4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 #include <linux/highmem.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
45 static void spidev_release(struct device
*dev
)
47 struct spi_device
*spi
= to_spi_device(dev
);
49 /* spi masters may cleanup for released devices */
50 if (spi
->master
->cleanup
)
51 spi
->master
->cleanup(spi
);
53 spi_master_put(spi
->master
);
58 modalias_show(struct device
*dev
, struct device_attribute
*a
, char *buf
)
60 const struct spi_device
*spi
= to_spi_device(dev
);
63 len
= acpi_device_modalias(dev
, buf
, PAGE_SIZE
- 1);
67 return sprintf(buf
, "%s%s\n", SPI_MODULE_PREFIX
, spi
->modalias
);
69 static DEVICE_ATTR_RO(modalias
);
71 #define SPI_STATISTICS_ATTRS(field, file) \
72 static ssize_t spi_master_##field##_show(struct device *dev, \
73 struct device_attribute *attr, \
76 struct spi_master *master = container_of(dev, \
77 struct spi_master, dev); \
78 return spi_statistics_##field##_show(&master->statistics, buf); \
80 static struct device_attribute dev_attr_spi_master_##field = { \
81 .attr = { .name = file, .mode = S_IRUGO }, \
82 .show = spi_master_##field##_show, \
84 static ssize_t spi_device_##field##_show(struct device *dev, \
85 struct device_attribute *attr, \
88 struct spi_device *spi = to_spi_device(dev); \
89 return spi_statistics_##field##_show(&spi->statistics, buf); \
91 static struct device_attribute dev_attr_spi_device_##field = { \
92 .attr = { .name = file, .mode = S_IRUGO }, \
93 .show = spi_device_##field##_show, \
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
100 unsigned long flags; \
102 spin_lock_irqsave(&stat->lock, flags); \
103 len = sprintf(buf, format_string, stat->field); \
104 spin_unlock_irqrestore(&stat->lock, flags); \
107 SPI_STATISTICS_ATTRS(name, file)
109 #define SPI_STATISTICS_SHOW(field, format_string) \
110 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
111 field, format_string)
113 SPI_STATISTICS_SHOW(messages
, "%lu");
114 SPI_STATISTICS_SHOW(transfers
, "%lu");
115 SPI_STATISTICS_SHOW(errors
, "%lu");
116 SPI_STATISTICS_SHOW(timedout
, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync
, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate
, "%lu");
120 SPI_STATISTICS_SHOW(spi_async
, "%lu");
122 SPI_STATISTICS_SHOW(bytes
, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx
, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx
, "%llu");
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
127 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
128 "transfer_bytes_histo_" number, \
129 transfer_bytes_histo[index], "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
148 SPI_STATISTICS_SHOW(transfers_split_maxsize
, "%lu");
150 static struct attribute
*spi_dev_attrs
[] = {
151 &dev_attr_modalias
.attr
,
155 static const struct attribute_group spi_dev_group
= {
156 .attrs
= spi_dev_attrs
,
159 static struct attribute
*spi_device_statistics_attrs
[] = {
160 &dev_attr_spi_device_messages
.attr
,
161 &dev_attr_spi_device_transfers
.attr
,
162 &dev_attr_spi_device_errors
.attr
,
163 &dev_attr_spi_device_timedout
.attr
,
164 &dev_attr_spi_device_spi_sync
.attr
,
165 &dev_attr_spi_device_spi_sync_immediate
.attr
,
166 &dev_attr_spi_device_spi_async
.attr
,
167 &dev_attr_spi_device_bytes
.attr
,
168 &dev_attr_spi_device_bytes_rx
.attr
,
169 &dev_attr_spi_device_bytes_tx
.attr
,
170 &dev_attr_spi_device_transfer_bytes_histo0
.attr
,
171 &dev_attr_spi_device_transfer_bytes_histo1
.attr
,
172 &dev_attr_spi_device_transfer_bytes_histo2
.attr
,
173 &dev_attr_spi_device_transfer_bytes_histo3
.attr
,
174 &dev_attr_spi_device_transfer_bytes_histo4
.attr
,
175 &dev_attr_spi_device_transfer_bytes_histo5
.attr
,
176 &dev_attr_spi_device_transfer_bytes_histo6
.attr
,
177 &dev_attr_spi_device_transfer_bytes_histo7
.attr
,
178 &dev_attr_spi_device_transfer_bytes_histo8
.attr
,
179 &dev_attr_spi_device_transfer_bytes_histo9
.attr
,
180 &dev_attr_spi_device_transfer_bytes_histo10
.attr
,
181 &dev_attr_spi_device_transfer_bytes_histo11
.attr
,
182 &dev_attr_spi_device_transfer_bytes_histo12
.attr
,
183 &dev_attr_spi_device_transfer_bytes_histo13
.attr
,
184 &dev_attr_spi_device_transfer_bytes_histo14
.attr
,
185 &dev_attr_spi_device_transfer_bytes_histo15
.attr
,
186 &dev_attr_spi_device_transfer_bytes_histo16
.attr
,
187 &dev_attr_spi_device_transfers_split_maxsize
.attr
,
191 static const struct attribute_group spi_device_statistics_group
= {
192 .name
= "statistics",
193 .attrs
= spi_device_statistics_attrs
,
196 static const struct attribute_group
*spi_dev_groups
[] = {
198 &spi_device_statistics_group
,
202 static struct attribute
*spi_master_statistics_attrs
[] = {
203 &dev_attr_spi_master_messages
.attr
,
204 &dev_attr_spi_master_transfers
.attr
,
205 &dev_attr_spi_master_errors
.attr
,
206 &dev_attr_spi_master_timedout
.attr
,
207 &dev_attr_spi_master_spi_sync
.attr
,
208 &dev_attr_spi_master_spi_sync_immediate
.attr
,
209 &dev_attr_spi_master_spi_async
.attr
,
210 &dev_attr_spi_master_bytes
.attr
,
211 &dev_attr_spi_master_bytes_rx
.attr
,
212 &dev_attr_spi_master_bytes_tx
.attr
,
213 &dev_attr_spi_master_transfer_bytes_histo0
.attr
,
214 &dev_attr_spi_master_transfer_bytes_histo1
.attr
,
215 &dev_attr_spi_master_transfer_bytes_histo2
.attr
,
216 &dev_attr_spi_master_transfer_bytes_histo3
.attr
,
217 &dev_attr_spi_master_transfer_bytes_histo4
.attr
,
218 &dev_attr_spi_master_transfer_bytes_histo5
.attr
,
219 &dev_attr_spi_master_transfer_bytes_histo6
.attr
,
220 &dev_attr_spi_master_transfer_bytes_histo7
.attr
,
221 &dev_attr_spi_master_transfer_bytes_histo8
.attr
,
222 &dev_attr_spi_master_transfer_bytes_histo9
.attr
,
223 &dev_attr_spi_master_transfer_bytes_histo10
.attr
,
224 &dev_attr_spi_master_transfer_bytes_histo11
.attr
,
225 &dev_attr_spi_master_transfer_bytes_histo12
.attr
,
226 &dev_attr_spi_master_transfer_bytes_histo13
.attr
,
227 &dev_attr_spi_master_transfer_bytes_histo14
.attr
,
228 &dev_attr_spi_master_transfer_bytes_histo15
.attr
,
229 &dev_attr_spi_master_transfer_bytes_histo16
.attr
,
230 &dev_attr_spi_master_transfers_split_maxsize
.attr
,
234 static const struct attribute_group spi_master_statistics_group
= {
235 .name
= "statistics",
236 .attrs
= spi_master_statistics_attrs
,
239 static const struct attribute_group
*spi_master_groups
[] = {
240 &spi_master_statistics_group
,
244 void spi_statistics_add_transfer_stats(struct spi_statistics
*stats
,
245 struct spi_transfer
*xfer
,
246 struct spi_master
*master
)
249 int l2len
= min(fls(xfer
->len
), SPI_STATISTICS_HISTO_SIZE
) - 1;
254 spin_lock_irqsave(&stats
->lock
, flags
);
257 stats
->transfer_bytes_histo
[l2len
]++;
259 stats
->bytes
+= xfer
->len
;
260 if ((xfer
->tx_buf
) &&
261 (xfer
->tx_buf
!= master
->dummy_tx
))
262 stats
->bytes_tx
+= xfer
->len
;
263 if ((xfer
->rx_buf
) &&
264 (xfer
->rx_buf
!= master
->dummy_rx
))
265 stats
->bytes_rx
+= xfer
->len
;
267 spin_unlock_irqrestore(&stats
->lock
, flags
);
269 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats
);
271 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
272 * and the sysfs version makes coldplug work too.
275 static const struct spi_device_id
*spi_match_id(const struct spi_device_id
*id
,
276 const struct spi_device
*sdev
)
278 while (id
->name
[0]) {
279 if (!strcmp(sdev
->modalias
, id
->name
))
286 const struct spi_device_id
*spi_get_device_id(const struct spi_device
*sdev
)
288 const struct spi_driver
*sdrv
= to_spi_driver(sdev
->dev
.driver
);
290 return spi_match_id(sdrv
->id_table
, sdev
);
292 EXPORT_SYMBOL_GPL(spi_get_device_id
);
294 static int spi_match_device(struct device
*dev
, struct device_driver
*drv
)
296 const struct spi_device
*spi
= to_spi_device(dev
);
297 const struct spi_driver
*sdrv
= to_spi_driver(drv
);
299 /* Attempt an OF style match */
300 if (of_driver_match_device(dev
, drv
))
304 if (acpi_driver_match_device(dev
, drv
))
308 return !!spi_match_id(sdrv
->id_table
, spi
);
310 return strcmp(spi
->modalias
, drv
->name
) == 0;
313 static int spi_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
315 const struct spi_device
*spi
= to_spi_device(dev
);
318 rc
= acpi_device_uevent_modalias(dev
, env
);
322 add_uevent_var(env
, "MODALIAS=%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
326 struct bus_type spi_bus_type
= {
328 .dev_groups
= spi_dev_groups
,
329 .match
= spi_match_device
,
330 .uevent
= spi_uevent
,
332 EXPORT_SYMBOL_GPL(spi_bus_type
);
335 static int spi_drv_probe(struct device
*dev
)
337 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
338 struct spi_device
*spi
= to_spi_device(dev
);
341 ret
= of_clk_set_defaults(dev
->of_node
, false);
346 spi
->irq
= of_irq_get(dev
->of_node
, 0);
347 if (spi
->irq
== -EPROBE_DEFER
)
348 return -EPROBE_DEFER
;
353 ret
= dev_pm_domain_attach(dev
, true);
354 if (ret
!= -EPROBE_DEFER
) {
355 ret
= sdrv
->probe(spi
);
357 dev_pm_domain_detach(dev
, true);
363 static int spi_drv_remove(struct device
*dev
)
365 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
368 ret
= sdrv
->remove(to_spi_device(dev
));
369 dev_pm_domain_detach(dev
, true);
374 static void spi_drv_shutdown(struct device
*dev
)
376 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
378 sdrv
->shutdown(to_spi_device(dev
));
382 * __spi_register_driver - register a SPI driver
383 * @owner: owner module of the driver to register
384 * @sdrv: the driver to register
387 * Return: zero on success, else a negative error code.
389 int __spi_register_driver(struct module
*owner
, struct spi_driver
*sdrv
)
391 sdrv
->driver
.owner
= owner
;
392 sdrv
->driver
.bus
= &spi_bus_type
;
394 sdrv
->driver
.probe
= spi_drv_probe
;
396 sdrv
->driver
.remove
= spi_drv_remove
;
398 sdrv
->driver
.shutdown
= spi_drv_shutdown
;
399 return driver_register(&sdrv
->driver
);
401 EXPORT_SYMBOL_GPL(__spi_register_driver
);
403 /*-------------------------------------------------------------------------*/
405 /* SPI devices should normally not be created by SPI device drivers; that
406 * would make them board-specific. Similarly with SPI master drivers.
