sched: Fix wake_affine() vs RT tasks
[linux/fpc-iii.git] / kernel / irq / handle.c
blob17c71bb565c6ed287901aaef1c201a3c70f79aef
1 /*
2 * linux/kernel/irq/handle.c
4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
7 * This file contains the core interrupt handling code.
9 * Detailed information is available in Documentation/DocBook/genericirq
13 #include <linux/irq.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/interrupt.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/rculist.h>
21 #include <linux/hash.h>
22 #include <linux/bootmem.h>
23 #include <trace/events/irq.h>
25 #include "internals.h"
28 * lockdep: we want to handle all irq_desc locks as a single lock-class:
30 struct lock_class_key irq_desc_lock_class;
32 /**
33 * handle_bad_irq - handle spurious and unhandled irqs
34 * @irq: the interrupt number
35 * @desc: description of the interrupt
37 * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
39 void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
41 print_irq_desc(irq, desc);
42 kstat_incr_irqs_this_cpu(irq, desc);
43 ack_bad_irq(irq);
46 #if defined(CONFIG_SMP) && defined(CONFIG_GENERIC_HARDIRQS)
47 static void __init init_irq_default_affinity(void)
49 alloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
50 cpumask_setall(irq_default_affinity);
52 #else
53 static void __init init_irq_default_affinity(void)
56 #endif
59 * Linux has a controller-independent interrupt architecture.
60 * Every controller has a 'controller-template', that is used
61 * by the main code to do the right thing. Each driver-visible
62 * interrupt source is transparently wired to the appropriate
63 * controller. Thus drivers need not be aware of the
64 * interrupt-controller.
66 * The code is designed to be easily extended with new/different
67 * interrupt controllers, without having to do assembly magic or
68 * having to touch the generic code.
70 * Controller mappings for all interrupt sources:
72 int nr_irqs = NR_IRQS;
73 EXPORT_SYMBOL_GPL(nr_irqs);
75 #ifdef CONFIG_SPARSE_IRQ
77 static struct irq_desc irq_desc_init = {
78 .irq = -1,
79 .status = IRQ_DISABLED,
80 .chip = &no_irq_chip,
81 .handle_irq = handle_bad_irq,
82 .depth = 1,
83 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
86 void __ref init_kstat_irqs(struct irq_desc *desc, int node, int nr)
88 void *ptr;
90 if (slab_is_available())
91 ptr = kzalloc_node(nr * sizeof(*desc->kstat_irqs),
92 GFP_ATOMIC, node);
93 else
94 ptr = alloc_bootmem_node(NODE_DATA(node),
95 nr * sizeof(*desc->kstat_irqs));
98 * don't overwite if can not get new one
99 * init_copy_kstat_irqs() could still use old one
101 if (ptr) {
102 printk(KERN_DEBUG " alloc kstat_irqs on node %d\n", node);
103 desc->kstat_irqs = ptr;
107 static void init_one_irq_desc(int irq, struct irq_desc *desc, int node)
109 memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
111 spin_lock_init(&desc->lock);
112 desc->irq = irq;
113 #ifdef CONFIG_SMP
114 desc->node = node;
115 #endif
116 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
117 init_kstat_irqs(desc, node, nr_cpu_ids);
118 if (!desc->kstat_irqs) {
119 printk(KERN_ERR "can not alloc kstat_irqs\n");
120 BUG_ON(1);
122 if (!alloc_desc_masks(desc, node, false)) {
123 printk(KERN_ERR "can not alloc irq_desc cpumasks\n");
124 BUG_ON(1);
126 init_desc_masks(desc);
127 arch_init_chip_data(desc, node);
131 * Protect the sparse_irqs:
133 DEFINE_SPINLOCK(sparse_irq_lock);
135 struct irq_desc **irq_desc_ptrs __read_mostly;
137 static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = {
138 [0 ... NR_IRQS_LEGACY-1] = {
139 .irq = -1,
140 .status = IRQ_DISABLED,
