
1408 return ret;
1409 if (ret == 0)
1410 break;
1412 offset += ret;
1413 length -= ret;
1416 if (length <= 0)
1417 return -ENXIO;
1418 return offset;
1420 EXPORT_SYMBOL_GPL(iomap_seek_data);
1423 * Private flags for iomap_dio, must not overlap with the public ones in
1424 * iomap.h:
1426 #define IOMAP_DIO_WRITE_FUA (1 << 28)
1427 #define IOMAP_DIO_NEED_SYNC (1 << 29)
1428 #define IOMAP_DIO_WRITE (1 << 30)
1429 #define IOMAP_DIO_DIRTY (1 << 31)
1431 struct iomap_dio {
1432 struct kiocb *iocb;
1433 iomap_dio_end_io_t *end_io;
1434 loff_t i_size;
1435 loff_t size;
1436 atomic_t ref;
1437 unsigned flags;
1438 int error;
1439 bool wait_for_completion;
1441 union {
1442 /* used during submission and for synchronous completion: */
1443 struct {
1444 struct iov_iter *iter;
1445 struct task_struct *waiter;
1446 struct request_queue *last_queue;
1447 blk_qc_t cookie;
1448 } submit;
1450 /* used for aio completion: */
1451 struct {
1452 struct work_struct work;
1453 } aio;
1457 static ssize_t iomap_dio_complete(struct iomap_dio *dio)
1459 struct kiocb *iocb = dio->iocb;
1460 struct inode *inode = file_inode(iocb->ki_filp);
1461 loff_t offset = iocb->ki_pos;
1462 ssize_t ret;
1464 if (dio->end_io) {
1465 ret = dio->end_io(iocb,
1466 dio->error ? dio->error : dio->size,
1467 dio->flags);
1468 } else {
1469 ret = dio->error;
1472 if (likely(!ret)) {
1473 ret = dio->size;
1474 /* check for short read */
1475 if (offset + ret > dio->i_size &&
1476 !(dio->flags & IOMAP_DIO_WRITE))
1477 ret = dio->i_size - offset;
1478 iocb->ki_pos += ret;
1482 * Try again to invalidate clean pages which might have been cached by
1483 * non-direct readahead, or faulted in by get_user_pages() if the source
1484 * of the write was an mmap'ed region of the file we're writing. Either
1485 * one is a pretty crazy thing to do, so we don't support it 100%. If
1486 * this invalidation fails, tough, the write still worked...
1488 * And this page cache invalidation has to be after dio->end_io(), as
1489 * some filesystems convert unwritten extents to real allocations in
1490 * end_io() when necessary, otherwise a racing buffer read would cache
1491 * zeros from unwritten extents.
1493 if (!dio->error &&
1494 (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
1495 int err;
1496 err = invalidate_inode_pages2_range(inode->i_mapping,
1497 offset >> PAGE_SHIFT,
1498 (offset + dio->size - 1) >> PAGE_SHIFT);
1499 if (err)
1500 dio_warn_stale_pagecache(iocb->ki_filp);
1504 * If this is a DSYNC write, make sure we push it to stable storage now
1505 * that we've written data.
1507 if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
1508 ret = generic_write_sync(iocb, ret);
1510 inode_dio_end(file_inode(iocb->ki_filp));
1511 kfree(dio);
1513 return ret;
1516 static void iomap_dio_complete_work(struct work_struct *work)
1518 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
1519 struct kiocb *iocb = dio->iocb;
1521 iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
1525 * Set an error in the dio if none is set yet. We have to use cmpxchg
1526 * as the submission context and the completion context(s) can race to
1527 * update the error.
