tracing: Fix trace_pipe behavior for instance traces
[linux/fpc-iii.git] / drivers / spi / spi.c
blob6db80635ace81f02d07edc1fc2e6119338de3e6f
1 /*
2 * SPI init/core code
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 #include <linux/highmem.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
45 static void spidev_release(struct device *dev)
47 struct spi_device *spi = to_spi_device(dev);
49 /* spi masters may cleanup for released devices */
50 if (spi->master->cleanup)
51 spi->master->cleanup(spi);
53 spi_master_put(spi->master);
54 kfree(spi);
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
60 const struct spi_device *spi = to_spi_device(dev);
61 int len;
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 if (len != -ENODEV)
65 return len;
67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
69 static DEVICE_ATTR_RO(modalias);
71 #define SPI_STATISTICS_ATTRS(field, file) \
72 static ssize_t spi_master_##field##_show(struct device *dev, \
73 struct device_attribute *attr, \
74 char *buf) \
75 { \
76 struct spi_master *master = container_of(dev, \
77 struct spi_master, dev); \
78 return spi_statistics_##field##_show(&master->statistics, buf); \
79 } \
80 static struct device_attribute dev_attr_spi_master_##field = { \
81 .attr = { .name = file, .mode = S_IRUGO }, \
82 .show = spi_master_##field##_show, \
83 }; \
84 static ssize_t spi_device_##field##_show(struct device *dev, \
85 struct device_attribute *attr, \
86 char *buf) \
87 { \
88 struct spi_device *spi = to_spi_device(dev); \
89 return spi_statistics_##field##_show(&spi->statistics, buf); \
90 } \
91 static struct device_attribute dev_attr_spi_device_##field = { \
92 .attr = { .name = file, .mode = S_IRUGO }, \
93 .show = spi_device_##field##_show, \
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98 char *buf) \
99 { \
100 unsigned long flags; \
101 ssize_t len; \
102 spin_lock_irqsave(&stat->lock, flags); \
103 len = sprintf(buf, format_string, stat->field); \
104 spin_unlock_irqrestore(&stat->lock, flags); \
105 return len; \
107 SPI_STATISTICS_ATTRS(name, file)
109 #define SPI_STATISTICS_SHOW(field, format_string) \
110 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
111 field, format_string)
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
127 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
128 "transfer_bytes_histo_" number, \
129 transfer_bytes_histo[index], "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
148 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
150 static struct attribute *spi_dev_attrs[] = {
151 &dev_attr_modalias.attr,
152 NULL,
155 static const struct attribute_group spi_dev_group = {
156 .attrs = spi_dev_attrs,
159 static struct attribute *spi_device_statistics_attrs[] = {
160 &dev_attr_spi_device_messages.attr,
161 &dev_attr_spi_device_transfers.attr,
162 &dev_attr_spi_device_errors.attr,
163 &dev_attr_spi_device_timedout.attr,
164 &dev_attr_spi_device_spi_sync.attr,
165 &dev_attr_spi_device_spi_sync_immediate.attr,
166 &dev_attr_spi_device_spi_async.attr,
167 &dev_attr_spi_device_bytes.attr,
168 &dev_attr_spi_device_bytes_rx.attr,
169 &dev_attr_spi_device_bytes_tx.attr,
170 &dev_attr_spi_device_transfer_bytes_histo0.attr,
171 &dev_attr_spi_device_transfer_bytes_histo1.attr,
172 &dev_attr_spi_device_transfer_bytes_histo2.attr,
173 &dev_attr_spi_device_transfer_bytes_histo3.attr,
174 &dev_attr_spi_device_transfer_bytes_histo4.attr,
175 &dev_attr_spi_device_transfer_bytes_histo5.attr,
176 &dev_attr_spi_device_transfer_bytes_histo6.attr,
177 &dev_attr_spi_device_transfer_bytes_histo7.attr,
178 &dev_attr_spi_device_transfer_bytes_histo8.attr,
179 &dev_attr_spi_device_transfer_bytes_histo9.attr,
180 &dev_attr_spi_device_transfer_bytes_histo10.attr,
181 &dev_attr_spi_device_transfer_bytes_histo11.attr,
182 &dev_attr_spi_device_transfer_bytes_histo12.attr,
183 &dev_attr_spi_device_transfer_bytes_histo13.attr,
184 &dev_attr_spi_device_transfer_bytes_histo14.attr,
185 &dev_attr_spi_device_transfer_bytes_histo15.attr,
186 &dev_attr_spi_device_transfer_bytes_histo16.attr,
187 &dev_attr_spi_device_transfers_split_maxsize.attr,
188 NULL,
191 static const struct attribute_group spi_device_statistics_group = {
192 .name = "statistics",
193 .attrs = spi_device_statistics_attrs,
196 static const struct attribute_group *spi_dev_groups[] = {
197 &spi_dev_group,
198 &spi_device_statistics_group,
199 NULL,
202 static struct attribute *spi_master_statistics_attrs[] = {
203 &dev_attr_spi_master_messages.attr,
204 &dev_attr_spi_master_transfers.attr,
205 &dev_attr_spi_master_errors.attr,
206 &dev_attr_spi_master_timedout.attr,
207 &dev_attr_spi_master_spi_sync.attr,
208 &dev_attr_spi_master_spi_sync_immediate.attr,
209 &dev_attr_spi_master_spi_async.attr,
210 &dev_attr_spi_master_bytes.attr,
211 &dev_attr_spi_master_bytes_rx.attr,
212 &dev_attr_spi_master_bytes_tx.attr,
213 &dev_attr_spi_master_transfer_bytes_histo0.attr,
214 &dev_attr_spi_master_transfer_bytes_histo1.attr,
215 &dev_attr_spi_master_transfer_bytes_histo2.attr,
216 &dev_attr_spi_master_transfer_bytes_histo3.attr,
217 &dev_attr_spi_master_transfer_bytes_histo4.attr,
218 &dev_attr_spi_master_transfer_bytes_histo5.attr,
219 &dev_attr_spi_master_transfer_bytes_histo6.attr,
220 &dev_attr_spi_master_transfer_bytes_histo7.attr,
221 &dev_attr_spi_master_transfer_bytes_histo8.attr,
222 &dev_attr_spi_master_transfer_bytes_histo9.attr,
223 &dev_attr_spi_master_transfer_bytes_histo10.attr,
224 &dev_attr_spi_master_transfer_bytes_histo11.attr,
225 &dev_attr_spi_master_transfer_bytes_histo12.attr,
226 &dev_attr_spi_master_transfer_bytes_histo13.attr,
227 &dev_attr_spi_master_transfer_bytes_histo14.attr,
228 &dev_attr_spi_master_transfer_bytes_histo15.attr,
229 &dev_attr_spi_master_transfer_bytes_histo16.attr,
230 &dev_attr_spi_master_transfers_split_maxsize.attr,
231 NULL,
234 static const struct attribute_group spi_master_statistics_group = {
235 .name = "statistics",
236 .attrs = spi_master_statistics_attrs,
239 static const struct attribute_group *spi_master_groups[] = {
240 &spi_master_statistics_group,
241 NULL,
244 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
245 struct spi_transfer *xfer,
246 struct spi_master *master)
248 unsigned long flags;
249 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
251 if (l2len < 0)
252 l2len = 0;
254 spin_lock_irqsave(&stats->lock, flags);
256 stats->transfers++;
257 stats->transfer_bytes_histo[l2len]++;
259 stats->bytes += xfer->len;
260 if ((xfer->tx_buf) &&
261 (xfer->tx_buf != master->dummy_tx))
262 stats->bytes_tx += xfer->len;
263 if ((xfer->rx_buf) &&
264 (xfer->rx_buf != master->dummy_rx))
265 stats->bytes_rx += xfer->len;
267 spin_unlock_irqrestore(&stats->lock, flags);
269 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
271 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
272 * and the sysfs version makes coldplug work too.
275 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
276 const struct spi_device *sdev)
278 while (id->name[0]) {
279 if (!strcmp(sdev->modalias, id->name))
280 return id;
281 id++;
283 return NULL;
286 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
288 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
290 return spi_match_id(sdrv->id_table, sdev);
292 EXPORT_SYMBOL_GPL(spi_get_device_id);
294 static int spi_match_device(struct device *dev, struct device_driver *drv)
296 const struct spi_device *spi = to_spi_device(dev);
297 const struct spi_driver *sdrv = to_spi_driver(drv);
299 /* Attempt an OF style match */
300 if (of_driver_match_device(dev, drv))
301 return 1;
303 /* Then try ACPI */
304 if (acpi_driver_match_device(dev, drv))
305 return 1;
307 if (sdrv->id_table)
308 return !!spi_match_id(sdrv->id_table, spi);
310 return strcmp(spi->modalias, drv->name) == 0;
313 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
315 const struct spi_device *spi = to_spi_device(dev);
316 int rc;
318 rc = acpi_device_uevent_modalias(dev, env);
319 if (rc != -ENODEV)
320 return rc;
322 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
323 return 0;
326 struct bus_type spi_bus_type = {
327 .name = "spi",
328 .dev_groups = spi_dev_groups,
329 .match = spi_match_device,
330 .uevent = spi_uevent,
332 EXPORT_SYMBOL_GPL(spi_bus_type);
335 static int spi_drv_probe(struct device *dev)
337 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
338 struct spi_device *spi = to_spi_device(dev);
339 int ret;
341 ret = of_clk_set_defaults(dev->of_node, false);
342 if (ret)
343 return ret;
345 if (dev->of_node) {
346 spi->irq = of_irq_get(dev->of_node, 0);
347 if (spi->irq == -EPROBE_DEFER)
348 return -EPROBE_DEFER;
349 if (spi->irq < 0)
350 spi->irq = 0;
353 ret = dev_pm_domain_attach(dev, true);
354 if (ret != -EPROBE_DEFER) {
355 ret = sdrv->probe(spi);
356 if (ret)
357 dev_pm_domain_detach(dev, true);
360 return ret;
363 static int spi_drv_remove(struct device *dev)
365 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
366 int ret;
368 ret = sdrv->remove(to_spi_device(dev));
369 dev_pm_domain_detach(dev, true);
371 return ret;
374 static void spi_drv_shutdown(struct device *dev)
376 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
378 sdrv->shutdown(to_spi_device(dev));
382 * __spi_register_driver - register a SPI driver
383 * @owner: owner module of the driver to register
384 * @sdrv: the driver to register
385 * Context: can sleep
387 * Return: zero on success, else a negative error code.
389 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
391 sdrv->driver.owner = owner;
392 sdrv->driver.bus = &spi_bus_type;
393 if (sdrv->probe)
394 sdrv->driver.probe = spi_drv_probe;
395 if (sdrv->remove)
396 sdrv->driver.remove = spi_drv_remove;
397 if (sdrv->shutdown)
398 sdrv->driver.shutdown = spi_drv_shutdown;
399 return driver_register(&sdrv->driver);
401 EXPORT_SYMBOL_GPL(__spi_register_driver);
403 /*-------------------------------------------------------------------------*/
405 /* SPI devices should normally not be created by SPI device drivers; that
406 * would make them board-specific. Similarly with SPI master drivers.
407 * Device registration normally goes into like arch/.../mach.../board-YYY.c
408 * with other readonly (flashable) information about mainboard devices.