141 .chip = &no_irq_chip,
142 .handle_irq = handle_bad_irq,
143 .depth = 1,
144 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
148 static unsigned int *kstat_irqs_legacy;
150 int __init early_irq_init(void)
152 struct irq_desc *desc;
153 int legacy_count;
154 int node;
155 int i;
157 init_irq_default_affinity();
159 /* initialize nr_irqs based on nr_cpu_ids */
160 arch_probe_nr_irqs();
161 printk(KERN_INFO "NR_IRQS:%d nr_irqs:%d\n", NR_IRQS, nr_irqs);
163 desc = irq_desc_legacy;
164 legacy_count = ARRAY_SIZE(irq_desc_legacy);
165 node = first_online_node;
167 /* allocate irq_desc_ptrs array based on nr_irqs */
168 irq_desc_ptrs = kcalloc(nr_irqs, sizeof(void *), GFP_NOWAIT);
170 /* allocate based on nr_cpu_ids */
171 kstat_irqs_legacy = kzalloc_node(NR_IRQS_LEGACY * nr_cpu_ids *
172 sizeof(int), GFP_NOWAIT, node);
174 for (i = 0; i < legacy_count; i++) {
175 desc[i].irq = i;
176 #ifdef CONFIG_SMP
177 desc[i].node = node;
178 #endif
179 desc[i].kstat_irqs = kstat_irqs_legacy + i * nr_cpu_ids;
180 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
181 alloc_desc_masks(&desc[i], node, true);
182 init_desc_masks(&desc[i]);
183 irq_desc_ptrs[i] = desc + i;
186 for (i = legacy_count; i < nr_irqs; i++)
187 irq_desc_ptrs[i] = NULL;
189 return arch_early_irq_init();
192 struct irq_desc *irq_to_desc(unsigned int irq)
194 if (irq_desc_ptrs && irq < nr_irqs)
195 return irq_desc_ptrs[irq];
197 return NULL;
200 struct irq_desc * __ref irq_to_desc_alloc_node(unsigned int irq, int node)
202 struct irq_desc *desc;
203 unsigned long flags;
205 if (irq >= nr_irqs) {
206 WARN(1, "irq (%d) >= nr_irqs (%d) in irq_to_desc_alloc\n",
207 irq, nr_irqs);
208 return NULL;
211 desc = irq_desc_ptrs[irq];
212 if (desc)
213 return desc;
215 spin_lock_irqsave(&sparse_irq_lock, flags);
217 /* We have to check it to avoid races with another CPU */
218 desc = irq_desc_ptrs[irq];
219 if (desc)
220 goto out_unlock;
222 if (slab_is_available())
223 desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node);
224 else
225 desc = alloc_bootmem_node(NODE_DATA(node), sizeof(*desc));
227 printk(KERN_DEBUG " alloc irq_desc for %d on node %d\n", irq, node);
228 if (!desc) {
229 printk(KERN_ERR "can not alloc irq_desc\n");
230 BUG_ON(1);
232 init_one_irq_desc(irq, desc, node);
234 irq_desc_ptrs[irq] = desc;
236 out_unlock:
237 spin_unlock_irqrestore(&sparse_irq_lock, flags);
239 return desc;
242 #else /* !CONFIG_SPARSE_IRQ */
244 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
245 [0 ... NR_IRQS-1] = {
246 .status = IRQ_DISABLED,
247 .chip = &no_irq_chip,
248 .handle_irq = handle_bad_irq,
249 .depth = 1,
250 .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
254 static unsigned int kstat_irqs_all[NR_IRQS][NR_CPUS];
255 int __init early_irq_init(void)
257 struct irq_desc *desc;
258 int count;
259 int i;
261 init_irq_default_affinity();
263 printk(KERN_INFO "NR_IRQS:%d\n", NR_IRQS);
265 desc = irq_desc;
266 count = ARRAY_SIZE(irq_desc);
268 for (i = 0; i < count; i++) {
269 desc[i].irq = i;
270 alloc_desc_masks(&desc[i], 0, true);
271 init_desc_masks(&desc[i]);
272 desc[i].kstat_irqs = kstat_irqs_all[i];
274 return arch_early_irq_init();
277 struct irq_desc *irq_to_desc(unsigned int irq)
279 return (irq < NR_IRQS) ? irq_desc + irq : NULL;
282 struct irq_desc *irq_to_desc_alloc_node(unsigned int irq, int node)
284 return irq_to_desc(irq);
286 #endif /* !CONFIG_SPARSE_IRQ */
288 void clear_kstat_irqs(struct irq_desc *desc)
290 memset(desc->kstat_irqs, 0, nr_cpu_ids * sizeof(*(desc->kstat_irqs)));
294 * What should we do if we get a hw irq event on an illegal vector?