1529 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
1531 cmpxchg(&dio->error, 0, ret);
1534 static void iomap_dio_bio_end_io(struct bio *bio)
1536 struct iomap_dio *dio = bio->bi_private;
1537 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
1539 if (bio->bi_status)
1540 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
1542 if (atomic_dec_and_test(&dio->ref)) {
1543 if (dio->wait_for_completion) {
1544 struct task_struct *waiter = dio->submit.waiter;
1545 WRITE_ONCE(dio->submit.waiter, NULL);
1546 blk_wake_io_task(waiter);
1547 } else if (dio->flags & IOMAP_DIO_WRITE) {
1548 struct inode *inode = file_inode(dio->iocb->ki_filp);
1550 INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
1551 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
1552 } else {
1553 iomap_dio_complete_work(&dio->aio.work);
1557 if (should_dirty) {
1558 bio_check_pages_dirty(bio);
1559 } else {
1560 struct bio_vec *bvec;
1561 int i;
1563 bio_for_each_segment_all(bvec, bio, i)
1564 put_page(bvec->bv_page);
1565 bio_put(bio);
1569 static blk_qc_t
1570 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
1571 unsigned len)
1573 struct page *page = ZERO_PAGE(0);
1574 int flags = REQ_SYNC | REQ_IDLE;
1575 struct bio *bio;
1577 bio = bio_alloc(GFP_KERNEL, 1);
1578 bio_set_dev(bio, iomap->bdev);
1579 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1580 bio->bi_private = dio;
1581 bio->bi_end_io = iomap_dio_bio_end_io;
1583 if (dio->iocb->ki_flags & IOCB_HIPRI)
1584 flags |= REQ_HIPRI;
1586 get_page(page);
1587 __bio_add_page(bio, page, len, 0);
1588 bio_set_op_attrs(bio, REQ_OP_WRITE, flags);
1590 atomic_inc(&dio->ref);
1591 return submit_bio(bio);
1594 static loff_t
1595 iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length,
1596 struct iomap_dio *dio, struct iomap *iomap)
1598 unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
1599 unsigned int fs_block_size = i_blocksize(inode), pad;
1600 unsigned int align = iov_iter_alignment(dio->submit.iter);
1601 struct iov_iter iter;
1602 struct bio *bio;
1603 bool need_zeroout = false;
1604 bool use_fua = false;
1605 int nr_pages, ret = 0;
1606 size_t copied = 0;
1608 if ((pos | length | align) & ((1 << blkbits) - 1))
1609 return -EINVAL;
1611 if (iomap->type == IOMAP_UNWRITTEN) {
1612 dio->flags |= IOMAP_DIO_UNWRITTEN;
1613 need_zeroout = true;
1616 if (iomap->flags & IOMAP_F_SHARED)
1617 dio->flags |= IOMAP_DIO_COW;
1619 if (iomap->flags & IOMAP_F_NEW) {
1620 need_zeroout = true;
1621 } else if (iomap->type == IOMAP_MAPPED) {
1623 * Use a FUA write if we need datasync semantics, this is a pure
1624 * data IO that doesn't require any metadata updates (including
1625 * after IO completion such as unwritten extent conversion) and
1626 * the underlying device supports FUA. This allows us to avoid
1627 * cache flushes on IO completion.
1629 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
1630 (dio->flags & IOMAP_DIO_WRITE_FUA) &&
1631 blk_queue_fua(bdev_get_queue(iomap->bdev)))
1632 use_fua = true;
1636 * Operate on a partial iter trimmed to the extent we were called for.
1637 * We'll update the iter in the dio once we're done with this extent.
1639 iter = *dio->submit.iter;
1640 iov_iter_truncate(&iter, length);
1642 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1643 if (nr_pages <= 0)
1644 return nr_pages;
1646 if (need_zeroout) {
1647 /* zero out from the start of the block to the write offset */
1648 pad = pos & (fs_block_size - 1);
1649 if (pad)
1650 iomap_dio_zero(dio, iomap, pos - pad, pad);
1653 do {
1654 size_t n;
1655 if (dio->error) {
1656 iov_iter_revert(dio->submit.iter, copied);
1657 return 0;
1660 bio = bio_alloc(GFP_KERNEL, nr_pages);
1661 bio_set_dev(bio, iomap->bdev);
1662 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1663 bio->bi_write_hint = dio->iocb->ki_hint;
1664 bio->bi_ioprio = dio->iocb->ki_ioprio;
1665 bio->bi_private = dio;
1666 bio->bi_end_io = iomap_dio_bio_end_io;
1668 ret = bio_iov_iter_get_pages(bio, &iter);
1669 if (unlikely(ret)) {
1671 * We have to stop part way through an IO. We must fall
1672 * through to the sub-block tail zeroing here, otherwise
1673 * this short IO may expose stale data in the tail of
1674 * the block we haven't written data to.