411 struct boardinfo {
412 struct list_head list;
413 struct spi_board_info board_info;
416 static LIST_HEAD(board_list);
417 static LIST_HEAD(spi_master_list);
420 * Used to protect add/del opertion for board_info list and
421 * spi_master list, and their matching process
423 static DEFINE_MUTEX(board_lock);
426 * spi_alloc_device - Allocate a new SPI device
427 * @master: Controller to which device is connected
428 * Context: can sleep
430 * Allows a driver to allocate and initialize a spi_device without
431 * registering it immediately. This allows a driver to directly
432 * fill the spi_device with device parameters before calling
433 * spi_add_device() on it.
435 * Caller is responsible to call spi_add_device() on the returned
436 * spi_device structure to add it to the SPI master. If the caller
437 * needs to discard the spi_device without adding it, then it should
438 * call spi_dev_put() on it.
440 * Return: a pointer to the new device, or NULL.
442 struct spi_device *spi_alloc_device(struct spi_master *master)
444 struct spi_device *spi;
446 if (!spi_master_get(master))
447 return NULL;
449 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
450 if (!spi) {
451 spi_master_put(master);
452 return NULL;
455 spi->master = master;
456 spi->dev.parent = &master->dev;
457 spi->dev.bus = &spi_bus_type;
458 spi->dev.release = spidev_release;
459 spi->cs_gpio = -ENOENT;
461 spin_lock_init(&spi->statistics.lock);
463 device_initialize(&spi->dev);
464 return spi;
466 EXPORT_SYMBOL_GPL(spi_alloc_device);
468 static void spi_dev_set_name(struct spi_device *spi)
470 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
472 if (adev) {
473 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
474 return;
477 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
478 spi->chip_select);
481 static int spi_dev_check(struct device *dev, void *data)
483 struct spi_device *spi = to_spi_device(dev);
484 struct spi_device *new_spi = data;
486 if (spi->master == new_spi->master &&
487 spi->chip_select == new_spi->chip_select)
488 return -EBUSY;
489 return 0;
493 * spi_add_device - Add spi_device allocated with spi_alloc_device
494 * @spi: spi_device to register
496 * Companion function to spi_alloc_device. Devices allocated with
497 * spi_alloc_device can be added onto the spi bus with this function.
499 * Return: 0 on success; negative errno on failure
501 int spi_add_device(struct spi_device *spi)
503 static DEFINE_MUTEX(spi_add_lock);
504 struct spi_master *master = spi->master;
505 struct device *dev = master->dev.parent;
506 int status;
508 /* Chipselects are numbered 0..max; validate. */
509 if (spi->chip_select >= master->num_chipselect) {
510 dev_err(dev, "cs%d >= max %d\n",
511 spi->chip_select,
512 master->num_chipselect);
513 return -EINVAL;
516 /* Set the bus ID string */
517 spi_dev_set_name(spi);
519 /* We need to make sure there's no other device with this
520 * chipselect **BEFORE** we call setup(), else we'll trash
521 * its configuration. Lock against concurrent add() calls.
523 mutex_lock(&spi_add_lock);
525 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
526 if (status) {
527 dev_err(dev, "chipselect %d already in use\n",
528 spi->chip_select);
529 goto done;
532 if (master->cs_gpios)
533 spi->cs_gpio = master->cs_gpios[spi->chip_select];
535 /* Drivers may modify this initial i/o setup, but will
536 * normally rely on the device being setup. Devices
537 * using SPI_CS_HIGH can't coexist well otherwise...
539 status = spi_setup(spi);
540 if (status < 0) {
541 dev_err(dev, "can't setup %s, status %d\n",
542 dev_name(&spi->dev), status);
543 goto done;
546 /* Device may be bound to an active driver when this returns */
547 status = device_add(&spi->dev);
548 if (status < 0)
549 dev_err(dev, "can't add %s, status %d\n",
550 dev_name(&spi->dev), status);
551 else
552 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
554 done:
555 mutex_unlock(&spi_add_lock);
556 return status;
558 EXPORT_SYMBOL_GPL(spi_add_device);
561 * spi_new_device - instantiate one new SPI device
562 * @master: Controller to which device is connected
563 * @chip: Describes the SPI device
564 * Context: can sleep
566 * On typical mainboards, this is purely internal; and it's not needed
567 * after board init creates the hard-wired devices. Some development
568 * platforms may not be able to use spi_register_board_info though, and
569 * this is exported so that for example a USB or parport based adapter
570 * driver could add devices (which it would learn about out-of-band).
572 * Return: the new device, or NULL.
574 struct spi_device *spi_new_device(struct spi_master *master,
575 struct spi_board_info *chip)
577 struct spi_device *proxy;
578 int status;
580 /* NOTE: caller did any chip->bus_num checks necessary.
582 * Also, unless we change the return value convention to use
583 * error-or-pointer (not NULL-or-pointer), troubleshootability
584 * suggests syslogged diagnostics are best here (ugh).
587 proxy = spi_alloc_device(master);
588 if (!proxy)
589 return NULL;
591 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
593 proxy->chip_select = chip->chip_select;
594 proxy->max_speed_hz = chip->max_speed_hz;
595 proxy->mode = chip->mode;
596 proxy->irq = chip->irq;
597 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
598 proxy->dev.platform_data = (void *) chip->platform_data;
599 proxy->controller_data = chip->controller_data;
600 proxy->controller_state = NULL;
602 status = spi_add_device(proxy);
603 if (status < 0) {
604 spi_dev_put(proxy);
605 return NULL;
608 return proxy;
610 EXPORT_SYMBOL_GPL(spi_new_device);
613 * spi_unregister_device - unregister a single SPI device
614 * @spi: spi_device to unregister
616 * Start making the passed SPI device vanish. Normally this would be handled
617 * by spi_unregister_master().
619 void spi_unregister_device(struct spi_device *spi)
621 if (!spi)
622 return;
624 if (spi->dev.of_node) {
625 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
626 of_node_put(spi->dev.of_node);
628 if (ACPI_COMPANION(&spi->dev))
629 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
630 device_unregister(&spi->dev);
632 EXPORT_SYMBOL_GPL(spi_unregister_device);
634 static void spi_match_master_to_boardinfo(struct spi_master *master,
635 struct spi_board_info *bi)
637 struct spi_device *dev;
639 if (master->bus_num != bi->bus_num)
640 return;
642 dev = spi_new_device(master, bi);
643 if (!dev)
644 dev_err(master->dev.parent, "can't create new device for %s\n",
645 bi->modalias);
649 * spi_register_board_info - register SPI devices for a given board
650 * @info: array of chip descriptors
651 * @n: how many descriptors are provided
652 * Context: can sleep
654 * Board-specific early init code calls this (probably during arch_initcall)
655 * with segments of the SPI device table. Any device nodes are created later,
656 * after the relevant parent SPI controller (bus_num) is defined. We keep
657 * this table of devices forever, so that reloading a controller driver will
658 * not make Linux forget about these hard-wired devices.
660 * Other code can also call this, e.g. a particular add-on board might provide
661 * SPI devices through its expansion connector, so code initializing that board
662 * would naturally declare its SPI devices.
664 * The board info passed can safely be __initdata ... but be careful of
665 * any embedded pointers (platform_data, etc), they're copied as-is.
667 * Return: zero on success, else a negative error code.
669 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
671 struct boardinfo *bi;
672 int i;
674 if (!n)
675 return -EINVAL;
677 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
678 if (!bi)
679 return -ENOMEM;
681 for (i = 0; i < n; i++, bi++, info++) {
682 struct spi_master *master;
684 memcpy(&bi->board_info, info, sizeof(*info));
685 mutex_lock(&board_lock);
686 list_add_tail(&bi->list, &board_list);
687 list_for_each_entry(master, &spi_master_list, list)
688 spi_match_master_to_boardinfo(master, &bi->board_info);
689 mutex_unlock(&board_lock);
692 return 0;
695 /*-------------------------------------------------------------------------*/
697 static void spi_set_cs(struct spi_device *spi, bool enable)
699 if (spi->mode & SPI_CS_HIGH)
700 enable = !enable;
702 if (gpio_is_valid(spi->cs_gpio))
703 gpio_set_value(spi->cs_gpio, !enable);
704 else if (spi->master->set_cs)
705 spi->master->set_cs(spi, !enable);
708 #ifdef CONFIG_HAS_DMA
709 static int spi_map_buf(struct spi_master *master, struct device *dev,
710 struct sg_table *sgt, void *buf, size_t len,
711 enum dma_data_direction dir)
713 const bool vmalloced_buf = is_vmalloc_addr(buf);
714 unsigned int max_seg_size = dma_get_max_seg_size(dev);
715 #ifdef CONFIG_HIGHMEM
716 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
717 (unsigned long)buf < (PKMAP_BASE +
718 (LAST_PKMAP * PAGE_SIZE)));
719 #else
720 const bool kmap_buf = false;
721 #endif
722 int desc_len;
723 int sgs;
724 struct page *vm_page;
725 void *sg_buf;
726 size_t min;
727 int i, ret;
729 if (vmalloced_buf || kmap_buf) {
730 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
731 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
732 } else if (virt_addr_valid(buf)) {
733 desc_len = min_t(int, max_seg_size, master->max_dma_len);
734 sgs = DIV_ROUND_UP(len, desc_len);
735 } else {
736 return -EINVAL;
739 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
740 if (ret != 0)
741 return ret;
743 for (i = 0; i < sgs; i++) {
745 if (vmalloced_buf || kmap_buf) {
746 min = min_t(size_t,
747 len, desc_len - offset_in_page(buf));
748 if (vmalloced_buf)
749 vm_page = vmalloc_to_page(buf);
750 else
751 vm_page = kmap_to_page(buf);
752 if (!vm_page) {
753 sg_free_table(sgt);
754 return -ENOMEM;
756 sg_set_page(&sgt->sgl[i], vm_page,
757 min, offset_in_page(buf));
758 } else {
759 min = min_t(size_t, len, desc_len);
760 sg_buf = buf;
761 sg_set_buf(&sgt->sgl[i], sg_buf, min);
764 buf += min;
765 len -= min;
768 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
769 if (!ret)
770 ret = -ENOMEM;
771 if (ret < 0) {
772 sg_free_table(sgt);
773 return ret;
776 sgt->nents = ret;
778 return 0;
781 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
782 struct sg_table *sgt, enum dma_data_direction dir)
784 if (sgt->orig_nents) {
785 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
786 sg_free_table(sgt);
790 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
792 struct device *tx_dev, *rx_dev;
793 struct spi_transfer *xfer;
794 int ret;
796 if (!master->can_dma)
797 return 0;
799 if (master->dma_tx)
800 tx_dev = master->dma_tx->device->dev;
801 else
802 tx_dev = master->dev.parent;
804 if (master->dma_rx)
805 rx_dev = master->dma_rx->device->dev;
806 else
807 rx_dev = master->dev.parent;
809 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
810 if (!master->can_dma(master, msg->spi, xfer))
811 continue;
813 if (xfer->tx_buf != NULL) {
814 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
815 (void *)xfer->tx_buf, xfer->len,
816 DMA_TO_DEVICE);
817 if (ret != 0)
818 return ret;
821 if (xfer->rx_buf != NULL) {
822 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
823 xfer->rx_buf, xfer->len,
824 DMA_FROM_DEVICE);
825 if (ret != 0) {
826 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
827 DMA_TO_DEVICE);
828 return ret;
833 master->cur_msg_mapped = true;
835 return 0;
838 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
840 struct spi_transfer *xfer;
841 struct device *tx_dev, *rx_dev;
843 if (!master->cur_msg_mapped || !master->can_dma)
844 return 0;
846 if (master->dma_tx)
847 tx_dev = master->dma_tx->device->dev;
848 else
849 tx_dev = master->dev.parent;
851 if (master->dma_rx)
852 rx_dev = master->dma_rx->device->dev;
853 else
854 rx_dev = master->dev.parent;
856 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
857 if (!master->can_dma(master, msg->spi, xfer))
858 continue;
860 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
861 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
864 return 0;
866 #else /* !CONFIG_HAS_DMA */
867 static inline int spi_map_buf(struct spi_master *master,
868 struct device *dev, struct sg_table *sgt,
869 void *buf, size_t len,
870 enum dma_data_direction dir)
872 return -EINVAL;
875 static inline void spi_unmap_buf(struct spi_master *master,
876 struct device *dev, struct sg_table *sgt,
877 enum dma_data_direction dir)
881 static inline int __spi_map_msg(struct spi_master *master,
882 struct spi_message *msg)
884 return 0;
887 static inline int __spi_unmap_msg(struct spi_master *master,
888 struct spi_message *msg)
890 return 0;
892 #endif /* !CONFIG_HAS_DMA */
894 static inline int spi_unmap_msg(struct spi_master *master,
895 struct spi_message *msg)
897 struct spi_transfer *xfer;
899 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
901 * Restore the original value of tx_buf or rx_buf if they are
902 * NULL.