295 * Each architecture has to answer this themself.
297 static void ack_bad(unsigned int irq)
299 struct irq_desc *desc = irq_to_desc(irq);
301 print_irq_desc(irq, desc);
302 ack_bad_irq(irq);
306 * NOP functions
308 static void noop(unsigned int irq)
312 static unsigned int noop_ret(unsigned int irq)
314 return 0;
318 * Generic no controller implementation
320 struct irq_chip no_irq_chip = {
321 .name = "none",
322 .startup = noop_ret,
323 .shutdown = noop,
324 .enable = noop,
325 .disable = noop,
326 .ack = ack_bad,
327 .end = noop,
331 * Generic dummy implementation which can be used for
332 * real dumb interrupt sources
334 struct irq_chip dummy_irq_chip = {
335 .name = "dummy",
336 .startup = noop_ret,
337 .shutdown = noop,
338 .enable = noop,
339 .disable = noop,
340 .ack = noop,
341 .mask = noop,
342 .unmask = noop,
343 .end = noop,
347 * Special, empty irq handler:
349 irqreturn_t no_action(int cpl, void *dev_id)
351 return IRQ_NONE;
354 static void warn_no_thread(unsigned int irq, struct irqaction *action)
356 if (test_and_set_bit(IRQTF_WARNED, &action->thread_flags))
357 return;
359 printk(KERN_WARNING "IRQ %d device %s returned IRQ_WAKE_THREAD "
360 "but no thread function available.", irq, action->name);
364 * handle_IRQ_event - irq action chain handler
365 * @irq: the interrupt number
366 * @action: the interrupt action chain for this irq
368 * Handles the action chain of an irq event
370 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
372 irqreturn_t ret, retval = IRQ_NONE;
373 unsigned int status = 0;
375 if (!(action->flags & IRQF_DISABLED))
376 local_irq_enable_in_hardirq();
378 do {
379 trace_irq_handler_entry(irq, action);
380 ret = action->handler(irq, action->dev_id);
381 trace_irq_handler_exit(irq, action, ret);
383 switch (ret) {
384 case IRQ_WAKE_THREAD:
386 * Set result to handled so the spurious check
387 * does not trigger.
389 ret = IRQ_HANDLED;
392 * Catch drivers which return WAKE_THREAD but
393 * did not set up a thread function
395 if (unlikely(!action->thread_fn)) {
396 warn_no_thread(irq, action);
397 break;
401 * Wake up the handler thread for this
402 * action. In case the thread crashed and was
403 * killed we just pretend that we handled the
404 * interrupt. The hardirq handler above has
405 * disabled the device interrupt, so no irq
406 * storm is lurking.