407 * Device registration normally goes into like arch/.../mach.../board-YYY.c
408 * with other readonly (flashable) information about mainboard devices.
412 struct list_head list
;
413 struct spi_board_info board_info
;
416 static LIST_HEAD(board_list
);
417 static LIST_HEAD(spi_master_list
);
420 * Used to protect add/del opertion for board_info list and
421 * spi_master list, and their matching process
423 static DEFINE_MUTEX(board_lock
);
426 * spi_alloc_device - Allocate a new SPI device
427 * @master: Controller to which device is connected
430 * Allows a driver to allocate and initialize a spi_device without
431 * registering it immediately. This allows a driver to directly
432 * fill the spi_device with device parameters before calling
433 * spi_add_device() on it.
435 * Caller is responsible to call spi_add_device() on the returned
436 * spi_device structure to add it to the SPI master. If the caller
437 * needs to discard the spi_device without adding it, then it should
438 * call spi_dev_put() on it.
440 * Return: a pointer to the new device, or NULL.
442 struct spi_device
*spi_alloc_device(struct spi_master
*master
)
444 struct spi_device
*spi
;
446 if (!spi_master_get(master
))
449 spi
= kzalloc(sizeof(*spi
), GFP_KERNEL
);
451 spi_master_put(master
);
455 spi
->master
= master
;
456 spi
->dev
.parent
= &master
->dev
;
457 spi
->dev
.bus
= &spi_bus_type
;
458 spi
->dev
.release
= spidev_release
;
459 spi
->cs_gpio
= -ENOENT
;
461 spin_lock_init(&spi
->statistics
.lock
);
463 device_initialize(&spi
->dev
);
466 EXPORT_SYMBOL_GPL(spi_alloc_device
);
468 static void spi_dev_set_name(struct spi_device
*spi
)
470 struct acpi_device
*adev
= ACPI_COMPANION(&spi
->dev
);
473 dev_set_name(&spi
->dev
, "spi-%s", acpi_dev_name(adev
));
477 dev_set_name(&spi
->dev
, "%s.%u", dev_name(&spi
->master
->dev
),
481 static int spi_dev_check(struct device
*dev
, void *data
)
483 struct spi_device
*spi
= to_spi_device(dev
);
484 struct spi_device
*new_spi
= data
;
486 if (spi
->master
== new_spi
->master
&&
487 spi
->chip_select
== new_spi
->chip_select
)
493 * spi_add_device - Add spi_device allocated with spi_alloc_device
494 * @spi: spi_device to register
496 * Companion function to spi_alloc_device. Devices allocated with
497 * spi_alloc_device can be added onto the spi bus with this function.
499 * Return: 0 on success; negative errno on failure
501 int spi_add_device(struct spi_device
*spi
)
503 static DEFINE_MUTEX(spi_add_lock
);
504 struct spi_master
*master
= spi
->master
;
505 struct device
*dev
= master
->dev
.parent
;
508 /* Chipselects are numbered 0..max; validate. */
509 if (spi
->chip_select
>= master
->num_chipselect
) {
510 dev_err(dev
, "cs%d >= max %d\n",
512 master
->num_chipselect
);
516 /* Set the bus ID string */
517 spi_dev_set_name(spi
);
519 /* We need to make sure there's no other device with this
520 * chipselect **BEFORE** we call setup(), else we'll trash
521 * its configuration. Lock against concurrent add() calls.
523 mutex_lock(&spi_add_lock
);
525 status
= bus_for_each_dev(&spi_bus_type
, NULL
, spi
, spi_dev_check
);
527 dev_err(dev
, "chipselect %d already in use\n",
532 if (master
->cs_gpios
)
533 spi
->cs_gpio
= master
->cs_gpios
[spi
->chip_select
];
535 /* Drivers may modify this initial i/o setup, but will
536 * normally rely on the device being setup. Devices
537 * using SPI_CS_HIGH can't coexist well otherwise...
539 status
= spi_setup(spi
);
541 dev_err(dev
, "can't setup %s, status %d\n",
542 dev_name(&spi
->dev
), status
);
546 /* Device may be bound to an active driver when this returns */
547 status
= device_add(&spi
->dev
);
549 dev_err(dev
, "can't add %s, status %d\n",
550 dev_name(&spi
->dev
), status
);
552 dev_dbg(dev
, "registered child %s\n", dev_name(&spi
->dev
));
555 mutex_unlock(&spi_add_lock
);
558 EXPORT_SYMBOL_GPL(spi_add_device
);
561 * spi_new_device - instantiate one new SPI device
562 * @master: Controller to which device is connected
563 * @chip: Describes the SPI device
566 * On typical mainboards, this is purely internal; and it's not needed
567 * after board init creates the hard-wired devices. Some development
568 * platforms may not be able to use spi_register_board_info though, and
569 * this is exported so that for example a USB or parport based adapter
570 * driver could add devices (which it would learn about out-of-band).
572 * Return: the new device, or NULL.
574 struct spi_device
*spi_new_device(struct spi_master
*master
,
575 struct spi_board_info
*chip
)
577 struct spi_device
*proxy
;
580 /* NOTE: caller did any chip->bus_num checks necessary.
582 * Also, unless we change the return value convention to use
583 * error-or-pointer (not NULL-or-pointer), troubleshootability
584 * suggests syslogged diagnostics are best here (ugh).
587 proxy
= spi_alloc_device(master
);
591 WARN_ON(strlen(chip
->modalias
) >= sizeof(proxy
->modalias
));
593 proxy
->chip_select
= chip
->chip_select
;
594 proxy
->max_speed_hz
= chip
->max_speed_hz
;
595 proxy
->mode
= chip
->mode
;
596 proxy
->irq
= chip
->irq
;
597 strlcpy(proxy
->modalias
, chip
->modalias
, sizeof(proxy
->modalias
));
598 proxy
->dev
.platform_data
= (void *) chip
->platform_data
;
599 proxy
->controller_data
= chip
->controller_data
;
600 proxy
->controller_state
= NULL
;
602 status
= spi_add_device(proxy
);
610 EXPORT_SYMBOL_GPL(spi_new_device
);
613 * spi_unregister_device - unregister a single SPI device
614 * @spi: spi_device to unregister
616 * Start making the passed SPI device vanish. Normally this would be handled
617 * by spi_unregister_master().
619 void spi_unregister_device(struct spi_device
*spi
)
624 if (spi
->dev
.of_node
) {
625 of_node_clear_flag(spi
->dev
.of_node
, OF_POPULATED
);
626 of_node_put(spi
->dev
.of_node
);
628 if (ACPI_COMPANION(&spi
->dev
))
629 acpi_device_clear_enumerated(ACPI_COMPANION(&spi
->dev
));
630 device_unregister(&spi
->dev
);
632 EXPORT_SYMBOL_GPL(spi_unregister_device
);
634 static void spi_match_master_to_boardinfo(struct spi_master
*master
,
635 struct spi_board_info
*bi
)
637 struct spi_device
*dev
;
639 if (master
->bus_num
!= bi
->bus_num
)
642 dev
= spi_new_device(master
, bi
);
644 dev_err(master
->dev
.parent
, "can't create new device for %s\n",
649 * spi_register_board_info - register SPI devices for a given board
650 * @info: array of chip descriptors
651 * @n: how many descriptors are provided
654 * Board-specific early init code calls this (probably during arch_initcall)
655 * with segments of the SPI device table. Any device nodes are created later,
656 * after the relevant parent SPI controller (bus_num) is defined. We keep
657 * this table of devices forever, so that reloading a controller driver will
658 * not make Linux forget about these hard-wired devices.
660 * Other code can also call this, e.g. a particular add-on board might provide
661 * SPI devices through its expansion connector, so code initializing that board
662 * would naturally declare its SPI devices.
664 * The board info passed can safely be __initdata ... but be careful of
665 * any embedded pointers (platform_data, etc), they're copied as-is.
667 * Return: zero on success, else a negative error code.
669 int spi_register_board_info(struct spi_board_info
const *info
, unsigned n
)
671 struct boardinfo
*bi
;
677 bi
= kzalloc(n
* sizeof(*bi
), GFP_KERNEL
);
681 for (i
= 0; i
< n
; i
++, bi
++, info
++) {
682 struct spi_master
*master
;
684 memcpy(&bi
->board_info
, info
, sizeof(*info
));
685 mutex_lock(&board_lock
);
686 list_add_tail(&bi
->list
, &board_list
);
687 list_for_each_entry(master
, &spi_master_list
, list
)
688 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
689 mutex_unlock(&board_lock
);
695 /*-------------------------------------------------------------------------*/
697 static void spi_set_cs(struct spi_device
*spi
, bool enable
)
699 if (spi
->mode
& SPI_CS_HIGH
)
702 if (gpio_is_valid(spi
->cs_gpio
))
703 gpio_set_value(spi
->cs_gpio
, !enable
);
704 else if (spi
->master
->set_cs
)
705 spi
->master
->set_cs(spi
, !enable
);
708 #ifdef CONFIG_HAS_DMA
709 static int spi_map_buf(struct spi_master
*master
, struct device
*dev
,
710 struct sg_table
*sgt
, void *buf
, size_t len
,
711 enum dma_data_direction dir
)
713 const bool vmalloced_buf
= is_vmalloc_addr(buf
);
714 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
715 #ifdef CONFIG_HIGHMEM
716 const bool kmap_buf
= ((unsigned long)buf
>= PKMAP_BASE
&&
717 (unsigned long)buf
< (PKMAP_BASE
+
718 (LAST_PKMAP
* PAGE_SIZE
)));
720 const bool kmap_buf
= false;
724 struct page
*vm_page
;
729 if (vmalloced_buf
|| kmap_buf
) {
730 desc_len
= min_t(int, max_seg_size
, PAGE_SIZE
);
731 sgs
= DIV_ROUND_UP(len
+ offset_in_page(buf
), desc_len
);
732 } else if (virt_addr_valid(buf
)) {
733 desc_len
= min_t(int, max_seg_size
, master
->max_dma_len
);
734 sgs
= DIV_ROUND_UP(len
, desc_len
);
739 ret
= sg_alloc_table(sgt
, sgs
, GFP_KERNEL
);
743 for (i
= 0; i
< sgs
; i
++) {
745 if (vmalloced_buf
|| kmap_buf
) {
747 len
, desc_len
- offset_in_page(buf
));
749 vm_page
= vmalloc_to_page(buf
);
751 vm_page
= kmap_to_page(buf
);
756 sg_set_page(&sgt
->sgl
[i
], vm_page
,
757 min
, offset_in_page(buf
));
759 min
= min_t(size_t, len
, desc_len
);
761 sg_set_buf(&sgt
->sgl
[i
], sg_buf
, min
);
768 ret
= dma_map_sg(dev
, sgt
->sgl
, sgt
->nents
, dir
);
781 static void spi_unmap_buf(struct spi_master
*master
, struct device
*dev
,
782 struct sg_table
*sgt
, enum dma_data_direction dir
)
784 if (sgt
->orig_nents
) {
785 dma_unmap_sg(dev
, sgt
->sgl
, sgt
->orig_nents
, dir
);
790 static int __spi_map_msg(struct spi_master
*master
, struct spi_message
*msg
)
792 struct device
*tx_dev
, *rx_dev
;
793 struct spi_transfer
*xfer
;
796 if (!master
->can_dma
)
800 tx_dev
= master
->dma_tx
->device
->dev
;
802 tx_dev
= master
->dev
.parent
;
805 rx_dev
= master
->dma_rx
->device
->dev
;
807 rx_dev
= master
->dev
.parent
;
809 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
810 if (!master
->can_dma(master
, msg
->spi
, xfer
))
813 if (xfer
->tx_buf
!= NULL
) {
814 ret
= spi_map_buf(master
, tx_dev
, &xfer
->tx_sg
,
815 (void *)xfer
->tx_buf
, xfer
->len
,
821 if (xfer
->rx_buf
!= NULL
) {
822 ret
= spi_map_buf(master
, rx_dev
, &xfer
->rx_sg
,
823 xfer
->rx_buf
, xfer
->len
,
826 spi_unmap_buf(master
, tx_dev
, &xfer
->tx_sg
,
833 master
->cur_msg_mapped
= true;
838 static int __spi_unmap_msg(struct spi_master