904 if (xfer->tx_buf == master->dummy_tx)
905 xfer->tx_buf = NULL;
906 if (xfer->rx_buf == master->dummy_rx)
907 xfer->rx_buf = NULL;
910 return __spi_unmap_msg(master, msg);
913 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
915 struct spi_transfer *xfer;
916 void *tmp;
917 unsigned int max_tx, max_rx;
919 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
920 max_tx = 0;
921 max_rx = 0;
923 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
924 if ((master->flags & SPI_MASTER_MUST_TX) &&
925 !xfer->tx_buf)
926 max_tx = max(xfer->len, max_tx);
927 if ((master->flags & SPI_MASTER_MUST_RX) &&
928 !xfer->rx_buf)
929 max_rx = max(xfer->len, max_rx);
932 if (max_tx) {
933 tmp = krealloc(master->dummy_tx, max_tx,
934 GFP_KERNEL | GFP_DMA);
935 if (!tmp)
936 return -ENOMEM;
937 master->dummy_tx = tmp;
938 memset(tmp, 0, max_tx);
941 if (max_rx) {
942 tmp = krealloc(master->dummy_rx, max_rx,
943 GFP_KERNEL | GFP_DMA);
944 if (!tmp)
945 return -ENOMEM;
946 master->dummy_rx = tmp;
949 if (max_tx || max_rx) {
950 list_for_each_entry(xfer, &msg->transfers,
951 transfer_list) {
952 if (!xfer->tx_buf)
953 xfer->tx_buf = master->dummy_tx;
954 if (!xfer->rx_buf)
955 xfer->rx_buf = master->dummy_rx;
960 return __spi_map_msg(master, msg);
964 * spi_transfer_one_message - Default implementation of transfer_one_message()
966 * This is a standard implementation of transfer_one_message() for
967 * drivers which implement a transfer_one() operation. It provides
968 * standard handling of delays and chip select management.
970 static int spi_transfer_one_message(struct spi_master *master,
971 struct spi_message *msg)
973 struct spi_transfer *xfer;
974 bool keep_cs = false;
975 int ret = 0;
976 unsigned long long ms = 1;
977 struct spi_statistics *statm = &master->statistics;
978 struct spi_statistics *stats = &msg->spi->statistics;
980 spi_set_cs(msg->spi, true);
982 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
983 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
985 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
986 trace_spi_transfer_start(msg, xfer);
988 spi_statistics_add_transfer_stats(statm, xfer, master);
989 spi_statistics_add_transfer_stats(stats, xfer, master);
991 if (xfer->tx_buf || xfer->rx_buf) {
992 reinit_completion(&master->xfer_completion);
994 ret = master->transfer_one(master, msg->spi, xfer);
995 if (ret < 0) {
996 SPI_STATISTICS_INCREMENT_FIELD(statm,
997 errors);
998 SPI_STATISTICS_INCREMENT_FIELD(stats,
999 errors);
1000 dev_err(&msg->spi->dev,
1001 "SPI transfer failed: %d\n", ret);
1002 goto out;
1005 if (ret > 0) {
1006 ret = 0;
1007 ms = 8LL * 1000LL * xfer->len;
1008 do_div(ms, xfer->speed_hz);
1009 ms += ms + 200; /* some tolerance */
1011 if (ms > UINT_MAX)
1012 ms = UINT_MAX;
1014 ms = wait_for_completion_timeout(&master->xfer_completion,
1015 msecs_to_jiffies(ms));
1018 if (ms == 0) {
1019 SPI_STATISTICS_INCREMENT_FIELD(statm,
1020 timedout);
1021 SPI_STATISTICS_INCREMENT_FIELD(stats,
1022 timedout);
1023 dev_err(&msg->spi->dev,
1024 "SPI transfer timed out\n");
1025 msg->status = -ETIMEDOUT;
1027 } else {
1028 if (xfer->len)
1029 dev_err(&msg->spi->dev,
1030 "Bufferless transfer has length %u\n",
1031 xfer->len);
1034 trace_spi_transfer_stop(msg, xfer);
1036 if (msg->status != -EINPROGRESS)
1037 goto out;
1039 if (xfer->delay_usecs)
1040 udelay(xfer->delay_usecs);
1042 if (xfer->cs_change) {
1043 if (list_is_last(&xfer->transfer_list,
1044 &msg->transfers)) {
1045 keep_cs = true;
1046 } else {
1047 spi_set_cs(msg->spi, false);
1048 udelay(10);
1049 spi_set_cs(msg->spi, true);
1053 msg->actual_length += xfer->len;
1056 out:
1057 if (ret != 0 || !keep_cs)
1058 spi_set_cs(msg->spi, false);
1060 if (msg->status == -EINPROGRESS)
1061 msg->status = ret;
1063 if (msg->status && master->handle_err)
1064 master->handle_err(master, msg);
1066 spi_res_release(master, msg);
1068 spi_finalize_current_message(master);
1070 return ret;
1074 * spi_finalize_current_transfer - report completion of a transfer
1075 * @master: the master reporting completion
1077 * Called by SPI drivers using the core transfer_one_message()
1078 * implementation to notify it that the current interrupt driven
1079 * transfer has finished and the next one may be scheduled.
1081 void spi_finalize_current_transfer(struct spi_master *master)
1083 complete(&master->xfer_completion);
1085 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1088 * __spi_pump_messages - function which processes spi message queue
1089 * @master: master to process queue for
1090 * @in_kthread: true if we are in the context of the message pump thread
1092 * This function checks if there is any spi message in the queue that
1093 * needs processing and if so call out to the driver to initialize hardware
1094 * and transfer each message.
1096 * Note that it is called both from the kthread itself and also from
1097 * inside spi_sync(); the queue extraction handling at the top of the
1098 * function should deal with this safely.
1100 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1102 unsigned long flags;
1103 bool was_busy = false;
1104 int ret;
1106 /* Lock queue */
1107 spin_lock_irqsave(&master->queue_lock, flags);
1109 /* Make sure we are not already running a message */
1110 if (master->cur_msg) {
1111 spin_unlock_irqrestore(&master->queue_lock, flags);
1112 return;
1115 /* If another context is idling the device then defer */
1116 if (master->idling) {
1117 kthread_queue_work(&master->kworker, &master->pump_messages);
1118 spin_unlock_irqrestore(&master->queue_lock, flags);
1119 return;
1122 /* Check if the queue is idle */
1123 if (list_empty(&master->queue) || !master->running) {
1124 if (!master->busy) {
1125 spin_unlock_irqrestore(&master->queue_lock, flags);
1126 return;
1129 /* Only do teardown in the thread */
1130 if (!in_kthread) {
1131 kthread_queue_work(&master->kworker,
1132 &master->pump_messages);
1133 spin_unlock_irqrestore(&master->queue_lock, flags);
1134 return;
1137 master->busy = false;
1138 master->idling = true;
1139 spin_unlock_irqrestore(&master->queue_lock, flags);
1141 kfree(master->dummy_rx);
1142 master->dummy_rx = NULL;
1143 kfree(master->dummy_tx);
1144 master->dummy_tx = NULL;
1145 if (master->unprepare_transfer_hardware &&
1146 master->unprepare_transfer_hardware(master))
1147 dev_err(&master->dev,
1148 "failed to unprepare transfer hardware\n");
1149 if (master->auto_runtime_pm) {
1150 pm_runtime_mark_last_busy(master->dev.parent);
1151 pm_runtime_put_autosuspend(master->dev.parent);
1153 trace_spi_master_idle(master);
1155 spin_lock_irqsave(&master->queue_lock, flags);
1156 master->idling = false;
1157 spin_unlock_irqrestore(&master->queue_lock, flags);
1158 return;
1161 /* Extract head of queue */
1162 master->cur_msg =
1163 list_first_entry(&master->queue, struct spi_message, queue);
1165 list_del_init(&master->cur_msg->queue);
1166 if (master->busy)
1167 was_busy = true;
1168 else
1169 master->busy = true;
1170 spin_unlock_irqrestore(&master->queue_lock, flags);
1172 mutex_lock(&master->io_mutex);
1174 if (!was_busy && master->auto_runtime_pm) {
1175 ret = pm_runtime_get_sync(master->dev.parent);
1176 if (ret < 0) {
1177 dev_err(&master->dev, "Failed to power device: %d\n",
1178 ret);
1179 mutex_unlock(&master->io_mutex);
1180 return;
1184 if (!was_busy)
1185 trace_spi_master_busy(master);
1187 if (!was_busy && master->prepare_transfer_hardware) {
1188 ret = master->prepare_transfer_hardware(master);
1189 if (ret) {
1190 dev_err(&master->dev,
1191 "failed to prepare transfer hardware\n");
1193 if (master->auto_runtime_pm)
1194 pm_runtime_put(master->dev.parent);
1195 mutex_unlock(&master->io_mutex);
1196 return;
1200 trace_spi_message_start(master->cur_msg);
1202 if (master->prepare_message) {
1203 ret = master->prepare_message(master, master->cur_msg);
1204 if (ret) {
1205 dev_err(&master->dev,
1206 "failed to prepare message: %d\n", ret);
1207 master->cur_msg->status = ret;
1208 spi_finalize_current_message(master);
1209 goto out;
1211 master->cur_msg_prepared = true;
1214 ret = spi_map_msg(master, master->cur_msg);
1215 if (ret) {
1216 master->cur_msg->status = ret;
1217 spi_finalize_current_message(master);
1218 goto out;
1221 ret = master->transfer_one_message(master, master->cur_msg);
1222 if (ret) {
1223 dev_err(&master->dev,
1224 "failed to transfer one message from queue\n");
1225 goto out;
1228 out:
1229 mutex_unlock(&master->io_mutex);
1231 /* Prod the scheduler in case transfer_one() was busy waiting */
1232 if (!ret)
1233 cond_resched();
1237 * spi_pump_messages - kthread work function which processes spi message queue
1238 * @work: pointer to kthread work struct contained in the master struct
1240 static void spi_pump_messages(struct kthread_work *work)
1242 struct spi_master *master =
1243 container_of(work, struct spi_master, pump_messages);
1245 __spi_pump_messages(master, true);
1248 static int spi_init_queue(struct spi_master *master)
1250 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1252 master->running = false;
1253 master->busy = false;
1255 kthread_init_worker(&master->kworker);
1256 master->kworker_task = kthread_run(kthread_worker_fn,
1257 &master->kworker, "%s",
1258 dev_name(&master->dev));
1259 if (IS_ERR(master->kworker_task)) {
1260 dev_err(&master->dev, "failed to create message pump task\n");
1261 return PTR_ERR(master->kworker_task);
1263 kthread_init_work(&master->pump_messages, spi_pump_messages);
1266 * Master config will indicate if this controller should run the
1267 * message pump with high (realtime) priority to reduce the transfer
1268 * latency on the bus by minimising the delay between a transfer
1269 * request and the scheduling of the message pump thread. Without this
1270 * setting the message pump thread will remain at default priority.