1676 bio_put(bio);
1677 goto zero_tail;
1680 n = bio->bi_iter.bi_size;
1681 if (dio->flags & IOMAP_DIO_WRITE) {
1682 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1683 if (use_fua)
1684 bio->bi_opf |= REQ_FUA;
1685 else
1686 dio->flags &= ~IOMAP_DIO_WRITE_FUA;
1687 task_io_account_write(n);
1688 } else {
1689 bio->bi_opf = REQ_OP_READ;
1690 if (dio->flags & IOMAP_DIO_DIRTY)
1691 bio_set_pages_dirty(bio);
1694 if (dio->iocb->ki_flags & IOCB_HIPRI)
1695 bio->bi_opf |= REQ_HIPRI;
1697 iov_iter_advance(dio->submit.iter, n);
1699 dio->size += n;
1700 pos += n;
1701 copied += n;
1703 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1705 atomic_inc(&dio->ref);
1707 dio->submit.last_queue = bdev_get_queue(iomap->bdev);
1708 dio->submit.cookie = submit_bio(bio);
1709 } while (nr_pages);
1712 * We need to zeroout the tail of a sub-block write if the extent type
1713 * requires zeroing or the write extends beyond EOF. If we don't zero
1714 * the block tail in the latter case, we can expose stale data via mmap
1715 * reads of the EOF block.
1717 zero_tail:
1718 if (need_zeroout ||
1719 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
1720 /* zero out from the end of the write to the end of the block */
1721 pad = pos & (fs_block_size - 1);
1722 if (pad)
1723 iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
1725 return copied ? copied : ret;
1728 static loff_t
1729 iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio)
1731 length = iov_iter_zero(length, dio->submit.iter);
1732 dio->size += length;
1733 return length;
1736 static loff_t
1737 iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length,
1738 struct iomap_dio *dio, struct iomap *iomap)
1740 struct iov_iter *iter = dio->submit.iter;
1741 size_t copied;
1743 BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data));
1745 if (dio->flags & IOMAP_DIO_WRITE) {
1746 loff_t size = inode->i_size;
1748 if (pos > size)
1749 memset(iomap->inline_data + size, 0, pos - size);
1750 copied = copy_from_iter(iomap->inline_data + pos, length, iter);
1751 if (copied) {
1752 if (pos + copied > size)
1753 i_size_write(inode, pos + copied);
1754 mark_inode_dirty(inode);
1756 } else {
1757 copied = copy_to_iter(iomap->inline_data + pos, length, iter);
1759 dio->size += copied;
1760 return copied;
1763 static loff_t
1764 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
1765 void *data, struct iomap *iomap)
1767 struct iomap_dio *dio = data;
1769 switch (iomap->type) {
1770 case IOMAP_HOLE:
1771 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
1772 return -EIO;
1773 return iomap_dio_hole_actor(length, dio);
1774 case IOMAP_UNWRITTEN:
1775 if (!(dio->flags & IOMAP_DIO_WRITE))
1776 return iomap_dio_hole_actor(length, dio);
1777 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1778 case IOMAP_MAPPED:
1779 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1780 case IOMAP_INLINE:
1781 return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
1782 default:
1783 WARN_ON_ONCE(1);
1784 return -EIO;
1789 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
1790 * is being issued as AIO or not. This allows us to optimise pure data writes
1791 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
1792 * REQ_FLUSH post write. This is slightly tricky because a single request here
1793 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
1794 * may be pure data writes. In that case, we still need to do a full data sync
1795 * completion.