*master
, struct spi_message
*msg
)
840 struct spi_transfer
*xfer
;
841 struct device
*tx_dev
, *rx_dev
;
843 if (!master
->cur_msg_mapped
|| !master
->can_dma
)
847 tx_dev
= master
->dma_tx
->device
->dev
;
849 tx_dev
= master
->dev
.parent
;
852 rx_dev
= master
->dma_rx
->device
->dev
;
854 rx_dev
= master
->dev
.parent
;
856 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
857 if (!master
->can_dma(master
, msg
->spi
, xfer
))
860 spi_unmap_buf(master
, rx_dev
, &xfer
->rx_sg
, DMA_FROM_DEVICE
);
861 spi_unmap_buf(master
, tx_dev
, &xfer
->tx_sg
, DMA_TO_DEVICE
);
866 #else /* !CONFIG_HAS_DMA */
867 static inline int spi_map_buf(struct spi_master
*master
,
868 struct device
*dev
, struct sg_table
*sgt
,
869 void *buf
, size_t len
,
870 enum dma_data_direction dir
)
875 static inline void spi_unmap_buf(struct spi_master
*master
,
876 struct device
*dev
, struct sg_table
*sgt
,
877 enum dma_data_direction dir
)
881 static inline int __spi_map_msg(struct spi_master
*master
,
882 struct spi_message
*msg
)
887 static inline int __spi_unmap_msg(struct spi_master
*master
,
888 struct spi_message
*msg
)
892 #endif /* !CONFIG_HAS_DMA */
894 static inline int spi_unmap_msg(struct spi_master
*master
,
895 struct spi_message
*msg
)
897 struct spi_transfer
*xfer
;
899 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
901 * Restore the original value of tx_buf or rx_buf if they are
904 if (xfer
->tx_buf
== master
->dummy_tx
)
906 if (xfer
->rx_buf
== master
->dummy_rx
)
910 return __spi_unmap_msg(master
, msg
);
913 static int spi_map_msg(struct spi_master
*master
, struct spi_message
*msg
)
915 struct spi_transfer
*xfer
;
917 unsigned int max_tx
, max_rx
;
919 if (master
->flags
& (SPI_MASTER_MUST_RX
| SPI_MASTER_MUST_TX
)) {
923 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
924 if ((master
->flags
& SPI_MASTER_MUST_TX
) &&
926 max_tx
= max(xfer
->len
, max_tx
);
927 if ((master
->flags
& SPI_MASTER_MUST_RX
) &&
929 max_rx
= max(xfer
->len
, max_rx
);
933 tmp
= krealloc(master
->dummy_tx
, max_tx
,
934 GFP_KERNEL
| GFP_DMA
);
937 master
->dummy_tx
= tmp
;
938 memset(tmp
, 0, max_tx
);
942 tmp
= krealloc(master
->dummy_rx
, max_rx
,
943 GFP_KERNEL
| GFP_DMA
);
946 master
->dummy_rx
= tmp
;
949 if (max_tx
|| max_rx
) {
950 list_for_each_entry(xfer
, &msg
->transfers
,
953 xfer
->tx_buf
= master
->dummy_tx
;
955 xfer
->rx_buf
= master
->dummy_rx
;
960 return __spi_map_msg(master
, msg
);
964 * spi_transfer_one_message - Default implementation of transfer_one_message()
966 * This is a standard implementation of transfer_one_message() for
967 * drivers which implement a transfer_one() operation. It provides
968 * standard handling of delays and chip select management.
970 static int spi_transfer_one_message(struct spi_master
*master
,
971 struct spi_message
*msg
)
973 struct spi_transfer
*xfer
;
974 bool keep_cs
= false;
976 unsigned long long ms
= 1;
977 struct spi_statistics
*statm
= &master
->statistics
;
978 struct spi_statistics
*stats
= &msg
->spi
->statistics
;
980 spi_set_cs(msg
->spi
, true);
982 SPI_STATISTICS_INCREMENT_FIELD(statm
, messages
);
983 SPI_STATISTICS_INCREMENT_FIELD(stats
, messages
);
985 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
986 trace_spi_transfer_start(msg
, xfer
);
988 spi_statistics_add_transfer_stats(statm
, xfer
, master
);
989 spi_statistics_add_transfer_stats(stats
, xfer
, master
);
991 if (xfer
->tx_buf
|| xfer
->rx_buf
) {
992 reinit_completion(&master
->xfer_completion
);
994 ret
= master
->transfer_one(master
, msg
->spi
, xfer
);
996 SPI_STATISTICS_INCREMENT_FIELD(statm
,
998 SPI_STATISTICS_INCREMENT_FIELD(stats
,
1000 dev_err(&msg
->spi
->dev
,
1001 "SPI transfer failed: %d\n", ret
);
1007 ms
= 8LL * 1000LL * xfer
->len
;
1008 do_div(ms
, xfer
->speed_hz
);
1009 ms
+= ms
+ 200; /* some tolerance */
1014 ms
= wait_for_completion_timeout(&master
->xfer_completion
,
1015 msecs_to_jiffies(ms
));
1019 SPI_STATISTICS_INCREMENT_FIELD(statm
,
1021 SPI_STATISTICS_INCREMENT_FIELD(stats
,
1023 dev_err(&msg
->spi
->dev
,
1024 "SPI transfer timed out\n");
1025 msg
->status
= -ETIMEDOUT
;
1029 dev_err(&msg
->spi
->dev
,
1030 "Bufferless transfer has length %u\n",
1034 trace_spi_transfer_stop(msg
, xfer
);
1036 if (msg
->status
!= -EINPROGRESS
)
1039 if (xfer
->delay_usecs
)
1040 udelay(xfer
->delay_usecs
);
1042 if (xfer
->cs_change
) {
1043 if (list_is_last(&xfer
->transfer_list
,
1047 spi_set_cs(msg
->spi
, false);
1049 spi_set_cs(msg
->spi
, true);
1053 msg
->actual_length
+= xfer
->len
;
1057 if (ret
!= 0 || !keep_cs
)
1058 spi_set_cs(msg
->spi
, false);
1060 if (msg
->status
== -EINPROGRESS
)
1063 if (msg
->status
&& master
->handle_err
)
1064 master
->handle_err(master
, msg
);
1066 spi_res_release(master
, msg
);
1068 spi_finalize_current_message(master
);
1074 * spi_finalize_current_transfer - report completion of a transfer
1075 * @master: the master reporting completion
1077 * Called by SPI drivers using the core transfer_one_message()
1078 * implementation to notify it that the current interrupt driven
1079 * transfer has finished and the next one may be scheduled.
1081 void spi_finalize_current_transfer(struct spi_master
*master
)
1083 complete(&master
->xfer_completion
);
1085 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer
);
1088 * __spi_pump_messages - function which processes spi message queue
1089 * @master: master to process queue for
1090 * @in_kthread: true if we are in the context of the message pump thread
1092 * This function checks if there is any spi message in the queue that
1093 * needs processing and if so call out to the driver to initialize hardware
1094 * and transfer each message.
1096 * Note that it is called both from the kthread itself and also from
1097 * inside spi_sync(); the queue extraction handling at the top of the
1098 * function should deal with this safely.
1100 static void __spi_pump_messages(struct spi_master
*master
, bool in_kthread
)
1102 unsigned long flags
;
1103 bool was_busy
= false;
1107 spin_lock_irqsave(&master
->queue_lock
, flags
);
1109 /* Make sure we are not already running a message */
1110 if (master
->cur_msg
) {
1111 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1115 /* If another context is idling the device then defer */
1116 if (master
->idling
) {
1117 kthread_queue_work(&master
->kworker
, &master
->pump_messages
);
1118 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1122 /* Check if the queue is idle */
1123 if (list_empty(&master
->queue
) || !master
->running
) {
1124 if (!master
->busy
) {
1125 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1129 /* Only do teardown in the thread */
1131 kthread_queue_work(&master
->kworker
,
1132 &master
->pump_messages
);
1133 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1137 master
->busy
= false;
1138 master
->idling
= true;
1139 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1141 kfree(master
->dummy_rx
);
1142 master
->dummy_rx
= NULL
;
1143 kfree(master
->dummy_tx
);
1144 master
->dummy_tx
= NULL
;
1145 if (master
->unprepare_transfer_hardware
&&
1146 master
->unprepare_transfer_hardware(master
))
1147 dev_err(&master
->dev
,
1148 "failed to unprepare transfer hardware\n");
1149 if (master
->auto_runtime_pm
) {
1150 pm_runtime_mark_last_busy(master
->dev
.parent
);
1151 pm_runtime_put_autosuspend(master
->dev
.parent
);
1153 trace_spi_master_idle(master
);
1155 spin_lock_irqsave(&master
->queue_lock
, flags
);
1156 master
->idling
= false;
1157 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1161 /* Extract head of queue */
1163 list_first_entry(&master
->queue
, struct spi_message
, queue
);
1165 list_del_init(&master
->cur_msg
->queue
);
1169 master
->busy
= true;
1170 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1172 mutex_lock(&master
->io_mutex
);
1174 if (!was_busy
&& master
->auto_runtime_pm
) {
1175 ret
= pm_runtime_get_sync(master
->dev
.parent
);
1177 dev_err(&master
->dev
, "Failed to power device: %d\n",
1179 mutex_unlock(&master
->io_mutex
);
1185 trace_spi_master_busy(master
);
1187 if (!was_busy
&& master
->prepare_transfer_hardware
) {
1188 ret
= master
->prepare_transfer_hardware(master
);
1190 dev_err(&master
->dev
,
1191 "failed to prepare transfer hardware\n");
1193 if (master
->auto_runtime_pm
)
1194 pm_runtime_put(master
->dev
.parent
);
1195 mutex_unlock(&master
->io_mutex
);
1200 trace_spi_message_start(master
->cur_msg
);
1202 if (master
->prepare_message
) {
1203 ret
= master
->prepare_message(master
, master
->cur_msg
);
1205 dev_err(&master
->dev
,
1206 "failed to prepare message: %d\n", ret
);
1207 master
->cur_msg
->status
= ret
;
1208 spi_finalize_current_message(master
);
1211 master
->cur_msg_prepared
= true;
1214 ret
= spi_map_msg(master
, master
->cur_msg
);
1216 master
->cur_msg
->status
= ret
;
1217 spi_finalize_current_message(master
);
1221 ret
= master
->transfer_one_message(master
, master
->cur_msg
);
1223 dev_err(&master
->dev
,
1224 "failed to transfer one message from queue\n");
1229 mutex_unlock(&master
->io_mutex
);
1231 /* Prod the scheduler in case transfer_one() was busy waiting */
1237 * spi_pump_messages - kthread work function which processes spi message queue
1238 * @work: pointer to kthread work struct contained in the master struct
1240 static void spi_pump_messages(struct kthread_work
*work
)
1242 struct spi_master
*master
=
1243 container_of(work
, struct spi_master
, pump_messages
);
1245 __spi_pump_messages(master
, true);
1248 static int spi_init_queue(struct spi_master
*master
)
1250 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
1252 master
->running
= false;
1253 master
->busy
= false;
1255 kthread_init_worker(&master
->kworker
);
1256 master
->kworker_task
= kthread_run(kthread_worker_fn
,
1257 &master
->kworker
, "%s",
1258 dev_name(&master
->dev
));
1259 if (IS_ERR(master
->kworker_task
)) {
1260 dev_err(&master
->dev
, "failed to create message pump task\n");
1261 return PTR_ERR(master
->kworker_task
);
1263 kthread_init_work(&master
->pump_messages
, spi_pump_messages
);
1266 * Master config will indicate if this controller should run the
1267 * message pump with high (realtime) priority to reduce the transfer
1268 * latency on the bus by minimising the delay between a transfer
1269 * request and the scheduling of the message pump thread. Without this
1270 * setting the message pump thread will remain at default priority.