1272 if (master->rt) {
1273 dev_info(&master->dev,
1274 "will run message pump with realtime priority\n");
1275 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1278 return 0;
1282 * spi_get_next_queued_message() - called by driver to check for queued
1283 * messages
1284 * @master: the master to check for queued messages
1286 * If there are more messages in the queue, the next message is returned from
1287 * this call.
1289 * Return: the next message in the queue, else NULL if the queue is empty.
1291 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1293 struct spi_message *next;
1294 unsigned long flags;
1296 /* get a pointer to the next message, if any */
1297 spin_lock_irqsave(&master->queue_lock, flags);
1298 next = list_first_entry_or_null(&master->queue, struct spi_message,
1299 queue);
1300 spin_unlock_irqrestore(&master->queue_lock, flags);
1302 return next;
1304 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1307 * spi_finalize_current_message() - the current message is complete
1308 * @master: the master to return the message to
1310 * Called by the driver to notify the core that the message in the front of the
1311 * queue is complete and can be removed from the queue.
1313 void spi_finalize_current_message(struct spi_master *master)
1315 struct spi_message *mesg;
1316 unsigned long flags;
1317 int ret;
1319 spin_lock_irqsave(&master->queue_lock, flags);
1320 mesg = master->cur_msg;
1321 spin_unlock_irqrestore(&master->queue_lock, flags);
1323 spi_unmap_msg(master, mesg);
1325 if (master->cur_msg_prepared && master->unprepare_message) {
1326 ret = master->unprepare_message(master, mesg);
1327 if (ret) {
1328 dev_err(&master->dev,
1329 "failed to unprepare message: %d\n", ret);
1333 spin_lock_irqsave(&master->queue_lock, flags);
1334 master->cur_msg = NULL;
1335 master->cur_msg_prepared = false;
1336 kthread_queue_work(&master->kworker, &master->pump_messages);
1337 spin_unlock_irqrestore(&master->queue_lock, flags);
1339 trace_spi_message_done(mesg);
1341 mesg->state = NULL;
1342 if (mesg->complete)
1343 mesg->complete(mesg->context);
1345 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1347 static int spi_start_queue(struct spi_master *master)
1349 unsigned long flags;
1351 spin_lock_irqsave(&master->queue_lock, flags);
1353 if (master->running || master->busy) {
1354 spin_unlock_irqrestore(&master->queue_lock, flags);
1355 return -EBUSY;
1358 master->running = true;
1359 master->cur_msg = NULL;
1360 spin_unlock_irqrestore(&master->queue_lock, flags);
1362 kthread_queue_work(&master->kworker, &master->pump_messages);
1364 return 0;
1367 static int spi_stop_queue(struct spi_master *master)
1369 unsigned long flags;
1370 unsigned limit = 500;
1371 int ret = 0;
1373 spin_lock_irqsave(&master->queue_lock, flags);
1376 * This is a bit lame, but is optimized for the common execution path.
1377 * A wait_queue on the master->busy could be used, but then the common
1378 * execution path (pump_messages) would be required to call wake_up or
1379 * friends on every SPI message. Do this instead.
1381 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1382 spin_unlock_irqrestore(&master->queue_lock, flags);
1383 usleep_range(10000, 11000);
1384 spin_lock_irqsave(&master->queue_lock, flags);
1387 if (!list_empty(&master->queue) || master->busy)
1388 ret = -EBUSY;
1389 else
1390 master->running = false;
1392 spin_unlock_irqrestore(&master->queue_lock, flags);
1394 if (ret) {
1395 dev_warn(&master->dev,
1396 "could not stop message queue\n");
1397 return ret;
1399 return ret;
1402 static int spi_destroy_queue(struct spi_master *master)
1404 int ret;
1406 ret = spi_stop_queue(master);
1409 * kthread_flush_worker will block until all work is done.
1410 * If the reason that stop_queue timed out is that the work will never
1411 * finish, then it does no good to call flush/stop thread, so
1412 * return anyway.
1414 if (ret) {
1415 dev_err(&master->dev, "problem destroying queue\n");
1416 return ret;
1419 kthread_flush_worker(&master->kworker);
1420 kthread_stop(master->kworker_task);
1422 return 0;
1425 static int __spi_queued_transfer(struct spi_device *spi,
1426 struct spi_message *msg,
1427 bool need_pump)
1429 struct spi_master *master = spi->master;
1430 unsigned long flags;
1432 spin_lock_irqsave(&master->queue_lock, flags);
1434 if (!master->running) {
1435 spin_unlock_irqrestore(&master->queue_lock, flags);
1436 return -ESHUTDOWN;
1438 msg->actual_length = 0;
1439 msg->status = -EINPROGRESS;
1441 list_add_tail(&msg->queue, &master->queue);
1442 if (!master->busy && need_pump)
1443 kthread_queue_work(&master->kworker, &master->pump_messages);
1445 spin_unlock_irqrestore(&master->queue_lock, flags);
1446 return 0;
1450 * spi_queued_transfer - transfer function for queued transfers
1451 * @spi: spi device which is requesting transfer
1452 * @msg: spi message which is to handled is queued to driver queue
1454 * Return: zero on success, else a negative error code.
1456 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1458 return __spi_queued_transfer(spi, msg, true);
1461 static int spi_master_initialize_queue(struct spi_master *master)
1463 int ret;
1465 master->transfer = spi_queued_transfer;
1466 if (!master->transfer_one_message)
1467 master->transfer_one_message = spi_transfer_one_message;
1469 /* Initialize and start queue */
1470 ret = spi_init_queue(master);
1471 if (ret) {
1472 dev_err(&master->dev, "problem initializing queue\n");
1473 goto err_init_queue;
1475 master->queued = true;
1476 ret = spi_start_queue(master);
1477 if (ret) {
1478 dev_err(&master->dev, "problem starting queue\n");
1479 goto err_start_queue;
1482 return 0;
1484 err_start_queue:
1485 spi_destroy_queue(master);
1486 err_init_queue:
1487 return ret;
1490 /*-------------------------------------------------------------------------*/
1492 #if defined(CONFIG_OF)
1493 static struct spi_device *
1494 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1496 struct spi_device *spi;
1497 int rc;
1498 u32 value;
1500 /* Alloc an spi_device */
1501 spi = spi_alloc_device(master);
1502 if (!spi) {
1503 dev_err(&master->dev, "spi_device alloc error for %s\n",
1504 nc->full_name);
1505 rc = -ENOMEM;
1506 goto err_out;
1509 /* Select device driver */
1510 rc = of_modalias_node(nc, spi->modalias,
1511 sizeof(spi->modalias));
1512 if (rc < 0) {
1513 dev_err(&master->dev, "cannot find modalias for %s\n",
1514 nc->full_name);
1515 goto err_out;
1518 /* Device address */
1519 rc = of_property_read_u32(nc, "reg", &value);
1520 if (rc) {
1521 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1522 nc->full_name, rc);
1523 goto err_out;
1525 spi->chip_select = value;
1527 /* Mode (clock phase/polarity/etc.) */
1528 if (of_find_property(nc, "spi-cpha", NULL))
1529 spi->mode |= SPI_CPHA;
1530 if (of_find_property(nc, "spi-cpol", NULL))
1531 spi->mode |= SPI_CPOL;
1532 if (of_find_property(nc, "spi-cs-high", NULL))
1533 spi->mode |= SPI_CS_HIGH;
1534 if (of_find_property(nc, "spi-3wire", NULL))
1535 spi->mode |= SPI_3WIRE;
1536 if (of_find_property(nc, "spi-lsb-first", NULL))
1537 spi->mode |= SPI_LSB_FIRST;
1539 /* Device DUAL/QUAD mode */
1540 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1541 switch (value) {
1542 case 1:
1543 break;
1544 case 2:
1545 spi->mode |= SPI_TX_DUAL;
1546 break;
1547 case 4:
1548 spi->mode |= SPI_TX_QUAD;
1549 break;
1550 default:
1551 dev_warn(&master->dev,
1552 "spi-tx-bus-width %d not supported\n",
1553 value);
1554 break;
1558 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1559 switch (value) {
1560 case 1:
1561 break;
1562 case 2:
1563 spi->mode |= SPI_RX_DUAL;
1564 break;
1565 case 4:
1566 spi->mode |= SPI_RX_QUAD;
1567 break;
1568 default:
1569 dev_warn(&master->dev,
1570 "spi-rx-bus-width %d not supported\n",
1571 value);
1572 break;
1576 /* Device speed */
1577 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1578 if (rc) {
1579 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1580 nc->full_name, rc);
1581 goto err_out;
1583 spi->max_speed_hz = value;
1585 /* Store a pointer to the node in the device structure */
1586 of_node_get(nc);
1587 spi->dev.of_node = nc;
1589 /* Register the new device */
1590 rc = spi_add_device(spi);
1591 if (rc) {
1592 dev_err(&master->dev, "spi_device register error %s\n",
1593 nc->full_name);
1594 goto err_of_node_put;
1597 return spi;
1599 err_of_node_put:
1600 of_node_put(nc);
1601 err_out:
1602 spi_dev_put(spi);
1603 return ERR_PTR(rc);
1607 * of_register_spi_devices() - Register child devices onto the SPI bus
1608 * @master: Pointer to spi_master device
1610 * Registers an spi_device for each child node of master node which has a 'reg'
1611 * property.
1613 static void of_register_spi_devices(struct spi_master *master)
1615 struct spi_device *spi;
1616 struct device_node *nc;
1618 if (!master->dev.of_node)
1619 return;
1621 for_each_available_child_of_node(master->dev.of_node, nc) {
1622 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1623 continue;
1624 spi = of_register_spi_device(master, nc);
1625 if (IS_ERR(spi)) {
1626 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1627 nc->full_name);
1628 of_node_clear_flag(nc, OF_POPULATED);
1632 #else
1633 static void of_register_spi_devices(struct spi_master *master) { }
1634 #endif
1636 #ifdef CONFIG_ACPI
1637 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1639 struct spi_device *spi = data;
1640 struct spi_master *master = spi->master;
1642 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1643 struct acpi_resource_spi_serialbus *sb;
1645 sb = &ares->data.spi_serial_bus;
1646 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1648 * ACPI DeviceSelection numbering is handled by the
1649 * host controller driver in Windows and can vary
1650 * from driver to driver. In Linux we always expect
1651 * 0 .. max - 1 so we need to ask the driver to
1652 * translate between the two schemes.