408 if (likely(!test_bit(IRQTF_DIED,
409 &action->thread_flags))) {
410 set_bit(IRQTF_RUNTHREAD, &action->thread_flags);
411 wake_up_process(action->thread);
414 /* Fall through to add to randomness */
415 case IRQ_HANDLED:
416 status |= action->flags;
417 break;
419 default:
420 break;
423 retval |= ret;
424 action = action->next;
425 } while (action);
427 if (status & IRQF_SAMPLE_RANDOM)
428 add_interrupt_randomness(irq);
429 local_irq_disable();
431 return retval;
434 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
436 #ifdef CONFIG_ENABLE_WARN_DEPRECATED
437 # warning __do_IRQ is deprecated. Please convert to proper flow handlers
438 #endif
441 * __do_IRQ - original all in one highlevel IRQ handler
442 * @irq: the interrupt number
444 * __do_IRQ handles all normal device IRQ's (the special
445 * SMP cross-CPU interrupts have their own specific
446 * handlers).
448 * This is the original x86 implementation which is used for every
449 * interrupt type.
451 unsigned int __do_IRQ(unsigned int irq)
453 struct irq_desc *desc = irq_to_desc(irq);
454 struct irqaction *action;
455 unsigned int status;
457 kstat_incr_irqs_this_cpu(irq, desc);
459 if (CHECK_IRQ_PER_CPU(desc->status)) {
460 irqreturn_t action_ret;
463 * No locking required for CPU-local interrupts:
465 if (desc->chip->ack)
466 desc->chip->ack(irq);
467 if (likely(!(desc->status & IRQ_DISABLED))) {
468 action_ret = handle_IRQ_event(irq, desc->action);
469 if (!noirqdebug)
470 note_interrupt(irq, desc, action_ret);
472 desc->chip->end(irq);
473 return 1;
476 spin_lock(&desc->lock);
477 if (desc->chip->ack)
478 desc->chip->ack(irq);
480 * REPLAY is when Linux resends an IRQ that was dropped earlier
481 * WAITING is used by probe to mark irqs that are being tested
483 status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
484 status |= IRQ_PENDING; /* we _want_ to handle it */
487 * If the IRQ is disabled for whatever reason, we cannot
488 * use the action we have.
490 action = NULL;
491 if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
492 action = desc->action;
493 status &= ~IRQ_PENDING; /* we commit to handling */
494 status |= IRQ_INPROGRESS; /* we are handling it */
496 desc->status = status;
499 * If there is no IRQ handler or it was disabled, exit early.
500 * Since we set PENDING, if another processor is handling
501 * a different instance of this same irq, the other processor
502 * will take care of it.
504 if (unlikely(!action))
505 goto out;
508 * Edge triggered interrupts need to remember
509 * pending events.
510 * This applies to any hw interrupts that allow a second
511 * instance of the same irq to arrive while we are in do_IRQ
512 * or in the handler. But the code here only handles the _second_
513 * instance of the irq, not the third or fourth. So it is mostly
514 * useful for irq hardware that does not mask cleanly in an
515 * SMP environment.
517 for (;;) {
518 irqreturn_t action_ret;
520 spin_unlock(&desc->lock);
522 action_ret = handle_IRQ_event(irq, action);
523 if (!noirqdebug)
524 note_interrupt(irq, desc, action_ret);
526 spin_lock(&desc->lock);
527 if (likely(!(desc->status & IRQ_PENDING)))
528 break;
529 desc->status &= ~IRQ_PENDING;
531 desc->status &= ~IRQ_INPROGRESS;
533 out:
535 * The ->end() handler has to deal with interrupts which got
536 * disabled while the handler was running.
538 desc->chip->end(irq);
539 spin_unlock(&desc->lock);
541 return 1;
543 #endif
545 void early_init_irq_lock_class(void)
547 struct irq_desc *desc;
548 int i;
550 for_each_irq_desc(i, desc) {
551 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
555 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
557 struct irq_desc *desc = irq_to_desc(irq);
558 return desc ? desc->kstat_irqs[cpu] : 0;
560 EXPORT_SYMBOL(kstat_irqs_cpu);