1273 dev_info(&master
->dev
,
1274 "will run message pump with realtime priority\n");
1275 sched_setscheduler(master
->kworker_task
, SCHED_FIFO
, ¶m
);
1282 * spi_get_next_queued_message() - called by driver to check for queued
1284 * @master: the master to check for queued messages
1286 * If there are more messages in the queue, the next message is returned from
1289 * Return: the next message in the queue, else NULL if the queue is empty.
1291 struct spi_message
*spi_get_next_queued_message(struct spi_master
*master
)
1293 struct spi_message
*next
;
1294 unsigned long flags
;
1296 /* get a pointer to the next message, if any */
1297 spin_lock_irqsave(&master
->queue_lock
, flags
);
1298 next
= list_first_entry_or_null(&master
->queue
, struct spi_message
,
1300 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1304 EXPORT_SYMBOL_GPL(spi_get_next_queued_message
);
1307 * spi_finalize_current_message() - the current message is complete
1308 * @master: the master to return the message to
1310 * Called by the driver to notify the core that the message in the front of the
1311 * queue is complete and can be removed from the queue.
1313 void spi_finalize_current_message(struct spi_master
*master
)
1315 struct spi_message
*mesg
;
1316 unsigned long flags
;
1319 spin_lock_irqsave(&master
->queue_lock
, flags
);
1320 mesg
= master
->cur_msg
;
1321 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1323 spi_unmap_msg(master
, mesg
);
1325 if (master
->cur_msg_prepared
&& master
->unprepare_message
) {
1326 ret
= master
->unprepare_message(master
, mesg
);
1328 dev_err(&master
->dev
,
1329 "failed to unprepare message: %d\n", ret
);
1333 spin_lock_irqsave(&master
->queue_lock
, flags
);
1334 master
->cur_msg
= NULL
;
1335 master
->cur_msg_prepared
= false;
1336 kthread_queue_work(&master
->kworker
, &master
->pump_messages
);
1337 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1339 trace_spi_message_done(mesg
);
1343 mesg
->complete(mesg
->context
);
1345 EXPORT_SYMBOL_GPL(spi_finalize_current_message
);
1347 static int spi_start_queue(struct spi_master
*master
)
1349 unsigned long flags
;
1351 spin_lock_irqsave(&master
->queue_lock
, flags
);
1353 if (master
->running
|| master
->busy
) {
1354 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1358 master
->running
= true;
1359 master
->cur_msg
= NULL
;
1360 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1362 kthread_queue_work(&master
->kworker
, &master
->pump_messages
);
1367 static int spi_stop_queue(struct spi_master
*master
)
1369 unsigned long flags
;
1370 unsigned limit
= 500;
1373 spin_lock_irqsave(&master
->queue_lock
, flags
);
1376 * This is a bit lame, but is optimized for the common execution path.
1377 * A wait_queue on the master->busy could be used, but then the common
1378 * execution path (pump_messages) would be required to call wake_up or
1379 * friends on every SPI message. Do this instead.
1381 while ((!list_empty(&master
->queue
) || master
->busy
) && limit
--) {
1382 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1383 usleep_range(10000, 11000);
1384 spin_lock_irqsave(&master
->queue_lock
, flags
);
1387 if (!list_empty(&master
->queue
) || master
->busy
)
1390 master
->running
= false;
1392 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1395 dev_warn(&master
->dev
,
1396 "could not stop message queue\n");
1402 static int spi_destroy_queue(struct spi_master
*master
)
1406 ret
= spi_stop_queue(master
);
1409 * kthread_flush_worker will block until all work is done.
1410 * If the reason that stop_queue timed out is that the work will never
1411 * finish, then it does no good to call flush/stop thread, so
1415 dev_err(&master
->dev
, "problem destroying queue\n");
1419 kthread_flush_worker(&master
->kworker
);
1420 kthread_stop(master
->kworker_task
);
1425 static int __spi_queued_transfer(struct spi_device
*spi
,
1426 struct spi_message
*msg
,
1429 struct spi_master
*master
= spi
->master
;
1430 unsigned long flags
;
1432 spin_lock_irqsave(&master
->queue_lock
, flags
);
1434 if (!master
->running
) {
1435 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1438 msg
->actual_length
= 0;
1439 msg
->status
= -EINPROGRESS
;
1441 list_add_tail(&msg
->queue
, &master
->queue
);
1442 if (!master
->busy
&& need_pump
)
1443 kthread_queue_work(&master
->kworker
, &master
->pump_messages
);
1445 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1450 * spi_queued_transfer - transfer function for queued transfers
1451 * @spi: spi device which is requesting transfer
1452 * @msg: spi message which is to handled is queued to driver queue
1454 * Return: zero on success, else a negative error code.
1456 static int spi_queued_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1458 return __spi_queued_transfer(spi
, msg
, true);
1461 static int spi_master_initialize_queue(struct spi_master
*master
)
1465 master
->transfer
= spi_queued_transfer
;
1466 if (!master
->transfer_one_message
)
1467 master
->transfer_one_message
= spi_transfer_one_message
;
1469 /* Initialize and start queue */
1470 ret
= spi_init_queue(master
);
1472 dev_err(&master
->dev
, "problem initializing queue\n");
1473 goto err_init_queue
;
1475 master
->queued
= true;
1476 ret
= spi_start_queue(master
);
1478 dev_err(&master
->dev
, "problem starting queue\n");
1479 goto err_start_queue
;
1485 spi_destroy_queue(master
);
1490 /*-------------------------------------------------------------------------*/
1492 #if defined(CONFIG_OF)
1493 static struct spi_device
*
1494 of_register_spi_device(struct spi_master
*master
, struct device_node
*nc
)
1496 struct spi_device
*spi
;
1500 /* Alloc an spi_device */
1501 spi
= spi_alloc_device(master
);
1503 dev_err(&master
->dev
, "spi_device alloc error for %s\n",
1509 /* Select device driver */
1510 rc
= of_modalias_node(nc
, spi
->modalias
,
1511 sizeof(spi
->modalias
));
1513 dev_err(&master
->dev
, "cannot find modalias for %s\n",
1518 /* Device address */
1519 rc
= of_property_read_u32(nc
, "reg", &value
);
1521 dev_err(&master
->dev
, "%s has no valid 'reg' property (%d)\n",
1525 spi
->chip_select
= value
;
1527 /* Mode (clock phase/polarity/etc.) */
1528 if (of_find_property(nc
, "spi-cpha", NULL
))
1529 spi
->mode
|= SPI_CPHA
;
1530 if (of_find_property(nc
, "spi-cpol", NULL
))
1531 spi
->mode
|= SPI_CPOL
;
1532 if (of_find_property(nc
, "spi-cs-high", NULL
))
1533 spi
->mode
|= SPI_CS_HIGH
;
1534 if (of_find_property(nc
, "spi-3wire", NULL
))
1535 spi
->mode
|= SPI_3WIRE
;
1536 if (of_find_property(nc
, "spi-lsb-first", NULL
))
1537 spi
->mode
|= SPI_LSB_FIRST
;
1539 /* Device DUAL/QUAD mode */
1540 if (!of_property_read_u32(nc
, "spi-tx-bus-width", &value
)) {
1545 spi
->mode
|= SPI_TX_DUAL
;
1548 spi
->mode
|= SPI_TX_QUAD
;
1551 dev_warn(&master
->dev
,
1552 "spi-tx-bus-width %d not supported\n",
1558 if (!of_property_read_u32(nc
, "spi-rx-bus-width", &value
)) {
1563 spi
->mode
|= SPI_RX_DUAL
;
1566 spi
->mode
|= SPI_RX_QUAD
;
1569 dev_warn(&master
->dev
,
1570 "spi-rx-bus-width %d not supported\n",
1577 rc
= of_property_read_u32(nc
, "spi-max-frequency", &value
);
1579 dev_err(&master
->dev
, "%s has no valid 'spi-max-frequency' property (%d)\n",
1583 spi
->max_speed_hz
= value
;
1585 /* Store a pointer to the node in the device structure */
1587 spi
->dev
.of_node
= nc
;
1589 /* Register the new device */
1590 rc
= spi_add_device(spi
);
1592 dev_err(&master
->dev
, "spi_device register error %s\n",
1594 goto err_of_node_put
;
1607 * of_register_spi_devices() - Register child devices onto the SPI bus
1608 * @master: Pointer to spi_master device
1610 * Registers an spi_device for each child node of master node which has a 'reg'
1613 static void of_register_spi_devices(struct spi_master
*master
)
1615 struct spi_device
*spi
;
1616 struct device_node
*nc
;
1618 if (!master
->dev
.of_node
)
1621 for_each_available_child_of_node(master
->dev
.of_node
, nc
) {
1622 if (of_node_test_and_set_flag(nc
, OF_POPULATED
))
1624 spi
= of_register_spi_device(master
, nc
);
1626 dev_warn(&master
->dev
, "Failed to create SPI device for %s\n",
1628 of_node_clear_flag(nc
, OF_POPULATED
);
1633 static void of_register_spi_devices(struct spi_master
*master
) { }
1637 static int acpi_spi_add_resource(struct acpi_resource
*ares
, void *data
)
1639 struct spi_device
*spi
= data
;
1640 struct spi_master
*master
= spi
->master
;
1642 if (ares
->type
== ACPI_RESOURCE_TYPE_SERIAL_BUS
) {
1643 struct acpi_resource_spi_serialbus
*sb
;
1645 sb
= &ares
->data
.spi_serial_bus
;
1646 if (sb
->type
== ACPI_RESOURCE_SERIAL_TYPE_SPI
) {
1648 * ACPI DeviceSelection numbering is handled by the
1649 * host controller driver in Windows and can vary
1650 * from driver to driver. In Linux we always expect
1651 * 0 .. max - 1 so we need to ask the driver to
1652 * translate between the two schemes.