1654 if (master->fw_translate_cs) {
1655 int cs = master->fw_translate_cs(master,
1656 sb->device_selection);
1657 if (cs < 0)
1658 return cs;
1659 spi->chip_select = cs;
1660 } else {
1661 spi->chip_select = sb->device_selection;
1664 spi->max_speed_hz = sb->connection_speed;
1666 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1667 spi->mode |= SPI_CPHA;
1668 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1669 spi->mode |= SPI_CPOL;
1670 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1671 spi->mode |= SPI_CS_HIGH;
1673 } else if (spi->irq < 0) {
1674 struct resource r;
1676 if (acpi_dev_resource_interrupt(ares, 0, &r))
1677 spi->irq = r.start;
1680 /* Always tell the ACPI core to skip this resource */
1681 return 1;
1684 static acpi_status acpi_register_spi_device(struct spi_master *master,
1685 struct acpi_device *adev)
1687 struct list_head resource_list;
1688 struct spi_device *spi;
1689 int ret;
1691 if (acpi_bus_get_status(adev) || !adev->status.present ||
1692 acpi_device_enumerated(adev))
1693 return AE_OK;
1695 spi = spi_alloc_device(master);
1696 if (!spi) {
1697 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1698 dev_name(&adev->dev));
1699 return AE_NO_MEMORY;
1702 ACPI_COMPANION_SET(&spi->dev, adev);
1703 spi->irq = -1;
1705 INIT_LIST_HEAD(&resource_list);
1706 ret = acpi_dev_get_resources(adev, &resource_list,
1707 acpi_spi_add_resource, spi);
1708 acpi_dev_free_resource_list(&resource_list);
1710 if (ret < 0 || !spi->max_speed_hz) {
1711 spi_dev_put(spi);
1712 return AE_OK;
1715 if (spi->irq < 0)
1716 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1718 acpi_device_set_enumerated(adev);
1720 adev->power.flags.ignore_parent = true;
1721 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1722 if (spi_add_device(spi)) {
1723 adev->power.flags.ignore_parent = false;
1724 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1725 dev_name(&adev->dev));
1726 spi_dev_put(spi);
1729 return AE_OK;
1732 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1733 void *data, void **return_value)
1735 struct spi_master *master = data;
1736 struct acpi_device *adev;
1738 if (acpi_bus_get_device(handle, &adev))
1739 return AE_OK;
1741 return acpi_register_spi_device(master, adev);
1744 static void acpi_register_spi_devices(struct spi_master *master)
1746 acpi_status status;
1747 acpi_handle handle;
1749 handle = ACPI_HANDLE(master->dev.parent);
1750 if (!handle)
1751 return;
1753 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1754 acpi_spi_add_device, NULL,
1755 master, NULL);
1756 if (ACPI_FAILURE(status))
1757 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1759 #else
1760 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1761 #endif /* CONFIG_ACPI */
1763 static void spi_master_release(struct device *dev)
1765 struct spi_master *master;
1767 master = container_of(dev, struct spi_master, dev);
1768 kfree(master);
1771 static struct class spi_master_class = {
1772 .name = "spi_master",
1773 .owner = THIS_MODULE,
1774 .dev_release = spi_master_release,
1775 .dev_groups = spi_master_groups,
1780 * spi_alloc_master - allocate SPI master controller
1781 * @dev: the controller, possibly using the platform_bus
1782 * @size: how much zeroed driver-private data to allocate; the pointer to this
1783 * memory is in the driver_data field of the returned device,
1784 * accessible with spi_master_get_devdata().
1785 * Context: can sleep
1787 * This call is used only by SPI master controller drivers, which are the
1788 * only ones directly touching chip registers. It's how they allocate
1789 * an spi_master structure, prior to calling spi_register_master().
1791 * This must be called from context that can sleep.
1793 * The caller is responsible for assigning the bus number and initializing
1794 * the master's methods before calling spi_register_master(); and (after errors
1795 * adding the device) calling spi_master_put() to prevent a memory leak.
1797 * Return: the SPI master structure on success, else NULL.
1799 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1801 struct spi_master *master;
1803 if (!dev)
1804 return NULL;
1806 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1807 if (!master)
1808 return NULL;
1810 device_initialize(&master->dev);
1811 master->bus_num = -1;
1812 master->num_chipselect = 1;
1813 master->dev.class = &spi_master_class;
1814 master->dev.parent = dev;
1815 pm_suspend_ignore_children(&master->dev, true);
1816 spi_master_set_devdata(master, &master[1]);
1818 return master;
1820 EXPORT_SYMBOL_GPL(spi_alloc_master);
1822 #ifdef CONFIG_OF
1823 static int of_spi_register_master(struct spi_master *master)
1825 int nb, i, *cs;
1826 struct device_node *np = master->dev.of_node;
1828 if (!np)
1829 return 0;
1831 nb = of_gpio_named_count(np, "cs-gpios");
1832 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1834 /* Return error only for an incorrectly formed cs-gpios property */
1835 if (nb == 0 || nb == -ENOENT)
1836 return 0;
1837 else if (nb < 0)
1838 return nb;
1840 cs = devm_kzalloc(&master->dev,
1841 sizeof(int) * master->num_chipselect,
1842 GFP_KERNEL);
1843 master->cs_gpios = cs;
1845 if (!master->cs_gpios)
1846 return -ENOMEM;
1848 for (i = 0; i < master->num_chipselect; i++)
1849 cs[i] = -ENOENT;
1851 for (i = 0; i < nb; i++)
1852 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1854 return 0;
1856 #else
1857 static int of_spi_register_master(struct spi_master *master)
1859 return 0;
1861 #endif
1864 * spi_register_master - register SPI master controller
1865 * @master: initialized master, originally from spi_alloc_master()
1866 * Context: can sleep
1868 * SPI master controllers connect to their drivers using some non-SPI bus,
1869 * such as the platform bus. The final stage of probe() in that code
1870 * includes calling spi_register_master() to hook up to this SPI bus glue.
1872 * SPI controllers use board specific (often SOC specific) bus numbers,
1873 * and board-specific addressing for SPI devices combines those numbers
1874 * with chip select numbers. Since SPI does not directly support dynamic
1875 * device identification, boards need configuration tables telling which
1876 * chip is at which address.
1878 * This must be called from context that can sleep. It returns zero on
1879 * success, else a negative error code (dropping the master's refcount).
1880 * After a successful return, the caller is responsible for calling
1881 * spi_unregister_master().
1883 * Return: zero on success, else a negative error code.
1885 int spi_register_master(struct spi_master *master)
1887 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1888 struct device *dev = master->dev.parent;
1889 struct boardinfo *bi;
1890 int status = -ENODEV;
1891 int dynamic = 0;
1893 if (!dev)
1894 return -ENODEV;
1896 status = of_spi_register_master(master);
1897 if (status)
1898 return status;
1900 /* even if it's just one always-selected device, there must
1901 * be at least one chipselect
1903 if (master->num_chipselect == 0)
1904 return -EINVAL;
1906 if ((master->bus_num < 0) && master->dev.of_node)
1907 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1909 /* convention: dynamically assigned bus IDs count down from the max */
1910 if (master->bus_num < 0) {
1911 /* FIXME switch to an IDR based scheme, something like
1912 * I2C now uses, so we can't run out of "dynamic" IDs
1914 master->bus_num = atomic_dec_return(&dyn_bus_id);
1915 dynamic = 1;
1918 INIT_LIST_HEAD(&master->queue);
1919 spin_lock_init(&master->queue_lock);
1920 spin_lock_init(&master->bus_lock_spinlock);
1921 mutex_init(&master->bus_lock_mutex);
1922 mutex_init(&master->io_mutex);
1923 master->bus_lock_flag = 0;
1924 init_completion(&master->xfer_completion);
1925 if (!master->max_dma_len)
1926 master->max_dma_len = INT_MAX;
1928 /* register the device, then userspace will see it.
1929 * registration fails if the bus ID is in use.
1931 dev_set_name(&master->dev, "spi%u", master->bus_num);
1932 status = device_add(&master->dev);
1933 if (status < 0)
1934 goto done;
1935 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1936 dynamic ? " (dynamic)" : "");
1938 /* If we're using a queued driver, start the queue */
1939 if (master->transfer)
1940 dev_info(dev, "master is unqueued, this is deprecated\n");
1941 else {
1942 status = spi_master_initialize_queue(master);
1943 if (status) {
1944 device_del(&master->dev);
1945 goto done;
1948 /* add statistics */
1949 spin_lock_init(&master->statistics.lock);
1951 mutex_lock(&board_lock);
1952 list_add_tail(&master->list, &spi_master_list);
1953 list_for_each_entry(bi, &board_list, list)
1954 spi_match_master_to_boardinfo(master, &bi->board_info);
1955 mutex_unlock(&board_lock);
1957 /* Register devices from the device tree and ACPI */
1958 of_register_spi_devices(master);
1959 acpi_register_spi_devices(master);
1960 done:
1961 return status;
1963 EXPORT_SYMBOL_GPL(spi_register_master);
1965 static void devm_spi_unregister(struct device *dev, void *res)
1967 spi_unregister_master(*(struct spi_master **)res);
1971 * dev_spi_register_master - register managed SPI master controller
1972 * @dev: device managing SPI master
1973 * @master: initialized master, originally from spi_alloc_master()
1974 * Context: can sleep
1976 * Register a SPI device as with spi_register_master() which will
1977 * automatically be unregister
1979 * Return: zero on success, else a negative error code.
1981 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1983 struct spi_master **ptr;
1984 int ret;
1986 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1987 if (!ptr)
1988 return -ENOMEM;
1990 ret = spi_register_master(master);
1991 if (!ret) {
1992 *ptr = master;
1993 devres_add(dev, ptr);
1994 } else {
1995 devres_free(ptr);
1998 return ret;
2000 EXPORT_SYMBOL_GPL(devm_spi_register_master);
2002 static int __unregister(struct device *dev, void *null)
2004 spi_unregister_device(to_spi_device(dev));
2005 return 0;
2009 * spi_unregister_master - unregister SPI master controller
2010 * @master: the master being unregistered
2011 * Context: can sleep
2013 * This call is used only by SPI master controller drivers, which are the
2014 * only ones directly touching chip registers.
2016 * This must be called from context that can sleep.
2018 void spi_unregister_master(struct spi_master *master)
2020 int dummy;
2022 if (master->queued) {
2023 if (spi_destroy_queue(master))
2024 dev_err(&master->dev, "queue remove failed\n");
2027 mutex_lock(&board_lock);
2028 list_del(&master->list);
2029 mutex_unlock(&board_lock);
2031 dummy = device_for_each_child(&master->dev, NULL, __unregister);
2032 device_unregister(&master->dev);
2034 EXPORT_SYMBOL_GPL(spi_unregister_master);
2036 int spi_master_suspend(struct spi_master *master)
2038 int ret;
2040 /* Basically no-ops for non-queued masters */
2041 if (!master->queued)
2042 return 0;
2044 ret = spi_stop_queue(master);
2045 if (ret)
2046 dev_err(&master->dev, "queue stop failed\n");
2048 return ret;
2050 EXPORT_SYMBOL_GPL(spi_master_suspend);
2052 int spi_master_resume(struct spi_master *master)
2054 int ret;
2056 if (!master->queued)
2057 return 0;
2059 ret = spi_start_queue(master);
2060 if (ret)
2061 dev_err(&master->dev, "queue restart failed\n");
2063 return ret;
2065 EXPORT_SYMBOL_GPL(spi_master_resume);
2067 static int __spi_master_match(struct device *dev, const void *data)
2069 struct spi_master *m;
2070 const u16 *bus_num = data;
2072 m = container_of(dev, struct spi_master, dev);
2073 return m->bus_num == *bus_num;
2077 * spi_busnum_to_master - look up master associated with bus_num
2078 * @bus_num: the master's bus number
2079 * Context: can sleep
2081 * This call may be used with devices that are registered after
2082 * arch init time. It returns a refcounted pointer to the relevant
2083 * spi_master (which the caller must release), or NULL if there is
2084 * no such master registered.