1797 ssize_t
1798 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
1799 const struct iomap_ops *ops, iomap_dio_end_io_t end_io)
1801 struct address_space *mapping = iocb->ki_filp->f_mapping;
1802 struct inode *inode = file_inode(iocb->ki_filp);
1803 size_t count = iov_iter_count(iter);
1804 loff_t pos = iocb->ki_pos, start = pos;
1805 loff_t end = iocb->ki_pos + count - 1, ret = 0;
1806 unsigned int flags = IOMAP_DIRECT;
1807 struct blk_plug plug;
1808 struct iomap_dio *dio;
1810 lockdep_assert_held(&inode->i_rwsem);
1812 if (!count)
1813 return 0;
1815 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1816 if (!dio)
1817 return -ENOMEM;
1819 dio->iocb = iocb;
1820 atomic_set(&dio->ref, 1);
1821 dio->size = 0;
1822 dio->i_size = i_size_read(inode);
1823 dio->end_io = end_io;
1824 dio->error = 0;
1825 dio->flags = 0;
1826 dio->wait_for_completion = is_sync_kiocb(iocb);
1828 dio->submit.iter = iter;
1829 dio->submit.waiter = current;
1830 dio->submit.cookie = BLK_QC_T_NONE;
1831 dio->submit.last_queue = NULL;
1833 if (iov_iter_rw(iter) == READ) {
1834 if (pos >= dio->i_size)
1835 goto out_free_dio;
1837 if (iter_is_iovec(iter) && iov_iter_rw(iter) == READ)
1838 dio->flags |= IOMAP_DIO_DIRTY;
1839 } else {
1840 flags |= IOMAP_WRITE;
1841 dio->flags |= IOMAP_DIO_WRITE;
1843 /* for data sync or sync, we need sync completion processing */
1844 if (iocb->ki_flags & IOCB_DSYNC)
1845 dio->flags |= IOMAP_DIO_NEED_SYNC;
1848 * For datasync only writes, we optimistically try using FUA for
1849 * this IO. Any non-FUA write that occurs will clear this flag,
1850 * hence we know before completion whether a cache flush is
1851 * necessary.
1853 if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
1854 dio->flags |= IOMAP_DIO_WRITE_FUA;
1857 if (iocb->ki_flags & IOCB_NOWAIT) {
1858 if (filemap_range_has_page(mapping, start, end)) {
1859 ret = -EAGAIN;
1860 goto out_free_dio;
1862 flags |= IOMAP_NOWAIT;
1865 ret = filemap_write_and_wait_range(mapping, start, end);
1866 if (ret)
1867 goto out_free_dio;
1870 * Try to invalidate cache pages for the range we're direct
1871 * writing. If this invalidation fails, tough, the write will
1872 * still work, but racing two incompatible write paths is a
1873 * pretty crazy thing to do, so we don't support it 100%.
1875 ret = invalidate_inode_pages2_range(mapping,
1876 start >> PAGE_SHIFT, end >> PAGE_SHIFT);
1877 if (ret)
1878 dio_warn_stale_pagecache(iocb->ki_filp);
1879 ret = 0;
1881 if (iov_iter_rw(iter) == WRITE && !dio->wait_for_completion &&
1882 !inode->i_sb->s_dio_done_wq) {
1883 ret = sb_init_dio_done_wq(inode->i_sb);
1884 if (ret < 0)
1885 goto out_free_dio;
1888 inode_dio_begin(inode);
1890 blk_start_plug(&plug);
1891 do {
1892 ret = iomap_apply(inode, pos, count, flags, ops, dio,
1893 iomap_dio_actor);
1894 if (ret <= 0) {
1895 /* magic error code to fall back to buffered I/O */
1896 if (ret == -ENOTBLK) {
1897 dio->wait_for_completion = true;
1898 ret = 0;
1900 break;
1902 pos += ret;
1904 if (iov_iter_rw(iter) == READ && pos >= dio->i_size)
1905 break;
1906 } while ((count = iov_iter_count(iter)) > 0);
1907 blk_finish_plug(&plug);
1909 if (ret < 0)
1910 iomap_dio_set_error(dio, ret);
1913 * If all the writes we issued were FUA, we don't need to flush the
1914 * cache on IO completion. Clear the sync flag for this case.