1654 if (master
->fw_translate_cs
) {
1655 int cs
= master
->fw_translate_cs(master
,
1656 sb
->device_selection
);
1659 spi
->chip_select
= cs
;
1661 spi
->chip_select
= sb
->device_selection
;
1664 spi
->max_speed_hz
= sb
->connection_speed
;
1666 if (sb
->clock_phase
== ACPI_SPI_SECOND_PHASE
)
1667 spi
->mode
|= SPI_CPHA
;
1668 if (sb
->clock_polarity
== ACPI_SPI_START_HIGH
)
1669 spi
->mode
|= SPI_CPOL
;
1670 if (sb
->device_polarity
== ACPI_SPI_ACTIVE_HIGH
)
1671 spi
->mode
|= SPI_CS_HIGH
;
1673 } else if (spi
->irq
< 0) {
1676 if (acpi_dev_resource_interrupt(ares
, 0, &r
))
1680 /* Always tell the ACPI core to skip this resource */
1684 static acpi_status
acpi_register_spi_device(struct spi_master
*master
,
1685 struct acpi_device
*adev
)
1687 struct list_head resource_list
;
1688 struct spi_device
*spi
;
1691 if (acpi_bus_get_status(adev
) || !adev
->status
.present
||
1692 acpi_device_enumerated(adev
))
1695 spi
= spi_alloc_device(master
);
1697 dev_err(&master
->dev
, "failed to allocate SPI device for %s\n",
1698 dev_name(&adev
->dev
));
1699 return AE_NO_MEMORY
;
1702 ACPI_COMPANION_SET(&spi
->dev
, adev
);
1705 INIT_LIST_HEAD(&resource_list
);
1706 ret
= acpi_dev_get_resources(adev
, &resource_list
,
1707 acpi_spi_add_resource
, spi
);
1708 acpi_dev_free_resource_list(&resource_list
);
1710 if (ret
< 0 || !spi
->max_speed_hz
) {
1716 spi
->irq
= acpi_dev_gpio_irq_get(adev
, 0);
1718 acpi_device_set_enumerated(adev
);
1720 adev
->power
.flags
.ignore_parent
= true;
1721 strlcpy(spi
->modalias
, acpi_device_hid(adev
), sizeof(spi
->modalias
));
1722 if (spi_add_device(spi
)) {
1723 adev
->power
.flags
.ignore_parent
= false;
1724 dev_err(&master
->dev
, "failed to add SPI device %s from ACPI\n",
1725 dev_name(&adev
->dev
));
1732 static acpi_status
acpi_spi_add_device(acpi_handle handle
, u32 level
,
1733 void *data
, void **return_value
)
1735 struct spi_master
*master
= data
;
1736 struct acpi_device
*adev
;
1738 if (acpi_bus_get_device(handle
, &adev
))
1741 return acpi_register_spi_device(master
, adev
);
1744 static void acpi_register_spi_devices(struct spi_master
*master
)
1749 handle
= ACPI_HANDLE(master
->dev
.parent
);
1753 status
= acpi_walk_namespace(ACPI_TYPE_DEVICE
, handle
, 1,
1754 acpi_spi_add_device
, NULL
,
1756 if (ACPI_FAILURE(status
))
1757 dev_warn(&master
->dev
, "failed to enumerate SPI slaves\n");
1760 static inline void acpi_register_spi_devices(struct spi_master
*master
) {}
1761 #endif /* CONFIG_ACPI */
1763 static void spi_master_release(struct device
*dev
)
1765 struct spi_master
*master
;
1767 master
= container_of(dev
, struct spi_master
, dev
);
1771 static struct class spi_master_class
= {
1772 .name
= "spi_master",
1773 .owner
= THIS_MODULE
,
1774 .dev_release
= spi_master_release
,
1775 .dev_groups
= spi_master_groups
,
1780 * spi_alloc_master - allocate SPI master controller
1781 * @dev: the controller, possibly using the platform_bus
1782 * @size: how much zeroed driver-private data to allocate; the pointer to this
1783 * memory is in the driver_data field of the returned device,
1784 * accessible with spi_master_get_devdata().
1785 * Context: can sleep
1787 * This call is used only by SPI master controller drivers, which are the
1788 * only ones directly touching chip registers. It's how they allocate
1789 * an spi_master structure, prior to calling spi_register_master().
1791 * This must be called from context that can sleep.
1793 * The caller is responsible for assigning the bus number and initializing
1794 * the master's methods before calling spi_register_master(); and (after errors
1795 * adding the device) calling spi_master_put() to prevent a memory leak.
1797 * Return: the SPI master structure on success, else NULL.
1799 struct spi_master
*spi_alloc_master(struct device
*dev
, unsigned size
)
1801 struct spi_master
*master
;
1806 master
= kzalloc(size
+ sizeof(*master
), GFP_KERNEL
);
1810 device_initialize(&master
->dev
);
1811 master
->bus_num
= -1;
1812 master
->num_chipselect
= 1;
1813 master
->dev
.class = &spi_master_class
;
1814 master
->dev
.parent
= dev
;
1815 pm_suspend_ignore_children(&master
->dev
, true);
1816 spi_master_set_devdata(master
, &master
[1]);
1820 EXPORT_SYMBOL_GPL(spi_alloc_master
);
1823 static int of_spi_register_master(struct spi_master
*master
)
1826 struct device_node
*np
= master
->dev
.of_node
;
1831 nb
= of_gpio_named_count(np
, "cs-gpios");
1832 master
->num_chipselect
= max_t(int, nb
, master
->num_chipselect
);
1834 /* Return error only for an incorrectly formed cs-gpios property */
1835 if (nb
== 0 || nb
== -ENOENT
)
1840 cs
= devm_kzalloc(&master
->dev
,
1841 sizeof(int) * master
->num_chipselect
,
1843 master
->cs_gpios
= cs
;
1845 if (!master
->cs_gpios
)
1848 for (i
= 0; i
< master
->num_chipselect
; i
++)
1851 for (i
= 0; i
< nb
; i
++)
1852 cs
[i
] = of_get_named_gpio(np
, "cs-gpios", i
);
1857 static int of_spi_register_master(struct spi_master
*master
)
1864 * spi_register_master - register SPI master controller
1865 * @master: initialized master, originally from spi_alloc_master()
1866 * Context: can sleep
1868 * SPI master controllers connect to their drivers using some non-SPI bus,
1869 * such as the platform bus. The final stage of probe() in that code
1870 * includes calling spi_register_master() to hook up to this SPI bus glue.
1872 * SPI controllers use board specific (often SOC specific) bus numbers,
1873 * and board-specific addressing for SPI devices combines those numbers
1874 * with chip select numbers. Since SPI does not directly support dynamic
1875 * device identification, boards need configuration tables telling which
1876 * chip is at which address.
1878 * This must be called from context that can sleep. It returns zero on
1879 * success, else a negative error code (dropping the master's refcount).
1880 * After a successful return, the caller is responsible for calling
1881 * spi_unregister_master().
1883 * Return: zero on success, else a negative error code.
1885 int spi_register_master(struct spi_master
*master
)
1887 static atomic_t dyn_bus_id
= ATOMIC_INIT((1<<15) - 1);
1888 struct device
*dev
= master
->dev
.parent
;
1889 struct boardinfo
*bi
;
1890 int status
= -ENODEV
;
1896 status
= of_spi_register_master(master
);
1900 /* even if it's just one always-selected device, there must
1901 * be at least one chipselect
1903 if (master
->num_chipselect
== 0)
1906 if ((master
->bus_num
< 0) && master
->dev
.of_node
)
1907 master
->bus_num
= of_alias_get_id(master
->dev
.of_node
, "spi");
1909 /* convention: dynamically assigned bus IDs count down from the max */
1910 if (master
->bus_num
< 0) {
1911 /* FIXME switch to an IDR based scheme, something like
1912 * I2C now uses, so we can't run out of "dynamic" IDs
1914 master
->bus_num
= atomic_dec_return(&dyn_bus_id
);
1918 INIT_LIST_HEAD(&master
->queue
);
1919 spin_lock_init(&master
->queue_lock
);
1920 spin_lock_init(&master
->bus_lock_spinlock
);
1921 mutex_init(&master
->bus_lock_mutex
);
1922 mutex_init(&master
->io_mutex
);
1923 master
->bus_lock_flag
= 0;
1924 init_completion(&master
->xfer_completion
);
1925 if (!master
->max_dma_len
)
1926 master
->max_dma_len
= INT_MAX
;
1928 /* register the device, then userspace will see it.
1929 * registration fails if the bus ID is in use.
1931 dev_set_name(&master
->dev
, "spi%u", master
->bus_num
);
1932 status
= device_add(&master
->dev
);
1935 dev_dbg(dev
, "registered master %s%s\n", dev_name(&master
->dev
),
1936 dynamic
? " (dynamic)" : "");
1938 /* If we're using a queued driver, start the queue */
1939 if (master
->transfer
)
1940 dev_info(dev
, "master is unqueued, this is deprecated\n");
1942 status
= spi_master_initialize_queue(master
);
1944 device_del(&master
->dev
);
1948 /* add statistics */
1949 spin_lock_init(&master
->statistics
.lock
);
1951 mutex_lock(&board_lock
);
1952 list_add_tail(&master
->list
, &spi_master_list
);
1953 list_for_each_entry(bi
, &board_list
, list
)
1954 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
1955 mutex_unlock(&board_lock
);
1957 /* Register devices from the device tree and ACPI */
1958 of_register_spi_devices(master
);
1959 acpi_register_spi_devices(master
);
1963 EXPORT_SYMBOL_GPL(spi_register_master
);
1965 static void devm_spi_unregister(struct device
*dev
, void *res
)
1967 spi_unregister_master(*(struct spi_master
**)res
);
1971 * dev_spi_register_master - register managed SPI master controller
1972 * @dev: device managing SPI master
1973 * @master: initialized master, originally from spi_alloc_master()
1974 * Context: can sleep
1976 * Register a SPI device as with spi_register_master() which will
1977 * automatically be unregister
1979 * Return: zero on success, else a negative error code.
1981 int devm_spi_register_master(struct device
*dev
, struct spi_master
*master
)
1983 struct spi_master
**ptr
;
1986 ptr
= devres_alloc(devm_spi_unregister
, sizeof(*ptr
), GFP_KERNEL
);
1990 ret
= spi_register_master(master
);
1993 devres_add(dev
, ptr
);
2000 EXPORT_SYMBOL_GPL(devm_spi_register_master
);
2002 static int __unregister(struct device
*dev
, void *null
)
2004 spi_unregister_device(to_spi_device(dev
));
2009 * spi_unregister_master - unregister SPI master controller
2010 * @master: the master being unregistered
2011 * Context: can sleep
2013 * This call is used only by SPI master controller drivers, which are the
2014 * only ones directly touching chip registers.
2016 * This must be called from context that can sleep.
2018 void spi_unregister_master(struct spi_master
*master
)
2022 if (master
->queued
) {
2023 if (spi_destroy_queue(master
))
2024 dev_err(&master
->dev
, "queue remove failed\n");
2027 mutex_lock(&board_lock
);
2028 list_del(&master
->list
);
2029 mutex_unlock(&board_lock
);
2031 dummy
= device_for_each_child(&master
->dev
, NULL
, __unregister
);
2032 device_unregister(&master
->dev
);
2034 EXPORT_SYMBOL_GPL(spi_unregister_master
);
2036 int spi_master_suspend(struct spi_master
*master
)
2040 /* Basically no-ops for non-queued masters */
2041 if (!master
->queued
)
2044 ret
= spi_stop_queue(master
);
2046 dev_err(&master
->dev
, "queue stop failed\n");
2050 EXPORT_SYMBOL_GPL(spi_master_suspend
);
2052 int spi_master_resume(struct spi_master
*master
)
2056 if (!master
->queued
)
2059 ret
= spi_start_queue(master
);
2061 dev_err(&master
->dev
, "queue restart failed\n");
2065 EXPORT_SYMBOL_GPL(spi_master_resume
);
2067 static int __spi_master_match(struct device
*dev
, const void *data
)
2069 struct spi_master
*m
;
2070 const u16
*bus_num
= data
;
2072 m
= container_of(dev
, struct spi_master
, dev
);
2073 return m
->bus_num
== *bus_num
;
2077 * spi_busnum_to_master - look up master associated with bus_num
2078 * @bus_num: the master's bus number
2079 * Context: can sleep
2081 * This call may be used with devices that are registered after
2082 * arch init time. It returns a refcounted pointer to the relevant
2083 * spi_master (which the caller must release), or NULL if there is
2084 * no such master registered.
2086 * Return: the SPI master structure on success, else NULL.
2088 struct spi_master
*spi_busnum_to_master(u16 bus_num
)
2091 struct spi_master
*master
= NULL
;
2093 dev
= class_find_device(&spi_master_class
, NULL
, &bus_num
,
2094 __spi_master_match
);
2096 master
= container_of(dev
, struct spi_master
, dev
);
2097 /* reference got in class_find_device */
2100 EXPORT_SYMBOL_GPL(spi_busnum_to_master
);
2102 /*-------------------------------------------------------------------------*/
2104 /* Core methods for SPI resource management */
2107 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2108 * during the processing of a spi_message while using
2110 * @spi: the spi device for which we allocate memory
2111 * @release: the release code to execute for this resource
2112 * @size: size to alloc and return
2113 * @gfp: GFP allocation flags
2115 * Return: the pointer to the allocated data
2117 * This may get enhanced in the future to allocate from a memory pool
2118 * of the @spi_device or @spi_master to avoid repeated allocations.