2086 * Return: the SPI master structure on success, else NULL.
2088 struct spi_master *spi_busnum_to_master(u16 bus_num)
2090 struct device *dev;
2091 struct spi_master *master = NULL;
2093 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2094 __spi_master_match);
2095 if (dev)
2096 master = container_of(dev, struct spi_master, dev);
2097 /* reference got in class_find_device */
2098 return master;
2100 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2102 /*-------------------------------------------------------------------------*/
2104 /* Core methods for SPI resource management */
2107 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2108 * during the processing of a spi_message while using
2109 * spi_transfer_one
2110 * @spi: the spi device for which we allocate memory
2111 * @release: the release code to execute for this resource
2112 * @size: size to alloc and return
2113 * @gfp: GFP allocation flags
2115 * Return: the pointer to the allocated data
2117 * This may get enhanced in the future to allocate from a memory pool
2118 * of the @spi_device or @spi_master to avoid repeated allocations.
2120 void *spi_res_alloc(struct spi_device *spi,
2121 spi_res_release_t release,
2122 size_t size, gfp_t gfp)
2124 struct spi_res *sres;
2126 sres = kzalloc(sizeof(*sres) + size, gfp);
2127 if (!sres)
2128 return NULL;
2130 INIT_LIST_HEAD(&sres->entry);
2131 sres->release = release;
2133 return sres->data;
2135 EXPORT_SYMBOL_GPL(spi_res_alloc);
2138 * spi_res_free - free an spi resource
2139 * @res: pointer to the custom data of a resource
2142 void spi_res_free(void *res)
2144 struct spi_res *sres = container_of(res, struct spi_res, data);
2146 if (!res)
2147 return;
2149 WARN_ON(!list_empty(&sres->entry));
2150 kfree(sres);
2152 EXPORT_SYMBOL_GPL(spi_res_free);
2155 * spi_res_add - add a spi_res to the spi_message
2156 * @message: the spi message
2157 * @res: the spi_resource
2159 void spi_res_add(struct spi_message *message, void *res)
2161 struct spi_res *sres = container_of(res, struct spi_res, data);
2163 WARN_ON(!list_empty(&sres->entry));
2164 list_add_tail(&sres->entry, &message->resources);
2166 EXPORT_SYMBOL_GPL(spi_res_add);
2169 * spi_res_release - release all spi resources for this message
2170 * @master: the @spi_master
2171 * @message: the @spi_message
2173 void spi_res_release(struct spi_master *master,
2174 struct spi_message *message)
2176 struct spi_res *res;
2178 while (!list_empty(&message->resources)) {
2179 res = list_last_entry(&message->resources,
2180 struct spi_res, entry);
2182 if (res->release)
2183 res->release(master, message, res->data);
2185 list_del(&res->entry);
2187 kfree(res);
2190 EXPORT_SYMBOL_GPL(spi_res_release);
2192 /*-------------------------------------------------------------------------*/
2194 /* Core methods for spi_message alterations */
2196 static void __spi_replace_transfers_release(struct spi_master *master,
2197 struct spi_message *msg,
2198 void *res)
2200 struct spi_replaced_transfers *rxfer = res;
2201 size_t i;
2203 /* call extra callback if requested */
2204 if (rxfer->release)
2205 rxfer->release(master, msg, res);
2207 /* insert replaced transfers back into the message */
2208 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2210 /* remove the formerly inserted entries */
2211 for (i = 0; i < rxfer->inserted; i++)
2212 list_del(&rxfer->inserted_transfers[i].transfer_list);
2216 * spi_replace_transfers - replace transfers with several transfers
2217 * and register change with spi_message.resources
2218 * @msg: the spi_message we work upon
2219 * @xfer_first: the first spi_transfer we want to replace
2220 * @remove: number of transfers to remove
2221 * @insert: the number of transfers we want to insert instead
2222 * @release: extra release code necessary in some circumstances
2223 * @extradatasize: extra data to allocate (with alignment guarantees
2224 * of struct @spi_transfer)
2225 * @gfp: gfp flags
2227 * Returns: pointer to @spi_replaced_transfers,
2228 * PTR_ERR(...) in case of errors.
2230 struct spi_replaced_transfers *spi_replace_transfers(
2231 struct spi_message *msg,
2232 struct spi_transfer *xfer_first,
2233 size_t remove,
2234 size_t insert,
2235 spi_replaced_release_t release,
2236 size_t extradatasize,
2237 gfp_t gfp)
2239 struct spi_replaced_transfers *rxfer;
2240 struct spi_transfer *xfer;
2241 size_t i;
2243 /* allocate the structure using spi_res */
2244 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2245 insert * sizeof(struct spi_transfer)
2246 + sizeof(struct spi_replaced_transfers)
2247 + extradatasize,
2248 gfp);
2249 if (!rxfer)
2250 return ERR_PTR(-ENOMEM);
2252 /* the release code to invoke before running the generic release */
2253 rxfer->release = release;
2255 /* assign extradata */
2256 if (extradatasize)
2257 rxfer->extradata =
2258 &rxfer->inserted_transfers[insert];
2260 /* init the replaced_transfers list */
2261 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2263 /* assign the list_entry after which we should reinsert
2264 * the @replaced_transfers - it may be spi_message.messages!
2266 rxfer->replaced_after = xfer_first->transfer_list.prev;
2268 /* remove the requested number of transfers */
2269 for (i = 0; i < remove; i++) {
2270 /* if the entry after replaced_after it is msg->transfers
2271 * then we have been requested to remove more transfers
2272 * than are in the list
2274 if (rxfer->replaced_after->next == &msg->transfers) {
2275 dev_err(&msg->spi->dev,
2276 "requested to remove more spi_transfers than are available\n");
2277 /* insert replaced transfers back into the message */
2278 list_splice(&rxfer->replaced_transfers,
2279 rxfer->replaced_after);
2281 /* free the spi_replace_transfer structure */
2282 spi_res_free(rxfer);
2284 /* and return with an error */
2285 return ERR_PTR(-EINVAL);
2288 /* remove the entry after replaced_after from list of
2289 * transfers and add it to list of replaced_transfers
2291 list_move_tail(rxfer->replaced_after->next,
2292 &rxfer->replaced_transfers);
2295 /* create copy of the given xfer with identical settings
2296 * based on the first transfer to get removed
2298 for (i = 0; i < insert; i++) {
2299 /* we need to run in reverse order */
2300 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2302 /* copy all spi_transfer data */
2303 memcpy(xfer, xfer_first, sizeof(*xfer));
2305 /* add to list */
2306 list_add(&xfer->transfer_list, rxfer->replaced_after);
2308 /* clear cs_change and delay_usecs for all but the last */
2309 if (i) {
2310 xfer->cs_change = false;
2311 xfer->delay_usecs = 0;
2315 /* set up inserted */
2316 rxfer->inserted = insert;
2318 /* and register it with spi_res/spi_message */
2319 spi_res_add(msg, rxfer);
2321 return rxfer;
2323 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2325 static int __spi_split_transfer_maxsize(struct spi_master *master,
2326 struct spi_message *msg,
2327 struct spi_transfer **xferp,
2328 size_t maxsize,
2329 gfp_t gfp)
2331 struct spi_transfer *xfer = *xferp, *xfers;
2332 struct spi_replaced_transfers *srt;
2333 size_t offset;
2334 size_t count, i;
2336 /* warn once about this fact that we are splitting a transfer */
2337 dev_warn_once(&msg->spi->dev,
2338 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2339 xfer->len, maxsize);
2341 /* calculate how many we have to replace */
2342 count = DIV_ROUND_UP(xfer->len, maxsize);
2344 /* create replacement */
2345 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2346 if (IS_ERR(srt))
2347 return PTR_ERR(srt);
2348 xfers = srt->inserted_transfers;
2350 /* now handle each of those newly inserted spi_transfers
2351 * note that the replacements spi_transfers all are preset
2352 * to the same values as *xferp, so tx_buf, rx_buf and len
2353 * are all identical (as well as most others)
2354 * so we just have to fix up len and the pointers.
2356 * this also includes support for the depreciated
2357 * spi_message.is_dma_mapped interface
2360 /* the first transfer just needs the length modified, so we
2361 * run it outside the loop
2363 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2365 /* all the others need rx_buf/tx_buf also set */
2366 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2367 /* update rx_buf, tx_buf and dma */
2368 if (xfers[i].rx_buf)
2369 xfers[i].rx_buf += offset;
2370 if (xfers[i].rx_dma)
2371 xfers[i].rx_dma += offset;
2372 if (xfers[i].tx_buf)
2373 xfers[i].tx_buf += offset;
2374 if (xfers[i].tx_dma)
2375 xfers[i].tx_dma += offset;
2377 /* update length */
2378 xfers[i].len = min(maxsize, xfers[i].len - offset);
2381 /* we set up xferp to the last entry we have inserted,
2382 * so that we skip those already split transfers
2384 *xferp = &xfers[count - 1];
2386 /* increment statistics counters */
2387 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2388 transfers_split_maxsize);
2389 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2390 transfers_split_maxsize);
2392 return 0;
2396 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2397 * when an individual transfer exceeds a
2398 * certain size
2399 * @master: the @spi_master for this transfer
2400 * @msg: the @spi_message to transform
2401 * @maxsize: the maximum when to apply this
2402 * @gfp: GFP allocation flags
2404 * Return: status of transformation
2406 int spi_split_transfers_maxsize(struct spi_master *master,
2407 struct spi_message *msg,
2408 size_t maxsize,
2409 gfp_t gfp)
2411 struct spi_transfer *xfer;
2412 int ret;
2414 /* iterate over the transfer_list,
2415 * but note that xfer is advanced to the last transfer inserted
2416 * to avoid checking sizes again unnecessarily (also xfer does
2417 * potentiall belong to a different list by the time the
2418 * replacement has happened
2420 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2421 if (xfer->len > maxsize) {
2422 ret = __spi_split_transfer_maxsize(
2423 master, msg, &xfer, maxsize, gfp);
2424 if (ret)
2425 return ret;
2429 return 0;
2431 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2433 /*-------------------------------------------------------------------------*/
2435 /* Core methods for SPI master protocol drivers. Some of the
2436 * other core methods are currently defined as inline functions.
2439 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2441 if (master->bits_per_word_mask) {
2442 /* Only 32 bits fit in the mask */
2443 if (bits_per_word > 32)
2444 return -EINVAL;
2445 if (!(master->bits_per_word_mask &
2446 SPI_BPW_MASK(bits_per_word)))
2447 return -EINVAL;
2450 return 0;
2454 * spi_setup - setup SPI mode and clock rate
2455 * @spi: the device whose settings are being modified
2456 * Context: can sleep, and no requests are queued to the device
2458 * SPI protocol drivers may need to update the transfer mode if the
2459 * device doesn't work with its default. They may likewise need
2460 * to update clock rates or word sizes from initial values. This function
2461 * changes those settings, and must be called from a context that can sleep.