1916 if (dio->flags & IOMAP_DIO_WRITE_FUA)
1917 dio->flags &= ~IOMAP_DIO_NEED_SYNC;
1919 if (!atomic_dec_and_test(&dio->ref)) {
1920 if (!dio->wait_for_completion)
1921 return -EIOCBQUEUED;
1923 for (;;) {
1924 set_current_state(TASK_UNINTERRUPTIBLE);
1925 if (!READ_ONCE(dio->submit.waiter))
1926 break;
1928 if (!(iocb->ki_flags & IOCB_HIPRI) ||
1929 !dio->submit.last_queue ||
1930 !blk_poll(dio->submit.last_queue,
1931 dio->submit.cookie, true))
1932 io_schedule();
1934 __set_current_state(TASK_RUNNING);
1937 ret = iomap_dio_complete(dio);
1939 return ret;
1941 out_free_dio:
1942 kfree(dio);
1943 return ret;
1945 EXPORT_SYMBOL_GPL(iomap_dio_rw);
1947 /* Swapfile activation */
1949 #ifdef CONFIG_SWAP
1950 struct iomap_swapfile_info {
1951 struct iomap iomap; /* accumulated iomap */
1952 struct swap_info_struct *sis;
1953 uint64_t lowest_ppage; /* lowest physical addr seen (pages) */
1954 uint64_t highest_ppage; /* highest physical addr seen (pages) */
1955 unsigned long nr_pages; /* number of pages collected */
1956 int nr_extents; /* extent count */
1960 * Collect physical extents for this swap file. Physical extents reported to
1961 * the swap code must be trimmed to align to a page boundary. The logical
1962 * offset within the file is irrelevant since the swapfile code maps logical
1963 * page numbers of the swap device to the physical page-aligned extents.
1965 static int iomap_swapfile_add_extent(struct iomap_swapfile_info *isi)
1967 struct iomap *iomap = &isi->iomap;
1968 unsigned long nr_pages;
1969 uint64_t first_ppage;
1970 uint64_t first_ppage_reported;
1971 uint64_t next_ppage;
1972 int error;
1975 * Round the start up and the end down so that the physical
1976 * extent aligns to a page boundary.
1978 first_ppage = ALIGN(iomap->addr, PAGE_SIZE) >> PAGE_SHIFT;
1979 next_ppage = ALIGN_DOWN(iomap->addr + iomap->length, PAGE_SIZE) >>
1980 PAGE_SHIFT;
1982 /* Skip too-short physical extents. */
1983 if (first_ppage >= next_ppage)
1984 return 0;
1985 nr_pages = next_ppage - first_ppage;
1988 * Calculate how much swap space we're adding; the first page contains
1989 * the swap header and doesn't count. The mm still wants that first
1990 * page fed to add_swap_extent, however.
1992 first_ppage_reported = first_ppage;
1993 if (iomap->offset == 0)
1994 first_ppage_reported++;
1995 if (isi->lowest_ppage > first_ppage_reported)
1996 isi->lowest_ppage = first_ppage_reported;
1997 if (isi->highest_ppage < (next_ppage - 1))
1998 isi->highest_ppage = next_ppage - 1;
2000 /* Add extent, set up for the next call. */
2001 error = add_swap_extent(isi->sis, isi->nr_pages, nr_pages, first_ppage);
2002 if (error < 0)
2003 return error;
2004 isi->nr_extents += error;
2005 isi->nr_pages += nr_pages;
2006 return 0;
2010 * Accumulate iomaps for this swap file. We have to accumulate iomaps because
2011 * swap only cares about contiguous page-aligned physical extents and makes no
2012 * distinction between written and unwritten extents.