2120 void *spi_res_alloc(struct spi_device
*spi
,
2121 spi_res_release_t release
,
2122 size_t size
, gfp_t gfp
)
2124 struct spi_res
*sres
;
2126 sres
= kzalloc(sizeof(*sres
) + size
, gfp
);
2130 INIT_LIST_HEAD(&sres
->entry
);
2131 sres
->release
= release
;
2135 EXPORT_SYMBOL_GPL(spi_res_alloc
);
2138 * spi_res_free - free an spi resource
2139 * @res: pointer to the custom data of a resource
2142 void spi_res_free(void *res
)
2144 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
2149 WARN_ON(!list_empty(&sres
->entry
));
2152 EXPORT_SYMBOL_GPL(spi_res_free
);
2155 * spi_res_add - add a spi_res to the spi_message
2156 * @message: the spi message
2157 * @res: the spi_resource
2159 void spi_res_add(struct spi_message
*message
, void *res
)
2161 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
2163 WARN_ON(!list_empty(&sres
->entry
));
2164 list_add_tail(&sres
->entry
, &message
->resources
);
2166 EXPORT_SYMBOL_GPL(spi_res_add
);
2169 * spi_res_release - release all spi resources for this message
2170 * @master: the @spi_master
2171 * @message: the @spi_message
2173 void spi_res_release(struct spi_master
*master
,
2174 struct spi_message
*message
)
2176 struct spi_res
*res
;
2178 while (!list_empty(&message
->resources
)) {
2179 res
= list_last_entry(&message
->resources
,
2180 struct spi_res
, entry
);
2183 res
->release(master
, message
, res
->data
);
2185 list_del(&res
->entry
);
2190 EXPORT_SYMBOL_GPL(spi_res_release
);
2192 /*-------------------------------------------------------------------------*/
2194 /* Core methods for spi_message alterations */
2196 static void __spi_replace_transfers_release(struct spi_master
*master
,
2197 struct spi_message
*msg
,
2200 struct spi_replaced_transfers
*rxfer
= res
;
2203 /* call extra callback if requested */
2205 rxfer
->release(master
, msg
, res
);
2207 /* insert replaced transfers back into the message */
2208 list_splice(&rxfer
->replaced_transfers
, rxfer
->replaced_after
);
2210 /* remove the formerly inserted entries */
2211 for (i
= 0; i
< rxfer
->inserted
; i
++)
2212 list_del(&rxfer
->inserted_transfers
[i
].transfer_list
);
2216 * spi_replace_transfers - replace transfers with several transfers
2217 * and register change with spi_message.resources
2218 * @msg: the spi_message we work upon
2219 * @xfer_first: the first spi_transfer we want to replace
2220 * @remove: number of transfers to remove
2221 * @insert: the number of transfers we want to insert instead
2222 * @release: extra release code necessary in some circumstances
2223 * @extradatasize: extra data to allocate (with alignment guarantees
2224 * of struct @spi_transfer)
2227 * Returns: pointer to @spi_replaced_transfers,
2228 * PTR_ERR(...) in case of errors.
2230 struct spi_replaced_transfers
*spi_replace_transfers(
2231 struct spi_message
*msg
,
2232 struct spi_transfer
*xfer_first
,
2235 spi_replaced_release_t release
,
2236 size_t extradatasize
,
2239 struct spi_replaced_transfers
*rxfer
;
2240 struct spi_transfer
*xfer
;
2243 /* allocate the structure using spi_res */
2244 rxfer
= spi_res_alloc(msg
->spi
, __spi_replace_transfers_release
,
2245 insert
* sizeof(struct spi_transfer
)
2246 + sizeof(struct spi_replaced_transfers
)
2250 return ERR_PTR(-ENOMEM
);
2252 /* the release code to invoke before running the generic release */
2253 rxfer
->release
= release
;
2255 /* assign extradata */
2258 &rxfer
->inserted_transfers
[insert
];
2260 /* init the replaced_transfers list */
2261 INIT_LIST_HEAD(&rxfer
->replaced_transfers
);
2263 /* assign the list_entry after which we should reinsert
2264 * the @replaced_transfers - it may be spi_message.messages!
2266 rxfer
->replaced_after
= xfer_first
->transfer_list
.prev
;
2268 /* remove the requested number of transfers */
2269 for (i
= 0; i
< remove
; i
++) {
2270 /* if the entry after replaced_after it is msg->transfers
2271 * then we have been requested to remove more transfers
2272 * than are in the list
2274 if (rxfer
->replaced_after
->next
== &msg
->transfers
) {
2275 dev_err(&msg
->spi
->dev
,
2276 "requested to remove more spi_transfers than are available\n");
2277 /* insert replaced transfers back into the message */
2278 list_splice(&rxfer
->replaced_transfers
,
2279 rxfer
->replaced_after
);
2281 /* free the spi_replace_transfer structure */
2282 spi_res_free(rxfer
);
2284 /* and return with an error */
2285 return ERR_PTR(-EINVAL
);
2288 /* remove the entry after replaced_after from list of
2289 * transfers and add it to list of replaced_transfers
2291 list_move_tail(rxfer
->replaced_after
->next
,
2292 &rxfer
->replaced_transfers
);
2295 /* create copy of the given xfer with identical settings
2296 * based on the first transfer to get removed
2298 for (i
= 0; i
< insert
; i
++) {
2299 /* we need to run in reverse order */
2300 xfer
= &rxfer
->inserted_transfers
[insert
- 1 - i
];
2302 /* copy all spi_transfer data */
2303 memcpy(xfer
, xfer_first
, sizeof(*xfer
));
2306 list_add(&xfer
->transfer_list
, rxfer
->replaced_after
);
2308 /* clear cs_change and delay_usecs for all but the last */
2310 xfer
->cs_change
= false;
2311 xfer
->delay_usecs
= 0;
2315 /* set up inserted */
2316 rxfer
->inserted
= insert
;
2318 /* and register it with spi_res/spi_message */
2319 spi_res_add(msg
, rxfer
);
2323 EXPORT_SYMBOL_GPL(spi_replace_transfers
);
2325 static int __spi_split_transfer_maxsize(struct spi_master
*master
,
2326 struct spi_message
*msg
,
2327 struct spi_transfer
**xferp
,
2331 struct spi_transfer
*xfer
= *xferp
, *xfers
;
2332 struct spi_replaced_transfers
*srt
;
2336 /* warn once about this fact that we are splitting a transfer */
2337 dev_warn_once(&msg
->spi
->dev
,
2338 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2339 xfer
->len
, maxsize
);
2341 /* calculate how many we have to replace */
2342 count
= DIV_ROUND_UP(xfer
->len
, maxsize
);
2344 /* create replacement */
2345 srt
= spi_replace_transfers(msg
, xfer
, 1, count
, NULL
, 0, gfp
);
2347 return PTR_ERR(srt
);
2348 xfers
= srt
->inserted_transfers
;
2350 /* now handle each of those newly inserted spi_transfers
2351 * note that the replacements spi_transfers all are preset
2352 * to the same values as *xferp, so tx_buf, rx_buf and len
2353 * are all identical (as well as most others)
2354 * so we just have to fix up len and the pointers.
2356 * this also includes support for the depreciated
2357 * spi_message.is_dma_mapped interface
2360 /* the first transfer just needs the length modified, so we
2361 * run it outside the loop
2363 xfers
[0].len
= min_t(size_t, maxsize
, xfer
[0].len
);
2365 /* all the others need rx_buf/tx_buf also set */
2366 for (i
= 1, offset
= maxsize
; i
< count
; offset
+= maxsize
, i
++) {
2367 /* update rx_buf, tx_buf and dma */
2368 if (xfers
[i
].rx_buf
)
2369 xfers
[i
].rx_buf
+= offset
;
2370 if (xfers
[i
].rx_dma
)
2371 xfers
[i
].rx_dma
+= offset
;
2372 if (xfers
[i
].tx_buf
)
2373 xfers
[i
].tx_buf
+= offset
;
2374 if (xfers
[i
].tx_dma
)
2375 xfers
[i
].tx_dma
+= offset
;
2378 xfers
[i
].len
= min(maxsize
, xfers
[i
].len
- offset
);
2381 /* we set up xferp to the last entry we have inserted,
2382 * so that we skip those already split transfers
2384 *xferp
= &xfers
[count
- 1];
2386 /* increment statistics counters */
2387 SPI_STATISTICS_INCREMENT_FIELD(&master
->statistics
,
2388 transfers_split_maxsize
);
2389 SPI_STATISTICS_INCREMENT_FIELD(&msg
->spi
->statistics
,
2390 transfers_split_maxsize
);
2396 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2397 * when an individual transfer exceeds a
2399 * @master: the @spi_master for this transfer
2400 * @msg: the @spi_message to transform
2401 * @maxsize: the maximum when to apply this
2402 * @gfp: GFP allocation flags
2404 * Return: status of transformation
2406 int spi_split_transfers_maxsize(struct spi_master
*master
,
2407 struct spi_message
*msg
,
2411 struct spi_transfer
*xfer
;
2414 /* iterate over the transfer_list,
2415 * but note that xfer is advanced to the last transfer inserted
2416 * to avoid checking sizes again unnecessarily (also xfer does
2417 * potentiall belong to a different list by the time the
2418 * replacement has happened
2420 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
2421 if (xfer
->len
> maxsize
) {
2422 ret
= __spi_split_transfer_maxsize(
2423 master
, msg
, &xfer
, maxsize
, gfp
);
2431 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize
);
2433 /*-------------------------------------------------------------------------*/
2435 /* Core methods for SPI master protocol drivers. Some of the
2436 * other core methods are currently defined as inline functions.
2439 static int __spi_validate_bits_per_word(struct spi_master
*master
, u8 bits_per_word
)
2441 if (master
->bits_per_word_mask
) {
2442 /* Only 32 bits fit in the mask */
2443 if (bits_per_word
> 32)
2445 if (!(master
->bits_per_word_mask
&
2446 SPI_BPW_MASK(bits_per_word
)))
2454 * spi_setup - setup SPI mode and clock rate
2455 * @spi: the device whose settings are being modified
2456 * Context: can sleep, and no requests are queued to the device
2458 * SPI protocol drivers may need to update the transfer mode if the
2459 * device doesn't work with its default. They may likewise need
2460 * to update clock rates or word sizes from initial values. This function
2461 * changes those settings, and must be called from a context that can sleep.
2462 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2463 * effect the next time the device is selected and data is transferred to
2464 * or from it. When this function returns, the spi device is deselected.
2466 * Note that this call will fail if the protocol driver specifies an option
2467 * that the underlying controller or its driver does not support. For
2468 * example, not all hardware supports wire transfers using nine bit words,
2469 * LSB-first wire encoding, or active-high chipselects.
2471 * Return: zero on success, else a negative error code.