2462 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2463 * effect the next time the device is selected and data is transferred to
2464 * or from it. When this function returns, the spi device is deselected.
2466 * Note that this call will fail if the protocol driver specifies an option
2467 * that the underlying controller or its driver does not support. For
2468 * example, not all hardware supports wire transfers using nine bit words,
2469 * LSB-first wire encoding, or active-high chipselects.
2471 * Return: zero on success, else a negative error code.
2473 int spi_setup(struct spi_device *spi)
2475 unsigned bad_bits, ugly_bits;
2476 int status;
2478 /* check mode to prevent that DUAL and QUAD set at the same time
2480 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2481 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2482 dev_err(&spi->dev,
2483 "setup: can not select dual and quad at the same time\n");
2484 return -EINVAL;
2486 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2488 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2489 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2490 return -EINVAL;
2491 /* help drivers fail *cleanly* when they need options
2492 * that aren't supported with their current master
2494 bad_bits = spi->mode & ~spi->master->mode_bits;
2495 ugly_bits = bad_bits &
2496 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2497 if (ugly_bits) {
2498 dev_warn(&spi->dev,
2499 "setup: ignoring unsupported mode bits %x\n",
2500 ugly_bits);
2501 spi->mode &= ~ugly_bits;
2502 bad_bits &= ~ugly_bits;
2504 if (bad_bits) {
2505 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2506 bad_bits);
2507 return -EINVAL;
2510 if (!spi->bits_per_word)
2511 spi->bits_per_word = 8;
2513 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2514 if (status)
2515 return status;
2517 if (!spi->max_speed_hz)
2518 spi->max_speed_hz = spi->master->max_speed_hz;
2520 if (spi->master->setup)
2521 status = spi->master->setup(spi);
2523 spi_set_cs(spi, false);
2525 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2526 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2527 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2528 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2529 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2530 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2531 spi->bits_per_word, spi->max_speed_hz,
2532 status);
2534 return status;
2536 EXPORT_SYMBOL_GPL(spi_setup);
2538 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2540 struct spi_master *master = spi->master;
2541 struct spi_transfer *xfer;
2542 int w_size;
2544 if (list_empty(&message->transfers))
2545 return -EINVAL;
2547 /* Half-duplex links include original MicroWire, and ones with
2548 * only one data pin like SPI_3WIRE (switches direction) or where
2549 * either MOSI or MISO is missing. They can also be caused by
2550 * software limitations.
2552 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2553 || (spi->mode & SPI_3WIRE)) {
2554 unsigned flags = master->flags;
2556 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2557 if (xfer->rx_buf && xfer->tx_buf)
2558 return -EINVAL;
2559 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2560 return -EINVAL;
2561 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2562 return -EINVAL;
2567 * Set transfer bits_per_word and max speed as spi device default if
2568 * it is not set for this transfer.
2569 * Set transfer tx_nbits and rx_nbits as single transfer default
2570 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2572 message->frame_length = 0;
2573 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2574 message->frame_length += xfer->len;
2575 if (!xfer->bits_per_word)
2576 xfer->bits_per_word = spi->bits_per_word;
2578 if (!xfer->speed_hz)
2579 xfer->speed_hz = spi->max_speed_hz;
2580 if (!xfer->speed_hz)
2581 xfer->speed_hz = master->max_speed_hz;
2583 if (master->max_speed_hz &&
2584 xfer->speed_hz > master->max_speed_hz)
2585 xfer->speed_hz = master->max_speed_hz;
2587 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2588 return -EINVAL;
2591 * SPI transfer length should be multiple of SPI word size
2592 * where SPI word size should be power-of-two multiple
2594 if (xfer->bits_per_word <= 8)
2595 w_size = 1;
2596 else if (xfer->bits_per_word <= 16)
2597 w_size = 2;
2598 else
2599 w_size = 4;
2601 /* No partial transfers accepted */
2602 if (xfer->len % w_size)
2603 return -EINVAL;
2605 if (xfer->speed_hz && master->min_speed_hz &&
2606 xfer->speed_hz < master->min_speed_hz)
2607 return -EINVAL;
2609 if (xfer->tx_buf && !xfer->tx_nbits)
2610 xfer->tx_nbits = SPI_NBITS_SINGLE;
2611 if (xfer->rx_buf && !xfer->rx_nbits)
2612 xfer->rx_nbits = SPI_NBITS_SINGLE;
2613 /* check transfer tx/rx_nbits:
2614 * 1. check the value matches one of single, dual and quad
2615 * 2. check tx/rx_nbits match the mode in spi_device
2617 if (xfer->tx_buf) {
2618 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2619 xfer->tx_nbits != SPI_NBITS_DUAL &&
2620 xfer->tx_nbits != SPI_NBITS_QUAD)
2621 return -EINVAL;
2622 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2623 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2624 return -EINVAL;
2625 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2626 !(spi->mode & SPI_TX_QUAD))
2627 return -EINVAL;
2629 /* check transfer rx_nbits */
2630 if (xfer->rx_buf) {
2631 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2632 xfer->rx_nbits != SPI_NBITS_DUAL &&
2633 xfer->rx_nbits != SPI_NBITS_QUAD)
2634 return -EINVAL;
2635 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2636 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2637 return -EINVAL;
2638 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2639 !(spi->mode & SPI_RX_QUAD))
2640 return -EINVAL;
2644 message->status = -EINPROGRESS;
2646 return 0;
2649 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2651 struct spi_master *master = spi->master;
2653 message->spi = spi;
2655 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2656 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2658 trace_spi_message_submit(message);
2660 return master->transfer(spi, message);
2664 * spi_async - asynchronous SPI transfer
2665 * @spi: device with which data will be exchanged
2666 * @message: describes the data transfers, including completion callback
2667 * Context: any (irqs may be blocked, etc)
2669 * This call may be used in_irq and other contexts which can't sleep,
2670 * as well as from task contexts which can sleep.
2672 * The completion callback is invoked in a context which can't sleep.
2673 * Before that invocation, the value of message->status is undefined.
2674 * When the callback is issued, message->status holds either zero (to
2675 * indicate complete success) or a negative error code. After that
2676 * callback returns, the driver which issued the transfer request may
2677 * deallocate the associated memory; it's no longer in use by any SPI
2678 * core or controller driver code.
2680 * Note that although all messages to a spi_device are handled in
2681 * FIFO order, messages may go to different devices in other orders.
2682 * Some device might be higher priority, or have various "hard" access
2683 * time requirements, for example.
2685 * On detection of any fault during the transfer, processing of
2686 * the entire message is aborted, and the device is deselected.
2687 * Until returning from the associated message completion callback,
2688 * no other spi_message queued to that device will be processed.
2689 * (This rule applies equally to all the synchronous transfer calls,
2690 * which are wrappers around this core asynchronous primitive.)
2692 * Return: zero on success, else a negative error code.
2694 int spi_async(struct spi_device *spi, struct spi_message *message)
2696 struct spi_master *master = spi->master;
2697 int ret;
2698 unsigned long flags;
2700 ret = __spi_validate(spi, message);
2701 if (ret != 0)
2702 return ret;
2704 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2706 if (master->bus_lock_flag)
2707 ret = -EBUSY;
2708 else
2709 ret = __spi_async(spi, message);
2711 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2713 return ret;
2715 EXPORT_SYMBOL_GPL(spi_async);
2718 * spi_async_locked - version of spi_async with exclusive bus usage
2719 * @spi: device with which data will be exchanged
2720 * @message: describes the data transfers, including completion callback
2721 * Context: any (irqs may be blocked, etc)
2723 * This call may be used in_irq and other contexts which can't sleep,
2724 * as well as from task contexts which can sleep.
2726 * The completion callback is invoked in a context which can't sleep.
2727 * Before that invocation, the value of message->status is undefined.
2728 * When the callback is issued, message->status holds either zero (to
2729 * indicate complete success) or a negative error code. After that
2730 * callback returns, the driver which issued the transfer request may
2731 * deallocate the associated memory; it's no longer in use by any SPI
2732 * core or controller driver code.
2734 * Note that although all messages to a spi_device are handled in
2735 * FIFO order, messages may go to different devices in other orders.
2736 * Some device might be higher priority, or have various "hard" access
2737 * time requirements, for example.
2739 * On detection of any fault during the transfer, processing of
2740 * the entire message is aborted, and the device is deselected.
2741 * Until returning from the associated message completion callback,
2742 * no other spi_message queued to that device will be processed.
2743 * (This rule applies equally to all the synchronous transfer calls,
2744 * which are wrappers around this core asynchronous primitive.)
2746 * Return: zero on success, else a negative error code.
2748 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2750 struct spi_master *master = spi->master;
2751 int ret;
2752 unsigned long flags;
2754 ret = __spi_validate(spi, message);
2755 if (ret != 0)
2756 return ret;
2758 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2760 ret = __spi_async(spi, message);
2762 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2764 return ret;
2767 EXPORT_SYMBOL_GPL(spi_async_locked);
2770 int spi_flash_read(struct spi_device *spi,
2771 struct spi_flash_read_message *msg)
2774 struct spi_master *master = spi->master;
2775 struct device *rx_dev = NULL;
2776 int ret;
2778 if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2779 msg->addr_nbits == SPI_NBITS_DUAL) &&
2780 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2781 return -EINVAL;
2782 if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2783 msg->addr_nbits == SPI_NBITS_QUAD) &&
2784 !(spi->mode & SPI_TX_QUAD))
2785 return -EINVAL;
2786 if (msg->data_nbits == SPI_NBITS_DUAL &&
2787 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2788 return -EINVAL;
2789 if (msg->data_nbits == SPI_NBITS_QUAD &&
2790 !(spi->mode & SPI_RX_QUAD))
2791 return -EINVAL;
2793 if (master->auto_runtime_pm) {
2794 ret = pm_runtime_get_sync(master->dev.parent);
2795 if (ret < 0) {
2796 dev_err(&master->dev, "Failed to power device: %d\n",
2797 ret);
2798 return ret;
2802 mutex_lock(&master->bus_lock_mutex);
2803 mutex_lock(&master->io_mutex);
2804 if (master->dma_rx) {
2805 rx_dev = master->dma_rx->device->dev;
2806 ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2807 msg->buf, msg->len,
2808 DMA_FROM_DEVICE);
2809 if (!ret)
2810 msg->cur_msg_mapped = true;
2812 ret = master->spi_flash_read(spi, msg);
2813 if (msg->cur_msg_mapped)
2814 spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2815 DMA_FROM_DEVICE);
2816 mutex_unlock(&master->io_mutex);
2817 mutex_unlock(&master->bus_lock_mutex);
2819 if (master->auto_runtime_pm)
2820 pm_runtime_put(master->dev.parent);
2822 return ret;
2824 EXPORT_SYMBOL_GPL(spi_flash_read);
2826 /*-------------------------------------------------------------------------*/
2828 /* Utility methods for SPI master protocol drivers, layered on
2829 * top of the core. Some other utility methods are defined as
2830 * inline functions.
2833 static void spi_complete(void *arg)
2835 complete(arg);
2838 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
2840 DECLARE_COMPLETION_ONSTACK(done);
2841 int status;
2842 struct spi_master *master = spi->master;
2843 unsigned long flags;
2845 status = __spi_validate(spi, message);
2846 if (status != 0)
2847 return status;
2849 message->complete = spi_complete;
2850 message->context = &done;
2851 message->spi = spi;
2853 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2854 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2856 /* If we're not using the legacy transfer method then we will
2857 * try to transfer in the calling context so special case.