2014 static loff_t iomap_swapfile_activate_actor(struct inode *inode, loff_t pos,
2015 loff_t count, void *data, struct iomap *iomap)
2017 struct iomap_swapfile_info *isi = data;
2018 int error;
2020 switch (iomap->type) {
2021 case IOMAP_MAPPED:
2022 case IOMAP_UNWRITTEN:
2023 /* Only real or unwritten extents. */
2024 break;
2025 case IOMAP_INLINE:
2026 /* No inline data. */
2027 pr_err("swapon: file is inline\n");
2028 return -EINVAL;
2029 default:
2030 pr_err("swapon: file has unallocated extents\n");
2031 return -EINVAL;
2034 /* No uncommitted metadata or shared blocks. */
2035 if (iomap->flags & IOMAP_F_DIRTY) {
2036 pr_err("swapon: file is not committed\n");
2037 return -EINVAL;
2039 if (iomap->flags & IOMAP_F_SHARED) {
2040 pr_err("swapon: file has shared extents\n");
2041 return -EINVAL;
2044 /* Only one bdev per swap file. */
2045 if (iomap->bdev != isi->sis->bdev) {
2046 pr_err("swapon: file is on multiple devices\n");
2047 return -EINVAL;
2050 if (isi->iomap.length == 0) {
2051 /* No accumulated extent, so just store it. */
2052 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2053 } else if (isi->iomap.addr + isi->iomap.length == iomap->addr) {
2054 /* Append this to the accumulated extent. */
2055 isi->iomap.length += iomap->length;
2056 } else {
2057 /* Otherwise, add the retained iomap and store this one. */
2058 error = iomap_swapfile_add_extent(isi);
2059 if (error)
2060 return error;
2061 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2063 return count;
2067 * Iterate a swap file's iomaps to construct physical extents that can be
2068 * passed to the swapfile subsystem.
2070 int iomap_swapfile_activate(struct swap_info_struct *sis,
2071 struct file *swap_file, sector_t *pagespan,
2072 const struct iomap_ops *ops)
2074 struct iomap_swapfile_info isi = {
2075 .sis = sis,
2076 .lowest_ppage = (sector_t)-1ULL,
2078 struct address_space *mapping = swap_file->f_mapping;
2079 struct inode *inode = mapping->host;
2080 loff_t pos = 0;
2081 loff_t len = ALIGN_DOWN(i_size_read(inode), PAGE_SIZE);
2082 loff_t ret;
2085 * Persist all file mapping metadata so that we won't have any
2086 * IOMAP_F_DIRTY iomaps.
2088 ret = vfs_fsync(swap_file, 1);
2089 if (ret)
2090 return ret;
2092 while (len > 0) {
2093 ret = iomap_apply(inode, pos, len, IOMAP_REPORT,
2094 ops, &isi, iomap_swapfile_activate_actor);
2095 if (ret <= 0)
2096 return ret;
2098 pos += ret;
2099 len -= ret;
2102 if (isi.iomap.length) {
2103 ret = iomap_swapfile_add_extent(&isi);
2104 if (ret)
2105 return ret;
2108 *pagespan = 1 + isi.highest_ppage - isi.lowest_ppage;
2109 sis->max = isi.nr_pages;
2110 sis->pages = isi.nr_pages - 1;
2111 sis->highest_bit = isi.nr_pages - 1;
2112 return isi.nr_extents;
2114 EXPORT_SYMBOL_GPL(iomap_swapfile_activate);
2115 #endif /* CONFIG_SWAP */
2117 static loff_t
2118 iomap_bmap_actor(struct inode *inode, loff_t pos, loff_t length,
2119 void *data, struct iomap *iomap)
2121 sector_t *bno = data, addr;
2123 if (iomap->type == IOMAP_MAPPED) {
2124 addr = (pos - iomap->offset + iomap->addr) >> inode->i_blkbits;
2125 if (addr > INT_MAX)
2126 WARN(1, "would truncate bmap result\n");
2127 else
2128 *bno = addr;
2130 return 0;
2133 /* legacy ->bmap interface. 0 is the error return (!) */
2134 sector_t
2135 iomap_bmap(struct address_space *mapping, sector_t bno,
2136 const struct iomap_ops *ops)
2138 struct inode *inode = mapping->host;
2139 loff_t pos = bno << inode->i_blkbits;
2140 unsigned blocksize = i_blocksize(inode);
2142 if (filemap_write_and_wait(mapping))
2143 return 0;
2145 bno = 0;
2146 iomap_apply(inode, pos, blocksize, 0, ops, &bno, iomap_bmap_actor);
2147 return bno;
2149 EXPORT_SYMBOL_GPL(iomap_bmap);