2473 int spi_setup(struct spi_device
*spi
)
2475 unsigned bad_bits
, ugly_bits
;
2478 /* check mode to prevent that DUAL and QUAD set at the same time
2480 if (((spi
->mode
& SPI_TX_DUAL
) && (spi
->mode
& SPI_TX_QUAD
)) ||
2481 ((spi
->mode
& SPI_RX_DUAL
) && (spi
->mode
& SPI_RX_QUAD
))) {
2483 "setup: can not select dual and quad at the same time\n");
2486 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2488 if ((spi
->mode
& SPI_3WIRE
) && (spi
->mode
&
2489 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
)))
2491 /* help drivers fail *cleanly* when they need options
2492 * that aren't supported with their current master
2494 bad_bits
= spi
->mode
& ~spi
->master
->mode_bits
;
2495 ugly_bits
= bad_bits
&
2496 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
);
2499 "setup: ignoring unsupported mode bits %x\n",
2501 spi
->mode
&= ~ugly_bits
;
2502 bad_bits
&= ~ugly_bits
;
2505 dev_err(&spi
->dev
, "setup: unsupported mode bits %x\n",
2510 if (!spi
->bits_per_word
)
2511 spi
->bits_per_word
= 8;
2513 status
= __spi_validate_bits_per_word(spi
->master
, spi
->bits_per_word
);
2517 if (!spi
->max_speed_hz
)
2518 spi
->max_speed_hz
= spi
->master
->max_speed_hz
;
2520 if (spi
->master
->setup
)
2521 status
= spi
->master
->setup(spi
);
2523 spi_set_cs(spi
, false);
2525 dev_dbg(&spi
->dev
, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2526 (int) (spi
->mode
& (SPI_CPOL
| SPI_CPHA
)),
2527 (spi
->mode
& SPI_CS_HIGH
) ? "cs_high, " : "",
2528 (spi
->mode
& SPI_LSB_FIRST
) ? "lsb, " : "",
2529 (spi
->mode
& SPI_3WIRE
) ? "3wire, " : "",
2530 (spi
->mode
& SPI_LOOP
) ? "loopback, " : "",
2531 spi
->bits_per_word
, spi
->max_speed_hz
,
2536 EXPORT_SYMBOL_GPL(spi_setup
);
2538 static int __spi_validate(struct spi_device
*spi
, struct spi_message
*message
)
2540 struct spi_master
*master
= spi
->master
;
2541 struct spi_transfer
*xfer
;
2544 if (list_empty(&message
->transfers
))
2547 /* Half-duplex links include original MicroWire, and ones with
2548 * only one data pin like SPI_3WIRE (switches direction) or where
2549 * either MOSI or MISO is missing. They can also be caused by
2550 * software limitations.
2552 if ((master
->flags
& SPI_MASTER_HALF_DUPLEX
)
2553 || (spi
->mode
& SPI_3WIRE
)) {
2554 unsigned flags
= master
->flags
;
2556 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
2557 if (xfer
->rx_buf
&& xfer
->tx_buf
)
2559 if ((flags
& SPI_MASTER_NO_TX
) && xfer
->tx_buf
)
2561 if ((flags
& SPI_MASTER_NO_RX
) && xfer
->rx_buf
)
2567 * Set transfer bits_per_word and max speed as spi device default if
2568 * it is not set for this transfer.
2569 * Set transfer tx_nbits and rx_nbits as single transfer default
2570 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2572 message
->frame_length
= 0;
2573 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
2574 message
->frame_length
+= xfer
->len
;
2575 if (!xfer
->bits_per_word
)
2576 xfer
->bits_per_word
= spi
->bits_per_word
;
2578 if (!xfer
->speed_hz
)
2579 xfer
->speed_hz
= spi
->max_speed_hz
;
2580 if (!xfer
->speed_hz
)
2581 xfer
->speed_hz
= master
->max_speed_hz
;
2583 if (master
->max_speed_hz
&&
2584 xfer
->speed_hz
> master
->max_speed_hz
)
2585 xfer
->speed_hz
= master
->max_speed_hz
;
2587 if (__spi_validate_bits_per_word(master
, xfer
->bits_per_word
))
2591 * SPI transfer length should be multiple of SPI word size
2592 * where SPI word size should be power-of-two multiple
2594 if (xfer
->bits_per_word
<= 8)
2596 else if (xfer
->bits_per_word
<= 16)
2601 /* No partial transfers accepted */
2602 if (xfer
->len
% w_size
)
2605 if (xfer
->speed_hz
&& master
->min_speed_hz
&&
2606 xfer
->speed_hz
< master
->min_speed_hz
)
2609 if (xfer
->tx_buf
&& !xfer
->tx_nbits
)
2610 xfer
->tx_nbits
= SPI_NBITS_SINGLE
;
2611 if (xfer
->rx_buf
&& !xfer
->rx_nbits
)
2612 xfer
->rx_nbits
= SPI_NBITS_SINGLE
;
2613 /* check transfer tx/rx_nbits:
2614 * 1. check the value matches one of single, dual and quad
2615 * 2. check tx/rx_nbits match the mode in spi_device
2618 if (xfer
->tx_nbits
!= SPI_NBITS_SINGLE
&&
2619 xfer
->tx_nbits
!= SPI_NBITS_DUAL
&&
2620 xfer
->tx_nbits
!= SPI_NBITS_QUAD
)
2622 if ((xfer
->tx_nbits
== SPI_NBITS_DUAL
) &&
2623 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
2625 if ((xfer
->tx_nbits
== SPI_NBITS_QUAD
) &&
2626 !(spi
->mode
& SPI_TX_QUAD
))
2629 /* check transfer rx_nbits */
2631 if (xfer
->rx_nbits
!= SPI_NBITS_SINGLE
&&
2632 xfer
->rx_nbits
!= SPI_NBITS_DUAL
&&
2633 xfer
->rx_nbits
!= SPI_NBITS_QUAD
)
2635 if ((xfer
->rx_nbits
== SPI_NBITS_DUAL
) &&
2636 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
2638 if ((xfer
->rx_nbits
== SPI_NBITS_QUAD
) &&
2639 !(spi
->mode
& SPI_RX_QUAD
))
2644 message
->status
= -EINPROGRESS
;
2649 static int __spi_async(struct spi_device
*spi
, struct spi_message
*message
)
2651 struct spi_master
*master
= spi
->master
;
2655 SPI_STATISTICS_INCREMENT_FIELD(&master
->statistics
, spi_async
);
2656 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_async
);
2658 trace_spi_message_submit(message
);
2660 return master
->transfer(spi
, message
);
2664 * spi_async - asynchronous SPI transfer
2665 * @spi: device with which data will be exchanged
2666 * @message: describes the data transfers, including completion callback
2667 * Context: any (irqs may be blocked, etc)
2669 * This call may be used in_irq and other contexts which can't sleep,
2670 * as well as from task contexts which can sleep.
2672 * The completion callback is invoked in a context which can't sleep.
2673 * Before that invocation, the value of message->status is undefined.
2674 * When the callback is issued, message->status holds either zero (to
2675 * indicate complete success) or a negative error code. After that
2676 * callback returns, the driver which issued the transfer request may
2677 * deallocate the associated memory; it's no longer in use by any SPI
2678 * core or controller driver code.
2680 * Note that although all messages to a spi_device are handled in
2681 * FIFO order, messages may go to different devices in other orders.
2682 * Some device might be higher priority, or have various "hard" access
2683 * time requirements, for example.
2685 * On detection of any fault during the transfer, processing of
2686 * the entire message is aborted, and the device is deselected.
2687 * Until returning from the associated message completion callback,
2688 * no other spi_message queued to that device will be processed.
2689 * (This rule applies equally to all the synchronous transfer calls,
2690 * which are wrappers around this core asynchronous primitive.)
2692 * Return: zero on success, else a negative error code.
2694 int spi_async(struct spi_device
*spi
, struct spi_message
*message
)
2696 struct spi_master
*master
= spi
->master
;
2698 unsigned long flags
;
2700 ret
= __spi_validate(spi
, message
);
2704 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2706 if (master
->bus_lock_flag
)
2709 ret
= __spi_async(spi
, message
);
2711 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2715 EXPORT_SYMBOL_GPL(spi_async
);
2718 * spi_async_locked - version of spi_async with exclusive bus usage
2719 * @spi: device with which data will be exchanged
2720 * @message: describes the data transfers, including completion callback
2721 * Context: any (irqs may be blocked, etc)
2723 * This call may be used in_irq and other contexts which can't sleep,
2724 * as well as from task contexts which can sleep.
2726 * The completion callback is invoked in a context which can't sleep.
2727 * Before that invocation, the value of message->status is undefined.
2728 * When the callback is issued, message->status holds either zero (to
2729 * indicate complete success) or a negative error code. After that
2730 * callback returns, the driver which issued the transfer request may
2731 * deallocate the associated memory; it's no longer in use by any SPI
2732 * core or controller driver code.
2734 * Note that although all messages to a spi_device are handled in
2735 * FIFO order, messages may go to different devices in other orders.
2736 * Some device might be higher priority, or have various "hard" access
2737 * time requirements, for example.
2739 * On detection of any fault during the transfer, processing of
2740 * the entire message is aborted, and the device is deselected.
2741 * Until returning from the associated message completion callback,
2742 * no other spi_message queued to that device will be processed.
2743 * (This rule applies equally to all the synchronous transfer calls,
2744 * which are wrappers around this core asynchronous primitive.)
2746 * Return: zero on success, else a negative error code.
2748 int spi_async_locked(struct spi_device
*spi
, struct spi_message
*message
)
2750 struct spi_master
*master
= spi
->master
;
2752 unsigned long flags
;
2754 ret
= __spi_validate(spi
, message
);
2758 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2760 ret
= __spi_async(spi
, message
);
2762 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2767 EXPORT_SYMBOL_GPL(spi_async_locked
);
2770 int spi_flash_read(struct spi_device
*spi
,
2771 struct spi_flash_read_message
*msg
)
2774 struct spi_master
*master
= spi
->master
;
2775 struct device
*rx_dev
= NULL
;
2778 if ((msg
->opcode_nbits
== SPI_NBITS_DUAL
||
2779 msg
->addr_nbits
== SPI_NBITS_DUAL
) &&
2780 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
2782 if ((msg
->opcode_nbits
== SPI_NBITS_QUAD
||
2783 msg
->addr_nbits
== SPI_NBITS_QUAD
) &&
2784 !(spi
->mode
& SPI_TX_QUAD
))
2786 if (msg
->data_nbits
== SPI_NBITS_DUAL
&&
2787 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
2789 if (msg
->data_nbits
== SPI_NBITS_QUAD
&&
2790 !(spi
->mode
& SPI_RX_QUAD
))
2793 if (master
->auto_runtime_pm
) {
2794 ret
= pm_runtime_get_sync(master
->dev
.parent
);
2796 dev_err(&master
->dev
, "Failed to power device: %d\n",
2802 mutex_lock(&master
->bus_lock_mutex
);
2803 mutex_lock(&master
->io_mutex
);
2804 if (master
->dma_rx
) {
2805 rx_dev
= master
->dma_rx
->device
->dev
;
2806 ret
= spi_map_buf(master
, rx_dev
, &msg
->rx_sg
,
2810 msg
->cur_msg_mapped
= true;
2812 ret
= master
->spi_flash_read(spi
, msg
);
2813 if (msg
->cur_msg_mapped
)
2814 spi_unmap_buf(master
, rx_dev
, &msg
->rx_sg
,
2816 mutex_unlock(&master
->io_mutex
);
2817 mutex_unlock(&master
->bus_lock_mutex
);
2819 if (master
->auto_runtime_pm
)
2820 pm_runtime_put(master
->dev
.parent
);
2824 EXPORT_SYMBOL_GPL(spi_flash_read
);
2826 /*-------------------------------------------------------------------------*/
2828 /* Utility methods for SPI master protocol drivers, layered on
2829 * top of the core. Some other utility methods are defined as
2833 static void spi_complete(void *arg
)
2838 static int __spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
2840 DECLARE_COMPLETION_ONSTACK(done
);
2842 struct spi_master
*master
= spi
->master
;
2843 unsigned long flags
;
2845 status
= __spi_validate(spi
, message
);
2849 message
->complete
= spi_complete
;
2850 message
->context
= &done
;
2853 SPI_STATISTICS_INCREMENT_FIELD(&master
->statistics
, spi_sync
);
2854 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_sync
);
2856 /* If we're not using the legacy transfer method then we will
2857 * try to transfer in the calling context so special case.