2858 * This code would be less tricky if we could remove the
2859 * support for driver implemented message queues.
2861 if (master->transfer == spi_queued_transfer) {
2862 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2864 trace_spi_message_submit(message);
2866 status = __spi_queued_transfer(spi, message, false);
2868 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2869 } else {
2870 status = spi_async_locked(spi, message);
2873 if (status == 0) {
2874 /* Push out the messages in the calling context if we
2875 * can.
2877 if (master->transfer == spi_queued_transfer) {
2878 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2879 spi_sync_immediate);
2880 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2881 spi_sync_immediate);
2882 __spi_pump_messages(master, false);
2885 wait_for_completion(&done);
2886 status = message->status;
2888 message->context = NULL;
2889 return status;
2893 * spi_sync - blocking/synchronous SPI data transfers
2894 * @spi: device with which data will be exchanged
2895 * @message: describes the data transfers
2896 * Context: can sleep
2898 * This call may only be used from a context that may sleep. The sleep
2899 * is non-interruptible, and has no timeout. Low-overhead controller
2900 * drivers may DMA directly into and out of the message buffers.
2902 * Note that the SPI device's chip select is active during the message,
2903 * and then is normally disabled between messages. Drivers for some
2904 * frequently-used devices may want to minimize costs of selecting a chip,
2905 * by leaving it selected in anticipation that the next message will go
2906 * to the same chip. (That may increase power usage.)
2908 * Also, the caller is guaranteeing that the memory associated with the
2909 * message will not be freed before this call returns.
2911 * Return: zero on success, else a negative error code.
2913 int spi_sync(struct spi_device *spi, struct spi_message *message)
2915 int ret;
2917 mutex_lock(&spi->master->bus_lock_mutex);
2918 ret = __spi_sync(spi, message);
2919 mutex_unlock(&spi->master->bus_lock_mutex);
2921 return ret;
2923 EXPORT_SYMBOL_GPL(spi_sync);
2926 * spi_sync_locked - version of spi_sync with exclusive bus usage
2927 * @spi: device with which data will be exchanged
2928 * @message: describes the data transfers
2929 * Context: can sleep
2931 * This call may only be used from a context that may sleep. The sleep
2932 * is non-interruptible, and has no timeout. Low-overhead controller
2933 * drivers may DMA directly into and out of the message buffers.
2935 * This call should be used by drivers that require exclusive access to the
2936 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2937 * be released by a spi_bus_unlock call when the exclusive access is over.
2939 * Return: zero on success, else a negative error code.
2941 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2943 return __spi_sync(spi, message);
2945 EXPORT_SYMBOL_GPL(spi_sync_locked);
2948 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2949 * @master: SPI bus master that should be locked for exclusive bus access
2950 * Context: can sleep
2952 * This call may only be used from a context that may sleep. The sleep
2953 * is non-interruptible, and has no timeout.
2955 * This call should be used by drivers that require exclusive access to the
2956 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2957 * exclusive access is over. Data transfer must be done by spi_sync_locked
2958 * and spi_async_locked calls when the SPI bus lock is held.
2960 * Return: always zero.
2962 int spi_bus_lock(struct spi_master *master)
2964 unsigned long flags;
2966 mutex_lock(&master->bus_lock_mutex);
2968 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2969 master->bus_lock_flag = 1;
2970 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2972 /* mutex remains locked until spi_bus_unlock is called */
2974 return 0;
2976 EXPORT_SYMBOL_GPL(spi_bus_lock);
2979 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2980 * @master: SPI bus master that was locked for exclusive bus access
2981 * Context: can sleep
2983 * This call may only be used from a context that may sleep. The sleep
2984 * is non-interruptible, and has no timeout.
2986 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2987 * call.
2989 * Return: always zero.
2991 int spi_bus_unlock(struct spi_master *master)
2993 master->bus_lock_flag = 0;
2995 mutex_unlock(&master->bus_lock_mutex);
2997 return 0;
2999 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3001 /* portable code must never pass more than 32 bytes */
3002 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3004 static u8 *buf;
3007 * spi_write_then_read - SPI synchronous write followed by read
3008 * @spi: device with which data will be exchanged
3009 * @txbuf: data to be written (need not be dma-safe)
3010 * @n_tx: size of txbuf, in bytes
3011 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3012 * @n_rx: size of rxbuf, in bytes
3013 * Context: can sleep
3015 * This performs a half duplex MicroWire style transaction with the
3016 * device, sending txbuf and then reading rxbuf. The return value
3017 * is zero for success, else a negative errno status code.
3018 * This call may only be used from a context that may sleep.
3020 * Parameters to this routine are always copied using a small buffer;
3021 * portable code should never use this for more than 32 bytes.
3022 * Performance-sensitive or bulk transfer code should instead use
3023 * spi_{async,sync}() calls with dma-safe buffers.
3025 * Return: zero on success, else a negative error code.
3027 int spi_write_then_read(struct spi_device *spi,
3028 const void *txbuf, unsigned n_tx,
3029 void *rxbuf, unsigned n_rx)
3031 static DEFINE_MUTEX(lock);
3033 int status;
3034 struct spi_message message;
3035 struct spi_transfer x[2];
3036 u8 *local_buf;
3038 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3039 * copying here, (as a pure convenience thing), but we can
3040 * keep heap costs out of the hot path unless someone else is
3041 * using the pre-allocated buffer or the transfer is too large.
3043 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3044 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3045 GFP_KERNEL | GFP_DMA);
3046 if (!local_buf)
3047 return -ENOMEM;
3048 } else {
3049 local_buf = buf;
3052 spi_message_init(&message);
3053 memset(x, 0, sizeof(x));
3054 if (n_tx) {
3055 x[0].len = n_tx;
3056 spi_message_add_tail(&x[0], &message);
3058 if (n_rx) {
3059 x[1].len = n_rx;
3060 spi_message_add_tail(&x[1], &message);
3063 memcpy(local_buf, txbuf, n_tx);
3064 x[0].tx_buf = local_buf;
3065 x[1].rx_buf = local_buf + n_tx;
3067 /* do the i/o */
3068 status = spi_sync(spi, &message);
3069 if (status == 0)
3070 memcpy(rxbuf, x[1].rx_buf, n_rx);
3072 if (x[0].tx_buf == buf)
3073 mutex_unlock(&lock);
3074 else
3075 kfree(local_buf);
3077 return status;
3079 EXPORT_SYMBOL_GPL(spi_write_then_read);
3081 /*-------------------------------------------------------------------------*/
3083 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3084 static int __spi_of_device_match(struct device *dev, void *data)
3086 return dev->of_node == data;
3089 /* must call put_device() when done with returned spi_device device */
3090 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3092 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3093 __spi_of_device_match);
3094 return dev ? to_spi_device(dev) : NULL;
3097 static int __spi_of_master_match(struct device *dev, const void *data)
3099 return dev->of_node == data;
3102 /* the spi masters are not using spi_bus, so we find it with another way */
3103 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3105 struct device *dev;
3107 dev = class_find_device(&spi_master_class, NULL, node,
3108 __spi_of_master_match);
3109 if (!dev)
3110 return NULL;
3112 /* reference got in class_find_device */
3113 return container_of(dev, struct spi_master, dev);
3116 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3117 void *arg)
3119 struct of_reconfig_data *rd = arg;
3120 struct spi_master *master;
3121 struct spi_device *spi;
3123 switch (of_reconfig_get_state_change(action, arg)) {
3124 case OF_RECONFIG_CHANGE_ADD:
3125 master = of_find_spi_master_by_node(rd->dn->parent);
3126 if (master == NULL)
3127 return NOTIFY_OK; /* not for us */
3129 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3130 put_device(&master->dev);
3131 return NOTIFY_OK;
3134 spi = of_register_spi_device(master, rd->dn);
3135 put_device(&master->dev);
3137 if (IS_ERR(spi)) {
3138 pr_err("%s: failed to create for '%s'\n",
3139 __func__, rd->dn->full_name);
3140 of_node_clear_flag(rd->dn, OF_POPULATED);
3141 return notifier_from_errno(PTR_ERR(spi));
3143 break;
3145 case OF_RECONFIG_CHANGE_REMOVE:
3146 /* already depopulated? */
3147 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3148 return NOTIFY_OK;
3150 /* find our device by node */
3151 spi = of_find_spi_device_by_node(rd->dn);
3152 if (spi == NULL)
3153 return NOTIFY_OK; /* no? not meant for us */
3155 /* unregister takes one ref away */
3156 spi_unregister_device(spi);
3158 /* and put the reference of the find */
3159 put_device(&spi->dev);
3160 break;
3163 return NOTIFY_OK;
3166 static struct notifier_block spi_of_notifier = {
3167 .notifier_call = of_spi_notify,
3169 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3170 extern struct notifier_block spi_of_notifier;
3171 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3173 #if IS_ENABLED(CONFIG_ACPI)
3174 static int spi_acpi_master_match(struct device *dev, const void *data)
3176 return ACPI_COMPANION(dev->parent) == data;
3179 static int spi_acpi_device_match(struct device *dev, void *data)
3181 return ACPI_COMPANION(dev) == data;
3184 static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
3186 struct device *dev;
3188 dev = class_find_device(&spi_master_class, NULL, adev,
3189 spi_acpi_master_match);
3190 if (!dev)
3191 return NULL;
3193 return container_of(dev, struct spi_master, dev);
3196 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3198 struct device *dev;
3200 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3202 return dev ? to_spi_device(dev) : NULL;
3205 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3206 void *arg)
3208 struct acpi_device *adev = arg;
3209 struct spi_master *master;
3210 struct spi_device *spi;
3212 switch (value) {
3213 case ACPI_RECONFIG_DEVICE_ADD:
3214 master = acpi_spi_find_master_by_adev(adev->parent);
3215 if (!master)
3216 break;
3218 acpi_register_spi_device(master, adev);
3219 put_device(&master->dev);
3220 break;
3221 case ACPI_RECONFIG_DEVICE_REMOVE:
3222 if (!acpi_device_enumerated(adev))
3223 break;
3225 spi = acpi_spi_find_device_by_adev(adev);
3226 if (!spi)
3227 break;
3229 spi_unregister_device(spi);
3230 put_device(&spi->dev);
3231 break;
3234 return NOTIFY_OK;
3237 static struct notifier_block spi_acpi_notifier = {
3238 .notifier_call = acpi_spi_notify,
3240 #else
3241 extern struct notifier_block spi_acpi_notifier;
3242 #endif
3244 static int __init spi_init(void)
3246 int status;
3248 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3249 if (!buf) {
3250 status = -ENOMEM;
3251 goto err0;
3254 status = bus_register(&spi_bus_type);
3255 if (status < 0)
3256 goto err1;
3258 status = class_register(&spi_master_class);
3259 if (status < 0)
3260 goto err2;
3262 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3263 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3264 if (IS_ENABLED(CONFIG_ACPI))
3265 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3267 return 0;
3269 err2:
3270 bus_unregister(&spi_bus_type);
3271 err1:
3272 kfree(buf);
3273 buf = NULL;
3274 err0:
3275 return status;
3278 /* board_info is normally registered in arch_initcall(),
3279 * but even essential drivers wait till later
3281 * REVISIT only boardinfo really needs static linking. the rest (device and
3282 * driver registration) _could_ be dynamically linked (modular) ... costs
3283 * include needing to have boardinfo data structures be much more public.
3285 postcore_initcall(spi_init);