2858 * This code would be less tricky if we could remove the
2859 * support for driver implemented message queues.
2861 if (master
->transfer
== spi_queued_transfer
) {
2862 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2864 trace_spi_message_submit(message
);
2866 status
= __spi_queued_transfer(spi
, message
, false);
2868 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2870 status
= spi_async_locked(spi
, message
);
2874 /* Push out the messages in the calling context if we
2877 if (master
->transfer
== spi_queued_transfer
) {
2878 SPI_STATISTICS_INCREMENT_FIELD(&master
->statistics
,
2879 spi_sync_immediate
);
2880 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
,
2881 spi_sync_immediate
);
2882 __spi_pump_messages(master
, false);
2885 wait_for_completion(&done
);
2886 status
= message
->status
;
2888 message
->context
= NULL
;
2893 * spi_sync - blocking/synchronous SPI data transfers
2894 * @spi: device with which data will be exchanged
2895 * @message: describes the data transfers
2896 * Context: can sleep
2898 * This call may only be used from a context that may sleep. The sleep
2899 * is non-interruptible, and has no timeout. Low-overhead controller
2900 * drivers may DMA directly into and out of the message buffers.
2902 * Note that the SPI device's chip select is active during the message,
2903 * and then is normally disabled between messages. Drivers for some
2904 * frequently-used devices may want to minimize costs of selecting a chip,
2905 * by leaving it selected in anticipation that the next message will go
2906 * to the same chip. (That may increase power usage.)
2908 * Also, the caller is guaranteeing that the memory associated with the
2909 * message will not be freed before this call returns.
2911 * Return: zero on success, else a negative error code.
2913 int spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
2917 mutex_lock(&spi
->master
->bus_lock_mutex
);
2918 ret
= __spi_sync(spi
, message
);
2919 mutex_unlock(&spi
->master
->bus_lock_mutex
);
2923 EXPORT_SYMBOL_GPL(spi_sync
);
2926 * spi_sync_locked - version of spi_sync with exclusive bus usage
2927 * @spi: device with which data will be exchanged
2928 * @message: describes the data transfers
2929 * Context: can sleep
2931 * This call may only be used from a context that may sleep. The sleep
2932 * is non-interruptible, and has no timeout. Low-overhead controller
2933 * drivers may DMA directly into and out of the message buffers.
2935 * This call should be used by drivers that require exclusive access to the
2936 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2937 * be released by a spi_bus_unlock call when the exclusive access is over.
2939 * Return: zero on success, else a negative error code.
2941 int spi_sync_locked(struct spi_device
*spi
, struct spi_message
*message
)
2943 return __spi_sync(spi
, message
);
2945 EXPORT_SYMBOL_GPL(spi_sync_locked
);
2948 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2949 * @master: SPI bus master that should be locked for exclusive bus access
2950 * Context: can sleep
2952 * This call may only be used from a context that may sleep. The sleep
2953 * is non-interruptible, and has no timeout.
2955 * This call should be used by drivers that require exclusive access to the
2956 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2957 * exclusive access is over. Data transfer must be done by spi_sync_locked
2958 * and spi_async_locked calls when the SPI bus lock is held.
2960 * Return: always zero.
2962 int spi_bus_lock(struct spi_master
*master
)
2964 unsigned long flags
;
2966 mutex_lock(&master
->bus_lock_mutex
);
2968 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2969 master
->bus_lock_flag
= 1;
2970 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2972 /* mutex remains locked until spi_bus_unlock is called */
2976 EXPORT_SYMBOL_GPL(spi_bus_lock
);
2979 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2980 * @master: SPI bus master that was locked for exclusive bus access
2981 * Context: can sleep
2983 * This call may only be used from a context that may sleep. The sleep
2984 * is non-interruptible, and has no timeout.
2986 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2989 * Return: always zero.
2991 int spi_bus_unlock(struct spi_master
*master
)
2993 master
->bus_lock_flag
= 0;
2995 mutex_unlock(&master
->bus_lock_mutex
);
2999 EXPORT_SYMBOL_GPL(spi_bus_unlock
);
3001 /* portable code must never pass more than 32 bytes */
3002 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3007 * spi_write_then_read - SPI synchronous write followed by read
3008 * @spi: device with which data will be exchanged
3009 * @txbuf: data to be written (need not be dma-safe)
3010 * @n_tx: size of txbuf, in bytes
3011 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3012 * @n_rx: size of rxbuf, in bytes
3013 * Context: can sleep
3015 * This performs a half duplex MicroWire style transaction with the
3016 * device, sending txbuf and then reading rxbuf. The return value
3017 * is zero for success, else a negative errno status code.
3018 * This call may only be used from a context that may sleep.
3020 * Parameters to this routine are always copied using a small buffer;
3021 * portable code should never use this for more than 32 bytes.
3022 * Performance-sensitive or bulk transfer code should instead use
3023 * spi_{async,sync}() calls with dma-safe buffers.
3025 * Return: zero on success, else a negative error code.
3027 int spi_write_then_read(struct spi_device
*spi
,
3028 const void *txbuf
, unsigned n_tx
,
3029 void *rxbuf
, unsigned n_rx
)
3031 static DEFINE_MUTEX(lock
);
3034 struct spi_message message
;
3035 struct spi_transfer x
[2];
3038 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3039 * copying here, (as a pure convenience thing), but we can
3040 * keep heap costs out of the hot path unless someone else is
3041 * using the pre-allocated buffer or the transfer is too large.
3043 if ((n_tx
+ n_rx
) > SPI_BUFSIZ
|| !mutex_trylock(&lock
)) {
3044 local_buf
= kmalloc(max((unsigned)SPI_BUFSIZ
, n_tx
+ n_rx
),
3045 GFP_KERNEL
| GFP_DMA
);
3052 spi_message_init(&message
);
3053 memset(x
, 0, sizeof(x
));
3056 spi_message_add_tail(&x
[0], &message
);
3060 spi_message_add_tail(&x
[1], &message
);
3063 memcpy(local_buf
, txbuf
, n_tx
);
3064 x
[0].tx_buf
= local_buf
;
3065 x
[1].rx_buf
= local_buf
+ n_tx
;
3068 status
= spi_sync(spi
, &message
);
3070 memcpy(rxbuf
, x
[1].rx_buf
, n_rx
);
3072 if (x
[0].tx_buf
== buf
)
3073 mutex_unlock(&lock
);
3079 EXPORT_SYMBOL_GPL(spi_write_then_read
);
3081 /*-------------------------------------------------------------------------*/
3083 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3084 static int __spi_of_device_match(struct device
*dev
, void *data
)
3086 return dev
->of_node
== data
;
3089 /* must call put_device() when done with returned spi_device device */
3090 static struct spi_device
*of_find_spi_device_by_node(struct device_node
*node
)
3092 struct device
*dev
= bus_find_device(&spi_bus_type
, NULL
, node
,
3093 __spi_of_device_match
);
3094 return dev
? to_spi_device(dev
) : NULL
;
3097 static int __spi_of_master_match(struct device
*dev
, const void *data
)
3099 return dev
->of_node
== data
;
3102 /* the spi masters are not using spi_bus, so we find it with another way */
3103 static struct spi_master
*of_find_spi_master_by_node(struct device_node
*node
)
3107 dev
= class_find_device(&spi_master_class
, NULL
, node
,
3108 __spi_of_master_match
);
3112 /* reference got in class_find_device */
3113 return container_of(dev
, struct spi_master
, dev
);
3116 static int of_spi_notify(struct notifier_block
*nb
, unsigned long action
,
3119 struct of_reconfig_data
*rd
= arg
;
3120 struct spi_master
*master
;
3121 struct spi_device
*spi
;
3123 switch (of_reconfig_get_state_change(action
, arg
)) {
3124 case OF_RECONFIG_CHANGE_ADD
:
3125 master
= of_find_spi_master_by_node(rd
->dn
->parent
);
3127 return NOTIFY_OK
; /* not for us */
3129 if (of_node_test_and_set_flag(rd
->dn
, OF_POPULATED
)) {
3130 put_device(&master
->dev
);
3134 spi
= of_register_spi_device(master
, rd
->dn
);
3135 put_device(&master
->dev
);
3138 pr_err("%s: failed to create for '%s'\n",
3139 __func__
, rd
->dn
->full_name
);
3140 of_node_clear_flag(rd
->dn
, OF_POPULATED
);
3141 return notifier_from_errno(PTR_ERR(spi
));
3145 case OF_RECONFIG_CHANGE_REMOVE
:
3146 /* already depopulated? */
3147 if (!of_node_check_flag(rd
->dn
, OF_POPULATED
))
3150 /* find our device by node */
3151 spi
= of_find_spi_device_by_node(rd
->dn
);
3153 return NOTIFY_OK
; /* no? not meant for us */
3155 /* unregister takes one ref away */
3156 spi_unregister_device(spi
);
3158 /* and put the reference of the find */
3159 put_device(&spi
->dev
);
3166 static struct notifier_block spi_of_notifier
= {
3167 .notifier_call
= of_spi_notify
,
3169 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3170 extern struct notifier_block spi_of_notifier
;
3171 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3173 #if IS_ENABLED(CONFIG_ACPI)
3174 static int spi_acpi_master_match(struct device
*dev
, const void *data
)
3176 return ACPI_COMPANION(dev
->parent
) == data
;
3179 static int spi_acpi_device_match(struct device
*dev
, void *data
)
3181 return ACPI_COMPANION(dev
) == data
;
3184 static struct spi_master
*acpi_spi_find_master_by_adev(struct acpi_device
*adev
)
3188 dev
= class_find_device(&spi_master_class
, NULL
, adev
,
3189 spi_acpi_master_match
);
3193 return container_of(dev
, struct spi_master
, dev
);
3196 static struct spi_device
*acpi_spi_find_device_by_adev(struct acpi_device
*adev
)
3200 dev
= bus_find_device(&spi_bus_type
, NULL
, adev
, spi_acpi_device_match
);
3202 return dev
? to_spi_device(dev
) : NULL
;
3205 static int acpi_spi_notify(struct notifier_block
*nb
, unsigned long value
,
3208 struct acpi_device
*adev
= arg
;
3209 struct spi_master
*master
;
3210 struct spi_device
*spi
;
3213 case ACPI_RECONFIG_DEVICE_ADD
:
3214 master
= acpi_spi_find_master_by_adev(adev
->parent
);
3218 acpi_register_spi_device(master
, adev
);
3219 put_device(&master
->dev
);
3221 case ACPI_RECONFIG_DEVICE_REMOVE
:
3222 if (!acpi_device_enumerated(adev
))
3225 spi
= acpi_spi_find_device_by_adev(adev
);
3229 spi_unregister_device(spi
);
3230 put_device(&spi
->dev
);
3237 static struct notifier_block spi_acpi_notifier
= {
3238 .notifier_call
= acpi_spi_notify
,
3241 extern struct notifier_block spi_acpi_notifier
;
3244 static int __init
spi_init(void)
3248 buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
3254 status
= bus_register(&spi_bus_type
);
3258 status
= class_register(&spi_master_class
);
3262 if (IS_ENABLED(CONFIG_OF_DYNAMIC
))
3263 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier
));
3264 if (IS_ENABLED(CONFIG_ACPI
))
3265 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier
));
3270 bus_unregister(&spi_bus_type
);
3278 /* board_info is normally registered in arch_initcall(),
3279 * but even essential drivers wait till later
3281 * REVISIT only boardinfo really needs static linking. the rest (device and
3282 * driver registration) _could_ be dynamically linked (modular) ... costs
3283 * include needing to have boardinfo data structures be much more public.
3285 postcore_initcall(spi_init
);